Show simple item record

dc.contributor.authorBeltranSchiavi, Nathieli
dc.date.accessioned2019-11-28T15:31:27Z
dc.date.available2019-11-28T15:31:27Z
dc.date.issued2019-11-28T15:31:27Z
dc.identifier.urihttp://hdl.handle.net/10222/76677
dc.description.abstractIron (Fe) is a very important micronutrient, specially for animals and plants. In humans, Fe-deficiency can cause anemia, which affects 43% of children, 38% of pregnant woman and 29% of non-pregnant women (World Health Organization et al., 2013). In plants, Fe-deficiency can impact nutritional quality growth and limit crop productivity. As a result, plants must sense Fe deprivation and be capable of balancing Fe-concentration in a homeostatic way, to be able to provide the necessary amounts of the required micronutrient to important process such as respiration and photosynthesis (Briat and Lobreaux, 1997; Hell and Stephan, 2003). The ubiquitin proteasome system (UPS) controls the abundance of important enzymes structural and regulatory proteins. Plants utilize UPS to facilitate changes in cellular protein content required for tolerance of adverse environments, such as micronutrient deficiency. Central to the UPS are the ubiquitin ligase enzymes that govern protein substrate selection. Importantly, a number of RING-type ubiquitin ligases have been shown to regulate proteins involved in iron uptake under iron sufficient (Moroishi et al., 2011) and iron deficient conditions (Kobayashi et al., 2013; Shin et al., 2013). In this study, we demonstrate the role of Arabidopsis thaliana XBAT31.1, a RING-type ubiquitin ligase, in response to Fe-deficiency stress. XBAT31.1 expression is induced under iron deficient conditions. xbat31-1 seedlings have elevated transcript levels of Fe-utilization related genes, such as FIT, FRO2 and AHA2 under Fe-deficiency compared to wild type. Unexpectedly, the increase in the transcript level of IRT1, which encodes for the major metal transporter responsible for uptake of iron and other metals, was significantly lower compared to wild type. The low levels of IRT1 transcripts are correlated with xbat31-1 accumulating less iron, manganese and cobalt in shoots under Fe-deficient condition. Despite the low iron content, xbat31-1 seedlings are more tolerant to Fe-deficient than wild type seedlings as shown by significant higher root length, fresh weight and chlorophyll content. Based on these results a model is proposed where XBAT31.1 functions as an iron sensor and ubiquitin ligase that indirectly regulates expression of IRT1 during plant response to Fe-deficiency stress.en_US
dc.language.isoenen_US
dc.subjectIronen_US
dc.subjectFe-deficiencyen_US
dc.subjectplantsen_US
dc.subjectArabidopsis thalianaen_US
dc.subjectubiquitin ligaseen_US
dc.subjectubiquitin proteasome systemen_US
dc.titleCharacterization of the Arabidopsis thaliana RING-type Ubiquitin Ligase XBAT31.1 and its Role in Response to Iron Deficiency Stressen_US
dc.date.defence2017-12-11
dc.contributor.departmentDepartment of Biologyen_US
dc.contributor.degreeMaster of Scienceen_US
dc.contributor.external-examinern/aen_US
dc.contributor.graduate-coordinatorSophia Stoneen_US
dc.contributor.thesis-readerErin Bertranden_US
dc.contributor.thesis-readerMirwais Qaderien_US
dc.contributor.thesis-readerAlan Pinderen_US
dc.contributor.thesis-supervisorSophia Stoneen_US
dc.contributor.ethics-approvalNot Applicableen_US
dc.contributor.manuscriptsNot Applicableen_US
dc.contributor.copyright-releaseNot Applicableen_US
 Find Full text

Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record