Ewart, Kathryn Vanya
Permanent URI for this collectionhttps://hdl.handle.net/10222/44338
Browse
Recent Submissions
Item Open Access The freeze-avoidance response of smelt Osmerus mordax: initiation and subsequent suppression of glycerol, trimethylamine oxide and urea accumulation(2002-05) Treberg, J. R.; Wilson, C. E.; Richards, R. C.; Ewart, K. V.; Driedzic, W. R.Smelt (Osmerus mordax) were maintained at either ambient water temperature or approximately 5 degrees C and various aspects of their freeze-avoidance response were examined from early winter until early spring. Plasma levels of glycerol, trimethylamine oxide (TMAO) and urea were elevated by December 15 and continued to increase in fish held in ambient conditions. In contrast, fish held under warm conditions exhibited decreased glycerol and urea content in plasma, muscle and liver. Plasma and liver TMAO levels also decreased in these fish while muscle TMAO did not vary from the initial values. The activity of liver enzymes involved with the production of glycerol did not differ significantly between groups and had decreased by the end of the study. Antifreeze protein (AFP) expression increased over the duration of the experiment. In January samples, AFP activity (thermal hysteresis) did not vary significantly between groups but mRNA levels were significantly lower in the smelt held at warm temperatures.Item Open Access Molecular Analysis, Tissue Profiles, and Seasonal Patterns of Cytosolic and Mitochondrial GPDH in Freeze-Resistant Rainbow Smelt (Osmerus mordax)(2011-07) Robinson, Jason L.; Hall, Jennifer R.; Charman, Mark; Ewart, K. Vanya; Driedzic, William R.No abstract available.Item Open Access Glycerol production in rainbow smelt (Osmerus mordax) may be triggered by low temperature alone and is associated with the activation of glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase(2006-03) Driedzic, W. R.; Clow, K. A.; Short, C. E.; Ewart, K. V.Rainbow smelt (Osmerus mordax) accumulate high levels of glycerol in winter that serves as an antifreeze. Fish were subjected to controlled decreases in water temperature and levels of plasma glycerol, liver metabolites and liver enzymes were determined in order to identify control mechanisms for the initiation of glycerol synthesis. In two separate experiments, decreases in temperature from 8 degrees C to 0 degrees C over a period of 10-11 days resulted in increases in plasma glycerol from levels of less than 4 mmol l(-1) to approximate mean levels of 40 (first experiment) and 150 mmol l(-1) (second experiment). In a third experiment, decreases in temperature to -1 degrees C resulted in plasma glycerol levels approaching 500 mmol l(-1). The accumulation of glycerol could be driven in either December or March, thus eliminating decreasing photoperiod as a necessary cue for glycerol accumulation. Glycerol accumulation in plasma was associated with changes in metabolites in liver leading to increases in the mass action ratio across the reactions catalyzed by glycerol-3-phosphate dehydrogenase (GPDH) and glycerol-3-phosphatase (G3Pase). The maximal, in vitro activity of GPDH, increased twofold in association with a sharp increase in plasma glycerol level. The metabolite levels and enzyme activities provide complementary evidence that GPDH is a regulatory site in the low temperature triggered synthesis of glycerol. Indirect evidence, based on calculated rates of in vivo glycerol production by liver, suggests that G3Pase is a potential rate-limiting step. As well, transient increases in glyceraldehyde-3-phosphate dehydrogenase and alanine aminotransferase suggest that these sites are components of a suite of responses, in rainbow smelt liver, induced by low temperature.Item Open Access Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production(2004-05) Lewis, J. M.; Ewart, K. V.; Driedzic, W. R.Rainbow smelt (Osmerus mordax) inhabit inshore waters along the North American Atlantic coast. During the winter, these waters are frequently ice covered and can reach temperatures as low as -1.9 degrees C. To prevent freezing, smelt accumulate high levels of glycerol, which lower the freezing point via colligative means, and antifreeze proteins (AFP). The up-regulation of the antifreeze response (both glycerol and AFP) occurs in early fall, when water temperatures are 5 degrees -6 degrees C. The accumulation of glycerol appears to be the main mechanism of freeze resistance in smelt because it contributes more to the lowering of the body's freezing point than the activity of the AFP (0.5 degrees C vs. 0.25 degrees C for glycerol and AFP, respectively) at a water temperature of -1.5 degrees C. Moreover, AFP in smelt appears to be a safeguard mechanism to prevent freezing when glycerol levels are low. Significant increases in activities of the liver enzymes glycerol 3-phosphate dehydrogenase (GPDH), alanine aminotransferase (AlaAT), and phosphoenolpyruvate carboxykinase (PEPCK) during the initiation of glycerol production and significant correlations between enzyme activities and plasma glycerol levels suggest that these enzymes are closely associated with the synthesis and maintenance of elevated glycerol levels for use as an antifreeze. These findings add further support to the concept that carbon for glycerol is derived from amino acids.Item Open Access Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes(2006-03) Liebscher, RS; Richards, RC; Lewis, JM; Short, CE; Muise, DM; Driedzic, WR; Ewart, KVNo abstract available.Item Open Access Lateral transfer of a lectin-like antifreeze protein gene in fishes(2008-07) Graham, L. A.; Lougheed, S. C.; Ewart, K. V.; Davies, P. L.Fishes living in icy seawater are usually protected from freezing by endogenous antifreeze proteins (AFPs) that bind to ice crystals and stop them from growing. The scattered distribution of five highly diverse AFP types across phylogenetically disparate fish species is puzzling. The appearance of radically different AFPs in closely related species has been attributed to the rapid, independent evolution of these proteins in response to natural selection caused by sea level glaciations within the last 20 million years. In at least one instance the same type of simple repetitive AFP has independently originated in two distant species by convergent evolution. But, the isolated occurrence of three very similar type II AFPs in three distantly related species (herring, smelt and sea raven) cannot be explained by this mechanism. These globular, lectin-like AFPs have a unique disulfide-bonding pattern, and share up to 85% identity in their amino acid sequences, with regions of even higher identity in their genes. A thorough search of current databases failed to find a homolog in any other species with greater than 40% amino acid sequence identity. Consistent with this result, genomic Southern blots showed the lectin-like AFP gene was absent from all other fish species tested. The remarkable conservation of both intron and exon sequences, the lack of correlation between evolutionary distance and mutation rate, and the pattern of silent vs non-silent codon changes make it unlikely that the gene for this AFP pre-existed but was lost from most branches of the teleost radiation. We propose instead that lateral gene transfer has resulted in the occurrence of the type II AFPs in herring, smelt and sea raven and allowed these species to survive in an otherwise lethal niche.