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Abstract 

This study develops a cloud based IoT system for monitoring the health of livestock using 

Amazon Web Services and Python, addressing the increasing demands of digital 

agriculture. As the number of IoT devices in agriculture proliferates, issues of scalability 

and computational load have become prominent, necessitating efficient and scalable 

solutions. This research introduces a cloud-based architecture aimed at enhancing 

Livestock Health Management.. This system is designed to track critical health indicators 

such as movement patterns, body temperature, and heart rate, utilizing AWS for robust data 

handling and Python for data processing and real-time analytics. The proposed system 

incorporates Nb-IoT technology, which is optimized for low-bandwidth, long-range 

communication, making it suitable for rural and remote farming locations. The 

architecture's scalability allows for effective management of varying numbers of IoT 

devices, which is essential for adapting to changing herd sizes and farm scales. Preliminary 

experiments conducted to assess the system’s performance have demonstrated its durability 

and effectiveness, indicating a successful integration of AWS IoT Cloud services with the 

deployed IoT devices. Furthermore, the study explores the implementation of predictive 

analytics to facilitate proactive health management in livestock. By predicting potential 

health issues before they become apparent, the system can offer significant improvements 

in animal welfare and farm efficiency. The integration of cloud computing and IoT not 

only meets the growing technological needs of modern agriculture but also sets a new 

benchmark in the development of sustainable farming practices. The findings from this 

research could have broad implications for the future of livestock management, potentially 

leading to widespread adoption of technology-driven health monitoring systems in 

agriculture. This would help in optimizing the health management of livestock globally, 

thereby enhancing productivity and sustainability in the agricultural sector. 

 

Keywords: Cloud Computing; IoT; Livestock Health Management; Predictive Analytics; 

AWS. 

 

 



 ix 

 

 

List of Abbreviations Used 

                                                 

AI Artificial Intelligence 

API Application Programming Interface 

ASF African Swine Fever 

AutoML Automated Machine Learning) 

AWS Amazon Web Services 

BLE 

 

Bluetooth Low Energy 

 

CNN Convolutional Neural Network 

CO2 Carbon Dioxide 

CPU Central Processing Unit 

DB Data Base 



 x 

 

 

EC2 Elastic Compute Cloud 

ELB 

 

Elastic Load Balancer 

 

Env Environment 

FIS Fault Injection Service  

GDP Gross Domestic Product 

GPS 

 

Global Positioning System 

 

GPU Graphical Processing Unit 

GSM Global System for Mobile Communications 

HR Heart Rate 

IAM Identity and Access Management 

ICT Information and Communication Technologies 



 xi 

 

 

iOS  iPhone operating system 

IoT Internet of Things 

JSON 

 

JavaScript Object Notation 

 

kHz Kilo Hertz 

KMS Key Management Service 

LCD  Liquid-Crystal Display 

LHM Livestock Health Monitoring 

LoRa Long Range 

LoRaWAN Long Range Wide Area Network 

LPWAN Low Power Wide Area Networks 

MB Mega Byte 



 xii 

 

 

ML Machine Learning 

MQTT Message Queuing Telemetry Transport 

NAS  Network Attached Storage  

 

NB-IoT 

 

Narrow Band Internet of Things 

 

NodeMCU Node microcontroller Unit 

NoSQL Not only SQL or Non-SQL 

NVMe Non-Volatile Memory express 

OTA Over The Air 

PLF Precision Livestock Farming 

RCNN Region-based Convolutional Neural Network 

RDS Relational Data Base 



 xiii 

 

 

RFID Radio Frequency Identification 

RMSE Root Mean Square Error 

S3 Simple Storage Service 

SAN Storage Area Network 

SDK Software Development Kit 

SMS Short Message Service 

 

SNS Simple Notification Service 

SSDs Solid State Drives 

SSL Secure Sockets Layer 

SVM Support Vector Machine 

TCP Transport Control Protocol 

 



 xiv 

 

 

TLS Transport Layer Security 

VPC Virtual Private Network 

WAF Web Application Firewall 

Wi-Fi Wireless Fidelity 

WSN Wireless Sensor Network 

 

 

 

 

 

 

 

 

 

 



 xv 

 

 

Acknowledgements 

I would like to express my sincere thanks to all those who have supported and guided me 

throughout my Master’s thesis journey. 

Firstly, I owe a great debt of gratitude to my professor and chair of my committee Dr. 

Suresh Neethirajan, for his invaluable patience and feedback that was instrumental in 

shaping my thesis. I am forever grateful to your unwavering support, and you went above 

and beyond the requirements of supervisor by providing me with every opportunity to help 

me grow as researcher.  

I’m extremely grateful to my committee members, Dr. Miriam Gordon, and Dr. Israat 

Haque, for their insightful feedback, guidance, and timely which greatly improved the 

quality of my work. Many thanks to my research group for their comments and feedback 

during every presentation that helped me prepare for my defence exam. Special thanks to 

Killam library for providing the best environment to study.  

To my family, especially my grandparents, my parents, sibling Lishanth and my boyfriend 

Arun, thank you for your unwavering love, care, and support during this journey. Their 

belief in me has kept my spirits and motivation high during this process. Heartfelt thanks 

to my friends in Halifax that created a second home for me and being my moral support in 

this new country. Special mention to my long-distance friends for their love and support 

across continents. In loving memory of my deceased maternal grandparents, who have 

always been a source of inspiration and strength. Your guidance and love continue to 

motivate me every day. 

Thank you very much. 



 1 

 

 

Chapter 1 Introduction 

 

The Canadian agricultural sector, particularly in Nova Scotia, is significantly driven by 

animal husbandry, which not only supports the livelihoods of farm families and sustains 

rural communities but also enriches cultural diversity and promotes social cohesion. This 

sector is a cornerstone of the provincial economy, evidenced by the steady growth in GDP 

contributions from agriculture, forestry, fishing, hunting, and related industries over the 

past decade. Notably, aquaculture and animal production have seen increases of 17.9% and 

3.2%, respectively, underpinning their importance to the economic landscape of Nova 

Scotia (Aquaculture Statistics - Government of Nova Scotia, Canada, 2023). 

 

The LHM systems are crucial in this context, where sustainability, agility, and precision 

are paramount. As of 2023, the dairy sector alone in Nova Scotia generated $33.5 million, 

underscoring the necessity for advanced technological solutions to optimize productivity 

and profitability (Aquaculture Production Quantities and Value, 2024). 

 

Historically, LHM has relied on intermittent manual observations, which often result in 

delayed responses to health issues and inefficient farm management. The advent of 

integrated modern technologies, including IoT and cloud computing, offers transformative 

potential for real-time, proactive animal health monitoring. This shift not only promises to 

enhance animal welfare but also to improve the operational efficiency of farms (Mana et 

al., 2024), (Kumar Mohanty et al., 2024). 
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This research is positioned to further these advancements by proposing a scalable Cloud-

based IoT architecture aimed at refining the precision and efficiency of real-time LHM. 

Incorporating technologies such as Narrowband IoT (Nb-IoT) enhances connectivity, 

extends battery life, and ensures robust data transmission even in remote settings, which is 

crucial for extensive farming operations (Dangana et al., 2021). 

1.1 Technological Innovations in Livestock Health Monitoring 

 

Traditional methods for LHM are labor-intensive and often inefficient. For example, 

behavioral observations critical for managing reproductive health can consume up to 30% 

of labor resources on commercial farms (Handa & Peschel, 2022), (Racewicz et al., 2021). 

These methods underscore significant inefficiencies in resource allocation and highlight 

the critical need for automated and precise monitoring systems that can significantly reduce 

labor costs and improve health detection rates (Mancuso et al., 2023). 

 

PLF tools represent a leap forward in managing animal health. These systems utilize 

advanced sensors and data analytics to provide real-time insights into animal behavior and 

health. PLF tools help overcome the limitations of human observation, facilitating early 

detection of health issues and more efficient herd management (Odintsov Vaintrub et al., 

2021). Various PLF tools and the corresponding findings to support early detection of 

diseases in swine is outlined in Table  1. 
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Table 1 PLF Tools and early disease detection in swine. 

 

Journal Technology Findings 

(Kashiha et al., 2014) Camera (2D and 3D) to 

capture behavior and 

physiology 

Image analysis translates 

the acquired images into 

indices of distribution 

(animal location and 

proximity) and activity 

(animal position and 

movement). 

(Kongsro, 2014), (K. 

Kollis et al., 2007), 

(Tscharke & Banhazi, 

2013) 

Camera (2D and 3D) to 

capture behavior and 

physiology 

Images have also been 

used to estimate the weight 

of swine. 

(J. Lee et al., 2016), (Lao 

et al., 2016) 

Camera (2D and 3D) to 

capture behavior and 

physiology 

Recording aggressive 

behaviour, walking 

patterns, sow posture and 

behavior patterns during 

lactation period. 

(Manteuffel et al., 2017) Microphones to analyse 

sounds 

Indicate stress or illness 

 

(Silva et al., 2008) Microphones to analyse 

sounds 

Respiratory diseases. 
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(Sellier et al., 2014) Infrared Image and 

Thermistor (Temperature) 

Measures accurate body 

temperature. 

(Foerschner et al., 2018) RFID Monitor pig feeding and 

drinking behaviour 

 

As the global population is projected to reach 9.7 billion by 2050, the demand for animal 

products is expected to surge, necessitating a 70% increase in global food production, with 

meat demand alone expected to rise by over 50% (Beryl Odonkor et al., 2024). The 

livestock industry's expansion has been rapid, fueled by globalization and increasing 

consumer demands across diverse markets. However, this growth brings challenges 

concerning sustainability, environmental impacts, and animal welfare, making it 

imperative to balance increasing meat production with responsible farming practices to 

ensure long-term industry viability (Aquilani et al., 2022), (Daszkiewicz, 2022), (Tripathi 

et al., 2018), (Ominski et al., 2021). 

1.2 Internet of Things and Sensor Technologies in Livestock Health 

Management 

 

The IoT framework for LHM integrates various components essential for effective health 

monitoring. Sensors like accelerometers and temperature sensors are deployed extensively 

to monitor vital physiological parameters such as heart rates and body temperatures, which 

are indicative of the animals’ general health (Tan et al., 2021a). These sensors provide a 

continuous stream of data, which is crucial for timely interventions. Moreover, 
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communication technologies such as ZigBee, RFID, Bluetooth, and Wi-Fi play pivotal 

roles in the efficient transmission of this data (Pozo et al., 2021). 

 

Despite the advancements, certain limitations persist with technologies like ZigBee, which 

currently supports monitoring only one animal at a time. In contrast, integrating 

LoRaWAN and NB-IoT has shown promise in enhancing data transmission efficiency, 

demonstrating low operational costs and extended communication ranges, even in complex 

environments. The amalgamation of NB-IoT and lora technologies is particularly 

advantageous, offering extended transmission distances and reduced operational costs. 

These features are essential for large-scale farm applications, where traditional cellular 

communications may prove less energy-efficient and more costly (Rojas-Downing et al., 

2017), (Al-Samman et al., 2022). 

 

Additionally, incorporating cloud services in LHM provides enhanced data management, 

real-time analysis, scalability, and improved decision-making. Continuous collection and 

analysis of health data from IoT sensor can detect health issues early, enabling timely 

interventions. Immediate alerts about abnormal conditions such as changes in body 

temperature, heart rate, or activity levels are sent to farmers and veterinarians to respond 

quickly to potential health problems. Moreover, cloud platforms provide scalable 

framework that can handle huge volumes of data from numerous devices. Hence data from 

a large farm can swiftly scale their data storage and processing capabilities up or down 

depending on the requirement without significant investment in physical hardware. 
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1.3 Gaps in the Current Knowledge Landscape 

 

The adoption of advanced technologies in LHM on small-scale farms faces specific 

challenges. Research focusing on these barriers and developing tailored solutions is crucial 

for wider technology adoption (Kleen & Guatteo, 2023). While the immediate benefits of 

technology adoption in LHM are evident, there is a notable gap in literature concerning the 

long-term impacts on livestock health, farm sustainability, and economic viability. 

Longitudinal studies are required to provide deeper insights into these aspects (Bonato, 

2010). The ethical implications of deploying advanced technologies in livestock 

monitoring remain under-explored. Issues such as data privacy, animal welfare, and 

societal impacts need comprehensive examination to ensure responsible technology 

implementation (Nasirahmadi et al., 2015). The existing literature often focuses on specific 

regions or countries, lacking a global perspective that accounts for varied agricultural 

practices, socio-economic factors, and environmental conditions. Developing universally 

applicable LHM strategies requires a broader understanding of these global dynamics (Fan 

& Li, 2018).  

 

The overall objectives of the study are, 

1) To develop a Cloud-based IoT architecture that enhances real-time monitoring and 

management of livestock health. 

2) To create a collaborative web-based platform that serves as a nexus for interaction 

among farmers, researchers, and regulatory bodies, fostering a community of practice that 

enhances knowledge exchange and supports sector-wide improvements. 
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3) To utilize advanced data analytics, powered by Python, for robust data processing 

and interpretation, enabling precise health assessments and predictive analytics for 

proactive farm management. 

1.4 Cloud-Based System in Animal Husbandry 

 

The goal of smart animal farming is to harness the potential of cloud computing technology 

and internet to give a boom in the pasturage (Yang et al., 2020). Cloud technology offers a 

network of remote servers hosted on the internet for the purpose of storing, managing, and 

processing massive volumes of data to facilitate data-driven farming. This ability to store 

and manage huge volumes of data, cost effectiveness and remote accessibility makes it 

optimal solution for addressing the challenges faced by the agricultural sector . A Livestock 

monitoring system is a cutting-edge solution architected and developed using sensors, 

GPS, etc., and integrating all these with a network protocol for communication. This 

monitoring system enables farmers to remotely check their farms and take actions 

immediately. 

1.4.1 Amazon Web Services for Cloud Deployment in Livestock 

Health Monitoring 

 

Leveraging Amazon AWS for cloud deployment in LHM provides several critical 

advantages. AWS offers unparalleled scalability, allowing the system to handle data from 

numerous IoT devices without performance degradation, even as the number of devices 

increases (Goudarzi, Ilager, & Buyya, 2022). This flexibility is crucial for adapting to 
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varying farm sizes and the dynamic nature of livestock operations. AWS ensures high 

availability and reliability, with services distributed across multiple geographic regions and 

availability zones. This redundancy minimizes the risk of downtime and data loss 

(Malhotra et al., 2023), ensuring continuous monitoring and prompt responses to any health 

issues in the livestock. S3 automatically replicates data across multiple servers and data 

centers, ensuring that data is available even if a server or data center fails. Enabling 

versioning in AWS S3 helps keep track of changes to objects over time that helps overcome 

accidental overwrites or corruption. S3 cross region replication allows to store backups in 

different geographic location. 

 

Security is a paramount concern in any cloud deployment, and AWS provides robust 

security features, including encryption, access control, and continuous monitoring to 

safeguard sensitive data (Abdulsalam & Hedabou, 2021). Compliance with industry 

standards and regulations is also easier with AWS’s comprehensive suite of compliance 

certifications. Cost efficiency is another significant benefit. AWS’s pay-as-you-go pricing 

model, Al Moaiad et al., (2024) allows for cost-effective scaling, reducing the need for 

large upfront investments in physical infrastructure. This model ensures that resources are 

used efficiently, and costs align with actual usage, which is particularly beneficial for small 

and medium-sized farms. 

 

Integration capabilities are a strong suit of AWS, facilitating seamless interaction between 

various services such as AWS IoT Core, DynamoDB, and Amazon Pinpoint. This 

integration enables the creation of a cohesive and efficient system that supports real-time 



 9 

 

 

data processing, storage, and communication. Moreover, AWS’s extensive global 

infrastructure provides low-latency access and fast data processing, crucial for real-time 

health monitoring applications where timely interventions can significantly impact animal 

welfare. 

1.5 Livestock Health Monitoring 

 

LHM is of utmost importance when overall farm management is considered. It is essential 

to maintain proper check of the livestock since good health and well-being of livestock are 

mandatory for sustainable production of milk. It also paves way for farmers to have a check 

on the animal behaviour, identifying early signs of disease detection (Humboldt-

Dachroeden & Mantovani, 2021). Timely intervention helps prevent the spread of diseases 

within the herd. This not only saves individual animals but also the whole livestock 

population. In addition to this, healthy breed can be utilized for breeding to get best traits 

acquired (Barrett et al., 2020). Another most important reason is that quality and safety of 

food to consumers (Sharif et al., 2024). Healthy livestock produce high-quality products 

which is highly essential for maintaining consumer demands. It avoids diseases spreading 

from animals to humans (Perry et al., 2018). Furthermore, by monitoring key health metrics 

farmers can optimize breeding programs, selecting healthier animals with desirable traits 

to improve the overall herd's genetics (Sellier et al., 2014). Besides, this health monitoring 

also helps understanding the movement pattern such as grazing, rumination and idling 

behaviors (Iqbal et al., 2023). 



 10 

 

 

1.6 Narrow-Band Internet of Things 

 

The research proposes Nb-IoT and LoRaWAN as part of the system’s design for its ability 

to handle long range ow-bandwidth communication efficiently, and LoRaWAN for its cost-

effectiveness and scalability in large-scale deployments. Nb-IoT is a wireless IoT that 

works on the principle of LPWAN technology, providing a greater volume of devices to 

share bandwidth than traditional cellular networks like 2G, 3G, and 4G. The unused 

frequencies within a carrier’s licensed bands are utilized by these devices, thereby 

consuming less power than many other types of networks (IoT Communication Protocols 

with Measurements for NB-IoT - Expert Guide, 2024). Since the NB-IoT networks use 

narrower frequency band, it allows a larger volume of devices to occupy one of the 

network’s “cells.” This enhances coverage by repeating transmissions and increasing the 

receiver’s ability to resolve messages (Narrowband – Internet of Things (NB-IoT) | Internet 

of Things, 2024). While the system follows a strategic approach, the proposal included 

simulations and theoretical analyses that explored how these technologies could enhance 

the system performance. The proposal outlined how Nb-IoT and LoRaWAN could be 

integrated and tested in future work, providing a framework for real-world application and 

be evaluated under real world conditions to validate the effectiveness. 

 

Advantages of using Nb-IoT includes: 

• Low power consumption: Nb-IoT is designed specifically for low-power 

applications, enabling devices to operate for extended periods on minimal battery power. 

This efficiency is crucial for IoT devices that need to function in remote or hard-to-reach 
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areas without frequent maintenance. It reduces the need for frequent battery replacements, 

lowers operational costs, and supports long-term deployments in agricultural settings. 

 

• Power Saving Mode (PSM): Power Saving Mode is a feature that allows Nb-IoT 

devices to enter a deep sleep state when not actively transmitting or receiving data. During 

PSM, the device consumes very little power, extending battery life significantly. This 

enhances the overall efficiency of the system by minimizing power consumption during 

idle periods, making it ideal for applications with infrequent data transmission. 

 

 

• Extended Discontinuous Reception (eDRX): Extended Discontinuous Reception 

allows Nb-IoT devices to stay in a low-power mode while periodically waking up to check 

for incoming data. This extended sleep period between check-ins helps conserve energy. It 

reduces power consumption further by increasing the time between device wakeups, which 

is beneficial for devices that do not require constant data communication. 

 

• Efficient Spectrum Use: Nb-IoT operates in licensed spectrum bands, which 

ensures more reliable and interference-free communication compared to unlicensed bands. 

It uses a narrow bandwidth (e.g., 180 kHz) to transmit data, optimizing spectrum 

efficiency. This minimizes interference and maximizes the use of available spectrum, 

resulting in more reliable and consistent data transmission. 
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• Ubiquitous Coverage and Connectivity: Nb-IoT is designed to provide coverage in 

challenging environments, including rural and remote areas, by leveraging existing cellular 

networks. Its signal can penetrate deep into buildings and underground structures. It 

ensures reliable connectivity even in areas with poor network coverage, making it suitable 

for agricultural applications where connectivity may be a challenge. 

 

•  Low Cost: The cost of deploying and maintaining Nb-IoT devices and 

infrastructure is relatively low compared to other communication technologies. This cost-

effectiveness is partly due to the use of existing cellular networks and the low power 

requirements of the devices. Reduces the overall cost of deploying IoT solutions, making 

it accessible for large-scale and budget-sensitive applications in agriculture. 

 

• Strong Signals: Nb-IoT provides strong and stable signal reception even in areas 

with weak cellular coverage. Its design allows for reliable communication over long 

distances and through obstacles. Improves the reliability of data transmission and 

reception, ensuring consistent performance in diverse and challenging environments. 

 

• Good Battery Life: The combination of low power consumption, PSM, and eDRX 

contributes to extended battery life for Nb-IoT devices. Devices can operate for several 

years on a single battery charge in many cases. Reduces maintenance efforts and costs 

associated with battery replacement, particularly in remote or inaccessible locations. 
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Nb-IoT is more advantageous than the other wireless communication technologies in the 

context of livestock health monitoring. ZigBee and Bluetooth technologies are better for 

short-range, low-power applications (Huircán et al., 2010). In contrast LoRaWAN offers 

long-range and low-power benefits but with limited data rates and infrastructure needs. 

Hence, incorporating Nb-IoT in the system design shall be more suited providing a good 

balance of range, power efficiency, and cost, especially in rural and remote areas. 

1.7 Agile Methodology 

 

The proposed research follows the principles of Agile Methodology that has dynamic 

phases called sprints. In contrast to other models in software development, Agile method 

is flexible, efficient and follows an iterative approach thus ensuring requirement 

satisfaction (What Is Agile Methodology? (A Beginner’s Guide), 2024). The various 

phases of Agile method are elaborated in the subsequent paragraphs. 

1.7.1 Requirements 

 

The primary step of any successful architecture lies in the ideation stage. This serves as a 

foundation to build the LHM system pertaining to the satisfy the following parameters 

(Davis & White, 2020a). The LHM model that is based on AWS Cloud architecture and 

IoT must be a very secure system as it stores and monitors private data. Hence this should 

prevent breaching data through unauthorised access. Any robust model must be handled 

easily and efficiently without much human interference (Nsabagwa et al., 2019). This 

architecture complies to this as troubleshooting takes place to isolate fault thereby not 



 14 

 

 

breaking the operation of the entire system. It should meet the changing demand by 

allocating or removing resources depending on the incoming traffic from the system. The 

model is flexible to changing herd size thereby not incurring more cost. The architecture 

must be able to run through its complete lifecycle. All the desired services and components 

must be available 24/7. 

1.7.2 Planning 

 

A crucial step in modelling this architecture, is the planning phase which involves 

deploying the technological stack for the application. The various features to be included 

in the LHM is outlined as follows: 

Feature 1: A secure model that prevents unauthorised access. 

Feature 2: Model that works seamlessly irrespective of resources being coupled or 

decoupled. 

Feature 3: It must handle increase or decrease in traffic. 

Feature 4: Must allow more than 500 IoT sensors to operate simultaneously. 

Feature 5: The framework must be accessible in remote areas. 

Feature 6: Identify any anomalies in the behaviour of animals. 

Feature 7: Perform analytics and create visualizations from the collected data. 

Feature 8: SMS notification to farmers and concerned authorities, vet. 

Feature 9: Record and store the event. 

Feature 10: Distributed storage. 
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1.7.3 Designing 

 

Any cloud-based model must comply to the five pillars of well-architected framework to 

have satisfied the requirements of the proposed work. This involves the framework to 

perform the necessary actions as coded and must be flexible to changes. The system must 

anticipate failures, learn, and recover from it (Manvi & Krishna Shyam, 2014). The 

proposed model must have a strong secure system to protect the data when in transit or at 

rest. It should also anticipate any security events to ensure that the proposed work functions 

effectively and efficiently as expected. Correct usage of resources. It must be cost-efficient 

and avoid unnecessary expenditure. 

1.7.4 Developing 

 

The technology stack is determined based on the features that are necessary to build the 

LHM. This includes a variety of AWS Services, software tools and technologies which are 

deployed during the development phase. The overall performance of a model depends on 

the efficiency of the components selected and their effective utilization. Hence choosing 

the right technology infrastructure is of utmost importance to achieve desired results. 

Various AWS Services, software tools and technology used in developing this model are 

outlined as follows: 

i.Infrastructure: To satisfy the requirements mentioned as step 1, the proposed model is built 

on AWS Cloud infrastructure as it provides secured access management, cost effective and 

flexible resource allocation. In addition, it also offers a well-developed edge computed 
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service that allows resources it to coupled or decoupled alongside the other required IoT 

services. 

ii.Programming Language: Python is a high-level programming language that offers high 

readability, supports multiple programming paradigm with a vast number of libraries . It is 

essential in this framework as it has an excellent SDK for developing cloud-based services 

(The Role of Python in Cloud Computing: Scaling Applications and Services | MoldStud, 

2024). This is used for the development of software deployed in IoT devices, and AWS 

Lambda functions, which are used as data processing triggers for AWS data pipelines. 

iii.AWS Services: The smart LHM architecture built in AWS combines the various AWS 

serverless services that performs individual and independent task. 

1.7.5 Testing 

 

Data load testing ensures the system's readiness to handle large data volumes continuously 

while maintaining acceptable levels of average latency and error counts. Data integrity 

testing verifies that data is correctly populated across all locations and that insertion events 

occur in the proper sequence. Functional testing guarantees proper data acceptance, 

processing, and retrieval under high loads. Stress testing evaluates the system's durability, 

scalability, and performance.  Security and access control testing ensures that only 

authorized users can access the ingested data. In terms of evaluating results, test completion 

and success criteria are assessed by analyzing test logs and various performance metric 

charts. 
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1.7.6 Deploying 

 

During deployment, the architecture utilizes Terraform for provisioning resources in the 

AWS infrastructure. Hashicorp Terraform is employed to create, modify, and provision 

these resources using JSON configuration files. Commands are then executed to adjust the 

infrastructure according to requirements, with Terraform's robust capabilities available to 

restore infrastructure state if necessary. 
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Chapter 2 Literature Review 

2.1 Introduction 

 

Livestock products comprise the world's agricultural production that include foods derived 

from animals, non-food items (like hides), production inputs (like fertilizer for crops), and 

other non-market uses (like culture). Amidst, the United States and Canada are regarded as 

major agricultural powers, with Canada producing the seventh most pork (Kappes et al., 

2023). 

 

Conventional methods employed for monitoring livestock health, particularly in discerning 

animal behavior, have been noted for their prolonged nature (Geers, 1997) elucidated in 

their research that the identification of mounting behavior alone engrosses a substantial 

proportion, amounting to roughly 30% of the labor invested in commercial farming 

enterprises. This revelation accentuates the considerable temporal investment demanded 

by a singular facet of behavior recognition within livestock husbandry systems. 

Additionally, (Cheon et al., 2023) underscored that the ongoing surveillance of mounting 

behavior contributes significantly, up to 20%, to instances where estrus, a pivotal indicator 

of reproductive well-being evades detection. This signals a discernible deficiency in 

conventional monitoring methodologies, potentially resulting in missed opportunities for 

timely intervention and management.  

 

Furthermore, the challenge transcends individual behaviors to encompass broader herd 

management practices. As elucidated by (Anzai & Hirata, 2021) another study the 
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laborious task of monitoring individual cattle within expansive herds for critical activities 

such as estrus identification poses a substantial operational impediment. These revelations 

collectively underscore the inefficiencies inherent in traditional LHM techniques, 

underscoring the urgent imperative for more streamlined and automated solutions to 

mitigate labor burdens and enhance the precision of behavioral discernment in livestock 

stewardship. 

 

Digital technologies are reshaping various industries, including agriculture, by harnessing 

technology to streamline processes and increase productivity. This transformation will help 

swine farms manage resources and operations more effectively.  In 2050, there is a 

projected 63% increase in worldwide demand for meat and 30% increase in demand for 

dairy products due to population growth and economic development. 

 

The rising demand for quality pig products worldwide shows that the swine industry is 

crucial to food security and nutrition (Tummaruk et al., 2023). Swine reproductive 

management affects farm sustainability, herd productivity, and breeding efficiency. Pig 

farmers still struggle to maximize reproductive success and resource use. Conventional 

methods often rely on experience and intuition, which can lead to poor choices and 

breeding inefficiencies (Stødkilde et al., 2023). Pork farms and industry owners struggle to 

monitor farm operations and swine herd health and behavior. 

 

The worldwide pork market is rising to meet animal protein demand, leading to larger 

swine farms. Swine production is changing the climate and affecting the environment, 
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animal welfare, and human health, including zoonosis and antibiotic resistance. Swine 

farms' success depends on pigs optimal growth and health, which modern farming practices 

can provide (Davis & White, 2020). Consequently, the swine health issues go undetected 

until the severity increase causing causalities and high-cost treatment. This statistical trend 

necessitates the paradigm shift from traditional agricultural methodologies to modern 

agricultural models. 

2.2 Digital Livestock Farming 

 

It is predicted that the global population will reach 9.7 billion by 2050 (United Nations, 

High-Level Summits and Conferences 2022, n.d.) and hence the demand for animal 

products will increase. This projection that global food demand will surge by 70% by 2050, 

with meat demand expected to rise by over 50%, underscores the significant challenges 

facing the agricultural sector in the coming decades (Mc Carthy et al., 2018), (Fletcher et 

al., 2024). 

  

The burgeoning demand for meat and associated products has propelled the global 

livestock industry into rapid expansion. This surge stems from globalization that has 

enabled the industry to tap into new markets and meet diverse consumer demands. 

However, amidst this growth, concerns loom over sustainability, environmental impact, 

and animal welfare. Balancing the imperative to meet escalating meat demand with the 

need for responsible practices is crucial for ensuring the long-term viability of the livestock 

industry and global food security (Tan et al., 2021). 
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This also induces negative impact on the environment and biodiversity (Wang, et al., 2021) 

(Bahar et al., 2020)  (Houghton et al., 2017) that includes the loss and degradation of forests 

globally and some troubles.  Thus, it implies that, in addition to produce more animal 

products, this livestock sector must also incorporate more efficient and sustainable 

production programs. 

 

In traditional livestock farming, decisions are frequently made solely based on the 

producer's experience. This approach relies heavily on the accumulated knowledge and 

intuition of the farmer, honed over years of hands-on involvement in the industry. While 

this experiential wisdom can be valuable in navigating various aspects of livestock 

management, such as breeding, feeding, and health care, it also presents limitations. 

Without incorporating data-driven insights or adopting modern technologies, traditional 

methods may lack precision and efficiency. This synergy between traditional knowledge 

and modern advancements holds promise for ensuring the resilience and competitiveness 

of the livestock farming sector in the face of evolving challenges and opportunities. 

 

The integration of digitalization in LHM has marked the onset of new era of efficient and 

smart animal farming in multiple aspects ranging from the general well-being to advanced 

applications (Fuentes et al., 2022). The farmers and veterinarians is benefitted from this 

better farming yield because of this improved animal health. The predictive analytical 

models embedded with machine learning (giving sense to machines) has helped better 

decision-making and has enabled farmers to derive most out of their farms (Melak et al., 

2024). 
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Management of individual livestock through automated, continuous, and real-time 

monitoring of the health, welfare, production/reproduction, and environment impact using 

sensor technologies, related algorithms and interfaces is defined as PLF. In this aspect, 

different technologies are deployed to monitor the livestock which can be broadly 

categorised as wearables Bonato (2010) and non-wearables Yin et al., (2023). Animal 

wearables are devices designed for direct attachment to animals, including collars and 

patches, enabling the monitoring of movement trajectory and health status (Neethirajan, 

2020). These wearables collect data on various physiological parameters such as heart rate, 

breathing rate, skin temperature, and activity levels. By analyzing this data, researchers and 

veterinarians can gain insights into the animal's well-being, identify abnormal patterns 

indicative of health issues, and track changes over time. Animal wearables offer a non-

invasive and real-time method for continuous health monitoring, facilitating early detection 

of problems and informed decision-making for animal care and management (Herlin et al., 

2021). 

2.3 Advent of Internet of Things and Sensors 

 

The rapidly growing IoT, is revolutionizing many industries, including agriculture. 

Livestock farming stands to benefit greatly from the implementation of IoT technology. 

There is enormous increase in the numbers of techniques proposed to implement IoT based 

solutions in livestock farming. To enhance the quality and proliferation of farming and 

agricultural productivity, researchers have focused on sensor networks and artificial 

intelligent based farming methods. In a study conducted by Varun Mhatre to classify the 
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health status of dairy cows, the IoT sensors are used to capture body temperature, heart 

rate, humidity, and rumination rate at regular intervals to predict the milk yield which 

serves as an important parameter for health status classification (Mhatre et al., 2020).  

 

G. Lee et al., (2022) used IoT devices to monitor and count pigs in a pigsty. The pigs’ ears 

were fitted with BLE tags. The BLE tag signals were detected by wireless broadband leaky 

coaxial cable antennae, which then sent them to the central controller where the primary 

controller sends data to the server. An experiment was carried out consisting of 60 pigs 

where the system is assisted in pig identification and tracked pig movement. The pig’s 

details couldn’t be accessed via a mobile or web interface which posed a limitation to the 

developed model. To avoid piglet death due to pig crushing, Chen et al., (2021)developed 

an IoT-based piglet screaming detection technique.  

 

The farrowing houses in this system are equipped with a microphone, an IP camera, a 

temperature sensor, a floor vibration sensor, and a water drop. The IP camera records video 

and sends it to the server using an Ethernet cable. Before sending data to the server, the 

sensors collect and send environmental data, such as floor vibration. An Nvidia geofence 

RTX system was used to implement AI algorithms for identifying piglet sounds caused by 

piglet crushing. If it was discovered that pig screaming was caused by pig crushing, floor 

vibration would be activated. The piglet sounds were classified by the authors using a CNN 

model. The system detects piglet crushing early on and activates actuators. S. Lee et al., 

(2019) identified undergrown pigs using image processing and deep learning methods. In 

this system, a video camera was installed in a pig house’s ceiling. The camera data were 
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sent to an embedded device (a multi-core CPU), which acted as a gateway. Image 

processing and deep learning techniques (tinyyolo3) are used to identify pigs. The 

TinyYOLO3 is a simplified neural network architecture that is compact, efficient version 

of YOLOv3, designed for environments where speed and resource efficiency are critical. 

The system successfully identified undergrown moving pigs. But it did not detect well-

grown pigs. The advantage of this system was that it enabled real-time data processing and 

pig identification. 

 

The geophone sensors are used by (Bonde et al., 2021) to monitor pigs and analyze piglet 

growth. This sensor was able to detect pig position and movement changes. A video camera 

was also used with this sensor to monitor pig and piglet nursing behavior. The experiment 

was conducted at Betagro Farm in Lopburi, Thailand, from April to June 2019. The authors 

made use of SM-24 geophones, LTC6910 amplifiers, and a nodemcu gateway. These 

devices were connected through Wi-Fi using the MQTT message model. The authors tested 

their pig growth analysis approach against the SVM model.  

 

The result showed that the proposed method’s performance was better than the SVM 

model’s performance. Y. R. Chen et al., (2020) used sensors and a camera to track the 

growth of pigs in Taiwan. The authors recorded pig behavior using a camera and utilized 

the Mask RCNN model to identify pig behavior. The algorithm was able to recognize a 

pig’s head, body, tail, and behaviors such as feeding, drinking, and sleeping. The model 

was able to detect the level of pig growth. Sena & Kaiwman, (2022) used IoT technologies 

to automate pig farm activities. The authors employed a DHT11 temperature and humidity 



 25 

 

 

sensor, and they used an HC-SR04 ultrasonic sensor to detect the amount of food remaining 

in the food hopper. These sensors were linked to an ESP8266 microcontroller, which 

served as a gateway. The gateway was linked to a fan, a light, and a food hopper. These 

actuators were actuated based on measured values under specific parameters. The system 

was used in Thailand’s Nakhon Si Thammarat province. The system’s weakness was that, 

while it controlled the gadgets in the pig farm, it did not measure pig activity. Vaughan et 

al., (2017) employed IoT technologies to measure pig weight and analyze pig motion on a 

pig farm. A plastic optical fiber (POF) sensor (PGR-FB1000 step-index POF), an ADC, 

and an ATM2560 Arduino Mega board comprised the system (gateway).  

 

The authors combined 22 POF sensors and created a mat for weighing pigs. The pig’s 

weight was shown on an LCD screen, and the results revealed that the mat was more 

accurate than the present pig weight measurement system. S. Lee et al., (2019) used RFID 

tags (IC tags) with antennas at Seven Foods Co. Ltd., Kikuchi City, Japan. In this system, 

IC tags were fixed to the ears of 40 pigs. IC tag details were recorded by four RFID 

antennas. Six hours per day, the activities of each pig were recorded. The limitation of the 

system was that the authors did not use pig information for any further analysis. Popa et 

al., (2022) monitored the air pollution of cattle in Romania using IoT technologies. 

Temperature sensors, pressure sensors, humidity sensors, and air sensors were used to 

measure environment temperature, humidity, PM1, PM2.5, PM10, CO2, NO2, and O2. 

Measured values were sent to a gateway using LoRa. Sensor data were forwarded to the 

cloud using the MQTT protocol. The system was implemented in a cow farm that had 200 

cows. The system finds a relationship between air pollution and climate parameters. Dineva 
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& Atanasova, (2021) developed a scalable LHM system that uses AWS Greengrass, an 

edge computing resource combined with lora technology. Further, the study by Dutta et 

al., (2022)focuses on development and deployment of “MOOnitor”, a neck mounted 

intelligent IoT device for cattle monitoring. It uses temperature sensor, GPS, 

accelerometer, and GSM module facilitating classification of salient activities of cattle. 

Information and communication technology (ICT)-based smart swine farming, considering 

auto-identification, remote monitoring, feeding behavior, animal rights/welfare, zoonotic 

diseases, nutrition and food quality, labor management, farm operations, etc., with a view 

to improving meat production from the swine industry (Mahfuz et al., 2022). 

In research conducted by (Unold et al., 2020)automated dairy cow health evaluation system 

was developed based on IoT to measure rumination, feeding, sleeping and movement of 

the dairy cows. This involves sensors including rumination sensor, accelerometer, and Wi-

Fi. Further IoT application in cow health monitoring, milk processing, and secured 

transportation was efficiently carried out using the BLE and ZigBee technology by (Alonso 

et al., 2020). 

 

It can be summarized that the broader hierarchy comprises of three fundamental 

components. Primarily, that involves the use of IoT to monitor, control and track the health 

status of the livestock. Under distinct conditions, different sensors including accelerometer 

sensors, temperature sensors have been installed in the animal to record the heart rate, 

temperature, and other health-related factors. Conclusively, communication protocols such 

as ZigBee, RFID, Bluetooth, and Wi-Fi are used for data transmission. 
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The studies indicate that the functionalities of the Zigbee module is restricted and allows 

the monitoring of only one livestock at a time. Several studies revealed that the 

combination of LoRaWAN and NBIoT improves low-cost data transmission. For instance, 

Zhang et al., (2019), performed a systematic approach to incorporate this technique to 

Information Monitoring System where, “the communication distance in a complex 

environment is up to 1.6 km, the minimum working current is 2 ma, and the system 

communication packet loss rate is approximately 3%”. In a further review, Tang et al., 

(2019) and colleagues investigated a case study involving a fault indicator in Electricity 

Distribution Network, used the same methodology and found consistent evidence of 

reduced operation cost. 

 

Previous studies have shown that ZigBee and Bluetooth are short-range radio technologies 

and are not suitable for long-range transmission scenarios. 2G, 3G, 4G, and other solutions 

based on cellular communication can provide a wider coverage, but they consume too 

much energy and increase the operating costs. The advantage of this approach is that the 

combination of NB-IoT and lora not only improves transmission distance but also reduces 

the operating costs of the WAN information monitoring system. 

 

 

 

 



 28 

 

 

2.4 Cloud Computing in Animal Farming 

 

Using this technology and combining it with the benefit of IoT, (Park & Park, 2020) 

developed livestock monitoring method that uses WSN and data being managed over 

Cloud. This helped management of grazing cows across different locations. 

 

Cloud based cattle monitoring system using GPS and LoRaWAN technology to monitor 

cattle movement is designed by Joshitha (Joshitha, Kanakaraja, Bhavani, Raman, & 

Sravani, 2021). This concept was extended with the inclusion of drones for aerial 

monitoring of farm animals by (Behjati, et al., 2021). Dwyer et al., (2015), developed a 

web page for animal monitoring using IoT and Cloud for understanding the animal 

behaviour. A similar model to monitor the feed and deploy a scalable IoT platforms 

integrated with cloud; tested against a batch of pigs at their fattening stage was performed 

by (Mateo-Fornés et al., 2021). 

Various others conducted research that assess the health, behaviour, stress, emotion, feed 

monitoring with the help of Cloud, IoT and WSN technologies (Dineva et al., 2021). 

2.5 Data-driven decision making in Swine Industry 

 

Data-driven decision making at pig farms means that decisions that are made will depend 

on predictions made using the information gathered at the farm and across the supply chain 

(Ahmed et al., 2021). To perform successful predictions and help in decision making, data 

analytics and ML techniques can be used. Recently, ML models are being used to predict 
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various variables of interest to decision making, such as sales and feed performance (Javaid 

et al., 2022). 

 

With the implementation of more sensors and data sources, more possibilities arise for 

using ML in information systems. Manufacturing companies are often focused on static 

explanatory models, but there are many opportunities in predictive modelling where ML 

can be used and improve the decision-making processes (Flath & Stein, 2018). For 

example, ML is used to predict limb conditions of pigs, using data collected at farm Liang 

et al., (2020) predicted ASF outbreaks, using ASF outbreak data and the WorldClim 

database provides high-resolution climate data, including variables like temperature, 

precipitation, and humidity. In this context, the meteorological data is used to identify 

environmental factors that could influence ASF outbreaks (Bakoev et al., 2020). 
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Chapter 3 Materials and Methods 

3.1 Ethical Declaration 

 

The empirical data supporting this study was generously provided by my distinguished 

colleagues at Wageningen University & Research and is linked to an independent, prior 

experiment. The study in question was authorized by the Central Committee on Animal 

Experiments (CCD) and the Animal Experiments Department (IVD) of the Netherlands, 

ensuring that the ethical standards and optimal procedures were followed. The Department 

of Animal Sciences of the Care of Animals Used for Scientific Purposes (CARUS) at 

Wageningen University & Research carefully reviewed and approved any additional, non-

invasive treatment of animals for the current study. For this investigation, the appropriate 

approval number is 20210521ADP (Neethirajan, 2023). 

3.2 Study Design and Animal Housing: A Methodological Approach 

 

50 male piglets (Tempo × Topigs Norsvin TN70), weighing an average of 25 kg and born 

about nine weeks ago, participated in the long-term study. Rooms 14 and 15 of 

Wageningen University & Research's CARUS facility served as the home for these piglets. 

Six piglets, ranging in age from 86 to 108 days, were selected from this cohort to undergo 

a thorough examination of their behavioural and physiological adaptations. 

Acclimatization took place throughout the first week, giving the piglets time to become 

used to their new surroundings, food, and care routine. Measuring 2.86 by 1.16 meters, 

each pen was large enough to accommodate two piglets and was furnished with all the 
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necessities, including toys. Lights were kept on from 7:00 to 19:00, and the room 

temperature was adjusted to suit the demands of the piglets. A particular eating schedule 

was followed with water always available. 

3.3 Data Collection 

 

Data used in this study is collected from already mounted Zephyr bio harness belt 

application on a Topigs Norsvin TN70 piglet (Figure 1) in a swine farm. The design 

structure, layout, and equipment of the sensor installed on the pig can be found in (Figure 

2 and 3) illustrate two components of a single system. This system automates the process 

of data collection and transmits these data to the system. The used approach represents a 

non-invasive method for data collection. 

 

 

Figure 1 Photograph of the Zephyr bio harness multimodal sensor platform used for data 

collection from Topigs Norsvin TN70 piglets. 
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Figure 2 Overhead view portraying the Zephyr bio harness 3.0 strap’s arrangement 

around the piglet’s chest, reinforced with a Vetrap bandage. 

 

 

 

Figure 3 Side perspective showcasing the piglet  wearing the Zephyr bio harness. 
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3.4 Dataset 

The sensor data collected are in a raw format, hence it is necessary to analyze and format 

the data into usable form for developing a custom ML model. The methods, process, and 

approaches to understand how the data from IoT devices is processed and modelled and 

integrate this trained ML model into production environment along with other AWS 

services. To ensure a robust and comprehensive analysis, the original dataset was 

augmented using Mockaroo, a tool that allows for the generation of realistic and structured 

data. The original dataset consists of data collected from sensors and other monitoring tools 

in a pig farming environment. Key parameters include temperature, humidity, HR etc.  

The individual analysis of data load which were used to test the load capacity of the model 

is discussed in the subsequent paragraphs. Case 1 (data volume 86.3 MB), this dataset 

contains the initially collected sensor data from the farms. The low load scenario represents 

a cleaned, preprocessed data with minimal external stressors. The data points incudes time 

stamp, temperature, humidity, animal activity levels etc.  The Case 2 includes sensor data 

under medium load (data volume 258 MB) conditions, simulating a scenario with moderate 

external stressors such as increased animal activity and fluctuating environmental 

conditions. Here, the preprocessing task includes aggregation of data to hourly intervals 

for trend analysis. The Case 3 dataset captures sensor data under high load conditions (data 

volume 516 MB), that represent extreme scenarios including high heart rate, noisy data, 

and missing data points. Here, the primary task incudes removing outliers. 
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To enhance the dataset and facilitate more comprehensive testing and validation of the 

monitoring system, the original data was augmented using Mockaroo. This tool allowed 

for the generation of additional synthetic data that mirrors real-world scenarios and create 

more robust training sets for the model. The augmentation process involved increasing 

sample size to represent large herd size, adding variability to simulate health and behaviour 

patterns, introducing anomalies to represent spike in temperature or heart rate etc. This 

augmented dataset maintains the same structure and format of the original dataset with 

additional complexity and diversity. 

 

To integrate this data with AWS, Amazon S3 is used for storing the data. Further, AWS 

Lambda was configured to preprocess and clean the data and Amazon Sage Maker to train 

the models using the processed data. Post this, the data is then stored in DynamoDB for 

historic data for future analysis. A larger and varied dataset improves the training process 

of ML models leading to better accuracy and reliability. The presence of synthetic 

anomalies allows for thorough testing of the system's ability to detect and respond to health 

issues. The augmented data enables the development of a scalable solution that can be 

adapted to different farm sizes and conditions. This approach ensures that the system is 

well-prepared to handle real-world scenarios and provide valuable insights to farmers. 

3.5 Workflow 

 

The methodology being considered is to gather unique characteristics of each pig, 

considering important health indicators. The dataset is then cleaned, preprocessed and 

transformed to a usable format that is suitable for training a machine learning model to 
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accurately classify health status based on the animal’s specifics and its environment. This 

leads to improved early detection of potential health problems and prevention of disease 

outbreaks in the livestock industry. The data acquired from the tripartite sensor is listed in 

Table 2. The collected data includes temperature, heart rate, breathing rate etc. 

 

Table 2 Various parameters measured using the tripartite sensor installed on the body of 

the pig. 

 

Features Meaning 

Time Timestamp indicating the time of data collection 

Animal Identifier of the livestock being monitored (e.g., pig ID) 

Activity Description of the activity or behavior of the animal. 

Date Date of data collection. 

Breathing Waveform Data related to the breathing waveform. 

HR (Heart Rate) Heart rate of the animal. 

BR (Breathing Rate) Breathing rate of the animal. 

Skin Temp Skin temperature of the animal. 

Posture Posture of the animal. 

Peak Accel Peak acceleration experienced by the animal. 

Battery Volts Voltage of the device’s battery. 

Battery Level Level of the device’s battery. 
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Features Meaning 

BR Amplitude Amplitude of the breathing waveform 

BR Noise Noise in the breathing waveform. 

BR Confidence Confidence level in the breathing rate measurement. 

ECG Amplitude Amplitude of the ECG waveform. 

ECG Noise Noise in the ECG waveform. 

HR Confidence Confidence level in the heart rate measurement. 

HRV (Heart Rate Variability) Variability in heart rate. 

System Confidence Overall confidence level in the system’s measurement 

GSR (Galvanic Skin Response) Galvanic skin response of the animal. 

ROG State State of the animal 

ROG Time Time related to the animal’s state. 

Vertical Min, Vertical Peak Minimum and peak values of vertical movement. 

Lateral Min, Lateral Peak Minimum and peak values of lateral movement. 

Sagittal Min, Sagittal Peak Minimum and peak values of sagittal movement. 

Device Temp Temperature of the device. 

Link Quality, RSSI, TX Power Quality of Link, RSSI (Received Signal Strength Indicator), 

and transmission power. 
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Features Meaning 

Core Temp Core temperature of the device. 

AUXadc1, AUXadc2, 

AUXadc3 Additional ADC (Analog-to-Digital Converter) readings. 

R to R R-to-R interval. 

Vertical, Lateral, Sagittal Movement data in different axes. 

ECG Waveform Data related to the ECG waveform 

 

The list of services along with their features that are needed for the smooth functioning of 

this model are shown in Table 3. 

 

 

Table 3 List of AWS services required to satisfy the feature requirements outlined in 

Planning phase. 

Features AWS Service 

Feature 1 

Secure model that prevents unauthorised 

access 

 

AWS Device Defender, 

Feature 2 

Model that works seamlessly irrespective of 

resources being coupled or decoupled 

 

AWS Greengrass 

Feature 3 

It must handle increase or decrease in traffic 

 

Auto Scaling 
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Features AWS Service 

Feature 4 

Must allow more than 200 IoT sensors to 

operate simultaneously 

 

IoT Core Services 

Feature 5 

The framework must be accessible in remote 

areas 

 

Nb-IoT protocol 

Feature 6 

Identify any anomalies in the behaviour of 

animals 

 

AWS CloudWatch 

 

Feature 7 

Perform analytics and create visualizations 

from the collected data 

 

AWS sagemaker, Quicksight 

Feature 8 

SMS notification to farmers and concerned 

authorities, vet 

 

AWS SNS 

Feature 9 

Record and store the event 

 

DynamoDB 

Feature 10 

Distributed Storage 

 

AWS S3 
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Chapter 4 Results 

4.1   Services used in Amazon Web Services 

Cloud 

 

Using AWS serverless solutions, the proposed design for cattle farming in Figure 4 

integrates a variety of services, encompassing development, computation, storage, 

databases, analytics, networking, mobility, management, IoT, business apps, and security. 

Essential components such as AWS IoT Core, Lambdas, DynamoDB, S3, Machine 

Learning, Notifications, Analytics, Logging, and User Identities were grouped together to 

establish a scalable and resilient monitoring system. These groupings were organized to 

meet the functional requirements outlined in Phase 2 of the Materials and Methods section. 

Furthermore, Phase 3 of the Materials and Methods section delineates the architecture in 

alignment with the fundamental principles of a well-structured design. 
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Figure 4 AWS Architecture depicting workflow of the model. 

 

The overall framework scalability of the AWS services used is shown in Figure 5. This 

architecture includes Amazon S3 (Simple Storage Service) that is highly scalable by 

default and capable of storing virtually unlimited amounts of data. The automatic scaling 

feature allows S3 to automatically handle increased request rates and huge volumes of data 

without any manual intervention. 
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DynamoDB is a fully managed NoSQL database service that can handle massive scale and 

high throughput. It can automatically scale its read and write capacity to accommodate 

changes in traffic without performance degradation. 

Amazon Sage Maker is a fully managed machine learning service that allows you to build, 

train, and deploy machine learning models at scale. It can scale horizontally to 

accommodate training and inference workloads across multiple instances. 

AWS Lambda is a serverless compute service that automatically scales to handle incoming 

requests and can scale horizontally to handle increased concurrency as traffic grows. 

It’s pay-per-use pricing model, allows users to scale efficiently based on actual usage 

without overprovisioning resources. 

 

 

Figure 5 Scalability architecture of the AWS Services 
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4.1.1 Internet of Things Core Frame 

 

The AWS IoT core consists of five services that maintain the needs of all IoT devices, 

connect to AWS cloud, manage devices, update over-the-air (OTA), and secure the IoT 

devices. It uses the scalability communication protocol to encrypt all communication and 

preventing third parties from reading or tampering with the data being transmitted. TLS 

encrypts the data being transmitted, ensuring that any sensitive information (e.g., health 

metrics, sensor data) cannot be easily intercepted or deciphered by unauthorized parties. 

This is particularly important when transmitting data over public or untrusted networks. It 

is done using certificates to authenticate the identity of the server (e.g., AWS). This ensures 

that the device or client is communicating with a legitimate server and not an imposter or 

attacker. The use of TLS in the system enhances trust and reliability. Farmers and 

stakeholders can be confident that the data being collected, processed, and analyzed is 

secure and has not been tampered with during transmission.  

 

Services in this framework are rules, topics, shadow service, AWS IoT device defender, 

and AWS IoT device management. The Rules (Figure 6) enable the IoT devices developed 

for smart livestock to interact with AWS services (Pereira, et al., 2019). 

Some of the rules used in the system are: 

i.Filter incoming data from IoT devices. 

ii.Simulating the IoT sensor (Figure 7) 

iii.Separation and recording of data according to their type in various kinds of databases. 
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iv.Sending notifications to users in certain circumstances Figure 8 (for example, occurrence 

of abnormal events in the monitoring process) 

v.Real-time processing of messages coming from multiple IoT devices. 

vi.Setting alarms to notify the user when reaching predefined limits of certain parameters (for 

example, reaching a critical battery level of IoT devices, increase in HR of the animal 

Figure 9) 

vii.Send the data from a Message Queuing Telemetry Transport (MQTT) message to a 

machine learning frame to make predictions based on the ML model. 

viii.Send data to a dashboard. 

 

 

 

Figure 6 SQL condition to trigger SNS if HR value exceeds a set threshold of150 from 

the topic sensor/data. 
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Figure 7 IoT Core Rule to trigger SNS if Heart Rate value exceeds a set threshold of 150 

from the topic sensor/data. 

 

 

Figure 8 Simulating an IoT sensor to generate random values corresponding to the feature 

HR. 



 45 

 

 

 

Figure 9 Filters data by the defined IoT Core Rule of HR greater than 150. 

4.1.2 Lambda Frame 

 

The Lambda function operates as a stateless code snippet, triggered by various sources both 

internal and external to AWS. It offers the capability to automatically scale applications 

without the need for capacity planning. Unlike an EC2 instance, a Lambda serves a singular 

purpose and runs for a short duration, typically a few minutes. It can scale rapidly to handle 

hundreds of instances with minimal platform maintenance. In the context of the livestock 

monitoring system described in this work, Lambda functions undertake the following tasks: 

- Storing specific metadata, such as a unique ID, S3 bucket and key where the frame 

is saved, the approximate recording time, etc., to Amazon DynamoDB. 

- Simulating IoT sensor behavior by adjusting random values to a specified 

frequency. 
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4.1.3 Data Storage 

 

DynamoDB (Figure 10) is a serverless architecture are used to store events. Data from here 

is sent to real-time operational dashboard to provide insights. DynamoDB, with its high 

throughput and auto-scaling capabilities, efficiently handles large volumes of data from 

numerous IoT devices, ensuring the system remains responsive Firouzi & Farahani, (2020), 

Kumari et al., 2022). Its NoSQL design is ideal for diverse sensor data, and its high 

availability and durability provide robust data management. Seamless integration with 

other AWS services facilitates a cohesive IoT monitoring system, while low-latency 

operations ensure timely health interventions. Amazon Pinpoint enables effective 

communication and engagement through multichannel messaging, critical for real-time 

alerts and personalized notifications based on specific data points (Voutsas et al., 2024). 

Integration with AWS IoT Core and Lambda triggers real-time alerts for anomalies, 

supporting automated health checks and scheduled notifications. Detailed analytics on 

message delivery and user engagement refine communication strategies, ensuring critical 

alerts are promptly addressed. Pinpoint’s scalability accommodates extensive livestock 

operations, offering targeted messaging for efficient health management. Together, 

DynamoDB and Amazon Pinpoint provide a robust, scalable, and efficient system for 

LHM, enhancing animal welfare and farm productivity through effective data management 

and real-time communication. 
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Figure 10 Filtered data from IoT Core is then stored in DynamoDB. 

4.1.4 Notification Frame 

 

Amazon Pinpoint, as a communication service, connects with users through various 

channels such as email, SMS, push, or voice (Figure 11). This service is used to personalise 

messages with the right content. It sends push notifications to the smart livestock 

application after pre-provided data that authorises pinpoint to send messages. The 

credentials that are provided depend on the operating system: 

• For iOS applications, an SSL certificate is provided. The certificate authorises the 

pinpoint service for sending messages to the smart livestock apps. 

• For Android applications, a web API key is provided. These credentials authorise 

the pinpoint service for sending messages to the smart livestock apps. 
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AWS AppSync takes care of managing and updating real-time data between web and 

mobile app and cloud. Additionally, it allows apps to interact with data on mobile devices 

when it is offline. 

 

 

Figure 11 A screenshot representing IoT rule sending an alert to the user as the HR values 

exceeding the set threshold of 150. 

4.1.5 Machine Learning Frame 

 

Long-term unused data can be stored in S3 Glacier which is designed to store rarely used 

data. Since the data from S3 Glacier is not readily available it is archived. The unused data 

can be unzipped and moved to S3 bucket if required. The data from S3 is then used by 

Amazon Sage Maker to build, train, and deploy interface models. To predict the future 

health of the animals, the boosted decision tree algorithm was trained, which takes as 

parameters the animal’s temperature, heart rate, isolation, and pairing. With these data, the 

model is trained to make a binary prediction of one of two classes: the animal has good 



 49 

 

 

vital signs, and the animal has poor vital signs. In addition to the classification of the health 

status of the animals, a regression is performed to predict, in the short-term, the future 

amount of milk that will be extracted from each animal. Linear regression is the algorithm 

trained with the historical data stored in the S3 Bucket. The trained models are deployed, 

and their self-learning continues through new data coming from the data stores frame.  

 

Amazon SageMaker Autopilot is a feature that automates the process of building machine 

learning models by selecting the best prediction type and evaluating numerous model 

candidates. It begins by analyzing the dataset provided and automatically infers the 

appropriate type of prediction task, such as binary classification, multi-class classification, 

regression, or time series forecasting, based on the nature of the data. 

 

Once the prediction type is determined, SageMaker Autopilot initiates a comprehensive 

AutoML process. This involves generating hundreds of different models, each using 

various machine learning algorithms and hyperparameter configurations. The AutoML 

cycle systematically tests these models to determine which combination of algorithms and 

hyperparameters yields the most accurate predictions for the given data. 

 

Throughout this process, SageMaker Autopilot ensures that the model selection is data-

driven, leveraging its ability to explore a wide range of possibilities that might be 

impractical to test manually. By evaluating and comparing these models against each other, 

it identifies the best-performing model that fits the data, providing a highly accurate 

solution tailored to the specific problem at hand. This automation not only accelerates the 
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model development process but also enhances the reliability and precision of the final 

model, making it a powerful tool for data scientists and developers. 

4.2 Execution Results 

4.2.1 Internet of Things Device 

 

A group of sensor groups, logical blocks, and power supply collected sensor readings from 

livestock for temperature, humidity, and heart rate. The communication in each livestock 

IoT device is device-to-edge using Nb-IoT (Lu et al., 2024). All IoT devices on a farm have 

strict firewall rules. The various sensor devices deployed are registered prior to 

initialization of the framework for security. Livestock IoT devices will not be able to 

communicate with each other on their farm or with other devices to ensure independent 

working of each sensor. In case the IoT device cannot connect to the IoT edge, or the data 

transmission is obstructed by any other reasons, the device can keep the sensor readings 

until the moment it reconnects. Then, the IoT device will send the up-to-date data. 

4.2.2 Internet of Things Edge 

 

The AWS IoT Core, which is an IoT open-source edge runtime and cloud service that helps 

to build, deploy, and manage device software (Ning et al., 2020). It was used to manage 

local processes, communicate, and synchronise certain groups of devices and exchange 

tokens between Edge and cloud, which acts as a hub or gateway in Edge. The 

communication is Edge-to-Cloud using TCP based protocols. It consists of MQTT Broker, 
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Local Shadow Service, AWS Lambda, Meta Data, and Trained Models. AS IoT Core was 

used to perform the following tasks: 

i.Processing of large data streams and automatically sending them to the cloud through 

Lambda functions (AWS Lambda). 

ii.Lambda functions uses Nb-IoT protocol for connections between livestock IoT devices and 

cloud using device authentication and authorisation (Meta Data). 

iii.Deployment of cloud-trained machine learning models for regression that predicts a 

percentage of the future power of the battery concerning the individual frequency and load 

of the monitoring livestock system (Trained Model). 

iv.Updated group configuration with secured OTA software updates. 

 

The developed framework is tested against three different sizes of data; The dataset 

contains 318713*44, 320713*44, and 322713*44 in scenarios 1,2 and 3 respectively. 

The execution results from Lambda displaying a) Error count and success rate (%); b) 

Throttles; c) Invocations; d) Duration; e) Total concurrent executions; in three different 

scenarios of changing farm size are as follows. 

It can be inferred from the Lambda metrics that a high success rate suggests that Lambda 

functions are functioning as expected and handling incoming requests effectively with 

increasing data load (Figure 12, Figure 13, Figure 14). 
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Figure 14 Lambda execution results displaying the error and success rates when 

experiencing data load in scenario 3. 

 

     

 

    

Figure 12 Lambda execution results the error 

and success rates when experiencing data load 

in Scenario 1. 

Figure 13 Lambda execution results the error 

and success rates when experiencing data load 

in Scenario 2. 
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Throttle lines (Figure 15, Figure 16, Figure 17) intersecting or crossing the x-axis indicate 

instances when Lambda invocations were throttled. The position of these lines along the x-

axis corresponds to the timestamp or time period when throttling occurred. 

 

    

  

 

 

Figure 15 The count of throttles in Lambda 

function with small data load. 

Figure 16 The count of throttles in Lambda 

function with medium data load. 
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Figure 17 The count of throttles in Lambda function with large data load. 

Figure 17 depicts that the Lambda function is operating efficiently and effectively, with no 

restrictions on the number of concurrent executions it can handle. It is also evident that the 

application can horizontally scale effectively to accommodate varying workloads without 

being hindered by concurrency limitations. AWS Lambda is utilizing the available 

resources (such as memory, CPU, and networking) to their fullest extent, maximizing the 

efficiency of your function executions. Figure 18, Figure 19, Figure 20 shows Lambda 

function is invoked automatically each time an AWS service is triggered. Here, the Lambda 

function serves as an event-driven, serverless compute service offered by AWS. Below are 

certain instances when the Lambda function is invoked when a corresponding AWS service 

is triggered. 

 

Data Ingestion: For instance, whenever an IoT device such as sensor monitoring the 

livestock health, sends data to AWS through AWS IoT Core, this event triggers the Lambda 



 55 

 

 

function. The Lambda function then processes this incoming data, performs tasks such as 

data transformation or storage into S3. It automatically scales to accommodate incoming 

requests. As the number of invocations increases, AWS Lambda manages the allocation of 

resources to handle the workload efficiently. 

 

Alerts and Notifications: If the system detects that certain health indicators (like 

temperature or heart rate) fall outside of predefined thresholds, this event triggers the 

Lambda function. The function sends an alert or notification to the farmer or initiate further 

analysis. 

 

Data Analysis and Processing: Lambda is also triggered by scheduled events, such as 

periodically analyzing data stored in S3 or a database. For example, it might execute a 

predictive analytics model to identify potential health issues in livestock before they 

become severe. 
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Figure 18 Examining Lambda in light data 

load. 

Figure 19 Examining Lambda in moderate data 

load. 

 

Figure 20 Examining Lambda invocations in heavy data load. 

In AWS Lambda, "duration" refers to the time taken for a Lambda function to execute a 

single invocation from start to finish (Figure 21, Figure 22, Figure 23). It includes the time 

it takes to initialize the execution environment, execute the function's code, and handle any 

outgoing requests or asynchronous operations. 
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Figure 21 Duration variability in Case 1. Figure 22 Duration variability in Case 2. 

 

 

Figure 23 Duration variability in case 3. 
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Optimizing code, memory allocation, and concurrency settings can lead to improved 

performance, reduced costs, and enhanced user experiences in serverless applications. 

 

Figure 24, Figure 25, Figure 26 depicts the total concurrent executions that occurred. Peaks 

in the graph represent times when the total concurrent executions reach their highest levels. 

This occurs during periods of high traffic, increased workload, or bursts of activity. 

    

   

 

 

Figure 24 Total Concurrent Executions with 

small data size. 

Figure 25 Total Concurrent Executions with 

medium data size. 

 



 59 

 

 

 

Figure 26 Total Concurrent Executions with large data size. 

Built on the AWS cloud platform, which provides more than 200 services, is the smart 

livestock architecture. More than 20 management services, over 30 machine learning and 

data analytics services, and over 13 database and storage services are included in this list. 

This research's recommended architecture uses AWS serverless services to make it easier 

to create vital data pipelines that can effectively handle massive amounts of data from IoT 

devices. It also makes it possible to store large amounts of unprocessed raw sensor and 

image data on AWS S3 at a reasonable price while maintaining accessibility to both old 

and new data. 

 

Figure 27 and Figure 28 displays the error and success rate recorded in Cloud Watch which 

is used to analyze the performance and reliability of the model. 
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Figure 27 Cloud Watch metric with small data load. 

 

 

Figure 28 Cloud Watch metric with large data load. 

The developed model predicts the heart rate considering various parameters including 

animal activity, temperature, breathing rate etc. Figure 29 shows the predicted and actual 

values of the HR using Sage Maker. 
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Figure 29 Graph displaying RMSE of predicted and actual values of HR. 

 

Among all the features available to predict HR, the significant contributors are Breathing 

Waveform Figure 30 and Activity Figure 31. 

 

Figure 30 The plotted graph shows the Breathing Waveform in the x-axis and its impact 

on prediction on the y-axis in forecasting HR value. 
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Figure 31 The graph displays the Activity of the animal against the impact of prediction 

to predict the values of HR. 

4.2.3 Scenario Based Testing 

 

Scenario-based testing is a critical component of the software development and validation 

process, especially for complex systems like IoT applications using AWS and NB-IoT. It 

allows to test the use case in a realistic environment that mimics the actual usage 

conditions. Some scenarios that comprehensively covers the most common use cases are 

discussed as follows. 

4.2.3.1 Handling Robustness 

 

The developed model ensures the ability to cope with errors while execution and effectively 

handle unexpected or invalid inputs. The redundancy and continuity of the system is 

handled by AWS Lambda, that scales in response to incoming requests, ensuring 
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robustness. The comprehensive error handling and logging mechanism is monitored by the 

AWS CloudWatch that watches the application’s performance, logs, and metrics, allowing 

for rapid detection and resolution of issues. The ELB distributes incoming application 

traffic across multiple targets, improving fault tolerance. Resilience testing can be 

performed using AWS FIS that helps run experiments on AWS resources to simulate 

failures such as instance terminations, CPU throttling, and network blackholes. 

Additionally, to automate resilience testing to periodically assess and improve system 

robustness, AWS provides AWS Code Pipeline and AWS Step Functions where the former 

automates build, test, and deploy function and the latter orchestrates resilience testing 

workflows. 

4.2.3.2 Data Throughput Changes 

 

The amount of data that can be processed by the system in each time frame is referred to 

as Data Throughput. Various testing scenarios including load testing, scalability, caching 

can be performed to ensure system’s capacity. 

𝑇 = 𝐼/𝐹 

where T stands for Throughput, I stand for (the number of units in the production process) 

and F stands for the time the inventory units spend in production from start to finish. In 

the study performed, AWS Scaling, automatically scales to adjust the computing capacity 

to maintain consistency and performance. 

Scalability, within the context of this project, refers to the system’s capacity to efficiently 

manage increasing amounts of work, data, or users without experiencing a significant 
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decline in performance. Scalability is a critical consideration, particularly for the livestock 

health monitoring system developed in this research, which may need to handle a growing 

number of IoT devices, more extensive datasets, and increasingly complex computational 

tasks as the system is scaled to larger farms or deployed across multiple locations. 

• System Scalability 

From a system perspective, scalability implies the infrastructure's ability to accommodate 

an increasing load through efficient resource management. This can be achieved through: 

Horizontal Scaling: It involves the addition of more instances of services to distribute 

the workload across multiple resources. This means instead of relying on a single Lambda 

function to process the large concurrency of data (>1000 instances) being uploaded, 

multiple such instances can be set up to handle the incoming data. Another instance when 

the system detects anomalies, it could trigger multiple Lambda functions to send alerts to 

different groups of farmers simultaneously. The default time taken is 3 minutes and 

maximum is 15 minutes. If the data volume is enormous then inclusion of a second 

instance is crucial. This ensures that the alerts are sent quickly and efficiently, even when 

the number of anomalies increases. Thus, the system remains responsive and scalable as 

the data load increases, rather than relying on a single source that might become a 

bottleneck. Such an approach helps maintain performance and reliability, especially in 

dynamic environments where demand can fluctuate. 

Vertical Scaling: Vertical scaling focuses on boosting the capabilities of existing 

resources to meet higher demands, rather than adding more instances like in horizontal 
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scaling. For instance, considering the data load of 516 MB running on small EC2 instance 

t2.small. If the data load increases enormously, then EC2 instance of size m5.large or more 

is required for the complex calculations to be performed. In such cases, vertical scaling 

can be done by upgrading to large instance with more CPU cores, memory and storage 

that allows the existing application to handle the increased demand without changing the 

underlying architecture. Although this incurs high cost, it is useful when more power is 

essential for a specific task without the complexity of managing multiple resources. 

The scalability of the system was measured by simulating various data loads categorized 

as low (86.3 MB), medium (256 MB), and high (516 MB) and evaluating the system’s 

performance in terms of processing speed, latency, and overall efficiency. The use of 

AWS services, including S3 and Lambda, was integral to this process, as these services 

inherently support automatic scaling to manage varying workloads, thereby ensuring 

consistent performance even as demands increase. 

 

• ML Model Scalability 

From the perspective of the ML model, scalability refers to the model's ability to handle 

larger datasets, an increased number of features, or more complex data structures without 

a loss in predictive accuracy or a substantial increase in computational time. While the 

primary focus of this project was not on developing a new ML model but rather on 

applying existing models to the data collected, ensuring the scalability of the data pipeline 

was crucial. This validates that as the volume of data increases (from 86.3 MB to 516 MB 
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in our use case), the model can still be trained, validated, and tested efficiently, a process 

facilitated by tools such as Amazon Sage Maker. 

The distinction between system scalability and ML model scalability is critical. System 

scalability refers to the infrastructure's capacity to scale with growing demands, whereas 

ML model scalability pertains to the model’s ability to process larger or more complex 

datasets.  While the scalability of the ML model was an important consideration, the 

primary emphasis was on ensuring that the entire system including data handling, 

processing, and analysis from various IoT devices—remained robust and efficient as the 

scale of operations increased. Further, Kinesis is deployed to process and analyze real-

time streaming data at scale. Lastly, Amazon S3 offers scalable storage capacity for any 

amount of data and handling varying data throughputs seamlessly. 

4.2.3.3 Environmental Conditions 

 

The varying environmental conditions such as temperature, humidity, etc., can hinder the 

performance and reliability of the system. This is administered by AWS IoTCore, that 

connects IoT devices to AWS Services enabling data collection. Additionally, edge 

computing feature allows the devices to work on the local data at edge level even when not 

connected to the internet. Condition Simulation using AWS CloudFormation allows user 

to define environment as a code template. This helps setting up different environmental 

conditions such as varying traffic, different instance types, or geographic regions. AWS 

Snowball provides edge computing, data storage, and transfer solutions to environments 

with limited connectivity that can also be extended in the existing model. 
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4.2.3.3 Network Latency and Bandwidth Variability 

 

The system functions well in environment with varying network speeds and bandwidth. 

The AWS Global Accelerator improves the availability and performance of the model to 

global users. AWS IoT Core with NB-IoT is designed for low-bandwidth, high-latency 

networks, and AWS IoT Core can manage devices and data even under these conditions. 

4.2.3.4 Power Supply Interruptions 

 

Another major concern of deploying IoT over Cloud is the power outrage. When. The 

system experiences unexpected abrupt power cuts, fluctuations, or variations in power 

supply, adding AWS Outposts can be installed that ensure continuity even during power 

disruptions. It extends the AWS infrastructure, services to the on-premises location thereby 

providing a consistent hybrid experience. To simulate such conditions to the model, AWS 

FIS can be utilized to simulate instances failures and power interruptions. 

4.2.3.5 Hardware Failures 

 

In situation where hardware such as sensors fails to communicate to the system, the AWS 

Device Management manages and monitors connected devices, helping detect and address 

hardware issues. This hardware failure can be simulated and tested using AWS FIS.  
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Chapter 5 Future Works 

The realm of IoT systems is characterized by a diverse range of sensors and communication 

protocols, laying the groundwork for efficient ecosystems. The system is designed to be 

flexible with regard to the types of sensors that can be integrated. While certain sensors are 

essential for monitoring specific health indicators like body temperature, heart rate, and 

movement patterns, the system is not limited to any specific brand or model of sensors. 

This flexibility allows for the integration of various sensor types, depending on the specific 

requirements of the livestock being monitored or the farm’s existing infrastructure. Sensors 

including environmental sensor that measure temperature, humidity, air quality that are 

crucial for optimizing the living conditions of livestock . Additionally, the system can work 

with both wearable sensors attached to the animals and embedded sensors within the farm 

environment, offering flexibility in how data is collected.  

 

The ability to integrate different sensors allows the system to scale more easily, both in 

terms of the number of sensors deployed and the types of data collected. Farms can start 

with basic monitoring and expand as needed without technical barriers. Depending on the 

size of the farm and its diversity, the system can be adapted to meet specific requirements 

without compromising performance. 

 

Incorporating this architecture to assess the health of other livestock like dairy cow would 

necessitate modifications to accommodate the physiological, behavioral, and 

environmental differences. Dairy cows have different health indicators compared to pigs, 

meaning that the algorithms used for data interpretation will need to be adapted. For 



 69 

 

 

instance, detecting signs of mastitis (a common condition in dairy cows) would require 

specific indicators not typically monitored in pigs, such as milk yield and composition.  

 

Dairy farms operate on different economic models than pig farms, often focusing on milk 

production efficiency. The cost-benefit analysis for implementing such a system would 

need to consider the potential return on investment in terms of improved milk yield, 

reduced veterinary costs, and enhanced overall herd health. Hence, by addressing these 

challenges, the system could provide significant benefits in monitoring and managing the 

health of dairy cows, ultimately improving productivity and animal welfare on dairy farms. 

 

Within this complexity lies the realm of digital twin technology, aimed at replicating 

physical systems for extensive analysis and optimization. Viewing through the lens of 

digital twin technology, the exploration of LoRaWAN and NB-IoT provides insights into 

their uniqueness, advantages, and integration nature. LoRaWAN, focusing on Low-power 

Wide Area Networks, excels in facilitating long-range communication with minimal 

energy usage. As foundational technologies for digital twin technology, LoRaWAN 

enables monitoring of devices across vast landscapes with minimal energy requirements, 

making it crucial in energy-constrained scenarios. On the other hand, while NB-IoT 

deployment may incur higher costs and complexity compared to LoRaWAN, its efficiency 

in coverage and power usage outweighs these drawbacks. In the realm of digital twins, 

extensive data is required to accurately mirror complex systems like those found in 

manufacturing industries or intelligent infrastructures. Supported by major 

telecommunication networks, NB-IoT offers high asset fidelity and facilitates consistent 
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data development from various sensors, enabling real-time analysis and predictive 

maintenance. The claim that the proposed application reduces costs is based on a detailed 

examination of the system's architecture and the use of cloud-based resources. However, 

while the assertion is made that the model is cost-effective, it is essential to note that no 

direct cost comparisons with alternative models were conducted as part of this research. 

