Repository logo
 

STACKED DENOISING AUTOENCODER BASED PRICE PREDICTION AND CLUSTERING OF REAL ESTATE PROPERTIES

dc.contributor.authorTirunelveli Nallasivan, Balachandhar
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Computer Scienceen_US
dc.contributor.departmentFaculty of Computer Scienceen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. Michael J. McAllisteren_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerDr. Evangelos Miliosen_US
dc.contributor.thesis-readerDr. Luis Torgoen_US
dc.contributor.thesis-supervisorDr. Stan Matwinen_US
dc.date.accessioned2018-10-31T15:55:38Z
dc.date.available2018-10-31T15:55:38Z
dc.date.defence2018-09-06
dc.date.issued2018-10-31T15:55:38Z
dc.description.abstractThis work develops a framework for residential real estate price prediction and clustering properties in Nova Scotia province. It differs from other studies by covering large geographic area and by defining submarkets. We also used stacked denoising autoencoder to reduce the dimensionality and used two-level clustering approach (self organizing map and K-means) for clustering real estate properties. In addition, we test with different submarkets, different training period, different geographical features, and regularizer to improve the accuracy of the model.en_US
dc.identifier.urihttp://hdl.handle.net/10222/74920
dc.language.isoen_USen_US
dc.subjectMachine learningen_US
dc.subjectData Analyticsen_US
dc.subjectNeural networken_US
dc.subjectReal estate analysisen_US
dc.titleSTACKED DENOISING AUTOENCODER BASED PRICE PREDICTION AND CLUSTERING OF REAL ESTATE PROPERTIESen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tirunelveli-Nallasivan-Balachandhar-MCSc-CSCI-September-2018.pdf
Size:
42.99 MB
Format:
Adobe Portable Document Format
Description:
Thesis Document

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: