Repository logo
 

Infrared water vapor continuum absorption at atmospheric temperatures

dc.contributor.authorCormier, John G.en_US
dc.contributor.authorHodges, Joseph T.en_US
dc.contributor.authorDrummond, James R.en_US
dc.date.accessioned2013-06-19T15:16:51Z
dc.date.available2013-06-19T15:16:51Z
dc.date.issued2005en_US
dc.description.abstractWe have used a continuous-wave carbon dioxide laser in a single-mode realization of cavity ring-down spectroscopy to measure absorption coefficients of water vapor at 944 cm-1 for several temperatures in the range 270-315 K. The conventional description of water vapor infrared absorption is applied, in which the absorption is modeled in two parts consisting of local line absorption and the remaining residual absorption, which has become known as the water vapor continuum. This water vapor continuum consists of distinct water-water, water-nitrogen, and water-oxygen continua. The water-water continuum absorption coefficient is found to have a magnitude of Cs (296 K) = (1.820.02) 10-22 cm2 molecule-1 atm-1, and the water-nitrogen coefficient has a magnitude of Cn (296 K) = (7.30.4) 10-25 cm2 molecule-1 atm-1. The temperature dependences of both the water-water and the water-nitrogen continua are shown to be well represented by a model describing the expected behavior of weakly bound binary complexes. Using this model, our data yield dissociation energies of De = (-15.90.3) kJmole for the water dimer and De = (-3.21.7) kJmole for the water-nitrogen complex. These values are in excellent agreement with recent theoretical predictions of De =-15.7 kJmole (water dimer) and De =-2.9 kJmole (water-nitrogen complex), as well as the experimentally determined value of De = (-15.32.1) kJmole for the water dimer obtained by investigators employing a thermal conductivity technique. Although there is reasonably good agreement with the magnitude of the continuum absorption coefficients, the agreement on temperature dependence is less satisfactory. While our results are suggestive of the role played by water dimers and water complexes in producing the infrared continuum, the uncertain spectroscopy of the water dimer in this spectral region prevents us from making a firm conclusion. In the meantime, empirical models of water vapor continuum absorption, essential for atmospheric radiative transfer calculations, should be refined to give better agreement with our low-uncertainty continuum absorption data. 2005 American Institute of Physics.en_US
dc.identifier.citationReproduced from Cormier, John G., Joseph T. Hodges, and James R. Drummond. 2005. "Infrared water vapor continuum absorption at atmospheric temperatures." Journal of Chemical Physics 122(11), with the permission of AIP Publishing.en_US
dc.identifier.issn00219606en_US
dc.identifier.issue11en_US
dc.identifier.startpageen_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.1862623en_US
dc.identifier.urihttp://hdl.handle.net/10222/23600
dc.identifier.volume122en_US
dc.publisherAmerican Institute of Physics Incen_US
dc.relation.ispartofJournal of Chemical Physicsen_US
dc.subjectVaporsen_US
dc.subjectAtmospheric temperatureen_US
dc.subjectCarbon dioxide lasersen_US
dc.subjectComplexationen_US
dc.subjectDimersen_US
dc.subjectInfrared radiationen_US
dc.subjectNitrogenen_US
dc.subjectSpectroscopic analysisen_US
dc.subjectWateren_US
dc.titleInfrared water vapor continuum absorption at atmospheric temperaturesen_US
dc.typearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cormier_1.1862623.pdf
Size:
656.6 KB
Format:
Adobe Portable Document Format
Description: