Repository logo
 

Dynamics of anions and cations in cesium hydrogensulfide (CsHS, CsDS): Neutron and x-ray diffraction, calorimetry and proton NMR investigations

Date

2002-09

Authors

Haarmann, F.
Jacobs, H.
Kockelmann, W.
Senker, J.
Muller, P.
Kennedy, CA
Marriott, RA
Qiu, L.
White, MA

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Protonated and deuterated samples of the hydrogensulfide of cesium were studied by high-resolution neutron powder diffraction, calorimetry and proton NMR investigations in a wide temperature range. Primarily due to reorientational disorder of the anions, three modifications of the title compounds are known: an ordered low-temperature modification-LTM (tetragonal, I4/m, Z=8), a dynamically disordered middle-temperature modification-MTM (tetragonal, P4/mbm, Z=2), and a high-temperature modification-HTM (cubic, Pm (3) over barm, Z=1). The LTMreversible arrowMTM phase transition is continuous. Its order parameter, related to an order/disorder and to a displacive part of the phase transition, coupled bilinearly, follows a critical law. The critical temperature T-C=123.2+/-0.5 K determined by neutron diffraction of CsDS is in good agreement with T-C=121+/-2 K obtained by calorimetric investigations. For the protonated title compound a shift to T-C=129+/-2 K was observed by calorimetric measurements. The entropy change of this transition is (0.24+/-0.04) R and (0.27+/-0.04) R for CsHS and CsDS, respectively. The MTMreversible arrowHTM phase transition is clearly of first order. The transition temperatures of CsHS and CsDS are T=207.9+/-0.3 K and T=213.6+/-0.3 K with entropy changes of (0.86+/-0.01) R and (0.81+/-0.01) R, respectively. Second moments (M-2) of the proton NMR absorption signal of MTM and HTM are in reasonable agreement with M-2 calculated for the known crystal structures. A minimum in spin-lattice relaxation times (T-1) in the MTM could not be assigned by dipolar coupling to a two-site 180degrees reorientation of the anions, a model of motion presumed by the knowledge of the crystal structure. The activation enthalpies determined by fits of T-1 presuming a thermal activated process are in the order of molecular reorientations (E-a=13.5+/-0.5 kJ mol(-1) for the MTM and E-a=9.3+/-0.3 kJ mol(-1) for the HTM). In the HTM at T>330 K translational motion of the cations determines T-1 (E-a=13.8+/-0.4 kJ mol(-1)).

Description

Keywords

Citation

Reproduced from Haarmann, F., H. Jacobs, W. Kockelmann, J. Senker, et al. 2002. "Dynamics of anions and cations in cesium hydrogensulfide (CsHS, CsDS): Neutron and x-ray diffraction, calorimetry and proton NMR investigations." Journal of Chemical Physics 117(10): 4961-4972, with the permission of AIP Publishing.

Collections