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Abstract 

This thesis investigates word embedding models, including PubMedBERT, BioBERT, 

SkipGram, CBOW, and GloVe, in the context of Literature-Based Discovery (LBD) within 

biomedical research, with a specific focus on cancer-related entities. Firstly, I study the 

effectiveness of word embedding models in identifying current functional relationships 

(e.g., interaction) between genes, diseases, and chemicals, as recorded in the medical 

literature. As a reference, I use curated functional relationships from the Comparative 

Toxicogenomics Database (CTD). The goal is to evaluate each word embedding model, 

highlighting their strengths and weaknesses in identifying functional relationships in 

particular, and in biomedical text mining in general. 

Next, I study the ability of word embedding models in discovering previously unknown 

functional relationships from the medical literature. I create word embeddings from the 

medical literature up until 2022, and check whether they can identify functional 

relationships that were not in CTD at that time (i.e., functional relationships found in CTD 

version 2024 but not part of CTD version 2022; time-slicing). If this is successful, it means 

that word embedding models can conduct LBD; they can identify previously unknown 

functional relationships1 from the medical literature.  

We created word embeddings using models such as CBOW, SkipGram, GloVe, BioBERT, 

and PubMedBERT based on PubMed abstracts up to 2022. After generating the 

embeddings, we measured functional relatedness using cosine similarity for curated pairs 

from the CTD dataset. To evaluate the performance of these models, we calculated 

precision and recall by comparing the curated CTD pairs with the instance vector pairs of 

instances from CTD, using cosine similarity thresholds of 0.6, 0.7, and 0.8. Once these 

values were obtained, heatmaps were plotted to compare model performance and identify 

which model produced the best results. 

The findings reveal that PubMedBERT and BioBERT significantly outperform traditional 

models like CBOW, SkipGram, and GloVe both on precision and recall; especially at a 

cosine similarity threshold of 0.7, which has been identified as an optimal balance between 

accuracy and comprehensive data retrieval.  

The results also show that the word embeddings created from PubMed abstracts up to 2022 

are able to capture functional relationships in newly curated pairs from the CTD dataset. 

Specifically, the dataset included 157 disease-chemical pairs, 138 disease-gene pairs, and 

191 chemical-gene pairs. Using the generated word embeddings, the model successfully 

captured relatedness in 42 disease-chemical pairs, 58 disease-gene pairs, and 83 chemical-

gene pairs. 

 
1 At last, functional relationships that were not yet part of the curated CTD at that time. 
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1. Introduction 

1.1 Motivation 

The exploding volume of biomedical literature presents both opportunities and challenges, 

especially in complex fields like cancer research [99]. The complexity of cancer research, 

combined with the sheer scale of available data, necessitates the use of advanced analytical 

tools to efficiently extract and analyze meaningful information. The Literature-Based 

Discovery (LBD) field involves identifying hidden or previously unknown connections 

within vast bodies of scientific literature [7]. LBD includes techniques such as co-

occurrence analysis which involves identifying terms or concepts that frequently co-occur 

in the same document or across a set of document [97], natural language processing and 

data mining, to bridge knowledge gaps by linking concepts that do not co-occur directly 

but are related through intermediary terms, enabling the generation of new hypotheses [8]. 

Word embeddings, a natural language processing (NLP) technique, convert words and 

phrases into dense, continuous vector representations that encapsulate semantic 

relationships based on context and co-occurrence patterns. While they have been 

successfully applied in NLP tasks, their potential in LBD [27], especially in identifying 

functional relationships across diverse biomedical concepts, such as gene-disease or 

chemical-disease associations, remains underexplored. 

Functional relatedness, which refers to the association of different biomedical concepts 

based on their roles, activities, or interactions within biological systems, is particularly 

important in cancer research. For instance, identifying how genes, chemicals and diseases 

interact within the context of cancer, can lead to the discovery of new therapeutic targets 

and treatment strategies. This study aims to evaluate the effectiveness of state-of-the-art 

word embedding techniques, including GloVe, BERT, PubMedBERT, BioBERT and 

Word2Vec, in supporting LBD. In particular, we focus on their ability to capture current 

and previously unknown functional relations across multiple categories in cancer research.  
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1.2 Research Objectives  

The primary objective of this study is to explore and evaluate the use of word embedding 

techniques in capturing functional relatedness in an LBD setting within the biomedical 

domain, particularly focusing on cancer-related research. Specifically, this study aims to: 

• Assessment of Functional Relatedness Across Key Biomedical Categories: The 

research aims to evaluate the functional relatedness between biomedical categories, 

including disease-gene, gene-chemical, and disease-chemical pairs.  

• Comparative Analysis of Word Embedding Models: A comparative study will 

be conducted to analyze the performance of various word embedding models such 

as GloVe, BERT variations, and Word2Vec. The focus will be on their efficacy in 

creating embeddings that accurately capture functional relatedness. 

• Exploring Functional Relatedness with Word Embeddings in a Literature-

Based Discovery Context: This objective involves utilizing word embedding 

techniques to identify previously unknown functional relations; i.e., functional 

relations within the medical literature up until 2022 that were not yet part of the 

curated CTD version 2022. The goal is to assess whether these embeddings can 

perform LBD. 

1.3 Solution Approach 
 

To address the research objectives, a systematic solution approach was developed, 

incorporating advanced text processing and word embedding techniquesThe dataset, which 

consisted of PubMed abstracts, was preprocessed using PubTator [18][19] to extract 

relevant entities, including diseases, chemicals, and genes. Word embedding models, 

including Word2Vec, GloVe, BioBERT, and PubMedBERT, were then trained on this 

processed corpus to capture functional relationships among these entities [20]. The   word 

embeddings' effectiveness was quantified by calculating cosine similarity for gene-
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chemical, chemical-disease, and disease-gene relations, using the CTD as a reference [10]. 

To evaluate which model best captured functional relatedness, the curated CTD pairs were 

validated against the instance vector pairs of all CTD entries, using cosine similarity 

thresholds of 0.6, 0.7, and 0.8. Precision and recall were calculated, and heatmaps were 

used to visualize the performance of each model across the different thresholds to identify 

which model performed best at each level. 

For BERT-based models, word embeddings were saved from different layers, including 

the summation of the last four hidden layers and the individual embeddings of each of the 

last four layers. Cosine similarity was calculated for the embeddings across these layers, 

and the average similarity between the layers was calculated. The results were plotted on a 

bar graph to determine which layers performed best for evaluating functional relatedness. 

Additionally, the study explored whether the word embeddings could capture functional 

relatedness within the newly introduced 2024 CTD dataset. Only the new pairs present in 

CTD 2024, but not in previous versions, were filtered. Cosine similarity was then 

calculated for these new pairs using the previously generated word embeddings. 

1.4 Contribution 
 

This research makes several significant contributions to the field of biomedical text mining 

and knowledge discovery: 

• Evaluation of Word Embedding Models: This thesis systematically evaluates 

different word embedding models, focusing on their performance in biomedical 

data analysis. The comparison helps in selecting the appropriate models for specific 

biomedical natural language processing tasks. 

• Identification of Functional Relationships: The use of word embeddings in this 

research has enabled the identification of functional relationships between genes, 

diseases, and chemicals. These findings contribute to bridging gaps in biomedical 

knowledge and facilitate further exploration in fields such as cancer research. 
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• Contribution to LBD: This research contributes to the field of LBD by 

demonstrating how word embedding models can be used to process large-scale 

biomedical literature and identify previously unrecognized connections between 

biological entities. 

• Discovery of New Biomedical Associations: The use of the latest CTD dataset has 

allowed the identification of new biomedical relationships. This capability supports 

a deeper understanding of biological interactions and advances medical research 

and diagnostics. 

Through these contributions, the research advances the understanding and application of 

word embedding techniques in the biomedical domain, particularly in cancer research, 

enhancing the ability to capture and analyze the functional relationships among diverse 

biomedical concepts. 

1.5 Organization   
This thesis is organized into five chapters, each addressing different aspects of the research. 

Chapter 1 provides an introduction, outlining the research problem, objectives, and 

significance of the study, and introduces key concepts of word embeddings and their 

applications in the biomedical domain, particularly in cancer research. Chapter 2 covers 

the background and literature survey, reviewing existing studies on word embeddings, their 

use in biomedical text mining, and their applications in cancer research, including models 

such as Word2Vec, GloVe, BioBERT, and PubMedBERT. Chapter 3 details the 

methodology and experiments, including the development of a text processing pipeline, the 

training of various word embedding models, and the methods used to quantify functional 

relatedness and validate the results using the CTD. Chapter 4 presents the results of the 

functional relatedness quantification and validation, comparing the performance of 

different word embedding models and discussing the findings in the context of known 

associations between biomedical concepts. Chapter 5 concludes the thesis with a summary 

of key findings, their contributions to the field, and potential directions for future research, 

including exploring other embedding models and broader biomedical applications  
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2. Background and Related works 

This chapter covers the necessary background and literature related to the research 

presented in this thesis. It starts with an introduction to key concepts such as Literature-

Based Discovery (LBD), Medical Subject Headings (MeSH), word embeddings, and the 

principle of functional relatedness. The discussion then extends to the various word 

embedding models utilized in this study, including detailed descriptions of each model's 

architecture and relevance to the biomedical domain. Additionally, the chapter outlines the 

methodologies applied to assess the performance of these models and the metrics, such as 

cosine similarity, employed to quantify the functional relatedness among biomedical 

entities. This foundation sets the stage for understanding how advanced computational 

techniques are applied to facilitate discoveries in biomedical research. 

2.1 Literature-Based Discovery (LBD) 
 

LBD is a method used to uncover hidden or previously unknown associations within vast 

corpora of scientific literature. This approach helps bridge gaps in scientific knowledge by 

capturing overall features and semantics, allowing researchers to identify novel 

connections that may not be immediately apparent [83][84]. The main purpose of LBD is 

to generate new ideas or hypothesis by linking concepts from different fields, potentially 

leading to new discoveries. It is especially useful in fields where vast amounts of scientific 

data are available but remain disconnected [96].  

Techniques used in LBD include co-occurrence analysis, which identifies how often terms 

appear together in texts, and semantic similarity measures, which assess the relatedness of 

concepts based on their meanings [97]. Natural Language Processing (NLP) methods, 

including concept extraction and entity recognition, are also used to automatically detect 

important terms like genes, diseases, or chemicals [98]. By applying these techniques, we 

can uncover meaningful connections between terms and concepts across different studies, 

supporting interdisciplinary research and helping to advance scientific knowledge. 
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2.2 Medical Subject Headings (MeSH)   

MeSH is a comprehensive controlled vocabulary used for indexing, cataloging, and 

searching for biomedical and health-related information. It covers a wide range of domains 

in the life sciences, including anatomy, diseases, drugs, and procedures, facilitating a 

systematic organization of biomedical literature [21]. It is developed and maintained by the 

National Library of Medicine (NLM) at the U.S. National Institutes of Health (NIH). It is 

used in various NLM databases, including PubMed, to index articles for easier retrieval 

and research [22]. 

Key Features of MeSH: 

• Hierarchy: The terms are organized in a hierarchical structure that allows broad as 

well as specific searches. For example, the term "cardiovascular diseases" is a 

broader term under which specific diseases like "Heart Failure" are listed. 

• Descriptors: Descriptors are utilized to index articles, facilitating the accurate 

retrieval of literature. Each descriptor is paired with a definition, a scope note, and 

occasionally historical context. 

• Qualifiers: Also known as subheadings, these qualifiers describe specific aspects 

of a topic, such as "diagnosis," "genetics," and "epidemiology." They can be 

combined with descriptors to enable more refined and precise searching. 

• Supplementary Concept Records: For chemicals, drugs, and other substances not 

included as descriptors, MeSH provides supplementary concept records with 

information similar to that of descriptors. 

• Entry Terms: Synonyms, alternate forms, and related expressions that point to the 

preferred descriptor facilitate the indexing and retrieval process, ensuring that 

literature is accessible under consistent terms. 
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2.3 Word Embeddings  

Word embeddings transform words into continuous vector representations in a high-

dimensional space, effectively capturing linguistic features such as morphology, semantics, 

and context [1]. These techniques are particularly valuable in biomedical research, enabling 

the quantification of functional relatedness between concepts such as genes, diseases, and 

chemicals. By embedding these entities in a shared vector space, word embeddings 

facilitate the identification of semantic similarities and functional relationships, crucial for 

uncovering hidden connections within extensive biomedical datasets [3]. There are various 

methods to for generating word embeddings, each with its unique approach to capturing 

word relationships like Word2Vec which predicts either a word from its context (CBOW) 

or its context from the word (SkipGram)[38] , Fasttext which is an extention of Word2Vec 

that incorporates subword information [25] , GloVe creates word vectors based on the 

frequency of word co-occurrences in a corpus [2] and BERT generates contextual 

embeddings by analyzing both the left and right context of a word and many more [10].  

The key features of word embeddings are: 

• Understanding Context: Word embeddings help machines understand context in 

words. For instance, the same word could have different meanings in different 

situations, like "apple" in "apple fruit" versus "Apple company." Word embeddings 

are capable of capturing these nuances [39].  

• Capturing Semantics: Words with similar meanings are placed closer together in 

the vector space. For example, "king" and "queen" would be near each other 

because they are semantically related, meaning they share a similar meaning or role, 

such as being royalty [3]. 

• Processing Efficiency: Representing words as vectors allows for more efficient 

computation [64].  

There are various applications of word embeddings such as,  
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• Information Retrieval: Search engines use word embeddings to understand 

queries and documents, improving search results beyond simple keyword matching 

[42]. 

• Named Entity Recognition: Identifying proper nouns like names of people, 

organizations, or locations in texts is easier with word embeddings that recognize 

semantic roles [77]. 

• Sentiment Analysis: By understanding the context and semantics, machines can 

identify if a text expresses positive or negative sentiments [87]. 

• Machine Translation: Translation of words/sentences from one language to 

another. 

• Chatbots and AI Assistants: To respond appropriately, these applications need to 

understand user queries, which word embeddings enable by capturing the meanings 

and intentions behind words. 

