A one-dimensional cloud model with trimodal convective outflow
dc.contributor.author | Folkins, Ian | en_US |
dc.date.accessioned | 2013-06-19T15:22:31Z | |
dc.date.available | 2013-06-19T15:22:31Z | |
dc.date.issued | 2009 | en_US |
dc.description.abstract | The author describes a one-dimensional cloud model designed to investigate the relationships between stratiform downdrafts, congestus outflow, stability, and relative humidity in the tropical lower troposphere. In the tropics, the climatological lapse rate varies with height below the melting level in a way that is inconsistent with the assumptions of either moist pseudoadiabatic or reversible adiabatic ascent. This anomalous variation is referred to as the melting-level stability anomaly (MLSA). It is argued that the MLSA is caused by a transition from static to dynamic downdrafts at the melting level. Above the melting level, evaporation of precipitation cools and moistens the tropical atmosphere but does not generate downdraft parcels with sufficient negative buoyancy to descend between model levels. Below the melting level, the evaporative cooling associated with stratiform precipitation is strong enough to overcome the stability of the atmosphere and generate a convective-scale circulation. The vertical descent within these downdrafts induces a compensatory ascent in the background atmosphere that changes the overall cooling-to-moistening downdraft ratio. The inclusion of this stratiform downdraft circulation brings the modeled lapse rate and relative humidity profiles into simultaneous agreement with observations. The transition from static to dynamic downdrafts is triggered, in the model, by imposed increases in the amount of rain falling outside clouds, in the out-of-cloud rain rate, and in the vertical coherence of the rain shafts. The destabilization of the lower tropical atmosphere triggered by the stratiform circulation affects the development of convective clouds. In particular, the melting-level stability anomaly increases detrainment near the melting level and gives rise to the congestus mode. 2009 American Meteorological Society. | en_US |
dc.identifier.citation | Folkins, Ian. 2009. "A one-dimensional cloud model with trimodal convective outflow." Journal of Climate 22(23): 6437-6455. | en_US |
dc.identifier.issn | 08948755 | en_US |
dc.identifier.issue | 23 | en_US |
dc.identifier.startpage | 6437 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1175/2009JCLI3134.1 | en_US |
dc.identifier.uri | http://hdl.handle.net/10222/24133 | |
dc.identifier.volume | 22 | en_US |
dc.publisher | American Meteorological Society | en_US |
dc.relation.ispartof | Journal of Climate | en_US |
dc.subject | Melting | en_US |
dc.subject | Atmospheric humidity | en_US |
dc.subject | Atmospherics | en_US |
dc.subject | Clouds | en_US |
dc.subject | Evaporation | en_US |
dc.subject | Evaporative cooling systems | en_US |
dc.subject | Moisture | en_US |
dc.subject | Rain | en_US |
dc.subject | Stability | en_US |
dc.subject | Tropical engineering | en_US |
dc.subject | Tropics | en_US |
dc.title | A one-dimensional cloud model with trimodal convective outflow | en_US |
dc.type | article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A one-dimensional cloud.pdf
- Size:
- 1.37 MB
- Format:
- Adobe Portable Document Format
- Description:
- Publisher PDF