Repository logo
 

Chang, Rachel Y.W.

Permanent URI for this collectionhttps://hdl.handle.net/10222/44126

Browse

Recent Submissions

Now showing 1 - 11 of 11
  • ItemOpen Access
    Particle formation and growth at five rural and urban sites
    (2010) Jeong, C-H; Evans, G. J.; McGuire, M. L.; Chang, R. Y-W; Abbatt, J. P. D.; Zeromskiene, K.; Mozurkewich, M.; Li, S. -M; Leaitch, Andw R.
    Ultrafine particle (UFP) number and size distributions were simultaneously measured at five urban and rural sites during the summer of 2007 in Ontario, Canada as part of the Border Air Quality and Meteorology Study (BAQS-Met 2007). Particle formation and growth events at these five sites were classified based on their strength and persistence as well as the variation in geometric mean diameter. Regional nucleation and growth events and local short-lived strong nucleation events were frequently observed at the near-border rural sites, upwind of industrial sources. Surprisingly, the particle number concentrations at one of these sites were higher than the concentrations at a downtown site in a major city, despite its high traffic density. Regional nucleation and growth events were favored during intense solar irradiance and in less polluted cooler drier air. The most distinctive regional particle nucleation and growth event during the campaign was observed simultaneously at all five sites, which were up to 350 km apart. Although the ultrafine particle concentrations and size distributions generally were spatially heterogeneous across the region, a more uniform spatial distribution of UFP across the five areas was observed during this regional nucleation event. Thus, nucleation events can cover large regions, contributing to the burden of UFP in cities and potentially to the associated health impacts on urban populations. Local short-lived nucleation events at the three near-border sites during this summer three-week campaign were associated with high SO2, which likely originated from US and Canadian industrial sources. Hence, particle formation in southwestern Ontario appears to often be related to anthropogenic gaseous emissions but biogenic emissions at times also contribute. Longer-term studies are needed to help resolve the relative contributions of anthropogenic and biogenic emissions to nucleation and growth in this region.
  • ItemOpen Access
    Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation
    (2011) Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y. -W; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.
    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C-6 to C-8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light-and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O-3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.
  • ItemOpen Access
    Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests
    (2010) Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y. -W; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.
    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.
  • ItemOpen Access
    Aerosol composition and sources in the central Arctic Ocean during ASCOS
    (2011) Chang, R. Y. -W; Leck, C.; Graus, M.; Mueller, M.; Paatero, J.; Burkhart, J. F.; Stohl, A.; Orr, L. H.; Hayden, K.; Li, S. -M; Hansel, A.; Tjernstrom, M.; Leaitch, W. R.; Abbatt, J. P. D.
    Measurements of submicron aerosol chemical composition were made over the central Arctic Ocean from 5 August to 8 September 2008 as a part of the Arctic Summer Cloud Ocean Study (ASCOS) using an aerosol mass spectrometer (AMS). The median levels of sulphate and organics for the entire study were 0.051 and 0.055 mu gm(-3), respectively. Positive matrix factorisation was performed on the entire mass spectral time series and this enabled marine biogenic and continental sources of particles to be separated. These factors accounted for 33% and 36% of the sampled ambient aerosol mass, respectively, and they were both predominantly composed of sulphate, with 47% of the sulphate apportioned to marine biogenic sources and 48% to continental sources, by mass. Within the marine biogenic factor, the ratio of methane sulphonate to sulphate was 0.25+/-0.02, consistent with values reported in the literature. The organic component of the continental factor was more oxidised than that of the marine biogenic factor, suggesting that it had a longer photochemical lifetime than the organics in the marine biogenic factor. The remaining ambient aerosol mass was apportioned to an organic-rich factor that could have arisen from a combination of marine and continental sources. In particular, given that the factor does not correlate with common tracers of continental influence, we cannot rule out that the organic factor arises from a primary marine source.
  • ItemOpen Access
    Photochemical processing of organic aerosol at nearby continental sites: contrast between urban plumes and regional aerosol
    (2011) Slowik, J. G.; Brook, J.; Chang, R. Y-W; Evans, G. J.; Hayden, K.; Jeong, C-H; Li, S-M; Liggio, J.; Liu, P. S. K.; McGuire, M.; Mihele, C.; Sjostedt, S.; Vlasenko, A.; Abbatt, J. P. D.
    As part of the BAQS-Met 2007 field campaign, Aerodyne time-of-flight aerosol mass spectrometers (ToF-AMS) were deployed at two sites in southwestern Ontario from 17 June to 11 July 2007. One instrument was located at Harrow, ON, a rural, agriculture-dominated area approximately 40 km southeast of the Detroit/Windsor/Windsor urban area and 5 km north of Lake Erie. The second instrument was located at Bear Creek, ON, a rural site approximately 70 km northeast of the Harrow site and 50 km east of Detroit/Windsor. Positive matrix factorization analysis of the combined organic mass spectral dataset yields factors related to secondary organic aerosol (SOA), direct emissions, and a factor tentatively attributed to the reactive uptake of isoprene and/or condensation of its early generation reaction products. This is the first application of PMF to simultaneous AMS measurements at different sites, an approach which allows for self-consistent, direct comparison of the datasets. Case studies are utilized to investigate processing of SOA from (1) fresh emissions from Detroit/Windsor and (2) regional aerosol during periods of inter-site flow. A strong correlation is observed between SOA/excess CO and photochemical age as represented by the NOx/NOy ratio for Detroit/Windsor outflow. Although this correlation is not evident for more aged air, measurements at the two sites during inter-site transport nevertheless show evidence of continued atmospheric processing by SOA production. However, the rate of SOA production decreases with airmass age from an initial value of similar to 10.1 mu g m(-3) ppmv(CO)(-1) h(-1) for the first similar to 10 h of plume processing to near-zero in an aged airmass (i.e. after several days). The initial SOA production rate is comparable to the observed rate in Mexico City over similar timescales.
  • ItemOpen Access
    Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site
    (2010) Shantz, N. C.; Chang, R. Y. -W; Slowik, J. G.; Vlasenko, A.; Abbatt, J. P. D.; Leaitch, W. R.
    Growth rates of water droplets were measured with a static diffusion cloud condensation chamber in May-June 2007 at a rural field site in Southern Ontario, Canada, 70 km north of Toronto. The observations include periods when the winds were from the south and the site was impacted by anthropogenic air from the U.S. and Southern Ontario as well as during a 5-day period of northerly wind flow when the aerosol was dominated by biogenic sources. The growth of droplets on anthropogenic size-selected particles centred at 0.1 mu m diameter and composed of approximately 40% organic and 60% ammonium sulphate (AS) by mass, was delayed by on the order of 1 s compared to a pure AS aerosol. Simulations of the growth rate on monodisperse particles indicate that a lowering of the water mass accommodation coefficient from alpha(c) = 1 to an average of alpha(c) = 0.04 is needed ( assuming an insoluble organic with hygroscopicity parameter, kappa(org), of zero). Simulations of the initial growth rate on polydisperse anthropogenic particles agree best with observations for alpha(c) = 0.07. In contrast, the growth rate of droplets on size-selected aerosol of biogenic character, consisting of >80% organic, was similar to that of pure AS. Simulations of the predominantly biogenic polydisperse aerosol show agreement between the observations and simulations when kappa(org) = 0.2 (with upper and lower limits of 0.5 and 0.07, respectively) and alpha(c) = 1. Inhibition of water uptake by the anthropogenic organic applied to an adiabatic cloud parcel model in the form of a constant low alpha(c) increases the number of droplets in a cloud compared to pure AS. If the alpha(c) is assumed to increase with increasing liquid water on the droplets, then the number of droplets decreases which could diminish the indirect climate forcing effect. The slightly lower kappa(org) in the biogenic case decreases the number of droplets in a cloud compared to pure AS.
  • ItemOpen Access
    Elucidating determinants of aerosol composition through particle-type-based receptor modeling
    (2011) McGuire, M. L.; Jeong, C. -H; Slowik, J. G.; Chang, R. Y. -W; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.
    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique range of temporal variability, enabling the elucidation of the determinants of aerosol chemical composition, including source emissions, chemical processing, and transport, at the Canada-US border. This paper presents the first study to elucidate the coupled influences of these determinants on temporal variability in aerosol chemical composition using single particle-type-based receptor modelling.
  • ItemOpen Access
    The hygroscopicity parameter (kappa) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation
    (2010) Chang, R. Y-W; Slowik, J. G.; Shantz, N. C.; Vlasenko, A.; Liggio, J.; Sjostedt, S. J.; Leaitch, W. R.; Abbatt, J. P. D.
    Cloud condensation nuclei (CCN) concentrations were measured at Egbert, a rural site in Ontario, Canada during the spring of 2007. The CCN concentrations were compared to values predicted from the aerosol chemical composition and size distribution using kappa-Kohler theory, with the specific goal of this work being to determine the hygroscopic parameter (kappa) of the oxygenated organic component of the aerosol, assuming that oxygenation drives the hygroscopicity for the entire organic fraction of the aerosol. The hygroscopicity of the oxygenated fraction of the organic component, as determined by an Aerodyne aerosol mass spectrometer (AMS), was characterised by two methods. First, positive matrix factorization (PMF) was used to separate oxygenated and unoxygenated organic aerosol factors. By assuming that the unoxygenated factor is completely non-hygroscopic and by varying kappa of the oxygenated factor so that the predicted and measured CCN concentrations are internally consistent and in good agreement, kappa of the oxygenated organic factor was found to be 0.22 +/- 0.04 for the suite of measurements made during this five-week campaign. In a second, equivalent approach, we continue to assume that the unoxygenated component of the aerosol, with a mole ratio of atomic oxygen to atomic carbon (O/C) approximate to 0, is completely non-hygroscopic, and we postulate a simple linear relationship between kappa(org) and O/C. Under these assumptions, the kappa of the entire organic component for bulk aerosols measured by the AMS can be parameterised as kappa(org)=(0.29 +/- 0.05).(O/C), for the range of O/C observed in this study (0.3 to 0.6). These results are averaged over our five-week study at one location using only the AMS for composition analysis. Empirically, our measurements are consistent with kappa(org) generally increasing with increasing particle oxygenation, but high uncertainties preclude us from testing this hypothesis. Lastly, we examine select periods of different aerosol composition, corresponding to different air mass histories, to determine the generality of the campaign-wide findings described above.
  • ItemOpen Access
    The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met
    (2011) Markovic, M. Z.; Hayden, K. L.; Murphy, J. G.; Makar, P. A.; Ellis, R. A.; Chang, R. Y. -W; Slowik, J. G.; Mihele, C.; Brook, J.
    The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 mu m (PM1), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO(3)(-) at the ground site (observed mean (M-obs) = 0.50 mu g m(-3); modelled mean (M-mod) = 0.58 mu g m(-3); root mean square error (RSME) = 1.27 mu g m(-3)) was better than aloft (M-obs = 0.32 mu g m(-3); M-mod = 0.09 mu g m(-3); RSME = 0.48 mu g m(-3)). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM, nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA NH3(g) + pNH(4)(+) - 2 center dot pSO(4)(2-)) are responsible for the poor agreement between modelled and measured values.
  • ItemOpen Access
    Cloud condensation nuclei closure study on summer arctic aerosol
    (2011) Martin, M.; Chang, R. Y-W; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.
    We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (> 85 degrees N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming kappa-Kohler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles > 70 nm. For the two highest measured supersaturations, 0.73 and 0.41 %, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble (kappa(org) = 0.02), leading to a mean total kappa, kappa(tot), of 0.33 +/- 0.13. However, several settings led to closure and kappa(org) = 0.2 is found to be an upper limit at 0.1% supersaturation. kappa(org) <= 0.2 leads to a kappa(tot) range of 0.33 +/- 013 to 0.50 +/- 0.11. Thus, the organic material ranges from being sparingly soluble to effectively insoluble. These results suggest that an increase in organic mass fraction in particles of a certain size would lead to a suppression of the Arctic CCN activity.
  • ItemOpen Access
    Closure between measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto
    (2006-06) Broekhuizen, K.; Chang, R. Y. -W; Leaitch, W. R.; Li, S. -M; Abbatt, J. P. D.
    Measurements of cloud condensation nuclei (CCN) were made in downtown Toronto during August and September, 2003. CCN measurements were performed at 0.58% supersaturation using a thermal-gradient diffusion chamber, whereas the aerosol size distribution and composition were simultaneously measured with a TSI SMPS and APS system and an Aerodyne Aerosol Mass Spectrometer (AMS), respectively. Aerosol composition data shows that the particles were predominately organic in nature, in particular for those with a vacuum aerodynamic diameter of <0.25 mu m. In this study, the largest contribution to CCN concentrations came from this size range, suggesting that the CCN are also organic-rich. Using the size and composition information, detailed CCN closure analyses were performed. In the first analysis, the particles were assumed to be internally mixed, the organic fraction was assumed to be insoluble, and the inorganic fraction was assumed to be ammonium sulfate. The AMS time-of-flight data were used for Koohler theory predictions for each particle size and composition to obtain the dry diameter required for activation. By so doing, this closure analysis yielded an average value of CCNpredicted/CCNobserved = 1.12 +/- 0.05. However, several sample days showed distinct bimodal distributions, and a closure analysis was performed after decoupling the two particle modes. This analysis yielded an average value of CCNpredicted/CCNobserved = 1.03 +/- 0.05. A sensitivity analysis was also performed to determine the aerosol/CCN closure if the organic solubility, droplet surface tension, or chamber supersaturation were varied.