
DATA-CENTRIC PREDICTION EXPLANATION AND MODEL EDITING
FOR DEEP NEURAL NETWORKS

by

Mahtab Sarvmaili

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Mahtab Sarvmaili, 2024

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . viii

Chapter 1 Introduction . 1

1.1 Summary of Contribution . 9

1.2 Conference Publication . 11

1.3 Outline . 12

Chapter 2 Literature review . 13

2.1 Model-aware local explainer . 14

2.2 Data-centric Local Explainers . 14

2.3 Text Explainers . 16

2.4 Graph Neural Network Explainer . 18

2.5 Machine Unlearning . 20

2.6 Summary . 21

Chapter 3 Data-centric Text Explanation . 23

3.1 FEHAN . 23
3.1.1 Hierarchical Attention Network . 24
3.1.2 Informative Sentences Extraction . 24
3.1.3 Neighbourhood generator . 26
3.1.4 Interpretable Classifier and Explanation 27

3.2 DICTA . 28
3.2.1 Influential Sentences Extraction . 30
3.2.2 Neighbourhood Generator . 31
3.2.3 Local Decision Tree and Explanation . 32

3.3 Evaluation and Analysis . 33
3.3.1 Quantitative Evaluation (FEHAN) . 35
3.3.2 Qualitative Evaluation (FEHAN) . 37

ii

3.3.3 Quantitative Evaluation (DICTA) . 38
3.3.4 Qualitative Evaluation (DICTA) . 43

3.4 Summary . 44

Chapter 4 Data-centric Graph Explanation . 46

4.1 Graph Neural Networks . 48

4.2 Problem Formulation . 49

4.3 Multi-component Explanation Method for Graph Classification 51
4.3.1 Explanation Module . 53
4.3.2 Adjacency Matrix Perturbation . 54
4.3.3 Loss Function Optimization . 54
4.3.4 Explanation procedure . 57

4.4 Evaluation and Analysis . 57
4.4.1 Quantitative Evaluation . 60
4.4.2 Qualitative Evaluation . 64

4.5 Summary . 65

Chapter 5 Data-centric Prediction Explanation . 68

5.1 Problem Definition . 69
5.1.1 Kernelized Stein Discrepancy . 69

5.2 Additional Derivation of Kernelized Stein Discrepancy 70

5.3 Highly-precise and Data-centric Explanation . 72
5.3.1 KSD between Model and Training Data 73
5.3.2 Prediction Explanation . 75

5.4 Evaluation and Analysis . 75
5.4.1 Qualitative Evaluation . 78
5.4.2 Quantitative Evaluation . 79
5.4.3 Kernel Options . 81
5.4.4 Discussion: Intuition on why HD-Explain works 81

5.5 Summary . 83

Chapter 6 Data-centric Assessment of Machine Unlearning Feasibility 85

6.1 Preliminaries . 86
6.1.1 Machine Unlearning Definition . 86
6.1.2 Research Track of Machine Unlearning 87

iii

6.2 Understanding Difficulty of Unlearning . 88
6.2.1 Factors that Affect Difficulty of Unlearning 89

6.3 Scoring Unlearning Difficulty . 90
6.3.1 Kernel Stein Discrepancy (KSD) . 90
6.3.2 Unlearning Difficulty Scoring with KSD 92

6.4 Evaluation and Analysis . 94
6.4.1 Experimental setups . 94
6.4.2 Experimental results . 96
6.4.3 Membership Inference Attack Evaluation 99

Chapter 7 Conclusion and Future Research . 101

7.1 Conclusion . 101

7.2 Future research direction . 103

Bibliography . 105

iv

List of Tables

3.1 Descriptions of the text datasets and classifier’s performance 34

3.2 Wilcoxon test p-values comparing FEHAN and LIME across datasets. 35

3.3 Average cosine distance between original and generated data by FEHAN and
LIME across datasets. 37

3.4 Average LOF for FEHAN and LIME across datasets. 38

3.5 Sentiment polarity agreement between explainers and VADER across datasets. 40

3.6 Wilcoxon test p-values indicating DICTA’s fidelity improvement over LIME. 41

3.7 The average cosine distance (C), and LOF (L) between the original document
and neighbourhood data of DICTA and LIME. 42

4.1 Description of Graph Classification datasets. 58

4.2 Illustration of molecular datasets with their AUC/ROC evaluations with
respect to our model and alternative baselines. 62

4.3 Evaluation of PT, CF, and EXE explanations across metrics for node classifi-
cation datasets. 63

4.4 Difference in predicted probabilities before and after eliminating the explana-
tion subgraph. 64

5.1 Overview of Post-hoc Example-based Prediction Explanation Methods for
deep neural networks. 68

5.2 Summary of datasets used in the paper. 76

6.1 Summary of models and parameters used for evaluation of unlearning algo-
rithm across three datasets. 95

6.2 Unlearning parameters . 96

6.3 Class Diversity for Top Feasible Datapoints Selected by Heuristics 99

v

List of Figures

3.1 Framework for Explaining Hierarchical Attention Networks (FEHAN) . . . 25

3.2 Structure of Hierarchical Attention Network (HAN) 26

3.3 Important features for classifying a Yelp review as "5 star" or "1 star" using
HAN explained by FEHAN. 28

3.4 (a) Overview of DICTA framework, (b) Explanations of a document by
DICTA, LIME, SHAP . 29

3.5 Fidelity comparison of FEHAN and LIME across four datasets. 36

3.6 Neighbourhood example generated by FEHAN and LIME for an Amazon
dataset instance. 39

3.7 Fidelity (accuracy) of DICTA and LIME on datasets 41

3.8 Qualitative Evaluation of DICTA’s explanation 43

4.1 Illustration of CF, PT, and EXE explanations for node classification. 50

4.2 Impact of elastic net regularization coefficients (βL1 and βL2) on PT, CF, and
EXE explanation performance. 61

4.3 Multi-perspective explanations for each dataset, highlighting node and edge
features. 65

5.1 Varying of Kernelized Stein Discrepancy given the shift of training data
distribution on Two Moon dataset. 72

5.2 Demonstration of HD-Explain on a 2D Rectangular synthetic dataset. 74

5.3 Qualitative evaluation of various example-based explanation methods using
CIFAR10. 75

5.4 Qualitative evaluation of example-based explanation methods on Overian
Cancer histopathology (left) and Brain Tumor MRI (right) datasets. 76

5.5 Quantitative explanation comparison among candidate example-based expla-
nation methods. 79

5.6 Quantitative explanation comparison among candidate example-based expla-
nation methods. 79

vi

5.7 Comparison of HD-Explainers with different kernel functions across image
classification datasets. 81

6.1 Highlighted Number of Similar Samples Required for Guaranteed Unlearning 88

6.2 Top-2 Most and Least Easy Samples for Unlearning, Highlighting Variability
Across Scoring Functions . 92

6.3 Averaged UA, RA, and VA Plots for Unlearning Algorithms Across Feasible
and Infeasible Data Points . 97

6.4 Membership Inference Attack for Feasible vs Infeasible samples 100

vii

Abstract

Over the past decade, complex black-box models have excelled in various tasks, but their lack of

transparency undermines trust in their predictions. This study contributes to Explainable AI (XAI) by

introducing data-centric post-hoc explainers. We present two frameworks, FEHAN and DICTA, for

locally explaining text classifiers through interpretable surrogate models. Experimental evaluations

on four datasets demonstrate their effectiveness, with a focus on simplifying the explanation process.

Additionally, we explore the explainability of Graph Convolutional Networks (GCNs) applied

to molecular structures, offering multiple perspectives on their predictions. We also introduce

HD-Explain, a post-hoc, model-aware, example-based explanation method for neural classifiers.

HD-Explain uses Kernelized Stein Discrepancy (KSD) to identify influential training data points and

potential distribution mismatches. This research advances the understanding of data contributions

to machine learning models and addresses the emerging challenge of Machine Unlearning (MU) by

leveraging insights into data-model interactions.

viii

Chapter 1

Introduction

Automated decision-making systems frequently employ sophisticated with enhanced predictive

performance. These models are characterized by their opaque, intricate internal mechanisms and

substantial size, leading to their classification as "black box" models [34]. Post training, it is common

to prioritize models that exhibit superior predictive performance. Nevertheless, this preference for

performance necessitates addressing the "complex internal processing" and "lack of transparency" in

these systems [116]. The complexity of data often mandates the use of advanced machine learning

models, which are capable of discerning non-linear relationships and are effective in predictive

tasks. The obscurity inherent in black box models poses significant concerns, particularly when

these models are tasked with making critical decisions [5, 72, 145].

From a legislative standpoint, the European Union has implemented new regulations to ensure

the right to comprehend the reasoning behind all software outputs including black-box models [36].

Consequently, the widespread utilization of machine learning algorithms has legally and ethically

heightened the imperative to demystify and understand the operations of these enigmatic models.

This regulatory framework underscores the necessity of transparency in automated decision-making,

aligning legal requirements with ethical considerations for technology deployment. Understanding

the processing of models not only facilitates compliance with regulatory standards but also aids in

the development of new models, thereby reducing bias and enhancing overall model robustness.

To elucidate the inner workings of black-box models, various algorithms have been developed

to explore the underlying relationships that govern the predictions made by these complex models.

Some approaches specifically target explaining the behaviours of certain families of machine

learning models.

One common starting point for developing interpretability techniques is the usage of white-box

or transparent models. These models, such as decision trees [66], linear and logistic regression

models [117], and Bayesian networks and naive Bayes models [18], are characterized by their

simple structures and limited complexity. Due to their straightforward nature, they are productive

for simple tasks and are considered transparent and understandable to users as a whole.

1

2

These white-box models are not only useful in their own right but also serve as an interpreter

for developing methods to explain more complex ML models. For instance, the clear decision

paths in decision trees, the explicit relationships in linear and logistic regression models, and the

probabilistic reasoning in Bayesian networks all provide a foundation for understanding how inputs

relate to outputs.

Other approaches specifically target explaining the behaviours of certain families of machine

learning models. These methods, known as Model-aware explainers, scrutinize the internal struc-

ture of machine learning models to understand their predictions. They are primarily applied to

parameterized models, especially deep neural networks, and rely on backpropagated gradients or

the internal architecture of the model.

Model-aware explainers often aim to elucidate the inner representations of visual models

by leveraging the internal structure of Convolutional Neural Networks (CNNs). For example,

NetDissect [13] assigns convolutional filters to predefined semantic concepts, while IIN [39]

translates hidden representations onto semantic concepts by analyzing the complete layer output

space. These methods provide insights into how CNNs process and represent visual information.

Other Model-aware techniques focus on the backpropagated gradient to explain input features.

Sensitivity analysis is a gradient-based method that identifies the vector representing the steepest

ascent, highlighting the most influential features. Layer-wise Relevance Propagation (LRP) [9]

iteratively redistributes relevance scores from the output layer back to the input layer, making

it possible to trace the contribution of each input feature. Grad-CAM [144] identifies important

regions of the input by averaging gradients to feature maps in CNN layers, providing a visual

explanation of which parts of an image are most relevant to the model’s decision.

Additionally, methods like Integrated Gradients [156] and SmoothGrad [151] measure feature

contributions by averaging gradients with the help of a baseline sample. Integrated Gradients

compute the average gradient along the path from a baseline to the input, providing a comprehensive

attribution of feature importance. SmoothGrad improves gradient-based explanations by addition of

noise to the input and averaging the resulting gradients, to highlight the most salient features.

In addition to model-specific methods, some researchers have explored using surrogate models

that approximate a model’s predictions at individual data points [89]. These surrogate models serve

as interpretable proxies that mimic the behaviour of complex black-box models, providing insights

into their decision-making processes.

RISE [127] and D-RISE [128] are specialized model-agnostic local explainers designed for

3

image classification and object detection, respectively. These methods identify influential super-

pixels, offering a clear visualization of which parts of an image are most critical for the model’s

predictions.

Other model-agnostic local explainers utilize interpretable surrogate models to explain pre-

dictions. SHAP [104] (SHapley Additive exPlanations) measures feature importance using the

Shapley value concept from game theory. SHAP creates a dataset where features are perturbed

to form different coalitions and then trains a linear or weighted linear surrogate model on this

perturbed dataset to determine the contribution of each feature. LIME [136] (Local Interpretable

Model-agnostic Explanations) is a simple, local, model-agnostic explainer that can be efficiently

applied to various classifiers. It uses a linear surrogate model to explain the predictions of the

black-box model locally. By fitting the surrogate model to a locally generated neighbourhood, it

approximates the model’s behaviour in the vicinity of the data point.

These techniques often employ data augmentation strategies, such as random perturbation [136]

or adversarial autoencoders [109], to generate a local neighbourhood around the data point. This

local data is then used to train the surrogate model, enabling it to mimic the behaviour of the original

black-box model. By doing so, these methods provide interpretable explanations that help users

understand and trust complex machine-learning models.

The aforementioned methods are primarily applicable to parameterized models, specifically

Convolutional Neural Networks (CNNs) and image datasets. However, generalizing these methods

for text data presents several limitations.

Local gradient-based explainers face significant challenges when applied to text classifiers. As

highlighted by DeepLift [148], selecting an appropriate reference example requires domain-specific

knowledge. This necessity poses a significant challenge for text classifiers, where identifying a

suitable reference example that is devoid of informative content proves particularly difficult. Beyond

the correct selection of a baseline example, the choice of data interpolation technique is crucial

when applying gradient methods to text data. For instance, InteriorGrads [155] employs a data

interpolation technique to generate a series of samples for approximating integrated gradients.

Even with a well-chosen, unbiased baseline, applying interpolation techniques requires meticulous

consideration to ensure accuracy and relevance. Both LIME and SHAP approach the audit of

the black-box model using potentially implausible, meaningless, or even adversarial texts. These

synthetic texts might represent outliers relative to the original training dataset of the machine

learning model [51]. This factor necessitates careful consideration, as it can influence the reliability

4

and validity of the explanations generated by these methods.

Considering the advantages of local model-agnostic explainers, we intend to design a data-

centric text explainer. This algorithm will be capable of producing local explanations for various

text classifiers. It will consider the data’s structure in the explainer’s design and utilize white-box

methods or lexical resources to generate a local neighbourhood. This approach aims to ensure that

the explanations are both relevant and understandable, reflecting the unique attributes of textual data.

By integrating domain-specific knowledge and leveraging appropriate interpolation techniques,

the proposed data-centric text explainer will provide more reliable and valid explanations for text

classifiers, thereby enhancing the transparency and trustworthiness of these models.

We initially introduced FEHAN (Framework for Explaining Hierarchical Attention Network).

FEHAN is designed to locally explain the behaviours of the Hierarchical Attention Network

(HAN) [173] by generating a collection of semantically similar documents. These documents serve

as the training set for an interpretable model that locally mimics the behaviour of the black-box

HAN model. This approach aims to provide insights into HAN’s decision-making processes by

examining how input document changes affect the model’s outputs.

Expanding on this foundation, we propose DICTA (modularizeD model-agnostic framework for

the explanatIon of black box Classifiers for Text dAta), which broadens the scope to accommodate

a wider range of text classifiers. DICTA represents a novel approach in the interpretability literature

by integrating a widely recognized lexical database to facilitate explanations of text classifiers.

When provided with a black box classifier, a text document, and the classifier’s decision on that

document, DICTA generates an explanation by highlighting words in the document based on their

importance. This importance is quantified by their contribution to the classification outcome.

DICTA leverages the concept of "influential sentences" to produce a corpus of similar documents.

This is achieved through the use of WordNet [115], which helps identify semantically related words

and phrases to construct new, yet contextually similar, document variations. This method allows

DICTA to provide a detailed and context-sensitive explanation of the classifier’s decision-making

process, enhancing the transparency and accessibility of text classifiers.

The DICTA framework offers several significant advantages that enhance its utility in explaining

black-box text classifiers. Firstly, it facilitates fast, straightforward, and highly customizable

neighbourhood generation, allowing for tailored analysis specific to varying data sets and objectives.

Secondly, DICTA provides clear and comprehensible explanations, both factual and counterfactual

(CF), that users can easily understand [54, 55]. This dual explanatory approach offers insights

5

into both the actual processing of data and hypothetical scenarios that could alter model outcomes.

Lastly, the modular design of DICTA ensures flexibility and adaptability. Each component of this

framework can be modified or updated independently, allowing for continuous improvement and

customization without compromising overall system integrity. These features collectively make

DICTA a robust and versatile tool for enhancing transparency in AI-driven text classification. The

main advantages of DICTA are (i) fast, simple and easily customizable neighbourhood generation,

(ii) simple and understandable factual and CF explanations [54, 55], (iii) and modular design.

Having discussed explainers for text classifiers, it is also important to consider the unique

challenges and methods associated with graph-structured models. In recent years, the booming

prevalence of social networks and practical applications of graph-structured data [69,124] highlights

the effectiveness of Graph Convolutional Networks (GCNs). These networks have demonstrated

impressive performance in complex predictive tasks such as predicting molecular properties [40,135,

166], toxicity [130], and protein interfaces [42]. However, the attainment of such high performance

with GCNs often comes at the cost of reduced interpretability. GCN models inherently possess the

opaque qualities of neural networks, and this lack of transparency is compounded by the intricate

nature of molecular property modalities.

The critical need for trust in these applications [169] has spurred a wealth of research into

Explainable Artificial Intelligence (XAI) methods [71, 93, 178]. These efforts aim to demystify the

decision-making processes of GCNs, ensuring that these advanced models can be trusted and their

predictions understood, particularly in high-stakes domains such as healthcare and environmental

science.

Recent research frequently centers on post-hoc explanation methods that analyze the prediction

patterns of a trained Graph Convolutional Network (GCN) by attributing the model’s prediction

outcomes to specific elements of its training data, such as known nodes or subgraphs within the

graph structure. A notable approach within this realm is the prototype explanation (PT) method,

which identifies a highly relevant subgraph associated with a node of interest. This subgraph,

which closely aligns with the model’s prediction, is then presented as the explanation for that

prediction [52]. This method facilitates a deeper understanding of the decision-making process

by highlighting the structural features within the graph that are most influential in the model’s

computations.

GNNExplainer [175], PGExplainer [105], and GraphMask [142] are representative examples

of methods that provide local explanations for model predictions. These approaches attempt to

6

clarify the reasoning behind specific predictions by isolating and interpreting the relevant portions

of the graph. In this domain, XGNN [176] and GLGExplainer [7] aim to offer global explanations

through the generation of a subgraph that represents the overall behaviour of the model across

various predictions.

The algorithms discussed thus far explain the behavior of a model and why it makes certain

predictions. However, to understand how a model’s output changes when specific alterations are

made to the input, we need counterfactual explanations. A counterfactual explanation identifies the

minimal changes needed in the input features of a model to alter its prediction to a desired outcome.

This concept is particularly intriguing when applied to graph data. For instance, in molecular

structures, counterfactual explanations can help identify modifications that turn a poisonous com-

pound into a non-poisonous one, or adjustments that optimize a molecule for drug discovery. In

these cases, a counterfactual explanation for a graph is obtained by perturbing the graph’s structure

and observing changes in the model’s predictions.

Counterfactual explanations (CF) aim to determine the minimal perturbations required on a

graph to change the model’s prediction for specific nodes of interest. Prominent methods in this

field include CF-GNNExplainer [103], MEG [121], and CLEAR [107]. These approaches enhance

our understanding by identifying and modifying critical components of the graph that, when altered,

significantly impact the model’s output. This helps illustrate potential weaknesses or areas of

sensitivity within the model’s decision-making process and provides valuable insights for practical

applications, such as improving molecular structures in drug discovery.

Despite the significant contributions of earlier works, several challenges remain that limit their

practical application and necessitate further research. As highlighted in [74], many studies have

focused predominantly on one type of explanation—either prototype (PT) or counterfactual (CF).

This narrow focus can lead to misunderstandings about the model’s reliability, potentially resulting

in unexpected behaviours that compromise the trustworthiness of the system, particularly in critical

research areas like molecular property prediction.

Moreover, in both existing types of explanations—PT and CF—it is crucial to manage the

extent of edge perturbation to prevent excessive pruning of connections within the original input

graph. However, previous studies have not adequately explored the guidelines for controlling this

degree of perturbation. This oversight can significantly affect the fidelity and usefulness of the

explanations generated, as excessive or insufficient modifications can distort the insights provided

by the explanation methods, leading to less effective or misleading interpretations.

7

Considering the mentioned points, we intend to design a local graph explainer to offer multiple

perspectives of explanations, allowing for a more comprehensive understanding of the model’s

decision-making process. It will control the magnitude of perturbations to ensure that the explana-

tions remain meaningful, and it will strive to keep the generated explanations as close as possible to

the original data manifold. This method seeks to balance the alteration of the graph structure with the

preservation of its fundamental properties, thereby providing reliable and insightful explanations.

We introduce the Multi-Perspective GCN Explainer (MPGE), a framework designed to bridge

research gaps by integrating and enhancing existing explanation strategies. MPGE produces

prototype (PT) and counterfactual (CF) explanations and introduces a novel approach termed

EXemplar Explanation (EXE). EXE is particularly valuable in scenarios where the input graph

is sparse or when a comprehensive view of all influential connections affecting the prediction is

necessary [44]. EXE functions by presenting a subgraph of the original GCN model, eliminates those

connections whose removal doesn’t change the prediction of model. [57]. This approach enables a

detailed and intuitive understanding of the model’s reasoning process by visually distinguishing

influential links within the graph structure.

The MPGE framework encompasses three types of explanations:

1. CF Explanation: This involves a subgraph where the minimum set of edges, whose re-

moval changes the model’s prediction, are identified and eliminated. This "minimal change"

approach helps to pinpoint the edges that are crucial for the specific outcome.

2. PT Explanation: This is presented as a subgraph of the input, maintaining the same label

as the graph being explained but including only the most significant connections that are

responsible for the prediction. This method focuses on the core elements that drive the

model’s decision-making process.

3. EXE Subgraph: This mirrors the original input graph in terms of label and eliminates those

connections that can be removed without damaging models prediction. The EXE subgraph

serves as a near-replica of the input, providing a clear and focused illustration of the influential

factors in the model’s classification.

Together, these strategies enable a comprehensive, multi-faceted exploration of how GCN models

derive their predictions, thereby increasing the transparency and interpretability of graph-based

machine learning models. Following our exploration of machine learning model explainability at the

dataset level, we delved deeper into a statistical analysis of model behaviour and data dependencies.

8

The primary challenges associated with example-based prediction explanations stem from the

need to retrieve relevant data points from a large pool of training samples and to substantiate the

rationale behind these explanations [94, 183]. This phase of our research focuses on understanding

the complexities of how models interact with specific data instances and the justifications for the

explanatory outcomes derived from them.

The example-based prediction explanation methods address challenges by establishing an

influence chain between training and test data points. Notable methods include the Influence

Function, which measures a sample’s influence by the shift in model parameters due to up-weighting

the sample, and Representer Point Selection (RPS). While RPS, in contrast to IF, is computationally

efficient, it often produces coarse-grained, class-level explanations rather than detailed instance-

level explanations. Despite several later variants attempting to overcome these limitations, their

improvements are constrained by inherent theoretical scalability bounds. We present Highly-precise

and Data-centric Explanation (HD-Explain), a post-hoc, model-aware, example-based explanation

solution for neural classifiers. Instead of relying on data co-influence on model parameters or feature

representation similarity, HD-Explain retains the influence chain between training and test data

points by exploiting the underrated properties of Kernelized Stein Discrepancy (KSD) [100] between

the trained predictive model and its training dataset. Specifically, we note that the Stein operator

augmented kernel uniquely defines a pairwise data correlation (in the context of a trained model)

whose expectation on the training dataset results in the minimum KSD (as a discrete approximation)

compared to that of the dataset sampled from different distributions. By exploiting this property,

we can 1) reveal a subset of training data points that provides the best predictive support to the

test point and 2) identify the potential distribution mismatch among training data points. Jointly

leveraging these advantages, HD-Explain can produce explanations that are faithful to the original

trained model.

Our design and approach for the HD-Explain model advance our understanding of data contri-

butions to machine learning (ML) models. This understanding is crucial for addressing one of the

most pressing challenges in the ML community: Machine Unlearning (MU). MU involves a process

whereby ML models can selectively eliminate specific training samples, effectively reversing their

influence on the model while maintaining performance on the remaining data. This concept has

gained considerable interest due to the increasing global emphasis on data privacy rights. Numerous

countries and territories have enacted "Right to be Forgotten" regulations—such as the CCPA in

California, GDPR in Europe, PIPEDA in Canada, LGPD in Brazil, and NDBS in Australia—which

9

grant individuals the right to withdraw their consent for the use of their data in ML training. These

developments have spurred significant research into various machine-learning approaches, reflecting

the growing need to align ML practices with legal and ethical standards.

Data contribution models, can play a significant role in the field of MU by identifying which

data points most influence the model’s predictions. Despite the development of numerous new

MU techniques, there remains a gap in understanding the fundamental feasibility of the unlearning

process itself. While researchers have been proactive in devising methods to eliminate data from

models, there is insufficient consideration of whether it is genuinely possible to selectively remove

specific data points from a model without detrimentally affecting its overall performance. This

oversight suggests a need for more rigorous investigation into the practical limits and capabilities of

MU techniques, ensuring that they not only adhere to theoretical expectations but are also viable in

real-world applications.

Our research seeks to address these gaps by examining the factors that impact the feasibility

of MU. We hypothesize that the distribution of the data used in training the model, the method by

which the model encodes information, and the model’s confidence level in its predictions are critical

determinants of the ease with which information can be unlearned. To investigate this, we have

integrated our HD-Explain tool with unlearning feasibility analysis, employing the Kernel Stein

Discrepancy (KSD) as the base to find feasible data points.

We conducted a thorough experimental analysis using various unlearning approximation algo-

rithms. By evaluating their performance across different scenarios, defined by the aforementioned

factors, we were able to assess the real-world efficacy of these algorithms. This comprehensive

approach allows us to not only understand the limitations and capabilities of current unlearning

techniques but also to contribute valuable insights into the optimization of MU processes under

practical conditions.

1.1 Summary of Contribution

Data Centric Text Explainer: We present two local, modular, data centric text classifier explainer:

FEHAN and DICTA. FEHAN works by replacing informative sentences in a document with artificial

ones to create similar documents, which are then used to train a decision tree. This interpretable

model helps identify important words, creating a saliency map that explains the class label assigned

by the original HAN, while preserving the document’s original meaning and enriching it with

semantically similar examples. DICTA is a model-agnostic explainer that locally interprets the

10

predictions of black-box models by generating a set of similar documents around a given input.

It uses backward elimination to identify the most influential sentences in a document and then

replaces words within these sentences using semantic replacements obtained from WordNet. The

generated documents are then used to train a surrogate model that locally mimics the behavior of

the black-box model, providing insights into its decision-making process.

Data Centric Graph Explanation: Later, we present a local, data-centric, perturbation-based

explainer for GCNs. Our Multi-Perspective GCN Explainer (MPGE) is a framework designed to

enhance existing explanation strategies by producing three types of explanations: Prototype (PT),

Counterfactual (CF), and a novel Exemplar Explanation (EXE). MPGE provides detailed insights

into the reasoning process of Graph Convolutional Networks by perturbing the input graph and

tracing how these changes affect the model’s predictions. By adjusting the perturbation matrix, the

explainer produces the desired explanations, offering insights into the different factors influencing

the GCN’s decision-making process.

Data Centric Prediction Explanation: We introduce HD-Explain, a Kernel Stein Discrepancy-

driven example-based prediction explanation method. We performed comprehensive qualitative

and quantitative evaluation comparing three baseline explanation methods using three datasets. The

results demonstrated the efficacy of HD-Explain in generating explanations that are accurate and

effective in terms of their granularity level. In addition, compared to other methods, HD-Explain is

flexible to apply on any layer of interest and can be used to analyze the evolution of a prediction

across layers. HD-Explain serves as an important contribution towards improving the transparency

of machine learning models.

Data-centric Assessment of Machine Unlearning Feasibility: We explore the overall feasibil-

ity and challenges of machine unlearning for individual samples in the training set, regardless of

the specific unlearning methods used, and identify the factors that influence this process. Rather

than relying on predictive confidence-based methods, we propose that the difficulty of unlearning

is related to the data distribution augmented by the model. We demonstrate that trained machine

learning models can define parameterized kernel functions over training data points, which represent

the distribution of training samples conditioned on the model. Analyzing this conditional data

distribution provides a more precise estimation of the unlearning difficulty.

11

1.2 Conference Publication

This research has contributed to a number of conference and journal publications.

Conference Publications directly contributes to PhD thesis:

• Sarvmaili, Mahtab, Amilcar Soares, Riccardo Guidotti, Anna Monreale, Fosca Giannotti,

Dino Pedreschi, and Stan Matwin. "A modularized framework for explaining hierarchical

attention networks on text classifiers." In Canadian AI. 2021.

• Sarvmaili, Mahtab, Riccardo Guidotti, Anna Monreale, Amilcar Soares, Zahra Sadeghi, Fosca

Giannotti, Dino Pedreschi, and Stan Matwin. "A Modularized Framework for Explaining

Black Box Classifiers for Text Data." In Canadian AI. 2022.

Conference Publications as side research projects:

• Etemad, Mohammad, Nader Zare, Mahtab Sarvmaili, Amílcar Soares, Bruno Brandoli

Machado, and Stan Matwin. "Using deep reinforcement learning methods for autonomous

vessels in 2d environments." In Advances in Artificial Intelligence: 33rd Canadian Confer-

ence on Artificial Intelligence, Canadian AI 2020, Ottawa, ON, Canada, May 13–15, 2020,

Proceedings 33, pp. 220-231. Springer International Publishing, 2020.

• Zare, Nader, Bruno Brandoli, Mahtab Sarvmaili, Amilcar Soares, and Stan Matwin. "Con-

tinuous control with deep reinforcement learning for autonomous vessels." arXiv preprint

arXiv:2106.14130 (2021).

Submissions (Under-review) directly contributes to PhD thesis:

• Sarvmaili, Mahtab, Hassan Sajjad, and Ga Wu. "Data-centric Prediction Explanation via

Kernelized Stein Discrepancy." arXiv preprint arXiv:2403.15576 (2024).

• Sarvmaili, Mahtab, Ga Wu, Anna Monreale, Riccardo Guidotti, and Stan Matwin "Contrastive

Explanations for Graph Convolutional Networks in Molecular Compound Analysis."

• Sarvmaili, Mahtab, Hassan Sajjad, and Ga Wu. "Investigating the Feasibility of Machine

Unlearning."

12

1.3 Outline

The remainder of this proposal is organized as follows:

Chapter 2 reviews existing works on explainable artificial intelligence (XAI), focusing on XAI

for text models and graph model explainers.

Chapter 3 is dedicated to XAI for text data. We introduce our proposed frameworks: FEHAN

(Framework for Explaining Hierarchical Attention Networks) and DICTA (a model-agnostic modu-

lar framework for explaining text classifiers). We also explore techniques and criteria for evaluating

these frameworks.

Chapter 4 covers XAI for graph data. We start with the problem formulation and background

on the explainability of Graph Neural Network (GNN) models, present our algorithm for obtaining

contrastive explanations, and then introduce the experimental setting and discuss the empirical

results.

Chapter 5 delves into highly precise explainers by formulating the problem and introducing the

KSD algorithm. We evaluate the effectiveness of HD-Explain through comprehensive experiments,

analyzing its ability to provide faithful and insightful explanations for various deep learning models.

Chapter 6 examines the feasibility of Model Unlearning (MU). This chapter provides a compre-

hensive background on current MU approaches and explores techniques for removing information

from trained models. We outline their strengths and limitations, offering context for the challenges

associated with unlearning and paving the way for our novel approach to assessing feasibility.

Finally, Chapter 7 summarizes our findings, discusses possible limitations of this research, and

outlines the future plan for this research.

Chapter 2

Literature review

The widespread deployment of intricate and sophisticated ML models across various domains [2]

has heightened the necessity for comprehending the rationale behind the decisions made by systems

that utilize these models, particularly when employed in critical decision-making processes [116].

Consequently, there has been a surge in research focused on the explainability of these complex and

opaque models [33, 34, 38, 180]. This growing interest aims to enhance transparency and reliability

in automated systems by elucidating how these models arrive at their conclusions.

Various types of black box explanation algorithms have been developed to enhance the inter-

pretability of machine learning models. These algorithms can be broadly categorized from two

perspectives: model-specific versus model-agnostic, and local versus global, as outlined in [56].

Global interpretation algorithms seek to analyze the entire training process of deep neural network

(DNN) models, focusing on elements like weights and overall model structure [3]. However,

the complexity of these models often makes understanding their internal processes challenging.

Consequently, local explanation models, which provide insights into individual predictions, are

gaining popularity due to their lower computational and implementation complexity.

Local explanation methods can further be subdivided based on the type of data or the specific

black box model they are designed to elucidate. The taxonomy proposed in [92] differentiates these

methods into data-centric versus model-aware approaches. In the subsequent sections, we will

delve into these techniques, exploring their respective advantages and disadvantages to provide a

comprehensive understanding of their applications and limitations.

Although the major contribution of XAI is intepreting and explaining complex black-box models,

yet the white-box family of models exist which the explanation process can be carried out with

simple procedures. Understanding and explaining them requires minimum effort such as Linear

models, Decision Tree, and Generalized Additive Models (GAMs).

13

14

2.1 Model-aware local explainer

Model-aware local explainer methods scrutinize the sensitivity of the internal components (weights

and neurons) of deep neural networks (DNNs) to discern the influence and importance of the

model’s inputs. These methods are typically classified into gradient-based, correlation-score

interpretation, and class activation mapping categories. For instance, activation mapping methods

like GradCAM [144] and earlier studies [129, 182] employ heatmaps to visualize the activity of

neurons and weights, elucidating the information learned by the DNN model during training.

Gradient-based methods, such as INTGRAD, ascertain feature importance by analyzing the

gradients of an example as the input scales uniformly to zero. Another prominent technique,

DeepLift [155], evaluates the importance of input features by comparing the difference in neuron

outputs between a given example and a reference example. Meanwhile, correlation-based algorithms

[149] compute the correlation scores for each input feature to assess their significance, avoiding the

direct calculation of importance signals.

Despite their robust mathematical foundation, these methods are constrained to parameterized

functions and often require a meticulously chosen reference example that aligns with specific

domain knowledge to produce meaningful results. This dependency on the problem context and

the necessity for domain expertise renders these techniques as Model-aware and Data-Specific

explainers.

2.2 Data-centric Local Explainers

Data-centric local explainer methods provide insights into various black-box models by focusing

exclusively on the input data, disregarding the internal workings of the black-box model. These

methods are often regarded as model-agnostic post-hoc explainers.

In practice, data-centric methods assess how modifications to input data affect the predictions

of a black box. The concept of “data-centric” is described as “transitioning from model focus to

the underlying data for evaluation of the AI models”. This transition aligns with the principles

of abductive reasoning, which centers on identifying the most plausible explanations based on

observable data [62, 132]. In data-centric Explainable AI, abductive reasoning guides the process of

hypothesizing which aspects of the data are most influential in driving a model’s predictions [112].

By focusing on the data rather than the model’s internal mechanisms, these approaches use abductive

reasoning to create explanations that are intuitive and grounded in the actual inputs, ensuring that

15

the resulting insights are both relevant and understandable.

This connection between data-centric explanation and abductive reasoning is vital for creating

robust, generalizable AI models [73]. As data-centric methods use iteratively refine explanations

and identify key data influences, they not only clarify individual predictions but also enhance

the model’s overall performance by revealing potential biases or data quality issues. Thus, the

synergy between data-centric methods and abductive reasoning forms a comprehensive framework

that ensures AI systems are explainable, reliable, and aligned with real-world data, meeting the

demands of transparency and trustworthiness in practical applications.As the strong connection

between data-centric Explainable AI and abductive reasoning validates the importance of this topic,

it becomes evident that we should prioritize the study of data-centric explanation approaches.

To begin with, perturbation methods are prime examples of data-centric Explainable AI ap-

proaches. Perturbation-based methods are quintessential examples, where perturbations are applied

to the given input to observe changes in predictions, thereby identifying critical input features.

Initially conceptualized by approaches like LIME [136], these methods examine the impact of

various input alterations on model predictions. LIME, for instance, addresses the challenge of

approximating the decision boundary of complex models like DNNs by learning about the model’s

local behaviour. It generates sample instances around a specific input, creating a dataset that serves

as a training set for an interpretable surrogate model designed to emulate the complex model’s

predictions.

Similarly, SHAP [104] employs a distinct approach by using Shapley value estimation [95] to

calculate the contribution of each feature to the model’s prediction, offering a different perspective

on feature importance.

While these methods are effective in highlighting features that support the prediction of a

black-box model, providing logical reasons for decision-making, they do not necessarily reveal

the underlying factors that might lead to different outcomes [102]. The concept of counterfactual

(CF) explanations addresses this gap by proposing a way to understand the causal relationships

within the model’s decision-making process [52]. Exploring CF explanations could thus represent a

significant advancement in elucidating the behaviours of black-box models, offering a deeper dive

into the rationale behind different possible outcomes.

16

2.3 Text Explainers

LIME and SHAP are two of the most prominent local, model-agnostic, and data-agnostic explanation

methods applicable to natural language processing classifiers.

LIME is particularly suited for text classifiers, where it creates synthetic neighbourhood doc-

uments by randomly omitting tokens from the existing data. It then trains a linear model on

these modified instances to serve as an interpretable local surrogate. The weights assigned by

this linear model indicate the importance of each word in the text for explaining the classifier’s

decision. Guidotti and et. al. [51] investigated, a notable limitation of using LIME for text data is

that the neighbourhood texts are generated through random word removal, potentially resulting in

nonsensical sentences.

Conversely, SHAP utilizes Shapley value estimation [95] to assess the contribution of each word

by testing various combinations of words in the text. Like LIME, SHAP also involves randomly

removing words to analyze their significance in decision-making. Consequently, both methods may

audit the black box model with texts that are implausible, meaningless, or could be perceived as

adversarial, as they may represent outliers relative to the original training set of the machine learning

model. This raises concerns about the plausibility and relevance of the explanations generated by

these approaches.

A descendant of LIME is X-SPELLS [86] a model-agnostic explainer specifically designed

for text classifiers that provides explanations in the form of exemplar and counter-exemplar texts.

X-SPELLS addresses the limitations observed in LIME and SHAP by employing a Variational Auto-

Encoder (VAE) to generate neighbourhood texts. This method moves the generation process into a

latent space dimension, in alignment with approaches recommended by ABELE [55]. However, this

technique introduces its own challenges, notably the requirement for specific training and fine-tuning

of the VAE. This process can be labour-intensive and may introduce additional complexity and

ambiguity, complicating the overall interpretability alongside the original black-box model.

The strategy of generating data in latent space, while effective for continuous domains such as

images or time series, poses challenges for text data. Even minor perturbations in text feature space

can significantly alter the meaning of the input, leading to the generation of inaccurate examples [88].

Furthermore, the use of attention and attribution mechanisms to explain classifier decisions is often

insufficient for two reasons, as discussed by Grimsley and et al. [50]: (i) The attention mechanism

assigns a real value from the interval [0,1] to each sentence in a document, where a higher value

indicates greater importance. However, even less significant sentences receive values close to, but

17

not exactly, zero, which can obscure their true irrelevance. (ii) The mechanism does not adequately

distinguish the importance of each sentence relative to different class labels. Since all sentences are

assigned a real value, it is unclear how each sentence specifically influences the distribution across

class labels, leading to ambiguous interpretations of the model’s reasoning based on these values.

In response to these challenges, this work introduces two local, model-agnostic methods for

explaining decisions made by text classifiers. Our approaches aim to clarify the reasoning behind a

classifier’s decision on a specific document by generating semantically similar samples in its vicinity.

By focusing on informative sentences and strategically modifying them, we create neighbourhood

data that is realistically and semantically aligned with the original text, enhancing the clarity and

relevance of our explanations.

We begin by introducing FEHAN, a framework designed to locally explain the behavior of the

Hierarchical Attention Network (HAN) [173]. This modular framework focuses on identifying

Informative Sentences (IS) within a given document. FEHAN generates a set of semantically similar

documents by replacing these informative sentences with artificially constructed sentences sampled

from the original dataset. This approach not only preserves the structural integrity of the document

in the neighbourhood data but also enriches the semantic context by integrating closely related

sentences.

Subsequently, we present DICTA, a method that elucidates the decision-making process of a

text classifier by generating similar samples in close proximity to the original document. DICTA’s

approach to neighbourhood generation leverages influential sentences and semantic replacements

to ensure that the black box is probed with plausible text instances, enhancing the reliability and

relevance of the explanations provided.

Both FEHAN and DICTA operate without the need for additional data or training of supplemen-

tary models. This is particularly advantageous given the complexity of modern language models,

which entail managing billions of hyperparameters. Introducing another complex language model

for explanation purposes [78, 168] could unnecessarily complicate the user’s experience by adding

another layer of complexity.

Moreover, a significant advantage of DICTA is its flexibility; it does not impose constraints

on the length of documents or restrict its application to specific problem domains, unlike some

existing methods [97, 122]. This broad applicability makes DICTA a versatile tool for explaining

text classifiers across various contexts.

18

2.4 Graph Neural Network Explainer

Graph Neural Networks (GNNs) have recently emerged as a prominent technology in various graph

mining applications, including node classification [63, 123, 138], graph classification [8, 87], and

link prediction [70, 77]. Despite the exceptional performance of GNN models through information

propagation and aggregation, the complex and non-linear nature makes them difficult to interpret.

Understanding and explaining the outputs of GNN models is crucial, as it allows for the identification

of potential flaws in their predictions, enhancing the trustworthiness and transparency of these

systems.

Recent efforts to improve the interpretability of GNNs have adapted techniques originally

developed for more traditional neural network architectures. For instance, GraphLIME [64], an

adaptation of LIME, employs a nonlinear feature selection method to achieve local explainability

of GNNs. This approach is particularly useful for understanding the specific contributions of sub-

graphs or nodes within the overall network structure. Similarly, GradCAM has been utilized within

the context of Graph Convolutional Networks (GCNs) to produce heatmaps that highlight significant

regions of the input graph. These heatmaps provide visual representations of the areas within

a graph that most influence the model’s predictions, offering intuitive insights into the decision-

making processes of GNNs. Such techniques bridge the gap between complex GNN operations and

actionable insights, making them indispensable tools for researchers and practitioners seeking to

harness the full potential of graph-based learning.

From a graph-specific perspective, most contemporary GNN-XAI (Graph Neural Network -

Explainable Artificial Intelligence) methods focus on elucidating the model’s decision-making

by highlighting a subgraph from the original input graph that significantly influences the GNN’s

prediction. GNNExplainer [175] and PGExplainer [105] both operate by perturbing the graph’s

structure to obscure unrelated nodes and edges, thereby isolating the most influential subgraph that

exhibits the highest mutual information with the GNN’s prediction. While GNNExplainer identifies

influential subgraphs directly, PGExplainer employs a parameterized mask to systematically extract

significant subgraphs, facilitating a deeper understanding of the black box model’s predictive

behaviour. Alternatively, XGNN introduces a different approach by using a graph generator

to create graphs that are most likely to belong to a particular class. However, this method is

predicated on the assumption that each class can be represented by a single, definitive graph—an

assumption that may not hold in the face of complex phenomena, casting doubts on the realism and

generalizability of this approach [162].

19

Highlighting the most influential subgraph within an input graph provides critical insights for

predicting a given data point, yet the inclusion of counterfactual explanations (CF) offers a deeper

understanding of the model’s intrinsic biases. CF explanations not only illuminate the importance of

specific features but also clarify how changes to parts of the input could alter the model’s predictions.

CF-GNNExplainer [103] advances the use of CF explanations for Graph Neural Networks

(GNNs). This approach employs a perturbation-based algorithm that seeks to derive CF explanations

by modifying the graph structure. The perturbation matrix used in this method is trained based on

the negative log-likelihood of the prediction loss, aiming to identify changes that would significantly

impact the model’s output. However, the effectiveness of this algorithm in providing CF explanations

can diminish as the complexity of the graph increases, a limitation influenced by the chosen loss

function. This constraint highlights the challenges in ensuring that CF explanations are feasible and

reliable across all nodes within complex graph structures.

To effectively integrate the concepts of extracting both significant and influential subgraphs

for the prediction of Graph Convolutional Networks (GCN), we have adopted the principles of

Prototype (PT) and Counterfactual (CF) explanations as proposed in the study by Dhurandhar

et al. [31]. This research initially focused on image data, identifying minimally sufficient and

necessarily absent features crucial for the model’s final classification. The perturbation matrix in

this framework is crafted using a specialized loss function that is designed to elicit both PT and CF

explanations.

Building on this foundational work, we have adapted the design of the loss function to develop

our model for explaining predictions in GNNs. Additionally, we introduced a new dimension to

our explanation approach by incorporating Exemplar (EXE) explanations. EXE explanations align

with the input’s label and encapsulate features instrumental to the model’s prediction, providing a

comprehensive view of the factors driving the decision-making process.

We have developed a multi-component GNN explainer that utilizes the loss function proposed

by Dhurandhar and et al. [31]. This explainer is designed to delve into various facets of our model,

which will be extensively discussed in Chapter 4. This chapter will explore the intricate details

of our approach, highlighting how each component contributes to a robust understanding of GNN

predictions.

20

2.5 Machine Unlearning

XAI focuses on making the decision-making processes of complex AI models understandable

to humans, thereby enhancing trust, accountability, and compliance with regulatory standards.

Previous studies have shown that an effective explanation algorithm should reveal the influence

of training data points on the predictions for test data points, as well as capture the correlation

between training data conditioned on the model. If this is accurate, then removing the training data

points identified as influential explanations should result in a shift in the model’s predictions. If the

training data points highlighted as good explanations are highly correlated with a given example,

their removal is likely to perturb the model’s predictions. This raises the question of how trustworthy

our explanations are. To explore this relationship, we delve into the topic of machine unlearning.

We seek to understand whether there is a causal link between the removal of influential training

data points and the performance of the model that can be reflected as the feasibility of unlearning.

Machine Unlearning (MU) is a process designed to forget specific subsets of training data [14,21].

The earliest method proposed for this involved retraining the machine learning model from scratch

using the "remaining data" after removing the "forget set." However, even with the introduction of

SISA [14], which aimed to reduce the computational burden, retraining remained resource-intensive.

To address this challenge, "unlearning approximation" techniques have been developed. One such

approach is "Fine Tuning" [47,164], where the model is fine-tuned on the remaining data to facilitate

forgetting. Alternatively, Gradient Ascent methods [49, 159] adjust the model’s weights in the

direction of the gradient to increase the model’s error on the data intended for forgetting.

Other techniques have frequently utilized the Newton update as a fundamental step for removing

data influence [47, 59, 126, 143]. These methods typically leverage the Fisher Information Matrix

(FIM) to gauge the sensitivity of the model’s output to perturbations in its parameters. For example,

Fisher Forgetting [47] employs a scrubbing approach where noise is added to parameters based

on their relative importance in distinguishing the forget set from the remaining data set. Mehta et

al. [113] employs conditional independence coefficient to identify sufficient sets of parameters for

targeted unlearning.

Several methods have incorporated the principles of differential privacy (DP) [1] to ensure the

MU does not inadvertently reveal information about the data that has been removed. Izzo [67, 179]

adhere to the DP framework to ensure a high probabilistic similarity between models before and after

unlearning. Guo et al. [59] introduce the concept of certified unlearning, grounded in information

theory and specifically tailored to the Fisher Information Matrix. Certified Minimax Unlearning [98]

21

has developed an algorithm specifically for minimax models. This method removes data influences

through a total Hessian update and incorporates the Gaussian Mechanism to achieve (ϵ, δ)-minimax

unlearning certification, ensuring a balance between data removal and model integrity. Chourasia et

al. [27] propose a data deletion technique that ensures the privacy of deleted records. Ullah [161]

investigated the MU in the context of SGD and streaming removal requests, but ensured that their

method is differentially private. DP algorithms provide the upper bound for the unlearning scheme,

but they don’t guarantee the full unlearning of requested data [120].

Other research efforts extend into various domains of unlearning: knowledge distillation [28],

selective forgetting for lifelong learning [147], federated unlearning [22], online MU [25, 91], and

exploring adversarial attacks using MU methods [32, 165], reducing the vulnerability of models

to privacy attacks by forgetting training examples [68]. These studies underscore the breadth of

approaches being developed to manage data deletion, privacy, and the continuous adaptation of

machine learning models in secure and efficient ways.

The majority of the literature on MU primarily concentrates on the development of unlearning

algorithms or unlearning approximation techniques for selectively forgetting data pertaining to

single classes, multiple classes, or random subsets of multiple classes. A common assumption

underlying much of this research is that MU is universally feasible for all data points within a dataset

and that MU techniques will behave consistently across different datasets. This assumption often

overlooks the potential variability in MU efficacy due to differences in data characteristics or model

dependencies, suggesting a need for more nuanced studies that evaluate the specific conditions

under which MU can be effectively implemented.

2.6 Summary

This chapter focuses extensively on the evolution and methodologies of XAI, examining their

application to text classifiers and graph neural networks. Additionally, this chapter introduces MU,

and provides a comprehensive description of preliminary works.

XAI Techniques: The discussion begins with an overview of XAI techniques, which are

essential for making the decision-making processes of AI models transparent and understandable.

These techniques are crucial for enhancing trust, accountability, and compliance with regulatory

standards. Two broad categories of XAI approaches are explored: model-aware and data-centric

local explainers. Model-aware explainers are techniques designed to interpret and clarify the

decision-making processes of specific machine learning models by leveraging knowledge of the

22

model’s internal structure and parameters. These explainers provide insights tailored to the particular

architecture of the model, offering more accurate and relevant explanations compared to general-

purpose methods. Data-centric explainers focus on interpreting machine learning models by

analyzing the input data’s influence on the model’s predictions. They emphasize understanding how

variations in data impact outcomes, offering explanations that highlight the relationship between

specific data features and the model’s decisions.

Graph Neural Network (GNN) Explainers: The chapter also delves into GNN explainers,

which are increasingly used in various graph-related tasks such as node classification, graph

classification, and link prediction. Techniques like GraphLIME and GradCAM adapt traditional

neural network explainers to the specific needs of GNNs, focusing on local and global importance

to enhance model interpretability.

Machine Unlearning: An emerging field that addresses the need for data deletion without

compromising the integrity or performance of the model. This is particularly relevant in light

of regulations such as the GDPR’s Right to be Forgotten. This work explores the feasibility and

difficulty of unlearning individual samples, proposing that these challenges are best understood

through the model-augmented data distribution. By analyzing the distribution of training data points

using parameterized kernel functions, particularly Kernelized Stein Discrepancy (KSD), the study

introduces a more reliable metric for assessing unlearning difficulty. This approach aims to reduce

unnecessary unlearning operations by identifying data points that are inherently challenging to

unlearn.

Challenges and Assumptions: The chapter identifies key challenges in both XAI and MU, such

as the assumption that unlearning is universally feasible across all data points and behaves similarly

across different datasets. It also addresses the potential limitations of current explanations models,

which may not adequately distinguish the importance of features or could generate misleading

results due to random perturbations in data.

In conclusion, the related works chapter synthesizes a range of sophisticated methodologies

and emerging challenges within the fields of XAI and MU, pointing towards the need for further

research to address the nuances of these technologies in practical applications. The exploration of

these topics highlights the current capabilities and limitations of AI systems and sets the stage for

future advancements that could lead to more robust, transparent, and compliant AI technologies.

Chapter 3

Data-centric Text Explanation

In this work, we propose two modularized frameworks for explaining text classifiers: the Framework

for Explaining Hierarchical Attention Networks (FEHAN) and the model-agnostic framework for

the Explanation of Black Box Classifiers for Text Data (DICTA). We refer to them as a "modularized

frameworks" as these methods are designed to allow different components and modules to works

together for producing the final explanation. Later modules developed for different steps of

explanation can be replaced with similar characteristics, making the framework adaptable and

efficient for various applications.

This chapter is divided into two sections. First, we explore FEHAN, a modular framework that

provides local explanations for an attention-based deep text classifier. Following this, we introduce

DICTA, a model-agnostic approach aimed at understanding the predictions of various text classifiers.

The content of this chapter is based on the research presented the two published papers [139, 140].

3.1 FEHAN

FEHAN is a modularized local explainer framework designed to elucidate the workings of the

Hierarchical Attention Network (HAN) [173], an attention-based recurrent neural network for text

documents.

FEHAN explains HAN’s local behaviour for a specific data point by analyzing its surrounding

neighbourhood. The underlying idea is based on the intuition that while the decision boundary

for a black-box model may be highly complex across the entire data space, it is often possible to

learn an interpretable model in the local neighbourhood of a data point [56, 136]. Thus, FEHAN

generates a set of semantically similar instances near a given document to explore the predictions of

text classifiers. The attention layer in HAN identifies Informative Sentences (IS) within a document,

which significantly impacts class label assignment. FEHAN creates data for the document’s vicinity

by replacing these IS with artificial sentences.

FEHAN produces a set of semantically similar documents for a given instance classified by

HAN. These synthetic documents are then used to train an interpretable model, specifically a

23

24

decision tree, from which important words can be extracted to construct a saliency map that explains

the class label for the document.

Training the interpretable classifier (i.e., decision tree) on the neighbourhood documents reveals

the important words that locally explain the focus of the black-box classifier when classifying a

document. This approach preserves the original essence of a given document while enriching it with

semantically similar examples. The explanation produced by FEHAN is a saliency map highlighting

the crucial words in the document that contribute to the black-box model’s decision.

An overview of the general structure of FEHAN is provided in Figure 3.1. This process occurs

during the inference phase. FEHAN1 is presented as a modularized framework for understanding

the behaviour of attention-based document classifiers. The modularity of FEHAN facilitates its

adaptation to similar scenarios or the incorporation of other components with similar characteristics.

The main components of FEHAN are: (i) the HAN model, (ii) the informative sentences extrac-

tion, (iii) the neighbourhood generator module, and (iv) the interpretable model. The explanation

procedure is detailed as follows:

3.1.1 Hierarchical Attention Network

The Hierarchical Attention Network (HAN) [173] is a document classification algorithm that

leverages Recurrent Neural Networks (RNNs) along with an attention mechanism. HAN constructs

the latent representation of documents by aggregating the latent representations of sentences within

those documents. The model employs two levels of attention mechanisms [106] to adjust the

significance of individual words and sentences during the document classification process.

HAN consists of four main components: a word sequence encoder, word-level attention, a

sentence encoder, and sentence-level attention. This structure is depicted in Figure 3.2. A notable

feature of HAN is its ability to extract importance coefficients at both the word and sentence levels,

providing a clearer understanding of HAN’s decision-making process. This feature is particularly

valuable for the neighbourhood generator module in FEHAN.

3.1.2 Informative Sentences Extraction

The key element for the neighbourhood generation module is the availability of informative sentences

provided by HAN. In the first step, HAN receives a selected document d, processed using the

word2vec embedding model [114], and returns the predicted class label y along with the most

1https://github.com/MahtabSarvmaili/FEHAN

25

Figure 3.1: FEHAN: A modularized local explainer framework elucidating the workings of the
Hierarchical Attention Network (HAN) by analyzing the neighbourhood of a document. It generates
semantically similar instances near a given document and uses them to train an interpretable
model, such as a decision tree, to produce a saliency map highlighting crucial words influencing
HAN’s predictions. Step 1) HAN process each document in two levels, word level and sentence
level. It gives us the advantage to use the attention value to find the most influential sentences for
neighborhood generation. Step 2) After obtaining the influential sentences from the attention value
FEHAN generates a set of new sentences to replace the IF sentences and generates the neighborhood.
Step 3) Then it passes the generated documents to the HAN for obtaining the classification labels.
Step 4) The generated examples along with their class label will be employed to train a surrogate
model for mimicking the behavior of black box model. At the end we features’ importances from
this surrogate model

Informative Sentence (IS) identified in d. The sentence attention layer in HAN assigns a score to

each sentence, indicating its importance for the classification of the document.

After extracting the importance scores from the sentence attention layer, the IS and the original

document are passed to the neighbourhood generator module. The number of IS is a data-dependent

hyper-parameter that varies from one dataset to another. For instance, if the average number of

sentences in each document is around ten, the top three sentences would be selected as IS. In cases

where the document length is shorter than the predetermined length, the attention layer assigns high

scores to empty sentences.

Our explanation method leverages the attention scores to identify the IS. However, if attention

scores are unavailable, alternative methods such as backward elimination [83] can be used to extract

the IS.

26

Figure 3.2: The Hierarchical Attention Network (HAN) for document classification. HAN leverages
Recurrent Neural Networks (RNNs) and an attention mechanism to construct latent representations
of documents by aggregating the latent representations of sentences. It comprises four main
components: a word sequence encoder, word-level attention, a sentence encoder, and sentence-level
attention. This structure allows HAN to adjust the significance of individual words and sentences
during classification and extract importance coefficients at both levels, aiding in the understanding
of HAN’s decision-making process. This feature is particularly valuable for the neighbourhood
generator module in FEHAN.

3.1.3 Neighbourhood generator

We propose using a Markov Chain model to generate synthetic sentences S. Markov Chain Models

are based on a sound statistical foundation and aim to model the probability of observing a series of

events, where each event is a token of the corpus. This ensures that the synthetic sentences will be

semantically similar to the original sentence, following the distributed semantic principle that "a

word is characterized by the company it keeps" [41].

27

The neighborhood generator module receives the selected document along with the IS index. It

examines the first element of IS to generate the synthetic sentences S. If the first element is a word,

the Markov Chain uses it as the initial state; otherwise, if the index of IS refers to the end of the

document, it starts from a random word.

The general structure of the Markov Chain text generator resembles a transition matrix. How-

ever, for implementation purposes, we utilize a dictionary of dictionaries to preserve all possible

states (words) and all potential subsequent items in the chain. This setup allows the creation of

neighbourhood data H by replacing the IS of the document to be explained with those in S.

Given a document d with m IS, the module generates m× |S| synthetic documents by sequen-

tially exchanging one of the m sentences with one from S. Finally, each synthetic document in H is

labelled using the HAN model.

3.1.4 Interpretable Classifier and Explanation

FEHAN constructs an interpretable decision tree c trained on locally generated documents. First,

each document in the neighbourhood is transformed into a frequency vector representation using

the bag of unigrams. Then, an interpretable classifier is trained on this data representation. If

the instances of different class labels in the neighbourhood are imbalanced, we apply a heuristic

proposed by King and Zeng [80], which assigns higher weights to the minority class and lower

weights to the majority class. This model extracts the important features (words) for any class

label, which are then used to produce an explanation. The explanation provided by our method is a

saliency map of important words identified by the interpretable model.

We chose the decision tree as the interpretable model because as it is highly interpretable due

to its intuitive and transparent structure, which closely mirrors human decision-making processes.

Its tree-like visualization allows users to easily follow the decision path from the root to the leaf

nodes, with each node representing a simple "if-then" rule based on a specific feature. This clear

hierarchical structure ensures that the decision-making process is transparent, with no hidden layers

or complex transformations, making it easy to understand how a particular prediction is reached.

The most influential features on the prediction of class labels are structured in a top-down format,

indicating the relative importance of features in the prediction [37].

An example of a returned saliency map based on the outputs of FEHAN and LIME is presented

in Figure 3.3. In this figure, words relevant to the identified class label are highlighted in green, with

shades of green indicating the importance of words that support the current class. Words relevant

28

to the opposite class (in this example, the negative class) are highlighted in red. The intensity of

the colours indicates the importance of each word for a class label. Words in green are essential

for assigning the positive label to the document, while words in red support its assignment to the

negative class. The interpretable text classifier is trained on neighbourhood documents generated

with artificial sentences created by a Markov Chain text generator.

Figure 3.3: An original document from the Yelp data classified by HAN as a "5 star" place (on
a scale of 1 - negative - to 5 - positive). The green shades represent the important features for
assigning the class label "5 star" to the data, while the red shades represent features for assigning the
"1 star" label. Stronger colours highlight more important features for classification. The important
words are extracted from the decision tree.

3.2 DICTA

This section presents DICTA, a modularized model-agnostic framework for explaining black-box

classifiers for text data. Let d = ⟨S1, . . . , Sn⟩ be a document represented as a sequence of sentences

Si = ⟨w1, . . . , wm⟩, where 1 ≤ i ≤ n and wj with 1 ≤ j ≤ m is a word. Explaining the decision

of a black-box model f on a given document d (i.e., f(d) = y) means presenting an explanation e

that belongs to a human-understandable domain E [55].

The proposed explanation method builds on the line of research into local model-agnostic

methods initiated by Ribeiro et al. (2016) and Guidotti et al. (2019) [55, 136, 140]. DICTA aims

to elucidate the reasons behind the classification prediction of a trained text classifier by studying

its behaviour on the synthetic neighbourhood of a given document. Essentially, DICTA locally

estimates the decision boundary of a complex decision function f for every classified document

d. Specifically, the explanation e produced by DICTA approximates the decision boundary of f

around d by highlighting the words most responsible for the decision f(d) = y using the concept of

29

a b

Figure 3.4: (a) Overview of DICTA framework. DICTA takes as input a textual document (step 1),
classifies it with a black box, and extracts the most influential sentences impacting the probability
label (step 2). It matches words in the influential sentences with possible semantic replacements
using an ontology (e.g., WordNet) and generates a synthetic dataset (steps 3–5). Finally, it trains a
local decision tree on the synthetic neighbourhood, exploits the tree to retrieve the importance of
the words used for classification, and returns them to the final user (steps 6–7). (b) Explanations
of a document labelled as "Positive" by a Bidirectional-GRU on the Airlines tweets dataset with
DICTA, LIME, and SHAP. Positive and negative impacts are highlighted with green and red shades,
respectively.

semantic replacement. Thus, the syntax of d remains relatively unchanged while its semantics are

modified.

The core idea of DICTA (illustrated in Figure 3.4(a) and detailed in Algorithm 1) is to analyze

how the semantic replacement of specific words affects the classification. DICTA focuses on

words within influential sentences with the highest impact on document classification. The three

main steps of DICTA for explaining the behaviour of black-box models are (i) identification of

influential sentences, (ii) neighbourhood generation through semantic replacement, and (iii) local

interpretable surrogate training and explanation extraction. DICTA operates by first identifying the

most influential sentences in the document that significantly impact the model’s prediction. The

algorithm 1 does this by iteratively removing each sentence from the document and observing the

change in the prediction probability. The top k sentences, those whose removal most alters the

prediction, are selected as influential. Next, the algorithm performs semantic replacements on words

within these influential sentences, using a predefined words ontology T to generate alternatives.

This step helps create variations of the original document, forming a "neighborhood" of similar

documents. The neighborhood is then classified by the black-box model to observe how these

variations affect the prediction. Finally, the algorithm trains a decision tree on the neighborhood

30

Algorithm 1: DICTA(d, f , R, T)
Input :d: document to explain, f : black box function, k: nbr. influential sentences, T :

words ontology, n: neighbourhood size
Output :e - explanation

1 yp ← fp(d); // get probability of prediction

2 A← ∅; // init. infl. sent. scores

3 for Si ∈ d do
4 d′ ← remove(Si, d); // remove sentence

5 Ai ← |yp − fp(d′)|; // store cand score.

6 I ← select(Sc, k); // get indexes top k sentences

7 S ← {Si|i ∈ I}; // select top k sentences

8 R ← ∅; // init. semantic replacement

9 for Si ∈ S do
10 for wj ∈ Si do
11 Rwj

← repl(wj, T); // semantic replacement

12 N ← ∅; // init. neighbourhood

13 for i ∈ [1, n] do
14 d′ ← copy(d); // copy the document

15 Si ← rndSelection(S); // select sentence

16 W ← rndSelection(Si); // select words

17 for wj ∈ W do
18 d′ ← repalce(wj ,Rwj , Si , d

′); // replace word j in sentence i

19 N ← N ∪ {d′}; // add to neighbourhood

20 Y ← f(N); // classify neighbourhood

21 dt ← train(N, Y); // train decision tree

22 e← extractExpl(dt , f(d)); // get explanation

23 return e;

data, using the variations and their corresponding predictions to model the decision-making process

of the black-box model. The decision tree, being interpretable, is used to extract a human-readable

explanation e that explains the model’s prediction for the original document. The output is a clear

and understandable explanation of why the model made its specific prediction.

3.2.1 Influential Sentences Extraction

A key component of DICTA is the identification of influential sentences that have a high impact on

the document’s class label. These influential sentences contain the most descriptive words essential

for distinguishing the document’s class label.

DICTA identifies influential sentences as follows (lines 1–7 in Algorithm 1, steps 1–2 in Figure

31

3.4(a)). First, DICTA queries the black-box model f and stores the probability of obtaining the

label y = f(d) for the document under analysis d (yp = fp(d) in Algorithm 1, line 1). Then, for

each sentence Si ∈ d (lines 3–5), DICTA creates a synthetic document d′ as a copy of d but without

the sentence Si (line 4). It then stores in the influential sentences score candidate set A the absolute

deviation between yp and f(d′).

Finally, DICTA identifies the indexes of the k sentences with the most significant influence and

stores them in the set S. The value of k is a data-dependent hyper-parameter determined based on

the dataset’s average or maximum number of sentences. After this step, the influential sentences S
and the document d are passed to the neighbourhood generator process (step 3 in Figure 3.4(a)).

3.2.2 Neighbourhood Generator

The neighbourhood generator process is responsible for creating synthetic documents Z that are

similar to d. These documents are used to query the black-box function to understand the reasons

behind the label y = f(d). The process starts with the identification of the set of words R to be

used for semantic replacement (lines 8–11 in Algorithm 1, steps 4–5 in Figure 3.4(a)). For each

influential sentence Si ∈ S and for each word wj ∈ Si, DICTA identifies the set of wordsRwj
to be

used as semantic replacements for wj with respect to a given ontology T , ensuring that the meaning

of the sentence remains unchanged upon substitution (line 11).

Given the number n of neighbours to generate, DICTA creates a copy d′ of the document under

analysis d (line 14). It randomly selects an influential sentence Si (line 15) and then randomly

chooses a set of words W from Si (line 16). These selected words W are replaced with random

words from their semantic replacements Rwj
(lines 17–18). Finally, the synthetic document

created through this procedure is stored in the neighbourhood N . After generating the synthetic

neighbourhood, DICTA queries the black-box function to classify the synthetic documents, resulting

in Y = f(N) (line 20).

In our implementation, we use WordNet [115] as the ontology T to find semantic replacements

for the words. WordNet is a robust lexical database that helps preserve the distribution of document

features, ensuring that the synthetic sentences are semantically similar to the original ones according

to the distributed semantic principle [41].

Using WordNet offers two significant advantages: (i) Transparency: The relations between

lexical categories are intuitive and understandable to users regardless of their linguistic knowledge.

(ii) Accessibility: WordNet is freely available in more than 200 languages and has connectors to

32

many programming languages and systems without requiring fine-tuning. Utilizing WordNet as

the primary resource for neighbourhood generation makes our method more appealing for use in

limited computing environments, as opposed to sophisticated language models like BERT, which

impose a heavy computational overhead on interpretability tasks.

3.2.3 Local Decision Tree and Explanation

After generating the neighbourhood, the neighbourhood N and the corresponding labels Y are

used to train an interpretable local surrogate model (line 22 in Algorithm 1, step 6 in Figure 3.4(a))

by training an interpretable decision tree dt (line 22) on N and Y . We adopt a decision tree to

explain the black box’s local behaviour due to its simplicity and comprehensibility for non-expert

users [167]. The decision tree is then used to extract the most important words responsible for the

classification, forming the output explanation e (lines 23–24 in Algorithm 1, step 7 in Figure 3.4(a)).

Given the document d, DICTA extracts the importance of words by tracing the conditions

triggered by d along the path from the root node to the leaves of dt . The importance of words is

obtained as the normalized total reduction of the Gini criterion in the decision tree dt , referred to as

Gini importance [16].

Quantifying the importance of words enables the construction of a "saliency map" that highlights

the important words wj in d with their corresponding scores. Besides the importance of words, we

chose the decision tree as an interpretable surrogate model because its graphical representation

allows users to visually and comprehensively trace the decisions of a black box. The words in the

tree are structured in a top-down format, with the most important ones appearing closest to the

root [37].

An example of an explanation e returned by DICTA is presented in Figure 3.4(b). Here, the

relevant words for the positive class are coloured green, while those for the negative class are

coloured red. The colour intensity of the highlighted words indicates their importance concerning a

specific class.

The advantage of using semantic replacement is that the original structure of a document is

preserved, making it easy to observe the importance of other words replaced with the highlighted

ones among those in the synthetic neighbourhood. In contrast, the random elimination of words

for neighbourhood generation, as performed by LIME or SHAP (Figure 3.4(b)), may result in

documents that are too short and do not retain the same structure and meaning as the original

document.

33

Additionally, random elimination may frequently remove a group of words from the document,

and their real effect may not be adequately recognized. DICTA overcomes this by understanding

the effect of each word by replacing it with words having the same or opposite meanings. For

instance, if a word is very influential in labelling a document, replacing it with a word with the

opposite meaning will significantly affect the probability of the class label. The comparison shows

that DICTA focuses on the most important words and provides a richer explanation by attaching the

set of words derived from WordNet and highlighting their impact on text classification.

3.3 Evaluation and Analysis

In this section, we demonstrate FEHAN and DICTA’s effectiveness through quantitative and

qualitative evaluations2. We first describe the experimental settings for both algorithms. Due to the

structural differences between these frameworks, we conducted separate sets of experiments using

three sentiment analysis datasets. We then present a quantitative evaluation on different metrics

compared to local explainers across various datasets. Finally, we provide a qualitative evaluation

that practically illustrates the benefits and readability of the explanations returned by these two

algorithms.

Datasets

We experimented on four textual datasets commonly used to train classifiers that detect the

sentiment of documents:

1. IMDB: Movie reviews containing highly polarized opinions [108]. 2. Yelp: Business

reviews [157]. 3. Amazon: Product reviews dataset [61]. 4. Airline Tweets: Anonymous tweets

related to U.S. airlines [134].

The number of instances, number of categories, and the average/maximum number of words

and sentences in each dataset are shown in Table 3.1 (left). We split the data into training (80%),

testing (10%), and validation (10%) sets. The table also reports the number of informative sentences

DICTA uses, which varies across datasets.

Detailed descriptions of the datasets and the accuracy of various classifiers on each dataset.

Classifiers

Since DICTA is a model-agnostic explainer, we evaluated it by explaining four text classifiers:

CNN1D, BiGRU, BiLSTM (all based on deep learning), and a Random Forest (RF) classifier. The

2Python code and datasets available at: https://github.com/MahtabSarvmaili. Experiments were
conducted on Ubuntu 20.04.1 LTS, Intel® Core™ i7 CPU, 16 GB DIMM DDR4 RAM.

https://github.com/MahtabSarvmaili

34

Dataset #docs #categ
Avg
#w

Max
#w

Avg
#S

Max
#S

#infl.
sent.

BiLSTM BiGRU CNN1d RF

Yelp 700k 5 9 438 8 150 5 0.60 0.61 0.56 0.52
Amazon 278k 5 8 169 4 122 3 0.66 0.67 0.65 0.60
Airline
Tweets

14k 3 7 20 2 9 2 0.78 0.77 0.76 0.70

IMDB 50k 2 13 384 10 117 6 0.86 0.86 0.85 0.79

Table 3.1: Detailed descriptions of the datasets and the accuracy of various text classifiers on each
dataset. (left), accuracy (right).

structure of the text classifiers is as follows: 1. BiLSTM: Uses one embedding layer initiated with

pre-trained vectors, two layers of bidirectional LSTM, followed by a Dense layer and a softmax

over the class labels. 2. BiGRU: Similar architecture to BiLSTM, but uses Bidirectional GRU

instead of LSTM. 3. CNN1D: Follows the architecture described by Kim (2014) [79].

The deep learning models were trained with the following parameters: batch size 200, word

embedding dimension 200, maximum number of unique tokens 200k, and 10 training epochs. The

RF classifier was trained with 150 trees. The accuracy of the various classifiers is reported in Table

3.1 (right).

Metrics

We measured the effectiveness of the explanations returned by DICTA using the following

indicators: 1. Correctness: Assessed the importance scores of words with respect to the sentiment

scores assigned by the sentiment lexicon VADER [65]. 2. Fidelity: Measured the fidelity of the

local surrogate model with respect to the black-box classifier. 3. Plausibility and Similarity of the

Neighborhood: Evaluated in terms of outliers present in the generated data and similarity between

real data and synthetic neighbourhoods.

Comparisons

We compared DICTA with LIME [136] and SHAP [104]. Due to the structural similarity

between DICTA and LIME, we performed comparisons across all the aforementioned measures.

Since SHAP does not train a local surrogate or generate a neighbourhood, we limited the evaluation

of DICTA and SHAP to the correctness measure. For DICTA, we adopted the following parameter

settings based on preliminary experimentation (not reported here due to space constraints): the

number of influential sentences selected for each dataset is reported in Table 3.1, and we generated

neighbourhoods composed of n = 100 synthetic documents.

35

IMDB Amazon Yelp Airline
tweets

50 1.94× e−05 2.81× e−01 4.6× e−01 1.51× e−02

100 3.53× e−11 1.59× e−02 5.2× e−01 6.53× e−02

150 1.69× e−15 2.14× e−01 1.89× e−01 2.4× e−02

200 5.23× e−19 1.7× e−02 2.57× e−01 2.38× e−02

250 3.07× e−22 8.8× e−02 1.82× e−01 5.27× e−06

300 1.24e− 22× e−22 4.1× e−02 1.99× e−06 1.13× e−05

Table 3.2: The p-values obtained from the Wilcoxon test for FEHAN and LIME across four datasets
(IMDB, Amazon, Yelp, and Airline Tweets). These low p-values indicate significant differences
between the fidelity of FEHAN and LIME, demonstrating that FEHAN statistically outperforms
LIME in all benchmark datasets

3.3.1 Quantitative Evaluation (FEHAN)

To evaluate FEHAN’s behaviour for document classification, we generated a set of 300 neighbour-

hood examples for each given instance and fed these examples back to HAN for classification.

We compared the outcomes of FEHAN against the LIME text explainer, focusing on their

fidelity to the black-box model. Fidelity refers to how faithfully an interpretable model imitates the

behaviour of the black box in the neighbourhood of a particular data point. This is crucial because

the meaningfulness of an explanation depends on it being at least locally faithful. Fidelity can be

measured as the accuracy of the local surrogate model c’s predictions on the neighbourhood Nd

generated for document d, in comparison to the black-box model f ’s predictions on the same set.

Specifically, we compare yc = c(Nd) with yf = f(Nd), using the accuracy between yc and yf as

the evaluation measure.

To measure fidelity, we tested the model with six uniformly sampled sets of test data, consisting

of 50, 100, 150, 200, 250, and 300 instances. Figure 3.5 reports the observed fidelity for these sets.

The results indicate that FEHAN outperforms LIME in mimicking the black-box behaviour across

all datasets. Furthermore, FEHAN exhibits significantly less variance compared to LIME. These

findings suggest that FEHAN is more faithful to the black-box behaviour than the local interpretable

classifier provided by LIME.

Moreover, we conducted statistical tests on our results to ensure their validity across all datasets.

To this end, we employed the Wilcoxon test to analyze the fidelity of these models. The p-values

obtained from the Wilcoxon test for all four datasets are reported in Table 3.2. These very low

p-values indicate significant differences between FEHAN and LIME, demonstrating that FEHAN

statistically outperforms LIME regarding fidelity in all benchmark datasets.

36

Figure 3.5: Box plots showing the fidelity of FEHAN and LIME across four datasets (IMDB,
Amazon, Yelp, and Airline Tweets). The fidelity was measured using six uniformly sampled
test sets consisting of 50, 100, 150, 200, 250, and 300 instances. The results demonstrate that
FEHAN consistently outperforms LIME in mimicking the black-box model behaviour and exhibits
significantly less variance, indicating a higher degree of faithfulness to the black-box behaviour
compared to LIME.

Subsequently, we conducted a numerical evaluation of the density and cohesion of neighbour-

hood data generated by the two explanation approaches [53]. To quantitatively demonstrate that

FEHAN produces higher quality neighbourhood text data compared to LIME, we employed two

approaches: (i) measuring the cosine distance between the original document and the neighbourhood

(i.e., the cohesion of the neighbourhood) and (ii) measuring the Local Outlier Factor (LOF), which

assesses the density and compactness of the neighbourhood.

The average cosine distance value between the original document and the neighbourhood data

examples indicates the degree of similarity between the neighbourhood data and the original docu-

ment. The results in Table 3.3 show that the average cosine distance for FEHAN’s neighbourhood is

37

IMDB Amazon Yelp Airline Twitter
FEHAN LIME FEHAN LIME FEHAN LIME FEHAN LIME

50 0.674 0.333 0.719 0.320 0.700 0.319 0.789 0.335
100 0.677 0.324 0.750 0.328 0.685 0.321 0.800 0.330
150 0.713 0.322 0.765 0.330 0.682 0.322 0.796 0.333
200 0.689 0.322 0.739 0.329 0.697 0.322 0.794 0.330
250 0.702 0.323 0.739 0.330 0.705 0.322 0.788 0.334
300 0.706 0.322 0.748 0.330 0.702 0.321 0.792 0.329

Table 3.3: The average cosine distance between the original document and neighbourhood data
generated by FEHAN and LIME across four datasets (IMDB, Amazon, Yelp, and Airline Twitter).
Higher average cosine distances for FEHAN indicate greater diversity in the vocabulary of the
generated documents, suggesting that FEHAN’s neighbourhood data exhibits higher quality and
diversity compared to LIME.

greater than that for LIME. The higher value of FEHAN’s cosine distance across four datasets sug-

gests a greater diversity in the vocabulary of the generated documents. This implies that FEHAN’s

neighbourhood data exhibits higher quality and diversity.

The Local Outlier Factor (LOF) is a metric for anomaly detection proposed by Breunig et

al. [17]. LOF compares a data point’s local density against its neighbours’ local densities using

the k-nearest neighbourhood to identify regions of similar density. Points with significantly lower

density compared to their neighbours are considered outliers. In our study, we used LOF to evaluate

the quality of the neighbourhood, aiming for denser neighbourhoods with fewer outliers.

Table 3.4 reports the average LOF for FEHAN and LIME across the four datasets. The results

indicate that FEHAN generally has a lower LOF compared to LIME, suggesting that FEHAN’s

neighbourhood generation based on the Markov Chain results in much denser neighbourhoods with

fewer outliers.

Comparing the cosine similarity and LOF of the generated data reveals that FEHAN exhibits

greater diversity in the number of words. These words are more semantically similar to the original

document compared to those generated by LIME. This combination of higher semantic similarity

and denser neighbourhoods underscores the superior quality of FEHAN’s neighbourhood data.

3.3.2 Qualitative Evaluation (FEHAN)

To evaluate the neighbourhood data qualitatively, we provide examples of neighbours generated by

FEHAN and LIME, along with the predicted class labels assigned by their interpretable models.

Figure 3.6 illustrates examples of positive, neutral, and negative neighbourhood documents

38

IMDB Amazon Yelp Airline Twitter
FEHAN LIME FEHAN LIME FEHAN LIME FEHAN LIME

50 1.42× e−7 2.22 1.028 1.78 1.057 7.55× e−7 1.042 2.11× e−7

100 7.80× e−7 2.35 1.027 2.55× e−7 1.71 4.12× e−7 1.037 2.10× e−7

150 1.15× e−7 2.36 1.028 5.88× e−7 1.076 2.52× e−7 1.96× e−7 4.88× e−7

200 1.94× e−7 2.29 1.034 1.45× e−7 1.067 3.43× e−7 1.042 2.11× e−7

250 1.13× e−7 9.61 1.035 1.53× e−7 1.063 3.54× e−7 1.89× e−7 5.03× e−7

300 6.19× e−7 2.30 1.79× e−7 4.26× e−7 1.069 2.50× e−7 1.038 3.84× e−7

Table 3.4: Average Local Outlier Factor (LOF) for FEHAN and LIME across four datasets (IMDB,
Amazon, Yelp, and Airline Twitter). The results show that FEHAN generally has a lower LOF
compared to LIME, indicating that FEHAN’s neighbourhood generation using the Markov Chain
results in denser neighbourhoods with fewer outliers. This suggests that FEHAN’s generated
neighbourhoods are of higher quality, with greater semantic similarity to the original documents.

generated and classified by FEHAN’s decision tree and LIME’s text explainer for the Amazon

dataset3. In this figure, green, blue, and red colours indicate positive, neutral, and negative classes,

respectively. The original and pre-processed documents are presented in the first two rows. Since

the training process uses the pre-processed data, the generated instances follow the same format.

We observe that FEHAN generates documents more similar to the original ones compared to

LIME. The integrity of the data is well preserved, with semantically equivalent examples sampled

from the original dataset. FEHAN maintains the central concept of the given instance and non-

important parts, generating examples that reflect the same context as the original but within the

neighbourhood data. In contrast, LIME tends to lose information during neighbourhood generation.

This occurs because LIME suppresses words in the document, while FEHAN replaces only the

informative sentences with synthetic ones. Additionally, LIME’s neighbourhood generation process

can result in invalid examples due to the elimination of all input features, a condition that worsens

for datasets with generally shorter documents.

3.3.3 Quantitative Evaluation (DICTA)

Salient Scores and Sentimental Polarity Agreement

Inspired by the work of Atanasova et al. (2020) [6], we conducted an experiment to compare the

salient scores of words with their sentimental polarity extracted from a sentiment lexicon resource.

This experiment aimed to observe the impact of words on the prediction of the black-box model

3Although the Amazon dataset has five categories, we have selected the most frequent ones, which are the negative,
positive, and neutral instances generated from FEHAN and LIME neighbourhoods.

39

Figure 3.6: A neighbourhood example generated by FEHAN and LIME for an instance of the
Amazon dataset. The green, blue and red depict this dataset’s most positive, neutral and negative
classes. FEHAN’s decision tree and LIME’s text explainer determine the positive and negative
labels for the generated neighbourhood data.

regardless of the class label.

We binarized the class labels of the datasets using the middle class as a threshold to assign the

two labels. For example, in the Yelp dataset, which has 1-5 star ratings for businesses, ratings from

1-3 were assigned as "negative" reviews, and ratings from 4-5 were assigned as "positive" reviews.

A similar procedure was applied to the Amazon dataset, and for the U.S. Airline tweets, ratings of

1-2 were labelled as negative and 3 as positive. We also binarized the importance scores of LIME

and SHAP by considering negative scores as a negative contribution and positive scores as a positive

contribution towards a label value.

For validation purposes, we extracted the sentiment scores of words from the sentiment lexicon

VADER [65] and binarized them into positive and negative classes. For DICTA, we obtained the

polarity of words at each node of the decision tree by examining the normalized ratio of the number

of samples falling into each class. If the class label was considered "positive," we assigned a

positive annotation to the words; otherwise, they were labeled as "negative." Finally, we measured

the percentage of agreement between the classes provided by LIME, SHAP, and DICTA and the

sentiment suggested by VADER—the higher the agreement, the better.

The results, shown in Table 3.5, indicate that DICTA outperforms LIME and SHAP on three out

40

Yelp Amazon Airline Tweets IMDB

BiGRU
DICTA 0.57 0.65 0.59 0.48
LIME 0.43 0.48 0.43 0.52
SHAP 0.47 0.50 0.47 0.84

BiLSTM
DICTA 0.56 0.66 0.61 0.48
LIME 0.46 0.47 0.41 0.53
SHAP 0.47 0.46 0.49 0.85

CNN1D
DICTA 0.57 0.65 0.59 0.48
LIME 0.46 0.43 0.37 0.52
SHAP 0.47 0.51 0.41 0.84

Table 3.5: Agreement between the sentiment polarity extracted from explainers (DICTA, LIME,
SHAP) and the VADER sentiment lexicon across four datasets (Yelp, Amazon, Airline Tweets, and
IMDB). The table shows that DICTA generally achieves higher agreement with VADER compared
to LIME and SHAP on most datasets, except for the IMDB dataset where SHAP performs best.

of four datasets (Yelp, Amazon, and Airline Tweets). However, SHAP performed best on the IMDB

dataset, which requires further investigation to understand the underlying reasons. We found that

examining the word importance extracted from the decision tree provided significant insights into

word scores. The decision tree structure allowed for a better exploration of the connection between

the input document and the lexicon composing it.

In cases where the label assigned by the black-box model to a document is negative, the

document typically contains strong negative words that are often found in the top nodes of the

decision tree. When tracing down the tree from the root to the leaves to obtain the polarity of words,

most neutral or positive words (which could flip the class of a document) are found at intermediate

levels or closer to the leaves. Although these words reduce the number of negative instances at

their level, many instances may still belong to the negative class, causing the positive words to be

assigned a negative sentiment. Therefore, traversing the tree empowers users to understand the

relationship between words and their impact on the sentiment label of a document.

Fidelity Evaluation

We compared DICTA against LIME in text classification by measuring the fidelity of the inter-

pretable surrogate model with respect to the black-box model, as described by Doshi-Velez and

Kim (2017) and Guidotti et al. (2018) [34, 58].

For DICTA, c is the local decision tree, while for LIME, c is the local regressor. We calculated

41

IMDB Amazon Yelp Airline
tweets

BiLSTM 5.33× 10−29 3.88× 10−08 1.15× 10−28 1.44× 10−11

BiGRU 1.91× 10−31 2.48× 10−09 3.13× 10−29 3.61× 10−05

CNN1D 1.88× 10−41 3.66× 10−28 2.91× 10−28 1.79× 10−15

RF 1.11× 10−41 4.23× 10−11 9.82× 10−43 6.56× 10−20

Table 3.6: The p-values of the Wilcoxon test shows the statistical significance of DICTA’s perfor-
mance improvement over LIME for fidelity.

fidelity by uniformly sampling 300 instances from the test data and measured the accuracy of DICTA

and LIME in mimicking the behaviour of black-box decisions for their respective neighbourhoods.

The comparison of DICTA and LIME fidelity is presented in the box plots in Figure 3.7. The results

demonstrate that DICTA outperforms LIME across all datasets and all text classifiers in imitating

the black-box behaviour.

Figure 3.7: Fidelity (accuracy) of DICTA and LIME on datasets

We also evaluated the statistical significance of the improvement in DICTA’s performance over

LIME. To this end, we employed the Wilcoxon test to analyze the fidelity of these models. The

p-values for all datasets and black-box models are reported in Table 3.6. These very low p-values

indicate significant differences between DICTA and LIME performances, providing statistical

evidence of DICTA’s superior fidelity.

42

Yelp Amazon Airline
Twitter IMDB

C L C L C L C L

BiLSTM DICTA 0.25 1.54 0.28 1.33 0.24 7.25×1e3 0.17 1.35
LIME 0.27 1.57 0.24 1.31 0.30 1.0 0.21 1.96

BiGRU DICTA 0.26 1.24 0.28 1.91 0.23 1.41 0.19 1.76
LIME 0.29 1.25 0.27 1.62 0.29 1.0 0.24 3.41

CNN1D DICTA 0.28 1.51 0.22 1.5 0.16 1.07 0.14 1.57
LIME 0.33 1.29 0.25 2.37×1e4 0.28 1.13×1e7 0.20 1.40

RF DICTA 0.34 1.20 0.45 2.45×1e7 0.38 1.32 0.23 1.68
LIME 0.33 1.46 0.32 1.69 0.32 3.47 0.32 1.72

Table 3.7: The average cosine distance (C), and LOF (L) between the original document and
neighbourhood data of DICTA and LIME.

Synthetic neighbourhoods Evaluation

In this section, we discuss the evaluation results on the quality of synthetic textual data generated in

local neighbourhoods. We quantitatively evaluated the density and cohesion of neighbourhood data,

as suggested by Guidotti et al. (2020) [53], to demonstrate that DICTA produces diverse, plausible,

and high-quality neighbourhood text data compared to LIME. To achieve this, we employed two

approaches:

1. Cosine Distance: We measured the average cosine distance between the original document

d and the neighborhood Nd. This metric provides evidence about the similarity (cohesion) of the

neighbourhood to the original document.

2. Local Outlier Factor (LOF): We measured the Local Outlier Factor (LOF) as proposed by

Breunig et al. (2000) [17]. LOF captures the level of neighbourhood density, offering insights into

its plausibility and degree of diversity.

The average cosine distance value (columns labelled C) between the original document and the

synthetic documents in the neighbourhood indicates the degree of similarity between them. The

results in Table 3.7 show that the average cosine distance to DICTA’s neighbourhood is lower than

LIME’s neighbourhood, especially for deep text classifiers.

The Local Outlier Factor (LOF) is an anomaly detection approach that compares a data point’s

local density against its neighbours’ local densities to identify regions of similar density. It

recognizes these regions using the k-Nearest Neighbors, with points having considerably lower

density compared to their neighbours being considered outliers.

We employed LOF to evaluate the compactness and density of the neighbourhood with respect

43

to a reference population given by the original dataset. Table 3.7 reports the average LOF (columns

labelled L) for DICTA and LIME across the four datasets. The results indicate that DICTA has

similar or higher LOF values for most datasets compared to LIME. This suggests that DICTA’s

neighbourhood generation, based on WordNet, explores at least a similar or wider neighbourhood

area around the given document.

Considering both cosine distance and LOF values (Table 3.7) of the generated data, we can infer

that although DICTA’s neighbourhood has a greater diversity in terms of the number of different

words, the generated text remains semantically similar to the original document.

3.3.4 Qualitative Evaluation (DICTA)

We linearized the decision tree into an understandable rule form that provides a more flexible

semantics for representing the classifier [43]. Rules can be extracted from the decision tree by

tracing down a decision path from the root node to the leaf.

a b

Figure 3.8: (a) A local surrogate tree explaining CNN1D for a Yelp review. (b) Decision rules
extracted from the tree. The first row of the table shows the document under analysis and its label
(five-star review), and the callouts at the top of each word present words from the semantic set
(green for synonyms, red for antonyms, and blue for hyponyms and hypernyms) that were replaced
with the word. The second to the fourth rows are the decision rules extracted from the decision tree
and the final labels assigned to these rules. The antecedents of the rules are in the left column, and
their consequents are in the right column.

Figure 3.8 presents an example of a trained decision tree and its traversal for an instance of Yelp

reviews. Since we use TF-IDF vectors for training the decision tree, the real value that each feature

is compared to translates to the importance of that word in the neighborhood text set. Starting from

the root node, we follow paths to reach the leaves. By tracing down the decision tree and following

the ensuing rules, we identify words in the order of their importance for the decision at the leaf of

44

the tree. The salient words are presented to the user in the order of their importance for the decision

at the leaf of the tree (in the consequent of a decision rule).

As shown in the classical cognitive science literature investigating the explainability of decision

rules [45], understanding decision rules in this manner, which suggests causality, provides a better

explanation of the rules (and therefore a better explanation of the model) than one consisting of

an unordered set of salient words. Referring to Figure 3.8(b), the user may find an explanation

starting with "unfriendly" and "hostile staff" a sufficient cause to understand why a restaurant is not

recommended, rather than an explanation starting with "set" or "quality."

3.4 Summary

This chapter has introduced two innovative frameworks designed to enhance the interpretability of

text classifiers: FEHAN (Framework for Explaining Hierarchical Attention Networks) and DICTA

(modularizeD model-agnostic framework for the explanatIon of black box Classifiers for Text

dAta). These frameworks address the growing need to understand the decision-making processes of

sophisticated text classification models, particularly those based on deep learning, by generating

interpretable and meaningful explanations.

FEHAN is tailored to provide local explanations for the Hierarchical Attention Network (HAN),

which employs hierarchical structures with attention mechanisms at both the word and sentence

levels for document classification. The framework consists of several key components. Firstly, it

identifies the most informative sentences that have the highest impact on the classification. These

sentences are then replaced with semantically similar ones generated by a Markov Chain model. This

approach ensures that the synthetic sentences retain semantic coherence with the original text. An

interpretable decision tree is subsequently trained on these synthetic documents to extract important

words and construct a saliency map. The saliency map highlights the crucial words contributing to

the black-box model’s decision, thereby offering a clear and understandable explanation.

Quantitative evaluation of FEHAN involved measuring its fidelity—how well the interpretable

model replicates the behavior of the black-box model. This evaluation showed that FEHAN

outperforms the LIME text explainer in all datasets and across various metrics. The statistical

significance of these results was confirmed using the Wilcoxon test. Additionally, FEHAN’s

qualitative evaluation demonstrated its ability to generate documents that are semantically similar

to the original, maintaining the integrity and context of the data. This ensures that the explanations

are not only accurate but also relevant and meaningful.

45

DICTA expands the scope of interpretability to a broader range of text classifiers through a

model-agnostic approach. It leverages lexical databases such as WordNet to generate explanations.

The framework begins by identifying influential sentences, similar to FEHAN, and then creates

synthetic documents by semantically replacing words within these sentences. These synthetic

documents are used to train a local decision tree, which provides the final explanations.

DICTA was subjected to rigorous quantitative evaluation, including fidelity measurements and

statistical significance tests, which showed that DICTA consistently outperforms LIME in imitating

the black-box behaviour. The evaluation of synthetic neighbourhoods revealed that DICTA generates

high-quality, diverse, and semantically coherent text. This was evidenced by lower average cosine

distances and comparable or higher Local Outlier Factor (LOF) values, indicating that DICTA

explores a similar or broader neighbourhood around the given document while maintaining semantic

similarity.

The qualitative evaluation of DICTA involved transforming the decision tree into understandable

rule forms, which provide a flexible semantic representation of the classifier. By tracing decision

paths from the root to the leaves, the salient words are presented in order of their importance for

the decision. This method, rooted in classical cognitive science literature, offers a more intuitive

and causal explanation compared to unordered sets of salient words. This approach helps users

understand why certain words lead to specific classifications, enhancing the transparency and

trustworthiness of the model.

Overall, the chapter underscores FEHAN and DICTA’s effectiveness in improving text classifiers’

interpretability. Both frameworks exhibit high fidelity, produce high-quality neighbourhood data,

and provide clear and understandable explanations. These attributes make them robust tools for

explainable AI in natural language processing. By improving our understanding of complex text

classifiers, FEHAN and DICTA contribute to the development of more transparent, reliable, and

trustworthy AI systems. This advancement is crucial for the broader adoption and acceptance

of AI in critical applications where interpretability is essential. Through the rigorous evaluation

and compelling results presented in this chapter, FEHAN and DICTA are positioned as significant

advancements in the field of explainable AI, offering valuable insights and paving the way for future

innovations in this domain.

Chapter 4

Data-centric Graph Explanation

Graph convolutional networks (GCNs) have gained significant traction in various graph mining

tasks, including node classification [63, 123, 138], graph classification [8, 87], and link prediction

[70, 77]. Despite their outstanding performance, these complex GCN models’ non-linear and

non-reversible internal functions make them challenging to interpret. GNN explanations enhance

model interpretability, transparency, and trust, aiding in debugging, regulatory compliance, and

improving user understanding by clarifying complex relationships and decision-making processes

within graph data.

Several specifically designed explanation methods for GCNs have been introduced in response

to these concerns. Based on the type of provided explanation, we categorize them as follows:

Prototype Explanation (PT): Prototype Explanation (PT) identifies the influential elements of

the input that significantly affects the model’s prediction. This type of explanation clarifies which

aspects of the input lead to the same prediction [52]. Gradient-based methods, such as Grad-CAM

and Excitation Backpropagation, are applied to GCNs to generate heatmaps highlighting important

regions of the input [131]. Methods like GNNExplainer [175] and PGExplainer [105] perturb the

graph structure to mask unrelated nodes and identify the most influential subgraph. SubgraphX [178]

uses the Shapley value as a scoring function on selected subgraphs through Monte Carlo Tree Search

(MCTS) [150]. GraphSVX [35] constructs a surrogate model by creating a set of perturbed graph

samples and computing their contribution to the explained prediction. GStarX [181] proposes a

structure-aware scoring function on the nodes based on cooperative game theory. These algorithms

primarily identify the most influential subgraph for GCN model predictions.

Counterfactual Explanation (CF): Counterfactual (CF) explanations finds the minimum

changes to the input that would alter the model’s prediction, thereby revealing the cause-and-effect

relationship between the input and the model’s prediction [19]. CFGNNExplainer [103] generates

CF explanations by identifying edges whose absence changes the model’s prediction. CLEAR [107]

uses a variational autoencoder to generate counterfactual explanations for graph-level problems.

Although CF explanations can provide valuable insights into the cause-and-effect relationships,

46

47

research on this topic remains limited.

Exemplar Explanation (EXE): identifies modifications that can be made to the input graph

without altering the model’s prediction [57]. This approach is particularly useful for sparse input

graphs. For instance, when dealing with a large but sparse graph, a PT explanation might eliminate

too many connections, resulting in an invalid explanation. In such cases, an EXE explanation can

help by focusing on all influential connections without losing critical information [44].

In this research, we present the Multi-Perspective GCN Explainer (MPGE), a framework

designed to address the aforementioned research gaps in explaining GCN models. MPGE unifies

the two existing explanation strategies, Prototype (PT) and Counterfactual (CF) explanations, and

introduces a novel EXemplar Explanation (EXE).

Our method employs a perturbation-based technique to learn the expected explanation using

targeted loss functions. To provide multi-perspective explanations and obtain the preferred output

while considering the degree of changes to the input, we introduce multiple objective functions and

train the explanation model accordingly.

We summarize our contributions as follows:

• Introducing a perturbation-based explainer capable of producing multi-perspective explana-

tions, focusing on molecular and drug discovery datasets.

• Generating counterfactual, prototype, and exemplar explanations by perturbing the graph

structure.

• Optimizing the perturbation mask to achieve the preferred output for the explanation.

• Controlling the magnitude of perturbation using an elastic net regularizer on the parameters

of the perturbation mask.

To demonstrate the effectiveness of our method, we applied it to molecular property prediction

tasks. Predicting molecular properties is crucial for drug discovery, and recent GCN developments

have been widely adopted for various molecular property prediction and drug discovery concepts.

Obtaining expressive explanations that assist in predicting the physical properties of molecular

compounds is advantageous for addressing complex problems in these domains. We evaluated

our algorithm using criteria such as AUC/ROC, level of sparsity, and graph theory measures on

well-known molecular property prediction datasets. The results demonstrated the superiority of our

explanation method.

48

4.1 Graph Neural Networks

Graphs are composed of entities (nodes) and their relations (edges). Let G = (V,E) represent a

graph, where V = {v1, v2, . . . , vn} denotes the set of nodes and E denotes the set of edges. The

structure of the graph is represented by an adjacency matrix, which is an n× n square matrix where

ai,j = 1 if there is an edge connecting node i and j, and ai,j = 0 otherwise. The node features are

given as an n× d matrix X , where each row corresponds to a d-dimensional real-valued feature

vector of a node.

Graph Neural Networks (GNNs) leverage the graph structure (adjacency matrix) and node

features to predict outputs by exploiting a message-passing and message-aggregation mechanism.

Message-passing distributes information across the graph, and message aggregation consolidates

this information to learn node embeddings. These embeddings are then used to predict downstream

tasks such as graph or node classification. In this work, we focus on the node classification problem.

A GNN classifier is modelled by a function f(A,X;W)→ Y , where Y is the set of possible

predicted classes, A is the adjacency matrix, X represents the node features and W denotes the

learned weights of f . GNNs typically follow an information propagation and aggregation scheme to

make predictions based on the input. The core idea is that a node’s feature is obtained by aggregating

information from its neighbors and combining it with its own information. At the l-th propagation

level of a GNN, each edge (i, j) passes a message ml
ij = Message(hl−1

i , hl−1
j) between nodes vi

and vj by using their representations hl−1
i and hl−1

j from the (l − 1)-th layer. At the 0-th layer, the

node representations are initialized as the node features, h0 = X . After message propagation, each

node uses an aggregation function

ml
i = Aggregation

(︁
ml

ij | j ∈ Ni

)︁
to aggregate incoming messages from its neighbors Ni. Finally, the aggregated messages are

combined with the node’s own representation via an update function

hli = Update(ml
i, h

l−1
i).

This general mechanism of passing and aggregating information in GNNs can be formulated for

49

a single layer of a Graph Convolutional Network (GCN) as:

Xl = σ(D−1/2ÂD−1/2Xl−1Wl−1)

where Xl denotes the node representations at the l-th layer, calculated by averaging the representa-

tions of neighboring nodes and the node itself. The adjacency matrixA indicates which nodes should

be considered in the calculation of node representations. The identity matrix Â = A+ I includes

the node itself in the new representation calculation. The diagonal degree matrix D̂ normalizes Â

to average the node representations, and a non-linear function σ, such as ReLU, is applied to the

averaged node representations. This process can be repeated for multiple layers, depending on the

depth of the GNN.

The number of layers determines the range of neighbours be included in the network. For

instance, after the first iteration, each node aggregates information from its immediate neighbors

(1-hop away). For a specific node, calculating its representation involves constructing an individual

computation subgraph that includes the relevant nodes and edges needed to compute f(v). This

computation subgraph can be represented as a tuple of the subgraph adjacency matrixAv and feature

matrix Xv, denoted as Gv = (Av, Xv). The node v is then represented as v = (Av, x), where x is

the feature vector for v. The function f maps the node’s representation to a probability distribution

over a set of classes. For node classification, the computation subgraph identifies the label for the

selected node.

4.2 Problem Formulation

In this work, we aim to explain the predictions of a GNN classifier by providing explanations

composed of different contrasting components: counterfactuals, prototypes, and exemplars. Our

approach is based on perturbing the original graph and defining a loss function that allows the

extraction of all desired explanation components.

Let f(Av, x) be a GNN model that takes a node’s features x and the computation subgraph

adjacency matrix Av as input and predicts the class label for the given node. The CF, PT, and

EXE explanations can be found by applying a perturbation matrix P to the computation subgraph

adjacency matrix Av of node v. The perturbed subgraph of v is denoted by v̄ = (Āv, x), where the

perturbed adjacency matrix is obtained by the element-wise multiplication with the perturbation

matrix, Āv = P ⊙ Av.

50

The prediction of the model for the CF explanation should be f(Āv, x) ̸= f(Av, x), while for

the PT and EXE explanations it should be f(Āv, x) = f(Av, x). Although PT and EXE have the

same prediction, the main difference lies in the number of connections present in their explanation

subgraph: the PT explanation is designed to contain the smallest set of connections crucial for the

prediction, whereas the EXE explanation retains most of the original connections, making it very

similar to the graph being explained.

Figure 4.1: A toy example illustrating the CF, PT and EXE explanations for a node vi. Each node in
this graph is shown with the associated colour to its corresponding label. Node vi is labelled with
yellow colour. The counterfactual (CF), prototype (PT), and exemplar (EXE) explanations of vi’s
are illustrated in the mentioned order from left to the right. For the CF explanation, the eliminated
edge is presented with the red line and it causes the change of node vi’s label (purple colour).
The prototype explanation preserves the vi’s label and it shows the most influential subgraph for
the prediction of vi, hence in the extracted PT subgraph only connections among the same label
nodes are preserved and the edges that are presented with dashed red lines are eliminated from
the graph. The EXE subgraph includes the responsible connections for the prediction of vi’s. The
main difference between PT and EXE explanations is the number of present connections in the
explanation subgraph.

For the CF explanation, we seek a subgraph of the input where the necessary edges whose

absence changes the prediction of the GNN are eliminated. The optimal solution involves making

the least number of changes to the graph’s structure. In contrast, for the PT explanation, we aim

to identify the most influential subgraph of the input. This means that the explanation subgraph

should be faithful to the original prediction and characterized by a heavily sparse adjacency matrix,

without necessarily being close to the original graph.

For the EXE explanation, we seek the same prediction as the input (similar to PT), but obtained

from a subgraph very similar to the original one in terms of connections represented in the adjacency

matrix. The EXE explanation should include most of the original connections, requiring less

sparsification of the adjacency matrix by minimizing the deletion of edges. This involves controlling

the magnitude of the perturbation on the adjacency matrix.

Figure 4.1 provides a toy example illustrating these three explanations. In this example, for the

51

computation subgraph of node vi, the CF, PT, and EXE explanations are generated. Each node is

illustrated with a colour corresponding to its label, with node vi labelled in yellow.

For the CF explanation, since the label of vi should change, this explanation is generated by

removing vi’s direct connection to another yellow node. The removed edge is shown with a solid

red line. Eliminating only this edge results in a different prediction (purple) for vi.

For the PT explanation, we need to preserve the label of vi. The PT explanation retains the

nodes and connections essential for obtaining the same label. In this explanation, all connections to

nodes of different colors are removed, with the removed links indicated by dashed red lines. The PT

explanation preserves the most important subgraph for predicting the label of vi and eliminates the

rest of the connections.

For the EXE explanation, we seek a subgraph that is very similar to the original one. Fewer

connections are eliminated to obtain this explanation subgraph. The label of vi is preserved, and the

responsible connections for this prediction remain in the subgraph, including some edges that are

not the most influential. The eliminated connections are shown with dashed red lines.

In order to address the problem of explaining GNN predictive models for node classification

providing the type of explanation described above by a perturbation-based approach, we will present

the core elements of our approach: i) how to perturb the input graph for our multi-component

explanation model; ii) how to define the loss functions suitable for deriving the different components

of our explanation.

4.3 Multi-component Explanation Method for Graph Classification

As described in the preliminaries section, we propose a perturbation-based method that provides

various explanation perspectives. Each perspective offers a different insight into the reasons behind

the classification obtained by the GCN model. We now provide a mathematical description of the

graph convolution explanation.

Given a graph G = (V , E), where V is the set of nodes and E is the set of links between nodes.

The number of nodes and connections are denoted by N and M , respectively. The adjacency matrix

corresponding to the graph is described as A ∈ {0, 1}N×N , with ai,j = 1 if there is a connection

between node i and node j, and ai,j = 0 otherwise (for simplicity, we consider the undirected graph,

i.e., ai,j = aj,i). The nodes’ features matrix X ∈ RN×d is associated with each node vi ∈ V , where

xi = X[i, :] is its d-dimensional feature vector.

Let fW : (A,X)→ Y be a graph prediction model that takes X and A as input and predicts

52

Y ∈ Y1×C , where C is the number of classes. Graph Convolution Networks (GCNs), as noted

in [81], employ a message-passing algorithm similar to convolution in CNNs, aggregating local

information. A standard layer of fW (such as the first layer L1) of GCN, is formulated as follows:

(4.1)L1 = σ(D̂
−1/2

ÂD̂
−1/2

XW)

where σ denotes the softmax function, Â = A+ I is the normalized adjacency matrix, I is the

identity matrix, D̂ is the diagonal node degree matrix of Â, D̂ij =
∑︁

j Âij are the entries of this

matrix, X is the nodes’ features matrix, and W is the weight matrix. This formulation follows the

general GCN computation description presented in [81].

In order to explain the GCN’s predictions using a perturbation-based algorithm, we need to

perturb the input graph and monitor the corresponding changes in the output. Our explanation

model employs the idea of perturbing the input graph by masking connections and learning the

appropriate perturbations during a training process [163].

We introduce an auxiliary non-parameterized module, denoted as gP , to support the explanation.

This module takes the form gP (fW , A,X;P), where fW is the GCN model, and A and X are

the graph’s adjacency matrix and feature matrix, respectively. The module returns the requested

explanation as G̃ = (Ã,X).

The explanation module gP creates a copy of fW as the explanation model f̃P , parameterized

by a trainable perturbation matrix P . During the explanation procedure, P is iteratively trained

by tracking the changes in the graph and their impact on the predictions of f̃P . At the end of

the training, gP analyzes the generated explanations based on their predicted outputs and a set of

evaluative criteria (presented in Section 4.4). Finally, it delivers the selected explanation in the form

of G̃ = (Ã,X).

Our model explains the GCN’s predictions from different perspectives: PT, CF, and EXE. The

CF, PT, and EXE explanations are obtained by applying a trainable perturbation matrix P to the

graph’s adjacency matrix, Ã = P ⊙ A [163], and monitoring the variations in the output. The

predictions of the model for each type of explanation should be:

• Prototype (PT) Explanation: For the PT explanation, we seek a subgraph of the input that

includes the most influential nodes and edges for the model’s prediction. The explanation

should contain only the essential and most influential elements. The expected prediction for

the PT explanation is f(X,P ⊙A) = f(X,A), with min |P | > 0 and min |A− P ⊙ A| > 0.

This influential subgraph significantly impacts the model’s prediction, and its removal from

the input would cause a substantial change in the predicted probability.

53

• Counterfactual (CF) Explanation: For the CF explanation, we look for a subgraph where

the absence of certain edges changes the GNN’s prediction. The optimal solution involves

making minimal changes to the graph’s structure. The expected output is f(X,P ⊙ A) ̸=
f(X,A), with min |P | > 0 and min |A− P ⊙ A| < |A|. Eliminating the CF edges from the

graph results in a significant difference in the predicted probability compared to the original

prediction.

• Exemplar (EXE) Explanation: For the EXE explanation, we aim for the same prediction as

the input (similar to PT) but with minimal structural changes. Thus, f(X,P ⊙A) = f(X,A),

with min |P | > 0, min |A− P ⊙ A| < |A|, and min |A− P ⊙ A| > 0. According to the

EXE definition, removing the selected edges should have a minimal impact on the predicted

probability since all crucial connections for the prediction remain in the graph.

Considering the definition of each explanation and the expected output, we need to control

the degree of perturbation and the direction of prediction. This involves guiding the explanation

model throughout the training process to obtain the desired prediction. Depending on the type of

explanation, the loss function adjusts the model to achieve either a similar or contrasting class label.

4.3.1 Explanation Module

In this section, we elaborate on the details of our algorithm for generating multi-component

explanations, including CF, PT, and EXE. To explain the prediction of fW for a given instance, we

utilize a non-parameterized explanation module defined as gP (fW , A,X). Within the explanation

module, gP creates a copy of fW , denoted as the explanation model f̃P , which is parameterized by

P . The explanation model f̃P retains the same network structure as the GCN model fW but keeps

the weight matrix W constant and learns the perturbation matrix P throughout the training process.

The objective of f̃P is to perturb the original adjacency matrix to produce the desired explanation.

Therefore, the matrix P must be multiplied by A and not by Â. This approach prevents the removal

of self-loops in the message-passing of f̃P (i.e., zeroing out the identity matrix Â = A+ I) during

the explanation step. To achieve this, we revise the one-layer GCN model in Eq. 4.2 to isolate A:

(4.2)L1 = σ[(D + I)−1/2(A+ I)(D + I)−1/2XW]

Next, we define f̃P , which consists of the same number of layers as fW . Computing one layer

of f̃P is presented in Eq. 4.3.

54

(4.3)L̃1 = σ[(D̃)−1/2(P ⊙ A+ I)(D̃)−1/2XW]

Due to the multiplication of P and A, we need to update the degree matrix D based on P ⊙ A
and add the identity matrix to account for the self-loops. The updated degree matrix is denoted by

D̃.

4.3.2 Adjacency Matrix Perturbation

Given the definition of the explanation model f̃P , we must define the perturbation matrix P to

sparsify A. Specifically, we define Ã = P ⊙ A, where the perturbation matrix P is point-wise

multiplied by A to remove certain connections in the graph, resulting in the perturbed adjacency

matrix Ã.

Our goal is to modify the graph’s structure by learning P to derive explanations where

fW (A,X) ̸= f̃P (P ⊙ A,X) (CF) or fW (A,X) = f̃P (P ⊙ A,X) (PT/EXE). To find the ap-

propriate perturbation matrix, we customize loss functions accordingly.

Following the approach of [153], we instantiate the perturbation matrix as PN×N , where each

entry Pij is within the range [0, 1]. After training, we binarize P̃ to obtain P̂ by applying an

element-wise sigmoid function on P and thresholding the entries: values below 0.5 are set to 0, and

values equal to or above 0.5 are set to 1.

Once the perturbation matrix is learned, we compute the final explanation by performing point-

wise multiplication to obtain Ã = P̂ ⊙ A. Zeros in the perturbation matrix (P̂ ij = 0) indicate the

elimination of the connection between nodes i and j, while ones in P̂ indicate the edges that remain

intact.

To summarize the process of generating an explanation for a given instance: 1. Compute the

binary P̂ by applying a pointwise sigmoid function on P̃ . 2. Perform point-wise multiplication of

the binary perturbation matrix with the adjacency matrix (P ⊙A) to eliminate edges. 3. Pass Ã and

X through f̃P to obtain the final prediction: ỹ ← f̃P (P̂ ⊙ A,X).

4.3.3 Loss Function Optimization

To train the parameters of f̃P , we define a loss function tailored to obtain the desired prediction.

There are two main objectives: one for yielding subgraphs with the same prediction as the input and

one for producing subgraphs with contrasting or dissimilar predictions. The overall form of the loss

function for all explanation types is as follows:

55

(4.4)L = LPred(f̃P (Ã,X)) + β1∥P∥1 + β2∥P∥22

The term LPred(v̄) in Eq. 4.4 is designed to encourage the perturbed input to match the desired

prediction. The loss function for deriving CF explanations differs mainly in this term from those for

extracting PT and EXE explanations.

For the CF explanation, we aim to find a subgraph of the input where the essential edges, whose

absence changes the model’s prediction, are eliminated. Our goal is to apply minimal changes to the

graph’s connections to produce a contrasting prediction, i.e., fW (A,X) ̸= f̃P (P⊙A,X). Therefore,

we train the perturbation matrix to maximize the difference between the prediction of the most

probable class label and the original one, i.e., argmaxi f(A,X)i ̸= argmaxi [f̃P (Ã,X)]i [163].

The CF loss function can be written as:

(4.5)LCF
Pred(f̃P (Ã,X)) = max{f̃P (Ã,X)fW (A,X) − max

i ̸=fW (A,X)
[f̃P (Ã,X)]i,−κ}

In this formula, f̃P (Ã,X)fW (A,X) is the probability value of f̃P for the perturbed example on

the original label. maxi ̸=fW (A,X)[f̃P (Ã,X)]i is the maximum probability value of other class labels

except for the original label. This loss function is minimized when, for any confidence level κ, the

predicted probability of the perturbed example for the other classes exceeds the predicted probability

for the original label.

For PT and EXE explanations, we aim to find subgraphs that maintain the same label as the

input graph. Thus, the output of f̃P for the perturbed subgraph should satisfy fW (A,X) = f̃P (P ⊙
A,X). Specifically, we seek to obtain a perturbation matrix where the explanation subgraph has the

same top-1 prediction as the original instance, i.e., argmaxi fW (A,X)i = argmaxi[f̃P (Ã,X)]i.

The perturbed example can be interpreted as a representation of the model’s prediction. The PT and

EXE (PT-EXE) loss function is defined as:

(4.6)LPT−EXE
Pred (Ã,X) = max{ max

i ̸=fW (A,X)
[f̃P (Ã,X)]i − f̃P (Ã,X)fW (A,X),−κ}

This loss function is minimized when, for any given confidence level κ ≥ 0, the predicted

probability of the perturbed example for the original label is greater than the predicted probability

for any other class by at least κ.

It is important to note that this term alone does not control the magnitude of the perturbation,

which may lead to finding subgraphs with only minimal changes to the original Av. This issue is

addressed by the inclusion of the next terms.

L1 and L2 Norms Based Terms: The second and third terms in Eq. 4.4 are jointly known

as elastic net regularizers [184] (L1 and L2 norms). These terms control the magnitude of the

56

Algorithm 2: Multi-perspective explanation algorithm
Input : Graph G=(A,X), trained GNN Model f , parameters: β1, β2, κ, K
Output :e - explanation

1 y ← fW (A,X) // GCN Prediction

2 P ← Jn // Initialization

3 f̃P ← (fW , P) // initializing explanation model

4 Ã
∗
= []

5 for K iterations do
6 L, Ã = GET_EXPL_EXAMPLE(A,X)

7 if Ã ̸= A then
8 Ã

∗ ← Ã
∗ ∪ Ã

9 if L began to increase then
10 break
11 P ← P + α∇PL
12 Function GET_EXPL_EXAMPLE(A,X, y):
13 Ãcandidate ← A

14 P̂ ← threshold(σ(P))
15 Ã← P ⊙A
16 ỹ ← fP (P ⊙A,X)
17 L ← L(ỹ, y, P); // Eq 4.4

18 if EXPL= CF ∧ y ̸= ŷ then
19 Ãcandidate ← P̂ ×A
20 if EXPL= (PT ∨ EXE) ∧ y = ŷ then
21 Ãcandidate ← P̂ ×A

22 return L, Ãcandidate

perturbation matrix and serve as efficient feature selection techniques in high-dimensional learning

problems. These regularizers penalize the perturbation matrix to remove excessive components and

simplify the problem. They are particularly beneficial for PT explanations, where we seek the most

influential subgraph of the input to explain the output. By using these regularizers, we can control

the size of the explanation, meaning the number of connections present in the explanation subgraph

is directly influenced by the values of these regularizers.

In Eq. 4.4, β1 and β2 are parameters that control the sparsity of the generated explanations. We

conducted a series of experiments to determine the optimal values for these parameters for each

type of explanation. The overall procedure of our algorithm is summarized in Algorithm 2.

57

4.3.4 Explanation procedure

Given a graph (A,X), we initialize the perturbation matrix P as a matrix of ones Jn to initially

preserve all edges. We compute P̂ by applying the sigmoid function and thresholding the output.

Point-wise multiplication of the binarized perturbation matrix with the adjacency matrix provides

a candidate explanation. Based on the predicted class label and type of explanation, we decide

whether to store or discard the generated explanation.

We train the explanation model g by backpropagating the loss value to the parameters of P .

The specific loss function used depends on the type of explanation, as introduced in the previous

section. For CF explanations, we train P using the loss function in Eq. 4.5. For both PT and EXE

explanations, we use the loss function in Eq. 4.6. The main distinction between PT and EXE lies in

the regularization values, which we will discuss later. For each type of explanation, the algorithm

produces a set of potential explanations. From this set, only the explanation that aligns with the

specified criteria is selected. For instance, in the case of the PT (Path-based) explanation, which

requires including the minimal number of present links, the algorithm will choose the explanation

that contains the fewest number of connections among those generated.

4.4 Evaluation and Analysis

In this section, we outline our experimental setup to analyze our algorithm. First, we discuss

the real-world molecular datasets, baseline methods, and experimental configurations. Next, we

present the quantitative evaluation of our method against baseline algorithms for graph and node

classification problems. Finally, we demonstrate the explanations obtained for examples from each

molecular dataset.

Datasets: To evaluate our algorithm, we considered five molecular classification datasets:

1. MUTAG [30] - a dataset of 188 chemical compounds classified based on their mutagenic

effect on a bacterium.

2. Mutagenicity [76] - consists of 4,337 chemical structures classified as mutagens or nonmuta-

genic based on their ability to cause mutations in DNA.

3. AIDS [137] - includes molecular compounds classified into two states of activity (ac-

tive/inactive) against the HIV virus.

58

AIDS MUTAG Mutagenicity BBBP
Graphs 2000 188 4337 2039
AVG nodes 15.69 17.93 30.32 24.1
AVG edges 16.20 19.79 30.77 26.0
Classes 2 2 2 2
Ground Truth Expl True True True False

Table 4.1: The details of each dataset, including the average number of nodes, the average number
of edges, the number of classes, and the presence of ground truth explanations.

4. BBBP [111] - the Blood-Brain Barrier Penetration dataset, includes molecular structures

classified by their ability to penetrate the blood-brain barrier.

For MUTAG, Mutagenicity, and AIDS, we have ground truth explanations which we used to

calculate the explanation accuracy for the PT explanations. The details of these datasets are provided

in Table 4.1.

Baselines

We selected two types of baseline explanation algorithms to compare against our multi-

component explanation method. For the PT explanation, we chose GNNExplainer [175] and PGEx-

plainer [105], and for the CF explanations, we compared our solution against CF-GNNExplainer.

The GNNExplainer is designed to extract the most relevant subgraph of the input along with the

most influential subset of node features for the model’s prediction. Although the GNNExplainer

paper suggests that removing an influential node or edge from the explanation subgraph can produce

a counterfactual explanation, [10] argues that the removal of highly correlated edges or nodes does

not necessarily result in a counterfactual explanation due to the high non-convexity of the GNN

model. Therefore, we decided to compare the outcomes of GNNExplainer and PGExplainer with

our PT explanations. Since we do not extract the most influential subset of node features, we only

consider GNNExplainer’s masked adjacency matrix as the explanation for evaluation.

For evaluating our CF explanations, we used CF-GNNExplainer as the baseline due to its

similarity to our proposed algorithm for generating CF explanations. It is important to note that we

followed the training processes suggested in their original papers for all baseline models.

Metrics

To evaluate the quality of the generated explanations, we ran the explanation procedure for

a selected graph ten times, each time with a different random seed. We assessed the generated

explanations using the following five metrics:

59

AUC/ROC: Since we have ground truth PT explanations for all datasets except BBBP, we use

these explanations to compare the AUC/ROC [15] of our method against the baselines. AUC/ROC

metrics can be used to evaluate how closely the GCN’s explanations align with this gold standard.

Predicted Probability Shift: Inspired by the deletion metric presented by Petsiuk and et al. [127],

we constructed a metric to measure the shift in predicted probability after the removal of the

explanation subgraph from the input graph. For PT explanations, the removal of this subgraph

should result in a significant change in the predicted probability, as it represents the most influential

subgraph. Similarly, for CF explanations, removing the minimal number of edges that cause a

change in the predicted probability should lead to a substantial probability shift. Conversely, for

EXE explanations, the removal of edges should have minimal impact on the predicted probability.

To evaluate this, we first measure the predicted probability of the input graph y = fW (A,X). After

obtaining the explanation, we remove the connections from the input data Ā = A− Ã and measure

its probability ỹ = fW (Ā,X). We then report the shift in prediction |ỹ − y|.
Sparsity: This metric measures the proportion of removed edges from the explanation P̂ × A

[177]. A value of 1 indicates that all edges were eliminated. For PT explanations, higher sparsity

(close to 1) is preferred, while for CF and EXE explanations, lower sparsity (close to zero) is

desired.

Number of Present or Removed Edges: Depending on the type of explanation, we calculate the

number of present or removed edges from Ã relative to the original graph. For CF explanations, we

report the number of "Removed Edges" as we aim to make minimal changes to the graph structure.

For PT explanations, we measure the number of "Present Edges" as we seek the minimal influential

subgraph. For EXE explanations, we aim to find a subgraph similar to the input graph, avoiding the

removal of many connections.

To ensure the validity of the generated CF explanations, we verify that the provided solutions

do not drastically alter the graph’s structure and remain as close as possible to the original graph.

Therefore, we consider basic graph measures to evaluate the quality and validity of our solutions.

Betweenness Centrality: This metric measures how often a given node lies on the shortest path

between other nodes, indicating which nodes act as bridges in the graph. It is calculated by summing

the fraction of all pairs of shortest paths that pass through node v.

Closeness Centrality: This metric evaluates a given node based on its closeness to all other

nodes in the network. It scores each node by calculating the shortest path between all nodes and

summing the distances of v’s shortest paths.

60

We measure these two criteria for every node in the input graph and the obtained explanation,

storing them in two vectors. We then calculate the Euclidean distance between these vectors and

report the difference value.

4.4.1 Quantitative Evaluation

Hyperparameter Optimization

This section outlines the experimental setup for training and generating explanations. Before

proceeding with the experimental evaluation, we conducted a series of analyses to determine the

optimal elastic net coefficients for each type of explanation. As mentioned earlier, for CF and EXE

explanations, we aim to eliminate a small number of connections from the input, while for PT

explanations, we seek to include the most significant connections.

We selected each coefficient from the following ranges: βL1 = {0.1, 0.001, 0.0001} and

βL2 = {0.1, 0.01, 0.001}. We executed the explanation algorithm with the selected coefficients and

observed their impact on the AUC/ROC of PT explanations. The βL1 and βL2 values that resulted

in the highest AUC/ROC and the greatest probability shift when connections were removed were

selected.

Next, we tested the CF and EXE explanations with different values of βL1 and βL2 and checked

the consistency of the obtained explanations with PT. Based on the type of explanation and the

availability of ground truth explanations, we reported the "AUC/ROC," "Sparsity," "Shift in Pre-

dicted Probability," and "Number of Removed Connections" for each explanation type in Figure 4.2.

To avoid repetition, we presented the evaluated criteria for those values of L1 and L2 that were not

selected for the explanations. Based on this quantitative analysis, we selected the following values

for βL1 and βL2:

• PT: βL1 = 0.1 and βL2 = 0.001

• EXE: βL1 = 0.0001 and βL2 = 0.01

• CF: βL1 = 0.001 and βL2 = 0.01

• PT: βL1 = 0.1 and βL2 = 0.001

• EXE: βL1 = 0.0001 and βL2 = 0.01

61

(a) AUC/ROC (b) Sparsity

(c) Prediction Shift (d) Removed Edges

Evaluation of PT

(e) Sparsity (f) Prediction Shift (g) Removed Edges

Evaluation of CF

(h) Sparsity (i) Prediction Shift (j) Removed Edges

Evaluation of EXE

Figure 4.2: Evaluation of the impact of different elastic net regularization coefficients (βL1 and
βL2) on the performance of PT, CF, and EXE explanations. Each subfigure presents the results
for a specific metric: AUC/ROC, Sparsity, Predicted Probability Shift, and Number of Removed
Edges. The selected coefficients are those that maximize AUC/ROC and probability shift for PT
explanations while ensuring consistency in the CF and EXE explanations.

• CF: βL1 = 0.001 and βL2 = 0.01

We have considered two sets of experiments to quantitatively and qualitatively evaluate our

model’s performance.

Baseline Comparison

In the first set of experiments, we measured the AUC/ROC scores of explanations with respect to

the ground truth explanation for AIDS, MUTAG, and Mutagenicity datasets and reported them in

62

Table 4.2. Ground truth explanations allow us to measure the AUC/ROC.

The explanation problem was treated as a binary classification problem where the edges in

the ground truth explanation are treated as labels and the perturbation weights P given by the

explanation model are viewed as prediction scores. Higher AUC/ROC scores indicate that the

explanation algorithm assigned higher scores to edges in the ground truth explanation. This

experiment demonstrates that our model outperforms the baselines in identifying the most influential

edges for the PT explanation. Our experimental analysis shows that our proposed algorithm is

accurate, effective, and consistent in identifying PT explanations.

AIDS MUTAG Mutagenicity
Features Atom type Atom type Atom type

Visualization

Actual EXPL

GNNEXplainer

PGExplainer

Our Algorithm
Explanation AUC

GNNExplainer 0.37±0.08 0.68±0.0 0.55±0.04
PGExplainer 0.35±0.1 0.14±0.0 0.75±0.02
Our Algorithm 0.95±0.03 0.92±0.0 0.89±0.03

Table 4.2: Illustration of molecular datasets with their AUC/ROC evaluations with respect to our
model and alternative baselines.

Analytical Evaluation

Building upon the prior experiment, we conducted a series of investigations to provide a more

detailed analysis of the generated explanations, including CF and EXE explanations. We evaluated

the explanations generated for each data sample presented in the previous experiment using the

criteria outlined in Section 4.4.

63

AIDS MUTAG Mutagenicity BBBP
S 0.18 0.06 0.10 0.11

PE 4 20 6 4
PT AE 18 6 24 26

BC 0.66 0.74 1.08 1.08
CC 1.27 0.38 1.31 0.90
S 0.07 0.02 0.04 0.02

PE 12 22 18 36
CF AE 10 4 12 14

BC 0.53 0 0.76 0.39
CC 0.26 0 0.51 0.05
S 0.009 0.02 0.00 0.001

PE 20 22 26 48
EXE AE 2 4 4 2

BC 0.0 0.0 0.0 0.0
CC 0.0 0.0 0.0 0.0
S 0.01 0.01 0.04 0.001

PE 18 20 28 48
CFGNN AE 4 4 2 2

BC 0.0 0 0.76 0.0
CC 0.0 0 0.51 0.0

Table 4.3: Detailed evaluation of PT, CF, and EXE explanations based on various metrics: Sparsity
(S), Number of Preserved Edges (PE), Number of Absent Edges (AE), Betweenness Centrality
(BC), and Closeness Centrality (CC) for datasets AIDS, MUTAG, Mutagenicity, and BBBP. For
PT explanations, we expected higher sparsity, fewer present connections, and greater betweenness
and closeness distances. For CF and EXE explanations, we anticipated lower sparsity, more
present edges, and smaller betweenness and closeness distances. The results confirm that PT
explanations included the most influential elements, causing significant prediction changes when
removed, whereas CF explanations involved minimal edge removal to change predictions, and EXE
explanations maintained most influential elements, resulting in minor prediction shifts.

For PT explanations, compared to CF and EXE explanations, we expected to observe higher spar-

sity, fewer present connections, and greater betweenness and closeness distances. Conversely, for CF

and EXE explanations, we anticipated low sparsity, more present edges, and smaller betweenness

and closeness distances. The results presented in Table 4.3 align with our expectations. Additionally,

we reported the quantitative evaluation of generated explanations by CF-GNNExplainer.

Based on the results presented in Table 4.3, we ensured that our expectations for the explanations

were met. Specifically, PT explanations included only the most influential elements of the input

(high sparsity), and eliminating the explanation subgraph caused a major change in the predicted

probability. Similarly, for CF explanations, we expected to remove a minimal number of edges (low

64

Our Algorithm GNNE PGE CF-GNN Random
AIDS 0.33±0.05 0.27±0.05 0.22±0.05 - 0.21±0.08

PT MUTAG 0.58±0.0 0.36±0.0 0.34±0.0 - 0.35±0.0
Mutagenicity 0.40±0.03 0.15±0.04 0.10±0.04 - 0.10±0.02

BBBP 0.49±0.04 0.31±0.04 0.12±0.03 - 0.13±0.06
AIDS 0.52±0.03 - - 0.48±0.02 0.25±0.01

CF MUTAG 0.56±0.0 - - 0.54±0.0 0.42±0.0
Mutagenicity 0.71±0.04 - - 0.65±0.05 0.22±0.04

BBBP 0.39±0.04 0.13±0.08 0.33±0.04
AIDS 0.12±0.05 - - - 0.22±0.06

EXE MUTAG 0.23±0.0 - - - 0.35±0.0
Mutagenicity 0.07±0.04 - - - 0.09±0.05

BBBP 0.11±0.04 - - - 0.07±0.04

Table 4.4: Difference in predicted probabilities before and after eliminating the explanation sub-
graph.

sparsity) whose absence changed the model’s prediction, thereby drastically altering the graph’s

prediction. For EXE explanations, we aimed to include all influential elements of the input in the

explanation graph (low sparsity), so eliminating the EXE subgraph would not significantly impact

the predicted probability.

In this experiment, we removed the explanation subgraph and measured its impact on the

predicted probability of the model. First, we measured the predicted probability of GCN fw(A,X)

for the given input. After training the explanation model f̃P , we obtained the connections to be

removed (CF and EXE) or preserved (PT) in the explanation subgraphs and eliminated them from

the input graph. Finally, we passed the modified graph to fW , measured the changes in the final

prediction, and calculated the shift from the original prediction. The results are reported in Table 4.4.

For CF and PT explanations, we expected to see a high difference value, and for EXE explanations, a

low difference was anticipated. We compared the outcome of our algorithm against GNNExplainer,

PGExplainer, CF-GNNExplainer, and a random removal of edges as the baseline. One interesting

observation is that prediction shifts for most CF explanations were greater than PT, indicating that

the removal of the PT subgraph does not necessarily result in a CF explanation.

4.4.2 Qualitative Evaluation

After the quantitative evaluation of explanations, we illustrated the generated explanations for each

perspective (PT, EXE, and CF) returned from the g module in Figure 4.3. Each of the PT, EXE, and

CF explanations for the MUTAG, BBBP, and AIDS datasets is plotted. The node colors indicate

65

node features, which represent atoms, while the edge colors represent the presence or absence of

edges in the explanation subgraph. From these figures, we can observe that PT explanations are

consistent with EXE and CF explanations. In other words, connections considered to be the most

significant for the prediction were not eliminated in these explanations.

(a) PT (b) EXE (c) CF

Explanations for MUTAG

(d) PT (e) EXE (f) CF

Explanations for BBBP

(g) PT (h) EXE (i) CF

Explanations for AIDS

Figure 4.3: Multi-perspective explanations generated for each dataset. The node colors represent
node features, and edge colors demonstrate the presence or absence of an edge. In PT explanations,
the removed connections are distinguished with dotted grey lines, and the present connections are
shown with green lines. For CF and EXE explanations, the removed edges are shown with red lines.

4.5 Summary

In this chapter, we explored the development and application of a data-centric graph explanation

framework named the Multi-Perspective GCN Explainer (MPGE). This framework addresses the

challenges of interpreting the predictions made by Graph Convolutional Networks (GCNs), which

are widely used for tasks such as node classification, graph classification, and link prediction.

Despite their success, GCNs’ complex and non-linear nature often makes it difficult to understand

their internal decision-making processes.

66

MPGE locally generates prototype (PT) and counterfactual (CF) explanations and introducing a

novel approach called Exemplar Explanation (EXE). Each explanation type provides a different

perspective on the model’s prediction, making MPGE a comprehensive tool for understanding

GCNs.

Prototype explanations focus on identifying the most influential subgraph of the input that is

crucial for the model’s prediction. These explanations highlight the core elements that drive the

decision-making process, helping users understand which parts of the graph are most significant.

Counterfactual explanations, on the other hand, identify the minimal set of edges whose removal

would change the model’s prediction. This approach reveals the cause-and-effect relationships

within the graph, providing insights into which connections are essential for maintaining the current

prediction.

The newly introduced Exemplar Explanation (EXE) is particularly useful for sparse input graphs

or when a detailed view of all influential connections is needed. EXE highlights a subgraph that

mirrors the original input graph in terms of label and includes the crucial connections responsible

for the classification. This method ensures that the explanation remains close to the original graph

structure while focusing on the key elements influencing the prediction.

To implement these explanations, we designed a perturbation-based algorithm that iteratively

learns the perturbation matrix during training. This matrix adjusts the adjacency matrix of the input

graph, producing the desired explanation by removing or preserving specific connections. The loss

functions for PT, CF, and EXE explanations were carefully crafted to ensure the explanations align

with the expected outcomes. For example, PT explanations aim to include the most significant

connections, while CF explanations seek to identify the minimal changes needed to alter the

prediction.

We evaluated MPGE using real-world molecular datasets such as MUTAG, Mutagenicity,

AIDS, and BBBP. These datasets provided a robust testing ground due to their complexity and

the availability of some ground truth explanations. Our experiments involved both quantitative

and qualitative evaluations. Quantitative metrics included AUC/ROC scores, predicted probability

shifts, sparsity, and the number of present or removed edges. These metrics helped us assess the

effectiveness of our explanations in capturing the most significant elements of the graph and their

impact on the model’s prediction.

In the qualitative evaluation, we visualized the generated explanations for different datasets,

comparing them to the ground truth and other baseline explanation methods like GNNExplainer

67

and PGExplainer. The visualizations demonstrated that our PT explanations were consistent with

both EXE and CF explanations, indicating that MPGE successfully identifies the key connections

influencing the prediction without eliminating essential elements.

Our results showed that MPGE outperforms baseline methods in terms of explanation accuracy

and consistency. The detailed analyses confirmed that PT explanations tend to have higher sparsity,

indicating they include only the most critical connections. In contrast, CF explanations exhibited

lower sparsity as they aimed to retain as many connections as possible while still changing the

prediction. EXE explanations maintained a balance by preserving influential connections and

minimizing the removal of edges, ensuring the explanation closely resembles the original graph

structure.

Overall, MPGE provides a robust and flexible framework for explaining GCN predictions

from multiple perspectives. Integrating PT, CF, and EXE explanations offers a comprehensive

understanding of how GCN models derive their predictions, enhancing the transparency and

interpretability of graph-based machine learning models. This chapter highlights the importance of

developing sophisticated explanation methods to demystify complex AI models, thereby building

trust and facilitating their adoption in critical applications such as drug discovery and molecular

property prediction.

Chapter 5

Data-centric Prediction Explanation

As one of the decisive factors affecting the performance of a Machine Learning (ML) model, training

data points are of great value in promoting the model’s transparency and trustworthiness, including

explaining prediction results, tracing sources of errors, or summarizing the characteristics of the

model [4, 20, 118]. The challenges of example-based prediction explanation mainly come from

retrieving relevant data points from a vast pool of training samples or justifying the rationale of

such explanations [94, 183].

Method Explanation of
Need optimization
as sub-routine

Whole model explanation Inference computation
complexity bounded by

Memory/cache (of each
training sample) bounded byTheoretical Practical

Influence
Function Original Model

Yes (Iterative HVP
approximation) Yes No

1.H−1
θ ∇θL(xt, θ) approximation

2. < ∇θL(x, θ), H
−1
θ ∇θL(xt, θ) > Size of model parameters

RPS Fine-tuned Model
Yes (L2 regularized
last layer retrain) No No

1.last layer representation ft
2.< αifi, ft >

Size of model parameters
of the last layer

TracIn* Original Model No Yes No
1.∇θL(xt, θ) approximation
2. < ∇θL(x, θ),∇θL(xt, θ) > Size of model parameters

HD-Explain Original Model No Yes Yes
1.∇xtf(xt, θ)yt 2. Closed-form
kθ(x,xt) defined by KSD Size of data dimension

* TracIn typically requires to access the training process. Here, TracIn* refers to a special case that only use the last
training checkpoint.

Table 5.1: Summary of existing Post-hoc Example-based Prediction Explanation Methods that
work with deep neural networks. Practicality of the whole model explanation is measured by the
feasibility of explaining the prediction of ResNet-18 trained on CIFAR-10 with a single A100 GPU
machine. CIFAR-10 is a small benchmark data with 50000 training samples.

Modern example-based prediction explanation methods commonly approach the above chal-

lenges by constructing an influence chain between training and test data points [90, 118, 160]. The

influence chain could be either data points’ co-influence on model parameters or their similarity

in terms of latent representations. In particular, Influence Function [82], one of the representative,

model-aware explanation methods, looks for the shift of the model parameters (due to up-weighting

each training sample) as the sample’s influence score. Since computing the inverse Hessian matrix

is challenging, the approach adapts Conjugate Gradients Stochastic Estimation and the Perlmutter

trick to reduce its computation cost. Representer Point Selection (RPS) [174], as another example,

68

69

reproduces the representer theorem by refining the trained neural network model with L2 regular-

ization, such that the influence score of each training sample can be represented as the gradient of

the predictive layer. While computationally efficient, RPS is criticized for producing coarse-grained

explanations that are more class-level rather than instance-level explanations [154] (In this paper

we use the instance level explanation and example-based explanation interchangeably.). Multiple

later variants [133, 154] attempted to mitigate the drawbacks above, but their improvements were

often limited by the cause of their shared theoretical scalability bounds. The summary of existing

Post-hoc Example-based Prediction Explanation Methods that work with deep neural networks is

given in Table 5.1.

One limitation of the current influence-based methods is that they attribute the influence of each

training data point to the parameters of the trained model as an essential intermediate step. Indeed,

as the nature of stochastic gradient descent (the dominating training strategy of neural networks),

isolating such contribution is barely possible without 1) relying on approximations or 2) accessing

the training process. Unfortunately, either solution would result in performance degradation or

heavy computational overhead [141]. Hence, this work delves into the exploration of an alternative

influence connection between training and test data points without exploiting the perturbation of

model parameters.

5.1 Problem Definition

We consider the task of explaining the prediction of a differentiable classifier f : IRd → IRl, given

inputs test sample xt ∈ IRd, where d denotes the input dimension and l denotes the number of

classes. Specifically, we are interested in explaining a prediction of a model f(·) by returning a

subset of its training samples D = {(xi, yi)}ni=1 that has strong predictive support to the prediction

of test point xt. While not explicitly stated in the main paper, we treat example-based prediction

explanation as a function ψ(f,D,xt) : F × D × IRd → {IRd, IRl}k such that it takes a trained

model f , a training dataset D, and an arbitrary test point xt as inputs and output top-k training

samples as explanations.

5.1.1 Kernelized Stein Discrepancy

The idea of Kernelized Stein Discrepancy (KSD) [100] can be traced back to a theorem called Stein

Identity [75] that states, if a smooth distribution p(x) and a function ϕ(x) satisfy lim||x||→∞ p(x)ϕ(x) =

70

0,

Ex∼p[ϕ(x)∇x log p(x) +∇xϕ(x)] = 0, ∀ϕ.

The identity can characterize distribution p(x) such that it is often served to assess the goodness-of-

fit [85]. The above expression could be further abstracted to use function operator Ap (a.k.a Stein

operator) such that

Apϕ(x) = ϕ(x)∇x log p(x) +∇xϕ(x),

where the operator encodes distribution p(x) in the form of derivative to input (a.k.a score function).

Stein’s identity offers a mechanism to measure the gap between two distributions by assuming

the variable x is sampled from a different distribution q ̸= p such that

√︁
S(q, p) = max

ϕ∈F
Ex∼q[Apϕ(x)],

where the expression takes the most discriminant ϕ that maximizes the violation of Stein’s identity to

quantify the distribution discrepancy. This discrepancy is, accordingly, referred as Stein Discrepancy.

5.2 Additional Derivation of Kernelized Stein Discrepancy

While Stein’s Identity has been well described in many previous works [29, 100, 101], we briefly

recap some key derivations in this paper to seek for self-contained.

As mentioned in the main paper, Stein’s Identity states that, if a smooth distribution p(x) and a

function ϕ(x) satisfy lim||x||→∞ p(x)ϕ(x) = 0, we have

Ex∼p[ϕ(x)∇x log p(x) +∇xϕ(x)] = Ex∼p[Apϕ(x)] = 0, ∀ϕ.

Intuitively, by using integration by part rules, we can reveal the original assumption from the derived

expression such that ∫︂
x

ϕ(x)∇x log p(x) +∇xϕ(x)dx = p(x)ϕ(x)
⃓⃓⃓+∞

−∞

Stein Discrepancy measures the difference between two distributions q and p by replacing the

expectation of distribution p term in Stein’s Identity expression with distribution q, which reveals

the difference between two distributions by projecting their score functions (gradients) with the

71

function ϕ(x)

max
ϕ∈F

Ex∼q[Apϕ(x)] = max
ϕ∈F

Ex∼q[Apϕ(x)]− Ex∼q[Aqϕ(x)]⏞ ⏟⏟ ⏞
=0

= max
ϕ∈F

Ex∼q[ϕ(x)⏞⏟⏟⏞
projection coefficients

(∇x log p(x)−∇x log q(x))⏞ ⏟⏟ ⏞
score function difference

]

Clearly, the choice of projection coefficients (function ϕ(x)) term is critical to measure the distribu-

tion difference.

Kernelized Stein Discrepancy (KSD) addresses the task of searching function ϕ by treating

the above challenge as an optimization task where it decomposes the target function ϕ with linear

decomposition such that

max
ϕ∈F

Ex∼q[Apϕ(x)] = max
ϕ∈F

Ex∼q[Ap

∑︂
i

wiϕi(x)] = max
ϕ∈F

∑︂
i

wiEx∼q[Apϕi(x)],

with linear property of Stein operator Ap. The linear decomposition path is the way to reduce

the optimization task into looking for a finite number of the base functions ϕi ∈ F whose coefficient

norm is constraint to 1 (||w||H≤ 1). KSD takes F to be the unit ball of a reproducing kernel Hilbert

space (RKHS) and leverages its reproducing property such that ϕ(x) = ⟨ϕ(·), k(x, ·)⟩, which in

turn transforms the maximization objective of the Stein Discrepancy into

max
ϕ
⟨ϕ(·),Ex∼q[Apk(·, x)]⟩H, s.t.||ϕ||H≤ 1.

The optimal ϕ is therefore a normalized version of Ex∼q[Apk(·, x)]. Hence, KSD is defined as

the optimal between the distribution p and q with the optimal solution of ϕ

S(q, p) = Ex,x′∼q[κp(x, x
′)], where κp(x, x

′) = Ax
pAx′

p k(x, x
′).

The KSD could be eventually transformed into

S(q, p) = Ex,x′∼q[κp(x, x
′)]

where κp(x, x′) = Ax
pAx′

p k(x, x
′) that can work with arbitrary kernel function k(x, x′).

In the literature, KSD has been adopted for tackling three types of application tasks – 1)

72

Rotated: -120° Rotated: -60° Training Data Rotated: 60° Rotated: 120°

Class Ratio: 1:9 Class Ratio: 3:7 Training Data Class Ratio: 7:3 Class Ratio: 9:1
100 0 100
Degree of Rotation

0

20

40

60

80

Di
sc

re
pa

nc
y

[P

d,
P

he
ta

]

0.0 0.2 0.4 0.6 0.8 1.0
Data Ratio (Pos/Neg)

0.5

0.6

0.7

0.8

Di
sc

re
pa

nc
y

[P

d,
P

he
ta

]

Figure 5.1: Varying of Kernelized Stein Discrepancy given the shift of training data distribution on
Two Moon dataset.

parameter inference [11], 2) Goodness-of-fit tests [29, 100, 171], and 3) particle filtering (sam-

pling) [48, 84]. However, to the best of our knowledge, its innate property that uniquely defines

model-dependent data correlation has never been exploited, which, we note, is valuable to interpret

model behaviour from various aspects, including instance-level prediction explanation and global

prototypical explanations.

5.3 Highly-precise and Data-centric Explanation

HD-Explain is an example-based prediction explanation method based on Kernelized Stein Dis-

crepancy. Consider a trained classifier fθ as the outcome of a training process with Maximum

Likelihood Estimation (MLE)

argmax
θ

E(x,y)∼PD
[logPθ(y|x)].

Theoretically, maximizing observation likelihood is equivalent to minimizing a KL divergence

between data distribution PD and the parameterized distribution Pθ such that

DKL(PD, Pθ) = E(x,y)∼PD

[︃
log

PD(x, y)

Pθ(x, y)

]︃
= −E(x,y)∼PD

[logPθ(y|x)]⏞ ⏟⏟ ⏞
Likelihood

+E(x,y)∼PD
[logPD(y|x)]⏞ ⏟⏟ ⏞

constant

,

which, in turn, is proven to align with minimizing KSD in the form of gradient descent [101]

∇θDKL(PD, Pθ) = −S(PD, Pθ).

The chain of reasoning above shows that a well-trained classifier fθ through gradient-descent should

lead to minimum discrepancy between the training dataset distribution and the model encoded

73

distribution S(PD, Pθ)
1. We empirically verify the connection through simple examples as shown

in Figure 5.1, where the changes in training data distribution would result in larger KSD compared

to that of the original training data distribution. Intuitively, the connection shows that there is a tie

between a model and its training data points, encoded in the form of a Stein kernel function kθ(·, ·)
defined on each pair of data points. As the kernel function is conditioned on model fθ, we note it is

an encoding of data correlation under the context of a trained model, which paves the foundation of

the example-based prediction explanation as shown next.

5.3.1 KSD between Model and Training Data

Recall that KSD, S(PD, Pθ), defines the correlation between pairs of training samples through

model θ dependent kernel function with closed-form decomposition

κθ((xa, ya), (xb, yb)) = Aa
θAb

θk(a, b)

= ∇a∇bk(a, b) + k(a, b)∇a logPθ(a)∇b logPθ(b)

+∇ak(a, b)∇b logPθ(b) +∇bk(a, b)∇a logPθ(a),

(5.1)

where we denote data point (xa, ya) with a for clean notation. The only model-dependent factor

in the above decomposition is a derivative ∇x,y logPθ(x, y) (for both data a or b). Hence, to

utilize KSD for prediction explanation, we first need to unravel the derivative of the trained model

with respect to a whole data point (including its label). Indeed, while the gradient of a classifier

∇x logPθ(y|x) on its input feature x is straightforward, the gradient to the entire data points is less

evident due to the lack of definition of Pθ(x).

To obtain the joint distribution of Pθ(x, y) for facilitating KSD computation, we propose to set

Pθ(x) ≡ PD(x) as uniform distribution. Although this setting appears hasty, we note PD represents

the uniform data distribution in dataset D, which, while reflects, but is not the complex unknown

distribution from which the data is sampled. In particular, for a data point (x, y) in dataset D with

Independent and identically distributed (I.I.D) assumption, PD(x) is indeed uniformly distributed,

whereas PD(y|x) is a delta distribution with probability 1.

With the above setting, the score function ∇x,y logPθ(x, y) in the Stein operator Aθ could

be derived as a concatenation of the gradient of model fθ(x)y to its input x and its probabilistic

1Since PD is discrete distribution while Pθ is continuous, the Discrepancy between the two distributions will not
recap Stein Identity (= 0) with a limited number of training data points.

74

0

1

2

3

Week Prediction Support

Strong Prediction Support

Figure 5.2: Demonstration of HD-Explain on 2D Rectangular synthetic dataset. Left shows the
training dataset with three classes. Middle figure shows the explanation support of training data
points to a given test point (as black cross), where green shows a higher KSD kernel value. Right
shows the distribution of KSD kernel values (over the training set) to the test point, where only a
small number of training data points provide strong support to this prediction. The color intensity
of this gradient graph, is relevant to Stein Kernel values.

prediction fθ(x), since

∇x,y logPθ(x,y) = ∇x,y[logPθ(y|x) + logPD(x)]

= ∇x,y logPθ(y|x) + [∇x logPD(x)||∇yPD(x)]

= [∇x log y
⊤fθ(x)||∇y log y

⊤fθ(x)] + [0||0]

= [∇x log fθ(x)y||fθ(x)],

(5.2)

where [·||·] denotes concatenation operation. We use one-hot vector representation y to represent

data label y in the above derivation. Note, since PD(x) follows a uniform distribution, its gradient

to the inputs is a 0 vector.

Combining Equation 5.1 and 5.2, we can estimate the correlation of any pairs of training data

points conditioned on the trained machine learning model. Computationally, since a score function

∇x,y logPθ(x, y) depends on a single data point, its outputs of the training set could be pre-computed

and cached to accelerate the kernel computation. In particular, the output dimension of the score

function is simply m+ k for data with m dimensional features and k class labels. Compared to the

existing solutions, whose training data cache (or influence) are bounded by the dimension of model

parameters (such as Influence function, TracIn, RPS, RPS-JLE), the explanation method built on

KSD would come with a significant advantage in terms of scalability (see comparison in Table 5.1).

This statement is generally true for neural network based classifiers, whenever the size of model

parameters is far larger than the data dimension.

75

5.3.2 Prediction Explanation

The computation of kernel function in Equation 5.1 requires access to features and labels of a data

point. While the ground-truth label information is available for the training set, it is inaccessible for

a test data point. We consider the predicted class ŷt of the test data point xt as a label to construct a

complete data point (xt, ŷt) and apply the KSD kernel function.

For a test data point xt, we search for top-k training data points that maximize the KSD defined

kernel.

Figure 5.2 demonstrates HD-Explain on a 2d synthetic dataset. The distribution of κθ(d, ·) in

the right most plot shows that only a small number of training data points have a strong influence

on a particular prediction.

Top Influential Training DataTest DataExplainer

HD-Explain

RPS

Influence
Function

TracIn

HD-Explain*

Top Influential Training DataTest DataExplainer

HD-Explain

RPS

Influence
Function

TracIn

HD-Explain*

Top Influential Training DataTest DataExplainer

HD-Explain

RPS

Influence
Function

TracIn

HD-Explain*

Figure 5.3: Qualitative evaluation of various example-based explanation methods using CIFAR10.
We show three scenarios where the target model makes (from left to right) 1) a highly-confident
prediction that matches ground truth label, 2) a low-confident prediction that matches ground truth
label, 3) low-confident prediction that does not match ground truth label (which is a bird). For each
sub plot, we show top-3 influential training data points picked by the explanation methods for the
test example.

5.4 Evaluation and Analysis

In this section, we conduct several qualitative and quantitative experiments to demonstrate various

properties of HD-Explain and compare it with the existing example-based solutions.