The cost-efficiency of the system was inferred from several key factors inherent to the 

architecture and technologies employed. 

 

The specific cost metrics analyzed include: 

1. Infrastructure Costs: The use of AWS services, such as Amazon S3 for data 

storage and AWS Lambda for serverless computing, was evaluated in terms of their 

pay-as-you-go pricing model. This pricing strategy allows for significant cost 

savings, especially when compared to traditional, on-premises infrastructure that 

requires upfront capital investment and ongoing maintenance. 

2. Operational Costs: The scalability of the system reduces operational costs by 

automatically adjusting resources based on demand. For instance, AWS Lambda 

functions only incur charges when they are executed, which minimizes unnecessary 

spending during periods of low activity. Additionally, the automation of data 

processing tasks reduces the need for manual intervention, further lowering 

operational costs. 

3. Sensor and IoT Device Costs: The choice of sensors and IoT devices was 

influenced by their affordability and reliability. By selecting cost-effective 

hardware that meets the required performance standards, the overall system cost 
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was kept within reasonable limits. Furthermore, the integration of LPWAN 

technologies like Nb-IoT and LoRaWAN (as proposed) can further reduce 

communication costs due to their low power consumption and extensive coverage, 

minimizing the need for expensive infrastructure. 

4. Maintenance Costs: The use of cloud-based services and the modular design of 

the system contribute to lower maintenance costs. Cloud services often include 

maintenance and updates as part of their service offerings, reducing the burden on 

the end-user. The modular design allows for easy updates and replacements of 

individual components without disrupting the entire system. 

 

Comparison with Alternative Models 

While a direct cost comparison with alternative models was not conducted, the architecture 

of this system is designed to be inherently cost-efficient compared to traditional, non-

cloud-based systems. Traditional systems often involve higher upfront costs, ongoing 

maintenance expenses, and less flexibility in scaling resources according to demand. In 

future work, it would be beneficial to conduct a comprehensive cost comparison with other 

existing models to quantify the cost savings more precisely. This could involve analyzing 

both the initial setup costs and the long-term operational expenses, considering different 

scales of deployment and usage scenarios. 

 

Looking ahead, IoT and digital twin technologies hold the potential to not only replicate 

but also predict future states. Integration with advanced AI and neural machine learning 



 72 

 

 

could enable real-time decision-making, ushering in a new era of self-optimizing systems 

capable of predicting and adapting to changing conditions without human intervention. 

The landscape of Internet of Things (IoT) systems is marked by a rich array of sensors and 

communication protocols, which collectively form the backbone of highly efficient 

ecosystems. Central to this technological frontier is the concept of digital twin technology, 

designed to create virtual replicas of physical systems for in-depth analysis and 

optimization. This approach provides a profound opportunity to enhance system 

monitoring and management across various sectors, including agriculture.  Focusing on 

specific technologies, LoRaWAN and NB-IoT stand out for their unique capabilities and 

integration potential. LoRaWAN is particularly adept at enabling long-range 

communication with minimal power consumption, making it ideal for monitoring devices 

across extensive areas such as agricultural fields, where energy efficiency is paramount.  

 

This technology forms a foundational element of digital twin architectures, facilitating the 

remote observation and management of devices in energy-limited scenarios.  Conversely, 

while NB-IoT may present higher initial costs and complexity than LoRaWAN, its superior 

coverage and energy efficiency provide significant benefits. In the context of digital twins, 

the extensive data required to accurately reflect complex systems necessitates robust and 

reliable communication technologies. NB-IoT, supported by major telecommunication 

networks, offers high fidelity in asset monitoring, and enables consistent data collection 

from a diverse array of sensors. This capability is critical for real-time analysis and the 

effective implementation of predictive maintenance strategies.  Ensuring the optimization 

of the architecture when excessive data load reaches the model is unanswered. This shall 
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ensure performance optimization and effective cost-cutting. Looking to the future, the 

convergence of IoT with digital twin technology holds the promise of transforming 

predictive capabilities in numerous domains. By integrating with advanced artificial 

intelligence (AI) and machine learning algorithms, these technologies could foster the 

development of self-optimizing systems. Such systems would not only replicate current 

conditions but also anticipate and adapt to future. 

 

Additionally, if the livestock health monitoring system were to be applied in a new country 

with different breeds of pigs and varying housing conditions, several adaptations would be 

necessary to ensure the system's effectiveness and accuracy. The performance of the system 

could be influenced by these new variables, and careful consideration would be required 

to tailor the system to the local context. Although core functionalities of the system such 

as data collection, processing, and analysis should generally remain robust when applied 

to different contexts. However, the system’s performance may be affected by factors such 

as the specific breed of pigs, local environmental conditions, and the nature of housing 

facilities. These factors could influence the baseline health indicators and behavior patterns 

that the system monitors, potentially requiring recalibration of the sensors and adjustments 

in the data analysis algorithms. It is essential to understand that different breeds of pigs 

may have varying physiological parameters, such as body temperature, heart rate, and 

activity levels. To ensure accurate data collection, it may be necessary to recalibrate the 

sensors or select sensors specifically suited to the new breed's characteristics. 
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Furthermore, the thresholds for detecting anomalies in health indicators might need to be 

adjusted to account for local variations. What constitutes a normal heart rate or activity 

level in one breed or environment might differ in another. By addressing these factors, the 

system can be effectively deployed in diverse environments, maintaining its accuracy and 

reliability in monitoring livestock health. In developing the livestock health monitoring 

system, the primary vision was to create a solution that could provide real-time monitoring 

of critical health indicators, allowing farmers to respond immediately to potential issues. 

Additionally, the system was designed with scalability in mind, ensuring that it could 

seamlessly manage data from a growing number of animals, regardless of farm size. These 

goals reflect an idealistic vision of a technologically advanced, responsive, and adaptable 

system capable of enhancing livestock management on a large scale. However, achieving 

these idealistic goals in practice presented several challenges. While the system was 

designed for real-time monitoring, the reliability of data transmission was dependent on 

network availability, which could be inconsistent in rural farming environments. 

Additionally, maintaining the accuracy of real-time data processing required robust 

computational resources, which might not be readily available in all settings.  

 

Given these challenges, it became necessary to set realistic expectations regarding the 

system's capabilities. The definition of 'real-time' monitoring was refined to acknowledge 

potential delays in data processing and transmission, particularly in environments with 

limited network connectivity. Hence, we propose the use of Nb-IoT in place of the 

LoRaWAN technology for effective and efficient transmission of data in remote areas. 
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This ensured that the system's capabilities were grounded in practical realities, balancing 

the initial idealistic vision with the operational challenges identified during testing." 

 

In comparing the idealistic vision with the practical outcomes, it is evident that while the 

system successfully demonstrated the potential for real-time monitoring and scalability, 

certain limitations emerged that must be addressed in future work. The practical constraints 

identified during testing provide valuable insights for refining the system, ensuring that 

future iterations can more closely align with the original goals while remaining grounded 

in the realities of agricultural environments. This approach ensures that the system not only 

meets technological aspirations but also delivers tangible benefits in the complex and 

variable conditions of modern agriculture. 

 

In the development and deployment of any data-driven system, ethical considerations are 

paramount, particularly in fields like agriculture where both animal welfare and data 

privacy are concerned. A key ethical aspect of this research involves ensuring data 

anonymity. In the context of livestock health monitoring, data related to individual animals 

must be handled with care to prevent any potential misuse or breach of privacy. Although 

the data primarily pertains to animals, which do not have personal identity concerns like 

humans, the anonymity of data can still be significant in maintaining the integrity of 

research and protecting farm operations from potential exploitation or unfair scrutiny. 

 

Another critical ethical consideration is the potential harm to animals. This system, 

designed to monitor the health of livestock, inherently carries the responsibility of ensuring 
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that the data collection methods do not cause stress, discomfort, or harm to the animals 

being monitored. The use of non-invasive sensors and careful monitoring protocols are 

essential to minimize any negative impact on animal welfare. Bias in predictive analysis is 

also a significant concern. Predictive models, if not carefully designed and tested, can lead 

to biased outcomes that might favor certain breeds, conditions, or management practices 

over others, potentially leading to unequal treatment of animals or incorrect health 

interventions. Ensuring that the predictive algorithms are trained on diverse and 

representative datasets is crucial to avoid such biases. Furthermore, the continuous 

evaluation and adjustment of these models are necessary to ensure fair and accurate 

predictions across different farming contexts. 
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Chapter 6 Conclusions 

 

In the realm of agricultural technology, automated smart livestock monitoring systems 

represent a frontier yet to be fully conquered. While substantial technological 

advancements have been achieved, the seamless integration of these systems into daily 

farm operations with minimal human oversight remains a challenging endeavor. This study 

has taken significant strides toward overcoming these challenges by developing and 

refining an intelligent livestock monitoring architecture. Our extensive testing of the 

system's most critical aspects from sensor accuracy to network resilience—has confirmed 

its robust functionality and reliability. These positive outcomes demonstrate the system's 

readiness for broader adoption in livestock farms. The core of our contribution through this 

paper is the presentation of a novel IoT architecture that stands out due to its independence 

from the IoT device layer. This design is not only innovative but highly adaptable, 

supporting a wide variety of data formats, enhancing feature extensibility, and 

accommodating diverse communication protocols. One of the key strengths of this 

architecture is its ability to adapt to future technological changes. By decoupling the IoT 

layer from the cloud, we have created a system that can easily integrate new devices or 

update communication protocols without disrupting existing operations. This flexibility is 

crucial for maintaining the longevity and relevance of the system as technological 

standards evolve. Additionally, the use of Narrowband IoT (Nb-IoT) technology is a 

pivotal aspect of our system design. Nb-IoT enhances the system by minimizing power 

consumption, which is crucial for long-term, sustainable operations in remote or difficult-

to-access areas. This technology also extends the coverage area well beyond that of 
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traditional monitoring systems, reaching deep indoor environments where conventional 

signals might falter. Moreover, the inherent simplicity of the Nb-IoT devices ensures that 

the system remains manageable and scalable, even as farm operations grow or as the 

technology landscape shifts. These enhancements made possible by Nb-IoT not only meet 

but exceed the current requirements for modern livestock management, offering 

unprecedented levels of operational efficiency, data reliability, and system scalability. This 

robust validation of the architecture marks a significant milestone in the journey towards 

automated, smart livestock management systems and sets a new benchmark for the 

industry, promising enhanced predictive analytics, and operational efficiencies. The 

practical implications of these advancements are profound, signaling a shift towards more 

proactive and precision-based farming practices that could redefine livestock management 

in the years to come. 
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