Repository logo
 

THE INTEGER-VALUED POLYNOMIALS ON LUCAS NUMBERS

dc.contributor.authorHalder, Amitabh Kumer
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorDr. David Ironen_US
dc.contributor.manuscriptsYesen_US
dc.contributor.thesis-readerDr. Robert Pareen_US
dc.contributor.thesis-readerDr. Dorette Pronken_US
dc.contributor.thesis-supervisorDr. Keith Johnsonen_US
dc.date.accessioned2017-08-28T18:05:11Z
dc.date.available2017-08-28T18:05:11Z
dc.date.defence2017-08-24
dc.date.issued2017-08-28T18:05:11Z
dc.description.abstractAn integer-valued polynomial on a subset, S, of the set of integers, Z, is a polynomial f(x) 2 Q[x] such that f(S) Z. The collection, Int(S;Z), of such integer-valued polynomials forms a ring with many interesting properties. The concept of p-ordering and the associated p-sequence due to Bhargava [2] is used for nding integer-valued polynomials on any subset, S, of Z. In this thesis, we concentrate on extending the work of Keith Johnson and Kira Scheibelhut [14] for the case S = L, the Lucas numbers, where they work on integervalued polynomials on S = F, Fibonacci numbers. We also study integer-valued polynomials on the general 3 term recursion sequence, G, of integers for a given pair of initial values with some interesting properties. The results are well-agreed with those of [14].en_US
dc.identifier.urihttp://hdl.handle.net/10222/73184
dc.language.isoenen_US
dc.subjectZ-linear combinationen_US
dc.subjectregular Z-basisen_US
dc.subjectInteger-Valued Polynomialsen_US
dc.titleTHE INTEGER-VALUED POLYNOMIALS ON LUCAS NUMBERSen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Halder-Amitabh-MSc-MATH-August-2017.pdf
Size:
431.83 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: