Repository logo
 

Crossin, Glenn

Permanent URI for this collectionhttps://hdl.handle.net/10222/22295

Browse

Recent Submissions

Now showing 1 - 3 of 3
  • ItemOpen Access
    Pacific Salmon in Hot Water: Applying Aerobic Scope Models and Biotelemetry to Predict the Success of Spawning Migrations
    (University of Chicago Press, P.O. Box 37005 Chicago IL 60637 USA, [mailto:help@press.uchicago.edu], [URL:http://www.journals.uchicago.edu/], 2008-12) Farrell, A. P.; Hinch, S. G.; Cooke, S. J.; Patterson, DA; Crossin, Glenn Terrence; Lapointe, M.; Mathes, M. T.
    Concern over global climate change is widespread, but quantifying relationships between temperature change and animal fitness has been a challenge for scientists. Our approach to this challenge was to study migratory Pacific salmon (Oncorhynchus spp.), fish whose lifetime fitness hinges on a once-in-a-lifetime river migration to natal spawning grounds. Here, we suggest that their thermal optimum for aerobic scope is adaptive for river migration at the population level. We base this suggestion on several lines of evidence. The theoretical line of evidence comes from a direct association between the temperature optimum for aerobic metabolic scope and the temperatures historically experienced by three Fraser River salmon populations during their river migration. This close association was then used to predict that the occurrence of a period of anomalously high river temperatures in 2004 led to a complete collapse of aerobic scope during river migration for a portion of one of the sockeye salmon (Oncorhynchus nerka) populations. This prediction was corroborated with empirical data from our biotelemetry studies, which tracked the migration of individual sockeye salmon in the Fraser River and revealed that the success of river migration for the same sockeye population was temperature dependent. Therefore, we suggest that collapse of aerobic scope was an important mechanism to explain the high salmon mortality observed during their migration. Consequently, models based on thermal optima for aerobic scope for ectothermic animals should improve predictions of population fitness under future climate scenarios.
  • ItemOpen Access
    Individual Variation in Migration Speed of Upriver-Migrating Sockeye Salmon in the Fraser River in Relation to Their Physiological and Energetic Status at Marine Approach
    (University of Chicago Press, P.O. Box 37005 Chicago IL 60637 USA, [mailto:help@press.uchicago.edu], [URL:http://www.journals.uchicago.edu/], 2008) Hanson, Kyle C.; Cooke, Steven J.; Hinch, Scott G.; Crossin, Glenn Terrence; Patterson, David A.; English, Karl K.; Donaldson, Michael R.; Shrimpton, JMark; Van der Kraak, Glen; Farrell, Anthony P.
    Little research has examined individual variation in migration speeds of Pacific salmon (Oncorhynchus spp.) in natural river systems or attempted to link migratory behavior with physiological and energetic status on a large spatial scale in the wild. As a model, we used three stocks of summer-run sockeye salmon (Oncorhynchus nerka) from the Fraser River watershed, British Columbia, to test the hypothesis that individual variation in migration speed is determined by a combination of environmental factors (i.e., water temperature), intrinsic biological differences (sex and population), and physiological and energetic condition. Before the freshwater portion of the migration, sockeye salmon (Quesnel, Chilcotin, and Nechako stock complexes) were captured in Johnstone Strait ([image]215 km from river entry), gastrically implanted with radio transmitters, and sampled for blood, gill tissue, and energetic status before release. Analyses focused solely on individuals that successfully reached natal subwatersheds. Migration speeds were assessed by an extensive radiotelemetry array. Individuals from the stock complex that migrated the longest distance (Nechako) traveled at speeds slower than those of other stock complexes. Females traveled slower than males. An elevated energetic status of fish in the ocean was negatively correlated with migration speed in most river segments. During the transition from the ocean to the river, migration speed was negatively correlated with mean maximum water temperature; however, for the majority of river segments, it was positively correlated with migration speed. Physiological status measured in the ocean did not explain among-individual variability in river migration speeds. Collectively, these findings suggest that there could be extensive variation in migration behavior among individuals, sexes, and populations and that physiological condition in the ocean explained little of this variation relative to in-river environmental conditions and energetic status. Interestingly, individual fish generally retained their rank in swimming speed across different segments, except when transiting a challenging canyon midway during the migration.
  • ItemOpen Access
    Mechanisms Influencing the Timing and Success of Reproductive Migration in a Capital Breeding Semelparous Fish Species, the Sockeye Salmon
    (University of Chicago Press, P.O. Box 37005 Chicago IL 60637 USA, [mailto:help@press.uchicago.edu], [URL:http://www.journals.uchicago.edu/], 2009) Crossin, Glenn Terrence; Hinch, Scott G.; Cooke, Steven J.; Cooperman, Michael S.; Patterson, David A.; Welch, David W.; Hanson, Kyle C.; Olsson, Ivan; English, Karl K.; Farrell, Anthony P.
    Two populations of homing sockeye salmon (Oncorhynchus nerka; Adams and Chilko) were intercepted in the marine approaches around the northern and southern ends of Vancouver Island (British Columbia, Canada) en route to a natal river. More than 500 salmon were nonlethally biopsied for blood plasma, gill filament tips, and gross somatic energy (GSE) and were released with either acoustic or radio transmitters. At the time of capture, GSE, body length, and circulating testosterone ([T]) differed between populations, differences that reflected known life-history variations. Within-population analyses showed that in Adams sockeye salmon, plasma glucose ([glu]), lactate ([lactate]), and ion concentrations were higher in the northern approach than in the southern approach, suggesting that the former was more stressful. GSE, [T], and gill Na super(+),K super(+)-ATPase activities also differed between the two locales, and each varied significantly with Julian date, suggesting seasonality. Despite these relative geographic differences, the timing of river entry and the ability to reach spawning areas were strongly correlated with energetic, reproductive, and osmoregulatory state. Salmon that delayed river entry and reached spawning areas had relatively high GSE and low [T] and gill ATPase. In contrast, salmon that entered the river directly but that ultimately failed to reach spawning areas had lower GSE and higher [T] and gill ATPase, and they also swam at significantly faster rates (failed fish [image]20.0 km d super(-1) vs. successful fish [image]15.5 km d super(-1)). Physiologically, salmon that did not enter the river at all but that presumably died in the marine environment exhibited high stress (plasma [glu] and [lactate]) and ionoregulatory measures (plasma [Na super(+)], [Cl super(-)], osmolality).