Repository logo
 

Dynamics of anions and cations in cesium hydrogensulfide (CsHS, CsDS): Neutron and x-ray diffraction, calorimetry and proton NMR investigations

dc.contributor.authorHaarmann, F.en_US
dc.contributor.authorJacobs, H.en_US
dc.contributor.authorKockelmann, W.en_US
dc.contributor.authorSenker, J.en_US
dc.contributor.authorMuller, P.en_US
dc.contributor.authorKennedy, CAen_US
dc.contributor.authorMarriott, RAen_US
dc.contributor.authorQiu, L.en_US
dc.contributor.authorWhite, MAen_US
dc.date.accessioned2013-08-23T15:58:39Z
dc.date.available2013-08-23T15:58:39Z
dc.date.issued2002-09en_US
dc.description.abstractProtonated and deuterated samples of the hydrogensulfide of cesium were studied by high-resolution neutron powder diffraction, calorimetry and proton NMR investigations in a wide temperature range. Primarily due to reorientational disorder of the anions, three modifications of the title compounds are known: an ordered low-temperature modification-LTM (tetragonal, I4/m, Z=8), a dynamically disordered middle-temperature modification-MTM (tetragonal, P4/mbm, Z=2), and a high-temperature modification-HTM (cubic, Pm (3) over barm, Z=1). The LTMreversible arrowMTM phase transition is continuous. Its order parameter, related to an order/disorder and to a displacive part of the phase transition, coupled bilinearly, follows a critical law. The critical temperature T-C=123.2+/-0.5 K determined by neutron diffraction of CsDS is in good agreement with T-C=121+/-2 K obtained by calorimetric investigations. For the protonated title compound a shift to T-C=129+/-2 K was observed by calorimetric measurements. The entropy change of this transition is (0.24+/-0.04) R and (0.27+/-0.04) R for CsHS and CsDS, respectively. The MTMreversible arrowHTM phase transition is clearly of first order. The transition temperatures of CsHS and CsDS are T=207.9+/-0.3 K and T=213.6+/-0.3 K with entropy changes of (0.86+/-0.01) R and (0.81+/-0.01) R, respectively. Second moments (M-2) of the proton NMR absorption signal of MTM and HTM are in reasonable agreement with M-2 calculated for the known crystal structures. A minimum in spin-lattice relaxation times (T-1) in the MTM could not be assigned by dipolar coupling to a two-site 180degrees reorientation of the anions, a model of motion presumed by the knowledge of the crystal structure. The activation enthalpies determined by fits of T-1 presuming a thermal activated process are in the order of molecular reorientations (E-a=13.5+/-0.5 kJ mol(-1) for the MTM and E-a=9.3+/-0.3 kJ mol(-1) for the HTM). In the HTM at T>330 K translational motion of the cations determines T-1 (E-a=13.8+/-0.4 kJ mol(-1)).en_US
dc.identifier.citationReproduced from Haarmann, F., H. Jacobs, W. Kockelmann, J. Senker, et al. 2002. "Dynamics of anions and cations in cesium hydrogensulfide (CsHS, CsDS): Neutron and x-ray diffraction, calorimetry and proton NMR investigations." Journal of Chemical Physics 117(10): 4961-4972, with the permission of AIP Publishing.en_US
dc.identifier.issn0021-9606en_US
dc.identifier.issue10en_US
dc.identifier.startpage4961en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.1479141en_US
dc.identifier.urihttp://hdl.handle.net/10222/36147
dc.identifier.volume117en_US
dc.relation.ispartofJournal of Chemical Physicsen_US
dc.titleDynamics of anions and cations in cesium hydrogensulfide (CsHS, CsDS): Neutron and x-ray diffraction, calorimetry and proton NMR investigationsen_US
dc.typearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Haarmann_1.1479141.pdf
Size:
649.65 KB
Format:
Adobe Portable Document Format
Description:

Collections