Given the essential role word embeddings play in these applications, it's important to 

understand how they are generated and utilized. 

Practical Application of Word Embeddings: 

To understand the application and effectiveness of word embeddings in capturing semantic 

relationships between words, let us consider two sentences from different documents: “The 

Minister speaks to the media in Illinois” and ‘The president greets the press in Chicago” 

[24]. We can obtain word embeddings for these statements using the Word2vec model. A 

sample of word embeddings for sentence 1 can be seen in Table 1, and word embeddings 

for sentence 2 are provided in Table 2. 

Table 1: Word Embeddings for sentence "The Minister speaks to the media in Illinois” 

Minister [-0.13671875 -0.015197754 0.06640625 -0.16601562 -0.10986328 ……] 

speaks [-0.036865234 0.20605469 0.030395508 -0.20410156 0.010009766 ……] 

the [0.080078125 0.10498047 0.049804688 0.053466797 -0.06738281 ……] 
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media [0.09765625 -0.009277344 -0.26757812 -0.28125 0.016113281 ………..] 

in [0.0703125 0.08691406 0.087890625 0.0625 0.06933594 -0.10888 ........] 

Illinois [-0.0028076172 -0.05517578 0.01373291 0.45898438 0.056884766 ……] 

 

Table 2: Word Embeddings for sentence "The president greets the press in Chicago" 

The [0.080078125 0.10498047 0.049804688 0.053466797 -0.06738281….…] 

President [-0.0134887695 -0.12011719 0.14453125 0.028930664 -0.02319336…...] 

greets [-0.060791016 0.46289062 0.16503906 -0.26757812 -0.39453125  ….….] 

press [-0.021972656 0.16992188 -0.19726562 -0.24414062 0.036621094 ……] 

in [0.0703125 0.08691406 0.087890625 0.0625 0.06933594 -0.10888 ........] 

Chicago [-0.13476562 0.18164062 0.09326172 0.4140625 -0.13085938  ……….] 

These vectors are generated by training the model on a text corpus, enabling it to learn a 

300-dimensional space. Since it's difficult to derive insights directly from these numerical 

values, we reduce the dimensionality of the data for better visualization. The reduced-

dimensionality vectors, as shown in Table 3, allow us to plot and analyze the data more 

effectively. 

Table 3: Comparison of dimensionality-reduced vector values 

Word X Y 

Minister -15.343611 -119.114159 

speaks 32.972813  -147.397461 

media 5.780852 -161.051666 

Illinois -209.49865 416.482422 
 

Word X Y 

President -3.853197 -132.21804 

greets 50.354527 -145.97364 

press 10.367796 -149.97613       

Chicago -198.14723 416.511383 
 

Looking at these vectors we can say that similar words are closer to each other.  
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Figure 1: t-SNE Visualization of Word Embeddings for Sample Terms [24] 

The Figure 1 is a visualization of these reduced-dimension vectors which confirms that 

similar words tend to be closer to each other in a vector space. This graph is a clear example 

of how word embeddings can be used to visualize and understand the semantic 

relationships between different terms in a corpus. The words "Illinois" and "Chicago" are 

closely plotted, reflecting their geographical relation. In contrast, "minister," "president," 

"speaks," "press," "media," and "greets" cluster together, indicative of their contextual 

linkage to themes of communication and leadership [24]. 

These semantic relationships are captured by various types of word embeddings, each 

employing a distinct approach. Word embeddings can be broadly categorized as follows: 

a) Traditional Word Embeddings 

 i) GloVe 

 ii) Word2vec: 

1) SkipGram  

2) CBOW  

b) Contextualized Word Embeddings  

i) BERT: 

1) BioBERT  
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2) PubMedBERT 
 

2.4 Traditional Word Embeddings  
 

Traditional word embeddings, also known as non-contextual embeddings, are created by 

analyzing large amounts of text to understand how words commonly appear together. 

These word embeddings represent the meaning of words based on their general usage 

across different texts [2]. However, they are context-independent, meaning the 

representation of a word stays the same no matter where or how it is used in a sentence. 

We have mainly used two types of traditional word embeddings. 

2.4.1 GloVe 

GloVe, which stands for Global Vectors is a word embedding model which was introduced 

by Pennington, Socher, and Manning in 2014 [2]. This embedding model constructs an 

explicit co-occurrence matrix using the entire corpus. The explicit co-occurrence matrix is 

nothing but how frequently each pair of words appears together within a specified context 

throughout the entire corpus. The matrix is "explicit" as it computes and stores the co-

occurrence statistics before the training of word embeddings begins and captures co-

occurrence information through prediction tasks without pre-computing a global co-

occurrence structure as explained by Pennington and colleagues (2014) [2].  

Let us consider the vocabulary size of the corpus as V, thus the co-occurrence is a square 

matrix of size V * V that contains how often each word pair appears together in the context 

of the corpus. The matrix is usually a large, sparse matrix in which both rows and columns 

represent unique words in the corpus.  Each entry in the matrix is the frequency or 

probability of occurrence of two words within a certain distance this is defined by the 

context window size, and it is across the entire corpus. In this square matrix, rows represent 

individual words whereas, columns correspond to the context words. Each entry at position 

(i, j) in the matrix represents how strong the bond association between the word indicated 

by row i, and the context word indicated by column j. The main goal of GloVe is to modify 
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the vectors accordingly so that the similarity calculated between the context, and target pair 

words will closely align with the natural logarithm of their actual co-occurrence frequency 

in the corpus [2]. GloVe uses a loss function that calculates the difference between the 

predicted similarity of the words (based on the vectors) and the actual frequency of their 

co-occurrence. 

 GloVe uses gradient descent, a mathematical technique that iteratively minimizes the 

difference between predicted and actual word similarities, improving the accuracy of word 

vectors. By gradually adjusting the vectors, GloVe aligns the predicted similarities with 

the natural logarithm of their actual co-occurrence frequencies, effectively capturing both 

the semantic and syntactic relationships between words [2]. 

Here are the steps involved in extracting and utilizing GloVe embeddings for biomedical 

terms such as "bladder cancer" from pre-trained word vectors: 

Loading GloVe Embeddings: We load the pre-trained GloVe embeddings are loaded from 

a file. The file contains pre-trained word vectors, with each word associated with a high-

dimensional vector representation. 

Tokenization: The next step involves tokenizing the input sentence into individual words 

using nltk's word tokenizer. In this case, we're specifically interested in extracting 

embeddings for the term "bladder cancer". The sentence "Recent studies have shown that 

patients whose bladder cancer exhibit overexpression of RB protein..." is tokenized into 

individual words. The words ['bladder', 'cancer'] are separated from the rest of the sentence 

to retrieve their embeddings [2]. 

Filtering for Valid GloVe Words: Once the text is tokenized, the system checks if each 

word is present in the pre-trained GloVe embeddings [2]. Words not found in the GloVe 

vocabulary are filtered out. Both "bladder" and "cancer" are present in the GloVe 

embeddings, so they are retained for embedding generation. 

Generating Embeddings: For each valid word (in this case, "bladder" and "cancer"), the 

corresponding GloVe embedding is retrieved from the pre-trained embeddings. 
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o The GloVe embedding for "bladder" is retrieved, such as [0.1, -0.2, 0.5, ...]. 

o The GloVe embedding for "cancer" is retrieved, such as [0.05, -0.1, 0.3, ...]. 

Averaging the Embeddings (Mean Pooling): When a term consists of multiple words 

(e.g., "bladder cancer"), the embeddings for each word are averaged to form a single vector 

representing the entire term [2]. This ensures that the final embedding reflects the meaning 

of the combined words. 

The embeddings for "bladder" and "cancer" are averaged to generate a single vector 

representing the term "bladder cancer." For example: 

o "bladder" = [0.1, -0.2, 0.5] 

o "cancer" = [0.05, -0.1, 0.3] 

The averaged embedding would be: 

[
0.1 +  0.05

2
,
−0.2 +  −0.1

2
,
0.5 +  0.3

2
] 

Resulting in: 

[0.075, -0.15, 0.4]. 

Storing the Embeddings: Once the embeddings are generated, they are stored in a file 

containing only the word and its corresponding word embedding. Each entry in the file 

includes the phrase (e.g., "bladder cancer") and the numerical vector representing its 

embedding 

Pre-trained Models for GloVe 

• glove.840B.300d: This model, trained on a corpus of 840 billion tokens from 

Common Crawl, uses 300-dimensional vectors. It offers a broad vocabulary and 

rich semantic nuances due to its extensive training dataset [2]. 

• glove.42B.300d: Also trained on Common Crawl, but with 42 billion tokens, this 

300-dimensional model provides a comprehensive understanding of language, 
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though with a slightly less diverse vocabulary compared to the 840 billion token 

model [2]. 

2.4.2 Word2vec  

Word2vec is a word embedding technique introduced by Mikolov et al. in 2013 [27]. It 

transforms words into vector representations using neural networks. Word2vec is unique 

as it learns these word vectors by predicting words based on their neighboring words in a 

sentence, or vice versa [28]. These word embeddings capture both syntactic (grammatical) 

and semantic (meaning-based) relationships between words by analyzing the context in 

which they appear [10]. 

However, Word2vec is context-independent, meaning that each word is assigned a single, 

static vector, regardless of its context in different sentences. For example, the word "bank" 

would have the same vector representation in both "river bank" and "bank account," even 

though the meanings are different [26]. Despite this limitation, Word2vec effectively 

captures word relationships. 

The performance of Word2vec can be evaluated through two main methods: 

1. Intrinsic Evaluation: Directly tests the quality of word embeddings by assessing how 

well they capture linguistic properties. 

▪ Similarity and Relatedness: Compares model-generated similarity scores 

between word pairs with human judgments [34]. 

▪ Analogy Tasks: Tests the model's ability to solve word analogies (e.g., "man" 

is to "woman" as "king" is to "queen") [34]. 

▪ Clustering: Groups words based on their vector representations and evaluates 

the coherence of these clusters. 

2. Extrinsic Evaluation: Measures the impact of word embeddings on the performance of 

NLP tasks, determining their practical utility. 
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• Text Classification: Uses word embeddings as features for categorizing texts 

(e.g., spam detection, sentiment analysis) [16]. 

• Named Entity Recognition (NER): Identifies entities like person names or 

organizations in text. 

There are two types of Word2vec models i.e., CBOW and SkipGram.  The steps below 

outline the complete process for generating embeddings using both the approaches,  

1. Tokenization 

The first step in the Word2Vec process is tokenizing the sentence into individual words or 

tokens, allowing the model to process the text at the word level [31]. 

• Example Tokenized Words: 

["Recent", "studies", "have", "shown", "that", "patients", "whose", "bladder", 

"cancer", "exhibit", "overexpression", "of", "RB", "protein", "as", "measured", 

"by", "immunohistochemical", "analysis", "do", "equally", "poorly", "as", "those", 

"with", "loss", "of", "RB", "function"] 

2. Vocabulary Construction 

Once the text is tokenized, the model constructs a vocabulary by identifying each unique 

word and assigning it a unique index. This is crucial for building the mapping between 

words and their respective representations. 

• Vocabulary Indices: 

o "Recent" = 1 

o "studies" = 2 

o "have" = 3 

o "shown" = 4 

o "that" = 5  
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o "those" = 23 

o "with" = 24 

o "loss" = 25 

o "function" = 26 

3. One-Hot Encoding 

Each word in the vocabulary is represented as a one-hot encoded vector, where the index 

of the word is set to 1, and all other indices are set to 0. 

• One-Hot Encoding for "bladder": 

o Index: 8 

o Vector: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 

• One-Hot Encoding for "cancer": 

o Index: 9 

o Vector: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 

The steps outlined above are common to both Word2Vec models. Below, we detail the 

specific steps for the CBOW and Skip-gram models separately. 

 

CBOW: 

It is a popular Neural Network Language Model (NNLM) introduced by Mikolov et al. in 

2013 [27]. It is trained to predict a target word based on its surrounding context. The 

context is defined as a window of words around the target word.  

• Example Window Size of 6 for "bladder": 

o Context Window: ["have", "shown", "that", "patients", "whose", 

"bladder", "cancer", "exhibit"] 
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o One-Hot Encoded Context Window: 

▪ "have" = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

▪ "shown" = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 

▪ "that" = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 

▪ "patients" = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 

▪ "whose" = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 

▪ "bladder" = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 

▪ "cancer" = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 

▪ "exhibit" = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

• Matrix Representation: 

[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], // have 

  [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], // shown 

  [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], // that 

  [0, 0, 0, 0, 0, 1, 0, 0, 0, 0], // patients 

  [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], // whose 

  [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], // bladder 

  [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], // cancer 

  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]   // exhibit 

] 

4. Neural Network Processing 

• Input Layer: Receives one-hot encoded vectors representing each word within the 

context window. 

• Hidden Layer: 

o Computes weighted sums of the inputs. 

o Applies activation functions to capture non-linear relationships and feature 

representations. 
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• Output Layer: 

o The model predicts the target word (the center word) using the weighted 

context and applies an activation function (such as Softmax for 

classification). The embeddings are learned during this process, as the 

model is trained to minimize the difference between predicted and actual 

center words [1][39]. 

SkipGram: 

SkipGram is a popular NNLM introduced by Mikolov et al. in 2013 as a counterpart to the 

CBOW model [33]. Unlike CBOW, which predicts a target word based on its context, 

SkipGram does the reverse; it uses the target word to predict the surrounding context 

words. This model is particularly useful for embedding rare words within the text [33]. 

Target Word: "Recent" (Index 1) 

Context Words: ["studies", "have", "shown", "that", "bladder"] 

Context Word Pairs: 

• ("Recent", "studies") 

o Target (One-Hot Vector): [1, 0, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

• ("Recent", "have") 

o Target (One-Hot Vector): [1, 0, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 1, 0, 0, 0, 0, 0, 0] 

• ("Recent", "shown") 

o Target (One-Hot Vector): [1, 0, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 1, 0, 0, 0, 0, 0] 

• ("Recent", "that") 

o Target (One-Hot Vector): [1, 0, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 0, 1, 0, 0, 0, 0] 
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• ("Recent", "bladder") 

o Target (One-Hot Vector): [1, 0, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 0, 0, 1, 0, 0, 0] 

Target Word: "studies" (Index 2) 

Context Words: ["Recent", "have", "shown", "that", "bladder", "cancer"] 

Context Word Pairs: 

• ("studies", "Recent") 

o Target (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [1, 0, 0, 0, 0, 0, 0, 0, 0] 

• ("studies", "have") 

o Target (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 1, 0, 0, 0, 0, 0, 0] 

• ("studies", "shown") 

o Target (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 1, 0, 0, 0, 0, 0] 

• ("studies", "that") 

o Target (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 0, 1, 0, 0, 0, 0] 

• ("studies", "bladder") 

o Target (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 0, 0, 1, 0, 0, 0] 

• ("studies", "cancer") 

o Target (One-Hot Vector): [0, 1, 0, 0, 0, 0, 0, 0, 0] 

o Context (One-Hot Vector): [0, 0, 0, 0, 0, 0, 1, 0, 0] …….. 

Target Word: "aggressive" (Index 9) 
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Context Words: ["bladder", "cancer", "is"] 

Context Word Pairs: 

• ("aggressive", "bladder") 

o Target (One-Hot Vector): [0, 0, 0, 0, 0, 0, 0, 0, 1] 

o Context (One-Hot Vector): [0, 0, 0, 0, 0, 1, 0, 0, 0] 

• ("aggressive", "cancer") 

o Target (One-Hot Vector): [0, 0, 0, 0, 0, 0, 0, 0, 1] 

o Context (One-Hot Vector): [0, 0, 0, 0, 0, 0, 1, 0, 0] 

• ("aggressive", "is") 

o Target (One-Hot Vector): [0, 0, 0, 0, 0, 0, 0, 0, 1] 

o Context (One-Hot Vector): [0, 0, 0, 0, 0, 0, 0, 1, 0] 

4.Neural Network Processing 

• Input Layer: Receives the one-hot encoded vector of the target word. 

• Hidden Layer: Converts one-hot encoded vectors into dense representations using 

the embedding matrix. 

• Output Layer: 

o The model predicts the context words based on the target word by 

generating probability distributions for each context word in the vocabulary 

using a softmax function. 

o The embeddings are learned during this process, where the target word 

predicts the surrounding context words [39]. 

Embeddings Formation: 

• The word embeddings are learned in the hidden layer's weight matrix (embedding 

matrix). 
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• After training, the learned embeddings can be extracted from the rows of this 

matrix, representing each word in a dense, lower-dimensional space. 

This vector is multiplied by a weight matrix to produce a dense embedding for the target 

word. The output layer then uses the SoftMax function to predict the context words by 

generating a probability distribution over the entire vocabulary for each position within the 

context window [33]. 

Hyperparameters for Word2Vec (SkipGram and CBOW): 

• Vector Size: Different dimensions for word vectors were tested, including 250, 

300, 500 and 700. The choice of vector size significantly affects the model's ability 

to capture detailed semantic relationships. Larger sizes offer more expressive power 

but increase computational demands [1]. 

• Window: Context window sizes of 6, 10, 15 and 20 were evaluated. This parameter 

determines the number of words surrounding the target word considered during 

context prediction. A larger window size enhances the model's ability to capture 

broader context, aiding in understanding long-range dependencies in medical texts 

[1]. 

• Min Count: This was set to 1, ensuring that all words, even those appearing only 

once, are included in the training process. This is crucial in biomedicine, where rare 

terms can have significant meanings [73] [88]. 

• SG: The training algorithm included options for both 0 and 1. Setting sg to 0 

employs the CBOW (Continuous Bag of Words) model, which uses the context of 

a word to predict the word itself by averaging the vectors of the context words. 

Conversely, setting sg to 1 uses the Skip-gram model, where the model predicts 

surrounding context words from the target word. This often results in better 

performance with rare words or phrases [1]. 

Word2Vec model, through its CBOW and SkipGram architectures, provides a powerful 

method for capturing the semantic relationships between biomedical terms in our dataset. 



 

22 
 
 

 

Both architectures, CBOW and Skip-gram, offer flexibility in how contextual relationships 

are modeled, with Skip-gram being especially useful for handling rare terms often 

encountered in specialized biomedical texts. 

2.5 Contextualized Embeddings 
 

Word embeddings which are context-dependent are called contextualized word 

embeddings. This approach offers an understanding of the words meaning based on how it 

is used or its context.  For example: Given the word “bank”, if a contextualized embedding 

model is used, the model generates two different embedding vectors based on its usage and 

meaning. If the sentence is related to finance, then the word “bank” would have vectors 

close to “finance" and "money" [42]. On the other hand, when "bank" is used in the context 

of a river, its vector would be closer to words like "river" and "water". This adaptability 

allows for a richer representation of word meanings and relationships. 

 

These word embeddings offer different representations of words each time they appear 

based on surrounding text, unlike traditional word embeddings like GloVe and Word2vec 

where there is a single, static word representation irrespective of their usage. This is a much 

richer and more nuanced approach to forming word embeddings, capturing even minute 

nuances and context-dependent meanings. For generating our word embeddings, we have 

utilized BERT, BioBERT, and PubMedBERT. 

 

2.5.1 BERT 

BERT is a model based on the transformer architecture that captures contextual word 

representations by considering both the left and right contexts of a word simultaneously 

[45]. Unlike previous models that often-encoded text in a unidirectional manner, BERT’s 

bidirectional approach allows it to capture richer semantic representations by pre-training 

on large, unlabeled text corpora. 
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The Transformer architecture, introduced by Vaswani et al. in 2017 [32], utilizes a 

parallelized approach that allows for more efficient training compared to models that use 

recurrent neural networks (RNNs) or convolutional neural networks (CNNs). This 

efficiency is achieved by processing data simultaneously across multiple GPUs or TPUs. 

The Transformer model is composed of stacked encoders and decoders, each with multiple 

identical layers. The encoder maps an input sequence to continuous representations using 

a stack of six identical layers, each containing a multi-head self-attention mechanism and 

a fully connected feed-forward network, followed by layer normalization. Similarly, the 

decoder generates an output sequence, adding a third sub-layer to perform multi-head 

attention over the encoder's output. 

Some widely used concepts in BERT are: 

• Self-Attention Mechanism: This mechanism calculates attention scores for each 

word in the input sequence relative to other words, allowing the model to weigh the 

influence of surrounding words when encoding a particular word. The attention 

score is calculated using query (Q), key (K), and value (V) vectors, derived from 

input embeddings:  

                      Attention (Q, K, V) = softmax (QK^T/√dk)V 

• Multi-Head Attention: Running several attention mechanisms in parallel allows 

the model to capture different aspects of the input sequence simultaneously. Each 

head captures unique features, and their outputs are concatenated and linearly 

transformed. 

• Feed-Forward Networks: Each Transformer layer includes a position-wise feed-

forward network with ReLU activation, enabling non-linear transformations of the 

representations. 
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• Layer Normalization and Residual Connections: These techniques are used 

around each sub-layer to reduce gradient problems and promote smooth gradient 

flow. 

The phases in which BERT operates are as follows: 

1. Pre-training Phase: BERT is trained on a large corpus using two strategies: 

▪ Masked Language Model (MLM): Randomly masks some input tokens and 

predicts them based on the context, requiring the model to consider both left 

and right contexts. 

▪ Next Sentence Prediction (NSP): Trains BERT to predict whether one 

sentence follows another in a document, helping it capture relationships 

between sentences. 

2. Fine-tuning Phase: After pre-training, BERT is fine-tuned on smaller, task-

specific datasets. Minimal task-specific layers are added, and the model's weights 

are slightly adjusted to optimize performance for tasks like question answering or 

sentiment analysis. 

By combining a comprehensive pre-training phase with fine-tuning, BERT effectively 

captures deep semantic relationships and context-dependent meanings, representing a 

significant advancement in NLP. 

Building on this foundation, we have utilized pretrained models like BioBERT and 

PubMedBERT in our research, which are specifically designed for the biomedical domain. 

These models inherit BERT’s architecture but are further trained on large biomedical 

corpora, enabling them to capture the complex and specialized language used in biomedical 

texts. 

This procedure focuses on extracting sentence-level embeddings from BioBERT and 

PubMedBERT using the mean pooling technique. The method involves averaging the 
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embeddings across all tokens in the sequence to generate a comprehensive sentence 

representation. Steps followed for the creation of word embeddings of BERT model are as 

follows: 

Tokenization: The first step involves converting raw text into tokens using the WordPiece 

tokenizer, which splits the input text into subword tokens and adds special tokens 

Classification token[CLS] at the beginning and Separator token [SEP] at the end to mark 

the sequence boundaries. For example, the sentence "blood cancer treatment" is tokenized 

into ['blood', 'cancer', 'treat', '##ment'], with [CLS] and [SEP] signaling the start and end of 

the sequence [42]. 

Input Representation: Once tokenized, input embeddings are created for each token by 

combining two components: 

1. Token Embeddings: Vector representations of each token. 

2. Positional Embeddings: Indicate the position of each token in the sequence to help 

the model understand word order [10]. 

Segment Embeddings: Distinguish between different segments of text, though they are 

less relevant for single-sentence tasks. For each token, the token embeddings, positional 

embeddings, and segment embeddings are combined. For example, the tokenized sequence 

['[CLS]', 'blood', 'cancer', 'treat', '##ment', '[SEP]'] is converted into corresponding input 

embeddings [10][11]. 

Passing Through Transformer Layers: The input embeddings are then passed through 

multiple transformer layers in BioBERT or PubMedBERT. These layers apply self-

attention mechanisms to help the model learn the relationships between tokens in the 

sequence. The bidirectional attention allows the model to capture how each token relates 

to every other token [42]. 

Extracting Embeddings from the Output Layer: After the sequence passes through all 

the transformer layers, the model produces output embeddings for each token. To generate 
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sentence-level embeddings, we use the mean pooling technique, which computes the 

average of all token embeddings across the sequence [11]. 

In this process, the embeddings from the last four layers of BioBERT are utilized in two 

distinct approaches: 

1. Summation of the Last Four Layers: 

o The hidden states from the last four layers (Layer -4 to Layer -1) are 

summed for each token. This summation combines information from 

multiple layers, resulting in a single, enriched token embedding that 

captures deeper context and task-specific insights. 

o Summing the layers leverages the refined features from these final stages, 

providing a comprehensive token representation. 

2. Individual Extraction from Each Layer: 

o The embeddings from each of the last four layers are also extracted 

individually, allowing us to analyze the token representations layer by layer. 

o Extracting individual layers offers a detailed view of how the model’s 

understanding of each token evolves across layers. 

By using both summation and individual layer extraction, we capture a rich, context-aware 

representation while also enabling a more granular analysis of how embeddings are formed 

at each stage. 

Mean Pooling: Once the embeddings are obtained, the sum of the token embeddings is 

averaged across all tokens in the sequence to generate a single sentence-level embedding. 

This ensures that the final representation takes into account the entire context of the 

sentence [42]. 

Storing the Embeddings: After extracting the sentence-level embeddings, they are stored 

for future use. The resulting sentence embeddings are saved to a file, with each embedding 

linked to the corresponding phrase or sentence from which it was generated. 
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BioBERT: 

BioBERT is a specialized version of the BERT model tailored for the biomedical domain. 

It is pre-trained on an extensive corpus of biomedical literature, including PubMed 

abstracts and PMC full-text articles, which enhances its ability to understand the complex 

language and terminology unique to the biomedical field [43]. 

BioBERT has greatly enhanced biomedical NLP by boosting performance in tasks such as 

information extraction, retrieval, and the comprehension of biomedical texts [47]. It 

maintains architecture of BERT and can be fine-tuned for specialized tasks within the 

biomedical field, including disease name recognition, chemical and gene entity extraction, 

and relation extraction between biomedical entities. 

Pre-trained Model for BioBERT used to create word embeddings: 

• BioBERT Model (dmis-lab/biobert-v1.1): This is a BERT variant specifically 

fine-tuned on biomedical corpora. The model features a hidden layer size (vector 

size) of 768, which is standard for the BERT base architecture. It comprises 12 

transformer layers, each with 12 attention heads, facilitating deep semantic 

understanding tailored to biomedical contexts [10]. 

• BioBERT Tokenizer: Using the BertTokenizer from the transformers library, 

configured with the dmis-lab/biobert-v1.1 model, this tokenizer is adept at 

processing biomedical text consistent with BioBERT's training. It handles 

tokenization by segmenting text into tokens that BioBERT has been trained on, 

including the insertion of special tokens such as [CLS] and [SEP] necessary for 

BERT's operation [10]. 

Overall, BioBERT has made substantial contributions to biomedical research, clinical 

decision-making, and scientific discoveries by providing a deeper understanding of 

biomedical texts [43]. 
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PubMedBERT: 

PubMedBERT is a specialized variant of the BERT model, exclusively pre-trained on a 

vast collection of biomedical literature from the PubMed database [44]. Unlike BioBERT, 

which is initially pre-trained on general English texts before being fine-tuned on 

biomedical data, this model is trained solely on biomedical texts from the beginning. This 

focused training enhances its ability to understand the unique syntax, terminology, and 

knowledge within the biomedical field. As Gu and colleagues (2020) highlight, this 

specialized approach enables it to more effectively capture the specific language and 

concepts of the biomedical domain [44]. 

Pre-trained Model for PubMedBERT: 

• PubMedBERT Model (microsoft/BiomedNLP-PubMedBERT-base-uncased-

abstract-fulltext): This is a variant of BERT adapted for the biomedical domain, 

trained extensively on abstracts and full texts from the PubMed database. It is an 

uncased model, meaning it treats text without distinguishing between uppercase 

and lowercase letters. The model features a hidden layer size (vector size) of 768, 

with 12 layers of transformers, each containing 12 attention heads. This 

configuration allows the model to capture complex, multi-level semantic 

relationships inherent in biomedical literature [11]. 

• PubMedBERT Tokenizer: Utilizing the AutoTokenizer from the transformers 

library and configured with the microsoft/BiomedNLP-PubMedBERT-base-

uncased-abstract-fulltext model, the tokenizer is specifically designed to process 

biomedical text in alignment with the training specifics of PubMedBERT. This 

includes handling the uncased nature of the text and embedding special tokens such 

as [CLS] at the beginning and [SEP] at the end of sequences for BERT's processing 

needs. The tokenizer ensures that the input text is appropriately segmented into 

tokens that the model has been trained on, preserving the integrity of the input for 

optimal embedding extraction [11]. 
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The success of PubMedBERT in various biomedical NLP tasks can be attributed to its 

specialized training, as highlighted by Gu and his team (2020) [14]. 

Example of Word Embedding Creation Process

 

Figure 2:Process of word embedding creation [70] 

Figure 2 illustrates the process of transforming text into word embeddings through an 

embedding layer in a neural network. The process begins by tokenizing sentences like "The 

mouse ran up the clock" and "The mouse ran down," where each word is assigned a unique 

index based on the vocabulary (e.g., "the" -> 1, "mouse" -> 2, etc.). These tokenized 

sentences are then represented as sequences of indices [1, 2, 3, 4, 1, 5] for the first sentence 

and [1, 2, 3, 6] for the second. These sequences are subsequently fed into an embedding 

layer, which converts each word index into a fixed-dimensional vector, with an output 

dimension of 4 in this case. Each word index is mapped to a specific vector in the 

embedding space, capturing the semantic meaning of the words. For example, "the" (index 

1) is mapped to [0.236, -0.141, 0.000, 0.045], "mouse" (index 2) to [0.006, 0.652, 0.270, -

0.556], and so on. As a result, the token sequences are converted into sequences of 

embedding vectors, which represent the original sentences in a numerical form suitable for 

input into machine learning models. This transformation allows the model to process the 

semantic information contained within the text effectively. 
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Empowering Literature-Based Discovery with Advanced Word Embedding 

Techniques 

Word embeddings are pivotal in LBD, as they are instrumental in identifying previously 

unrecognized relationships within biomedical texts. These models utilize deep semantic 

learning from vast natural language corpora, as originally conceptualized by Mikolov et al. 

(2013), and are adapted in the biomedical domain through specialized versions of BERT 

tailored for scientific texts [23][33]. 

Facilitating Non-Obvious Connections Through Word Embeddings: 

1. Detecting Hidden Links: Word embeddings facilitate LBD by clustering related 

concepts, enhancing the discovery of connections that may span across disparate 

research articles. For instance, terms like "EGFR" (Epidermal Growth Factor 

Receptor) and "Lung Cancer" can be closely linked within the embeddings, 

potentially unveiling novel associations [85]. 

2. Bridging Cross-Domain Gaps: By integrating diverse biomedical data, word 

embeddings enable researchers to connect chemical data with genetic information, 

supporting comprehensive cross-domain research [86]. 

3. Revealing Deeper Associations: Beyond recognizing direct synonyms, word 

embeddings can expose more profound associations between related but not 

explicitly synonymous terms across various biomedical fields [86]. 

4. Understanding Contextual Semantics: Word embeddings capture the subtle 

semantic nuances of biomedical terminology, ensuring that terms such as "cancer" 

are effectively associated with related concepts like "oncology" and 

"chemotherapy," reflecting their contextual meanings [43]. 
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Through these capabilities, word embeddings significantly enhance the effectiveness of 

LBD, providing a robust tool for advancing biomedical research and facilitating the 

discovery of potential therapeutic targets.  

2.6 Functional Relatedness  

Functional relatedness in word embeddings refers to the ability to capture relationships 

between concepts based on their roles or functions within a particular domain [1]. In the 

context of biomedical research, functional relatedness describes how entities such as genes, 

diseases, or chemicals are connected by their biological functions or interactions [2]. For 

example, the BRCA1 gene is functionally related to breast cancer, as mutations in this gene 

increase the risk of developing the disease. Similarly, the chemical aspirin is functionally 

related to inflammation because it inhibits the COX-1 enzyme, reducing pain and 

inflammation. 

Word embeddings represent words as continuous vectors in a high-dimensional space, 

where words or concepts with similar meanings or roles are positioned closer to each other. 

Functional relatedness can be measured by examining the similarity between these vectors. 

For instance, in biomedical word embeddings, if a gene and a disease have a functional 

relationship (e.g., a gene is linked to causing a disease), their vectors will be closer in the 

embedding space [42]. 

• Semantic Similarity: This refers to the similarity between terms based on their 

meaning or usage in a given context. For example, the words "tumor" and "cancer" 

will appear close in a vector space because of their related meanings [13]. 

• Functional Similarity: This refers to the interaction between different entities 

within a biological system. For example, functional relatedness can describe how a 

gene regulates another gene or how a drug targets a disease. Word embeddings are 

useful for capturing these functional connections across large biomedical datasets 

[1]. 
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2.6.1 Measuring Functional Relatedness in Word Embeddings 

Understanding functional relatedness is essential for accurate biomedical research. For 

example, a gene might be functionally related to a chemical if the chemical interacts with 

or influences the gene’s activity in a biological process. Capturing these relationships in 

word embeddings can help predict how chemicals might affect certain genes, which is vital 

for drug development and understanding disease mechanisms. To assess these 

relationships, several common methods are used to measure functional relatedness: 

1. Cosine Similarity: Measures the angle between two vectors, showing how closely 

related two entities are in terms of their interactions [51]. 

2. Euclidean Distance (L2 Distance): Measures the straight-line distance between 

two points. It helps determine how far apart entities are in their functional roles, 

often used in clustering tasks [52]. 

3. Manhattan Distance (L1 Distance): Adds up the absolute differences in positions 

to measure distance, useful for understanding how different or similar two entities 

are in their functions [52]. 

4. Pearson Correlation Coefficient: Measures how changes in one entity relate to 

changes in another [53]. 

We chose cosine similarity over other metrics like Euclidean and Manhattan distances 

because these methods focus more on the relationships and patterns between entities rather 

than just measuring distance. Cosine similarity tells us how similar two entities are in 

direction, which is more meaningful for understanding how they relate in high-dimensional 

spaces. While Pearson correlation helps identify linear relationships, making it ideal for 

detecting how one entity might influence another. On the other hand, Euclidean and 
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Manhattan distances simply measure the distance between points, which doesn’t capture 

the relational aspects we are most interested in. 

Cosine Similarity  

It is a widely used mathematical metric that determines how similar two vectors are, 

regardless of their size. It is particularly useful for capturing functional relatedness because 

it focuses on the orientation of vectors in a high-dimensional space rather than their 

magnitude. Cosine similarity is commonly used in NLP for comparing word embeddings, 

offering a way to measure the similarity between entities based on how they interact, rather 

than just how frequently they occur together [51]. 

The computation of cosine similarity, is done by dividing the dot product of two vectors 

by the product of their magnitudes. This is also known as normalization. Normalization 

allows cosine similarity to capture the direction in which entities interact.  The value of 

cosine similarity ranges from [-1 to 1], with specific interpretations for these values: 

• -1: The vectors are pointing in opposite directions, indicating a negative functional 

relationship.  

• 0: The vectors are perpendicular, meaning there is no functional relationship 

between the entities. 

• 1: The vectors point in the same direction, indicating a strong positive functional 

relationship. 

As it emphasizes the direction of interactions rather than their size it is computationally 

efficient and effective in capturing relationship which makes it a valuable tool in various 

biomedical and NLP tasks. Additionally, by focusing on direction rather than magnitude, 

cosine similarity ensures that even when entities interact differently in terms of frequency, 

their functional connection can still be accurately assessed. 

This chapter provided a foundational overview of word embeddings and their application 

in biomedical research, focusing on how they transform words into vectors to capture 
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relationships between entities like genes, diseases, and chemicals, which is crucial for tasks 

like LBD. We explored traditional and contextualized embedding models, such as 

SkipGram, CBOW, GloVe, BERT, BioBERT, and PubMedBERT, and discussed their 

roles in understanding functional relatedness. Additionally, we examined the use of cosine 

similarity for calculating functional relatedness. This background sets the stage for the 

detailed analysis and experiments in the following chapters. 
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3. Methodology 
In this study, we utilize various word embedding techniques to capture the functional 

relatedness between genes, chemicals, and diseases by analyzing a large corpus of cancer-

related medical texts. Our objective is to determine how these word embedding methods 

can reveal the functional relationships among biomedical concepts within the data, without 

the need for direct human intervention. To achieve these objectives, our methodology is 

structured into four distinct phases that collectively address the research tasks of processing 

the data, creating meaningful word embeddings, visualizing the results, and exploring the 

functional relationships among biomedical concepts.  

 

 

Figure 3 : Overview of research methodology 

The workflow of our methodology is outlined in Figure 3 and consists of several key stages 

designed to systematically explore the functional relatedness of genes, chemicals, and 

diseases in cancer research. This approach integrates principles from LBD, which seeks to 
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uncover hidden or previously unknown relationships among scientific concepts through 

the analysis of large-scale literature. 

The methodology can be described as follows: 

1. Data Preparation: The data consists of PubMed abstracts, consisting of both the 

textual content of the articles and the associated biomedical annotations, providing 

a detailed foundation for exploring the semantics and relationships of medical 

terms, particularly those related to cancer [71]. This stage is focused on obtaining 

and organizing the data. We segment extensive datasets into smaller, more 

manageable parts and selectively extract relevant chemical, disease, and gene 

information along with their identifiers to create data dictionaries. 

 

2. Formation of Word Embeddings: Following data preparation, the next step 

involves generating word embeddings using various models like CBOW, 

SkipGram, GloVe, BioBERT and PubMedBERT.  

3. Exploration of Functional Relatedness: In the final phase of our study,  

a. We evaluated the models' ability to predict associations between genes, 

diseases, and chemicals by calculating precision and recall metrics. This 

was done by comparing the cosine similarity scores against thresholds 

established for curated CTD pairs and newly identified instance vector pairs 

of instances from CTD. 

b. We assessed whether the word embeddings generated from PubMed 

abstracts up to 2022 could capture the functional relatedness of new curated 

pairs from the CTD August 2024 release. This evaluation involved filtering 

only the newly curated pairs from CTD 2024 and determining if the word 

embeddings we created could capture the functional relationships between 

these new pairs of genes, diseases, and chemicals. 

Overall, the methodology incorporates principles of LBD to uncover previously unknown 

relationships between genes, chemicals, and diseases in cancer research. By processing 
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PubMed abstracts and applying models like CBOW, SkipGram, GloVe, BioBERT, and 

PubMedBERT, the workflow enables the identification of functional relationships.  

 

3.1 Dataset Overview and Concept Annotation  
 

The dataset consists of 100,000 cancer-related abstracts sourced from PubMed, spanning 

from January 1976 to December 2022. Abstracts that were not in English, review articles, 

and those without full text availability were excluded. The biomedical concepts within the 

text were annotated using the PubTator NLP tool, which identified and tagged specific 

entities and relationships such as genes, diseases, chemicals, and proteins. This annotation 

process structured the unstructured text, facilitating more efficient analysis and extraction 

of meaningful information. [72]. 

The dataset is formatted in JSON, which includes the PubMed ID (PMID), the article text, 

and a collection of annotated concepts. Each concept is accompanied by an identifier, a 

type (e.g., 'Disease', 'Chemical', or 'Gene'), and the term itself for example, the term could 

be “lung carcinoma” or “BRCA1”. The concept_type field is particularly important for our 

study, as it allows us to filter and generate embeddings for only diseases, chemicals, and 

genes.  

To illustrate the annotation process, we will now present a sample abstract. This example 

will demonstrate how biomedical concepts are identified and categorized within the text. 

Sample Abstract: 

"Recent studies have shown that patients whose bladder cancer exhibit overexpression of 

RB protein as measured by immunohistochemical analysis do equally poorly as those with 

loss of RB function." 

 

 

 



 

38 
 
 

 

Annotated Abstract: 

{ 

  "PMID": "10022125", 

  "ARTICLE": { 

    "TEXT": "Recent studies have shown that patients whose bladder cancer exhibit 

overexpression of RB protein as measured by immunohistochemical analysis do equally 

poorly as those with loss of RB function.", 

    "CONCEPTS": [ 

      { 

        "IDENTIFIER": "9606", 

        "CONCEPT_TYPE": "Species", 

        "TERM": "patients" 

      }, 

      { 

        "IDENTIFIER": "MESH:D001749", 

        "CONCEPT_TYPE": "Disease", 

        "TERM": "bladder cancer" 

      }]}} 

In this example, the abstract has been annotated to mark specific biomedical concepts, 

such as "bladder cancer" (Disease) and "patients" (Species). This JSON format ensures 

that a medical concept, whether a disease chemical or gene is tagged accurately and 

associated with its occurrence within the article text [72].  

Table 4 provides a detailed breakdown of the key elements within our structured 

dataset. Below are the key elements from the structured dataset: 
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Table 4: Description of various key names of the dataset 

Key Term Description 

PMID PubMed ID, the unique identifier for each article in 

PubMed 

ARTICLE Container for the article's content 

TEXT The body text of the article 

CONCEPTS An array of annotated biomedical concepts found in the 

text 

IDENTIFIER The unique ID for each annotated concept (e.g., MeSH ID) 

CONCEPT_T

YPE 

The type of concept, such as 'Disease' or 'Chemical' or 

others 

TERM The specific term used in the article text for the concept 

 

Each key is paired with a corresponding value within the JSON structured document. 

An example is shown in Table 5.  

Table 5: Representation of key-value pairs 

Key Value 

PMID 1000510 

ARTICLE.T

EXT 

In Sarcoma 180 and L1210 ascites tumor models, the initial 

rate of methotrexate accumulation... 

Concept  IDENTIFIER CONCEPT_

TYPE 

TERM 

 MESH: D012509 Disease Sarcoma 
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 MESH: D007939 Disease L1210 

ascites 

tumor 

 MESH:D008727 Chemical methotre

xate 

 CVCL_0382;NCBITaxI

D:10090 

CellLine L1210 

 

3.2 Data Cleaning and Preparation 
 

After obtaining a structured JSON dataset, pre-processing is necessary to enhance its 

relevance for further analysis, specifically in the context of cancer research. We 

implemented a filtering strategy to selectively extract and retain only the required 

information pertaining to diseases and chemicals of interest. 

1. Division of Large JSON Files: Running PubTator resulted in 10 JSON files. Since 

these files were still quite large, we divided them into smaller, more manageable 

segments for easier processing. This segmentation was necessary because 

processing a single large file with all abstracts turned out to be too resource-

intensive. Depending on the original file size, each large file was split into two or 

three parts or segments. A consistent naming convention was employed to reflect 

the subdivision, such as 'proper_pubtator_1_1', where the first number indicates the 

file, and the second denotes the segment.  

2. Creation of Data dictionaries: A separate data dictionaries were created to focus 

only on cancer related terms. MeSH IDs and JSON dataset was used to create data 

dictionaries to extract relevant information related to cancer or neoplasms and 

exclude unrelated categories [72]. 

Selection Criteria for Diseases and Chemicals: For diseases, we focused on the 

"Neoplasms by Site" category within the MeSH hierarchy, which includes cancer-

related terms and is represented by MeSH codes starting with C04_588. All 
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descendants under this category were selected, resulting in 232 unique IDs. For 

chemicals, all categories were considered, except for "Biomedical and Dental 

Materials" (D25) and "Pharmaceutical Preparations" (D26), which were excluded 

due to their lack of direct relevance to cancer research. This approach ensured the 

dataset focused on chemicals and diseases specifically related to cancer. 

Data dictionaries were created for chemicals, diseases, and genes, with no filtering 

applied to the genes—all gene-related entries were included. A consistent naming 

convention was used for the subdivision of files, such as 

'type_annotations_1_1.csv,' where 'type' represents either gene, disease, or 

chemical, the first number corresponds to the file, and the second number indicates 

the segment. Examples of the data dictionaries are provided in Table 6, Table 7, and 

Table 8, corresponding to chemicals, diseases, and genes, respectively.  

Table 6: Chemical_annotations_1_1.csv 

Sl. no annotation_id annotation_text 

1 D008727 methotrexate 

2 D002955 leucovorin 

3 D008727 methotrexate 

4 D008748 methylcholanthrene 

5 D016604 aflatoxin B1 

 

Table 7:Disease_annotations_1_1.csv 

Sl. no annotation_text annotation_id 

1 Atrial Sarcoma D012509 

2 Neck sarcomas D012509 

3 Myxoid Sarcoma D012509 

4 soft tissue sarcomas D012509 

5 Osteo sarcoma  D012509 
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Table 8: Gene_annotations_1_1.csv 

Sl no. annotation_id annotation_text 

1 367 androgen receptor 

2 2908 glucocorticoid receptor 

3 11657 angiotensin II 

4 5617 prolactin 

 

Table 9 illustrates the exact number of concepts at each stage: 

Table 9:Number of concepts at each stage 

Concept Original Count Filtered Count Notes 

Diseases 

 

31,475,268 714,347 Filtered by "Neoplasms by 

Site" MeSH 

Chemicals 15,113,262 6,646,367 excluding categories such 

as 'Biomedical and Dental 

Materials' and 

'Pharmaceutical 

Preparations'. 

Genes 17,497,302 17,497,302 No filtering applied 

Species 15,321,941 Not considered Excluded entirely 

Cell Lines 2,539,225 Not considered Excluded entirely 

 

The data filtering process significantly reduced the dataset's size. For instance, disease 

entries were reduced from 31 million to 714,347, and chemical entries from 15 million to 

6.6 million. Gene entries remained unchanged, while species and cell lines were excluded. 

This targeted filtering made the dataset more manageable and relevant for cancer research. 
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In our filtering strategy, we treated all terms, including synonyms, as distinct entities. For 

example, "bladder cancer" and "bladder neoplasms" were treated as different terms, even 

though they are synonyms. This is a limitation and is mentioned in section 5.2.   

3.3 Step-by-step approach for Generating Word Embeddings 

With the cancer-relevant dataset prepared, the next step involves the process of generating 

word embeddings. This step-by-step approach ensures the accurate capture and 

representation of various biomedical entities such as diseases, chemicals, and genes, 

utilizing their unique identifiers and contextual information from the literature. Figure 4 

illustrates the detailed methodology used to systematically generate these embeddings, 

which forms the core of our analytical framework. 

 

 
 
 

Figure 4:Flowchart for Generating Word Embeddings from Biomedical Text Data 
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Step 1: Data Repositories  

The first step in generating word embeddings involves identifying and utilizing the key 

data sources (described in Section 3.2). These include: 

• JSON File: This file contains biomedical articles with metadata such as PubMed 

IDs (PMIDs) and corresponding text segments. Each article is annotated with 

various biomedical concepts, including diseases, species, chemicals, and genes. 

• Data Dictionaries: These data dictionaries list annotations for various entity types, 

such as diseases and chemicals, which are matched with MeSH identifiers, and 

genes, which are associated with gene symbols. 

Step 2: Text Matching 

In this step, the focus is on extracting the text and matching the annotated biomedical 

concepts to ensure accurate and consistent representation. 

• Extracting Text and Concepts: Begin by retrieving the ‘ARTICLE’ text and 

‘CONCEPTS’ from the JSON file, focusing on entries labeled as 'disease,' 

'chemical,' or 'gene' under the 'concept_type' field. This is essential because the 

JSON data includes various other concept types, such as species and cellLines, 

which are not relevant for this analysis. By filtering the content based on 

'concept_type,' we ensure that only the relevant text related to genes, diseases, and 

chemicals is extracted. 

• Matching Concepts:  

o For Diseases and Chemicals: In extracted ‘CONCEPTS’ match the 

‘IDENTIFIER’ (MeSH ID) from the JSON file with the corresponding 

entries in the data dictionaries. This ensures that annotations for diseases 

and chemicals are accurately linked to their respective standardized entries 
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[72]. This step is necessary because the JSON files contain annotations for 

a wide range of diseases and chemicals, not just those related to cancer. 

However, our data dictionaries are filtered to include only cancer-related 

annotations. To ensure that word embeddings are generated specifically for 

cancer-related terms, this step is crucial. 

• Locating Terms in Text: Once the annotations are matched, search within the 

‘ARTICLE TEXT’ for the specific terms from the ‘TERM’ field of each matched 

concept. This is crucial as the contextual placement of these terms in the text 

significantly influences their semantic interpretation. After locating the terms 

within the text, word embeddings are generated based on the surrounding context 

to capture their full semantic significance. 

Step 3: Embedding Model Selection 

Word embeddings were created using various models like CBOW, SkipGram, GloVe, 

BioBERT and PubMedBERT. 

Embedding Generation: 

Once the models are selected, the final step involves generating the word embeddings: 

• Processing the Text: Tokenize the matched term and context around it using the 

appropriate tokenizer for each model. Each tokenizer is tailored to the specific 

model ensuring accurate input preparation. 

• Generating Embeddings: Feed the tokenized text into each respective model to 

generate word embeddings. These embeddings capture the relationships and 

contextual meaning of terms based on the model's unique approach. 

• Maintaining Separate Embedding Datasets: Store the embeddings generated by 

each model separately for subsequent analysis.  
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To handle compound terms, such as "bladder cancer" for diseases, "peroxyl radicals" for 

chemicals, and "CSF-1 receptor" for genes, we compute embeddings for each individual 

word within the term. The mean of these individual embeddings is then calculated to 

produce a unified vector that accurately represents the entire compound term [1][2]. 

A sample of how the word embeddings appear is shown below. This example illustrates 

word embeddings for Genes: 

Phrase: cln3, Embedding: [0.3112412, -0.0429908148, -0.46422204, -0.31998255, .......] 

Phrase: nme1, Embedding: [0.2305971, 0.0265105, -0.422717456, -0.25808057188, .....] 

Phrase: cdc42, Embedding: [0.24038206, 0.32040014, -0.49338492, 0.142192199, ......] 

Phrase: gas2, Embedding: [-0.05255251, -0.28753986, -0.726874, -0.29208680567, .....] 

Organizational Details of the Word Embeddings 

The generated embedding models include the word embeddings for the entire dataset. The 

word vectors from these models were stored in files named for the embedding model type, 

concept type (disease, chemical, gene), and the origin JSON file and segment. For example, 

filenames like "Glove_disease_1_1," "Glove_chemical_1_1," or "Glove_gene_1_1" are 

used, where "_1_1" indicates the data segment. This consistent naming convention ensures 

that each file is easily identifiable and correctly associated with its source data and the 

embedding method applied. 

All sub-files generated during the embedding process were then consolidated into a single 

file for each category and embedding type. For example, all segments of GloVe disease 

embeddings were merged into one file named "GloVe_Disease_combined," with a similar 

approach for chemical and gene embeddings. 
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3.4 Various Libraries Used for Models for Model Implementation 
 

In this study, we utilized various libraries to streamline data processing and generate word 

embeddings. These libraries played a crucial role in handling large datasets, performing 

text pre-processing, and creating high-quality word embeddings to capture meaningful 

relationships between genes, diseases, and chemicals. Below is an overview of the key 

libraries employed for these tasks.  

• JSON: Our dataset from PubTator was in JSON format, so we used Python's built-

in json library. This library allows us to convert JSON data into Python dictionaries 

and lists for easier processing 

• pandas (pd): Employed for data manipulation, pandas was crucial for reading and 

processing disease annotations stored in CSV files. It provided efficient tools for 

organizing and analyzing tabular data. 

• Natural Language Toolkit (nltk): Utilized for text tokenization, nltk's 

word_tokenize function played a key role in splitting text into individual words. It 

enabled the conversion of raw text data into tokens, which are essential for 

subsequent processing steps. 

• os: This library facilitated interaction with the file system, enabling the 

management of file paths and directories.  

Additionally, several other packages were employed based on the specific word embedding 

model being implemented, such as Word2Vec, GloVe, and BERT. Word2Vec (SkipGram 

and CBOW). 

We employed specific libraries and tools for generating word embeddings using the 

Word2Vec model (both SkipGram and Continuous Bag of Words (CBOW)). These 

included 

• gensim.models.Word2Vec: We leveraged the Word2Vec implementation from the 

Gensim library to train the Skip-gram and CBOW models and generate word 

embeddings. 
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GloVe 

The GloVe model implementation primarily relied on the numpy (np) library for numerical 

operations and array manipulations, which were essential for processing the GloVe 

embeddings.  

PubMedBERT 

 

We utilized specific python libraries and AutoModel class for generating word embeddings 

using the PubMedBERT model. These included 

• Transformers: This library, developed by Hugging Face, provides pre-trained 

models and tokenizers for a variety of natural language processing (NLP) tasks. It 

supports state-of-the-art models like BERT, GPT, and others. In this case, we used 

it to initialize and apply the PubMedBERT tokenizer and model. The Transformers 

library simplifies access to these models by offering a unified API for loading pre-

trained models, fine-tuning them, and generating embeddings from biomedical text.  

• AutoTokenizer: Responsible for initializing a tokenizer suitable for the specified 

pre-trained model, it allowed us to prepare the text data for input to the model. The 

tokenizer was initialized using the 'microsoft/BiomedNLP-PubMedBERT-base-

uncased-abstract-fulltext' identifier, corresponding to the PubMedBERT model 

trained by Microsoft. 

• AutoModel: Used to load the pre-trained model specified by its identifier, the 

AutoModel class loaded the PubMedBERT model for processing tokenized input 

and generating embeddings. Once initialized, the model could efficiently generate 

embeddings for the given biomedical text data, facilitating analysis of disease-

related terms extracted from PubMed abstracts. 
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BioBERT 

 

Specific Libraries and BertModel class used to create BioBERT word embeddings are as 

follows: 

• Transformers: This library, developed by Hugging Face, provides pre-trained 

models and tokenizers for a variety of natural language processing (NLP) tasks. It 

supports state-of-the-art models like BERT, GPT, and others. In this case, we used 

it to initialize and apply the BioBERT tokenizer and model. The Transformers 

library simplifies access to these models by offering a unified API for loading pre-

trained models, fine-tuning them, and generating embeddings from biomedical text.  

• BertTokenizer: Responsible for initializing a tokenizer suitable for the specified 

pre-trained model, it allowed for the preparation of text data for input to the model. 

The tokenizer was initialized using the 'dmis-lab/biobert-v1.1' identifier, 

corresponding to the BioBERT model trained by DMIS Lab. 

• BertModel: Used to load the pre-trained model specified by its identifier, the 

BertModel class loaded the BioBERT model for processing tokenized input and 

generating embeddings. Once initialized, the model could efficiently generate 

embeddings for the given biomedical text data, facilitating the analysis of disease-

related terms extracted from PubMed abstracts. 

3.5 Functional Relatedness for new pairs in CTD 2024 
 

In 2024, the CTD introduced a new dataset. We utilized our word embedding models to 

examine these new data points for functional relationships. Our goal was to determine if 

our models, which were trained on abstracts until 2022, could identify the new functional 

relationships from the 2024 CTD version (i.e., those in CTD 2024 but not in previous 

versions). The steps followed to calculate the cosine similarity score are outlined below: 

• Loading Files: Loading both versions of CTD files referred to as old_ctd and 

new_ctd and ensures both files have the same structure by verifying the column 

names of each DataFrame. 
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• Identifying New Entries: Finding entries present in the new file but not in the old 

file. Rows appearing only in the new file were identified as new entries. These new 

pairs, specifically for gene-chemical, chemical-disease, and disease-gene 

relationships, were saved in a separate CSV file for further analysis. 

• Loading Embeddings: Word embeddings for genes, chemicals, and diseases were 

loaded individually based on the identified gene-chemical, chemical-disease, and 

disease-gene pairs. The phrase and its corresponding embedding vectors were 

extracted for further analysis. 

• Cosine Similarity Calculation: For each corresponding pair, the cosine similarity 

between their embeddings was calculated. The result, along with the index, 

corresponding names, and cosine similarity score, was stored in a results list for 

analysis. 

This process was used to identify potential new functional relationships in the 2024 dataset. 

3.6 Functional Relatedness for curated CTD associations 

Having pre-processed the data and applied various word embedding models, including 

SkipGram, CBOW, GloVe, PubMedBERT and BioBERT, along with their variations, the 

study proceeds to evaluate how effectively these models capture the functional relatedness 

between genes, diseases, and chemicals.  

This evaluation is conducted by examining high-confidence associations that are based on 

cosine similarity, using precision and recall as metrics. To that end, our analysis focused 

on calculating true positives, false negatives and false positives. By balancing precision 

with recall, the study aimed to optimize the detection of valid biomedical relationships 

[95]. 

Figure 5 presents a comprehensive workflow for calculating functional relatedness in gene-

chemical-disease associations. Each phase of this process is explained in detail below: 
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Figure 5:Flowchart of computing functional relatedness for gene-chemical-disease associations 

• Load Embeddings: Word embeddings for genes, chemicals, and diseases are 

independently loaded for each model. The CTD, containing these pairs, is utilized 

to align with the embeddings. Each embedding is stored in a structured format, 

where "Phrase" denotes the specific gene, disease, or chemical term, and 

"Embedding" represents its corresponding vector, e.g., [vector values]. 

• Standardization of Terms for Consistency: To ensure data consistency we 

converted all relevant fields such as DiseaseName, ChemicalName, GeneNames in 

the CTD dataset to lowercase. This step ensures accurate matching of terms 

between the CTD dataset and the word embedding files. 

Matching Terms: In this phase, terms from the embedding files are cross-referenced with 

those in the CTD dataset. Gene, disease, and chemical terms are selected from their 

respective embedding files according to their pair type disease-gene, gene-chemical, and 

disease-chemical and are then matched with corresponding fields in the CTD dataset. The 

matching process is based on an exact comparison of the terms as they appear in both the 

word embedding files and the CTD dataset. For instance, the term "breast neoplasms" is 

matched only with "breast neoplasms" and not with "breast cancer," even though both terms 

convey the same meaning. Similarly, "breast cancer" is matched only with "breast cancer" 

and not with variations like "breast neoplasms." This is a limitation and is mentioned in 

section 5.2.   

• Cosine Similarity Calculation:  

o For each matched pair gene-disease, disease-chemical, and chemical-gene 

in CTD we calculate the cosine similarity score between the embedding 
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vectors corresponding to each entity in the pair. This measure quantifies the 

functional relatedness between the connected terms. 

o Additionally, cosine similarity calculations are extended to all unique 

instances within the three concept types—genes, diseases, and chemicals. 

Since there is no predefined threshold for cosine similarity, only values 

above the thresholds of 0.6, 0.7, and 0.8 are considered. Higher cosine 

similarity scores indicate stronger relationships between the terms, which 

helps in identifying functional connections in the data more effectively. 

▪ For each type of concept (e.g., gene), retrieve all of its instances 

from the CTD pairs (e.g., geneX, geneY, geneZ). 

▪ For each concept instance, all associated CTD pairs are identified 

(e.g., geneX-diseaseA, geneX-diseaseB). These represent the 

correct functional relations. 

▪ For each word vector representing a concept instance (e.g., geneX), 

the nearby vectors, referred to as instance vector pairs, with a cosine 

similarity greater than the set threshold are retrieved. These 

represent the identified functional relationships. 

• Store Data: The cosine similarity scores derived from the calculations are stored 

in two separate CSV files for each word embedding model. One file contains the 

scores for curated CTD pairs, while the other stores the cosine similarity scores 

above the set threshold for the instance vector pairs identified in the previous phase. 

• Metric Calculation For each file, the performance of the model is assessed by 

calculating the true positives, false negatives, false positives, precision, and recall 

[95]. The criteria are defined as follows: 

o True Positives: Instances where the cosine similarity score exceeds the 

threshold for pairs that are both in the curated CTD data and identified 

through instance vector pairs, confirming correct identification. 
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o False Negatives: Instances where pairs are recognized in the curated CTD 

data but either the cosine similarity score does not exceed the threshold or 

they are not found in instance vector pairs, indicating missed connections. 

o False Positives: Instances where the cosine similarity score exceeds the 

threshold for pairs that are not in the curated CTD data suggesting incorrect 

identifications. 

Based on the values obtained recall and precision are calculated. The mathematical 

formula to compute precision is as follows: 

                𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

• Results Consolidation: After calculating metrics for all files, the results were 

merged into a single DataFrame for comparative analysis. This consolidated 

DataFrame contains precision, recall and other relevant metrics across all models 

and thresholds, facilitating further analysis and visualization. 

• Visualization: Heatmaps were generated to visually represent precision and recall 

values of each model. The model with the highest precision and high recall in the 

heat map clearly outperformed others in identifying meaningful relationships.  

In this chapter, we have outlined a methodology for generating and analyzing word 

embeddings to explore the functional relatedness between genes, chemicals, and diseases 

within cancer-related biomedical literature. The process began with data preparation, 

where we carefully filtered, segmented, and structured the data from PubMed abstracts 

using NLP tools and MeSH identifiers to focus on cancer-related entities. This provided a 

solid foundation for generating high-quality word embeddings. 
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We implemented multiple word embedding models, including SkipGram, CBOW, GloVe, 

PubMedBERT, and BioBERT, each capturing different aspects of semantic relationships. 

These models were tailored to represent biomedical entities such as diseases, chemicals, 

and genes with high accuracy. 

In the final phase of the study, we assessed the precision and recall of the models for 

predicting gene-disease, gene-chemical, and disease-chemical associations. This was done 

by setting thresholds for cosine similarity scores between curated CTD pairs and derived 

instance vector pairs. 

This comprehensive evaluation is crucial as it highlights the models that are most effective 

in capturing functional relatedness within the biomedical field, thereby guiding future 

research in identifying and utilizing the most reliable models for detailed biomedical 

analysis. 
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4. Results 

In this results chapter, we evaluate how well word embedding models capture functional 

relationships between gene-chemical, gene-disease, and disease-chemical pairs by 

calculating cosine similarity. Different threshold values are applied to calculate key metrics 

such as true positives, false negatives, false positives, precision, and recall. The 

performance of these models is visualized using heatmaps to enhance clarity. 

We also assess the impact of hyperparameters, including window size and vector size, for 

CBOW and SkipGram models. Additionally, we analyze embeddings from different layers 

of PubMedBERT and BioBERT, as well as GloVe variations based on the number of 

tokens used during pre-training. For PubMedBERT and BioBERT, we calculate the 

average similarity for chemical, disease, and gene pairs across different layers to identify 

which layers are best suited for evaluating functional relatedness by comparing their 

performance. 

We also tested whether word embeddings trained on abstracts up to 2022 could capture the 

functional relatedness of new gene-disease, disease-chemical, and chemical-gene pairs 

present in the 2024 CTD release. 

4.1 Average Similarity of PubMedBERT and BioBERT across different layers.  

While generating word embeddings using PubMedBERT and BioBERT, we extracted and 

saved the embeddings from various hidden layers, specifically the last four individual 

hidden layers and the summation of values from those layers. Here: 

• -1: Refers to the very last hidden layer. 

• -2: Refers to the second-to-last hidden layer. 

• -3: Refers to the third-to-last hidden layer. 

• -4: Refers to the fourth-to-last hidden layer. 

• Sum: Refers to the summation of the last four hidden layers' embeddings. 
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These embeddings were then compared to evaluate the performance of each hidden layer 

in capturing functional relationships. Each variant of the model was systematically 

compared by calculating the average cosine similarity between phrases common to the 

embedding files. Cosine similarity was used as a metric to quantify the alignment of 

embeddings across different layers. This process was applied to Chemical, Disease, and 

Gene files. After calculating the average similarities, the results were visualized using bar 

graphs to facilitate comparison between the different layers. 

4.1.1 PubMedBERT 

 

Figure 6:Average Similarity in Chemical, Disease, and Gene word embeddings for PubMedBERT models 

Figure 6, provides a comprehensive comparison of word embedding values extracted from 

different layers of the PubMedBERT model. The key observations include: 

• Consistent High Similarity Across Categories: All categories (Chemical, 

Disease, and Gene) generally exhibit high average similarity scores, predominantly 
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above 90%. This reflects a strong consistency in embeddings across different files 

within each category. 

• Uniformity Across Pair Comparisons: The pair comparisons (-1 vs -2, -1 vs -3, 

etc.) show relatively uniform similarity values across all categories for each file 

pair, suggesting that the embeddings maintain a consistent representation of 

biomedical concepts across different files. 

• Exceptional Performance with Summed Embeddings: Particularly high 

similarity scores are observed for some file pairs, such as "-2 vs Sum", "-3 vs Sum", 

and "-4 vs Sum", where they approach or reach 99%. This demonstrates that the 

summation of embeddings from the last four layers captures a comprehensive and 

consistent representation that aligns well with individual layer embeddings. 

 

4.1.2 BioBERT  

 

Figure 7:Average Similarity in Chemical, Disease, and Gene word embeddings for BioBERT models 
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Here are some detailed observations from Figure 7, depicting average similarities between 

different file pairs for Chemical, Disease, and Gene categories in BioBERT models: 

• General High Similarity: Average similarity scores range from 78% to 98% across 

all categories, indicating consistent representation of biomedical concepts by the 

BioBERT model's layers and their summations. 

• Variability in Early Comparisons: Scores show more variability in early layer 

comparisons, particularly "-1 vs -3" and "-1 vs -4", dipping to as low as 78%. This 

suggests different encoding capabilities of specific layers. 

• Enhanced Performance with Summed Embeddings: Higher similarity scores up 

to 98% are observed in "-3 vs Sum" and "-4 vs Sum" comparisons. This highlights 

the effectiveness of combining outputs from the last four layers, which appears to 

capture comprehensive and representative features of the data. 

• Insight into Layer Functionality: The variability in similarity among early layers 

may indicate nuanced differences in how these layers process biomedical entities 

across different contexts. 

The analysis of PubMedBERT and BioBERT models, as depicted in Figures 1 and 2, 

reveals that both models consistently produce high similarity scores across Chemical, 

Disease, and Gene categories, highlighting their robustness in embedding biomedical texts. 

While PubMedBERT displays very high uniformity and effectiveness, especially when 

combining outputs from the last four layers, BioBERT shows a broader variability in early 

layer comparisons. Despite these differences, both models excel in synthesized layer 

performances. This underscores their potential utility in diverse biomedical text analysis 

applications. 

4.2 Functional Relatedness  

In this study, we evaluated the performance of several word embedding models—CBOW, 

SkipGram, GloVe, PubMedBERT, and BioBERT—to assess their effectiveness in 

capturing functional relationships among genes, diseases, and chemicals within cancer-
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related data. Cosine similarity scores of instance vector pairs are validated with curated 

pairs in CTD. Our evaluation centered on precision and recall metrics as calculated using 

true positives, false positives, and false negatives. Results were visualized using heat maps 

to illustrate the functional relatedness among gene-disease, disease-chemical, and 

chemical-gene associations as captured by the various models. Furthermore, we analyzed 

these models based on the precision and recall values obtained, using the set thresholds. 

This approach provided a comprehensive understanding of each model's capabilities in 

handling complex biomedical data relationships.  

The naming conventions used in our study were as follows: 

• For BioBERT and PubMedBERT, the notation "BioBERT1/-4" refers to the 

BioBERT model, with embeddings taken from the fourth-to-last hidden layer. A 

similar approach was used for PubMedBERT. 

• For GloVe, we used "42B" and "840B," representing the pre-trained model based 

on the number of tokens (42 billion and 840 billion tokens, respectively). 

• For CBOW and SkipGram, the notation "SkipGram/W10/300" refers to the 

SkipGram model with a window size of 10 and a vector size of 300. This pattern 

was followed for CBOW as well. 

4.2.1 Disease-Gene Associations 

Table 10 presents an example of the PubMedBERT1/-4 model for Disease-Gene pairs, 

including the Disease Name, Gene Name, and their cosine similarity score. 

Table 10:Cosine Similarity Score for Disease-Gene pairs 

DiseaseName DiseaseID GeneID GeneName CosineSimilarity 

colorectal 

neoplasms MESH:D015179 201163 flcn 0.943988 

liver neoplasms MESH:D008113 201163 flcn 0.943921 

cholangiocarcinoma MESH:D018281 2778 gnas 0.943882 
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liver neoplasms MESH:D008113 5800 ptpro 0.943816 

meningioma MESH:D008579 1476 cstb 0.943593 

breast neoplasms MESH:D001943 6926 tbx3 0.59475 

colonic neoplasms MESH:D003110 10765 kdm5b 0.593125 

glioma MESH:D005910 9636 isg15 0.589403 

colonic neoplasms MESH:D003110 3627 cxcl10 0.587069 

Cosine Threshold: 0.6

 

Figure 8:Precision and Recall values of Disease-Gene pair for cosine threshold 0.6 
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Figure 8 provides an analysis of precision and recall values for Disease-Gene pairs across 

various word embedding models, evaluated at a cosine similarity threshold of 0.6. The key 

observations from this analysis are summarized below: 

• BioBERT Variants: BioBERT models show relatively strong precision with 

BioBERT1/-4 leading at 0.7121. The recall rates are low, with BioBERT1/-4 is 

leading at 0.0814, indicating its effectiveness in capturing relevant cases 

comprehensively compared to other variants. 

• PubMedBERT Variants: Similarly, the PubMedBERT models show higher 

precision, with PubMedBERT1/-4 achieving the highest precision at 0.7316 among 

all models. It also demonstrates one of the highest recall rates at 0.0857, although 

recall values remain extremely low across all models. This suggests that 

PubMedBERT performs better in retrieving comprehensive data compared to other 

models. 

• GloVe Models: GloVe variants show lower precision and recall than BERT 

models, with GloVe/840B performing slightly better than GloVe/42B but still not 

reaching the effectiveness of the BERT models in biomedical contexts. 

• SkipGram Models: Most SkipGram configurations show negligible precision and 

recall. However, SkipGram/W15/500 stands out with modest precision and 

significantly higher recall at 0.1765, suggesting it might be more capable of 

retrieving relevant cases broadly but with less accuracy. 

• CBOW Models: All CBOW variants exhibit zero performance in both precision 

and recall, confirming their ineffectiveness for detailed biomedical retrieval tasks 

at this threshold. 
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Cosine Threshold 0.7:

 

Figure 9:Precision and Recall values of Disease-Gene pair for cosine threshold 0.7 

 

Figure 9, provides an analysis of precision and recall values for Disease-Gene pairs across 

various word embedding models, evaluated at a cosine similarity threshold of 0.7. The key 

observations from this analysis are summarized below: 

• BioBERT Variants: BioBERT models exhibit exceptionally high precision, with 

BioBERT1/-4 achieving the highest at 0.9182. The recall figures are low, with 

BioBERT1/-2 displaying the highest recall, suggesting its enhanced capability to 

encompass a wider array of relevant cases. 
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• PubMedBERT Variants: PubMedBERT models show excellent precision, with 

PubMedBERT1/-4 leading at 0.9307 and also achieving the highest recall at 0.0983 

among the variants. This performance highlights its capability to accurately identify 

and comprehensively retrieve relevant biomedical data. 

• GloVe Models: GloVe models show moderate precision and comparatively lower 

recall than the BERT variants, with GloVe/840B making slight improvements in 

both metrics. However, they remain less effective for highly specialized biomedical 

tasks. 

• CBOW Models: All CBOW configurations register zero in both precision and 

recall, reaffirming their unsuitability for intricate biomedical retrieval tasks at this 

threshold. 

• SkipGram Models: Most SkipGram configurations exhibit negligible 

performance. However, SkipGram/W15/300 shows an anomalously high recall, 

suggesting potential for retrieving a broad array of data but with compromised 

precision. This model has higher recall because of lower counts of the values. 
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Cosine Threshold 0.8:

 

Figure 10:Precision and Recall values of Disease-Gene pair for cosine threshold 0.8 

Figure 10 provides an analysis of precision and recall values for Disease-Gene pairs across 

various word embedding models, evaluated at a cosine similarity threshold of 0.8. The key 

observations from this analysis are summarized below: 

• BioBERT Variants: BioBERT models demonstrate relatively high precision, with 

BioBERT1/-4 achieving the highest at 0.6376. Recall is generally low, with 
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BioBERT1/-4 also leading at 0.0833, showing its relative effectiveness in capturing 

a broader set of relevant cases compared to other variants. 

• PubMedBERT Variants: PubMedBERT models also exhibit higher precision, 

particularly PubMedBERT1/-4 at 0.7365, showing it slightly outperforms others in 

accurately identifying relevant data. The recall is low, with PubMedBERT1/-1 

achieving the highest at 0.0887, suggesting effective capabilities in data retrieval. 

• GloVe Models: GloVe models show lower precision and recall than BERT models, 

with GloVe/840B slightly outperforming GloVe/42B but still not matching the 

effectiveness of the BERT variants for specialized tasks. 

• SkipGram Models: SkipGram/W15/500 registers zero in both precision and recall, 

underscoring its ineffectiveness for complex biomedical retrieval tasks at this 

threshold. 

• CBOW Models: All CBOW configurations show zero performance in both 

precision and recall, reinforcing their unsuitability for detailed biomedical retrieval 

tasks. 

Overall Conclusion for Disease-Gene pairs: 

Across the various cosine similarity thresholds (0.6, 0.7, and 0.8), the PubMedBERT and 

BioBERT models consistently outperform the other embedding models in terms of 

precision and recall. PubMedBERT1/-4 exhibits the highest performance metrics, showing 

exceptionally high precision across all thresholds and the highest recall particularly at the 

0.7 threshold (0.0983), making it arguably the most robust model for identifying and 

retrieving relevant biomedical data. 
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4.2.2 Disease-Chemical Associations 
 

Table 11 presents an example of the PubMedBERT1/-4 model for Disease-Chemical pairs, 

including the Chemical Name, Disease Name, and their cosine similarity score. 

Table 11:Cosine Similarity scores for Disease-Chemical pairs 

ChemicalName ChemicalID DiseaseName DiseaseID CosineSimilarity 

nitrosamines D009602 

esophageal 

neoplasms MESH:D004938 0.959488626 

isoflavones D007529 

endometrial 

neoplasms MESH:D016889 0.959131144 

nitrates D009566 

prostatic 

neoplasms MESH:D011471 0.958609903 

testosterone 

propionate D043343 

prostatic 

neoplasms MESH:D011471 0.958592126 

phosphatidylcholines D010713 

liver 

neoplasms MESH:D008113 0.957530848 

azathioprine D001379 

endometrial 

neoplasms MESH:D016889 0.956387177 

polyphenols D059808 

colonic 

neoplasms MESH:D003110 0.756567442 

vincristine D014750 

prostatic 

neoplasms MESH:D011471 0.756316716 

prednisone D011241 

liver 

neoplasms MESH:D008113 0.755612508 
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Cosine Threshold 0.6: 

 

Figure 11:Precision and Recall values of Disease-Chemical pair for cosine threshold 0.6 

Figure 11 provides an analysis of precision and recall values for Disease-Chemical pairs 

across various word embedding models, evaluated at a cosine similarity threshold of 0.6. 

The key observations from this analysis are summarized below:  
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• BioBERT Variants: BioBERT models exhibit relatively high precision across the 

board, with BioBERT1/-4 achieving the highest at 0.7283. Recall is low, with 

BioBERT1/-3 showing the highest recall, indicating its relative effectiveness in 

capturing a broader set of relevant cases compared to other variants. 

• PubMedBERT Variants: PubMedBERT models also show relatively high 

precision, particularly PubMedBERT1/-4 leading at 0.7571, indicating superior 

accuracy in identifying relevant data. The recall is low, with PubMedBERT1/-3 

achieving the highest at 0.0918, suggesting effective capabilities in data retrieval. 

• GloVe Models: GloVe models demonstrate lower precision and recall than the 

BERT models, with GloVe/840B performing slightly better in both metrics but still 

not reaching the effectiveness of the BERT variants for specialized tasks. 

• SkipGram Models: SkipGram/W15/500 shows very limited performance with low 

precision and minimal recall, highlighting its limited utility in complex biomedical 

retrieval tasks at this threshold. 

• CBOW Models: All CBOW configurations show zero performance in both 

precision and recall, reinforcing their ineffectiveness for detailed biomedical 

retrieval tasks. 
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Cosine Threshold 0.7:  

 
Figure 12:Precision and Recall values of Disease-Chemical pair for cosine threshold 0.7 

Figure 12 provides an analysis of precision and recall values for disease-chemical pairs 

across various word embedding models, evaluated at a cosine similarity threshold of 0.7. 

The key observations from this analysis are summarized below:  
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• BioBERT Variants: BioBERT models display high precision, with BioBERT1/-4 

leading at 0.8761. Recall is low, with BioBERT1/-2 showing the highest recall, 

suggesting its relative effectiveness in capturing a broader set of relevant cases. 

• PubMedBERT Variants: PubMedBERT models also exhibit exceptional 

precision, particularly PubMedBERT1/-4 at 0.9155, which outperforms others in 

precision and achieves the highest recall at 0.0983 when compared with other 

models. This underscores its robust capabilities in both accurately identifying and 

comprehensively retrieving relevant biomedical data. 

• GloVe Models: GloVe models show lower precision and recall than the BERT 

models, with GloVe/840B performing slightly better but still lagging behind in 

effectiveness for specialized biomedical tasks. 

• SkipGram Models: SkipGram/W15/300 demonstrates very low precision and 

anomalously high recall, which may need further verification to rule out data 

anomalies but suggests potential utility in scenarios where broad data capture is 

more critical than high precision. 

• CBOW Models: All CBOW configurations show zero performance in both 

precision and recall, reinforcing their ineffectiveness for detailed biomedical 

retrieval tasks at this threshold. 
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Cosine Threshold 0.8: 

 

Figure 13:Precision and Recall values of Disease-Chemical pair for cosine threshold 0.8 

Figure 13 provides an analysis of precision and recall values for disease-chemical pairs 

across various word embedding models, evaluated at a cosine similarity threshold of 0.7. 

The key observations from this analysis are summarized below:  



 

72 
 
 

 

• BioBERT Variants: BioBERT models maintain relatively high precision, with 

BioBERT1/-4 registering the highest at 0.7873. Recall is somewhat varied, with 

BioBERT1/-3 showing the highest at 0.1003, indicating its effectiveness in 

capturing a broader range of relevant cases compared to other variants. 

• PubMedBERT Variants: PubMedBERT models demonstrate high precision, 

particularly PubMedBERT1/-3 leading at 0.8258, highlighting its strong ability to 

accurately identify pertinent biomedical data. The recall is low, with 

PubMedBERT1/-3 again leading at 0.0966, suggesting effective data retrieval 

capabilities. 

• GloVe Models: GloVe models present lower precision and recall than the BERT 

models, with slightly better performance in GloVe/840B. However, these models 

still do not match the effectiveness of the BERT variants for specialized biomedical 

tasks. 

• SkipGram Models: SkipGram/W15/300 shows no performance in either precision 

or recall, underscoring its limited utility in detailed biomedical retrieval tasks at this 

higher threshold. 

• CBOW Models: All CBOW configurations display zero performance in both 

precision and recall, confirming their unsuitability for intricate biomedical retrieval 

tasks. 

Overall Conclusion Disease-Chemical pairs: 

The analysis across three cosine similarity thresholds (0.6, 0.7, and 0.8) shows that 

PubMedBERT and BioBERT models consistently outperform other embedding models in 

terms of precision and recall, making them the most reliable for biomedical data retrieval 

tasks. The PubMedBERT1/-4 consistently shows high precision across all thresholds and 

particularly shines at a threshold of 0.7, where it also achieves the highest recall when 

compared with other models. This suggests its optimal performance in accurately 

identifying and comprehensively retrieving relevant biomedical data. 



 

73 
 
 

 

4.2.3 Chemical-Gene Associations 

Table 12 presents an example of the PubMedBERT1/-4 model for Chemical-Gene pairs, 

including the Chemical Name, Disease Name, and their cosine similarity score. 

Table 12: Cosine Similarity Score for Chemical-Gene pairs 

ChemicalName ChemicalId GeneId GeneName CosineSimilarity 

perfluorooctanoic 

acid C023036 55573 cdv3 0.774124406 

indomethacin D007213 91584 plxna4 0.774122145 

perfluorooctanoic 

acid C023036 64759 tns3 0.774116386 

calcitriol D002117 55840 eaf2 0.774112806 

benzo(a)pyrene D001564 2056 epo 0.874294305 

arsenite C015001 6696 spp1 0.874290557 

trichostatin a C012589 5901 ran 0.874279046 

doxorubicin D004317 6139 rpl17 0.036224524 

beta-

naphthoflavone D019324 11065 ube2c 0.036223694 

aflatoxin b1 D016604 340578 dcaf12l2 0.036210815 
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Cosine Threshold 0.6:   

 

Figure 14 Precision and Recall values of Gene-Chemical pair for cosine threshold 0.6 

 

Figure 14 provides an analysis of precision and recall values for chemical-gene pairs across 

various word embedding models, evaluated at a cosine similarity threshold of 0.6. The key 

observations from this analysis are summarized below:  
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• BioBERT Variants: BioBERT models exhibit relatively good precision across 

variants, with BioBERT1/-2 and BioBERT1/-3 showing the highest precision. The 

recall is low, with BioBERT1/-3 leading, indicating its effectiveness in capturing a 

broader set of relevant cases. 

• PubMedBERT Variants: The PubMedBERT models exhibit relatively high 

precision, with PubMedBERT1/-4 achieving the highest precision at 0.7571. 

Although recall remains low, PubMedBERT1/-3 leads with a recall of 0.0919, 

indicating effective data retrieval capabilities. 

• GloVe Models: GloVe models present lower precision and recall than the BERT 

models. However, GloVe/840B performs slightly better in both metrics but still 

falls short in effectiveness for complex tasks. 

• SkipGram Models: SkipGram models generally show minimal performance. 

Notably, SkipGram/W15/500 has a precision spike at 0.1989 but with very low 

recall, indicating limited practical utility for detailed retrieval tasks. 

• CBOW Models: All CBOW configurations display zero performance in both 

precision and recall, confirming their unsuitability for detailed biomedical retrieval 

tasks at this threshold. 
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Cosine Threshold 0.7 

 

Figure 15:Precision and Recall values of Gene-Chemical pair for cosine threshold 0.7 

Figure 15 provides an analysis of precision and recall values for chemical-gene pairs across 

various word embedding models, evaluated at a cosine similarity threshold of 0.7. The key 

observations from this analysis are summarized below:  
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• BioBERT Variants: BioBERT models demonstrate high precision across variants, 

with BioBERT1/-4 showing the highest precision. Recall figures vary, with 

BioBERT1/Sum showing the highest recall, suggesting it effectively captures a 

broader set of relevant cases. 

• PubMedBERT Variants: PubMedBERT models display exceptionally high 

precision, particularly PubMedBERT1/-4, which shows the highest precision and 

recall among all models. This indicates its superior capabilities in accurately 

identifying and comprehensively retrieving relevant biomedical data. 

• GloVe Models: GloVe models show moderate precision and lower recall than the 

BERT models, indicating limitations in their effectiveness for specialized 

biomedical tasks. 

• SkipGram Models: SkipGram/W15/300 shows a very low precision but 

anomalously high recall, which might be an outlier or indicate specific conditions 

under which this model performs uniquely. Further investigation into the conditions 

causing such a recall spike would be necessary. 

• CBOW Models: All CBOW configurations show zero performance in both 

precision and recall, highlighting their ineffectiveness for detailed biomedical 

retrieval tasks at this threshold. 
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Cosine Threshold 0.8  

 

Figure 16:Precision and Recall values of Gene-Chemical pair for cosine threshold 0.8 

Figure 16 provides an analysis of precision and recall values for chemical-gene pairs across 

various word embedding models, evaluated at a cosine similarity threshold of 0.8. The key 

observations from this analysis are summarized below:  
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• BioBERT Variants: The BioBERT models consistently demonstrate high 

precision across all variants, with BioBERT1/Sum achieving the highest precision. 

While recall remains low, BioBERT1/Sum still leads, indicating its relative 

effectiveness in capturing a wider range of relevant cases. 

