Repository logo
 

Predicting mesoscale variability of the North Atlantic using a physically motivated scheme for assimilating altimeter and Argo observations

Date

2009-07

Authors

Liu, Yimin
Thompson, K. R.

Journal Title

Journal ISSN

Volume Title

Publisher

American Meteorological Society

Abstract

A computationally efficient scheme is described for assimilating sea level measured by altimeters and vertical profiles of temperature and salinity measured by Argo floats. The scheme is based on a transformation of temperature, salinity, and sea level into a set of physically meaningful variables for which it is easier to specify spatial covariance functions. The scheme also allows for sequential correction of temperature and salinity biases and online estimation of background error covariance parameters. Two North Atlantic applications, both focused on predicting mesoscale variability, are used to assess the effectiveness of the scheme. In the first application the background is a monthly temperature and salinity climatology and skill is assessed by how well the scheme recovers Argo profiles that were not assimilated. In the second application the backgrounds are short-term forecasts made by an eddy-permitting model of the North Atlantic. Skill is assessed by the quality of forecasts with lead times of 1-60 days. Both applications show that the scheme has useful skill.

Description

Keywords

Altimeters, Climatology, Ocean temperature, Oceanographic regions, Oceanographic techniques, Sea level

Citation

Liu, Yimin, and K. R. Thompson. 2009. "Predicting mesoscale variability of the North Atlantic using a physically motivated scheme for assimilating altimeter and Argo observations." Monthly Weather Review 137(7): 2223-37. doi:10.1175/2008MWR2625.1