Ross, Tetjana
Permanent URI for this collectionhttps://hdl.handle.net/10222/22169
Browse
Recent Submissions
Item Open Access Tetjana Ross CV(2013-08-07) Ross, TetjanaItem Open Access Anisotropy in high-frequency broadband acoustic backscattering in the presence of turbulent microstructure and zooplankton(2012-08) Leong, Doris; Ross, Tetjana; Lavery, AndoneHigh-frequency broadband (120-600 kHz) acoustic backscattering measurements have been made in the vicinity of energetic internal waves. The transducers on the backscattering system could be adjusted so as to insonify the water-column either vertically or horizontally. The broadband capabilities of the system allowed spectral classification of the backscattering. The distribution of spectral shapes is significantly different for scattering measurements made with the transducers oriented horizontally versus vertically, indicating that scattering anisotropy is present. However, the scattering anisotropy could not be unequivocally explained by either turbulent microstructure or zooplankton, the two primary sources of scattering expected in internal waves. Daytime net samples indicate a predominance of short-aspect-ratio zooplankton. Using zooplankton acoustic scattering models, a preferential orientation of the observed zooplankton cannot explain the measured anisotropy. Yet model predictions of scattering from anisotropic turbulent microstructure, with inputs from coincident microstructure measurements, were not consistent with the observations. Possible explanations include bandwidth limitations that result in many spectra that cannot be unambiguously attributed to turbulence or zooplankton based on spectral shape. Extending the acoustic bandwidth to cover the range from 50 kHz to 2MHz could help improve identification of the dominant sources of backscattering anisotropy.Item Open Access Acoustic scattering from double-diffusive microstructure(2007-09) Lavery, Andone C.; Ross, TetjanaLaboratory measurements of high-frequency broadband acoustic backscattering (200-600 kHz) from the diffusive regime of double-diffusive microstructure have been performed. This type of microstructure, which was characterized using direct microstructure and optical shadowgraph techniques, is identified by sharp density and sound speed interfaces separating well-mixed layers. Vertical acoustic backscattering measurements were performed for a range of physical parameters controlling the double-diffusive microstructure. The echoes have been analyzed in both the frequency domain, providing information on the spectral response of the scattering, and in the time domain, using pulse compression techniques. High levels of variability were observed, associated with interface oscillations and turbulent plumes, with many echoes showing significant spectral structure. Acoustic estimates of interface thickness (1-3 cm), obtained for the echoes with exactly two peaks in the compressed pulse output, were in good agreement with estimates based on direct microstructure and optical shadowgraph measurements. Predictions based on a one-dimensional weak-scattering model that includes the actual density and sound speed profiles agree reasonably with the measured scattering. A remote-sensing tool for mapping oceanic microstructure, such as high-frequency broadband acoustic scattering, could lead to a better understanding of the extent and evolution of double-diffusive layering, and to the importance of double diffusion. to oceanic mixing. (c) 2007 Acoustical Society, of America.Item Open Access Acoustic scattering from density and sound speed gradients: Modeling of oceanic pycnoclines(Published for the Acoustical Society of America through the American Institute of Physics, 2012-01) Ross, T.; Lavery, A. C.A weak-scattering model that allows prediction of acoustic scattering from oceanic pycnoclines (and the accompanying sound speed gradients) based on hydrographic profiles is described. Model predictions, based on profiles from four locations, indicate that scattering from oceanic pycnoclines is measurable using standard scientific sonars operating at frequencies up to 200 kHz but generally only for pycnocline thicknesses less than 10 m. Accurate scattering models are key to assessing whether acoustic remote sensing can be used to map oceanic pycnoclines and for determining whether scattering from pycnoclines needs to be taken into account when estimating, for instance, zooplankton abundance from acoustic data.