• PubMedBERT Variants: PubMedBERT models demonstrate relatively high 

precision, particularly PubMedBERT1/-4, which shows the highest precision and 

substantial recall among all models. This indicates its superior capabilities in 

accurately identifying and comprehensively retrieving relevant biomedical data. 

• GloVe Models: GloVe models show moderate precision and lower recall than the 

BERT models, indicating limitations in their effectiveness for specialized 

biomedical tasks. 

• CBOW Models: Their inability to register any significant performance highlights 

the challenges they face in the specialized domain of chemical-gene relationships, 

particularly at higher thresholds. This trend suggests that CBOW models are not 

adequately capturing the nuances required for effective data retrieval in this specific 

context. 

• SkipGram Models: All SkipGram configurations display zero performance in 

both precision and recall, highlighting their limitations for detailed biomedical 

retrieval tasks at this higher threshold. 

Overall Conclusion for Chemical-Gene: 

The examination of various models and thresholds reveals that PubMedBERT and 

BioBERT variants, when assessed at a cosine similarity threshold of 0.7, provide the most 

efficient performance for identifying and retrieving chemical-gene relationships. These 

models demonstrate a robust balance between high precision and relatively high recall. 

Conversely, CBOW and SkipGram models consistently underperform across all 

thresholds, suggesting their inadequacy in this specialized domain. This poor performance 

can likely be attributed to their limited capacity to discern the nuanced semantic 

connections essential for accurate chemical-gene interaction predictions. 
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4.2.4 Conclusion on Capturing Functional Relatedness Across Disease-Chemical, Disease-

Gene, and Chemical-Gene Pairings  

There is a clear difference between the precision and recall values obtained. While some 

models show high precision, the recall values remain consistently low. This may be due to 

not accounting for synonyms, as previously noted. Additionally, as stated by Yong Hwan 

Kim (2019), low recall values are common in biomedical data [100]. 

In our comprehensive analysis across multiple cosine similarity thresholds, PubMedBERT 

and BioBERT consistently emerged as superior in identifying and retrieving disease-

chemical, disease-gene, and chemical-gene relationships, with PubMedBERT slightly 

outperforming BioBERT. These models showcased robust precision, particularly at a 0.7 

threshold where they also exhibited high precision and higher recall, making them 

optimally balanced for detailed biomedical data retrieval tasks. 

Conversely, CBOW and SkipGram models consistently demonstrated inadequate 

performance across all assessed thresholds. Their failure to achieve significant precision or 

recall highlights their limitations in handling the complexity and nuance required in the 

biomedical semantic space. This suggests that these models are not suitable for tasks that 

require intricate understanding and retrieval of biomedical data, such as in the prediction 

of gene-disease or chemical-gene associations. 

GloVe models exhibited average performance, showing moderate precision and recall that 

did not match the more specialized BERT variants but outperformed the CBOW and 

SkipGram models. While GloVe models provide a baseline utility, their lower efficacy in 

complex biomedical tasks suggests limited applicability in situations where maximum 

precision and comprehensive data retrieval are essential. This analysis emphasizes the need 

for employing more advanced models like PubMedBERT and BioBERT for critical 

biomedical applications. 



 

81 
 
 

 

4.3 Exploring New Biomedical Relationships in the 2024 CTD Dataset Using Word 

Embeddings 

In 2024, the CTD introduced a new dataset. We utilized our word embedding models to 

examine these new data points for functional relationships. Our goal was to determine if 

our models, which were trained on abstracts until 2022, could identify the new functional 

relationships from the 2024 CTD version (i.e., those in CTD 2024 but not in CTD 2022). 

Using cosine similarity, we analyzed the functional relatedness among disease-gene, gene-

chemical, and disease-chemical pairings. This method tested the ability of word 

embeddings to discover, from existing literature. biomedical associations that were not part 

of CTD at the time; i.e., one could consider these associations as previously unknown. 

Below Table 13 provides details on the total number of newly identified relationships 

across three categories: disease-chemical, disease-gene, and chemical-gene. It also shows 

how many of these relationships were successfully captured by our word embedding 

models. Many relationships were not captured, primarily because the word embeddings did 

not represent one of the terms in the pair. The count was based on pairs having a cosine 

similarity score, without applying any thresholds, as the objective was to determine 

whether the word embeddings could capture any level of relatedness between the pairs. 

Table 13: Detection of New Relationships in the 2024 CTD Dataset by Word Embedding Models  

Pairs Count of New 

Relationships 

Count of Relationships our 

word embeddings could 

capture 

Disease-Chemical 157 42 

Disease-Gene 138 58 

Chemical-Gene 191 83 
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Table 14:Cosine Similarity Scores for Newly Identified Disease-Gene Relationships 

GeneSymbol DiseaseName CosineSimilarity 

nfe2l2 liver neoplasms 0.7374154700812473 

stat3 lung neoplasms 0.7290391618260841 

igf2bp1 neuroblastoma 0.7958682767144976 

mycn neuroblastoma 0.7638889602410818 

alox5 pancreatic neoplasms 0.7171280752904491 

Table 15:Cosine Similarity Scores for Newly Identified Chemical-Disease Relationships 

ChemicalName DiseaseName CosineSimilarity 

gefitinib adenocarcinoma of lung 0.7759782244622887 

methionine adenocarcinoma of lung 0.759424269961907 

urethane adenocarcinoma of lung 0.7438209626098845 

cordycepin breast neoplasms 0.7032463816311467 

dibutyl phthalate breast neoplasms 0.7508378985609001 

Table 16:Cosine Similarity Scores for Newly Identified Chemical-Gene Relationships 

ChemicalName GeneSymbol CosineSimilarity 

arsenic akt1 0.8162029047580391 

arsenite akt1 0.7907774311531406 

auranofin akt1 0.7715376161277744 

baicalein akt1 0.7562700893181521 

betanin akt1 0.8023975173012093 

Tables 14, 15, and 16 present a sample of the newly calculated cosine similarity values for 

disease-gene, chemical-disease, and chemical-gene relationships, respectively, identified 

from the 2024 release of the CTD. Each entry includes a chemical, its associated gene or 

disease, and the cosine similarity score, which measures the functional relatedness as 

captured by our word embedding models. 

The exploration of the 2024 CTD dataset using our word embedding models has provided 

valuable insights into the dynamic landscape of biomedical relationships. Our models have 
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effectively identified a significant number of new disease-chemical, disease-gene, and 

chemical-gene associations, as detailed in Table 13. The capability of these models to 

discern previously unrecognized biomedical interactions underscores their importance in 

advancing medical research and understanding complex biological systems. Additionally, 

the cosine similarity scores, as shown in Table 14,15,16, further validate the models' 

accuracy in quantifying the strength of these new associations. Overall, the use of word 

embeddings in this context has proven to be a robust tool for pioneering discoveries in the 

ever-evolving field of biomedical sciences. 
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5 Conclusion 
 

5.1 Summary of Findings 

This study has rigorously assessed the application of advanced word embedding models to 

decipher and quantify complex relationships within the biomedical field, focusing LBD. 

We utilized top-tier models like PubMedBERT and BioBERT along with traditional 

models such as GloVe, SkipGram, and CBOW to gauge their effectiveness in recognizing 

both established and new biomedical relationships documented in the most recent CTD 

dataset. 

Key findings of this thesis include: 

• PubMedBERT and BioBERT models have proven to significantly outperform 

traditional word embedding models by achieving higher precision and recall rates, 

particularly at a cosine similarity threshold of 0.7. This threshold has been 

identified as optimal for balancing thorough and accurate biomedical data retrieval. 

• Models like CBOW and SkipGram have shown limited effectiveness, struggling 

with the complexities and depth required for processing biomedical texts. 

• GloVe models have demonstrated moderate performance, indicating their 

suitability for less complex biomedical tasks. 

Contributions of this Work 

The contributions of this thesis are diverse and highlight the significant role of NLP tools 

in advancing biomedical research: 

1. Advanced Model Evaluation: This thesis offers an in-depth evaluation of various 

word embedding models, detailing their strengths and weaknesses in the context of 

biomedical data analysis. This comprehensive assessment is crucial for guiding 
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future researchers and practitioners in selecting suitable models for their specific 

biomedical NLP tasks. 

2. Elucidation of Functional Relatedness: The application of word embeddings has 

effectively uncovered intricate functional relationships between genes, diseases, 

and chemicals. These insights not only bridge existing knowledge gaps but also 

open avenues for new discoveries, especially in fields like cancer research. 

3. Enhancement of LBD: This research significantly enriches the field of LBD by 

showcasing how advanced word embedding tools can sift through extensive 

biomedical literature to reveal hidden connections. These discoveries have the 

potential to revolutionize our understanding of disease mechanisms, spur drug 

discovery, and foster the development of new therapies. 

4. Discovery of New Biomedical Associations: Utilizing the latest CTD dataset to 

identify new biomedical relationships underscores the real-world applicability of 

these models. This capability enhances our understanding of biological functions 

and interactions, furthering the scope of medical research and diagnostics. 

These contributions collectively underscore the transformative potential of advanced word 

embeddings in biomedical research. They provide a new perspective for analyzing extensive 

biomedical literature, paving the way for significant scientific advancements and innovations 

in medical research and practice. 

5.2 Limitations 

Although we achieved significant and promising results, we encountered several 

limitations during our study.  

• Handling of Synonyms: The research faces limitations in handling synonyms 

within biomedical literature, which has likely contributed to the observed low recall 

values. Synonyms for the same biomedical term can vary widely, impacting the 

model's ability to consistently recognize and relate terms effectively. 
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• Dataset Limitations: The dataset utilized, consisting of PubMed abstracts, may 

limit the generalizability of the results to other datasets or contexts. 

• Temporal Scope: This work identifies previously unknown relations only for the 

2024 CTD version. Ideally, analysis should encompass multiple versions of the 

CTD to validate findings over time. 

• Domain Specificity: The focus on cancer-related data raises uncertainty about 

whether the results can be generalized to other domains or health conditions. 

• Assumptions in Word Embeddings: The assumption that proximity between two 

concepts in word embeddings indicates a functional relationship is intuitive, but it 

remains an assumption that requires further validation. 

To address these limitations, future work could focus on refining pre-processing techniques 

to handle synonyms more effectively, as their variation likely contributed to the low recall 

values. Expanding the dataset beyond PubMed abstracts would improve the 

generalizability of the findings. Including multiple versions of the CTD in the analysis 

could help validate the results over time. Additionally, broadening the scope beyond 

cancer-related data to other health conditions would address concerns about the 

applicability of the findings. Finally, the assumption that proximity in word embeddings 

indicates a functional relationship requires further validation. Addressing these issues 

could improve recall, accuracy, and the broader applicability of word embedding 

techniques in biomedical research. 

5.3 Key takeaways and Recommendations: 

Based on the results of our comprehensive analysis, several recommendations can be made 

for future studies focusing on biomedical data retrieval and relationship prediction: 

1. Prioritize PubMedBERT: PubMedBERT consistently outperformed BioBERT 

and other models, especially in identifying disease-chemical, disease-gene, and 

chemical-gene relationships. Future studies should focus on using PubMedBERT, 
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particularly embeddings from the last two hidden layers, which demonstrated the 

best performance in capturing functional relationships. 

2. Cosine Similarity Threshold: A cosine similarity threshold of 0.7 provided the 

optimal balance between precision and recall, making it suitable for retrieving 

accurate biomedical relationships. Future work should consider applying this 

threshold when analyzing biomedical data. 

3. Consider Layer-Specific Embeddings: When using BERT models like 

PubMedBERT or BioBERT, researchers should explore embeddings from the last 

few hidden layers, as these layers tend to capture more meaningful semantic 

relationships. This approach will likely lead to more accurate predictions in 

complex biomedical tasks. 

4. Avoid CBOW and SkipGram for Complex Biomedical Tasks: The poor 

performance of CBOW and SkipGram models across all thresholds suggests that 

they are not suitable for handling the intricacies of biomedical data. Future research 

should avoid these models for tasks involving detailed semantic analysis, such as 

gene-disease or chemical-gene associations. 

5. Use GloVe as a Baseline: GloVe models exhibited moderate performance but did 

not match the specialized BERT-based models. While GloVe can be used as a 

baseline for simpler tasks, it may not be ideal for high-precision biomedical 

research where more sophisticated models are necessary. 

By focusing on PubMedBERT with a 0.7 cosine similarity threshold and leveraging 

embeddings from the final two layers, future studies can achieve more reliable results in 

biomedical data analysis and relationship prediction. 
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5.4 Future Work 

The following areas present opportunities for further research and enhancement based on 

the current study: 

• Enhanced Synonym Handling: Future methodologies could improve on the 

handling of synonyms by incorporating more sophisticated natural language 

processing techniques. Implementing a systematic approach for synonym 

resolution, such as using standardized taxonomy codes during preprocessing, 

would allow for more consistent and accurate comparisons of word embeddings 

with CTD pairs. This could potentially improve recall rates and overall model 

performance. 

• Expansion of Training Data: Expanding the dataset to include a broader array of 

biomedical literature could help in enhancing the models' understanding and 

representation of complex biomedical relationships. Incorporating more diverse 

sources and data types, such as clinical trial reports and patient records, might also 

enhance the models' applicability and accuracy. 

• Model Optimization and Efficiency: Investigating methods to optimize the 

training process for BioBERT and PubMedBERT could reduce computational 

demands and accelerate model training cycles. Techniques such as transfer learning, 

model pruning, and quantization might enable the models to maintain high 

performance while being less resource-intensive. 

• Development of Lightweight Models: Developing more efficient, lightweight 

models could make advanced NLP tools more accessible to researchers with limited 

computational resources. This could involve designing custom embedding models 

tailored for specific biomedical applications that require less computational power. 

• Integration with Other AI Techniques: Combining word embeddings with other 

AI and machine learning techniques such as graph neural networks, reinforcement 

learning, or generative models could uncover deeper insights into biomedical data. 
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This integrated approach might lead to more nuanced discoveries and applications 

in drug discovery, disease prediction, and other areas. 

These areas of future work not only aim to address the limitations identified in the current 

study but also seek to expand the scope and impact of using word embeddings in 

biomedical research. 
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