Repository logo
 

Zeros of Sections of Some Power Series

dc.contributor.authorVargas, Antonio
dc.contributor.copyright-releaseNot Applicableen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.departmentDepartment of Mathematics & Statistics - Math Divisionen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.graduate-coordinatorKeith Johnsonen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.thesis-readerTheodore Kolokolnikoven_US
dc.contributor.thesis-readerKeith Tayloren_US
dc.contributor.thesis-supervisorKarl Dilcheren_US
dc.date.accessioned2012-08-28T13:23:15Z
dc.date.available2012-08-28T13:23:15Z
dc.date.defence2012-08-21
dc.date.issued2012-08-28
dc.description62+x pages, 24 figuresen_US
dc.description.abstractFor a power series which converges in some neighborhood of the origin in the complex plane, the zeros of its partial sums often behave in a controlled manner. We give an overview of some of the major results in the study of this phenomenon in the past century, focusing on recent developments which build on the theme of asymptotic analysis. Inspired by this work, we study the asymptotic behavior of the zeros of partial sums of power series for entire functions defined by exponential integrals of a certain type. Most of the zeros of the n'th partial sum travel outwards from the origin at a rate comparable to n, so we rescale the variable by n and explicitly calculate the limit curves of these normalized zeros. We discover that the zeros' asymptotic behavior depends on the order of the critical points of the integrand in the aforementioned exponential integral.en_US
dc.identifier.urihttp://hdl.handle.net/10222/15394
dc.language.isoen_USen_US
dc.subjectzerosen_US
dc.subjectrootsen_US
dc.subjectpolynomialsen_US
dc.subjectpower seriesen_US
dc.subjectsectionsen_US
dc.subjectasymptoticsen_US
dc.subjectszego curveen_US
dc.subjectcomplex analysisen_US
dc.titleZeros of Sections of Some Power Seriesen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vargas_Antonio_MSc_MATH_August_2012.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: