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ABSTRACT  

  

Southern Resident Killer Whales (SRKW) are highly intelligent marine mammals facing 

extinction in the North Pacific. These whales emit three types of sounds: clicks, whistles, 

and pulsed calls, with 43 distinct pulsed call types known as their "dialects". However, due 

to limited and poor-quality data, only nine call types have sufficient annotated recordings 

for analysis. To address this challenge, this paper proposes a progressive approach to 

improve SRKW call type identification. Initially, data augmentation techniques were 

employed to enhance training data volume, leading to a traditional CNN model achieving 

97.8% accuracy on 17 SRKW call types. Subsequently, a Siamese Network model was 

developed to infer the similarity between call types, achieving remarkable performance 

with an accuracy of 98.5%. This surpasses the performance reported in current literature 

on audio multi-class classification using deep learning and machine learning methods. 

Besides, Siamese Network's generalization ability was evaluated on 9 out-of-training 9 

SRKW call types, maintaining noteworthy accuracy and recall but with lower precision, 

which can be improved through manual review and retraining. This study demonstrates 

that data augmentation and Siamese Networks are effective strategies for overcoming few-

shot learning challenges in SRKW call type identification, achieving robust performance 

even with limited annotated data. 

 

Keywords: Marine Mammal Conservation, Southern Resident Killer Whales (SRKW), 

Acoustic Classification, Few-Shot Learning (FSL), Convolutional Neural Network (CNN), 

Data Augmentation, Siamese Network; Similarity measurement; Contrastive Learning, 

Transfer Learning; Meta-Learning.  

  

  

  

  

  

  

  

  

  

  

  



x    

LIST OF ABBREVIATIONS USED  

    

SRKW   Southern Resident Killer Whale  

FSL   Few-Shot Learning 

CNN   Convolutional Neural Network 

DFT  Discrete Fourier Transform 

FFT  Fast Fourier Transform 

STFT  short-term Fourier Transform 

MFCC  Mel-Frequency Cepstral Coefficients 

CWT  Continuous Wavelet Transform  

CQT  Constant-Q transform 

ReLU  Rectified Linear Unit 

SGD  Stochastic Gradient Descent 

SNN  Siamese Neural Networks 

ROC  Receiver operating characteristic curve 

AUC  Area Under the Curve (AUC) 

MAML  Model-Agnostic Meta-Learning 

  



xi    

ACKNOWLEDGEMENTS  

  

I would like to express my deepest gratitude to my supervisor, Dr. Carlos Hernandez 

Castillo, for his invaluable patience and feedback. Without them I would not have made it 

through my master’s degree. 

 

I’m extremely grateful to my mother Jieying He and my wife Fang Tong, for their 

unconditional love and support and a special thanks to my late father, Professor Rui 

Zhang of Changsha University of Science & Technology in China. It was you who 

introduced me to the world of academia. 



1   

  

 CHAPTER 1  INTRODUCTION  

1.1  BACKGROUND 

  

Orcas (Killer Whales) generate three types of vocalizations: Clicks, Whistles, and pulsed 

Calls. Clicks are part of the whale’s sonar and are used for finding and locating food 

sources, other objects in the ocean and locating other whales. Whistles are typically 

continuous tone emissions lasting for many seconds, which are believed to serve for 

Social Cohesion and Contact, Individual Identification and Emotional Expression. Calls 

are pulsed signals characterized by distinct patterns that can be recognized both by ear 

and on a spectrogram. These signals are complex and varied, serving as Group 

Coordination, Social Interaction, Foraging, and Hunting within orca societies. Dr. John 

Ford [1] categorized the discrete call types for the orcas of Washington State and British 

Columbia. He discovered that each pod has its own collection of calls, which he referred 

to as their "dialect". 

 

A quantitative measure of acoustic similarity is crucial to any study comparing call types 

of different social groups or individuals. A sound spectrogram is a visual representation 

of an acoustic signal. It is useful for seeing the state of a complex wave during a very 

short period. In a wave file, sounds are constantly changing. Spectrograms are a 

convenient way to illustrate the changes in a sound's spectrum over time. 
 

In a spectrogram, the horizontal dimension represents time, and the vertical dimension 

represents frequency. Each thin vertical slice of the spectrogram shows the spectrum 

during a short period of time, using darkness to stand for amplitude. Darker areas show 

those frequencies where the simple component waves have high amplitude. A long 

window resolves frequency at the expense of time—the result is a narrow band 

spectrogram, which reveals individual harmonics (component frequencies), but smears 

together adjacent 'moments'. Figure 1 displays a spectrogram of the call type S01 of 

Southern Resident Killer Whale (SRKW) generated by Python and a black-and-white 

spectrogram clipped from the original catalog [1]. The spectrograms of all Southern 

Resident Killer Whale (SRKW) call types are available in the Orca call catalog website: 

http://orcasound.net. 
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Figure 1 Linear Spectrogram generated by Matplotlib library in Python (Left) and a 

black-and-white spectrogram (Right) clipped from [1] 

 

Identifying the call types of Southern Resident killer whales is critical for conservation, 

understanding their complex social structures, and enhancing behavioral studies. This 

endangered population faces threats from pollution, reduced prey, and noise interference, 

making their vocalizations key to monitoring and protection efforts. Analyzing these calls 

helps researchers understand their dynamics, behaviors like hunting and navigation, and 

facilitates the development of strategies to mitigate human impacts. For example, 

discovering a new call type during field studies can reveal unknown behaviors or social 

interactions, guiding conservation actions and informing policies to reduce disturbances 

in critical habitats. Essentially, understanding whale communication is vital for ensuring 

the survival of these marine mammals and maintaining the health of their ecosystems. 

 

1.2  CHALLENGES 

  

To leverage knowledge about Southern Resident Killer Whale (SRKW) Call Types, 

Simon Fraser University, Fisheries and Oceans Canada, and numerous marine 

acousticians collected audio data of SRKW from passive hydrophone devices deployed 

for over a decade in Washington State, USA, and British Columbia, Canada. According to 

their experience and knowledge, they annotated thousands of SRKW call-type clips from 

acoustic wave files collected from various locations along the Pacific coast, including 

Barkley Canyon, Boundary Pass, and Robert Banks. Each sound clip has an average 

duration of approximately 3-4 seconds. 53% of SRKW Call type annotated data from 

ONC Barkley Canyon node Datasets. 47% from JASCO Boundary and Robert Banks 

Datasets. Call Type Definition is based on Ford 1987 and 1991[1]. 

 

Using the Ford/Osborne call catalog for Southern Resident Killer Whales (SRKW), it is 

understood that there are approximately 43 Call Types, ranging from S1 to S46 (with 

some discontinuities and sub-types, such as S44a and S44b). This catalog likely serves as 

a valuable reference for identifying and categorizing the vocalizations of SRKW in the 
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collected audio data. However, among these 43 SRKW Call Types, only 10 Call Types 

have more than 5 annotated samples. This indicates a significant imbalance in the data 

distribution across the different Call Types, which can present challenges when 

implementing a classification model aimed at accurately classifying all 43 Call Types. 

Imbalanced data distributions may affect the performance and reliability of classification 

models. To address this issue effectively, strategies such as data augmentation, 

resampling techniques, or focusing on the more prevalent Call Types may need to be 

considered. 

 

Figure 2 Distribution of the number of annotated audio clips by SRKW Call Type 

(created by the Author. For the figures and tables that do not mention a source, they were 

all created by the author) 

 

Table 1 Remark of top 10 annotated Call Types in Figure 2, "Pod" is the population code 

for Orcas, and "S1d" represents the fourth subcategory of Call type S1 from 

orcasound.net. 

Call Type Pod Description 

S4d K, L Duck quack 

S1d J Cowboy saying “Yee-haw!” 

S2 J “A-whee!” 

S44b K, L "Goose honk" 

S36 J, K Donkey 

ArgBermHB

W 

 Bermuda Humpback Whale for comparison and transfer 

learning 

S6 J N/A 
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S10 J, K, L "Squeaky balloon" Excitement call for all types of orcas! 

S18 L Slide whistle 

T7  Bigg‘s (Transient) call. Killer Whales in Northern Pacific 

 

 

1.3  RELATED WORKS 

The classification of Call Types for Southern Resident Killer Whales (SRKW) falls 

within the realm of audio classification in machine learning techniques. Audio 

classification involves analyzing audio signals and categorizing them into various classes. 

It serves as a crucial tool in audio signal processing, aiding in the organization, analysis, 

and comprehension of audio signals. Classifying audio signals enables a better 

understanding of the underlying signals, their structures, and content, which, as 

mentioned earlier, is crucial for the study and conservation of the ecological behaviors of 

Southern Resident Killer Whales (SRKW). To achieve successful Call Type 

classification, the first step is to acquire annotated audio data. Models should be trained 

using annotated data to learn how to identify and classify different sounds. Despite 

advancements in audio classification, teaching machines to understand subtle differences 

in sounds and classify them accordingly remains challenging. 

 

Traditional audio classification methods such as Support Vector Machine (SVM) [2], K-

Nearest Neighbors (KNN) [3], Artificial Neural Networks (ANN) [4], and Hidden 

Markov Models (HMM) [5], Logistic Regression [6]. have been in use since the early 

2000s. These methods involve extracting features from recordings and then using these 

features to classify audio into different categories. SVM is a powerful supervised 

machine learning algorithm that categorizes data points using hyperplanes, achieving 

high accuracy in classifying audio recordings [2]. KNN is a supervised learning algorithm 

used for classification, which finds the nearest neighbors of input instances and then 

classifies them based on the majority class of neighbors [3]. It is suitable for audio 

classification as it accurately categorizes signals using the features of audio signals. 

Artificial Neural Networks (ANN) are computational models based on the structure and 

function of biological neural networks [4]. They classify samples into different categories 

by learning features of audio samples. Logistic Regression [6] is used to divide data into 

two classes, which is useful for audio classification tasks such as speech recognition and 

music genre classification. The naive Bayes classifier is a probabilistic classifier used to 

compute the probability of each class for a given data point and then assign the class with 

the highest probability [7]. HMM is also commonly used for classifying audio data, 

particularly suitable for audio classification as it can learn the underlying structure of 

audio data and model the temporal dynamics of audio signals [5]. Gaussian Mixture 

Models are probabilistic models used for audio classification, assuming that each data 

point is a mixture of different Gaussian distributions, then used to classify input test audio 

data [8]. 
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Deep learning has become increasingly popular in acoustic classification. With its ability 

to learn complex patterns, it can achieve better accuracy than traditional methods. 

Traditional methods usually divide audio classification into two processes: feature 

extraction and classification [9]. In the feature extraction process, relevant features are 

extracted from audio data, which are then used in the classification process to identify 

audio data. However, deep learning models require large audio datasets to train the 

network and automatically learn the features of each class. After training, the model can 

be used to classify new audio samples. 

 

Deep learning models for audio classification can automatically extract high-dimensional 

features from large-scale datasets without manual feature extraction, as long as the input 

data contains all relevant information from the original data [10]. Deep learning models 

can achieve higher accuracy than traditional machine models because they can learn 

complex patterns and identify subtle differences in audio data, making them ideal for 

real-time audio classification and analysis. 

 

However, deep learning also has some drawbacks. Deep learning models require 

substantial computational resources (including powerful graphics processing units and 

large amounts of memory) for training, which can be both expensive and time-

consuming. Additionally, deep neural networks (DNNs) for audio classification systems 

require large datasets for training and evaluation; without large datasets, the system may 

fail [11]. In addition, in conventional DNN model training strategies, the model learns to 

solve a problem by analyzing the training data, and it can only recognize sound classes 

that were included in the training process (seen classes). The model is unable to classify 

sound classes that did not appear in the training data (unseen classes). To solve the 

problem of recognizing SRKW call types, the system must be able to detect and classify 

all seen and unseen sound classes. Conventional methods alone cannot achieve this goal. 

Although a large amount of annotated SRKW calls, e.g., S01, can be used to train a 

model, and such models can classify those call types inside the training set with high 

accuracy, identifying call types outside of the training data requires an alternative 

approach that overcome classification limits of a DNN model. This approach needs to 

work in parallel with the high-performance classification model to identify and classify 

those killer whale call types that were not learned during the training process. 

 

As an alternative to traditional classification methods, One/Few Shot Learning (FSL) 

offers a promising approach for creating models that aren't strictly confined to 

recognizing only the classes they've been trained on. This technique aims to enable a 

model to compare two inputs and assess the likelihood that they belong to the same 

category [12]. The key advantage of One/Few-Shot Learning is its attempt to offer a 

universal solution that isn't tied to specific training classes. With a successful 

implementation, it should be possible for a model to compare any given input with any 

class, provided there's at least one or a few examples of that class available, thereby 

allowing the classification of an input into any class for which it has one or more 

samples. 
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This approach has demonstrated significant potential in the field of computer vision, 

particularly in applications such as image recognition [13] and face recognition [14]. 

However, the application of One/Few-Shot Learning to audio detection and classification 

is still relatively uncharted territory.  

 

1.4  RESEARCH QUESTIONS AND CONTRIBUTIONS 

With the rapid development of deep learning models in audio classification, naturally 

deep learning models are considered for Southern Resident Killer Whale (SRKW) call 

type classification using small-scale, low-quality samples by leveraging advanced data 

processing and augmentation techniques. Furthermore, given the 43 SRKW call types and 

limited annotated samples for each call type, this raises an idea whether it is possible to 

train a model to compare the similarity between SRKW call type data pairs as an 

alternative approach. Finally, is such a similarity model able to identify SRKW call types 

that were not included in the training data? Addressing these questions could significantly 

advance marine bioacoustics classification, particularly in contexts with limited data 

availability. 

 

Question 1: Is it feasible to develop deep learning models for SRKW 

call type classification using small-scale, low-quality samples through 

advanced data processing and augmentation techniques?  

  

Compared to traditional audio classification models. Deep learning models for audio 

classification can automatically extract high-dimensional features from large-scale 

datasets without the need for manual feature extraction, as long as the input data contains 

all the relevant information in the original data [10]. Deep learning models can achieve 

higher accuracy than traditional models because they can learn complex patterns and 

identify subtle differences in audio data. Most deep learning models can learn faster and 

more accurately than traditional models, making them ideal for real-time audio 

classification and analysis.  

 

However, deep learning also has some disadvantages: deep neural networks (DNNs) used 

for audio classification systems require large datasets for training and evaluation; without 

large datasets, overfitting occurs when a model is overtrained [15],  resulting in poor 

performance on new, unseen data [16]. On the other hand, underfitting may occur if the 

model is not trained enough. The available Southern Resident Killer Whale (SRKW) call 

type dataset has highly unbalanced annotated data, with some categories having a large 

number of annotations, such as S36 and S4, but 75% of the call types less than 5 

annotated clips available, which is prone to overfitting.  

 

Solutions are proposed to address the problems of insufficient training data, data 

imbalance, and poor data quality. Solution on sound signal processing, acoustic 

denoising, data enhancement, and CNN model training will be focused. 
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Question 2: Can small-scale samples be utilized to train models that 

compare the similarity between SRKW call type data pairs, as an 

alternative to employ multi-class classifiers for SRKW call type 

classification? 

 

The core problem of this paper is to associate a certain call audio segment of SRKW with 

the specified label e.g. S0X, that is, classification. To achieve such a prediction, it is 

necessary to mark which Call type each sound clip belongs to.  

 

However, if there are many call types but with very few samples per type, instead of 

identifying which call type a sound clip belongs to, it’s easier to compare if two sound 

clips are similar or not. If the problem is constructed in this way, the more call types to be 

identified, the easier it becomes for a similarity model to learn inter-type and intra-type 

similarity features. By creating similar pairs (within-type) and dissimilar pairs (cross-

type), along with applying data augmentation and noise reduction techniques, small call 

type dataset can be transformed into a larger one. In this approach, the model learns 

similarities rather than specific features of each call type. This method not only enlarge 

the original dataset but also reduces the complexity of model training. 

 

Koch [13] proposed Siamese Network, which first shares the same weights and structure 

through two sub-networks, and then measures the distance or similarity between samples 

in the feature space through metric learning, thereby enhancing its ability to handle small 

sample classification or recognition tasks.  

 

Question 3: Can a similarity model effectively discern SRKW call types 

that were not presented in the training dataset  

 

If the Siamese Network performs well on the call types covered by the training dataset, it 

naturally leads to question whether the Siamese Network can still classify call types 

outside the training dataset. Although transfer learning and generalization are not easy to 

achieve, given that both the calls in the training dataset and the out-of-training call types 

are all call audios of SRKW (Southern Resident Killer Whale), it is hypothesized that the 

discriminative power of similarity model learned on the training set may also be effective 

on call types outside the training set. 

 

1.5  THESIS ORGANIZATION 

 

Table 2 Thesis Organization 

Section Sub Section Contents 

Introduction Background 
Provides context and current state of research in 

acoustic classification. 
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Challenges Discusses main technical and research problems. 

Related Works 
A comprehensive review of the existing literature, 

theories, methods 

Research 

questions and 

contributions 

Outlines three research questions in a logical 

progression. 

Thesis 

Organization 
This table. 

Acoustic 

Classification 

with CNN 

Data Processing 

Denoise, Data Augmentation and convert to Mel 

spectrogram vectors, Normalization and Data 

Persistence. 

Define CNN 

Model 

Details the architecture and parameters of the CNN 

model. 

Train CNN 

model 

Describes the training process and optimization 

techniques. 

Limitations and 

Challenges 
Limitations and Challenges of CNN models. 

From 

Acoustic 

Classification 

to Acoustic 

Similarity 

Motivation  Why do I consider Similarity from Classification. 

Loss Functions Contrastive loss and triplet loss. 

Feature 

Extraction 

Details techniques for extracting relevant features 

from data For Siamese network. 

Dataset pairs for Siamese Network input. 

Siamese Network 

Structure 
Outlines the architecture of the Siamese network. 

Similarity 

Comparison 

Describes methods for comparing acoustic signal 

similarity. 

Model 

Evaluation 

Covers metrics and techniques used to evaluate 

model performance. 

Experiments 

and Result 

Software and 

hardware 
Details computational resources and tools used. 

Classifying 

Multi-Call Type 

with CNN  

The experiment details of CNN training 

Siamese network The experiment details of Siamese network training 
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Model Result 

and Discussion 

The experiments result and answers to three 

research questions. 

Conclusion 

and Future 

Work 

Summary 
Summarizes the main points and findings of the 

thesis. 

Conclusion Transformation Based Method 

Disadvantages 

and Limitations 
Draws conclusions based on the research findings. 

Future Work 
Highlights research limitations and potential 

improvements. 

References Lists all cited references in the thesis. 
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CHAPTER 2  CNN-DRIVEN CALL CLASSIFICATION  

In this chapter, solutions are proposed to address the deficiencies of insufficient training 

data, data imbalance, and poor data quality, focusing on sound signal processing, acoustic 

denoising, data augmentation, and CNN model training. A CNN-based classification 

model for Southern Resident Killer Whale (SRKW) Call Types is developed, achieving 

an accuracy of 97.8% on the test set (in 17 Call Types), reaching the industry's State-of-

the-Art level in marine mammal acoustic recognition. A typical CNN model training 

process is shown in Figure3. This chapter will analyze the strengths and weaknesses of 

CNN models in SRKW call type classification across four sections: data processing, 

CNN model definition, CNN model training, and limitations of CNN models. 

 

 
Figure 3 CNN model training process for SRKW Call Type Classification [17] 

 

However, it's important to note that this is based on CNN's premise: it can only predict 

classes that appear in the training dataset. Classes not encountered in the training data 

render the CNN model incapable of prediction. To predict classes not seen in the training 

data (the Question raised in Question 3 of Section 1.4), algorithms based on transfer 

learning are required. To resolve the Question 3 of Section 1.4, this paper will employ a 

Few-shot learning algorithm, i.e., Siamese Network, with specific details elaborated in 

the next chapter. 

2.1 DATA PROCESSING 

2.1.1 Denoising for Marine Acoustic Data 

Currently, all available Southern Resident Killer Whale (SRKW) call-type data come 

from hydrophones along the Pacific coast [17]. These sound data contain a significant 

amount of noise, such as hydrodynamic noise, water flow noise, wave noise, and ship 

propeller noise. These noises can mask call-type signals, severely impacting the 

identification accuracy of call-type classification models. In the literature, several 

methods for denoising marine acoustic data are commonly used: 

Spectral subtraction is a frequency domain denoising method based on the signal-to-

noise Ratio (SNR) concept. It estimates the power spectra of the signal and noise and 

calculates their difference. Then, based on a predefined SNR threshold, the noise 

component is subtracted from the signal spectrum to suppress noise. This method is 

simple to implement and effectively reduces stationary noise. However, its performance 

highly depends on the selection of the SNR threshold, and it may introduce artifacts [18]. 

Wavelet denoising decomposes the signal into subbands of different scales containing 

signal details and noise [19]. It applies a threshold to each subband to selectively remove 
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noise components and then performs wavelet inverse transform to obtain the denoised 

signal. Its advantages include preserving signal features while eliminating noise and the 

ability to handle non-stationary noise. However, careful tuning of wavelet type and 

decomposition levels is required, and signal edges may be distorted. 

Adaptive filters adjust filter parameters dynamically based on the signal's 

autocorrelation and cross-correlation to adapt to different signal and noise environments 

[20]. The minimum mean square error (LMS) algorithm or minimum mean square error 

(LMSE) algorithm can be used to implement adaptive filtering. It can adapt to changes in 

noise characteristics and process large amounts of data in real-time. However, its 

denoising performance highly depends on parameter selection and convergence, and it 

may introduce artifacts if misconfigured. 

Convolutional Neural Networks (CNN) or Recurrent Neural Networks (RNN) can 

also be used to learn complex features of marine acoustic data and automatically denoise 

during training [21]. However, they require large datasets and computational resources. 

Traditional acoustic models involve modeling noise characteristics in the marine 

environment physically or statistically and denoising signals based on the model. They 

can be effective when noise statistics are known but may be less effective in complex 

noise environments. 

 

The noisereduce Python library provides noise reduction functionality for audio signals. 

The reduce_noise function in the noisereduce module utilizes a combination of noise 

reduction techniques, including spectral subtraction, Wiener filtering, and adaptive 

filtering. After the reduce_noise function from this library was applied in experiments, 

the quality of the audio files was significantly improved. However, due to the limited 

availability of labeled data, in order to increase the number of labeled samples, both the 

original samples and the denoised samples were retained in the training set. 

 

2.1.2 Data Augmentation 

 

The limited size of annotated SRKW call-type samples results in reduced sample 

diversity. Data augmentation can address this issue by increasing sample diversity. Data 

augmentation involves modifying input data to enhance diversity in model input. Adding 

noise to spectrograms is a common technique used to improve model robustness. This 

process involves introducing random noise into the original spectrogram, which helps 

prevent overfitting and enhances generalization to unseen data. Noise can be added at 

various levels, such as individual frequency points or across the entire spectrogram. By 

simulating real-world environmental noise, this method enables the model to focus on 

relevant features while disregarding irrelevant noise. Overall, noise augmentation leads to 

more robust and dependable model performance across different conditions. 

 

Frequency masking involves randomly selecting frequency ranges and setting 

spectrogram values within those ranges to zero, simulating the loss of certain frequency 

components in the audio. It simulates the loss of certain frequency components, 

enhancing model robustness to missing frequency information. Daniel S. Park [22] 
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proposed SpecAugment, a data augmentation method for automatic speech recognition, 

which includes frequency and time masking to disrupt input data. Time masking 

randomly selects time ranges and sets spectrogram values within those ranges to zero, 

simulating the loss of certain time segments in the audio. Cropping and padding 

randomly select subregions around the spectrogram to simulate different audio segment 

lengths. They introduce variability in audio segment lengths, promoting model robustness 

to different durations; however, if cropping or padding is excessive, they may distort the 

original context. 

Shifting and scaling techniques involve making adjustments to the spectrogram along 

both the time and frequency axes, simulating positional changes of audio segments. By 

altering the frequency and temporal characteristics, these techniques enhance the model's 

adaptability to diverse audio variations. They effectively mimic shifts in the positions of 

audio segments, thereby improving the model's ability to generalize across different 

positions. However, it's important to note that excessive shifting or scaling can lead to the 

distortion of the original features of the data. Careful consideration and moderation are 

necessary to ensure that the augmented data remains representative of the underlying 

patterns while introducing beneficial variability to the training process [22]. 

Frequency flipping [23] involves flipping the spectrogram along the frequency axis, 

thereby altering the frequency characteristics of the audio. Similarly, time flipping [24] 

flips the spectrogram along the time axis, changing the temporal characteristics of the 

audio. These techniques modify both frequency and temporal attributes, thereby 

enhancing the model's adaptability to various audio variations. However, it's also 

important to be cautious when employing flipping techniques, as excessive use may 

introduce artifacts or distortions into the data. The right balance between adding useful 

variety and keeping the original audio intact need be considered.  

These methods can be used individually or combined to increase training data diversity, 

improving model robustness and generalization. It's essential to adjust and experiment 

with specific methods based on dataset characteristics and task requirements. In 

summary, the combination of these augmentation techniques can effectively increase the 

diversity of training data, improve the robustness, and enhance the generalization ability 

of the model. It is crucial to experiment with and adjust these methods based on the 

characteristics of the dataset and the specific requirements of the task at hand.  

 

2.1.3 SRKW Call Type Dataset 

 

Based on annotated call type data from ONC Barkley Canyon, JASCO1 Boundary, and 

Robert Banks along the Pacific coast of British Columbia, the following preprocessing 

steps were undertaken to prepare the audio data for processing: 
 

⚫ Denoising and assessing the sound quality. 

 
1 JASCO Applied Sciences (https://www.jasco.com/) is a well-known company based in Nova Scotia, Canada, 

specializing in underwater acoustics and environmental monitoring. They provide a range of services and data related 

to acoustic signal processing, including underwater noise monitoring, marine mammal detection, and environmental 

impact assessments 
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⚫ Augmenting the data to produce a minimum of 12 waveform clips for each call type, 

such as SRKW Call Type S40 (augmented from 3 clips to 12 clips). Despite there 

being 43 SRKW call types available, only 17 call types were selected for research 

and experimentation purposes (as outlined in Chapter 4). This decision was made to 

accommodate annotated data limitations. 
 

Table 3 shows the train and test dataset by class. "Call Type" represents the specific type 

of call. " Augmented Training and Validation Wave Files#" stands for the data files for 

both training and validation after original audio files’ data augmentation. Validation data 

(20% out of 88%) is used as a sub-set of the training data during CNN training to apply 

early stopping [25] and learning rate scheduling [26]  to avoid overfitting. Augmented 

Testing Wave Files" (12%) indicate the number of wave files as test datasets. 

 

Table 3 Train (including Validation, 88%) and Test Dataset (12%) by Call Type 

Call Type Non-
Augmented 
Wave Files 

Augmented 
Training and 

Validation Wave 
Files 

Augmented 
Testing Wave 

Files 

Remark 

ArgBermHBW 12 60 4 SX: Southern Resident 

Killer Whale 

  

TX: Bigg‘s (Transient) 

Killer Whales in 

Northern Pacific 

  

ArgBermHBW: 

Bermuda Humpback 

Whales 

  

DelawSpwale: Delaware 

Sperm Whale 

  

Sea wave: Ocean 

background noise 

DelawSpwale 10 50 10 

S10 19 48 10 

S18 16 50 6 

S1d 28 102 16 

S2 38 190 12 

S31 14 46 7 

S35 4 13 5 

S36 104 104 10 

S40 2 5 4 

S44b 18 90 7 

S4d 48 239 16 

S5 3 10 4 

S6 8 37 11 

S9 2 10 10 

Seawave 4 4 4 

T7 4 20 4 

Grand Total 334 1078 (88%) 140 (12%) 

 
 
 

2.1.4 Audio to Features 

While the inputs to CNNs are audio or speech signals, CNN-based methods typically do 

not directly utilize the raw one-dimensional (1D) signals. Instead, as part of a 

preprocessing stage, 1D audio or speech signals are converted into 2D representations. 
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These 2D representations, which capture the spectrum frequencies of the audio signal 

over time, are then fed into a CNN model. A typical process for audio data processing for 

the CNN model is displayed in Figure 4. 

 

 
Figure 4 Pre-processing the training data for input for the CNN model 

 

 

2.1.4.1 Sound and the Waveform 

Sound is a physical disturbance that travels through an elastic medium as high- and low-

pressure waves, known as compressions and rarefactions. Sound can be recorded by 

measuring the changes in pressure over time. Recording can be done analogically or 

digitally, with discrete values sampled at regular intervals called the sampling rate. 

Digital audio signals are specifically discussed in this text. In the air, microphones are 

used to record sound, while underwater environments require specialized hydrophones 

due to the impedance difference. When the variation in pressure over time is plotted, it 

creates a waveform; an example is shown in Figure 5. In digital audio, the amplitude in 

the Y-Axis is usually represented in a digital format, typically ranging from -1 to 1, 

indicating relative volume levels. 
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Figure 5 Concert A (440Hz) waveform [27] 

 
Figure 5 shows a continuous waveform representing a sound signal, but it doesn't 

accurately represent digital audio recordings. In digital audio, recordings are composed of 

discrete numeric values called samples, recorded at specific time intervals. The range of 

values a sample can take is determined by the bit depth, and the number of samples 

recorded per second is the sampling rate [28]. A digital waveform is better represented as 

a scatter plot rather than a continuous wave. Figure 6 provides an example of how the 

sampling rate breaks down the continuous signal into discrete samples.  

 
Figure 6 Concert A (440Hz) sampled at 44100Hz [27] 

 

In real audio recordings with multiple sources and varying amplitudes and frequencies, 

the waveform appears more erratic, as shown in Figure7. 
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Figure 7 Audio waveform sampled at 44100Hz [27] 

 

Nyquist-Shannon sampling theorem is a fundamental principle in digital signal 

processing. It establishes that for a continuous signal to be accurately reconstructed from 

its samples without introducing artifacts, the sampling rate must be at least twice the 

maximum frequency present in the signal. This maximum frequency, 𝑓𝑚𝑎𝑥 is known as 

the Nyquist frequency, which is defined as 𝑓𝑚𝑎𝑥 =
𝑆𝑟

2
 , where 𝑆𝑟 is the sampling rate. If 

the sampling rate The Nyquist-Shannon sampling theorem is indeed a cornerstone in 

digital signal processing, specifying that to accurately reconstruct a continuous signal 

from its samples, the sampling rate must be at least twice the maximum frequency of the 

signal. This maximum frequency is known as the Nyquist frequency, defined 

mathematically as 𝑓𝑚𝑎𝑥 =
𝑆𝑟

2
, where 𝑆𝑟  is the sampling rate. If the sampling rate is below 

this limit, aliasing occurs, resulting in distortion in the reconstructed signal. 

 

Conversely, knowing the maximum frequency 𝑓𝑚𝑎𝑥 needs to be captured allows you to 

determine the minimum required sampling rate, which is 2 𝑓𝑚𝑎𝑥. This principle was 

instrumental in defining the sampling rate for digital audio formats like CDs, where a rate 

of 44.1 kHz was chosen to capture and accurately reproduce most of the audible 

frequencies for humans, which range up to approximately 20 kHz [29] . 

 

2.1.4.2 The Fourier Transform 

In natural environments, sound waves from different sources combine as the sum of 

individual waveforms at a specific point. The instantaneous pressure measured by a 

recording device represents the combined waveforms coinciding with that device. This 

means the waveforms from different sources can exhibit constructive or destructive 

interference when reaching the recorder [30]. However, visually determining the 

frequencies present in a waveform is not straightforward, even though it consists of the 
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sum of multiple frequencies. Analyzing the frequency content of a signal is often desired 

to better understand its waveform. 

The Fourier Transform can be employed to convert the waveform from the time domain 

to the frequency domain. This transformation allows us to examine the individual 

frequencies contributing to the waveform. In this thesis, the discrete Fourier transform 

(DFT) is considered to decomposes discrete audio signals into their frequency 

components. DFT is defined by equation (1) and is used for signals containing N 

samples. 

𝑋(𝑘) = ෍ 𝑥(𝑛) 𝑒𝑥𝑝 ቀ−𝑖
2𝜋

𝑁
𝑘𝑛ቁ , 𝑘 = 0, … 𝑁 − 1)⬚

𝑁−1

𝑛=0
     (1) 

 
Where k is the k-th frequency component of the signal. In equation (1), the term exp 

(−𝑖
2𝜋

𝑁
𝑘𝑛) is a complex number written in exponential form. Therefore, the resulting sum 

will also be a complex number. As the real analog frequencies within the signal are only 

interested, i.e. complex symmetry in the DFT in Equation (1). This involves computing 

the same DFT for k ≤ 
𝑁

2
. To ensure that the output amplitudes of the DFT components are 

correct, the magnitude of every component is averaged by multiplying its magnitude by 
2

𝑁
 . The magnitude of a complex number is defined as equation (2): 

ห𝑒𝑖𝑥ห = ȁ𝑐𝑜𝑠 𝑥 + 𝑖𝑠𝑖𝑛𝑥ȁ = ඥ𝑐𝑜𝑠𝑥2 + 𝑠𝑖𝑛𝑥2, 𝑖 = ξ−1      (2) 

 
So, for a real-valued signal S consisting of N sampled values, discretized with a sampling 

rate of 𝑆𝑟, the magnitude of the real-valued frequencies of the signal below the Nyquist 

frequency could be computed by: 
 

𝑋(𝑘) =
2

𝑁
ተ෎ 𝑥(𝑛) 𝑒𝑥𝑝 ൬−𝑖

2𝜋

𝑁
𝑘𝑛൰

𝑁−1

𝑛=0

ተ

⬚

, 𝑘 = 0, …
𝑁

2
      (3) 

 
Where the analog frequency in Hertz corresponding to the k-th DFT component is 

defined as: 

𝑓𝑘 = 𝑘
𝑆𝑟

𝑁
     (4) 

 
An example of DFT computed for a generated 5-second sinewave of 5 Hz with an 

amplitude of 1 (with no unit) sampled at 80 Hz can be found in Figure 8. In Figure 8 the 

spectrum is only defined for frequencies below the Nyquist frequency 
80𝐻𝑧

2
= 40𝐻𝑧. 
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Figure 8 Example of real-valued Discrete Fourier Transform (DFT) (bottom) 

for generated 5 Hz sinewave (top) with unit amplitude sampled at 80Hz [27] 
 

The Fourier transform is useful for signals with stable frequency content. However, when 

signals contain varying frequencies or amplitudes, the Fourier transform alone becomes 

insufficient for understanding how the signal's contents change over time. In natural 

environments, most sounds exhibit varying contributing frequencies. To examine how 

these frequencies and their amplitudes change over time, the Fourier transform can be 

utilized to convert the signal into its time-frequency representation. This representation 

can then be visualized and analyzed using a spectrogram, providing insights into the 

changing frequency content of the signal over time. 
  

2.1.4.3 The Spectrogram - Short-Time Fourier Transform 

As mentioned, for the sound preprocessing, 1D audio or speech signals are transformed 

from a 1D signal to a 2D signal. This 2D representation of the audio signal is then fed 

into a CNN model. The conversion from 1D to 2D is commonly performed to generate 

spectrograms, which capture the spectrum frequencies of an audio signal over time. 

Various techniques such as Fast Fourier Transform (FFT), short-term Fourier Transform 

(STFT), Mel-Frequency, Log-Mel-frequency, wavelet transform [31], and others can be 

employed to convert 1D audio signals into a 2D representation, as shown in Figure 10. 

Discrete Fourier Transform (DFT) is a method used to extract features from raw audio 

signals, converting signals from the time domain to the frequency domain to capture the 

phase and magnitude of each frequency component. However, DFT is not optimized and 

is challenging to apply to real-time discrete signals. In contrast, FFT, an optimized 

application of DFT, is suitable for real-time discrete signals and is defined as equation 

(5). 
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𝑆(𝑘) = ෎ 𝑆(𝑛)𝑒−𝑗
2𝜋
𝑁

𝑘𝑛⬚

𝑁−1

𝑛=0

(5) 

The magnitude spectrum, |S(k)| of a signal, is the magnitude of its frequency bin or 

frequency component number (k) at a given sample number (n). It is usually a complex 

value [32]. 

 
Figure 9 Convert waveform into Mel-spectrogram and an example 3-second segment. 

The Mel-spectrogram mimics how the human ear works, with high precision in the low-

frequency band and low precision in the high-frequency band. Note that the Mel-

spectrogram shown in the figures is already log-transformed [32] 

 

The Short-Time Fourier Transform (STFT) [33] is an algorithm in which the Fourier 

transforms of successive signal windows are performed on a given time-domain signal. 

This process results in frequency spectra that are "stacked," enabling visualization of how 

the frequency spectra change over time. The signal is split into smaller windows, then 

Fourier transform is computed on the samples within each window. The window is 

shifted forward by some samples, repeated until the entire input signal has been traversed. 

The Short-Time Fourier Transform (STFT) is an enhanced form of the Fourier Transform 

designed to capture both temporal and frequency details of signals. By segmenting the 

signal into fixed-sized time-domain windows and applying the Fourier Transform to each 

segment, STFT reveals various signal features. Essentially, STFT employs equally 

spaced, identical, and symmetrical bandpass filters in the frequency domain to analyze 

the signal. The mathematical expression for any signal 𝑠(𝜏) can be written as: 
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𝑆(𝑓, 𝑡) = න 𝑠(𝜏)
𝑇

−𝑇

𝑤(−𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏(6) 

To derive this representation, the signal 𝑠(𝜏) is divided into segments using a windowing 

function w(t) as defined in Equation 6. The length of the window must match the length 

of the signal segments, assuming that the signal remains stationary within each window 

duration. The spectrogram is then obtained using STFT by computing the magnitude 

squared value of the time-frequency representation value [34]., as expressed by the 

equation: 

 

𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚 = ȁ𝑆(𝑓, 𝑡)ȁ2(7) 

 

A Mel-spectrogram, on the other hand, can be derived directly from the raw signal. It 

leverages the Mel scale, which offers a perceptually linear scale corresponding to Hertz, 

defined by the following equation [35]: 

𝑀(𝑓) = 2595 ∗ 𝑙𝑜𝑔10(1 +
𝑓

700
)(8) 

Where 𝑀(𝑓) represents the Mel frequency for a given 𝑓. It is derived from a logarithmic 

scale and is associated with the human perception of sound [35]. This formula is based on 

the premise that frequencies exhibit a logarithmic relationship to pitch. Thus, it is utilized 

to transform frequencies into a Mel-frequency scale, which more accurately reflects how 

humans perceive pitch. 

Unlike the Short-Time Fourier Transform (STFT), the Continuous Wavelet Transform 

(CWT) does not depend on fixed window sizes and time shifts to determine time and 

frequency resolutions. Instead, the CWT utilizes a fundamental waveform called a 

"wavelet" to decompose the speech signal. This approach involves convolving the signal 

with shifted and scaled versions of the wavelet, accomplished through temporal shifting. 

𝐶𝑊𝑇(𝑢, 𝑠) =
1

ξ𝑆
න 𝑋(𝑡)

∞

−∞

𝛹∗(
𝑡 − 𝑢

𝑠
)𝑑𝑡(9) 

 
In this equation, X(t) represents the speech signal, u and s denote the shift and scale 

parameters, respectively, ψ represents the mother wavelet or base function and ∗ denotes 

the complex conjugate operation. In the specific study referenced [36] (Vergara et al., 

2020), the chosen mother wavelet is the Morlet wavelet. To summarize, raw 1D audio 

signals or spectrograms can be utilized as input to a CNN model.  

 

Three spectrograms, the CQT (Constant-Q transform) spectrogram, Magnitude 

spectrogram, and Mel spectrogram, are widely used in Acoustic Classification [37]. The 

CQT Spectrogram, based on the Constant-Q Transform, utilizes varying frequency 

resolutions that align with the human ear's perception of pitch. It offers increased 

frequency resolution at higher pitches, making it particularly useful in music-related 

applications such as pitch analysis, instrument classification, and timbre feature 

extraction [38]. The Magnitude Spectrogram represents the amplitude of a sound signal, 

capturing changes over time and across frequencies. It is widely used in speech 

recognition, sound feature extraction, and music analysis, where visualizing the dynamic 
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amplitude of sound is crucial [39]. The Mel Spectrogram is derived from the Magnitude 

Spectrogram by applying Mel-frequency filters, which better simulate human auditory 

perception. It features higher frequency resolution in the lower range and is extensively 

used in tasks like speaker recognition, emotion recognition, and music genre 

classification [35]. 

By selecting the appropriate spectrogram type tailored to specific application 

requirements and sound characteristics, pertinent features of sound signals could be 

effectively extracted and represented. This facilitates sound recognition, classification, 

and analysis across various scenarios and tasks. In marine acoustic research, Magnitude 

Spectrogram and Mel Spectrogram are prevalent choices. Given the intricate frequency 

patterns often found in whale vocalizations, Magnitude Spectrogram is favored for its 

high-frequency resolution and adaptability. It enables researchers to visualize and explore 

the spectral intricacies of whale vocalizations, facilitating species identification, 

behavioral analysis, and other research objectives. Nonetheless, the selection of 

spectrogram type may vary depending on the research objectives and the unique 

characteristics of the whale vocalizations under study. 

 

 

As illustrated in Figure 10, relevant Call Type information is revealed more clearly in the 

Mel spectrogram. Therefore, in the experiment of chapter, wave files are converted to 

Mel spectrogram vectors as the input of CNN model. 

 

Figure 10 Comparison of waveform (time-domain), Linear Spectrogram (Frequence-domain) 

drawn by Ford, generated by Python Library Librosa and Mel Spectrogram for SRKW Call Type 

S03 
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2.1.5 Apply Normalization to Vectors 

2.1.5.1 Standardization vs Normalization 

Standardization is typically performed after data loading and before any model training. 

This process involves removing the mean and scaling the data to unit variance, which 

helps to handle different scales in the data and ensures that all features have an equal 

impact on the model [40]. The correct execution involves calculating the mean and 

standard deviation for each feature within the training set and then using these parameters 

to transform both the training and testing datasets. This method prevents information 

leakage and ensures fairness in model evaluation. 

 

Similarly, normalization is applied before model training, usually right after data loading. 

For deep learning models, particularly those dealing with image data, normalization (such 

as Min-Max normalization or L2 norm normalization) aids in faster convergence [41]. L2 

norm normalization scales each data point, such as an image or vector, so that its overall 

length (norm) equals 1. In contrast, Min-Max normalization adjusts the data range to a 

specified interval, usually [0,1] or [-1,1]. Normalization is crucial in processing image 

and audio data, as it helps the model handle varying input scales and distributions more 

effectively. 

 

It is essential to ensure that the same standardization and normalization parameters are 

used for both the training and testing sets, which typically involves deriving these 

parameters from the training data and applying them consistently across all data splits. 

 

In summary, data preprocessing involves standardization to ensure that features are on the 

same scale during model training and normalization to help models, especially those 

using distance-based algorithms, focus on the data's shape rather than its size. Given the 

context of audio vector data, normalization was performed in the practical code example 

provided. 

2.1.5.2 Normalization for Acoustic Dataset 

Applying normalization techniques to input vectors before the training of a CNN 

(Convolutional Neural Network) Acoustic Classification model can offer several benefits. 

Normalization helps in stabilizing the training process by ensuring that the input data to 

the network remains within a certain range. This can lead to faster convergence during 

training, as the optimization algorithm can more effectively update the model parameters 

[42]. Additionally, Normalization can mitigate the effects of overfitting by preventing the 

network from becoming too sensitive to the scale of input features [43] . By keeping the 

input data within a standardized range, normalization can help the model generalize better 

to unseen data. Normalization can improve gradient propagation through the network 

layers during backpropagation, making the training process more efficient and stable. 

This can alleviate the vanishing or exploding gradient problem, especially in deeper 

networks, leading to more stable and efficient training [44]. Normalization can also 
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enhance the robustness of the model to variations in input data by making it less sensitive 

to changes in scale, mean, or variance [45]. This can result in a more reliable model that 

performs consistently across different datasets or input distributions. Normalization 

techniques often require careful initialization of parameters, which can lead to more 

effective learning dynamics. This initialization strategy, combined with normalization, 

can help the network start training from a more stable and optimal state. 

 

Overall, normalization techniques such as Batch Normalization or Layer Normalization 

can significantly contribute to stable training, faster convergence, and improved 

generalization performance of CNN Acoustic Classification models, provided their 

advantages and disadvantages are carefully considered and appropriately managed during 

model development and training. 

2.2 Define CNN Model 

2.2.1 CNN structure 

With the training data now prepared for model training, the design of a neural network for 

training vector data can proceed. The upcoming sections will provide in-depth 

explanations of deep learning neural networks, focusing on the concepts utilized in the 

proposed systems. Initially, artificial intelligence algorithms were designed to mimic how 

the human brain learns from environmental activities. Hence, they are referred to as 

Artificial Neural Networks (ANNs). The term "deep" indicates that these networks have 

more layers than traditional systems and can become larger [46]. Subsequent chapters 

will also delve into basic concepts and methodologies from the literature of machine 

learning and deep learning for Acoustic Classification. 

 

CNNs for acoustic classification typically comprise various components, including 

multiple convolutional layers, Rectified Linear Unit (ReLU) activation functions, pooling 

layers, fully connected layers (also known as dense layers), and a Softmax layer, as 

depicted in Figure 11. A convolutional layer in a CNN applies convolutional filters to the 

input signal to generate feature maps, which are then forwarded to subsequent layers for 

further processing.  
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Figure 11 Structure of CNN [47] 

 

Each layer within a Convolutional Neural Network (CNN) for acoustic classification 

plays a distinct role in the overall architecture. The following sections provide a brief 

explanation of the main layer types of CNN. 

 

2.2.2 Input Layers 

 

The input layer is the initial data entry point for the neural network. In the case of 

acoustic classification tasks using a Mel Spectrogram, the input layer consists of a 2D 

array that represents the time-frequency representation of the audio signal on the Mel 

scale. This Mel Spectrogram input captures the intensity of various frequency 

components over time, effectively modeling the perceptual characteristics of human 

hearing. By encoding these auditory features into a structured format, the CNN can then 

process and analyze patterns in the audio data, similar to how it handles image data in 

computer vision tasks. This approach is particularly effective for tasks such as speech 

recognition, emotion detection, and acoustic classification. 

 

2.2.3 Convolutional Layer 

 

Convolutional Neural Networks (CNNs) excel in handling multidimensional data, a 

strength recognized since their introduction by Y. LeCun [48]. A typical CNN architecture 

consists of numerous convolutional layers, each featuring a set of filters that learn 

through training. These filters are smaller than the input data and convolve across the 

input space to produce output layers. Filters are small matrices that are slid or convolved 

on the input data. In contrast, filters are a set of kernels used to extract various features 

from the input, allowing the neural network to learn hierarchical representations. The 

process captures the spatial and temporal dependencies within the data using fewer 

parameters, leveraging the strength of the filters to detect patterns efficiently. This 

mechanism enables CNNs to effectively identify and understand complex features in both 

images and audio representations.  
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Figure 12 Filters in CNNs [46] 

 

The filter is applied on each blue box and creates a cell in the output. Colors in the output 

are matched with the corresponding box color (Figure 12). The * denotes a convolution. 

 

2.2.4 Pooling 

  

The pooling layer is responsible for spatial size reduction. Pooling layers result in 

decreased computational power, and they are useful for extracting the dominant features 

in a positional-invariant and rotational way that can maintain the effective training 

process. Max and Average pooling are the common ways of implementing the pooling 

layer, as shown in Figure 13. In Max pooling, the filter returns the maximum value from 

the input, while the Average pooling returns the mean of the input. Pooling layers reduce 

the spatial dimension of the feature maps generated by convolutional layers. For example, 

Max Pooling selects the maximum value from a set of values, focusing on the most 

salient features. Meanwhile, average pooling reduces the spatial dimension. 

 
Figure 13 Max Pooling vs Average Pooling [46] 
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2.2.5 Fully Connected Layers 
 

Fully connected layers (also known as dense layers) consist of neurons where each 

neuron is connected to all the input data that comes to the layer, either from a previous 

layer or directly from the model's input. 

 

The mathematical operation performed by each neuron in a fully connected layer can 

indeed be divided into two parts. In the part of Linear Combination, the neuron computes 

a weighted sum of its inputs, along with a bias term. Mathematically, this operation can 

be represented as: 

 

𝑧𝑖 = 𝜋𝑟2 ∑ 𝜔𝑖𝑗 × 𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1     (10) 

 

Where i is the neuron number, j is the input number. ij represents the weight of the 

connection between input, 𝜔𝑖𝑗represents the weight of the connection between input j, 

and neuron i. 𝑥𝑗represents the input value from the previous layer or the model's input. 𝑏𝑖 

represents the bias term for neuron i. n is the total number of inputs to the neuron. After 

computing the linear combination, the result is passed through an activation function. 

Common activation functions include ReLU (Rectified Linear Unit), sigmoid, tanh, etc. 

This activation introduces non-linearity into the model, enabling it to learn complex 

patterns and relationships within the data. This process is repeated for each neuron in the 

fully connected layer, producing the layer's output, which then serves as input to the 

subsequent layer in the neural network. Figure 14 typically illustrates the mathematical 

representation of a single neuron, highlighting how it takes input signals, computes a 

weighted sum, adds a bias, and applies an activation function to produce an output. 

 
Figure 14 A schematic drawing of the activation function [46] 

 

2.2.6 Activation Functions 

 

Activation functions are integral parts of any neural network as they allow the model to 

go beyond the trivial linear problems and generalize and adapt with various nonlinear 
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combinations of input passing through multiple layers. There are many activation 

functions, such as Rectified Linear Unit and Sigmod. Rectified Linear Unit (ReLU) is a 

piecewise function that outputs the input directly for positive inputs and returns zero 

otherwise. Figure 15 shows the plot for this function, which is described as,  

𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥)     (11) 

where x is the input. 

 
Figure 15 ReLU activation function [46] 

 

ReLU became quite popular due to its robustness in vanishing gradients and sparsity. 

Another advantage of ReLU is the low computational costs compared to much more 

complex activation functions. It helps the network learn complex relationships and makes 

the model more expressive. Which activation to use completely depends on your use 

case; in most cases, researchers use ReLU, but some activations can also be used, such as 

Sigmod. Sigmoid is a mathematical function that has an “S” shaped curve. A common 

example of such a function is the logistic function shown in Figure 16 and equation (12) 

[49]. Such function would be monotonic, continuous, and differentiable everywhere such 

as,  

𝜎(𝑥) =
1

1+𝑒−𝑥     (12) 

Where x is the input. 

 
Figure 16 Sigmoid activation function [46] 

 

2.2.7 Dropout layer 
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The Dropout layer is used for regularization to prevent overfitting. During training, 

random neurons are "dropped out", which means they are ignored, forcing the network to 

learn more robust and generalizable features. It helps prevent overfitting by randomly 

ignoring a small portion of input units during training.  

 

2.2.8 Batch Normalization 

 

Introduced by two Google researchers [40], batch normalization enhances the training 

efficiency and stability of neural networks by re-centering and re-scaling hidden layers. 

Although the exact rationale behind batch normalization remains under investigation, its 

efficacy has been demonstrated [40]. 

 

Batch normalization (BN) is employed in neural networks to expedite and stabilize the 

training process. It standardizes layer inputs through adjustment and scaling during 

training. The mathematical foundation of batch normalization encompasses 

normalization, scaling, and shifting operations. Let us delve into the mathematical 

framework of batch normalization. Consider a mini-batch of size m containing n features, 

the input to batch normalization can be summarized as follows: 

1. Mean Calculation calculates the mean 𝜇 of the mini-batch for each feature, 

where 𝑥𝑖 denotes the value of the i-th feature in the mini-batch. 

2. Variance Calculation compute the mini-batch variance 𝜎2 for each feature. 

3. Normalization standardizes the input by subtracting the mean and dividing 

by the standard deviation (𝜎) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑥𝑖−𝜇

ξ𝜎2+𝜀
   (13) 

 

Here, 𝜀 is a small constant added to avoid division by zero.  

 

4. Scaling and Shift introduce learnable parameters γ and β to scale and shift 

the normalized values: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝛾 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + 𝛽     (14) 

 

Here 𝛾 represents the scale parameter, and 𝛽 represents the shift parameter. Batch 

normalization operations are typically inserted into neural network layers before 

activation functions. It has been demonstrated to possess regularization effects, 

alleviating issues such as internal covariate shift, thereby rendering training more stable 

and expedited.  

 

2.2.9 Flatten Layer and Regularization 

 

Flatten layer transforms multi-dimensional feature maps into one-dimensional vectors, 

preparing the data for input into fully connected layers. Regularization is a technique 

used to control the process of fitting the model to the training set and avoid overfitting. 

This method tries to discourage the model from learning too much complex function that 

fits perfectly into the training set but would perform poorly on the unseen test set [50]. 
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2.3 Train CNN model 

2.3.1 Data Segmentation 
 

A typical training process for the CNN audio classification model will start with 

segmenting the audio spectrograms into training, validation, and test sets [51]. Training 

Set is used to train the CNN model's parameters by feeding the spectrograms and their 

corresponding labels into the model. The model learns to recognize patterns and features 

from the training data, adjusting its weights through backpropagation to minimize the 

chosen loss function. A larger training set helps the model learn diverse features and 

generalize unseen data better. Validation set is used to evaluate the model's performance 

during training and tune hyperparameters. By monitoring metrics such as accuracy or loss 

on the validation set, early signs of overfitting or underfitting can be detected, allowing 

for necessary adjustments. This set assists in selecting the best-performing model and 

helps prevent over-optimization to the training data. Once the final trained model is 

generated, the test set is reserved for evaluating its performance. It provides an unbiased 

estimate of the model's generalization ability to unseen data and helps assess its 

robustness and reliability in real-world scenarios. 

 

Typically, a certain percentage of the data is allocated to each set, such as 70% for 

training, 15% for validation, and 15% for testing. Segmenting the data in this manner 

ensures that the model's performance is rigorously evaluated and helps prevent data 

leakage or bias in performance estimation. 
 

2.3.2 Define Model 

 

Based on the process described in Section 2.2, the architecture of the CNN model is 

defined with several key components: Convolutional Layers, Activation Functions, 

Pooling Layers, Fully Connected Layers, and the Output Layer. The Convolutional 

Layers apply learned filters to the input spectrograms to capture spatial hierarchies of 

features. These layers perform a series of convolution operations represented as: 
 

𝑧(𝑙) = 𝑊(𝑙) ∗ 𝑥(𝑙) + 𝑏(𝑙)    (12) 
 

where 𝑊(𝑙) represents the filters at layer 𝑙, 𝑥(𝑙) is the input to the layer, 𝑏(𝑙) is the bias term, 

and ∗ denotes the convolution operation. The output 𝑧(𝑙) is then passed through a non-

linear activation function such as ReLU, defined as: 

 

𝑎(𝑙) = 𝑅𝑒𝐿𝑈൫𝑧(𝑙)൯ = max (0, 𝑧(𝑙))    (12) 

 
After convolution and activation, pooling layers reduce the spatial dimensions, often 

through max-pooling operations, to retain the most prominent features while lowering 

computational complexity. Pooling is represented as: 

 

𝑎𝑝𝑜𝑜𝑙
(𝑙)

= 𝑚𝑎𝑥𝑝𝑜𝑜𝑙_𝑟𝑒𝑔𝑜𝑛
⬚ (𝑎(𝑙))   (13) 
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The resulting feature maps are then flattened and passed into Fully Connected Layers, 

where the learned features are combined to produce the final predictions. These layers 

apply matrix multiplication followed by an activation function, typically represented as: 

 

𝑧(𝑙+1) = 𝑊(𝑙+1) ∗ 𝑎(𝑙) + 𝑏(𝑙+1)    (12) 

 

Finally, in the Output Layer, a softmax function is applied to compute the class 

probabilities for multi-class classification problems: 

 

𝑃(𝑦 = 𝑐ȁ𝑥) =
𝑒𝑧𝑐

∑ 𝑒𝑧𝑘𝐶
𝑘=1

  (12) 

 
Where 𝑧𝑐 is the output for class c and 𝐶 is the total number of classes. 

 

Before training begins, the CNN model is initialized with random weights, often sampled 

from a distribution such as Xavier or He initialization [53]. During training, the weights 

are iteratively adjusted using the backpropagation algorithm, which involves computing 

the gradient of the loss function with respect to each weight. This gradient is computed 

using the chain rule of calculus: 

∂𝐿

∂𝑊(𝑙) = 
∂𝐿

∂𝑧(𝑙) ×
∂𝑧(𝑙)

∂𝑊(𝑙)  (12) 

 

where 𝐿 is the loss function, typically cross-entropy for classification tasks. The gradients 

are then used to update the weights via gradient descent or its variants, such as stochastic 

gradient descent (SGD) or Adam. The weight update rule for SGD is expressed as: 

 

𝑊(𝑙) = 𝑊(𝑙) − 𝜂 ×
∂𝐿

∂𝑊(𝑙) 
⬚

    (12) 

 

where 𝜂 is the learning rate. In adaptive optimizers like Adam, learning rates are adjusted 

for each parameter based on estimates of first and second moments of the gradients, 

leading to faster convergence [54]. 

 

This process of forward propagation, loss computation, backpropagation, and weight 

updates continue iteratively over the training data until convergence. The architectural 

design of the CNN model balances model complexity, computational efficiency, and 

performance, ensuring that the model can effectively capture features from the audio 

spectrograms while being computationally feasible. 

 

2.3.3 Training Loop 

 

In the training loop, the training data is iterated over in mini-batches. For each batch, a 

series of steps is performed. First, the input spectrograms are passed through the CNN 

model to compute the predicted probabilities for each class. Next, the loss between the 
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predicted probabilities and the actual labels is calculated using the chosen loss function. 

After calculating the loss, the gradients of the loss with respect to the model parameters 

are computed using the backpropagation algorithm. Finally, the model parameters are 

updated using the optimizer based on the computed gradients. 

 

After each epoch, the model's performance is evaluated on the validation set. This 

evaluation involves computing metrics such as accuracy, precision, recall, and F1-score 

to assess the model's effectiveness. Early stopping is implemented by monitoring the 

performance on the validation set and halting the training process if performance does not 

improve over a specified number of epochs. This technique helps prevent overfitting and 

ensures that the model generalizes well to unseen data. 

 

2.3.4 Model Evaluation 
 

Once training is complete, the final model is evaluated on the test set to obtain unbiased 

performance metrics. Five metrics—Accuracy, Recall (Sensitivity), Specificity, F1, and 

Precision—are computed on the test set to assess the model's generalization ability. 

 

2.3.5 Result Interpretation 
 

Finally, the results are analyzed to understand the model's strengths and weaknesses. The 

analysis helps identify any patterns or classes that the model struggles to classify 

accurately. Based on this evaluation, adjustments to the model architecture, 

hyperparameters, or data preprocessing steps may be made to further improve 

performance if necessary. 

 

2.4 Limitations and Challenges of CNN Models 

Training CNN models on small-annotated call type dataset may encounter the challenge 

of overfitting because of following reasons Training CNN models on small-annotated 

call type datasets may encounter the challenge of overfitting due to several factors: 

 

• Limited dataset size: Small-sample datasets may not provide enough data to capture 

comprehensive features, leading to the model's inability to generalize well to new 

data samples. 

• Model complexity: If the model's complexity is too high, it may attempt to memorize 

noise and outliers in the training set rather than learning general patterns, resulting in 

poor performance on new data. 

• Data imbalance: When the number of samples varies significantly across different 

classes, the model may focus more on the classes with more samples and neglect 

those with fewer samples, leading to decreased performance. 

 

One potential solution for small-annotated call type dataset classification is the use of 

Siamese networks [10]. Siamese networks are neural network architectures used for 

metric learning and are commonly applied to address small-sample classification 
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problems. These networks learn a similarity measure between samples to perform 

classification. In the next chapter, the similarity measure will be elaborated upon, and 

Siamese networks will be applied to resolve the few-shot learning (FSL) problem for 

SRKW call type classification. 
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CHAPTER 3 EVOLUTION TOWARDS CALL SIMILARITY FROM 

CLASSIFICATION 

The distinction between similarity measurement and classification in audio processing is 

crucial. Similarity measurement compares features between two data points to quantify 

their resemblance, making it simpler than classification, which requires mapping a data 

point to one of many categories. Recent research highlights advance in machine learning 

models tailored for similarity-based tasks. 

 

For example, the study of audio similarity search using distance measures such as 

Gaussian Mixture Models (GMMs) or Hidden Markov Models (HMMs) demonstrates the 

relative simplicity of measuring similarity by comparing distributions of feature vectors 

directly, rather than classifying them into categories [55]. However, research on 

similarity measurement using deep learning in the audio processing domain, especially 

when it comes to utilizing deep learning for similarity measurement, has been relatively 

limited [56]. Hence, despite the potential importance of similarity measurement in the 

audio processing domain, there are still many challenges and research opportunities. This 

chapter investigates Siamese networks for SRKW Call Type similarity measurement.  

 

3.1  Motivation (From CNN to Siamese Network)  

 

This thesis aims to associate an audio clip of a call with an assigned label  “Call Type”, 

namely classification. Achieving such predictions requires not only a labeled sound 

dataset but also a method to measure whether a sound corresponds to a certain label. 

Instead of asking the question "which call type does sound X belong to?", the problem 

can be reframed as a task of measuring sound similarity, essentially transforming the 

question to "does sound X1 belong to the same class (call type) as sound X2?" 

 
In the realm of deep learning, employing Siamese Neural Networks (SNNs) to address 

the challenge of measuring similarity between inputs is a prevalent approach. This 

approach can be motivated by first examining some of the limitations inherent in the 

common approach to this general problem of multi-class classification. 

 

In traditional multi-class classification tasks, neural networks are typically equipped with 

an output layer consisting of neurons denoted as {𝑎𝑖
[𝐿]}

𝑖=1

𝑚
 activated by the softmax 

function: 
 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖)=
𝑒𝑎𝑖

∑ 𝑒
𝑎𝑗𝑚

𝑖=1

        (15) 

 
The softmax activation function is employed because its output values resemble class 

probabilities, satisfying the requirement that the sum of all probabilities equals 1 

(∑ 𝑎𝑗𝑗 =1). Training such a network typically involves using the negative log-likelihood 



34   

  

function as the loss function and employing one-hot encoding for the labels. The choice 

of the negative log-likelihood function as the loss function is inspired by concepts from 

entropy and information theory, as explained in Chapter 1 of [57]. Additionally, it is 

possible to train the classification layer directly using the cross-entropy loss function 

without the need to activate the output layer with softmax. However, during inference, 

activating the output by softmax is still necessary to obtain meaningful predictions. One-

hot encoding represents the label as a binary vector where the target class is marked with 

a 1, and all other classes are marked with 0. This encoding can be interpreted as a 

probability distribution where the target class has a probability of 1 and all others have a 

probability of 0. 

 

 
Figure 17 The CNN architecture for call type classification 

 

The input spectrogram initially undergoes processing through CNN architecture (Figure 

17). This process aims to encode the image into its fundamental components, represented 

by the embedding layer, which is depicted as a 1×D dimensional vector (illustrated as a 

rounded rectangle with circles to represent the neurons in the embedding layer). 

Subsequently, the embeddings are fed into a classification layer, which outputs a 

probability distribution over the number of classes, where each output neuron 

corresponds to a class. 

 
The approach of category prediction, while effective, comes with significant drawbacks. 

A fundamental requirement for any deep learning model is a substantial dataset to 

effectively teach the model about the general distribution of each class. However, in 

SRKW call type classification scenarios, acquiring large amounts of annotated and 

labelled data can be expensive and time-consuming. While data augmentation techniques 

can mitigate this issue to some extent (see section 2.1.2), obtaining original data remains 

crucial for most deep-learning tasks. 

 

Another limitation of the category prediction approach is its lack of flexibility in 

accommodating new classes. If a new class (new SRKW call type) needs to be included, 

the entire network must be retrained, and a new neuron must be added to the 

classification layer. 
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Multi-class classification by similarity prediction addresses the limitations highlighted in 

category prediction, a viable solution is to train the model to discern similarity or 

dissimilarity between two calls. Siamese Neural Networks (SNNs) are commonly 

employed to train a neural network to measure similarity between inputs [58]. The 

fundamental concept behind SNNs involves establishing multiple instances of the same 

network that share both the network architecture and parameters. The primary objective 

of the network architecture is to decode or down-dimensionalize the inputs into an 

embedding space intelligently. This process ensures that inputs belonging to the same 

class are mapped closely together in some sense, while inputs from different classes are 

mapped farther apart. Figure 18 illustrates the core idea of such architecture and 

parameter sharing, along with how a trained decoding network effectively maps similar 

inputs close together. 

 
Figure 18 The structure of Siamese Neural Networks 

 

The concept of parameter-sharing architecture was initially introduced by Bromley [59] 

for signature verification and independently developed for matching pairs of fingerprints 

by Baldi [60]. Since their inception, they have become more effective in recent years, 

largely due to hardware advancements, although they typically require a significant 

amount of time to train. 

 

In the context of this thesis, both category and similarity prediction approaches learn to 

generate an embedding vector indirectly, meaning that the loss function is not explicitly 

designed to operate directly with the embeddings. Instead, training is conducted by 

considering the embedding vector itself rather than the outputs of a classification layer 

that indicates "same" or "different". This approach is inspired by the findings of the 

FaceNet [61], which demonstrated superior performance when training the embeddings 

directly compared to DeepFace [62], which utilized a classification layer for embedding 

training. 

  

3.2 Loss Functions 

The effectiveness of Siamese networks largely depends on the choice of the loss function 

during training, which guides the network to learn discriminative features. There are 

several loss functions used in Siamese Neural Networks. 
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3.2.1 Contrastive Loss 

 

Contrastive loss is a widely used loss function for training Siamese networks [63]. It aims 

to ensure that pairs of similar inputs are closer in the embedded space, while pairs of 

dissimilar inputs are farther apart. The loss function is defined as follows: 

𝐿(𝑌, 𝐷) = (1 − 𝑌)
1

2
(𝐷)2 + (𝑌)

1

2
𝑚𝑎𝑥(0, 𝑚 − 𝐷)2       (16) 

 

Where Y is the label indicating if the pair is similar (0) or dissimilar (1). 𝐷 is the 

Euclidean distance between the outputs of the two inputs in the pair. 𝑚 is the margin, a 

hyperparameter that defines how far apart the dissimilar pairs should be. 𝐷 aims to 

quantify the distance between the embeddings 𝑓(. ) of the Acoustic vectors 𝑋1 and 𝑋2: 

 

𝐷(𝑋1, 𝑋2) = ‖𝑓(𝑋1) − 𝑓(𝑋2)‖      (17) 

 

The advantage of contrastive loss is that it is effective in learning discriminative features 

by pushing apart dissimilar pairs beyond a margin, which is relatively simple to 

implement and understand. However, choosing an appropriate margin can be challenging. 

It may not fully exploit the structure of the embedding space, focusing only on pairwise 

distances. 
 

3.2.2. Triplet Loss 

 

The Triplet Loss function, described in detail in the FaceNet [64], highlights its 

effectiveness by exploiting relationships between three different data in a single 

observation, called triples, to produce high-quality image embeddings. A triplet includes 

an anchor A, the input image (or acoustic vector) embedding as a reference point; a 

positive P: another input image embedding with the same identity or category as the 

anchor, which means it is similar to the anchor; a negative N: an input image embedding 

that have a different identity or category than the anchor, making them dissimilar. The 

goal of the Triplet Loss function is twofold. First, it minimizes the distance between 

anchor points and vertex embeddings. This is the  “pull-in” aspect, which encourages the 

network to bring embeddings of similar images or share the same identity closer; 

secondly, it maximizes the distance between the anchor and negative embeddings. This is 

the “pushing away” aspect, which aims to separate the embedding of anchors from the 

embedding of dissimilar or dissimilar identity images. 
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Figure 19 Illustrative example of what the Triplet Loss attempts to achieve in order to 

directly learn image embeddings. Notice that the distance between A and P is not directly 

paid attention to (FaceNet [64]) 

 

Triplet Loss can be expressed as: 

 

𝐿 = 𝑚𝑎𝑥(𝑑(𝐴, 𝑃) − 𝑑(𝐴, 𝑁) + 𝑚𝑎𝑟𝑔𝑖𝑛, 0)    (18) 

 

Where 𝑑(𝐴, 𝑃) is the distance between the anchor point and the positive point 

embedding. 𝑑(𝐴, 𝑁) is the distance between the anchor point and the negative point 

embedding. 𝑚𝑎𝑟𝑔𝑖𝑛 is a hyperparameter that defines the minimum difference between 

𝑑(𝐴, 𝑃)and 𝑑(𝐴, 𝑁) to be considered for training. The margin is crucial because it 

prevents the network from trivial solutions and ensures that the positive and negative 

pairs are separated by a distance that is meaningful enough to differentiate between 

similar and dissimilar images effectively. 

This loss function has shown great success in various applications, particularly in 

improving the accuracy of face recognition systems by learning an embedding space 

where distances directly correspond to a measure of face similarity. 

The triplet loss encourages relative comparisons, which can lead to a more structured 

embedding space. It’s more effective than contrastive loss in many cases by considering 

anchor-positive and anchor-negative relationships. On the other hand, it requires careful 

selection of triplets during training to avoid poor local minima. Its training can be slower 

due to the need to process triplets. 
 

3.2.3 Other loss functions 

3.2.3.1 Quadruplet Loss 

Chen et al. [65] proposed Quadruplet loss to extend the concept of triplet loss by 

introducing a fourth element, aiming to push the negative example further from the 

anchor. It uses two margins and considers two negative examples to enhance 

discriminative power. Its advantages include greater flexibility and potential for 

discriminative feature learning, and improved model generalization. However, it is more 

complex and computationally expensive, and selecting meaningful quadruplets can be 

challenging. 
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3.2.3.2 Center Loss 

Center loss is used alongside other loss functions to enhance the learning of 

discriminative features [66]. It reduces intra-class variations while keeping different 

classes separable. It includes effectively enhancing the compactness of the same class in 

the embedding space and is combinable with other loss functions for optimal inter-class 

separability and intra-class compactness. However, it requires additional hyperparameter 

tuning and can be sensitive to the initialization of center parameters. 

 

3.2.3.3 Margin Loss 

In [67], Margin loss was applied to ensure that similar pairs have a smaller distance than 

a certain margin while dissimilar pairs have a larger distance, making it effective for tasks 

involving fine-grained similarity measures. Its advantages include flexible margin 

settings leading to a discriminative embedding space and suitability for fine-grained 

similarity tasks. Disadvantages involve careful tuning of the margin parameter and 

sensitivity to outliers and noise in the data. 

 

3.2.3.4 Binary Cross-Entropy Loss 

Binary cross-entropy loss [46] is used for binary classification tasks within Siamese 

frameworks, measuring the difference between predicted and actual labels. Its advantages 

are direct interpretability in terms of probability and extensive support and optimization 

techniques. However, it may not capture the complexity of the embedding space for 

similarity learning tasks and is less effective for tasks requiring fine-grained distinctions 

between highly similar categories. 

 

When implementing a Siamese neural network, the choice of loss function should be 

guided by the specific characteristics of the dataset and the task at hand. Experimentation 

and validation are key to determining the most effective loss function for a given 

application. 

 

3.3 Dataset Pairs for Network Input 

Sufficient data samples are still crucial for the adequate training of Siamese Networks 

model. This necessity stems from the models' requirement to learn from a diverse and 

extensive set of examples to achieve generalization over the problem space. The dataset 

provided for this thesis is not immune to the common challenge of data scarcity, which 

poses a significant obstacle that needs to be addressed meticulously. 

Moreover, the focus on Siamese Neural Networks within this thesis introduces additional 

considerations concerning the structure and definition of the dataset. Specifically, it 

necessitates a clear delineation of several key components: 



39   

  

1. Classes: The different categories or types within the data that the model needs to 

learn to distinguish between. In the context of audio processing, these could be 

different sounds, speakers, musical instruments, or any other distinct auditory 

categories. In this thesis, they are Call Types of Southern Resident killer Whale 

in Pacific Ocean. 

2. Audio Samples: The individual pieces of audio data that serve as the input to the 

network. Each sample is an instance that belongs to one of the predefined 

classes and contains the acoustic characteristics that the model must learn to 

recognize and differentiate. 

3. Positive/Negative Pairs: For Siamese Neural Networks, which learn to gauge 

the similarity or dissimilarity between two inputs, the dataset must be organized 

into pairs of audio samples. A positive pair consists of two samples from the 

same class, indicating similarity, while a negative pair is composed of samples 

from different classes, denoting dissimilarity. The network learns from these 

pairings to discern the features that contribute to the audio samples being 

classified as similar or not. 

 

Table 4 Data pairs created from S1, S2 and S10 as examples 

Call type Audio Clip IDs 

S1 1, 2, 3, 4, 5, 6, 7, 8 

S2 9, 10, 11, 12, 13, 14, 15 

S10 16, 17, 18, 19, 20 

Positive Pairs (1,2), (1,3), (2,3) …. 

Negative Pairs (1, 9), (1, 16), (2, 9) …. 

     

Figure 20 Call types with dozens of audio samples could generate thousands of 

positive/negative pairs 

          

Test set 

Training set 
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Table 4 and Figure 20 illustrate the process to generate audio data pairs. Despite the fact 

that each call type, such as S1, S2, and S10, contains no more than a few dozen samples, 

the number of samples experiences exponential growth when they are paired up in 

duplets. This process results in a dataset size that is fully capable of meeting the data 

volume requirements for computing similarities between samples of various categories 

using a Siamese network. This pairing strategy essentially multiplies the dataset's utility 

for the Siamese network, enabling it to learn from a vastly expanded set of comparisons. 

By examining the similarities and differences across these pairs, the network can 

effectively learn nuanced distinctions between categories. 

 

Same to CNN training, 88% and 12% of data pairs is allocated to the Training and 

Testing. 20% out of 88% training data pairs are dedicated as a Validation Set for tuning 

and optimizing is highly effective. This setup facilitates iterative refinements based on 

validation feedback, promoting genuine model generalization. Such a distribution not 

only aids in safeguarding against overfitting but also ensures that the model exhibits 

robust performance on new, unseen data, thereby enhancing its utility and reliability in 

practical applications. 

 

3.4 Feature Extraction for Siamese Networks 

 
Figure 21 In Siamese Networks, input and the labeled sample go through three different 

stages: Preprocessing, Feature Extraction and Comparison [68] 
 

In Siamese Networks, input and the labeled sample go through three different stages: 

Preprocessing, Feature Extraction and Comparison [68]. Audio processing, converting 

audio files into vector data that can be recognized by convolutional neural networks 

(CNN), is a critical step. Section 2.1.4.3 discusses the conversion of audio files into 

Spectrogram and Mel Spectrogram. This process is designed to transform audio into 

vector data recognizable by CNNs, facilitating feature extraction through CNNs. Siamese 

networks also employ a similar approach, but research papers have demonstrated that the 

MFCC (Mel-Frequency Cepstral Coefficients) method can extract MFCC vectors more 

effectively [69]. This is because the vector data format generated by the MFCC method is 

compacter and yields good recognition results. MFCC extracts the features of the audio 

signal through the following steps illustrated in Figure 21: 
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Spectrum acquisition of the signal:  

Firstly, a Fourier transform (FFT) is performed on the audio signal 𝑦(𝑡) to obtain its 

spectrum. This step converts the signal from the time domain to the frequency domain. 

Log power spectrum:  

Then, the logarithm of the square of the spectrum's magnitude (i.e., the power spectrum) 

is taken. This step corresponds to the logarithmic operation part of the power cepstrum 

definition, that is, 𝑙𝑜𝑔 (ȁ𝐹{𝑦(𝑡)}ȁ2). The purpose of taking the logarithm is to simulate 

the non-linear perception of different loudness by the human ear and to convert the 

signal's multiplication operation into an addition operation, thereby simplifying the 

representation of the composite effects of the sound source and the vocal tract. 

Mel filter bank processing:  

Before calculating the traditional power cepstrum, the MFCC calculation maps the 

spectrum to the Mel frequency scale to simulate the human auditory perception system. 

This is unique to MFCC and does not appear in the traditional power cepstrum 

calculation steps. 

Inverse Fourier Transform:  

Finally, a discrete cosine transform (DCT) is applied to the logarithmic Mel power 

spectrum instead of a direct inverse Fourier transform (IFFT). The DCT operation here is 

equivalent to processing the logarithmic power spectrum, which helps reduce the 

correlation between features and extract useful acoustic features. This step can be 

considered a kind of "inverse transformation" of the logarithmic power spectrum, similar 

to the inverse Fourier transform (IFFT) of the power cepstrum, but more suitable for 

handling the spectrum under the Mel scale. 

 

Figure 22 Steps in calculating Mel Frequency Cepstral Coefficients 

In summary, although the traditional power cepstrum (obtained by applying a logarithmic 

operation to the spectrum of a signal and then performing an inverse Fourier transform) is 

not directly calculated in the calculation process of MFCC, MFCC adopts a similar 

processing flow — after performing a logarithmic operation on the spectrum, an "inverse 

transformation" is performed through Discrete Cosine Transform (DCT) instead of IFFT, 

and the spectrum is mapped to the Mel scale through the Mel filter bank [70]. The 

formula could be expressed as 
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𝑀𝐹𝐶𝐶[𝑘] = ∑ 𝑙𝑜𝑔 (𝑆[𝑛])𝑐𝑜𝑠 [𝑘(𝑛 +
1

2
)

𝜋

𝑁
]𝑁−1

𝑛=0      (19) 

Where 𝑀𝐹𝐶𝐶[𝑘] is the 𝑘𝑡ℎ Mel frequency cepstral coefficient, 𝑁 is the number of Mel 

filters, which is the dimension of the log Mel power spectrum, 𝑆[𝑛] is the logarithmic 

value of the power spectrum output by the 𝑛𝑡ℎ filter after processing through the Mel 

filter bank, 𝑙𝑜𝑔 (𝑆[𝑛]) is the log Mel power spectrum, The range of 𝑘 typically goes from 

0 to 𝑁 − 1, but in practical applications, usually, only the first few coefficients (for 

example, the first 12 or 13) are chosen because they contain the most important sound 

characteristic information. 

The core of this formula is mapping the log Mel power spectrum to the cepstral domain. 

The application of DCT has several important functions: it helps to decorrelate the 

coefficients of the Mel power spectrum (as these coefficients are often highly correlated) 

and effectively compresses the signal's information, concentrating the most important 

features into the lower cepstral coefficients. This makes MFCC very suitable for 

subsequent audio signal processing and pattern recognition tasks, such as voice 

recognition, speaker identification, and music information retrieval, etc. 

In the experiments of this thesis, opting for MFCC (Mel-Frequency Cepstral 

Coefficients) encoding over Mel and magnitude spectrograms as input for a Siamese 

network is a strategic decision aimed at balancing the trade-off between capturing 

detailed spectral information and managing data volume efficiently. While Mel and 

magnitude spectrograms offer a richer spectral representation, they significantly increase 

data volume when paired with positive and negative samples for Siamese Network 

training. MFCC encoding provides a more compact yet sufficiently informative 

representation of audio signals, facilitating faster processing and more efficient learning 

within the Siamese network, thereby addressing computational resource constraints and 

optimization challenges inherent in handling high-dimensional data. 

3.4.1 A comparative analysis between Mel-Frequency Cepstral 

Coefficients (MFCC) and the Mel Spectrogram 

Mel-Frequency Cepstral Coefficients (MFCC) and Mel Spectrogram (mentioned in 

Section 2.1.4.3) are both pivotal techniques in audio signal processing. They serve as 

foundational tools in various applications, particularly in speech and audio analysis [71]. 

A comparative analysis of these two methods reveals distinct advantages and limitations 

inherent to each. 

MFCCs are highly regarded for their efficacy in capturing the essential characteristics of 

speech sounds, particularly the resonant frequencies critical for phonetic differentiation 

[72]. The extraction process of MFCCs encompasses several stages: pre-emphasis, 

framing, windowing, Fast Fourier Transform (FFT), Mel filter bank processing, 

logarithmic transformation, and ultimately, the Discrete Cosine Transform (DCT) [73]. 

This comprehensive sequence culminates in a compact representation of the audio signal, 

significantly reducing its dimensionality. The resultant lower-dimensional feature set not 

only enhances computational efficiency but also ensures robustness and expeditious 

processing, attributes that render MFCCs particularly suitable for real-time speech 

recognition applications [74]. 
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However, there are drawbacks to the MFCC methodology. A salient limitation is the loss 

of phase information during the transformation process, a factor that can be detrimental in 

certain audio-processing contexts. Additionally, MFCCs exhibit sensitivity to background 

noise, which can impair accuracy and reliability in noisy environments. This necessitates 

the implementation of meticulous pre-processing and noise reduction strategies to uphold 

performance standards in practical applications [75]. 
 

Conversely, Mel Spectrogram offers a more comprehensive representation of the audio 

signal by preserving detailed time and frequency domain information. This makes it 

exceptionally suitable for a broader spectrum of audio analysis tasks, such as music 

classification and sound event detection [76]. The richness of the temporal and spectral 

information encapsulated in the Mel Spectrogram facilitates enhanced visualization and 

interpretation of audio content. 

 

Nevertheless, the Mel Spectrogram's higher dimensionality relative to MFCCs introduces 

increased computational complexity and demands greater resources for processing and 

storage. This can pose significant challenges in scenarios where computational efficiency 

and rapid processing are paramount. The substantial volume of data inherent in Mel 

Spectrograms requires the deployment of sophisticated algorithms for effective 

processing and analysis [75]. 

 

Due to the fact that the train dataset size for the CNN is much smaller than the size of the 

Data Pair training set for the Siamese Network, e.g. 1,078 audio samples could generate 

260,085 audio pairs, the size of each individual record in training set after Feature 

Extraction is crucial. Although the Mel Spectrogram is richer in information on features 

compared to the MFCC vector, due to the limitation of hardware in this thesis, the author 

chose to use the Mel Spectrogram for Feature Extraction when training the CNN model 

and MFCC for Siamese Network. Additionally, the author plan to test the performance 

using MFCC as training data for the CNN to ensure the performance using the Mel 

Spectrogram not worse than MFCC. 

 

3.5 Siamese Networks Structure 

3.5.1 Basic structure of Siamese networks 

 

A basic Siamese neural network comprises identical twin networks, also known as 

subnetworks, that share the same weights. These subnetworks take separate input 

samples, and the output feature vectors of the networks are combined by a selected 

distance layer. Figure 26 depicts the architecture of a classic Siamese network described 

by Bromley [59]. 
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Figure 23 Layout of a Siamese Network [59] 

 

In basic Siamese network architecture, while traditional models typically process 1-

dimensional feature vectors through merge layers using distance functions, alternative 

implementations have emerged. These include concatenating feature vectors or 

employing multi-dimensional correlation models, allowing for the inclusion of additional 

layers—be it convolutional or fully connected beyond the merge point. Unlike classic 

Siamese networks that output directly after merging, these variants might use a logistic 

sigmoid function,  

𝜎(𝑧)=
1

1+𝑒−𝑧          (20) 

to map outputs to a (0,1) range. This mapping enables the output to serve as a probability 

or similarity score, offering a flexible way to quantify similarities between compared 

samples. This evolution in Siamese network design enhances their applicability across a 

wider range of tasks, especially those requiring detailed similarity assessments. 

 

3.5.2 Transferring knowledge from Image Classification models 

Despite the distinct differences between image and sound representations, highlighted 

during the preprocessing phase, research suggests that models initially devised for image 

classification, like those trained on ImageNet [76], can act as potent baseline networks for 

sound classification tasks [77]. This notion is supported by the shared representational 

structures between auditory and visual regions in the human brain, indicating that 

knowledge transfer across these domains could boost performance. Given ImageNet’s 

role as a benchmark in image classification, it’s fascinating to consider the potential of 

these high-performing models in tackling One/Few-Shot Learning challenges within 

audio classification. 

In audio classification, deep learning models such as AlexNet [78], DenseNet201[79], 

InceptionV3 [80], Xception [81], VGG [82], and ResNet18 [83], originally designed for 

image classification, have been effectively repurposed for feature extraction and 

classification involving audio data. By converting audio signals into spectrograms or Mel 

spectrograms, these models can process "visualized" audio data, extracting pivotal 

features. AlexNet, even though it has a large number of parameters, showcases potential 
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in audio classification due to its strong feature extraction and adaptability. DenseNet201 

enhances efficiency and reduces parameter count by interlinking each layer, proving 

particularly adept at capturing complex audio patterns. InceptionV3 and Xception 

leverage multi-scale and depthwise separable convolutions to effectively extract nuanced 

features. VGG’s deep, straightforward architecture excels in audio classification, 

especially with Mel spectrograms, while ResNet18’s residual connections overcome deep 

network training challenges, making it a viable option for audio classification. 

Though these models have garnered success in image processing, adapting them for audio 

classification requires careful consideration of model size, computational demands, and 

training data volume, along with adjustments to suit audio data characteristics. With the 

right preprocessing and feature extraction approaches, these models’ robust feature-

learning capabilities can be harnessed for audio data analysis, demonstrating the 

flexibility and cross-domain potential of deep-learning models. 

AudioSet [84] (Gemmeke et al. 2017) is one of the largest audio datasets accessible 

online, originating from the expansive video dataset known as YouTube-8M [85]. Upon 

its initial release, AudioSet provided a 128-dimensional embedding for each audio 

segment, encapsulated within a 0.96-second moving window. These embeddings were 

generated using a VGG-like classification model [81], laying the groundwork for the 

VGGish feature extractor (Figure 24). The feature extractor takes Mel Spectrograms of 

audio—prepared according to specified configurations—as input, producing a 128-

dimensional feature vector. A comparison network then utilizes this vector for further 

analysis (Figure 25).  

 

Figure 24 A representation of how the VGGish feature extractor would fit in the Siamese 

Network [81] 

The preprocessing stage for the VGGish feature extractor involves generating a Mel 

Spectrogram from the audio, adhering to the parameters outlined in a specific 

configuration table. This table details aspects such as the number of frames, bands, 

sample rate, STFT (Short-Time Fourier Transform) window and hop lengths, and overall 

window size. 

Originally inspired by the VGG image classification model, VGGish underwent 

modifications to adapt it for audio processing. This adaptation includes transforming the 

model's output into a 128-feature vector by replacing the image-focused Softmax layer 

with mechanisms suited for audio feature extraction. This innovative modification 
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highlights the flexibility of deep learning models, demonstrating their capability to 

transcend their initial domains and apply their powerful feature-learning frameworks 

across different types of data. 

 

Figure 25 A VGGish network is derived from VGG-16 (16-layer VGG Model [81] 

originally designed for image classification). Black cells are the same as VGG, and the 

last red fully connected cell is to create a 128-dimensional feature vector 

 

3.6 Similarity Comparison 

 

In the fields of audio processing and speech recognition, feature vectors are numerical 

sequences used to represent the characteristics of audio signals. Once feature vectors are 

extracted from each audio sample, a method is required to compare these vectors to 

determine the similarity or difference between audio samples. Cosine similarity and 

Euclidean distance are two commonly used methods for this purpose. 

 

Cosine similarity measures the angle between two vectors to determine their similarity 

in direction. Its values range from -1 to 1, where 1 indicates vectors in the exact same 

direction, 0 indicates vectors that are orthogonal (no similarity), and -1 indicates vectors 

in completely opposite directions [86]. Cosine similarity is calculated by taking the dot 

product of the two feature vectors and dividing it by the product of their magnitudes. This 

method is insensitive to the length of the vectors and primarily focuses on the difference 

in the angle between them, making it commonly used in text analysis, audio signal 

processing, and other fields.  

 

Cosine similarity is more suitable for scenarios such as text matching and audio/video 

recommendations, where the similarity in direction is more important than the absolute 

distance. For example, in a music recommendation system, the similarity in users' 

preference types may be more important than specific numerical differences. 

 

Euclidean distance, also known as L2 distance, measures the straight-line distance 

between two points in space [87]. In the context of feature vectors, it measures the actual 

distance between two points in a multidimensional space. Calculating the Euclidean 

distance between two vectors is relatively straightforward, involving the summation of 
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the squares of the differences between each pair of corresponding elements, followed by 

taking the square root. Unlike cosine similarity, Euclidean distance is very sensitive to the 

length and magnitude of the vectors and can be used to measure the absolute difference in 

values between two feature vectors. To address these limitations, normalization and 

feature scaling are implemented. 

By incorporating these preprocessing steps into both the training and testing phases, the 

robustness and interpretability of the results in audio processing or speech recognition 

tasks are aimed to be enhanced. 

 

3.6.1 Cosine Similarity 

 

Cosine similarity measures the angle between two vectors to determine their similarity in 

direction [86]. Its values range from -1 to 1, where 1 indicates vectors in the exact same 

direction, 0 indicates vectors that are orthogonal (no similarity), and -1 indicates vectors 

in completely opposite directions. Cosine similarity is calculated by taking the dot 

product of the two feature vectors and dividing it by the product of their magnitudes. This 

method is insensitive to the length of the vectors and primarily focuses on the difference 

in the angle between them, making it commonly used in text analysis, audio signal 

processing, and other fields.  

 

The probability of input and the labeled sample being in the same class can be calculated 

using cosine similarity as follows:   

𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐴𝑖×𝐵𝑖

𝑛
𝑖=1

ට∑ 𝐴𝑖
2𝑛

𝑖=1 ×ට∑ 𝐵𝑖
2𝑛

𝑖=1

     (21) 

Where 𝐴𝑖 and 𝐵𝑖 are the components of feature vectors A (input) and B (labeled sample), 

respectively. 𝑛 is the dimensionality of the feature vectors. After computing the cosine 

similarity between the input feature vector A and the labeled sample feature vector B, the 

result falls within the range [−1,1], where 1 indicates that the feature vectors are identical; 

0 indicates that the feature vectors are orthogonal, meaning there is no similarity; -1 

indicates that the feature vectors are exact opposites. To transform the cosine similarity 

into a probability range of [0,1] for belonging to the same class, the following formula 

can be used: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦+1

2
      (22) 

This transformation maps the cosine similarity score from the range [−1,1] to the 

probability range [0,1], where 0 represents low probability (no similarity) and 1 

represents high probability (high similarity). 
 

3.6.2 Euclidean similarity measure 

Euclidean distance, also known as L2 distance, measures the straight-line distance 

between two points in space [87]. In the context of feature vectors, it measures the actual 

distance between two points in a multidimensional space.  
 

Because the audio embeddings are trained through some form of distance 
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function/measure I, a natural way to evaluate the embedded MFCC audio pairs will be to 

use that same distance function/measure used during training. As such, this thesis uses the 

Euclidean distance function 𝐷𝐸  for training and will use the same metric for evaluating 

MFCC audio pairs. The Euclidean similarity metric 𝑆𝐸 is described as follows: 
 

𝑆𝐸൫𝑓(𝑋1), 𝑓(𝑋2)൯ = ‖𝑓(𝑋1) − 𝑓(𝑋2)‖2 

= ඥ[𝑓1(𝑋1) − 𝑓1(𝑋2)]2 + [𝑓2(𝑋1) − 𝑓2(𝑋2)]2 + ⋯ + [𝑓𝐷(𝑋1) − 𝑓𝐷(𝑋2)]2 

= ඥ∑ [𝑓𝑑(𝑋1) − 𝑓𝑑(𝑋2)]2𝐷
𝑑=1            (23) 

 

Thresholding the Euclidean similarity 𝑆𝐸 by value 𝜏 is a critical step in evaluating the 

models. This process defines a similarity measure scheme 𝑆, which determines whether 

an image pair (𝑋1, 𝑋2) should be classified as a similar pair (0) or a dissimilar pair (1): 

 

𝑓(𝑥) = ቊ
0, 𝑆𝐸൫𝑓(𝑋1), 𝑓(𝑋2)൯ < 𝜏

1, 𝑆𝐸(𝑓(𝑋1), 𝑓(𝑋2)) ≥ 𝜏
              (24) 

 
The choice between these two similar measurement methods depends on the specific 

requirements and the nature of the data. Sometimes, for optimal performance, both 

methods may be combined with other methods for more complex similarity measures. 

 

3.7 Model Evaluation 

This section covers the performance measures applied in the thesis and aims to cover 

their strengths and weaknesses. 

 

3.7.1 Confusion matrix 

Assume that S is a scheme used to determine whether two embeddings are equal or 

different, where 𝑦𝑖,𝑗

^
= 𝑆൫𝑓𝑖 , 𝑓𝑗൯ = 0 denotes a positive pair (two samples from the same 

call type), and 𝑦𝑖,𝑗

^
= 𝑆൫𝑓𝑖 , 𝑓𝑗൯ = 1 denotes a negative pair (two samples from the 

different call type. The confusion matrix is defined in Siamese Network testing as: 

Given that the model produces binary results in the form of 𝑦
^

= {0,1}, a binary confusion 

matrix is instrumental. The structure of a binary confusion matrix is illustrated in Table 5. 

 

Table 5 Confusion matrix for the problem of deciding if audio pairs belong to the same 

call type 

  Predicted Label  

Total 
population  

= P + N  

Positive (PP)  Negative (PN)  

Actual 
Label 

Positive (P)  True positive 
(TP)  

False negative 
(FN)  

https://en.wikipedia.org/wiki/Statistical_population
https://en.wikipedia.org/wiki/Statistical_population
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Negative (N)  False positive 
(FP)  

True negative 
(TN)  

In the confusion matrix: 

True Positive (TP): Audio pairs correctly predicted as positive (same call type pair). 

given a similarity measure scheme between two audio clips 𝑆(𝑖, 𝑗) is defined as: 

𝑇𝑃(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑠𝑎𝑚𝑒ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 0}    (25) 

False Positive (FP): Audio pairs incorrectly predicted as positive when they are actually 

negative (different call type pair): 

 

𝐹𝑃(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑑𝑖𝑓𝑓ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 0}    (26) 

False Negative (FN): Audio pairs incorrectly predicted as negative when they are 

actually positive. 

𝐹𝑁(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑠𝑎𝑚𝑒ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 1}     (27) 

True Negative (TN): Audio pairs correctly predicted as negative. 

𝑇𝑁(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑑𝑖𝑓𝑓ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 1}     (28) 

3.7.2 Performance Measurement 

Accuracy is a commonly used performance measure derived from the components of the 

confusion matrix. It is defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠(𝑇𝑃)+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠(𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
   (29) 

The accuracy represents the proportion of correctly classified instances out of all 

instances in the dataset. It provides an overall measure of the model's correctness in its 

predictions, regardless of class imbalance. 

Accuracy tends to work well when the data is evenly distributed, i.e., there are about as 

many positive pairs as negative pairs. However, if there were 1 positive pair for every 99 

negative pairs, a majority label classifier would get 99% accuracy. Accuracy as a 

performance measure for the tasks in this thesis will, therefore, be highly misleading, as 

the real goal of a good classifier is to be able to correctly predict positive pairs as well. 

Precision is a measure of the proportion of correctly identified similar pairs out of all 

pairs predicted as similar call types. It is particularly useful when the focus is on the 

quality of the model's ability to predict similar pairs accurately. A high precision indicates 

that the model has a low rate of falsely labeling dissimilar pairs as similar, which is 

crucial in applications where the cost of false positives is high. Precision (also called 

positive predictive value) is the fraction of relevant instances among the retrieved 

instances, written as a formula:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑖𝑟𝑠

𝐴𝑙𝑙 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑖𝑟𝑠
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
      (30) 

https://en.wikipedia.org/wiki/Positive_predictive_value
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Where TP (True Positives) is the number of correctly identified similar pairs. FP (False 

Positives) is the number of dissimilar pairs incorrectly classified as similar (Figure 26). 

 

Figure 26 Precision and Recall [88] 

Recall, also known as sensitivity or True Positive Rate (TPR), is a measure of the 

proportion of correctly identified similar pairs out of all actual similar pairs. It is more 

appropriate when the priority is on the quality of the model's ability to capture as many 

similar pairs as possible, even at the expense of falsely including some dissimilar pairs. A 

high recall indicates that the model has a low rate of missing similar pairs, which is 

important in applications where the cost of false negatives is high. The performance 

measure recall requires the number of TPs and FNs, and is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (31) 

Where TP (True Positives) is the number of correctly identified similar pairs. FN (False 

Negatives) is the number of actual similar pairs that were incorrectly classified as 

dissimilar. By computing the ratio of true positives to the sum of true positives and false 

negatives, the recall metric quantifies the model's ability to correctly capture similar 

pairs. 

Specificity is often used as a metric in classification tasks, particularly in evaluating the 

performance of models that deal with binary or multi-class classification. When applied 
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to call type similarity calculation, specificity measures the ability of the model to 

correctly identify negative instances (i.e., correctly identifying that a certain call type is 

not similar). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (32) 

High specificity is crucial in scenarios where false positives (incorrectly identifying 

dissimilar call types as similar) need to be minimized. This is particularly important in 

applications where mistakenly grouping dissimilar call types together could lead to 

negative outcomes, such as in customer service call routing or automated call analysis. 

F1 score. A mixture of precision and recall yields a more comprehensive picture of a 

model’s ability to predict/mistake audio pairs as similar. The F1-score arrives from these 

expressions and is defined as follows: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
       (33) 

The F1-score is a balanced performance measure that combines precision and recall, 

making it robust for imbalanced datasets. However, it treats precision and recall equally, 

which may not always be ideal, especially in tasks where the consequences of false 

positives and false negatives differ significantly. In such cases, it's important to consider 

the specific objectives of the task and potentially prioritize either precision or recall 

accordingly. 

 

A Receiver operating characteristic (ROC Curve) is a graphical plot used to evaluate 

the performance of a binary classifier model. Typically, the true positive rate (TPR, i.e., 

Recall), also known as Recall, is plotted on the Y axis, and the false positive rate (FPR) 

is plotted on the X axis. The top left corner of the plot represents the "ideal" point, with 

an FPR of zero and a TPR of one. 

 

Figure 27 ROC Curve [89] 

ROC curves are constructed by plotting TPR against FPR at various threshold settings for 

a similarity measure. They are commonly used in binary classification tasks to assess the 

performance of a classifier, particularly when determining an optimal threshold for a 

similarity measure. 
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The TPR represents the proportion of positive instances correctly identified, while the 

FPR represents the proportion of negative instances incorrectly identified as positive. By 

adjusting the threshold for the similarity measure and computing TPR and FPR at each 

setting, a series of data points are generated to construct the ROC curve. 

The Area Under the Curve (AUC) of ROC curve quantifies the classifier's performance, 

with a higher AUC indicating better discrimination between positive and negative 

instances. A value of 1 represents perfect classification, while 0.5 represents random 

guessing. 

Analyzing the ROC curve and AUC helps assess the trade-off between TPR and FPR at 

different threshold levels, aiding in determining the optimal threshold for the similarity 

measure and evaluating the overall performance of the classification model. 
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 CHAPTER 4 EXPERIMENTS AND RESULT  

 

This chapter will introduce the implementation, training phase, and results obtained using 

Convolutional Neural Network (CNN, as a comparable base line) and Siamese 

Network methods for Southern Resident Killer Whale Call Type audio similarity. It is 

divided into three sections: Experimental setup, Experiment for CNN, Experiment for 

Siamese Network, and Result Analysis. 

To address the three questions outlined in Section 1.3, based on the theoretical research 

presented in Chapters 2 and 3, two sets of experiments are designed: 

Section 4.2: Utilize a CNN model for multi-class Call Type Classification and evaluate 

the performance of small samples on the CNN model to answer Question 1 in section 1.3:   

⚫ Question 1: Is it feasible to develop deep learning models for SRKW call type 

classification using small-scale, low-quality samples through advanced data 

processing and augmentation techniques? 

Section 4.3: Pairwise match samples of multi-class Call Types, converting the dataset 

into pairs with either similar or dissimilar categories. Transform the small dataset of 

multi-class Call Types into a large dataset of sample pairs. Utilize a Siamese network 

model to measure the similarity between sample pairs and reframe the multi-class Call 

Type Classification problem as a task of measuring the similarity between sample pairs, 

addressing Questions 2 and 3 in section 1.3:  

⚫ Question 2: Can small-scale samples be utilized to train models that compare the 

similarity between SRKW call type data pairs, as an alternative to employ multi-

class classifiers for SRKW call type classification? 

⚫ Question 3: Can a similarity model effectively discern SRKW call types that were 

not presented in the training dataset? 

4.1 Software and hardware 

Software: 

 

    PyTorch version 3.11 

    CUDA toolkit 11.4 

    OS: Ubuntu Linux version 22.0.3. 

 

Hardware: 

 

    CPU: Intel Xeon E5-2680 v4 @ 2.40GHz 

    RAM: 64GB DDR3 2133MHz 

    GPU: Nvidia Tesla P40 with 24GB VRAM 
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4.2 Classifying Multi-Call Type with CNN 

 

The topic of this article is to measure the similarity between SRKW call audio segments. 

The model is set as the Siamese neural network. However, as motivated and argued in 

Chapter 2, there is a need to develop a CNN multi-classification model as a comparative 

benchmark for the Siamese neural network. Therefore, this section describes the process 

of training and testing a CNN multi-classification model using a five-fold increase in data 

generated by denoising and four types of data augmentation methods applied to limited 

existing data.  

 

4.2.1 Data Preprocess 

 

Currently, the SRKW data available to the author, as previously mentioned in Figure 2 

and in Section 1.2, indicates that, except for Call types S36, S4d, S1d, and S2, which 

have more than 50 high-quality original sample audio clips per type. More than 23 call 

types have less than 5 samples per type. Additionally, there are 16 categories, such as S3 

to S45 (denoted as Other S call types), which only have one sample.  

 
 

Figure 2 (repeatedly illustrated) 

As discussed in Section 2.1, to provide a sufficient number of samples for training a CNN 

multi-class classification model, all the original audio files are first denoised. The 

denoising algorithm used is implemented using the noisereduce library2, which employs 

 

2 J. Karch, "noisereduce: Audio noise reduction in Python," GitHub repository: 

https://github.com/timsainb/noisereduce. 

https://github.com/timsainb/noisereduce
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a frequency spectrum gating-based denoising algorithm. The method works by estimating 

the noise profile based on audio segments assumed to be pure noise. It then utilizes this 

profile to reduce the noise in the entire audio file. 

After denoising the original audio files, the following four types of data augmentation are 

applied to both the denoised and original files: 

1. Pitch_shifting: Changes the pitch of the audio by a random amount within a 

specified range. 

2. Random_shift: Shifts the audio randomly in time within a specified range. 

3. Volume_scaling: Scales the volume of the audio by a random factor within a 

specified range. 

4. Time_stretching: Stretches or compresses the time axis of the audio by a 

specified rate. 

This results in the generation of 8 additional audio samples from each original audio file 

and its denoised copy. Therefore, for each Call Type, at least 10 samples will be available.  

 

4.2.2. Prepare Training and Testing Dataset 

As shown in Figures 2, among the top 21 classes with the largest number of samples 

(S36-S46), to establish a performance comparison standard for CNN and Siamese 

Network, all call types with more than 3 samples, excluding S7, Beluga are selected. This 

is reserved for the Siamese Off-Training Class (refers to classes that never appeared in 

the training set and are used to test Question 3, i.e., the ability of the Siamese network to 

transfer learning to new call type). There are a total of 17 call types, and the "Wave file#" 

column shows the number of available accurate standard samples. After denoising these 

samples, 4x data augmentation is performed on both the denoised and non-denoised 

original samples and used all of them for the CNN training set and the Siamese Network 

training set. In the experiment, 88% of the samples (1,078 samples within 17 call types, 

including 20% validation dataset) to train the CNN model and 12% (140 samples within 

14 call types) to test the CNN model. The data distribution for each Call type category is 

shown in Table 6. 

Table 6 The training and test set data for CNN. Siamese Network will use the same data 

to create pairs. 

Call Type Non-Augmented Wave 

Files 

Augmented 

Wave Files 

Testing Wave 

Files 
Remark 

ArgBermHBW 12 60 4 SX: Southern 

Resident Killer 

Whale 

  

TX: Bigg‘s 

(Transient) Killer 

DelawSpwale 10 50 10 

S10 19 48 10 

S18 16 50 6 

S1d 28 102 16 
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S2 38 190 12 
Whales in 

Northern Pacific 

  

ArgBermHBW: 

Bermuda 

Humpback Whales 

  

DelawSpwale: 

Delaware Sperm 

Whale 

  

Sea wave: Ocean 

background noise 

S31 14 46 7 

S35 4 13 5 

S36 104 104 10 

S40 2 5 4 

S44b 18 90 7 

S4d 48 239 16 

S5 3 10 4 

S6 8 37 11 

S9 2 10 10 

Seawave 4 4 4 

T7 4 20 4 

Grand Total 334 1078 140 

 

 

Figure 28 Split my data for training and testing [90] 

In data processing part, following functions are done in python scripts: 

1. Imports Required Libraries:  

pandas and numpy for data manipulation, audio processing libraries like librosa, 

noisereduce to de-noise, generate mel spectrogram, machine learning (sklearn), deep 

learning (torch), and progress tracking (tqdm), etc. 

2. Creates a DataFrame with Metadata: 
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Creates a DataFrame (data_df) to store metadata such as filenames, target classes, and file 

paths, only audio files with a duration of 4 seconds or less are included. 

3. Defines a Function to Compute Log-Mel Spectrograms: 

The audio files are normalized firstly. The mel spectrogram is then calculated using 

librosa.feature.melspectrogram, followed by converting the mel spectrogram to a 

logarithmic scale with librosa.power_to_db.. 

4. Processes and Pads Audio Features: 

When training a neural network, it is crucial to maintain a consistent feature size for each 

sample. However, due to the varying lengths of audio files, the time dimension (number 

of frames) in the directly extracted log-mel spectrograms will differ. Therefore, each 

audio file is converted into a log-mel spectrogram, and delta features are stacked. 

Subsequently, each feature array is either padded or trimmed to ensure a uniform shape. 

5. Store the vectors in an HDF5 database.  

The training and testing datasets are in separate H5 databases. 

 

4.2.3. Create Batch and DataLoader 
 

When training begins, one batch (with the batch size typically being a power of 8, such as 

128, 256, etc.) of input features, containing a list of audio file names, will be randomly 

fetched by the Data Loader, and the pre-processing audio transforms will be applied to 

each audio file. It will also fetch a batch of the corresponding target Labels containing the 

class IDs. Thus, it will output one batch of training data at a time, which can directly be 

fed as input to deep learning model. 

 
Figure 29 Data Loader applies transforms and prepares one batch of data at a time [90] 
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The data transformation process begins with loading the audio files into a Numpy array, 

structured as (num_channels, num_samples). Most audio is sampled at 44.1kHz, with a 

duration of approximately four seconds, resulting in 176,400 samples for single-channel 

audio ((1, 176,400)) and 192,000 samples for two-channel audio sampled at 48kHz ((2, 

192,000)). Given the variations in channels and sampling rates, the audio is resampled to 

a standard 44.1kHz and two channels. The duration is also standardized to four seconds, 

ensuring uniform array dimensions of (2, 176,400) for all audio clips. 

 

Data augmentation through time shifting is then applied, randomly moving each audio 

sample forward or backward without changing its shape. The augmented audio is 

converted to a Mel Spectrogram with dimensions (num_channels, Mel freq_bands, 

time_steps) = (2, 60, 173). Subsequently, SpecAugment is used to apply random time and 

frequency masking, leaving the shape of the Mel Spectrogram unchanged. 

 

Each batch of data, selected randomly for each training epoch, consists of two tensors: 

one containing the Mel Spectrograms as the feature data (X) and the other containing the 

numeric class IDs as the target labels (y). The batch typically has the dimensions 

(batch_sz, num_channels, Mel freq_bands, time_steps) for the features and (batch_sz) for 

the labels. For instance, a batch might have the shape (16, 2, 64, 344) for X and (16) for 

y. 

 

The transformed data is now ready to be input into the deep learning model. 
 

 

4.2.4. CNN Model Definition 
 

The data processing steps that were just completed represent the most unique aspects of 

the audio classification problem. The model and training procedure are like what is 

commonly used in a standard image classification problem and are not specific to audio 

deep learning. 

Since the audio training data is converted to spectrogram images, a CNN classification 

architecture could process them. Figure 30 illustrates a typical four convolutional blocks 

that generate feature maps. That data is then reshaped into required format so it can be 

input into the linear classifier layer, which finally outputs the predictions for the 17 call 

types (S1, S2, …). 
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Figure 30 The model takes a batch of pre-processed data and outputs class predictions 

[90] 

Here are details about how CNN model processes a batch of data: 

⚫ A batch of mel spectrograms is input to the model with shape (batch_size, 

num_channels, Mel freq_bands, time_steps), i.e., (64, 2, 60, 173). 

⚫ Each CNN layer applies its filters to step up the spectrogram depth, i.e., the number 

of channels. The spectrogram width and height are reduced as the kernels and strides 

are applied. Finally, after passing through the four CNN layers, the output feature 

maps are obtained, i.e., (64, 64, 4, 32). 

⚫ This gets flattened to a shape of (64, 8192) and then input to the Linear layer. 

⚫ The Linear layer outputs one prediction score per class, i.e., (64, 17) (17 call types in 

the training set). 

 

4.2.5. Training 

The final CNN model is illustrated in Figure 31. 
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Figure 31 CNN for 17 Call type classification structure 

The functions for the optimizer, loss, and scheduler were defined to dynamically adjust 

the learning rate as training progressed, facilitating faster convergence within fewer 

epochs. The model was trained for 500 epochs, with each iteration processing a batch of 

data. Loss and accuracy metrics, which measure the percentage of correct predictions, 

were tracked throughout the training process. 

As shown in the results of the code execution above, in each Epoch, both Training and 

Testing Loss steadily decrease. Meanwhile, the corresponding model's prediction 

accuracy on the Test dataset, consisting of 140 samples, stabilizes at around 97.8%. The 

trends of Training and Testing Loss, as well as the prediction Accuracy over Epochs, are 

illustrated in Figure 32. 
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.   

Figure 32 The Loss and Accuracy Trend over training Epochs. X-axis displays the 

number of epoch and Y-axis display the unit of loss (left figure) or Accuracy during 

training (right figure) 

 

4.3 Siamese network 

4.3.1. Audio Preparation 

 

To facilitate comparison with the CNN model, the training, validation and test samples of 

SRKW Call types used in Section 4.2 were utilized for training the Siamese network in 

this section. As mentioned in Figure 25, e.g. 10 call types, each containing 2 samples, 

following data pairs could be generated: 

• 10 similar pairs, where each pair comprises samples from the same call type. 

• 45 dissimilar pairs, representing comparisons between samples from different call 

types. 

The 10 similar pairs consist of audio pairs from the same call type. The quantity of 

dissimilar pairs can be calculated using the combination formula: 𝐶(𝑛, 𝑘) =
𝑛!

𝑘!(𝑛−𝑘)!
 . For 

example, 𝐶(10,2) =
10!

2!(10−2)!
= 45. Through this approach, even if each call type has 

only one sample, a large number of similar and dissimilar samples can be created for 

training Siamese network model by denoising, applying four types of data augmentation, 

pairwise comparison. Table 7 displays training and testing data pairs for Siamese Model 

training, validation and testing. 
 

0.

1.

2.

3.

4.

1 37 73 109145181217253289325361397433469

Training Loss Validation Loss

0.

0.225

0.45

0.675

0.9

1 43 85 127169211253295337379421463

Accuracy
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Table 7 Pair data set for Siamese network training and testing 

 
 

To improve the generalization ability of the model since the predicted call types not 

present in the training set might be similar to the calls of certain marine mammals, this 

paper has selected Bigg’s (Transient) Killer Whales (T7) in the Northern Pacific, 

Bermuda Humpback Whales (ArgBermHBW), and Delaware Sperm Whales 

(DelawSpWhale) to be added to the training set. Additionally, to prevent the background 

noise of Seawave Noise (Seawave Noise) from being mistakenly identified as a specific 

call type of SRKW, Seawave noise has been added as a separate category of sound to the 

training set. 

An inherent advantage of the Siamese network, in contrast to the CNN multi-class model, 

lies in its capability to infer the similarity of call type even absent from the training 

dataset. This attribute addresses Question 3 in section 1.4. To address this query, the 

performance of 14 call types not present in the training dataset, as delineated in Table 7, 

was evaluated. Column all pairs in table 4-3 refer to the total number of sample pairs, 

including those from the same call type (assigned label '0', indicating both items in the 

pair are from the same call type, e.g., both from S13) and those from different call types 

(assigned label '1', indicating items in the pair are from different call types, e.g., from S13 

and S7, as indicated in the column 'Similar pairs'). 
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Table 8 Original audio clip, denoised and augmented files and formed pairs of 14 off-

train call types 

 
 

4.3.2. Audio Pre-processing and saving into H5 database 

Training data containing audio file paths cannot be directly input into a model. Audio 

data must be loaded from the files and process it into a format expected by the model. 

Since loading the Mel Spectrogram into GPU memory occupies too much space, this 

section will create a dataset of Mel Frequency Cepstral Coefficients (MFCC) features 

from audio files, then save this data to an H5 database for subsequent model training. 

Here is the data processing workflow: 

1. Computing MFCC: This function takes an audio signal and its sample rate as inputs 

and computes MFCC features. MFCCs are calculated using a specified number of 

coefficients (n_mfcc), FFT window length (n_fft), and hop length between frames 

(hop_length). It then converts these features to a decibel scale to normalize 

amplitude variations. The function audio2mfcc loads an audio file from a specified 

file path, computes its MFCC features, and then pads or truncates them to a fixed 

length (max_pad_len). This ensures that all feature arrays have the same shape, 

which is crucial for training machine learning models. In the experiment, the shape 

of mfcc vector will be (20, 432). 

2. Training Data Generation: This function generates pairs of MFCC features from 

audio files located in subdirectories of a given base path. It organizes the audio files 

into pairs where each pair can belong to the same class (label 0) or different classes 

(label 1). This is used for tasks like similarity learning or classification. The function 

also keeps track of the filenames of the audio files in each pair for reference. 

3. Standardize the datasets with the mean and standard deviation calculated from the 

training dataset. 
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4. Data Saving to H5 database: After generating the pairs and labels, this function 

saves the MFCC feature data into an H5 file. This file format is efficient for storing 

large datasets and supports incremental data loading, which is beneficial for training 

machine learning models with large datasets. 

 

Operational Workflow: Upon calling save_to_h5 to write the data, and considering the 

substantial memory requirements (as noted, at least 32GB of RAM is needed), the script 

is optimized for performance by handling data in batches and cleaning up memory 

frequently. The script uses tqdm for progress tracking, which helps in monitoring long-

running data processing tasks, especially when dealing with large datasets. 

This workflow is optimized for applications in audio analysis, which can identify, 

classify, or compare sounds based on their MFCC features. It is particularly useful in 

fields like digital signal processing, speech recognition, and ambient sound analysis. 

Please refer to https://github.com/jackzhang2000/SRKW_CallType to obtain the details 

of data processing code. 

 

4.3.3. Model architecture 

Figure 33 represents the architecture of a Siamese network implemented in my 

experiment for comparing two input vectors of SRKW call audio clips.  

 

       
 

Figure 33 The architecture of Siamese network in the experiment 

https://github.com/jackzhang2000/SRKW_CallType
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Each input, presumably a pre-processed MFCC (Mel Frequency Cepstral Coefficients) 

feature map from call samples, passes through identical branches of the network, 

ensuring that the same transformations are applied to both inputs. The network starts with 

a convolutional layer that uses 24 filters of size 1x6x6, introducing the first level of 

spatial feature extraction. This layer is followed by a ReLU activation function, which 

adds non-linearity to the processing flow, allowing the network to learn more complex 

patterns. 
 

Subsequent layers include more convolutional layers with increasing numbers of filters 

(48 and then 64), each followed by a ReLU activation. These layers are designed to 

progressively extract higher-level features from the input. Max pooling layers follow 

some of the convolutional layers to reduce the spatial dimensions of the feature maps, 

thereby decreasing the computational complexity and controlling overfitting by 

abstracting the features further. 

 

After the final pooling step, the output is flattened and fed into a series of fully connected 

layers. The first has 512 units, and the output from this layer is again processed by a 

ReLU activation function. This layer is crucial as it begins to consolidate the learned 

features into a form that represents the input in a more abstract, compressed space. The 

next fully connected layer reduces the dimensionality further to 128 units, preparing the 

output for the final comparison. 

 

The outputs from each branch of the Siamese network are vectors of size 1x128, which 

are then typically used to compute a similarity measure through a contrastive loss 

function. This function will calculate the distance between the two vectors, facilitating 

the determination of whether the inputs are similar or not based on learned metrics. 

 

This architecture highlights the power of CNNs in feature extraction and the effectiveness 

of Siamese networks in learning nuanced differences and similarities between paired 

inputs, leveraging shared weights to maintain symmetry in learning. Such setups are 

integral in applications requiring precise and reliable comparison metrics, further 

enhanced by the network’s ability to learn from relative comparisons rather than absolute 

feature sets. 

 

4.3.4. The training loop for batches of pairs 

 

The training loop calls for batches of SRKW call pairs, involving following operations: 

4.3.4.1 Setting Up the Loss Function and Optimizer 

Contrastive Loss function is designed for learning the similarities or differences between 

input pairs, commonly used in Siamese networks or triplet networks. The Adam 

optimizer is used to optimize model parameters with a specified learning rate e.g. 0.001 

and weight decay e.g. 0.0001 to control learning progress and prevent overfitting. 
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4.3.4.2 Training Loop Setup 

The total number of training epochs is set to 200, providing ample opportunity for the 

model to converge and optimize its performance. However, to prevent unnecessary 

overfitting or excessive training, early stopping is implemented. This mechanism relies 

on a patience parameter, which defines the tolerance for stagnation in improvement. 

Specifically, if there is no observed improvement in the validation loss over a period of 

five consecutive epochs, the training process is halted prematurely. This helps ensure that 

the model does not continue to train when further improvements are unlikely, thus saving 

time and computational resources. 

This method, driven by validation performance, was observed to stop training early at 

epoch 46 in my experiment, as shown in Figures 36, due to the validation loss failing to 

improve for five consecutive epochs. 

In the experience, the training process stopped early at epoch 46, as Figure 34, due to the 

loss not improving for 5 consecutive epochs. 

 

Figure 34 training stopped at epoch 46 due to the loss not improving for 5 consecutive 

epochs 

 

During training, a variable referred to as best_loss is maintained to track the lowest 

validation loss encountered. This value is used as a benchmark for early stopping 

decisions. When the model achieves a validation loss lower than the current best_loss, 

this value is updated, signaling that the model's performance has improved. If, however, 

no improvement is observed within the defined patience period, the training is terminated 

to avoid over-optimization on the training data, thus preserving the model’s 

generalization capabilities. 

 

4.3.4.3 Inside the Epoch Loop 

During training, batches of paired input data and target labels are loaded from the data 

loader. The inputs and targets are moved to the configured device (GPU or CPU). Inputs 
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are reshaped by adding a channel dimension, as convolutional layers require a four-

dimensional input (batch size, number of channels, height, width), with the input 

dimensions in this experiment being (128, 2, 20, 432). 

4.3.4.4 Loss Calculation and Optimization 

In the process of loss calculation and optimization, the gradients from the previous step 

are cleared using the zero_grad method, ensuring that the model is prepared for a new 

cycle of backpropagation. Mixed precision training is enabled through the autocast 

functionality, which enhances training efficiency while simultaneously reducing memory 

usage. To calculate the loss, the outputs from the model are passed to the designated loss 

function, allowing the loss for the current batch to be computed. Following this, 

backpropagation is employed to compute the gradients with respect to the model 

parameters, based on the calculated loss. Gradients are then scaled using GradScaler 

before the model weights are updated, allowing for more stable training, especially when 

using lower precision arithmetic. 

At the end of each epoch, the validation set is utilized to evaluate the model's 

performance. The validation set outputs are passed to the same loss function as used 

during training, and the validation loss is computed. This validation process is critical for 

assessing the model's generalization ability to unseen data. By monitoring the validation 

loss throughout training, early signs of overfitting or underfitting can be detected, 

enabling necessary adjustments to be made to the model or its hyperparameters, ensuring 

that the training process does not solely optimize for the training data. 

Finally, once the training is complete, the trained model parameters are saved, and the 

training dataset is cleared from memory to free up resources, ensuring that the system is 

ready for further tasks or evaluations.  

 

4.4 Model Result and Discussion 

Referring to section 1.3, there are three research questions to be answered. The 

experiment 4.2 focuses on Question 1, which is restated below:  
 

4.4.1 Question 1: Is it feasible to develop deep learning models for 

SRKW call type classification using small-scale, low-quality samples 

through advanced data processing and augmentation techniques? 

 

According to the measurement defined in section 3.7, Two CNN classification models 

with both Non-Augmented Wave Files and Augmented Wave Files as Table 5 in Section 4.2.2, 

and then test and compare their performance with same Testing Wave Files in table 6.  

 

Table 6: CNN Model Train data and Testing Data (repeated) 

Call Type Non-Augmented Wave 

Files 

Augmented 

Wave Files 

Testing Wave 

Files 
Remark 
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ArgBermHBW 12 60 4 SX: Southern 

Resident Killer 

Whale 

  

TX: Bigg‘s 

(Transient) Killer 

Whales in 

Northern Pacific 

  

ArgBermHBW: 

Bermuda 

Humpback Whales 

  

DelawSpwale: 

Delaware Sperm 

Whale 

  

Sea wave: Ocean 

background noise 

DelawSpwale 10 50 10 

S10 19 48 10 

S18 16 50 6 

S1d 28 102 16 

S2 38 190 12 

S31 14 46 7 

S35 4 13 5 

S36 104 104 10 

S40 2 5 4 

S44b 18 90 7 

S4d 48 239 16 

S5 3 10 4 

S6 8 37 11 

S9 2 10 10 

Seawave 4 4 4 

T7 4 20 4 

Grand Total 334 1078 140 

 

4.4.2 Result of Question 1: Classification accuracies vary by different 

Call types by CNN 

 
As described in table 6, two multi-class CNN models are trained using raw data of 17 call 

types (334 samples, after denoising) and augmented data (1,078 samples). Both models' 

classification performance is evaluated on a test set of 140 samples using the confusion 

matrix as well as the number of accurately recognized samples (True Positive) and the 

percentage of true positives relative to the actual samples in each call type. True Positive 

Rate%, also called Recall% is defined as: 

 

𝑇𝑃(𝑆) = {(𝑖, 𝑗) ∈ 𝑃𝑠𝑎𝑚𝑒ȁ𝑦
^

= 𝑆(𝑖, 𝑗) = 0}, i.e.  𝑅𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, 𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

When train the CNN model on augmented data, which feature engineering approach need 

to be determined. The testing results of CNN model on Mel Spectrogram and MFCC 

encoded data are compared as table 9. 
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Table 9 The testing performance of Mel Spectrogram featured training data vs MFCC 

featured training data 

 
 

The results indicated that the CNN model performed better on all performance metrics 

compared Mel spectrogram to MFCC-encoded data. Although the accuracy (97.8%) and 

specificity (98.8%) of the Mel spectrogram slightly outperformed those of MFCC (96.6% 

and 98.2%, respectively), the recall, precision, and F1 score (81.4%) of the Mel 

spectrogram CNN model were significantly higher than those of MFCC (69.3%). 

Consequently, Mel spectrogram data is applied to train CNN model. 
 

In the CNN model, an interesting phenomenon was observed: while the overall recall, 

precision, and F1 score of the total samples were equal, these metrics varied when broken 

down by each call type. Upon examination, it was found that for each call type, the false 

negatives (FN) were calculated as the actual positive (P) count minus the true positives 

(TP), and the false positives (FP) were calculated as the predicted positive (P) count 

minus the true positives (TP). Although the actual positive count did not equal the 

predicted positive count for each call type, the sum of predicted positives across all call 

types equaled the sum of actual positives. This led to the equality: 

 
∑(𝑇𝑃)

∑(𝑇𝑃+𝐹𝑁)
=

∑(𝑇𝑃)

∑(𝑇𝑃+𝐹𝑃)
   (10) 

 

Thus, the overall recall equaled the overall precision. Since the F1 score is derived 

directly from recall and precision, the overall F1 score also equaled the recall and 

precision. Nonetheless, metrics of recall, F1 score, and accuracy could be still used to 

evaluate the performance of the CNN model. Table 11 displays the performance of Non-

Augmented Data (334 samples in table 6) trained CNN Model on FSL Testing Data (140 

samples in table 6) 

 

Model Accuracy
Recall 

(Sensitivity )
Specificity F1 Precision Training Wave# TN# TP# FN# FP#

CNN with Mel Mel 
Spectrogram

97.8% 81.4% 98.8% 81.4% 81.4% 1,078 2,214 114 26 26

CNN with MFCC 96.6% 69.3% 98.2% 69.3% 69.3% 1,078 2337 97 43 43
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Table 10 The testing performance of Non-Augmented Data (334 samples in table 6) 

trained CNN Model on FSL Testing Data (140 samples in table 6) 

 
 

VS 

 

Table 11 the performance of augmented data (1,078 samples in table 6) trained CNN 

Mode on FSL augmented testing data (140 samples in table 6) 

 
 

The performance of two models was analyzed using their confusion matrices. In the first 

confusion matrix (table 10), the model accurately predicted classes such as S36, S6, 

Bermuda Humpback Whales, S31, S4, Sea Wave, and T7, but showed lower accuracy for 

other classes. Notably, there was confusion in predicting Delaware Sperm Whale, S9, 

S18, S35, S10, S2, and S5, likely due to insufficient training samples. In the second 

confusion matrix (table 11), the model correctly predicted most classes, though prediction 

accuracy was lower for S18, S10, S44, Sea Wave, and S5, indicating some confusion. 
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Based on these results, it can be observed that the second model performs better across 

more call types, though some confusion is exhibited in predicting call types S5, S10, and 

S44. Consequently, it can be concluded that training a CNN multi-class classification 

model on a small annotated dataset significantly impacts classification performance. An 

overall recall rate of only 66.4% was achieved by the model trained on the 334 non-

augmented training set. While data augmentation improves the accuracy of the CNN 

model to 97.8%, the overall recall rate remains around 81.4%. 

As demonstrated by the two experiments above, it is evident that achieving good 

recognition performance with CNN models becomes challenging when numerous call 

type categories have very few annotated samples (fewer than 20 annotated audio clips per 

call type) and poor data quality. In the research presented in chapters 3, a method of 

pairwise matching within and between categories was adopted, using Siamese networks 

to identify the similarity of sample pairs for category recognition. The following 

experiments present the test results on the three datasets used in experiment 1. The 

second experiment, based on the Siamese network, is addressed in next section. 

 
 

4.4.3 Question 2: Can small-scale samples be utilized to train models 

that compare the similarity between SRKW call type data pairs, as an 

alternative to employ multi-class classifiers for SRKW call type 

classification? 
 

According to the method in section 4.2.2, similar and dissimilar audio pairs were 

constructed from augmentation data of 17 call types, the layout of training data is 

illustrated in table 12. 

 

Table 12 The layout of input training data for Siamese Network Model 

 
 

When Wave File1 and Wave File2 are from the same call type, the actual label is 0, 

otherwise is 1. In this experiment, the Siamese Network model used 730 samples from a 

data-augmented training dataset of 1078 samples. The number of samples per call type 

did not exceed 86, with the smallest call type having only 12 training samples. The reason 

for not using all 1,078 samples was that the pairing operation required too much memory 

on the training computer, so only a portion (67.8%) of CNN model training dataset was 
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selected. The distribution of these 730 samples by call type is shown in the "Augmented 

wave Files for Training" column in table 13. For the test dataset, all 140 test samples 

from the CNN model were used, with their distribution presented in the "Wave Files for 

Testing" column in table 6. 
 

Table 13 Siamese Network Train data Pairs and Testing Data Pairs 

Call Type Augmented 
wave Files 

for Training 

Augmented Wave Files 
Generated Pairs for 

Training 

Wave 
Files 
for 

Testing 

Wave Files 
Generated Pairs 

for Testing 

Remark 

Similar 
(Label=0) 

Dissimilar 
(Label=1) 

Similar Dissimil
ar 

 

ArgBerm
HBW 

80 3,160 28,480 4 6 280 SX: Southern 
Resident 

Killer Whale 
 

TX: Bigg‘s 
(Transient) 

Killer Whales 
in Northern 

Pacific 
 

ArgBermHB
W: Bermuda 

Humpback 
Whales 

 
DelawSpwal
e: Delaware 

Sperm 
Whale 

 
Sea wave: 

Ocean 
background 

noise 

DelawSp
wale 

36 630 22,068 10 45 1,160 

S10 41 820 17,876 10 45 740 

S18 40 780 22,120 6 15 600 

S1d 60 1,770 6,540 16 120 304 

S2 55 1,485 9,295 12 66 420 

S31 46 1,035 14,260 7 21 441 

S35 16 120 7,632 5 10 420 

S36 71 2,485 46,789 10 45 1,300 

S40 10 45 6,490 4 6 504 

S44b 46 1,035 2,898 7 21 84 

S4d 86 3,655 19,264 16 120 752 

S5 12 66 372 4 6 16 

S6 60 1,770 29,580 11 55 979 

S9 20 190 11,860 10 45 1,060 

Seawave 20 190 860 4 6 32 

T7 31 465  4 6  

Grand 
Total 

730 19,701 246,384 140 638 9,092 

 

From table 13, it can be observed that 730 samples generated 19K similar pairs and 246K 

dissimilar pairs, which were utilized for training the Siamese network similarity model. 

Additionally, CNN testing data from 140 samples were used to generate 638 similar pairs 

and 9,092 dissimilar pairs for evaluating the performance of the Siamese network model. 

The testing and training data involved the same call types but were recorded from 

different sources of underwater sound samples. The test results reflected those of the 

training dataset, with the inclusion of an additional column labeled "Euclidean distance" 

and its corresponding normalized values. The calculation for the normalized distance is 

defined as follows: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑀𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑎𝑥𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑀𝑖𝑛 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
  (11) 
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A smaller normalized Euclidean distance indicates a higher likelihood that two wave files 

are similar. Assuming a threshold of 0.5, where a Euclidean distance < 0.5 predicts the 

test sample pair as belonging to the same category, and a distance ≥ 0.5 predicts the pair 

as belonging to different categories. The size of this threshold significantly affects the 

True Positive % and True Negative%: setting the threshold too high increases True 

Positive % but decreases True Negative%, so it must be set at a reasonable level.  The 

descriptions of four terminologies are: 

⚫ True Negative (TN): When Pair is 1(Dissimilar) Predict as 1 (Dissimilar), it means 

that the model correctly predicted that a pair of negative items (wave files from 

different call type). 

⚫ True Positive (TP): When Pair is 0(Similar) Predict as 0 (Similar), it means that the 

model correctly predicted that a pair of positive items (wave files from same call 

type). 

⚫ False Negative (FN): In the case of "FN Pair=0 Pred=1," it means the model 

incorrectly predicted that a pair of wave files are not similar (negative prediction), 

but they are actually from the same call type (false negative). 

⚫ False Positive (FP): "FP Pair=1 Pred=0" signifies that the model incorrectly 

predicted that a pair of items are similar (positive prediction), but they are actually 

not from the same call type (false positive). 

 

Table 14 The layout of Siamese Network Model scoring result on testing data set 

 
 

4.4.4 Result of Question 2: Recall % of Siamese network exceeds the 

Recall % of CNN, meanwhile other indicators are also excellent 

Based on the experiments conducted, by setting the threshold of normalized Euclidean 

distance to different values (ranging from 0 to 1), a series of performance metrics were 

obtained on the testing dataset, as shown in Figure 37. It can be concluded that at a 

normalized value cutoff of 0.3, the combination of accuracy (98.1%), recall (91.5%), 

specificity (98.6%), F1 score (86.5%), and precision (82%) achieves a good balance of 

metrics. Among these, the slightly weaker metrics are recall (91.5%) and precision 

(82%). The recall indicates that 91.5% of all tested similar samples were correctly 

identified, which is acceptable, especially considering that the CNN model on the same 

dataset achieved a recall level of only 81% (table 9). However, precision, at 82%, is the 

slightly less satisfactory metric, indicating that 18% of different call type samples were 

incorrectly classified as the same call type. Nonetheless, this is considered acceptable 
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given the small sample classification context, where each annotated sample for a call type 

is rare. Correctly identifying a specific call type, such as S35, is deemed more important 

than mistakenly classifying a sample as S35. 
 

 
Figure 35 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean Distance 

Cutoff (Figure Format) 

X-axis: Normalized Euclidean Distance Cutoff; Y: % on Accuracy, Recall, Specificity, 

F1, Precision; Normalized Euclidean Distance is cutoff to 0.3 to achieve the balance of 

good performance. Table 15 also prove this cutoff is reasonable. 

 

Table 15 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean Distance 

Cutoff (Table Format) 

 
 

The performance of the Siamese network model and the CNN model on each Call Type 

can be compared. Since Call Types are recognized through different mechanisms by the 

Siamese network and CNN, S1 can be used as an example. In the Siamese network, the 

Euclidean distance between each S1 sample and other S1 samples is calculated, as well as 

the Euclidean distance between S1 samples and non-S1 samples. If the normalized 

Euclidean distance is below 0.3, it is the same Call Type. In contrast, the CNN model 

0.00%

25.00%

50.00%

75.00%

100.00%

0.1 0.12 0.15 0.2 0.235 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy Recall (Sensitivity ) Specificity F1 Precision(TP%)
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calculates the probability of each audio clip belonging to one of 17 Call Types and 

classifies it as the Call Type with the highest probability, e.g. S1 call type. 

 

For ease of comparison, let's first compare the overall performance. The comparison 

between Siamese Network and CNN is shown as table 16. Due to the memory limitations 

of the training machine, even though only 730 training samples (67% of the CNN training 

samples) were used to train the Siamese Network model, the annotated samples for each 

SX call type are very rare. Therefore, achieving high sensitivity (Recall) should be the 

primary objective of this study, as it helps identify as many similar Call Type samples as 

possible. The trained Siamese Network model significantly outperformed the CNN model 

by 10% in Recall, a metric highly valued in this experiment, demonstrating the Siamese 

Network model's superior ability to identify call types compared to the CNN. 

Furthermore, while the accuracy of the Siamese Network model (98.5%) appears to only 

slightly surpass that of the CNN model (97.8%), it is important to note that the proportion 

of true negatives (TN) far exceeds the number of true positives (TP). Thus, the high 

accuracy of the CNN model is primarily due to its high recognition rate of a large number 

of non-target Call Type samples (negative samples). 

 

For ease of comparison, the overall performance is first compared. The comparison 

between the Siamese Network and CNN is presented in table 16. Due to memory 

limitations of the training machine, only 730 training samples (67% of the CNN training 

samples) were used to train the Siamese Network model. However, the annotated samples 

for each SX Call Type are very limited. Therefore, it is expected that the model should 

achieve high sensitivity (Recall) to help identify as many similar Call Type samples as 

possible. The trained Siamese Network model outperformed the CNN model in Recall by 

10%, a metric highly prioritized in this experiment, demonstrating the superior ability of 

the Siamese Network to identify Call Types compared to the CNN. Furthermore, while 

the accuracy of the Siamese Network model (98.5%) appears to slightly surpass that of 

the CNN model (97.8%), it should be noted that the proportion of true negatives (TN) far 

exceeds that of true positives (TP). Thus, the high accuracy of the CNN model is 

primarily attributed to its high recognition rate of a large number of non-target Call Type 

samples (negative samples). 

 

Table 16 The performance of Siamese Network vs CNN Model on same testing data 

 
 

Next, the overall model performance will be broken down by each Call Type to examine 

the performance of individual Call Types and their impact on the overall model 

performance. The performance of Siamese Network and CNN on each Call Type in the 

test set is presented in Tables 17 and 18. 
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Table 17 The performance by Call Type of Siamese Network Model on testing data pairs 

generated by CNN model testing data 

 
 

VS 
 

Table 18 The performance by Call Type of CNN Model on same testing data 

 
 

 

In the breakdown of all SRKW Call Type metrics, the Siamese Network model 

consistently outperforms the CNN model. The only exception for the Siamese Network is 

a slightly lower Recall and Precision for S10. In contrast, the CNN model exhibits poor 

performance in Recall and Precision for S10, S18, S1d, S44b, and S5. Given that the 

Siamese Network model was trained with fewer samples than the CNN model, this 

further demonstrates the superior predictive power of the Siamese Network model when 

trained on small sample datasets. 
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Since the Siamese Network can compare the similarity of different SRKW Call Types 

within the training set, it is considered whether this capability can be extended to explore 

whether the similarity model can be used to compare SRKW Call Types not present in 

the training set (i.e., out-of-training data), or even the audio files of non-SRKW marine 

mammals. Therefore, Question 3 is investigated in following section. 

 

4.4.5 Question 3: Can a similarity model effectively discern SRKW call 

types that were not presented in the training dataset? 
 

In this experiment, the performance of the trained Siamese Network model will be tested 

using 14 out-of-training Call Types (Call Types not present in the Siamese Network 

training data) from testing samples. Each Call Type contains at least 6 wave files to 

create similar and dissimilar pairs. The distribution of these 199 samples by Call Type is 

presented in the "Wave Files for Testing" column in table 19. To evaluate the 

performance of the trained Siamese Network model, 1,909 similar pairs and 16,812 

dissimilar pairs were generated, as illustrated in table 8. 

 

Table 8: 14 out-of-training call type testing data pairs to evaluate the transfer learning 

capabilities of the trained Siamese Network (repeated) 

 

The Siamese Network model trained in Experiment 2 was directly utilized to calculate the 

Euclidean distances for the 18,721 sample pairs listed in table 8. Since these 14 out-of-

training Call Types in the testing data pairs are completely different from the 17 Call 

Types in the training set, this experiment primarily tests the generalization and predictive 

capability of the Siamese Network model trained on the training set. 

As shown in table 19, the performance on the out-of-training Call Type testing dataset is 

notably worse compared to the performance on the training Call Type testing dataset, as 

presented in table 17. The highest F1 score is approximately 50%, and the highest 
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precision is 63.8%, which are lower than the 88.8% and 88.2% levels observed in the in-

training Call Type testing dataset. Although individual metrics such as accuracy, recall, 

specificity, and precision may approach the levels seen in the in-training Call Type 

testing dataset, such as 90.7%, 96.8%, and 98.7%, it remains challenging to balance all 

these metrics simultaneously. 

 

Table 19 The performance of Siamese network on Out-of-training call type testing data 

pairs by different Normalized Euclidean Distance Cutoff (Table format) 

 
 

 
Figure 36 Accuracy, Recall, Specificity F1, Precision by Normalized Euclidean Distance 

Cutoff (Figure format) 

X-axis: Normalized Euclidean Distance Cutoff; Y: % on Accuracy, Recall, Specificity, 

F1, Precision 

 

A cutoff value of 0.3 has been selected for testing the model. This cutoff value results in 

achieving approximately 80% in Accuracy, Recall, and Specificity simultaneously, but it 

reduces Precision to 30.78%, leading to a corresponding drop in the F1 value to 44.37% 

(lower than the F1 score of 50.89% when the cutoff is set at 0.235). This indicates that to 
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correctly identify approximately 80% of the similar or dissimilar sample pairs, a 70% 

false positive rate must be accepted. Given that these Call Types are from a small dataset, 

during the final model deployment, the number of false positives can be mitigated 

through additional manual review. 

 

Table 20 14 out-of-training call type testing data pairs to evaluate the transfer learning 

capabilities of the trained Siamese Network 

 
 

 

4.4.6 Result Analysis for Question 3: Good Accuracy, Recall, Specificity 

with Reasonable F1, and Low Precision 

 
The test results for out-of-training Call Types at a cutoff of 0.3 include four non-SRKW 

Call Types. However, the primary objective of this experiment is to identify the similarity 

of SRKW Call Types (class SXX). Therefore, these four non-SRKW Call Types in the 

testing result could be excluded, and the performance differences of the Siamese Network 

at a cutoff of 0.3 on the 10 untrained SRKW Call Types are further analyzed. 

Additionally, the SRKW Call Type S46, which has problematic data quality, is 

temporarily excluded because the number of its dissimilar sample pairs is 0 (as shown in 

table 8), which would distort the overall data distribution. The performance details on 

these 9 out-of-training SRKW Call Types are presented in table 21, with rows arranged in 

descending order of accuracy. 

 

Table 21 The performance of the Siamese Network on 9 out-of-training SRKW call type 

testing data pairs at a normalized Euclidean distance cutoff of 0.3 
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Compared to the superior performance of the Siamese Network on in-training Call 

Types’ testing dataset, achieving similar performance on the out-of-training Call Type 

dataset proves challenging. This is understandable, as transfer learning and generalization 

are difficult to achieve. However, the generalization capability of the Siamese Network is 

still evident. Therefore, the analysis and response to Question 3 are as follows:  

1. At cutoff = 0.3, the model could identify 88.21% of SRKW call type similar pairs 

and experiencing a false positive rate of 67.8% (i.e. 100% - Precision), the specificity 

for negative pairs can reach as high as 78.5%. The overall accuracy also achieves a 

high level of 79.55%. The overall F1 value also reaches a reasonable level at 

48.28%. 

2. Most out-of-training SRKW call types (from S7 to S14) demonstrate good 

performance in terms of Accuracy, Recall, and Specificity, indicating that the model 

reliably identifies the majority of out-of-training SRKW call types. This confirms the 

model's generalization and transfer learning capabilities.  

◼ Lower Recall rates are observed for three Call Types (such as S3, S17, S19), 

suggesting that further optimization of the model is required to enhance 

recognition capabilities for these types. 

◼ Overall Specificity remains consistently high, indicating that the model 

maintains a low false positive rate across all types of dissimilar sample pairs, 

with an average error rate of 11.5%. 

◼ Overall Precision is relatively low due to the limited number of positive sample 

pairs. Balancing high Recall (sensitivity in identifying all similar pairs) with 

high Precision (accuracy in identifying true similar pairs) is challenging. In this 

context, expert validation is recommended to remove falsely identified similar 

pairs, and expert-validated sample pairs can be incorporated into the training 

data through data augmentation. This approach would convert out-of-training 

SRKW Call Types into in-training Call Types, thereby significantly improving 

all metrics. 

In summary, the model demonstrates reasonable accuracy and recall in identifying 

SRKW call types but offers opportunities for improvement. Enhancements include expert 

validation to remove false positives and continuous training of the Siamese network with 

the out-of-training call types augmented audio files to convert these out-of-training 

SRKW call types into in-training call types. 

4.4.7 Code  

The code of this thesis is stored in the following GitHub repository: 

https://github.com/jackzhang2000/SRKW_CallType. 

 

 

  

https://github.com/jackzhang2000/SRKW_CallType
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 CHAPTER 5 CONCLUSION AND FUTURE WORK  

  

5.1 Summary 

In summary, the consolidated test results from the three experiments are presented in 

table 22. 

 

Table 22 The performance of CNN vs Siamese Network on 17 in-training SRKW call 

type vs Siamese Network on 10 out-of-training SRKW call type testing data pairs 

Model Metrics CNN Siamese network on 

in-training call type 

Siamese network on 

out-of-training call type 

Accuracy 97.8% 98.5% 79.7% 

Recall (Sensitivity) 81.4% 89.3% 79.5% 

Specificity 98.8% 99.2% 79.7% 

F1 81.4% 88.8% 44.4% 

Precision 81.4% 88.2% 30.8% 

 

Due to the multitude of SRKW call types, numbering over 40, and the scarcity of 

annotatable data for each type, or poor data quality due to strong underwater noise in 

hydrophone recordings, only nine call types have usable annotation data exceeding 20 

recordings, while others have as few as 10 or even fewer recordings. To address the 

challenge of identifying these diverse SRKW call types, this paper proposes a progressive 

approach. 

Firstly, to address the issue of overfitting on small-sample SRKW call type data in CNN 

models (Question 1), data augmentation techniques were employed to increase the 

training data volume. A traditional CNN multi-classification model suitable for audio 

analysis was developed. After training and testing on 17 Call Types (including data from 

four non-SRKW Call Types), the CNN model achieved an accuracy of 97.8%, recall of 

81.4%, specificity of 98.8%, F1 score of 81.4%, and precision of 81.4% on the test set. 

Secondly, to further improve model performance (Question 2), the approach was shifted. 

Given that each Call Type had at least one annotated high-quality sample, the problem of 

classifying 40 Call Types was transformed into a problem of inferring the similarity 

between unknown samples and annotated Call Type samples using a Siamese Network 

model trained on CNN model data. When tested on the same samples as the CNN, the 

Siamese Network model achieved an accuracy of 98.5%, recall of 89.3%, specificity of 

99.2%, F1 score of 88.8%, and precision of 88.2%. Significant improvements in recall 

and precision for identifying similar samples and preventing misidentification were 

observed, reaching remarkable performance. This experiment demonstrated that even 

with a small training set, Siamese Networks can achieve better performance comparable 

to large-sample approaches with CNN. 

Thirdly, to evaluate the model's transfer learning and generalization abilities (Question 

3), the previously trained Siamese Network model was tested on another set comprising 

nine out-of-training Call Types. The model achieved an accuracy of 79.55%, recall of 
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88.21%, specificity of 78.50%, F1 score of 48.28%, and precision of 33.23%. While 

comparatively high generalization performance was achieved in accuracy, recall, and 

specificity, the precision of 33.23% resulted in a high rate of false positives for similar 

Call Types. This issue can be mitigated by incorporating manual review and retraining 

the Siamese Network model with newly validated out-of-training Call Type samples 

added to the training set, thereby enhancing the model's generalization ability. 

 

5.2 Conclusion 

To address the challenge of small sample learning for SRKW call types, this paper 

utilizes data augmentation, and a Siamese network based on similarity measurement 

and contrastive learning. 

Data Augmentation involves generating additional training samples by transforming 

existing data. These transformations can include background noise elimination, pitch 

shifting, random shift, volume scaling, and time stretching, among others. The goal is to 

expand the training dataset and increase the model's generalization ability, thereby 

improving performance without adding new data. 

Contrastive Learning Framework, i.e. Siamese network learns similarity by training on 

pairs of samples rather than direct classification. This method effectively learns 

generalizable feature representations even with a small number of samples. 

Through Metric Learning, Siamese network can measure the distance or similarity 

between samples in the feature space, which enhances its ability to handle classification 

or recognition tasks with small sample sizes. 

The two subnetworks in a Siamese network share the same weights and structure, 

allowing the model to utilize limited data more efficiently and reduce the risk of 

overfitting. 

Therefore, after augmenting the small-annotated audio clips for SRKW call types, 

converting the augmented audio clips into pairs, and training a Siamese network on these 

pairs, the model excels in call type similarity measurement and contrastive learning. This 

approach is well-suited for addressing the scarcity or imbalance of call type data (with 

only 7 call types having more than 40 accurately labeled samples, while most others have 

only a handful of samples). 

 

5.3 Disadvantages and Limitations 

There are several limitations in Data Augmentation on SRKW small annotated call type 

dataset. 

While data augmentation can effectively expand the training dataset, improper 

application may increase the risk of overfitting. For instance, excessive data distortion or 

augmentation might lead to the model overfitting to specific variations in the training 

data, thereby impairing its ability to generalize to new data. Which could be reveal ed 
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through the testing performances’ gap between in-training and out-of-training call types 

dataset. 

The effectiveness of data augmentation depends on the selected augmentation 

techniques. Certain augmentation methods may not be compatible with specific tasks or 

may yield suboptimal results, necessitating careful selection and adjustment of 

augmentation strategies. 

In some cases, data augmentation may introduce additional noise or cause partial 

information loss. This is particularly problematic for tasks sensitive to specific features, 

potentially affecting the quality of feature representations learned by the model. 

Siamese Network is often regarded as a metric learning method rather than a transfer 

learning method in the traditional sense. Its main design purpose is to learn how to 

effectively measure or compare the similarity or distance of input data points, rather than 

directly transfer knowledge or features. There are a few of disadvantages as a Few-shot 

learning approach. 

1 Dependence on Contrastive Sample Selection: The performance of a Siamese 

network heavily relies on the selection of sample pairs during training. If the sample 

pairs are not well-chosen, such as being too similar or too different, the model may 

learn suboptimal feature representations, which can adversely affect the final 

classification or similarity measurement outcomes. 

2 Complexity and Computational Resource Consumption: Training a Siamese 

network involves comparing the similarity or distance between each pair of samples. 

This process increases the model's complexity and computational resource 

requirements, potentially leading to performance bottlenecks, especially when 

handling large-scale data. 

3 Generalization Capability Limitation: Although Siamese networks perform well in 

few-shot learning, their generalization ability might be limited by the distribution of 

the training data. If the training data is insufficient or not representative, the model 

may struggle to generalize effectively to new, unseen data samples. 

5.4 Future Work 

In recent years, with the emergence of large-scale audio datasets such as AudioSet [91] 

and the Watkins marine mammal sound database [92], few-shot audio recognition can be 

achieved through two main approaches: Transfer Learning and Meta-Learning. Below are 

the specific methods and processes for these two approaches: 

5.4.1 Transfer Learning 

Transfer learning involves pre-training a model on a large-scale dataset and then fine-

tuning it on a target small-sample dataset. This method leverages the knowledge learned 

from the large dataset to improve the model's performance on the small dataset. The 

specific approach is to use large-scale audio datasets (e.g., AudioSet or Watkins) to pre-

train a powerful audio model, such as an Audio Transformer (e.g., wav2vec 2.0 [93]). 

The goal of pre-training is to learn general audio feature representations that can 

generalize across different tasks. The pre-trained model is then fine-tuned on the target 
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task using a small amount of labeled data from the target task. During fine-tuning, data 

augmentation techniques (such as time stretching, pitch shifting, noise addition, etc.) can 

be employed to increase the diversity of the training data and enhance the model's 

generalization ability. 

5.4.2 Meta-Learning 

Meta-Learning trains a model to quickly adapt to new tasks with a small amount of data 

by leveraging the ability to learn across multiple tasks. A common method is Model-

Agnostic Meta-Learning (MAML [94]). The specific approach involves the following 

steps: 

1 Multi-task Training: Train the model on multiple related tasks to learn shared 

features across tasks. 

2 Meta-Learning: Use methods like MAML to enable the model to quickly adapt to 

new tasks with just a few gradient updates. 

3 Fine-tuning and Testing: Rapidly fine-tune the model using the SRKW call type 

dataset to make it adaptable to the new task. 

By combining the strengths of Transfer Learning and Meta-Learning, it is possible to 

effectively tackle the challenges of few-shot audio recognition, utilizing the wealth of 

knowledge from large-scale datasets and enhancing performance on new, small-sample 

tasks. 
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