THE INTEGER-VALUED POLYNOMIALS ON LUCAS NUMBERS
dc.contributor.author | Halder, Amitabh Kumer | |
dc.contributor.copyright-release | Not Applicable | en_US |
dc.contributor.degree | Master of Science | en_US |
dc.contributor.department | Department of Mathematics & Statistics - Math Division | en_US |
dc.contributor.ethics-approval | Not Applicable | en_US |
dc.contributor.external-examiner | n/a | en_US |
dc.contributor.graduate-coordinator | Dr. David Iron | en_US |
dc.contributor.manuscripts | Yes | en_US |
dc.contributor.thesis-reader | Dr. Robert Pare | en_US |
dc.contributor.thesis-reader | Dr. Dorette Pronk | en_US |
dc.contributor.thesis-supervisor | Dr. Keith Johnson | en_US |
dc.date.accessioned | 2017-08-28T18:05:11Z | |
dc.date.available | 2017-08-28T18:05:11Z | |
dc.date.defence | 2017-08-24 | |
dc.date.issued | 2017-08-28T18:05:11Z | |
dc.description.abstract | An integer-valued polynomial on a subset, S, of the set of integers, Z, is a polynomial f(x) 2 Q[x] such that f(S) Z. The collection, Int(S;Z), of such integer-valued polynomials forms a ring with many interesting properties. The concept of p-ordering and the associated p-sequence due to Bhargava [2] is used for nding integer-valued polynomials on any subset, S, of Z. In this thesis, we concentrate on extending the work of Keith Johnson and Kira Scheibelhut [14] for the case S = L, the Lucas numbers, where they work on integervalued polynomials on S = F, Fibonacci numbers. We also study integer-valued polynomials on the general 3 term recursion sequence, G, of integers for a given pair of initial values with some interesting properties. The results are well-agreed with those of [14]. | en_US |
dc.identifier.uri | http://hdl.handle.net/10222/73184 | |
dc.language.iso | en | en_US |
dc.subject | Z-linear combination | en_US |
dc.subject | regular Z-basis | en_US |
dc.subject | Integer-Valued Polynomials | en_US |
dc.title | THE INTEGER-VALUED POLYNOMIALS ON LUCAS NUMBERS | en_US |
dc.type | Thesis | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Halder-Amitabh-MSc-MATH-August-2017.pdf
- Size:
- 431.83 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: