
AUTOMATIC ESTIMATION OF EELGRASS COVER USING
SEAFLOOR IMAGES

by

Paras Mehta

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

June 2024

© Copyright by Paras Mehta, 2024

I would like to dedicate this thesis to my family who has been a pillar

of support throughout this journey.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . viii

List of Abbreviations and Symbols Used ix

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Background . 4

2.1 Self-Supervised Learning . 4
2.1.1 Momentum Contrast V3 . 5
2.1.2 Barlow Twins . 6

2.2 Models Used for Image Segmentation 7
2.2.1 Segformer . 7
2.2.2 VGG16 Encoder With a UNet Decoder 11
2.2.3 ResNet50 Encoder With an Upsampling Convolutional Neural

Network . 15

2.3 Models Used for Image Classification 18
2.3.1 Vision Transformer . 18
2.3.2 ResNet50 Encoder With a Multilayer Perceptron 21
2.3.3 VGG16 Encoder With a Multilayer Perceptron 23

2.4 Evaluation Metrics . 24

2.5 Superpixels . 25

Chapter 3 Related Work . 26

Chapter 4 Methodology . 28

4.1 Data Collection . 28
4.1.1 BenthicNet Dataset . 30

4.2 Data Pre-processing . 30
4.2.1 Image Segmentation . 31

iii

4.2.2 Image Classification . 33

4.3 Model Configurations . 34
4.3.1 Loss Function . 34
4.3.2 Optimizer . 35
4.3.3 Learning Rate . 35
4.3.4 Epochs . 36
4.3.5 Cross-Validation . 36
4.3.6 Batch Size . 37

4.4 Experiments With Image Segmentation 37
4.4.1 Data Preparation . 37
4.4.2 Training and Loss Calculation 39
4.4.3 Evaluation . 39
4.4.4 Inference . 41

4.5 Experiments With Image Classification 41
4.5.1 Data Preparation . 42
4.5.2 Training and Loss Calculation 43
4.5.3 Evaluation . 43
4.5.4 Inference . 43

Chapter 5 Results . 44

5.1 Image Segmentation . 44

5.2 Image Classification . 51

5.3 Comparing Image Segmentation And Image Classification Models . . 55

Chapter 6 Conclusion . 57

Bibliography . 60

Appendix A Related Tables and Diagrams 69

iv

List of Tables

2.1 Segformer: Kernel, Stride, Padding 10

2.2 Segformer Decoder Operations 11

4.1 Learning Rates For Segmentation Experiments 35

4.2 Learning Rates For Classification Experiments 36

4.3 Corrected Pixel Values . 40

5.1 F1, IoU, and R2 Scores for Segmentation Experiments 45

5.2 R2 Scores on Test Datasets for Segmentation Experiments . . . 46

5.3 F1 and Accuracy Scores For Classification 53

v

List of Figures

2.1 Segformer Architecture . 8

2.2 VGG16 Encoder With A UNet Decoder Architecture 13

2.3 ResNet50 Encoder With An Upsampling Convolutional Neural
Network Architecture . 16

2.4 Vision Transformer Architecture 18

2.5 Multi-head Attention Block 20

2.6 ResNet50 Encoder With A Multi-Layer Perceptron Architecture 22

2.7 VGG16 Encoder With A Multi-layer Perceptron Architecture . 23

2.8 Superpixels . 25

4.1 Quality Distribution . 29

4.2 Datasets Used . 30

4.3 Automatic Labelling Examples 32

4.4 Manual Labeling Process . 32

4.5 Class Distributions For Image Classification 33

5.1 F1 Scores For Segmentation 44

5.2 Comparing Performance on Test Datasets 46

5.3 Incorrect Predictions For Segmentation (Test Set 1) 48

5.4 Incorrect Predictions For Segmentation (Test Set 2) 49

5.5 Detected Angled Blades . 50

5.6 Detected Thin Blades . 50

5.7 Incorrect Predictions . 51

5.8 F1 and Accuracy Scores For Classification 52

5.9 Confusion Matrices For Classification 53

5.10 Incorrect Predictions For Classification (Test Set 1) 54

vi

5.11 Incorrect Predictions For Classification (Test Set 2) 54

5.12 Incorrect Predictions For Classification (Test Set 2) 55

5.13 Incorrect Predictions For Classification (Test Set 2) 55

A.1 OTSU Example 1 . 69

A.2 OTSU Example 2 . 69

vii

Abstract

This research assesses various methods to monitor eelgrass populations along Canada’s

eastern coasts. This is done by providing image data to deep learning models to es-

timate the percentage cover of eelgrass from these models. The dataset comprises

ocean floor images obtained through kayak and diver surveys. Human-estimated

percentage covers of eelgrass in these images are used to evaluate our models. Im-

age classification and image segmentation (pixel-wise classification) approaches are

evaluated in this research. Image classification determines the percentage cover esti-

mates by discretizing these estimates into 6 classes representing eelgrass cover, and

image segmentation does this by generating segmentation masks and extracting per-

centage cover information from the pixels identified as eelgrass. The models were

either pre-trained on the BenthicNet dataset or used with random weight initializa-

tion, together with various pre-processing techniques for image segmentation. Two

separate datasets were used to compare model performances on unseen data, where

the first dataset corresponds to same-domain images because they are collected from

locations nearby to the training data collection sites, ensuring similar characteristics,

whereas the second dataset corresponds to different-domain images because they are

collected from randomly distributed locations, providing a diverse set of character-

istics. We found that the segmentation models underestimated eelgrass percentage

cover, and the classification models overestimated. All the segmentation models used,

performed equivalently, except the VGG16 encoder pre-trained on ImageNet dataset

with a UNET decoder (V16I-UNet). All classification models had similar but worse

results than the segmentation models.

viii

List of Abbreviations and Symbols Used

SSL Self-Supervised Learning

BIIGLE Bio-Image Indexing and Graphical Labelling Environment

MAIA Machine-learning Assisted Image Annotation method

CNN Convolutional Neural Network

MLP Multi-Layer Perceptron

R50B-CNN ResNet50 encoder pre-trained on BenthicNet dataset with a simple

CNN decoder

V16I-UNet VGG16 encoder pre-trained on ImageNet dataset with a UNET

decoder

V16B-UNet VGG16 encoder pre-trained on BenthicNet dataset with a UNET

decoder

V16-MLP VGG16 encoder with a Multi-Layer Perceptron

V16B-MLP VGG16 encoder pre-trained on BenthicNet dataset with a Multi-

Layer Perceptron

R50-MLP ResNet50 encoder with a Multi-Layer Perceptron

R50B-MLP ResNet50 encoder pre-trained on BenthicNet dataset with a Multi-

Layer Perceptron

VS-MLP ViT-Small encoder with a Multi-Layer Perceptron

VB-MLP ViT-Base encoder with a Multi-Layer Perceptron

VSB-MLP ViT-Small encoder pre-trained onBenthicNet dataset with aMulti-

Layer Perceptron

VBB-MLP ViT-Base encoder pre-trained on BenthicNet dataset with a Multi-

Layer Perceptron

. Scalar-Scalar Multiplication

X Matrix Multiplication

ix

Acknowledgements

I am profoundly grateful to my thesis supervisor, Dr. Thomas Trappenberg, for his

support and inspiration throughout this journey. His ability to keep me focused on the

ultimate goal, coupled with strong and constructive feedback at all stages, has been

invaluable. His mentorship has enhanced the quality of this research and fostered my

growth as a researcher.

I also want to express my deepest gratitude to Dr. Benjamin Misiuk for his

invaluable support and guidance throughout this project. His unique expertise in

Marine Biology and Computer Science has been instrumental in shaping the direction

and success of this research. His insightful feedback and encouragement have been

crucial at every stage of this work.

Lastly, I would like to thank my lab members, Martin Gillis and Isaac Xu, fellow

PhD students at the Hierarchical Anticipatory Learning (HAL) lab, at Dalhousie

University, for their invaluable assistance with coding challenges and for suggesting

innovative approaches to the problems I encountered. Their support and insights

have been greatly appreciated.

x

Chapter 1

Introduction

Eelgrass (Zostera marina) is a plant that visually resembles grass and grows in or

around the sea. Some benefits of having eelgrass are stabilizing sediments [1], carbon

sequestration [2], and reducing the force of waves [3]. It also provides food for different

marine organisms and acts as a habitat for some fish and animals [4]. However,

many factors are causing a decline in the eelgrass population. Rising sea levels [5]

and ocean warming [6] are among these factors. Hence, conservation of eelgrass

has become an important task. The first step towards conservation is monitoring.

Obtaining geographical and quantitative information about eelgrass would be helpful

in monitoring.

Analyzing images from the ocean floor to determine the percentage of eelgrass

cover can help monitor the overall coverage in a geographical region. This process

involves collecting images from the ocean floor within a specific area. Each image is

then assessed to estimate the percentage of eelgrass cover. These individual estimates

are averaged to provide an overall approximation of eelgrass cover in the region.

The focus of this study is to assess images to determine the percentage of eelgrass

cover. Manually performing this task would be time-consuming and labour-intensive.

Therefore, we explore automatic assessment methods using deep learning models.

Chapter 3 highlights multiple studies that have employed similar methods. Deep

learning models are designed to recognize and distinguish various objects and ele-

ments within an image. During this process, the network is trained on a dataset

of human-labelled images. The labels provide information to the model concerning

the percentage cover of eelgrass. The model learns to detect features such as edges,

textures, shapes, and more complex structures at multiple layers of abstraction. The

model then uses these learned features to identify eelgrass covers within these im-

ages. This automated feature extraction process expedites the process of eelgrass

cover estimation.

1

2

This study uses image classification and image segmentation using various deep-

learning models to map eelgrass coverage. For experiments with image classification,

images are categorized into discrete classes based on the percentage cover of eelgrass.

Image classification then assigns an image to one of these categories. Experiments

with image segmentation take a pixel-wise approach to classify each pixel as either

eelgrass or background. By summing the pixels identified as eelgrass, we determine

the overall percentage cover.

We explore five distinct techniques for pre-processing training and validation data.

The first technique employs unaltered images and masks, serving as a baseline ap-

proach with no modifications. The second technique uses sharpened images to en-

hance edge definition, while the masks remain unchanged. The third approach keeps

the images in their original state but modifies the masks to improve annotation ac-

curacy. The fourth technique involves both sharpening the images and adjusting the

masks. Finally, the fifth technique utilizes a reduced dataset, excluding low-quality

images and masks, to focus on higher-quality data. We also compared models initial-

ized with random weights and models initialized with BenthicNet pre-trained weights

in image classification.

The study aims to test three primary hypotheses. The first hypothesis is that if

edge detection and clustering are applied to segmentation masks before using them for

training an image segmentation model, then it will aid the model in producing better

segmentation masks. Edge detection highlights the boundaries of eelgrass within

the segmentation masks, making the transitions between eelgrass and non-eelgrass

regions more distinct than in human-annotated segmentation masks. This clarity

helps the model to learn precise boundaries. The second hypothesis is that if low-

quality images are removed from the training dataset of the model, then the model

performs better at producing segmentation masks and more robust predictions are

generated. Low-quality images usually contain noise, which can obscure important

features and make it harder for the model to learn useful patterns. Removing these

images, makes the dataset clearer, allowing the model to focus on learning from high-

quality, informative examples. The third hypothesis is that both image classification

and image segmentation models that are pre-trained on a similar dataset, will perform

better than the models with random weight initialization. Models pre-trained on

3

similar datasets have already learned to extract useful features relevant to the new

task.

The structure of this thesis is organized to explore and address the challenges

in automating eelgrass monitoring using deep learning techniques and answer the

hypotheses comprehensively. Following this introduction, Chapter 2 delves into the

background that provides context on the research topic. Chapter 3 reviews the ex-

isting literature on determining percentage cover estimates, and eelgrass monitoring

using different techniques. Chapter 4 details the methodology of conducting experi-

ments, including data collection, data pre-processing, model configurations, and the

experiments. Chapter 5 shows the results of the experiments, providing a compar-

ative analysis of the models, the impact of different pre-processing techniques on

segmentation, and the effects of different initializations on classification. A detailed

analysis of segmentation masks and the hypotheses test results are also included in

this chapter. Finally, Chapter 6 gives suggestions for future research directions and

key takeaways from this study.

Chapter 2

Background

This chapter introduces terminologies essential to understanding the contents of the

following chapters. The first section introduces self-supervised learning. This section

also introduces the basic working of the MoCov3 model used for pre-training the

vision transformer encoders and the Barlow Twins model used for pre-training the

VGG16 and ResNet50 encoders. This is followed by a section containing a detailed

explanation of the model architectures used in this study. Next, an explanation of

the use of evaluation metrics used in this study is delineated. Lastly, the superpixels

method used by a study in Chapter 3 is explained briefly.

2.1 Self-Supervised Learning

Self-Supervised Learning (SSL) [7] is a type of machine learning algorithm where

the model learns to predict part of its input from other parts, essentially creating

its labels from the data. This method does not require manually labelled data like

supervised learning. Instead, it uses structures and patterns in the data to learn

representations.

In SSL, there are two primary types of tasks, which are pretext [8] and downstream

tasks [9, 10]. In pretext tasks, SSL trains models to grasp important representations

of unstructured data. These representations are then used in downstream tasks like

image segmentation. Transfer learning [11, 12] is the process where models trained

on pretext tasks are then used to train the model on a downstream task because the

learned representations act as a “starting point”[13] for the model on the new dataset.

Contrastive learning introduced in [14] is a pretext task in SSL, where the model

learns to distinguish between similar and dissimilar examples. Models like SimCLR

introduced in [15] and MoCo introduced in [16] use contrastive learning to increase

similarities between augmentations of the same image, while decreasing similarities

4

5

between augmentations of distinct images. Augmentation [17] refers to applying var-

ious transformations to the existing data. Different augmentations include geometric

transformations, colour modifications and noise addition. Two examples of SSL mod-

els used for transfer learning here are MoCov3 and Barlow Twins.

2.1.1 Momentum Contrast V3

Momentum Contrast (MoCo) v3 introduced in [18] is an evolution of MoCo, which

stands for Momentum Contrast. It is a family of self-supervised learning algorithms

that aim to learn visual representations by contrastive learning. The following para-

graphs briefly explain how MoCo v3 works.

Two encoders are used in the architecture: a query encoder (fq) and a key encoder

(fk). These encoders share the same architecture but have different parameters dur-

ing training. For every input image x in a batch, two augmented views are generated.

These views are referred to as xq and xk. Other images in the batch act as negative

pairs. xq and xk are fed into the query encoder and key encoder, respectively, to

produce query = fq(xq) and key = fk(xk). MoCo maintains a queue of encoded keys.

This queue is a dynamically updated memory bank that stores feature representa-

tions from previous batches. The current batch’s keys are enqueued to this memory

bank, and the oldest entries are dequeued to maintain a fixed size. A contrastive

loss (introduced in [19]) is used to train the model. The objective is to cluster the

embeddings of the same image (positive pairs) while separating the embeddings of

different images (negative pairs). For each query q, the corresponding key k from the

same image is considered a positive example, while the other keys in the queue serve

as negative examples.

θk = m · θk + (1−m) · θq (2.1)

Equation 2.1 taken from [18] shows the momentum update rule where m is the

momentum coefficient which regulates the update rate of the key encoder, θk are the

key encoder parameters, and θq are the query encoder parameters. This update helps

ensure that the key encoder evolves more smoothly over time. The entire process

is repeated for each batch of images during training. The query and key encoders

process the images, the queue is updated, and the contrastive loss is minimized to

6

improve the feature representations.

2.1.2 Barlow Twins

In Barlow Twins introduced in [20], the task is to make the representations of different

augmentations of the same image as similar as possible. The idea is to reduce the

redundancy between parts of the learned representations. The following paragraphs

explore the steps involved in processing images using Barlow twins.

Initially, a series of augmentations is applied to each image to create two different

views of the same image. Then, a backbone neural network is used to extract features

from the augmented images. This can be any network that identifies important

features from the input. Both augmentations are passed through the same backbone

network. This results in two sets of embeddings for each image. Finally, the cross-

correlation matrix C between the embedding vectors of the two augmentations across

a batch of images is computed.

Cij =

∑
b

(
zAb,i × zBb,j

)√∑
b(z

A
b,i)

2 ·
√∑

b(z
B
b,j)

2
(2.2)

Equation 2.2 taken from [20] depicts the cross-correlation matrix where b tra-

verses through the whole batch of size b, and i and j represent the dimensions of

the networks’ outputs. zA and zB show the two embeddings obtained after applying

different augmentations to the image. Both these embeddings have dimensions [b ·D]

where D is the embedding dimension. zA is transposed before multiplying with zB to

produce a numerator of dimensions [b · b]. C is a square matrix with size the dimen-

sionality of the network’s output, with values comprised between -1 showing perfect

anti-correlation and 1 showing perfect correlation. The loss function encourages the

diagonal elements of the cross-correlation matrix Cij to be close to 1, which ensures

that each feature dimension has similar values for the two augmentations from the

same image. However, the off-diagonal elements Cij (where i! = j) are encouraged to

be close to 0, which reduces redundancy by ensuring that different feature dimensions

are correlated.

L =
∑
i

(1− Cii)
2

︸ ︷︷ ︸
invariance term

+λ ·
∑
i

∑
j �=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

(2.3)

7

The loss function based on the cross-correlation matrix is shown in Equation 2.3

taken from [20] where λ is a hyperparameter that balances the two terms. It is evident

from Equation 2.3 that as the correlation between two augmentations of the same im-

age (diagonal elements) increases, the loss decreases, and as the correlation between

the augmentations of different images (off-diagonal elements) decreases, the loss de-

creases. The process of applying augmentations, extracting features, computing the

cross-correlation matrix, calculating the loss, and updating the network parameters

continues until the model converges.

2.2 Models Used for Image Segmentation

In this section, we present the models utilized in this study to address the task of

image segmentation. They are Segformer, VGG16 encoder pre-trained on ImageNet

dataset with a UNET decoder (V16I-UNet), V16B-UNet and ResNet50 encoder

pre-trained on BenthicNet dataset with a simple CNN decoder (R50B-CNN). They

are explained in the following sections.

2.2.1 Segformer

Segformer introduced in [21] is an image segmentation model that comprises an

encoder-decoder architecture. Segformer uses transformers [22] to capture contex-

tual information in the image and produce segmentation masks. Transformers were

originally used in natural language processing tasks like text summarization [23], text

generation [23], and text-to-speech [24]. Later, they became popular with image data

[25]. The segformer architecture used in this study is taken from the GitHub reposi-

tory by Phil Wang [26]. The following sections explain this architecture in detail.

Segformer Encoder

The input images are fed into the encoder for training. The encoder contains three

main mechanisms: overlapping patch construction, patch embedding generation, and

transformer block operation. Each of these three mechanisms is implemented four

times, with each iteration referred to as a component. The output from each of these

components is stored to be used by the decoder. These stored outputs are referred

8

Figure 2.1: Encoder-decoder architecture of the Segformer. Here, the input images of
dimension [H,W,C] are passed to the overlap patch embeddings and the segmentation
masks are obtained from the MLP layer with output dimensions

[
H
4
, W

4
, Ncls

]
(original

image from [21]).

to as skip connections.

Subsequent sections in the encoder are explained taking into account the first

component of the encoder. The remaining follow the same operations with a change

only in three sets of parameters. The first parameter is the number of transformer

heads h which is 1, 2, 5, and 8 respectively in the four transformer blocks. The

second set of parameters is the kernel K, stride S, and padding P (K,S, P) used in

the overlapping patch construction process. They are (7, 4, 3) for the first component

and (3, 2, 1) for the remaining three components. Lastly, the channels in the outputs of

the transformer blocks are 64, 128, 320, and 512 in the four components respectively,

which are referred to as C1, C2, C3, and C4 in Figure 2.1. The internal workings of

the three mechanisms in the first component are explained below.

The first mechanism is the overlapping patches mechanism. Here, the input image

of size [H,W,C] (height, width, and channels) is divided into overlapping patches by

passing it through a convolutional layer with a kernel size of 7, a stride of 4, and a

9

padding of 3. Every patch will have dimensions [7, 7, C] where the C channels account

for the original number of channels in the image. The dimensions of the output

generated by this convolutional operation will be
[
H
4
, W

4
, K ·K · C]

. Equation 2.4

shows the number of patches n generated after the overlapping patches mechanism.

n =
H ·W
49

(2.4)

The second mechanism embeds the overlapped patches obtained from the overlap-

ping patches mechanism using an embedding dimension dmodel = 64. A convolutional

operation does this with a kernel size of 1, and using 64 filters. The patch embeddings

produced from this operation are of dimensions
[
H
4
, W

4
, dmodel

]
.

The third mechanism contains the transformer block consisting of two main com-

ponents — efficient self-attention and mixed feed-forward network, both repeated h

times where h is the number of heads of the transformer block. Every head of the

block captures different context information from the image. The outputs from all the

heads are then concatenated and passed on to the mix feed-forward network. Inside

a transformer head, patch embeddings are passed to the self-attention block as input.

Patch embeddings are split into three parts namely query Q, key K, and value V by

multiplying them with learnable weight matrices WQ, WK , and WV with dimensions

[dmodel, dmodel/h]. The query Q contains the representations of the areas within the

image that the model is currently analyzing. The key K serves as a comprehensive set

of criteria from the whole image against which the query vectors are compared. The

value V represents the information extracted from the regions of the image, guided

by the attention mechanism computed by query and key. Self-attention is computed

using Equation 2.5 as used in [25].

Attention(Q,K, V) = softmax

(
Q×KT√
dmodel/h

)
× V (2.5)

The attention map identifies the correlation of every patch with every other patch.

The dimensions of the attention map generated from one head are
[
H
4
, W

4
, dmodel

h

]
.

Attention outputs from all the heads are concatenated along the channel dimension

to form the output of the self-attention block.

MultiHead(Q,K, V) = Concat(head1, head2, ..., headh)×WO (2.6)

10

(Kernel, Stride, Padding) Input channels Output channels
(1, 1, 0) dmodel hidden dim
(3, 1, 1) hidden dim hidden dim
(1, 1, 0) hidden dim hidden dim
(1, 1, 0) hidden dim dmodel

Table 2.1: Shows the kernel, stride, and padding of the MLP inside the encoder of
Segformer’s transformer block.

Equation 2.6 shows the concatenation and projection of this concatenated out-

put to dmodel dimension. In this equation, WO is a weight matrix that projects the

concatenated output back to dmodel. This concatenated output is passed on to the

mix feed-forward network which gets an input dimension of
[
H
4
, W

4
, dmodel

]
. The Mix-

FFN layer consists of a few convolutional layers that aim to capture more details in

the images by expanding and contracting the inputs obtained from the multi-head

self-attention block. These channel-mixing operations allow the model to integrate

information across different dimensions effectively. This block uses a GeLU activation

function [27] that has a smooth gradient transition facilitating training. The config-

urations for the convolutional layers are shown in Table 2.1. The output dimensions

except the channel dimension remain the same as the input dimensions during all the

convolutional operations. The outputs of the four transformer blocks are passed on to

the decoder. The dimensions of these outputs are
[
H
4
, W

4
, C1

]
,
[
H
8
, W

8
, C2

]
,
[
H
16
, W
16
, C3

]
,

and
[
H
32
, W
32
, C4

]
as shown in Figure 2.1.

Segformer Decoder

There are primarily two components in the decoder — a multi-layer perceptron and

an upsampling layer. The multi-layer perceptron contains a convolutional layer

that embeds the concatenated transformer head outputs to a uniform dimension

dimdecoder = 256. This is done through a convolutional layer containing a kernel

size of 1. The upsampling layer upsamples the height and width of these outputs to

a uniform size. The operations are shown in Table 2.2.

After the upsampling, all the outputs are concatenated along the channel dimen-

sion which produces an output of dimension
[
H
4
, W

4
, dimdecoder · 4

]
. This output is

passed on to the final two convolutional layers having kernel size 1, which convert the

11[
H
4
, W

4
, C1

] Conv
===⇒ [

H
4
, W

4
, dimdecoder

]
=⇒ [

H
4
, W

4
, dimdecoder

]
[
H
8
, W

8
, C2

] Conv
===⇒ [

H
8
, W

8
, dimdecoder

] Upsample
======⇒ [

H
4
, W

4
, dimdecoder

]
[
H
16
, W
16
, C3

] Conv
===⇒ [

H
16
, W
16
, dimdecoder

] Upsample
======⇒ [

H
4
, W

4
, dimdecoder

]
[
H
32
, W
32
, C4

] Conv
===⇒ [

H
32
, W
32
, dimdecoder

] Upsample
======⇒ [

H
4
, W

4
, dimdecoder

]
Table 2.2: Operations performed by the Segformer decoder on encoder outputs.

channels to the number of classes required in the segmentation masks. The first layer

converts the dimdecoder · 4 to dimdecoder and the second layer converts the dimdecoder

to Ncls as shown in Figure 2.1

Interpolation

The segmentation masks generated from Segformer are one-fourth the size of the

original images given as input. Hence, they need to be interpolated to the original

size. This interpolating is done with the help of bilinear interpolation from [28]. This

is a resampling method used in image processing to resize images. It uses the four

nearest pixel values around the target pixel to compute a weighted average, producing

a smoother image as compared to nearest-neighbour interpolation.

2.2.2 VGG16 Encoder With a UNet Decoder

The VGG16 encoder with a UNet decoder is another model used for segmentation

here. UNet was first developed for biomedical image segmentation [29] and then

popularized for various image segmentation tasks. This is an encoder-decoder archi-

tecture like the Segformer. The choice of encoder in a UNet architecture significantly

impacts the model’s performance for specific tasks and datasets. Different types of

encoders can be used in the UNet architecture. The encoder used for experiments in

this study is the VGG16 encoder architecture. VGG16 [30] is a CNN architecture that

was proposed by the Visual Geometry Group (VGG) at the University of Oxford. It

has a simple and uniform design, using only [3, 3] convolutional layers stacked on top

of each other with a fixed stride and padding, followed by [2, 2] max-pooling layers.

This combination of the UNet decoder and VGG16 encoder was first introduced by

Pravitasari et al. in [31] for brain tumor segmentation, and the implementation of

12

this architecture used in this study is taken from the GitHub repository by Zheng

Zhou [32].

Two differently initialized versions of the VGG16 encoder were used in this study.

The first comprises pre-trained weights from the ImageNet dataset [33] and the second

contains pre-trained weights from the BenthicNet dataset [34]. The former model is

referred to as V16I-UNet and the latter model is referred to as V16B-UNet. The

pre-trained weights are obtained using the MoCov3 model [18] to train the VGG16

encoder on the BenthicNet dataset. This process of obtaining the pre-trained model

is described briefly in section 2.1.1. The BenthicNet dataset is explained briefly in

section 4.1.1.

VGG16 Encoder

The encoder extracts essential features from the input and compresses it into a lower-

dimensional representational space. To recover fine-grained details in the predictions,

encoder outputs are stored after a certain number of layers for the decoder to use

during the reconstruction process. The following paragraphs explain the process of

an image going through the encoder.

The input image is a grid of pixel values. This image of dimensions [H,W,C] is

passed through block 1 (Figure 2.2). Initially, the image is passed through a convolu-

tional layer with 64 filters. These filters detect basic features like edges, corners, and

textures. The result of this operation is a set of feature maps of dimensions [H,W, 64],

where each slice along the depth (64) represents a feature map produced by one filter.

The outputs of the convolutional layer are passed to the batch normalization layer,

which normalizes the outputs from the previous layer. The ReLU activation function

[35, 36] is applied to introduce non-linearity. The feature maps stay the same size

[H,W, 64], but now they have non-linear properties. The feature maps are passed

through another set of filters. This layer has more filters to detect more complex

features. It detects more complex patterns built upon the basic features identified by

the first layer. This layer uses 64 filters, and the output dimensions are [H,W, 64].

The outputs are normalized again using the batch normalization layer. ReLU is then

applied to introduce non-linearity. All these processes were performed inside block 1

shown in Figure 2.2 inside the VGG16 Encoder. The output of block 1 is stored to be

13

Figure 2.2: Encoder-decoder architecture of UNet containing a VGG16 encoder which
contains convolutional, max-pooling and transpose convolutional layers with skip
connections in between to remember encoding information efficiently. The repeated
blocks have the same architecture and are not the same layers being reused.

used later by the decoder. The feature maps from block 1 are passed to block 2 which

has the same architecture as block 1, except it has a preceding max pooling layer.

This layer takes the maximum value in each window (e.g., [2, 2] window) from the

feature maps. For a [2, 2] max pooling operation, the output size is
[
H
2
, W

2
, 64

]
. The

output from block 2 after the convolution, normalization, and activation functions

are applied again, is stored. This process of convolution, batch norm, activation, and

14

pooling is repeated multiple times. Each subsequent layer detects increasingly com-

plex and abstract features. As the layers go deeper, the spatial dimensions continue

to decrease (e.g.,
[
H
4
, W

4

]
,
[
H
8
, W

8

]
, while the number of feature maps (filters) usually

increases. The final output which is a compressed representation of the original image

is a
[
H
16
, W
16
, 512

]
feature map, representing very high-level features.

Bottleneck

The bottleneck layer is a connecting layer between the encoder and decoder which

consists of blocks 1, 3, and 5 containing convolutional, normalization, activation, and

max pooling layers as shown in Figure 2.2. It takes a
[
H
16
, W
16
, 512

]
dimensional feature

map as input from the encoder and gives out a
[
H
32
, W
32
, 1024

]
dimensional output to

the decoder.

UNet Decoder

The decoder takes the compressed representation and reconstructs it back to a higher-

dimensional space. It generates segmentation masks as output. The outputs from

blocks 1, 2, 3, and 4 of the encoder, and from the bottleneck layer are passed to the

decoder for processing.

The decoder begins by adding the outputs from block 5 of the bottleneck layer and

block 4 of the encoder. This is passed to blocks 6 and 5 in succession. The process

starts by passing the added output to convolution, normalization, and activation lay-

ers. This output is then upsampled by the transpose convolution layer to increase its

spatial dimensions. Upsampling reverses the downsampling process performed by the

encoder, gradually reconstructing the spatial resolution. The output is a
[
H
16
, W
16
, 512

]
dimensional feature map as the upsampling doubles each dimension except the chan-

nel dimension. The ReLU activation function enhances non-linear properties. The

output of the activation function is added again with the encoder’s intermediate out-

put from block 3 to aid the construction of the segmentation mask. This combines

the encoder’s
[
H
16
, W
16
, 512

]
intermediate output with the decoder’s

[
H
16
, W
16
, 512

]
feature

map to form a
[
H
16
, W
16
, 512

]
output. After upsampling, a convolutional layer is applied

to refine the feature map and add more detail. This layer helps to refine the upsam-

pled features and make them more representative of the original image content. This

15

process of adding intermediate outputs from the encoder and upsampling continues

until the output produced becomes the same size as the input image. Each stage

increases the spatial resolution and refines the features. The feature map sizes gradu-

ally increase (e.g.,
[
H
4
, W

4

]
,
[
H
2
, W

2

]
, etc.) while the number of feature maps decreases

(e.g., 128, 64, etc.). A final convolutional layer reduces the number of feature maps to

match the number of channels in the segmentation mask (e.g., 2 for two classes). The

final output is a [H,W,Ncls] array, representing the segmentation mask containing

Ncls classes to be distinguished.

2.2.3 ResNet50 Encoder With an Upsampling Convolutional Neural

Network

ResNet50, introduced in [37], is a deep convolutional neural network architecture

that belongs to the family of Residual Networks (ResNets). ResNets introduced

residual blocks that implement skip connections. These connections are used to pass

information from multiple previous layers to later layers, ensuring that information

from earlier layers is not lost and the vanishing gradient problem is addressed.

The ResNet50 encoder with an upsampling convolutional neural network com-

bines a ResNet50 encoder and a simplified small CNN decoder and is referred to

as R50B-CNN in further sections. The encoder is pre-trained using the BenthicNet

dataset. For pre-training, the ResNet50 encoder is inserted into the Barlow Twins

architecture explained briefly in section 2.1.2, and it is trained as a pretext task using

self-supervised learning to produce the weights used for the downstream segmentation

task.

ResNet50 Encoder

Four primary stages in the ResNet50 encoder contain multiple convolutional layers,

batch normalization layers, and activation functions with one max-pooling layer.

A given image of size [H,W,C] is first passed through a convolutional layer of

64 filters with a kernel size of 7, a stride of 2, and a padding of 3, which converts

the input image to the dimensions [H,W, 64]. This is followed by a batch normal-

ization and ReLU layer that normalizes and introduces non-linearity in the input.

16

Figure 2.3: ResNet50 Encoder With An Upsampling Convolutional Neural Network
model for image segmentation which contains a popular ResNet50 architecture as the
encoder and a smaller decoder compared to other well-known segmentation models.

A max-pooling layer then captures high-level features from these non-linearized out-

puts producing an output of dimensions
[
H
2
, W

2
, 64

]
. This output is stored as skip 1

as shown in the Figure 2.3. Further stages contain multiple convolution, normaliza-

tion, and activation functions that contain residual connections in between. There

are two types of residual connections used in the architecture. The dashed arrows

in Figure 2.3 represent the connections that add the previous layer outputs to the

current layer outputs, and the solid arrows indicate the connections that concatenate

the previous layer outputs to the current layer outputs. Stages 1, 2, and 3 produce

17

skip connections skip 2, skip 3, and skip 4 shown in Figure 2.3 that are stored for the

decoder to facilitate learning via residual connections. Finally, stage 4 produces an

output of dimensions
[
H
32
, W
32
, 2048

]
. Each subsequent layer detects increasingly com-

plex and abstract features. As the layers go deeper, the spatial dimensions continue

to decrease, while the number of feature maps (filters) increases. These outputs are

then passed on to the simplified decoder.

CNN Decoder

The decoder consists of transposed convolutional layers that perform the reverse op-

erations of the convolutions in the encoder and add the outputs of the skip connec-

tions along the architecture. This architecture is different from the usual decoder

architectures which contain multiple activation functions and normalization layers.

Only upsampling layers are included in this decoder making it suitable for resource-

constrained environments.

The output of stage 4 of the encoder shown in Figure 2.3 containing dimensions[
H
32
, W
32
, 2048

]
, is passed through a transposed convolutional layer to upsample and

produce an output of dimensions
[
H
16
, W
16
, 1024

]
. This output is added to skip 4 from

the encoder which also has the dimensions
[
H
16
, W
16
, 1024

]
. This is followed by three

more upsampling and adding layers that produce outputs of dimensions similar to the

skip connection matrices. Each transposed convolutional layer increases the spatial

resolution and refines the features. The feature map sizes gradually increase while

the number of feature maps decreases. The output is then passed through a final

convolutional layer that converts the output to the required number of channels in

the segmentation mask which is equal to Ncls. The output dimensions are [H,W,Ncls].

A sigmoid activation function is then used to convert the logits into a range of 0 to 1.

18

2.3 Models Used for Image Classification

2.3.1 Vision Transformer

Figure 2.4: Architecture of the vision transformer model along with the internal
mechanisms of the transformer encoder (adapted from [25]).

Vision Transformer (ViT) introduced in [25] employs a stack of transformer en-

coder layers to process image patches and extract hierarchical features. By itera-

tively refining features through transformer encoders, the vision transformer achieves

high-dimensional representations that produce accurate classifications. The imple-

mentations of the vision transformer were taken from a GitHub repository by Victor

Turrisi [38]. There are four different versions of the vision transformer used for this

study. They are VS-MLP (ViT-Small encoder with a Multi-Layer Perceptron), VB-

MLP (ViT-Base encoder with a Multi-Layer Perceptron), VSB-MLP (ViT-Small

encoder pre-trained on BenthicNet dataset with a Multi-Layer Perceptron), and

VBB-MLP (ViT-Base encoder pre-trained onBenthicNet dataset with aMulti-Layer

Perceptron). ViT-Small has a smaller number of parameters compared to ViT-Base

as it is designed to be more lightweight and computationally efficient. Whereas,

the ViT-Base has higher capacity and potentially better performance, especially on

larger and more complex datasets. The only difference between them is the embed-

ding dimension dmodel used for the models. dmodel is 384 for ViT-Small and 768 for

ViT-Base.

19

A given input image of size [H,W,C] is converted into small non-overlapping

patches of size [16, 16, C] in the process of forming patches. Equation 2.7 shows the

total number of patches (n) formed in this process.

n =
H ·W
16 · 16 (2.7)

These patches are linearized into dimensions [N, 16·16·C]. After this process, there

are three main components through which the image passes in a vision transformer

architecture. They are patch and position embedding, a transformer encoder, and

an MLP head for classification. These components are explained in further sections

from the perspective of the ViT-Small model.

Patch and Position Embedding

The linearized patches are embedded using an embedding dimension dmodel of 384,

which converts the output dimensions to [N, dmodel]. This is done by multiplying the

linearized patches with a learnable embedding matrix of dimensions [16 · 16 · C, dmodel]

and it is called a linear projection of flattened patches. A learnable class token

parameter is added to remember class information during the training of the model.

This token aims to create a distinct representation for each class in the classification

task. This makes the dimensions of the output [N + 1, dmodel]. Since transformers

are permutation invariant (i.e., they do not inherently capture the order of the image

patches), we need to add positional information to the patch embeddings to retain the

spatial structure of the image. This is done by adding a positional encoding to each

patch embedding. Positional encodings can be learned during training. The output

after adding positional embeddings is given as input to the transformer encoder.

Transformer Encoder

The transformer encoder primarily contains the multi-head attention block and the

multi-layer perceptron, along with two layer normalization layers [39].

Patch embeddings are split into three parts namely query Q, key K, and value

V matrices by multiplying them with learnable weight matrices WQ, WK , and WV

with dimensions [dmodel,
dmodel

12
] as in the Segformer architecture. These matrices are

passed to the normalization layer. The normalization layer used by the encoder is

20

the layer norm. Used before the multi-head attention layer, this layer ensures that

the query, key, and value matrices are normalized which helps in maintaining stable

gradients and improving training. These matrices are passed on to the multi-head

attention block.

Figure 2.5: Depiction of the internal mechanism of the multi-head attention block
(original image from [40]).

The transformer encoder consists of 12 heads that capture different contextual

information about the images. The outputs from these heads are concatenated to

form the output of the transformer encoder. Each head contains a self-attention

block and a few multi-layer perceptrons. Self-attention is computed using Equation

2.5 where h = 12. The attention map identifies the correlation of every patch with

every other patch. The attention maps are of dimensions
[
N + 1, dmodel

12

]
. Attention

outputs from all the heads are concatenated along the channel dimension to form the

output of the self-attention block shown in Equation 2.6. This concatenated output

of dimensions [N + 1, dmodel] is normalized again using layer norm and passed on to

the MLP network inside the transformer block. The MLP consists of a few dense

layers that aim to capture more details in the images by expanding and contracting

21

the inputs obtained from the multi-head self-attention block. These channel-mixing

operations allow the model to integrate information across different dimensions more

effectively. This is performed by four dense layers with dmodel, dmodel, dmodel · 4, dmodel

nodes in these dense layers successively. The class token is extracted from the output

of the MLP inside the transformer block. This is done by selecting [1, dmodel] out of

[N + 1, dmodel] dimensions from the output of MLP inside the transformer block.

MLP Classifier

The class token is then passed through three dense layers containing 384, 128, and

6 nodes which successively decrease the dimensions of the input and bring them to

the number of classes (i.e., 6) at the end. The output dimension is [1, Ncls] where

Ncls = 6.

2.3.2 ResNet50 Encoder With a Multilayer Perceptron

The ResNet50 encoder with a simple multi-layer perceptron classifier shown in Fig-

ure 2.6 is another classification model used in this study. From the explanation of

the ResNet50 encoder in section 2.2.3, an input image of dimensions [H,W,C] will

produce an output of
[
H
32
, W
32
, 2048

]
. This output passes through an adaptive average

pooling layer [41]. This pooling layer reduces the spatial dimensions of the image to

a single number by taking an average across the height and width dimensions. This

produces an output of 2048 dimensions. This is then passed through the multi-layer

perceptron (MLP) for further processing. The MLP reduces the output dimensions

from 2048 to 512 to 128 to 6 which is the number of classes in the classification task.

After the MLP, a softmax operation is performed to extract the class probabilities

and the class with the maximum probability is selected as the model prediction.

Two versions of this model were used. The first version uses random weights

initialization and the second version uses pre-trained weights obtained in the same

way as in section 2.2.3. The former is referred to as R50-MLP (ResNet50 encoder with

a Multi-Layer Perceptron), and the latter is referred to as R50B-MLP (ResNet50

encoder pre-trained on BenthicNet dataset with a Multi-Layer Perceptron) going

further.

22

Figure 2.6: ResNet50 encoder with a multi-layer perceptron containing 6 classes
depicting eelgrass cover in an image

23

2.3.3 VGG16 Encoder With a Multilayer Perceptron

The VGG16 encoder with a multi-layer perceptron classification model shown in

Figure 2.7 combines the VGG16 encoder and a simple MLP to classify eelgrass per-

centages within an image. From the explanation of the VGG16 encoder in section

2.2.2, an input image of dimensions [H,W,C] will produce an output of [7, 7, 512].

This output is flattened into a 25088-dimensional vector. This is then passed through

the MLP for further processing. The MLP reduces the output dimensions from 25088

to 2048 to 128 to 6 which is the number of classes in the classification task. After

the MLP, a softmax operation is performed to extract the class probabilities and the

class with the maximum probability is selected as the model prediction.

Two versions of this model were used. The first version uses random weights

initialization and the second version uses pre-trained weights obtained in the same

way as in section 2.2.2. The former model is referred to as V16-MLP (VGG16 encoder

with a Multi-Layer Perceptron), and the latter model is referred to as V16B-MLP

(VGG16 encoder pre-trained on BenthicNet dataset with a Multi-Layer Perceptron)

going further.

Figure 2.7: VGG16 encoder with a multi-layer perceptron containing 6 classes de-
picting eelgrass cover in an image.

24

2.4 Evaluation Metrics

This study uses human-estimated target segmentation masks along with human-

estimated percentage covers to evaluate the performance of image segmentation mod-

els. The classification models are evaluated only on the basis of the human-estimated

percentage covers. The target segmentation masks and the model predictions are

flattened out for computing the pixel-wise F1 scores (originally introduced in [42]) for

image segmentation. Pixel-wise F1 scores have been used popularly by researchers for

image segmentation [43, 44]. The human-estimated percentage covers are compared

with the model-predicted classes for computing F1 scores for image classification. By

considering both the precision and recall of the results, the F1 score pays attention

to false positives and negatives. Another metric for evaluating image segmentation

performance is the IoU score (originally termed as ”...ratio of verification” in [45],

also known as the Jaccard Index). It penalizes false positives and false negatives

more heavily than the dice score which is equivalent to F1 score for segmentation

(originally developed by botanists Lee Raymond Dice [46], and Thorvald Sørensen

[47]), making it a stricter metric. It is widely used in various segmentation challenges

and competitions [48], providing a standard benchmark for comparing different mod-

els. The segmentation masks generated from the segmentation model are converted

to percentage cover estimates by taking a sum of all pixels corresponding to eelgrass

and compared with the human-estimated covers to calculate the R2 score (introduced

in [49]). This shows whether the model explains the variability in the data in terms

of predicting the cover estimates. The dataset used does not encompass eelgrass dis-

tributions on a global scale. However, the validation data can be utilized as a proxy

for this broader distribution. Consequently, accuracy is employed as a metric for

evaluation to monitor the overall efficiency of the models.

Overall, the pixel-wise F1 score and IoU score assess the effectiveness of segmen-

tation models on a per-pixel basis, while the R2 score evaluates performance at the

per-image level. For classification models, macro F1 scores and traditional accuracy

scores without class balancing are used.

25

2.5 Superpixels

Superpixels introduced in [51] are an image processing technique used to group pixels

into meaningful regions, which facilitates the processing of images or video frames

by reducing the complexity of the data. Instead of dealing with individual pixels,

superpixels aggregate pixels into larger, more informative regions. Superpixels are

generated using various algorithms that aim to partition an image into visually coher-

ent regions. Common algorithms include SLIC (Simple Linear Iterative Clustering)

[52], SEEDS [53], and Felzenszwalb-Huttenlocher’s algorithm [54].

Figure 2.8: An example of superpixels generation, where pixels are grouped into larger
informative regions to make processing faster (code adapted from [50]).

Chapter 3

Related Work

This section explores some research works that have been done around obtaining

percentage cover estimates of objects from images. It includes analyzing image seg-

mentation and image classification methods on images from different locations and

taken using different cameras.

In 2003, a study [55] used the OTSU intraclass variance [56] to compute the

segmentation masks of eelgrass from ocean floor images. The images used in this

study were collected from ROVs and the background was easily distinguishable from

eelgrass. OTSU is a global thresholding technique, and it might struggle to separate

eelgrass from complex backgrounds accurately, which is the case with the dataset

used in our study. To verify the same, this method was tried on the dataset used

in this study and it performed very poorly because the images contained eelgrass

blades having different brightness levels. The predictions generated by this method

for eelgrass images are shown in figures A.1 and A.2.

In a 2018 study [57], researchers employed a novel method to segment eelgrass in

underwater images. This technique involved calculating patches of equal size from

superpixels of video frames captured around the Island of Murter in Croatia. This

was followed by feature extraction using Convolutional Neural Networks (CNNs).

This approach achieved a pixel accuracy of 0.94 and an Intersection over Union (IoU)

score of 0.81, indicating robust performance in segmenting eelgrass from underwater

imagery. Building on this work, a 2019 study [58] improved the performance using the

same dataset by training a Fully Convolutional Network (FCN) and a DeepLabV3+

network [59]. The DeepLabV3+ network yielded the best results, achieving a mean

IoU score of 0.88 and a pixel accuracy of 0.96. These improvements underscore the

efficacy of advanced neural network architectures in enhancing segmentation accuracy.

In these studies, data was collected from a single location and using a single camera,

which harms the model’s generalizability. Our study captures data from multiple

26

27

locations using multiple cameras aiming to improve model generalizability.

A research conducted by Mohammed Asaad Ghazal et. al. [60] was conducted in

the city of Louisville in the state of Kentucky in the United States in 2019. CNNs

were used for vegetation cover estimates in this study. A deep 3-D convolutional

neural network was used, which was given images from four different cameras (RGB,

NIR, NDVI, and red) as input. The segmentation masks were compared with ground

truth masks and this model gave a mean dice score of 0.97 for the different image

types. This study benefited from images where vegetation was easily distinguishable

due to its distinct colour. In contrast, eelgrass cover estimation poses a challenge due

to the presence of non-eelgrass objects with similar colours. The code corresponding

to the CNN used here was not found, hence we constructed a CNN for segmentation

and tried it for eelgrass segmentation. This yielded a dice score of 0.81 ± 0.01 which

shows that a more complex model would be beneficial to this study.

Chapter 4

Methodology

4.1 Data Collection

The dataset used for training and validation for this study consists of 2257 images con-

centrated along the Atlantic coast of the Canadian province of Nova Scotia through

diver and kayak surveys. This is referred to as the primary dataset in further sec-

tions. The images are collected from Halifax and several smaller coastal communities

or towns south of Halifax along the shoreline. Additionally, a cluster of data was

collected from around Cape Breton Island, specifically near Sydney. The dataset

also includes samples from the Charlottetown area of Prince Edward Island. These

diverse locations provide a comprehensive representation of eelgrass habitats in these

regions. The dataset consists of images taken from different depths, angles, bright-

ness, cameras, directions and resolutions. This ensures that the models are trained

on a vast domain of images, and it ensures model generalizability to unseen images.

The labelling of the primary dataset is required to generate segmentation masks for

the segmentation models and percentage cover estimates for the classification mod-

els to train on. The masks were generated by using a web service called Bio-Image

Indexing and Graphical Labelling Environment (BIIGLE) [61]. This tool is specifi-

cally designed to annotate benthic fauna in marine image datasets. Along with the

segmentation masks, human-estimated percentage covers and quality measurements

are available. The percentage covers are between a range of 0 to 100% indicating

the quantity of eelgrass present in the given image. The quality measurements indi-

cate the clarity of these images where quality 3 (1330 images) indicates completely

clear images, quality 2 (675 images) indicates partially clear images where part of

the image is clear (this part may or may not contain eelgrass), and a quality of 1

(252 images) indicates completely hazy/unclear images where it is very difficult to

make out the existence of eelgrass if any. The distribution of qualities is shown in

Figure 4.1. Volunteers from the Dalhousie University Marine Biology Department

28

29

generated the segmentation masks, human-estimated percentage covers, and quality

measurements.

Figure 4.1: Quality distribution of the images used for training and validation of im-
age segmentation and classification models. Quality 1 indicates hazy/unclear images
where delineating eelgrass is difficult, quality 2 indicates partially clear images where
part of the image is hazy/unclear, and quality 3 images are completely clear.

Two datasets were used to test the models developed further. The first dataset

(Medway-test dataset) comprises 60 quadrat images from the Medway River basin

via snorkelling [62]. This dataset corresponds to same-domain images because they

are collected from locations nearby to the training data collection sites, ensuring

similar characteristics. The second dataset (SGS-test) is taken from the Seagrass

Spotter website which was developed as a part of Project Seagrass analyzed in [63].

This dataset comprises 60 images taken from different locations around the world.

This dataset corresponds to different-domain images, because they are collected from

randomly distributed locations, providing a diverse set of characteristics. Both these

30

Figure 4.2: Different datasets selected for this study.

datasets contain images taken from a variety of depths, camera angles, brightness,

and quality to test the robustness of models.

4.1.1 BenthicNet Dataset

BenthicNet [34] is a compilation of ocean floor images that are created to ”support the

training and evaluation of large-scale image recognition models” as mentioned in [34].

The total number of images in BenthicNet amounts to 11.4 million, out of which 188

thousand images are labelled as corresponding to different ocean elements. A subset

of 1.3M unlabelled images was used for the training of Self-Supervised Learning (SSL)

models. The encoders from these SSL models were then used by certain models in

this study. These models were trained using SSL (pretext task — explained briefly

in 2.1) and used for the downstream tasks of segmentation and classification.

4.2 Data Pre-processing

As the images are collected from different locations, they do not have uniform sizes.

For training the classification and segmentation models, they need to be brought

to a uniform size. All the images lie in the range of 980–1100 pixels in height and

width. Hence, initially, they are converted to a size of [1024, 1024] and the masks are

further converted to grayscale. This is done using the ’nearest’ interpolation mode

31

available from the torchvision/transforms library in the vision repository available on

GitHub [64]. Nearest neighbour interpolation for high-resolution image interpolation

is a method for resizing images [65]. It selects the value of the nearest pixel to the

target location in the output image and copies the nearest pixel’s value to the new

location. It does not create new pixel values but replicates the nearest pixel values.

Above mentioned pre-processing is performed for both image classification and

segmentation models. The following sections describe the pre-processing done indi-

vidually to train image segmentation and image classification models.

4.2.1 Image Segmentation

This segment describes the two types of labelling methods tried for generating segmen-

tation masks. One of them is automatic labelling and the other is manual labelling.

Due to some flaws in the automatic labelling, the segmentation masks generated by

manual labelling were used in the experiments performed.

Automatic Labelling

The generation of segmentation masks to train the models is a time-consuming task

if the labelling is done manually. Hence, an automatic labelling method provided

by BIIGLE [61] was tried in this study. This method is called the Machine-learning

Assisted ImageAnnotation method (MAIA) introduced in [66]. It is used to annotate

huge image datasets faster than doing it manually. The four stages of MAIA are

described briefly below.

The first stage tries to capture objects that are distinguishable from a fairly uni-

form background. These objects are then given as input to the second stage. This

stage contains human intervention where only the objects important to the task are

kept and the remaining objects are filtered out. The third stage involves an auto-

encoder that learns features about the filtered objects. Finally, in the fourth stage,

the objects are again filtered manually and transformed into annotations.

This method produced annotations concentrated on regions of interest other than

eelgrass, even after the manual refinement process. Also, it produced annotations

with a certain well-defined shape and because eelgrass does not have a well-defined

shape (such as a circle as shown in Figure 4.3), this method was not used for labelling

32

Figure 4.3: Three example annotations generated by MAIA from BIIGLE. These
annotations were discarded and the human annotations were used in further experi-
ments.

the images. Instead, the human-annotated segmentation masks generated through

manual labelling were preferred.

Manual Labelling

Figure 4.4: Manual annotation of eelgrass using the polygon tool from BIIGLE.

33

For manual labelling, the polygon generation tool from BIIGLE [61] was used. A

polygon consists of three or more coordinates enclosing a specific area on the image.

Multiple polygons can be drawn on the image where each polygon represents a patch

of eelgrass. These polygons are then converted to annotation arrays depicting the

coordinates of these polygons within the image. These annotation arrays are then

converted to segmentation masks using a simple Python code described in the GitHub

repository in [67].

4.2.2 Image Classification

The images and their human-estimated percentage covers are used for training the

classification models. The percentage covers originally represent numbers between 0

and 100 and they are converted to 6 different classes by separating them in ranges.

Class 1 indicates 0% eelgrass cover in the given image, class 2 indicates 1–20% eelgrass

cover, class 3 indicates 20–40% cover and so on where class 6 indicates 80–100% cover.

Class 1 is the dominant class with 1018 images, classes 2 to 6 contain 189, 200, 215,

219, and 416 images respectively as shown in Figure 4.5.

Figure 4.5: Class distributions for the image classification task.

34

4.3 Model Configurations

4.3.1 Loss Function

For image segmentation and image classification, we used a cross-entropy loss function

with a minor difference in how it is used.

For segmentation, cross-entropy loss is applied on a per-pixel basis, treating each

pixel as a separate multi-class classification problem. The overall loss is the average

cross-entropy loss over all pixels. The cross-entropy loss for the entire image is de-

scribed in Equation 4.1. In this equation, N = 1024 · 1024 is the number of pixels in

the image, C = 2 is the number of classes, yij is the true label for the j
th class of the

ith pixel, and ŷij is the predicted probability for the jth class of the ith pixel.

L = − 1

N

N∑
i=1

C∑
j=1

yij · log(ŷij) (4.1)

Each pixel is assigned a class label, and the model’s output is a probability dis-

tribution over both classes for each pixel. Cross-entropy loss penalizes deviations

from the true pixel-wise class distributions. In the eelgrass dataset, class imbalance is

common, where the background class is over-represented. Cross-entropy loss naturally

handles class imbalance by emphasizing the contribution of less frequent classes to

the loss function, ensuring that they are not overwhelmed by more dominant classes.

For classification, cross-entropy loss measures the dissimilarity between the pre-

dicted probability distribution P , a 6-dimensional vector containing predicted prob-

abilities for 6 classes, and the true probability distribution y, a one-hot encoded

vector. The cross-entropy loss is defined in Equation 4.2, where C = 6 is the number

of classes, yi and Pi are the true and predicted probability distributions respectively.

L = −
C∑
i=1

yi · log(Pi) (4.2)

In classification, every image is assigned a label, and the model outputs are prob-

ability distributions over all classes for an image. Out of the 6 classes represented in

this research, the classes where there is no eelgrass present is a dominant class, and

cross-entropy loss handles class imbalance effectively.

35

4.3.2 Optimizer

Stochastic Gradient Descent (SGD) is used here as an optimization algorithm to min-

imize the loss function by iteratively updating the model parameters. SGD is often

used to train deep learning models such as Convolutional Neural Networks (CNNs)

and transformer-based models like Segformer. It tends to generalize better and pro-

vides more stable training when compared to the Adam optimizer, especially when

dealing with small datasets like the eelgrass dataset or models prone to overfitting.

Root Mean Square Propagation (RMSProp) is an adaptive learning rate optimiza-

tion algorithm widely used for image classification tasks. It addresses some of the

challenges encountered with traditional gradient descent and improves convergence

by adjusting the learning rate for each parameter dynamically.

4.3.3 Learning Rate

The learning rate controls the size of the steps the algorithm takes when adjusting the

model’s parameters in response to the gradients computed during backpropagation.

If the learning rate is too high, the algorithm may overshoot the optimal solution,

causing the loss function to diverge or oscillate rather than converge to a minimum. If

the learning rate is too low, the algorithm makes slow progress towards the minimum,

leading to a long training process and potentially getting stuck in local minima.

Learning rates used for image segmentation and image classification are shown in

tables 4.1 and 4.2 respectively.

Models
Experiments

1 2 3 4 5
Segformer 10−3 10−3 10−3 10−3 10−3

V16I-UNet 10−6 10−4 10−4 10−4 10−4

V16B-UNet 10−2 10−2 10−2 10−2 10−2

R50B-CNN 10−3 10−3 10−3 10−3 10−3

Table 4.1: Learning rates used for the 5 experiments in image segmentation. The five
experiments shown here are described in section 4.4.1.

36

Models Learning Rates
VS-MLP 10−5

VSB-MLP 10−5

VB-MLP 10−5

VBB-MLP 10−5

R50-MLP 10−6

R50B-MLP 10−6

V16-MLP 10−6

V16B-MLP 10−6

Table 4.2: Learning rates used for the eight models in image classification.

4.3.4 Epochs

An epoch is a full iteration over the entire dataset, meaning that every training ex-

ample has been seen once during that epoch. Repeated exposure to the training data

allows the model to gradually reduce the training loss and improve its performance.

Training for too many epochs can lead to overfitting, where the model performs well

on the training data but poorly on unseen validation or test data. The models were

tried on 50 and 100 epochs, but the performance did not improve significantly after

50 epochs, hence, all the models were trained until 50 epochs.

4.3.5 Cross-Validation

K-fold cross-validation is a robust method for assessing the performance of a machine-

learning model. Cross-validation allows for evaluating the robustness of a model

across different data splits, providing insights into its stability and reliability. If a

model consistently performs well across multiple cross-validation folds, it is likely to

be more robust and less sensitive to variations in the training data. It also provides a

reliable estimate of how well a model will generalize to unseen data. The value of K

is chosen to be 5 for further experiments. For performing 5-fold cross-validation, the

dataset is first divided into 5 nearly equal-sized subsets or folds. The model is trained

5 times, each time using a different fold as the validation set and the remaining 4

folds as the training set. The performance metrics are averaged over the 5 folds to

produce a performance estimate mean and a standard deviation. This gives a more

reliable measure of the model’s ability to generalize to unseen data. Stratified K-

fold cross-validation is a variation of the standard K-fold cross-validation technique,

37

which ensures that each fold of the dataset has the same proportion of instances for

each class label as the original dataset. This is particularly useful for imbalanced

datasets where some classes are underrepresented. For performing stratified 5-fold

cross-validation, the dataset is divided into 5 folds ensuring that each fold has ap-

proximately the same percentage of samples of each target class as the complete set.

The rest of the steps are the same as in 5-fold cross-validation without stratification.

All segmentation and classification experiments were performed using unstratified

cross-validation. Additionally, stratified cross-validation was tried for classification

experiments.

4.3.6 Batch Size

The batch size defines the number of training examples used in one epoch to update

the model’s parameters. Small batch size provides noisier estimates of the gradient,

which can help in escaping local minima and finding a better overall minimum. How-

ever, it can lead to unstable convergence. The large batch size provides more accurate

estimates of the gradient, leading to more stable and smoother convergence. However,

it might get stuck in local minima and converge more slowly. A batch size of 4 was

used for R50B-CNN and a batch size of 2 was used for the rest of the segmentation

models. For classification models, a batch size of 16 was used for all the models.

4.4 Experiments With Image Segmentation

4.4.1 Data Preparation

Initially, the images and masks are converted to a uniform size of [1024, 1024], and

the masks are converted to grayscale. The data preparation after this is different for

5 experiments. These experiments pre-process data in different ways. Deep networks

are end-to-end networks where pre-processing is usually not required, but in a rel-

atively small dataset, pre-processing the data before training is expected to aid the

models in producing better segmentation masks. Table 4.1 refers to the learning rates

used for these experiments.

Experiment 1 uses the training and validation dataset of 2257 images and correspond-

ing human-annotated segmentation masks. No pre-processing was performed in this

38

experiment. Experiment 2 uses a sharpening filter on the dataset of 2257 images and

uses those images with corresponding human-annotated segmentation masks. The

sharpening of images was performed using a simple convolutional filter on the orig-

inal images to aid the model in identifying faint eelgrass patches from the images.

The convolutional filter used for this process is shown in Equation 4.3.

Sharpening F ilter =

⎡
⎢⎢⎣
−1 −1 −1
−1 9 −1
−1 −1 −1

⎤
⎥⎥⎦ (4.3)

Experiment 3 uses the dataset of 2257 images and a corresponding modified version of

segmentation masks. The modified version of the segmentation masks was constructed

by following three steps . The first step involves applying a canny edge detection

filter introduced in [68] implemented using OpenCV [69], with a threshold of 8, an

aperture size of 3, and an L2 gradient. This is done because human-annotated masks

do not capture every single blade of eelgrass and edge-detection can aid with the

same. Different settings of thresholds, aperture sizes, and L2 gradient were tried

and the ones mentioned above provided the best segmentation masks. The second

step involves passing the edges from step 1 to a connected components algorithm

(implemented as connectedComponentsWithStats in [69]) which takes 8 nearby pixels

and clumps them together. This ensures that the pixels inside the eelgrass blades are

labelled as eelgrass because the edge detection only picks up on the edges of the blades

and the pixels inside the blades are not labelled as eelgrass. In the final step, the

connected components image is overlayed with the human-annotated masks. This

is done because edge-detection will detect every single object in the image and we

need to classify only eelgrass. Hence, applying a binary ‘and’ to these connected

components will ensure that the masks contain edges corresponding to eelgrass only.

Experiment 4 uses a sharpening filter on the dataset of 2257 images as in Experiment

2 and uses them with a corresponding modified version of segmentation masks as

in Experiment 3. Experiment 5 uses a reduced version of the dataset by removing

low-quality images which amounts to a total of 2008 images. These images with

corresponding human-annotated masks are used to train the model.

The PyTorch library [70] was used for all the experiments in this research. The

pairs of images and masks are then loaded into a PyTorch dataset object by converting

39

them to PyTorch tensors. The datasets have a seed value of 10 which is uniform

throughout all the experiments. This ensures that the dataset is collected from the

respective folders in the same order every time it is accessed to ensure reproducibility.

After this, for every fold, the dataset is split into a training and a validation dataset

using the KFold function provided by the scikit-learn library [71]. This function also

uses a seed value of 10 to ensure that the dataset is split the same way as it was

during training, which ensures reproducibility. For experiment 5, the low-quality

images were removed first, followed by using the remaining images for training and

validation. The split datasets are then loaded into a PyTorch dataloader object with

the corresponding batch size. The training and validation dataloaders are then passed

through a trainer function which learns the masks using a standard training loop.

4.4.2 Training and Loss Calculation

Inside the training loop, the images and corresponding target segmentation masks are

loaded from the training dataloader, and the model is set to training mode. When

the model is set to training mode, PyTorch enables features like dropout and batch

normalization, typically used during training but not during inference. The training

set of images is passed through the model and a set of model predictions is generated.

The model predictions are compared with the target segmentation masks to calculate

the losses. The optimizer is then used to update the weights of the model based on the

batch gradients. This process repeats for every batch in every epoch. The training

and validation losses are calculated after the training is completed in a particular

epoch. This ensures that the loss computed over the entire epoch is less affected by

noise or fluctuations compared to losses computed after processing individual batches.

Once a fold is completed, the model weights are saved.

4.4.3 Evaluation

The evaluation of segmentation models is performed using two constructs. The first

construct evaluates validation data from the 5 folds in cross-validation using pixel-

wise F1 scores, pixel-wise accuracy scores, R2 scores, and IoU scores. The second

construct uses two test datasets to observe model performance on unseen data using

R2 scores.

40

The segmentation masks from the model outputs are compared with the target

segmentation masks to produce an IoU score for validation data of each fold. These

masks are flattened out to calculate the pixel-wise F1 scores for validation data for

each of the 5 folds. Then, the percentage cover predictions are extracted from seg-

mentation masks by summing up all the pixels representing eelgrass and dividing by

the total number of pixels in the images. For calculating the R2 scores, initially, a

linear regression model from scikit-learn (defined as LinearRegression in [71]) is fit

to the human percentage cover estimates (true labels) and model predictions. The

true labels are then passed to this regression model to obtain the predicted values.

These predicted values and true labels are then used to compute the R2 score. These

experiments provide a wide variety of evaluations which help us decide which model is

suitable for predicting eelgrass percentage cover. The model is then tested on the two

test datasets. The mean and standard deviation of the predictions from 5 models ob-

tained from cross-validation are recorded. The standard deviations give an estimate

of the uncertainty of the models.

Original Pixels
Model Predictions

All Same One Different Two Different
0 0 0.2 0.4
1 1 0.8 0.6

Table 4.3: Weighted pixel values used for calculating percentage cover estimations
based on the outputs of the 5 models obtained from cross-validation. The rows
represent the pixel values obtained from the majority vote between these models.
The columns show the agreement between these models.

Another method was tried to improve the percentage cover estimates based on

the results obtained from cross-validation. Originally, to calculate the percentage

cover estimate of eelgrass in an image, 5 segmentation masks generated by 5 models

in cross-validation were examined. The pixel values in the final segmentation mask

were generated by taking the majority vote between these 5 models. The sum of all

the pixels containing eelgrass in this resultant segmentation mask was then used to

determine the percentage cover estimate of eelgrass in the entire image.

In another approach, the 5 segmentation masks generated by the 5 models ob-

tained from cross-validation were examined as in the earlier approach. However, the

41

pixel values in the final segmentation mask were not generated by taking a majority

vote between these 5 models, but by weighing the pixels according to model outputs

as shown in Table 4.3. The table shows that if all the models provide the same output

for a pixel as in column 2, the weighted pixel values do not change in the resultant

segmentation mask. Furthermore, if one or two models provide a different output

than the other models, the resultant pixel values change as shown in columns 3 and

4. These pixel values in the resultant segmentation mask are then summed up to

calculate the percentage cover estimate of eelgrass.

The predictions using this approach were compared with the predictions using

the original approach using R2 scores. An R2 score of 0.99 was obtained. This

indicates that pixel-weighting would cause an unnecessary overhead while computing

percentage cover estimates and hence, was not used in further calculations.

4.4.4 Inference

The best-performing model was V16B-UNet. The code used for inference from this

model is posted on GitHub [72]. This code takes in a list of images from a user-

specified folder and provides two outputs. The first output is a CSV file that con-

tains the model-predicted percentage covers along with the filenames, and the sec-

ond output is a user-specified folder that contains the predicted binary segmentation

masks. The flowchart for obtaining the percentage cover estimates is shown in the

README.md file of the GitHub repository [72]. This code takes 71 and 84 seconds

to run inference on Medway-test and SGS-test datasets respectively using an NVIDIA

GeForce RTX 3060 laptop GPU.

4.5 Experiments With Image Classification

In image classification, the model is trained to distinguish between 6 classes. Each

image is entirely classified into one of these classes instead of pixel-wise identification

in image segmentation. The model produces a label as output. All the experiments

in image classification follow the steps listed below.

42

4.5.1 Data Preparation

Initially, the images are converted to a uniform size of [224, 224]. This is contrary

to the images used in image segmentation which used images of size [1024, 1024].

This is because the vision transformers used in image classification are pre-trained

on the BenthicNet dataset, and the images used for the pre-training were [224, 224]

sized images. Hence, using this size ensures that features learned by the pre-trained

encoders do not get distorted. The human-estimated percentage covers are divided

into 5 classes between 0 and 100. Class 1 represents images containing 0% eelgrass,

class 2 represents images containing 1–20% eelgrass and in this way, classes 3, 4,

5, and 6 represent 21–40%, 41–60%, 61–80%, and 81–100% eelgrass. The pairs of

images and percentage cover classes are then loaded into a PyTorch dataset object

by converting them to Pytorch tensors. The datasets have a seed value of 10 which

is uniform throughout all the experiments to ensure reproducibility. After this, for

every fold, the dataset is split into training and validation datasets. The split is

performed using K-fold cross-validation. Stratified K-fold cross-validation was tried

where the split ensures that every class has a nearly equal number of samples. This

split did not work as expected because of the class imbalances. Class 1 contained

around 800 samples out of the 1800 samples in the training dataset, while the other

classes contained 150–200 samples. Using under-sampling to address class imbalances

works in many cases when there is enough data available for training, but in a small

dataset, it reduces the number of available examples even further, some of which

might be valuable samples, due to which the model misses necessary patterns due to

limited data. Over-sampling techniques lead to overfitting in small datasets, causing

the model to memorize a few available examples instead of learning generalizable

patterns. Methods like SMOTE for over-sampling can inadvertently amplify noise in

the minority class, leading to a model that learns from noisy data. The split datasets

are then loaded into a PyTorch dataloader object with the corresponding batch size.

The training and validation loaders are then passed through a trainer function which

learns the classes using a standard training loop.

43

4.5.2 Training and Loss Calculation

Inside the training loop, the images and corresponding target class vectors are loaded

from the training dataloader, and the model is set to training mode. For the first

experiment, all the models were initialized using random weights, and for the sec-

ond experiment, BenthicNet weights were used for initialization. The training set

of images is passed through the model and a set of model predictions is generated.

The model predictions are compared with the target classes to calculate the losses.

The optimizer is then used to update the weights of the model based on the batch

gradients. This process repeats for every batch in every epoch. The training and

validation losses are calculated after the training is completed in a particular epoch.

Once a fold is completed, the model weights are saved.

4.5.3 Evaluation

For evaluation, the model predictions from validation data of the 5 folds are com-

pared with the target human-estimated percentage covers using accuracy, and F1

score shown in Figure 5.8. Additionally, the confusion matrices are generated to an-

alyze which classes the model does better on. These experiments provide evaluations

that help us decide which model is suitable for predicting eelgrass percentage cover.

For testing, the model generates predictions on the two test datasets. The human-

estimated percentage covers are converted into discrete classes and compared with

the model predictions.

4.5.4 Inference

The best-performing model was VBB-MLP. The code used for inference from this

model is posted on GitHub [73]. This code takes in a list of images from a user-

specified folder and provides a CSV file that contains the model-predicted percentage

cover classes along with the filenames. The flowchart for obtaining the percentage

cover estimates is shown in the README.md file of the GitHub repository [73]. This

code takes 21 and 19 seconds to run inference on the Medway-test and SGS-test

datasets respectively using an NVIDIA GeForce RTX 3060 laptop GPU.

Chapter 5

Results

5.1 Image Segmentation

Figure 5.1: Comparison between F1 scores (left), IoU scores (middle), and R2 scores
of four models for five experiments across a 5-fold cross-validation is shown in this
diagram. Experiment 1 (E1) refers to using unaltered images and masks for training.
Experiment 2 (E2) uses sharpened images and unaltered masks. Experiment 3 (E3)
uses unaltered images and modified masks. Experiment 4 (E4) uses sharpened images
and modified masks. Experiment 5 (E5) uses a quality-refined dataset with unaltered
images and masks. Details of the experiments are enlisted in section 4.4.1. The
tabular representation for this image is provided in Table 5.1.

The segmentation results in Figure 5.1 show that all the models except the V16I-UNet

model perform nearly the same. As one standard deviation represents around 66%

samples assuming a Gaussian distribution, we cannot say that one of these models

is the best model based on the validation results. The V16B-UNet performs better

than the V16I-UNet which reinforces the idea that transfer learning on a similar

dataset (with more comprehensive ocean floor images) improves model performance

on unseen data.

Comparing Experiments 1 and 2 in Figure 5.1, we observe that when the images

are sharpened before training, the performance of V16B-UNet (blue bars) remains

similar and V16I-UNet (pink bars) improves. Models pre-trained on a similar dataset

44

45

Models
Experiments

E1 E2 E3 E4 E5

F1 scores

V16I-UNet 0.46± 0.04 0.63± 0.02 0.60± 0.02 0.59± 0.01 0.64± 0.02
R50B-CNN 0.80± 0.04 0.80± 0.03 0.67± 0.03 0.53± 0.06 0.84± 0.01
Segformer 0.74± 0.03 0.74± 0.02 0.66± 0.02 0.65± 0.03 0.77± 0.04
V16B-UNet 0.88± 0.01 0.85± 0.04 0.70± 0.09 0.69± 0.09 0.87± 0.02

IoU scores

V16I-UNet 0.33± 0.05 0.62± 0.04 0.68± 0.04 0.68± 0.03 0.63± 0.02
R50B-CNN 0.83± 0.01 0.83± 0.01 0.81± 0.01 0.78± 0.01 0.84± 0.01
Segformer 0.73± 0.03 0.73± 0.03 0.77± 0.01 0.78± 0.01 0.76± 0.02
V16B-UNet 0.88± 0.01 0.86± 0.03 0.82± 0.02 0.81± 0.02 0.87± 0.02

R2 scores

V16I-UNet 0.04± 0.03 0.15± 0.05 0.12± 0.04 0.14± 0.06 0.16± 0.01
R50B-CNN 0.69± 0.04 0.7± 0.03 0.44± 0.04 0.26± 0.05 0.76± 0.02
Segformer 0.42± 0.08 0.35± 0.05 0.21± 0.03 0.18± 0.07 0.47± 0.1
V16B-UNet 0.82± 0.02 0.77± 0.06 0.56± 0.17 0.54± 0.11 0.81± 0.05

Table 5.1: F1, IoU, and R2 scores presented in Figure 5.1

might rely on subtle textures that are altered by sharpening, while the models pre-

trained on a more generalized dataset can adapt to use the emphasized edges. Further,

when the segmentation masks are altered using edge detection and clustering as ex-

plained in section 4.4.1, the models struggle to capture robust features, because of

the discontinuity introduced by edge detection. The IoU scores (middle figure in 5.1)

for all the models except the V16I-UNet remain fairly consistent across all experi-

ments. The R2 scores shown in Figure 5.1 follow nearly the same trend as the F1

scores. This similarity in trends suggests that the models’ performance is relatively

consistent across different scales — from individual pixels to larger areas. This indi-

cates that the features the models are learning are effective at both fine-grained and

broader scales.

A true test of these models is provided by the performance on the test datasets

as shown in Figure 5.2. The negative R2 scores in this table indicate that the models

46

Models
Experiments

E1 E2 E3 E4 E5

Medway test dataset

V16I-UNet −4.60 0.23 0.26 0.60 −0.35
R50B-CNN 0.85 0.36 0.38 −0.39 0.92
Segformer −0.13 −0.11 −0.40 −0.37 −0.31
V16B-UNet 0.91 −0.18 0.01 −0.39 0.93

SGS test dataset

V16I-UNet −0.92 −0.02 0.1 −1.15 0.61
R50B-CNN −0.88 −1.54 −2.47 −3.52 −0.47
Segformer 0.11 0.25 −3.05 −2.94 0.30
V16B-UNet 0.64 −1.51 −2.12 −3.18 0.60

Table 5.2: R2 scores for different models evaluated on the test datasets.

(a) Nearby shorelines (b) Further shorelines

Figure 5.2: R2 scores comparing model predictions on Medway-test dataset and SGS-
test dataset with human estimated percentage covers.

47

perform worse than a horizontal line fit to the data. Scores near to 1 indicate near-

perfect predictions. The results on the Medway test dataset which is collected from

locations near the training and validation dataset collection sites and the SGS test

dataset which is a collection of images from the world indicate that the V16B-UNet

performs the best using unaltered images and masks (experiment E1) as well as using

the reduced set of images and masks (experiment E5). The scatterplots in Figure

5.2 compare the true and predicted percentage cover estimates when V16B-UNet is

used for inference on the two test datasets. The R2 scores indicate that the model

generalizes well to data with similar distributions.

The first hypothesis stated that if edge detection and clustering are applied to

the segmentation masks before training, it helps the model to discern boundaries

between eelgrass and non-eelgrass regions and in turn improve the model perfor-

mance. As seen in Figure 5.1, the hypothesis is true for models that are trained from

scratch (random initialization of weights). However, pre-trained models did not show

a significant change in performance. Edge detection and clustering, while helpful for

highlighting certain features, inevitably result in some information loss for the eel-

grass dataset. Pre-trained models seem to be more sensitive to this loss, as they have

been optimized to use more of the original input information. While edge detection

and clustering provide a helpful starting point for non-pre-trained models by em-

phasizing important structural information, these processes interfere with the feature

extraction capabilities already present in pre-trained models. Hence, for pre-trained

models, it’s advisable to provide raw or minimally processed input data to leverage

their pre-learned features and representations.

The model performance for V16I-UNet improves when the low-quality data is

removed as seen by comparing experiments 1 and 5 in Figure 5.1. All the other

models do not show a significant change after the low-quality images are removed.

This is contrary to the second hypothesis stating that the model performance improves

when low-quality data is removed. An interesting result was observed in this scenario.

It is that the robustness of V16B-UNet decreases and R50B-CNN increases when the

low-quality images are removed. Robustness is measured in terms of the standard

deviation, where a higher standard deviation indicates lower robustness and vice

versa. The removal of low-quality images improved the quality of features learned

48

during fine-tuning without losing the robustness gained during initial training for

R50B-CNN, which increases its robustness. On the contrary, removing low-quality

images reduces data diversity, which acted as a regularizer for V16B-UNet, which

overfit the remaining high-quality data, reducing its robustness. It can be said that

due to its simpler architecture, the V16B-UNet model relies more on consistent data

quality, while R50B-CNN benefits from learning from diverse data, which helps in

generalization.

Figure 5.3: Examples of predictions where the ground truth is two or more than two
classes away from the actual class from the segmentation model predictions for test
set 1. The image labels show the model predictions followed by the true class label.

The segmentation masks generated by V16B-UNet were converted to percentage

cover estimates and then discretized as explained in section 4.5.1. These outputs

are compared with the human-estimated covers and the predictions that were further

than two classes from the true predictions were noted in figures 5.3 and 5.4. These

figures show that V16B-UNet underestimated eelgrass in all the predictions where the

estimations were two classes further than true labels. For the Medway-test dataset,

the model failed to recognize eelgrass blades where an organism had grown on top of

the blades, along with blades that were tightly joined together which possibly made

it difficult for the model to distinguish from the background because of analogous

colours. For the SGS-test dataset, blurry images were predominantly the ones not

classified properly (i.e., 6 out of 11). Others included images having very dark blades

of eelgrass which were not present in the training set, and images where the tips of

the blades were recognized, but not the blades themselves. The latter is a surprising

49

Figure 5.4: Examples of predictions where the ground truth is two or more than two
classes away from the actual class from the segmentation model predictions for test
set 2. The image labels show the model predictions followed by the true class label.

discovery, evident in both the test sets.

The analysis performed here uses the V16B-UNet. The model was able to identify

eelgrass blades that were at a certain angle to each other as shown in Figure 5.5.

This included long and short blades, including blades with shades of brown. Eelgrass

blades were detected despite them having dense organisms grown on top of them.

If the image was blurred, only thin separate blades were detected shown in Figure

5.6. If the image was blurred, except for thin blades, eelgrass was not detected. The

model primarily struggled to detect small patches of eelgrass consisting of only 2 or

3 blades. When these blades were clustered together, detection was easier compared

to when the blades were spread out in different directions. Additionally, very thin

blades were more likely to be detected. Dark green blades that closely matched the

background colour were not detected. In some images, brown vegetation, which is not

50

eelgrass, was incorrectly classified as eelgrass. Long, thin, separate blades and long

blades were also not identified as eelgrass. Additionally, blades sparsely covered with

other organisms were not recognized as eelgrass. These observations are illustrated

in Figure 5.7.

Figure 5.5: Overlay of predictions where eelgrass blades on a different angle from
each other have been detected. The light mask shows the presence predictions.

Figure 5.6: Overlay of predictions where thin eelgrass blades were detected in blurred
images. The light mask shows the presence predictions.

51

Figure 5.7: Overlay of predictions where dark eelgrass blades, and ones analogous to
the background were not detected. The light mask shows the presence predictions.

5.2 Image Classification

The results in Figure 5.8 overall show that all the pre-trained models perform better

than the non-pre-trained models. The classification models were trained on both

random splits of the dataset and stratified splits. The F1 scores and accuracies were

not statistically significantly different after stratification. The statistical significance

of models is evaluated using standard deviations. Specifically, if the upper bound

of the standard deviation of a model trained on a random split is within the lower

bound of the standard deviation of a model trained on a stratified split, the models

are not considered to be statistically significantly different. This criterion ensures

that any observed differences in model performance are not due to random chance

but are instead indicative of genuine variance in the data splits. As the stratified split

does not result in a statistically significant difference, the metrics shown in Figure 5.8

represent the results obtained from a random split of the dataset. The pre-trained

models perform better than their non-pre-trained counterparts for all the types of

52

models evaluated in image classification as shown in Figure 5.8. The BenthicNet

dataset on which the models are pre-trained, consists of ocean-floor images from all

over the world and the pre-trained model starts with weights that already capture

useful information, helping to avoid poor local minima in the loss landscape. It

also needs less labelled data as compared to training a model from scratch. This

is particularly beneficial in the context of marine image datasets, where obtaining

labelled data can be time-consuming and costly. This proves the third hypothesis

stating that models pre-trained on a similar dataset, perform better than the models

with random weight initialization.

Figure 5.8: Comparison between the F1 and accuracy scores obtained from the two
experiments performed in image classification for the pre-trained and non-pre-trained
versions of the four models used. The blue bars show results from experiment 1 which
uses random weights to initialize the models, and the orange bars show results from
experiment 2 which uses BenthicNet pre-trained weights to initialize the models. The
tabular representation for this image is provided in Table 5.3.

The confusion matrices from the ViT-Base model initialized using random weights

(Subfigure (a) in 5.9) and pre-trained weights (Subfigure (b) in 5.9) are shown. Both

models tend to misclassify into adjacent classes more often than distant classes. As

the classes represent continuous ranges of eelgrass coverage, this ordinal nature of

the classes causes misclassifications between adjacent classes. Pre-training addresses

this problem significantly for this dataset. The pre-trained model also shows lower

standard deviations, indicating more consistent performance across runs.

Class predictions were generated from the ViT-base model with pre-trained weights

from BenthicNet, and trained using a random split on the dataset. These predictions

53

Initialization
Models

ViT-small ViT-base ResNet50-MLP VGG16-MLP

F1 scores

Non-pre-trained 0.45± 0.04 0.46± 0.03 0.21± 0.00 0.44± 0.03
Pre-trained 0.61± 0.02 0.64± 0.02 0.54± 0.02 0.55± 0.04

Accuracy scores

Non-pre-trained 0.61± 0.03 0.60± 0.0 0.52± 0.01 0.63± 0.02
Pre-trained 0.75± 0.02 0.77± 0.02 0.73± 0.02 0.71± 0.03

Table 5.3: F1 and accuracy scores presented in Figure 5.8

(a) Non-pre-trained (b) Pre-trained

Figure 5.9: Confusion matrices for the ViT-Base model with randomly initialized
weights (a) and BenthicNet pre-trained weights (b). The entries represent the mean
percentage of correct predictions in that cell ± standard deviation.

were compared with the human-estimated percentage covers. The figures 5.10 and

5.11 show the images for which the predictions were two classes further than the true

classes. These diagrams show that the classification model overestimated the quantity

of eelgrass in many of the images from both the test datasets. In the other images,

where the model underestimated, it was not able to recognize any of the eelgrass.

This is speculated due to blurred images and very tiny blades.

54

Figure 5.10: Examples of predictions where the ground truth is two or more than two
classes away from the actual class from the classification model predictions for test
set 1. The image labels show the model predictions followed by the true class label.

Figure 5.11: Examples of predictions where the ground truth is two or more than two
classes away from the actual class from the classification model predictions for test
set 2. The image labels show the model predictions followed by the true class label.

55

5.3 Comparing Image Segmentation And Image Classification Models

Figure 5.12: Examples of predictions where the ground truth is two or more than two
classes away from the actual class from the classification model predictions for test
set 2. The image labels show the model predictions followed by the true class label.

Figure 5.13: Examples of predictions where the ground truth is two or more than two
classes away from the actual class from the classification model predictions for test
set 2. The image labels show the model predictions followed by the true class label.

A comparison between the segmentation and classification models on test datasets

can be used to juxtapose their effectiveness. The results from the segmentation models

are continuous and need to be converted to discrete classes as in image classification

to compare them. The predictions from the V16B-UNet segmentation model are

56

converted to discrete classes and compared to predictions from the VBB-MLP clas-

sification model for both the Medway-test dataset in Figure 5.12 and the SGS-test

dataset in Figure 5.13. Analyzing Figure 5.12, the segmentation model is better at

distinguishing between cover percentage ranges and the classification model tends to

underestimate cover, often predicting 0% when there is actually some cover present.

Classification shows more extreme misclassifications (e.g., predicting 21-40% for true

81-100%), while segmentation’s errors are generally closer to the true values looking

at Figure 5.13.

Chapter 6

Conclusion

In this study, we tried different methods to estimate the percentage cover of eelgrass

from a given image. These included image segmentation and image classification ap-

proaches using several models. Various pre-processing techniques were experimented

with for image segmentation, and two different initializations were tried on image

classification models.

To perform image classification, the human-estimated percentage covers were con-

verted to 6 discrete classes where class 1 represented 0% eelgrass, class 2 represented

1–20% eelgrass, class 3 represented 21–40% eelgrass, and so on where class 6 repre-

sented 81–100% eelgrass cover in a given image. All the classification models struggled

to accurately distinguish between classes with similar eelgrass coverage percentages.

All the classification models produced analogous results. While the pre-trained ViT

models, particularly ViT-Base with an F1 score of 0.64 ± 0.02 and an accuracy score

of 0.77 ± 0.02, show a trend towards higher performance, the differences between

models are not always statistically significant given the reported standard deviations.

Pre-training consistently improves performance across all models. The choice of the

best model depends on factors beyond these metrics, including computational re-

sources and specific application requirements. To use the VBB-MLP classification

model, we have developed a GitHub repository [73]. The code takes in a set of im-

ages from a user-specified folder, runs inference on these images, and creates a CSV

file containing the filenames and model predictions. The flowchart explaining this is

shown in the README.md file of the GitHub repository [73].

For image segmentation, human-annotated segmentation masks were used for

training the models. All the segmentation models except the V16I-UNet performed

very similar to each other. For applications with non-preprocessed data, the V16B-

UNet model with a pixel-wise F1 score of 0.88 ± 0.01, an IoU score of 0.88 ± 0.01,

57

58

and an R2 score of 0.82 ± 0.02 would be a preferable choice. Segformer is more con-

sistent across different pre-processing conditions. While the raw performance metrics

provide valuable insights, measuring effect size offers a deeper understanding of the

significance of the differences observed between models and across experimental con-

ditions. Effect size analysis, using measures such as Cohen’s d [74], can quantify the

magnitude of differences beyond mere statistical significance. To use the V16B-UNet

segmentation model, we have developed a GitHub repository [72]. The code takes in

a set of images from a user-specified folder, runs inference on these images, and cre-

ates a CSV file containing the filenames and model predictions, along with the binary

segmentation masks. The flowchart explaining this is shown in the README.md file

of the GitHub repository [72].

The segmentation model V16B-UNet overall performs better than the other seg-

mentation models as well as the classification models for the test datasets. This model

comfortably detects eelgrass blades that are situated at a certain angle to each other.

This includes long and short blades along with brown blades. If the image provided is

blurry, the model can only detect individual thin blades. Apart from this observation,

dark-green blades which are analogous to the background colour were not detected.

Pre-processing techniques like sharpening images, and applying edge detection to

refine image features for image segmentation models proved to be helpful for non-

pre-trained models as they emphasized important structural information, while these

pre-processing techniques interfered with the feature extraction capabilities already

present in pre-trained models. Hence, providing raw or minimally processed input

data to pre-trained models proved to be more beneficial. Removing low-quality images

from the training dataset did not affect the performance of the segmentation models

significantly which is contrary to the second hypothesis which stated that removing

low-quality images would improve the model performances. Also, unseen data is

expected to contain low-quality images. Hence, the model needs to train on these

images to improve its generalizability. Pre-trained models with simpler architectures

relied more on consistent data quality, while complex architecture models benefited

from diverse data, improving generalization. All the models pre-trained on a similar

domain dataset proved to perform better than their randomly initialized counterparts.

59

Another study on the test datasets shown in Table 5.2 suggests that the segmen-

tation models are more suitable for Canadian coasts than other coasts. The reason

is the varying performance of this model on the two datasets. On the Medway-test

dataset, which is collected from the Medway River basin, the model performs much

better than the SGS-test dataset, which is collected randomly from different shorelines

across the world, as shown in Figure 5.2.

Future Improvements

Some improvements can be experimented with for effectively detecting eelgrass. The

first improvement can be ensuring that the dataset contains a reasonably balanced

amount of images for all depths, camera angles, and brightness to make the models

more generalizable and robust to identify eelgrass in any ocean-floor environment.

Secondly, a combination of classification and segmentation can be used to determine

percentage cover estimates, where the classification model predicts whether there is

eelgrass in an image. If there is eelgrass, then the segmentation model can be used to

produce segmentation masks. If there is no eelgrass, segmentation is not needed, and

the percentage cover is zero. Although this approach did not work on the classification

models tried in this study, using bigger image sizes was not experimented with and can

be explored further. Bayesian models [75, 76, 77] which take into account the model

uncertainty can be used to better identify faulty predictions. Bayesian models take a

distribution of weights instead of a single weight which can perform well for estimating

eelgrass percentage covers. Practically, these models are compute-intensive and hence

cannot be used in resource-constrained environments. Models can be developed which

can be fine-tuned to a specific dataset by looking only at a few images of the new

dataset. This is another application of transfer learning.

Bibliography

[1] M. S. Fonseca, W. J. Kenworthy, and G. W. Thayer, “A low cost transplanting
procedure for sediment stabilization and habitat development using eelgrass
(zosteramarina),” Wetlands, vol. 2, no. 1, pp. 138–151, 1982. [Online]. Available:
https://doi.org/10.1007/BF03160551

[2] M. E. Röhr, M. Holmer, J. K. Baum, M. Björk, K. Boyer, D. Chin, L. Chalifour,
S. Cimon, M. Cusson, M. Dahl, D. Deyanova, J. E. Duffy, J. S. Eklöf, J. K.
Geyer, J. N. Griffin, M. Gullström, C. M. Hereu, M. Hori, K. A. Hovel, A. R.
Hughes, P. Jorgensen, S. Kiriakopolos, P.-O. Moksnes, M. Nakaoka, M. I.
O’Connor, B. Peterson, K. Reiss, P. L. Reynolds, F. Rossi, J. Ruesink, R. Santos,
J. J. Stachowicz, F. Tomas, K.-S. Lee, R. K. F. Unsworth, and C. Boström,
“Blue carbon storage capacity of temperate eelgrass () meadows,” Global
Biogeochemical Cycles, vol. 32, no. 10, pp. 1457–1475, 2018. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GB005941

[3] M. Luhar, E. Infantes, and H. Nepf, “Seagrass blade motion under
waves and its impact on wave decay,” Journal of Geophysical Research:
Oceans, vol. 122, no. 5, pp. 3736–3752, 2017. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JC012731

[4] E. L. Jackson, A. A. Rowden, M. J. Attrill, S. J. Bossey, and M. B. Jones, “The
importance of seagrass beds as a habitat for fishery species,” Oceanography and
marine biology, vol. 39, pp. 269–304, 2001.

[5] K. A. Capistrant-Fossa and K. H. Dunton, “Rapid sea level rise causes loss of
seagrass meadows,” Communications Earth Environment, vol. 5, no. 1, p. 87,
2024. [Online]. Available: https://doi.org/10.1038/s43247-024-01236-7

[6] K. A. Moore, E. C. Shields, and D. B. Parrish, “Impacts of varying
estuarine temperature and light conditions on zostera marina (eelgrass) and its
interactions with ruppia maritima (widgeongrass),” vol. 37, no. 1, pp. 20–30.
[Online]. Available: https://doi.org/10.1007/s12237-013-9667-3

[7] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales, “Self-supervised
representation learning: Introduction, advances, and challenges,” IEEE Signal
Processing Magazine, vol. 39, no. 3, pp. 42–62, 2022. [Online]. Available:
https://doi.org/10.1109/MSP.2021.3134634

[8] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation
learning by context prediction,” in 2015 IEEE International Conference on
Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society,

60

61

dec 2015, pp. 1422–1430. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/ICCV.2015.167

[9] A. Jaiswal, A. R. Babu, M. Z. Zadeh, D. Banerjee, and F. Makedon, “A
survey on contrastive self-supervised learning,” Technologies, vol. 9, no. 1, 2021.
[Online]. Available: https://doi.org/10.3390/technologies9010002

[10] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, pp. 4037–4058, 2019. [Online]. Available:
https://doi.org/10.1109/TPAMI.2020.2992393

[11] S. Bozinovski and A. Fulgosi, “The influence of pattern similarity and transfer of
learning upon training of a base perceptron b2,” in Proceedings of the Symposium
Informatica, Bled, 1976, pp. 3–121–5, original in Croatian: Utjecaj slicnosti
likova i transfera ucenja na obucavanje baznog perceptrona B2.

[12] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He, “A comprehensive survey on transfer learning,” Proceedings
of the IEEE, vol. 109, no. 1, pp. 43–76, 2021. [Online]. Available:
https://doi.org/10.1109/JPROC.2020.3004555

[13] R. Ribani and M. Marengoni, “A survey of transfer learning for convolutional
neural networks,” in 2019 32nd SIBGRAPI Conference on Graphics, Patterns
and Images Tutorials (SIBGRAPI-T), 2019, pp. 47–57. [Online]. Available:
https://doi.org/10.1109/SIBGRAPI-T.2019.00010

[14] S. Becker and G. E. Hinton, “Self-organizing neural network that discovers
surfaces in random-dot stereograms,” Nature, vol. 355, no. 6356, pp. 161–163,
1992. [Online]. Available: https://doi.org/10.1038/355161a0

[15] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.
PMLR, 13–18 Jul 2020, pp. 1597–1607. [Online]. Available: https:
//proceedings.mlr.press/v119/chen20j.html

[16] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020. [Online].
Available: https://doi.org/10.1109/CVPR42600.2020.00975

[17] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019. [Online].
Available: https://doi.org/10.1186/s40537-019-0197-0

62

[18] X. Chen, S. Xie, and K. He, “An empirical study of training self-supervised
vision transformers,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2021, pp. 9640–9649. [Online]. Available:
https://doi.org/10.1109/ICCV48922.2021.00950

[19] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, 2005, pp. 539–546 vol. 1. [Online]. Available: https:
//doi.org/10.1109/CVPR.2005.202

[20] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow Twins:
Self-Supervised Learning via Redundancy Reduction,” in Proceedings of
the 38th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, M. Meila and T. Zhang, Eds., vol.
139. PMLR, 18–24 Jul 2021, pp. 12 310–12 320. [Online]. Available:
https://proceedings.mlr.press/v139/zbontar21a.html

[21] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “Segformer:
Simple and efficient design for semantic segmentation with transformers,” in Ad-
vances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates,
Inc., 2021, pp. 12 077–12 090. [Online]. Available: https://proceedings.neurips.
cc/paper files/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.
Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[23] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension,”
in Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, Eds. Online:
Association for Computational Linguistics, Jul. 2020, pp. 7871–7880. [Online].
Available: https://aclanthology.org/2020.acl-main.703

[24] Y. Ren, Y. Ruan, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “Fastspeech:
Fast, robust and controllable text to speech,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/2019/file/
f63f65b503e22cb970527f23c9ad7db1-Paper.pdf

63

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, “An image is worth 16x16 words: Transformers for image
recognition at scale,” in International Conference on Learning Representations,
2021. [Online]. Available: https://doi.org/10.48550/arXiv.2010.11929

[26] P. Wang, “lucidrains: segformer-pytorch,” GitHub repository, 2024. [Online].
Available: https://github.com/lucidrains/segformer-pytorch

[27] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic
regularizers with gaussian error linear units,” CoRR, vol. abs/1606.08415, 2016.
[Online]. Available: https://doi.org/10.48550/arXiv.1606.08415

[28] T. maintainers and contributors, “TorchVision: PyTorch’s Computer Vision
library,” Nov. 2016. [Online]. Available: https://github.com/pytorch/pytorch/
blob/main/torch/nn/functional.py

[29] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells,
and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp.
234–241. [Online]. Available: https://doi.org/10.1007/978-3-319-24574-4 28

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
https://doi.org/10.48550/arXiv.1409.1556

[31] A. Pravitasari, N. Iriawan, M. Almuhayar, T. Azmi, I. Irhamah, K. Fithriasari,
S. Purnami, and W. Ferriastuti, “Unet-vgg16 with transfer learning for
mri-based brain tumor segmentation,” TELKOMNIKA (Telecommunication
Computing Electronics and Control), vol. 18, p. 1310, 06 2020. [Online].
Available: http://doi.org/10.12928/telkomnika.v18i3.14753

[32] Z. Zhou, “zhoudaxia233: Pytorch-unet,” GitHub repository, 2024. [Online].
Available: https://github.com/zhoudaxia233/PyTorch-Unet

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet
large scale visual recognition challenge,” CoRR, vol. abs/1409.0575, 2014.
[Online]. Available: https://doi.org/10.48550/arXiv.1409.0575

[34] S. C. Lowe, B. Misiuk, I. Xu, S. Abdulazizov, A. R. Baroi, A. C. Bastos,
M. Best, V. Ferrini, A. Friedman, D. Hart, O. Hoegh-Guldberg, D. Ierodiaconou,
J. Mackin-McLaughlin, K. Markey, P. S. Menandro, J. Monk, S. Nemani,
J. O’Brien, E. Oh, L. Y. Reshitnyk, K. Robert, C. M. Roelfsema, J. A.

64

Sameoto, A. C. G. Schimel, J. A. Thomson, B. R. Wilson, M. C. Wong,
C. J. Brown, and T. Trappenberg, “Benthicnet: A global compilation of
seafloor images for deep learning applications,” 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2405.05241

[35] K. Fukushima, “Cognitron: A self-organizing multilayered neural network,”
Biological Cybernetics, vol. 20, pp. 121–136, 1975. [Online]. Available:
https://doi.org/10.1007/BF00342633

[36] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Conference
on International Conference on Machine Learning, ser. ICML’10. Madison,
WI, USA: Omnipress, 2010, p. 807–814. [Online]. Available: https:
//dl.acm.org/doi/10.5555/3104322.3104425

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, jun
2016, pp. 770–778. [Online]. Available: https://doi.org/10.1109/CVPR.2016.90

[38] V. Turrisi, “vturrisi: solo-learn,” GitHub repository, 2024. [Online].
Available: https://github.com/vturrisi/solo-learn/blob/main/solo/backbones/
vit/vit mocov3.py

[39] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” stat, vol. 1050,
p. 21, 2016. [Online]. Available: https://doi.org/10.48550/arXiv.1607.06450

[40] S. Nerella, S. Bandyopadhyay, J. Zhang, M. Contreras, S. Siegel,
A. Bumin, B. Silva, J. Sena, B. Shickel, A. Bihorac, K. Khezeli, and
P. Rashidi, “Transformers in healthcare: A survey,” 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2307.00067

[41] Y.-H. Tsai, O. C. Hamsici, and M.-H. Yang, “Adaptive region pooling
for object detection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015. [Online]. Available:
https://doi.org/10.1109/CVPR.2015.7298673

[42] C. Van Rijsbergen, Information Retrieval. Butterworths, 1979. [Online].
Available: https://books.google.ca/books?id=t-pTAAAAMAAJ

[43] T. Wiesner-Hanks, H. Wu, E. Stewart, C. DeChant, N. Kaczmar,
H. Lipson, M. A. Gore, and R. J. Nelson, “Millimeter-level plant disease
detection from aerial photographs via deep learning and crowdsourced data,”
Frontiers in Plant Science, vol. 10, 2019. [Online]. Available: https:
//www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01550

65

[44] R. A. Arun, S. Umamaheswari, and A. V. Jain, “Reduced u-net architecture
for classifying crop and weed using pixel-wise segmentation,” in 2020 IEEE
International Conference for Innovation in Technology (INOCON), 2020, pp.
1–6. [Online]. Available: https://doi.org/10.1109/INOCON50539.2020.9298209

[45] A. H. Murphy, “The Finley Affair: A Signal Event in the History of
Forecast Verification,” Weather and Forecasting, vol. 11, no. 1, pp. 3–20,
Mar. 1996. [Online]. Available: https://doi.org/10.1175/1520-0434(1996)011%
3C0003:TFAASE%3E2.0.CO;2

[46] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945. [Online]. Available:
https://doi.org/10.2307/1932409

[47] T. Sørensen, A Method of Establishing Groups of Equal Amplitude
in Plant Sociology Based on Similarity of Species Content and Its
Application to Analyses of the Vegetation on Danish Commons, ser.
Biologiske skrifter. Munksgaard in Komm., 1948. [Online]. Available:
https://books.google.ca/books?id=rpS8GAAACAAJ

[48] U. Koc, E. Sezer, Y. Ozkaya, Y. Yarbay, O. Taydas, V. Ayyildiz, H. Kiziloglu,
U. Kesimal, I. Cankaya, M. Beşler, E. Karakas, F. Karademir, N. Sebik,
M. Bahadir, O. Sezer, B. Yeşilyurt, S. Varli, E. Akdogan, M. Ulgu, and
S. Birinci, “Artificial intelligence in healthcare competition (teknofest-2021):
Stroke data set,” The Eurasian Journal of Medicine, vol. 54, 07 2022. [Online].
Available: https://doi.org/10.5152/eurasianjmed.2022.22096

[49] S. Wright, “Correlation and causation,” Journal of agricultural research, vol. 20,
no. 7, p. 557, 1921. [Online]. Available: https://books.google.sn/books?id=
lNNdIV qpwIC

[50] MathWorks, “Superpixels,” https://www.mathworks.com/help/images/ref/
superpixels.html, accessed: July 11, 2024.

[51] J. Malik and X. Ren, “Learning a classification model for segmentation,” in
Computer Vision, IEEE International Conference on, vol. 2. Los Alamitos,
CA, USA: IEEE Computer Society, oct 2003, p. 10. [Online]. Available:
https://doi.org/10.1109/ICCV.2003.1238308

[52] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“Slic superpixels,” EPFL, Tech. Rep. 149300, June 2010. [Online]. Available:
https://www.epfl.ch/labs/ivrl/research/slic-superpixels/

[53] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool,
“Seeds: Superpixels extracted via energy-driven sampling,” in Computer Vision
– ECCV 2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 13–26. [Online].
Available: https://doi.org/10.48550/arXiv.1309.3848

66

[54] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2, pp.
167–181, 2004. [Online]. Available: https://doi.org/10.1023/B:VISI.0000022288.
19776.77

[55] M. Yamamuro, K. Nishimura, K. Kishimoto, K. Nozaki, K. Kato,
A. Negishi, K. Otani, H. Shimizu, T. Hayashibara, M. Sano,
M. Tamaki, and K. Fukuoka, Mapping tropical seagrass beds with
an underwater remotely operated vehicle (ROV). Japan International
Marine Science and Technology Federation, 04 2003. [Online]. Avail-
able: https://www.researchgate.net/publication/242533299 Mapping tropical
seagrass beds with an underwater remotely operated vehicle ROV

[56] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
[Online]. Available: https://doi.org/10.1109/TSMC.1979.4310076

[57] G. Reus, T. Möller, J. Jäger, S. T. Schultz, C. Kruschel, J. Hasenauer, V. Wolff,
and K. Fricke-Neuderth, “Looking for seagrass: Deep learning for visual coverage
estimation,” in 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO),
2018, pp. 1–6. [Online]. Available: https://doi.org/10.1109/OCEANSKOBE.
2018.8559302

[58] F. Weidmann, J. Jäger, G. Reus, S. T. Schultz, C. Kruschel, V. Wolff, and
K. Fricke-Neuderth, “A closer look at seagrass meadows: Semantic segmentation
for visual coverage estimation,” in OCEANS 2019 - Marseille, 2019, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/OCEANSE.2019.8867064

[59] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmentation,” in
Proceedings of the European Conference on Computer Vision (ECCV), September
2018. [Online]. Available: https://doi.org/10.1007/978-3-030-01234-2 49

[60] M. A. Ghazal, A. Mahmoud, A. Aslantas, A. Soliman, A. Shalaby, J. A.
Benediktsson, and A. El-Baz, “Vegetation cover estimation using convolutional
neural networks,” IEEE Access, vol. 7, pp. 132 563–132 576, 2019. [Online].
Available: https://doi.org/10.1109/ACCESS.2019.2941441

[61] D. Langenkämper, M. Zurowietz, T. Schoening, and T. W. Nattkemper,
“Corrigendum: Biigle 2.0 - browsing and annotating large marine image
collections,” Frontiers in Marine Science, vol. 7, 2020. [Online]. Available:
https://doi.org/10.3389/fmars.2017.00083

[62] H. Bordin, “An assessment of manual and machine learning methods for analyz-
ing seagrass restoration success,” inDalhousie University’s 37th Annual Cameron
Conference, Dalhousie University, Halifax, NS, Canada, February 2023, poster

67

presentation, supervised by Derek Tittensor, Biology Dept., Dalhousie Univer-
sity.

[63] L. L. Strachan, R. J. Lilley, and S. J. Hennige, “A regional and
international framework for evaluating seagrass management and conservation,”
Marine Policy, vol. 146, p. 105306, 2022. [Online]. Available: https:
//doi.org/10.1016/j.marpol.2022.105306

[64] T. maintainers and contributors, “TorchVision: PyTorch’s Computer Vision
library,” Nov. 2016. [Online]. Available: https://github.com/pytorch/vision/
torchvision/transforms/transforms.py

[65] O. Rukundo and H. Cao, “Nearest Neighbor Value Interpolation,” International
Journal of Advanced Computer Science and Applications, vol. 3, no. 4, 2012.
[Online]. Available: https://dx.doi.org/10.14569/IJACSA.2012.030405

[66] M. Zurowietz, D. Langenkämper, B. Hosking, H. A. Ruhl, and T. W.
Nattkemper, “MAIA—A machine learning assisted image annotation method for
environmental monitoring and exploration,” PLOS ONE, vol. 13, no. 11, pp. 1–
18, 11 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0207498

[67] P. Mehta, “parashirenmehta: Metadata PreProcessing,” GitHub repository,
2024. [Online]. Available: https://github.com/parashirenmehta/Metadata
Preprocessing/masks from csv.py

[68] J. Canny, “A computational approach to edge detection,” IEEE Transactions
on Pattern Analysis amp; Machine Intelligence, vol. 8, no. 06, pp. 679–698, nov
1986. [Online]. Available: https://doi.org/10.1109/TPAMI.1986.4767851

[69] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000. [Online]. Available: https://docs.opencv.org/4.x/d1/dfb/intro.html

[70] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[71] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard Duchesnay,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, no. 85, pp. 2825–2830, 2011. [Online]. Available:
http://jmlr.org/papers/v12/pedregosa11a.html

68

[72] P. Mehta, “parashirenmehta: Folder inference segmentation,” GitHub
repository, 2024. [Online]. Available: https://github.com/parashirenmehta/
Folder inference segmentation/

[73] ——, “parashirenmehta: Folder inference classification,” GitHub repos-
itory, 2024. [Online]. Available: https://github.com/parashirenmehta/
Folder inference classification/

[74] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd ed.
New York: Routledge, 1988. [Online]. Available: https://doi.org/10.4324/
9780203771587

[75] D. J. C. MacKay, “Probable networks and plausible predictions-a review
of practical bayesian methods for supervised neural networks,” Network:
Computation in Neural Systems, vol. 6, no. 3, p. 469, aug 1995. [Online].
Available: https://dx.doi.org/10.1088/0954-898X/6/3/011

[76] J. Lampinen and A. Vehtari, “Bayesian approach for neural networks—review
and case studies,” Neural Networks, vol. 14, no. 3, pp. 257–274,
2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0893608000000988

[77] H. Wang and D.-Y. Yeung, “A survey on bayesian deep learning,” 2021.
[Online]. Available: https://arxiv.org/abs/1604.01662

Appendix A

Related Tables and Diagrams

(a) Image (b) Prediction

Figure A.1: Image (a) and prediction (b) using OTSU for eelgrass segmentation.

(a) Image (b) Prediction

Figure A.2: Image (a) and prediction (b) using OTSU for eelgrass segmentation.

69