Datasets: We consider multiple disease classification tasks where diagnosis explanation is highly

desired. We also introduced synthetic and benchmark classification datasets to deliver the main idea

without the need for medical background knowledge. Concretely, we use CIFAR-10 (32× 32× 3),

76

Top Influential Training DataTest DataExplainer

HD-Explain

RPS

Influence
Function

TracIn

HD-Explain*

Top Influential Training DataTest Data Top Influential Training DataTest DataExplainer

HD-Explain

RPS

Influence
Function

TracIn

HD-Explain*

Top Influential Training DataTest Data

Figure 5.4: Qualitative evaluation of example-based explanation methods on Overian Cancer
histopathology (left) and Brain Tumor MRI (right) datasets. We show two test data points that are
predicted to belong to the same class in each dataset. Red triangle in the top right corner of an
image shows the duplicate explanations across test samples.

Brain Tumor (Magnetic Resonance Imaging, 128× 128× 3), and Ovarian Cancer (Histopathology

Images, 128× 128× 3) datasets.

Dataset Application Type # Size # Feature Dimension # Number of Classes Duplicated Samples Public Dataset

Two Moons Synthetic 2D Numeric 500 2 2 No Shared with code
Rectangulars Synthetic 2D Numeric 500 2 3 No Shared with code

CIFAR-10 Classification Benchmark Image 60,000 32× 32× 3 10 No Yes
Overian Cancer Histopathology (Private) Image 20,000 128× 128× 3 5 Yes No

Brain Tumor MRI Benchmark Image 7,023 128× 128× 3 4 Yes Yes

Table 5.2: Summary of datasets used in the paper.

In this paper, we conducted our experiments on five datasets – two synthetic and three benchmark

image classification datasets. As the work concerns the trustworthiness of the machine learning

model in high-stakes applications, we also introduced medical diagnosis datasets to provide more

insight into the potential benefit the proposed work introduced. To train the target machine learning

models, we conducted data augmentations to increase the number of training data samples, including

random cropping, rotation, shifting, horizontal flipping, and noise injection. Table 5.2 summarizes

more details about the datasets.

Baselines: The baseline explainers used in our experiments include Influence Function, Representer

Point Selection, and TracIn. While other variants of these baseline explainers exist [12, 26, 154], we

note they don’t offer fundamental performance improvements over the classic ones. In addition, as

Influence Function and TracIn face scalability issues, we limit the influence of parameters to the last

layer of the model so that they can work with models that contain a large number of parameters. Our

77

experiments use ResNet-18 as the backbone model architecture (with around 11 million trainable

parameters) for all image datasets. Finally, we also introduce an HD-Explain variant (HD-Explain*)

to match the last layer setting of other baseline models, even though HD-Explain can scale up to the

whole model without computation pressure.

HD-Explain* variant to match the last layer setting of other baseline models (e.g. RPS). The

HD-Explain* is a simple change of HD-Explain in terms of using data representations (the output

of the last non-predictive layer of the neural classifier) rather than the raw features. Specifically, we

assume a neural network model fθ could be decomposed into two components fθ2 · fθ1 , where fθ1
is a representation encoder and fθ2 is a linear model for prediction. With this decomposition, we

define the KSD kernel function for HD-Explain* as

κθ((fθ1(xa), ya), (fθ1(xb), yb)) = Aa
θ2
Ab

θ2
k(a, b)

= ∇a∇bk(a, b) + k(a, b)∇a logPθ2(a)∇b logPθ2(b)

+∇ak(a, b)∇b logPθ2(b) +∇bk(a, b)∇a logPθ2(a),

where we define a = (fθ1(xa), ya) and b = (fθ1(xb), yb) for short. This setting reduces the

prediction explanation to the last layer of the neural network in a similar fashion to RPS.

Metrics: In existing example-based explanation works, the experimental results are often demon-

strated qualitatively, as visualized explanation instances, without quantitative evaluation. This

results in subjective evaluation. In this paper, we propose several quantitative evaluation metrics to

measure the effectiveness of each method.

• Hit Rate: Hit rate measures how likely an explanation sample hits the desired example cases

where the desired examples are guaranteed to be undisputed. Specifically, we modify a training

data point with minor augmentations (adding noise or flipping horizontally) and use it as a test

data point, such that the best explanation for the generated test data point should be the original

data point in the training set.

• Coverage: Given n test data points, the metric measures the number of unique explanation

samples an explanation method produces when configuring to return top-k training samples.

Formally,

Coverage =
|∪ni=1ei|
n× k

where ei is the set of top-k explanations for test data point i. Coverage is motivated to measure

78

the diversity of explanations across a test set where a high value reflects higher granularity (per

test point) of the explanation.

• Run Time: It measures the run time of an explanation method in wall clock time.

5.4.1 Qualitative Evaluation

Figure 5.3 shows three test cases of the CIFAR10 classification task that cover different classification

outcomes, including high-confident correct prediction, low-confident correct prediction, and low-

confident incorrect prediction. For both correct prediction cases, we are confident that HD-Explain

provides a better explanation than others in terms of visually matching test data points e.g. brown

frogs in Figure 5.3 (a) and deer on the grass in Figure 5.3 (b). In contrast, for the misclassified

prediction case (Figure 5.3 (c)), we note the HD-Explain produces an example that does not even

belong to the same class as the predicted one. This reflects a low confidence in model’s prediction

for the particular test example and highlight a potential error in the prediction.

RPS also shows such inconsistency in explanation, which aligns with its claim [174]. The other

two baseline methods do not offer such properties and still produce explanations that match the

predicted label well. It is hard to justify how those training samples support such prediction visually

(since no clear shared pattern is obvious to us). In addition, it is interesting to see that Influence

Function and TracIn produce near identical explanations, reflecting their similarity in leveraging the

perturbation of model parameters.

Figure 5.4 provides additional insights into Ovarian Cancer histopathology and Brain Tumor

MRI datasets. HD-Explain again shows a better explanation for producing training samples that

appear similar to the test samples (note for the semantic similarity, these explanations should be

referred to a medical practitioner). For instance, the explanation of HD-Explain follows the scanning

orientation of test points in MRI as shown in Figure 5.4 (b). We note all baseline approaches tend to

produce similar explanations to test samples belonging to the same classes. Rather than providing

individual prediction explanations, those approaches act closer to per-class interpreters that look

for class prototypes. To verify this observation further, we conducted a quantitative evaluation as

described in the next section.

79

HD-Explain HD-Explain* RPS IF TracIn*

CIFAR10 OCH MRI

10 2

10 1

100

Hi
t R

at
e

(lo
g-

sc
al

e)

CIFAR10 OCH MRI
0.0

0.2

0.4

0.6

0.8

Co
ve

ra
ge

CIFAR10 OCH MRI

101

102

103

Ex
ec

ut
io

n
Ti

m
e

 (i
n

se
co

nd
s)

Figure 5.5: Quantitative explanation comparison among candidate example-based explanation
methods. From left to right: Hit Rate, Coverage, and Execution Time. Data augmentation strategy
used is Noise Injection. Error bar shows 95% confidence interval.

HD-Explain HD-Explain* RPS IF TracIn*

CIFAR10 OCH MRI

10 2

10 1

Hi
t R

at
e

(lo
g-

sc
al

e)

CIFAR10 OCH MRI
0.0

0.2

0.4

0.6

0.8

Co
ve

ra
ge

CIFAR10 OCH MRI

101

102

103

Ex
ec

ut
io

n
Ti

m
e

 (i
n

se
co

nd
s)

Figure 5.6: Quantitative explanation comparison among candidate example-based explanation
methods. From left to right: Hit Rate, Coverage, and Execution Time. Data augmentation strategy
used is Horizontal Flip. Error bar shows 95% confidence interval. We reuse the legend of Figure 5.5.

5.4.2 Quantitative Evaluation

In order to perform quantitative evaluation, we limit our experiments to datasets where ground-truth

explanation samples are available.

Specifically, given a training data sample (xi, yi), we generate a test point xt by adopting two

image data augmentation methods:

• Noise Injection: xt = xi + ϵ s.t. ϵ ∼ N (0, 0.01σ), where σ is the element-wise standard

deviation of features in the entire training dataset.

• Horizontal Flip: xt = flip(xi), where we flip images horizontally that do not compromise the

semantic meaning of images.

We created 30 augmented test points for each training data point (> 10, 000 data points) in

each dataset, resulting in more than 300, 000 independent runs. Since the data augmentation is

guaranteed to maintain prediction consistency, the ideally best explanation for the generated test

point is the original data point xi itself.

80

Hence, the quantitative evaluation could be a sample retrieval evaluation where Hit Rate

measures the probability of successful retrieval.

Figure 5.5(a) shows the hit rate comparison among candidate methods on the three image

classification datasets under Noise Injection data augmentation.

The existing methods face significant difficulty in retrieving the ideal explanatory sample

(≤ 10%), even with such a simple problem setup; only HD-Explain (and its variant) produces a

reasonable successful rate (> 80%).

We further investigate the diversity of explanations across a testset using the Coverage metric.

Here, diversity indirectly reflects the granularity of an explanation when accumulated over the test

dataset. Figure 5.5(b) shows the Coverage score, the ratio of explanation samples that are unique

over many test points.

It turns out that existing solutions produce only 10% - 50% coverage – many test points receive

the same set of explanations, disregarding their unique characteristic. This result is in line with our

previous observation in Figure 5.4, where we saw multiple duplicated explanations (as shown with

red corner tags). We further observed that the explanations of baselines are often dominated by the

class labels; data points predicted as the same class would receive a similar set of explanations. In

contrast, HD-Explain shows substantially higher coverage, generating explanations that considers

the unique characteristics of each test point.

Regarding computation efficiency, while we have summarized the scalability limitation of the

candidate methods in Table 5.1, there was no computational efficiency evaluation conducted in

previous works.

We recorded the wall clock execution time of each experiments as shown in Figure 5.5(c).

As expected, the Influence Function takes longer to return its explanation than other methods.

HD-Explain*, TracIn* and RPS, all use the last layer to generate explanation. RPS showed the

lowest compute time since it does not require auto-differentiation for computing the training data

influence. HD-Explain* showed the second best compute time and is efficient than TracIn*2 and

IF. HD-Explain considers the whole model for explanation and its compute time is not directly

comparable to others. However, it shows better efficiency than IF across all datasets and is better

than TracIn* on CIFAR10.

We observe a similar trend in the other data augmentation scenario, Horizontal Flip, where

computation time and coverage are roughly the same, as shown in Figure 5.6. However, we do

2TracIn* is configured only to compute the gradient of the prediction layer due to its high memory requirements.

81

RBF IMQ Linear

CIFAR10 OCH MRI
0.0

0.2

0.4

0.6

0.8

1.0

Hi
t R

at
e

CIFAR10 OCH MRI
0.0

0.2

0.4

0.6

0.8

Co
ve

ra
ge

CIFAR10 OCH MRI
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hi
t R

at
e

CIFAR10 OCH MRI

101

102

Ex
ec

ut
io

n
Ti

m
e

 (i
n

se
co

nd
s)

Figure 5.7: Quantitative explanation comparison among HD-Explainers with different kernel
functions on all image classification datasets. From left to right, Noise Injection Hit Rate, Coverage
for both, Horizontal Flip Hit rate, Execution time for both. Error bar shows 95% confidence interval.

notice that, as the outcome of image flipping, the raw feature (pixel) level similarity between xt

and xi is destroyed. As an outcome, the HD-Explain that works on raw features suffers from

performance deduction while other methods, including HD-Explain*, are less impacted. This

observation suggests that choosing the layer of explanation might be considered in the practical

usage of this approach.

5.4.3 Kernel Options

We use the Radial Basis Function (RBF) as our default choice of kernel. However, another kernel

may better fit a particular application domain. In this experiment, we compare three well-known

kernels i.e. Linear, RBF, and Inverse Multi-Quadric (IMQ) on the three image classification datasets.

Figure 5.7 presents the results under both data augmentation scenarios. Overall, the IMQ kernel

performs better than the RBF kernel regarding explanation quality (Hit Rate). The advantage is

significant when the data augmentation scenario is Horizontal Flip (Figure 5.7c, which appears more

challenging than Noise Injection. IMQ also showed better performance on Coverage (Figure 5.7b).

The linear kernel performs worse compared to other kernels. However, it is substantially efficient

than the others, as shown in Figure 5.7d, highlighting its utility on large datasets. Compared to the

baselines presented in Figure 5.5, we note that the Linear kernel is sufficient for HD-Explain to

stand out from other methods in both performance and efficiency.

5.4.4 Discussion: Intuition on why HD-Explain works

In HD-Explain, the key metric on measuring the predictive supports of a test point xt given a training

data (xi,yi) is the KSD defined kernel κθ([xt||ŷt], [xi||yi]), where ŷt denotes the predicted class

label by model fθ in one-hot encoding. By definition, the kernel κθ((xa, ya), (xb, yb)) = kθ(a, b)

82

between two data points can be decomposed into four terms

trace(∇a∇bk(a, b))⏞ ⏟⏟ ⏞
①

+ k(a, b)∇a logPθ(a)
⊤∇b logPθ(b)⏞ ⏟⏟ ⏞

②

+∇ak(a, b)
⊤∇b logPθ(b)⏞ ⏟⏟ ⏞

③

+∇bk(a, b)
⊤∇a logPθ(a)⏞ ⏟⏟ ⏞

④

.

We examine the effect of each term as follows:

• ①: Raw Feature Similarity: We note that the first term is often a similarity bias of raw data points

given a specified kernel function. In particular, for the RBF kernel k(a, b) = exp(−γ||a− b||2),
the first term is simply

∑︁d+l
i 2γk(a, b), where d + l refers to the sum of input and output (in

one-hot) dimensions of a data point. Intuitively, the term shows how similar the two data points

are given the RBF kernel. For linear kernel k(a, b) = a⊤b, on another hand, the first term is

simply d+ l as a constant bias term, which does not deliver any similarity information between

the two data points.

• ②: Score Similarity: The second term reflects the similarity between two data points in the

context of the trained model. In particular, considering the sub-term ∇a logPθ(a)
⊤∇b logPθ(b),

based on our derivation in Equation 5.2 (in the main paper), we note it is equivalent to

[∇xa log fθ(xa)ya||fθ(xa)]
⊤[∇xb

log fθ(xb)yb||fθ(xb)]

= ∇xa log fθ(xa)
⊤
ya∇xb

log fθ(xb)yb⏞ ⏟⏟ ⏞
similarity of scores (input gradients)

+ fθ(xa)
⊤fθ(xb)⏞ ⏟⏟ ⏞

similarity of predictions

,

where both terms could be viewed as similarity between data points in the context of trained

model.

• ③-④: Mutual Influence of Prediction Shifts Both of the last two terms examine the alignment

between the score of one data point and the kernel derivative of another data point. We conjecture

that this alignment reflects how a test prediction would change if there is a training data point

present closer to it than before.

HD-Explain is designed to explain a model’s prediction for a particular test data point. Its perfor-

mance depends on the performance of the target model, which we consider a desirable characteristic

rather than a weakness. A well-trained model should yield accurate and coherent explanations,

83

whereas the explanations provided by a poorly trained model are likely to diverge from expected

outcomes. HD-Explain provides prediction explanations for parameterized models regardless of

their training quality. However, our approach can identify poorly trained models, as the quality of

the explanations is influenced by the training quality. As demonstrated in our experiment (Figure

9), a poorly trained model can be identified by observing that the explanation samples provided by

HD-Explain exhibit a mixture of labels that do not align with the predicted labels.

5.5 Summary

In this chapter, we delve into the significant role of data-centric explainer in enhancing the per-

formance, transparency, and trustworthiness of machine learning (ML) models. Training data

points are crucial for explaining prediction results, tracing sources of errors, and summarizing

the characteristics of the model. The main challenges in example-based prediction explanation

stem from the difficulty in retrieving relevant data points from a vast pool of training samples and

justifying the rationale behind such explanations.

We propose Highly-precise and Data-centric Explanation (HD-Explain), a post-hoc, model-

aware, example-based explanation solution for neural classifiers. HD-Explain bypasses the pertur-

bation of model parameters and instead leverages the Kernelized Stein Discrepancy (KSD) between

the trained predictive model and its training dataset. The Stein operator augmented kernel defines a

pairwise data correlation, and its expectation on the training dataset results in the minimum KSD

compared to datasets from different distributions. This property allows HD-Explain to reveal a

subset of training data points that best support the test point’s prediction and identify potential

distribution mismatches among training data points.

The key contributions of HD-Explain are:

A novel example-based explanation method that does not rely on model parameter perturbation.

Introduction of quantitative evaluation metrics to measure the correctness and effectiveness of gen-

erated explanations. Comprehensive evaluation comparing HD-Explain with existing explanation

methods across various classification tasks. We conducted extensive qualitative and quantitative

experiments to demonstrate the effectiveness and efficiency of HD-Explain. The empirical results

show that HD-Explain provides fine-grained, instance-level explanations with remarkable computa-

tional efficiency, outperforming well-known example-based prediction explanation methods. Its

simplicity, effective performance, and scalability make it suitable for real-world applications where

transparency and trustworthiness are crucial.

84

In conclusion, HD-Explain represents a significant advancement in the field of example-based

prediction explanation. By leveraging the properties of Kernel Stein Discrepancy, it offers precise

and computationally efficient explanations, enhancing the interpretability of machine learning

models. This work contributes to the ongoing efforts to improve the transparency of ML models,

making them more understandable and reliable for practical use.

This summary encapsulates the key points and findings discussed in the chapter on data-centric

prediction explanation, highlighting the novel contributions of the HD-Explain method.

Chapter 6

Data-centric Assessment of Machine Unlearning Feasibility

Machine unlearning (MU) [21] refers to a process that enables machine learning (ML) models to

remove specific training data and revert corresponding data influence on the trained models while

preserving the models’ generalization. As many countries and territories have promulgated their

Right to be Forgotten regulations 1, entitling individuals to revoke their authorization to use their

data for machine learning (ML) model training, the demand of MU raised significant interest in the

machine learning research community, leading to various types of unlearning approaches, often

achieved by either data reorganization [49, 60, 158] or model manipulation [59, 164].

Although existing machine unlearning studies vary based on diverse theoretical foundations,

their performance evaluation metrics used are generally common, including 1) Data Erasure Com-

pleteness, 2) Unlearning Time Efficiency, 3) Resource Consumption, and 4) Privacy Preserva-

tion [146, 170, 172]. While, in a laboratory environment, such high-level evaluation can satisfy

the needs of comparing different machine unlearning methods from multiple aspects, they often

fall short in assessing the difference of effectiveness of machine unlearning for individual data

points. When measuring the success of unlearning, researchers often report the success rate only

instead of paying attention to the corner cases, leading to a biased understanding of MU approaches’

performance. However, we note that such assumption in practice are not hold; Some data points are

more easily to be unlearned while others are not. Such difference could be intrinsic (e.g., augmented

data distribution under a trained ML model), regardless which machine unlearning algorithm is

used.

While measuring the difficulty of unlearning operations [110, 125] is underexplored, one may

come up with a handy metric constructed on top of several obvious factors, such as model complexity,

prediction confidence, and the nature of input data features. Indeed, the most straightforward

criterion of success of unlearning is to measure the distance of the data sample from the model’s

decision boundaries [23, 99]; data points closer to the decision boundary are more likely to be

forget-able. Unfortunately, we show in this paper that although the factors above have a certain

1CCPA in California, GDPR in Europe, PIPEDA in Canada, LGPD in Brazil, and NDBS in Australia.

85

86

degree of positive correlation with the difficulty of unlearning, they are often accompanied by noise,

leaving them lacking credibility.

In this paper, we investigate the general feasibility/difficulty of machine unlearning operations

(regardless of specific unlearning approaches) on individual samples within the training set and

identify the criteria contributing to this process. Instead of falling back to predictive confidence-

based approaches, we hypothesize that the difficulty of unlearning depends on model-augmented

data distribution. Specifically, we show that trained ML models can uniquely define parameterized

kernel functions kθ(·, ·) over training data points, which allow to express the distribution of training

samples conditioned on trained model fθ in the form of a correlation graph. Analyzing the

conditional data distribution will lead to more accurate estimation for the difficulty of unlearning.

While there are many choices of parameterized kernel functions, we note the kernel defined on

Kernelized Stein Discrepancy (KSD) [29, 100] shows a unique advantage in terms of accurately

reflecting a trained model’s characteristics given its training samples. By analyzing the property of

KSD, we show there is a much more reliable metric defined on KSD that can measure the difficulty

of unlearning efficiently. With the proposed evaluation metrics, one may reduce unnecessary

machine unlearning operations when data points are determined as infeasible to unlearn.

6.1 Preliminaries

6.1.1 Machine Unlearning Definition

Machine Unlearning (MU) is a process of removing specific subsets of training data (along with

their influence) from a trained model [14, 21].

Formally, consider a training dataset Dt = {(xi, yi)} comprising n samples, where xi and yi
represent the ith data’s features and corresponding label. We define two subsets of the dataset for

clarity as follows: Let Df ⊆ Dt denote the subset of data designated to be forgotten (a.k.a forget

set), and Dr ⊆ Dt denote the remaining data (a.k.a remaining set), such that Df ∪ Dr = Dt and

Df ∩ Dr = ∅.
Given an target predictive model fθ with parameters θ, the common expectation of machine

unlearning operation are of adjusting θ to an modified parameter set ϑ such that:

• Increasing of model’s error on the forget set Lϑ(Df).

87

• Maintaining original model’s error on the remaining set Dr such that

∥Lθ(Dr)− Lϑ(Dr)∥ < ϵ, (6.1)

where ϵ denotes a tolerable performance degradation threshold and L denotes the loss.

6.1.2 Research Track of Machine Unlearning

The simplest solution for unlearning is to retrain the model from scratch with the remaining data

after removing the forget data. However, even with tricks such as partial retraining [14], that

works on decomposible, partial model components, retraining remained resource-intensive. To

mitigate the computational overhead of retraining, unlearning operations are often approximated".

In particular, Fine-Tuning based approaches [47, 164] suggest to continue training the model on the

remaining data such that forget data can be naturally flashed out. Alternatively, Gradient Ascent

methods [49, 159] adjust the model’s weights in the direction of the gradient to increase the model’s

error on the data intended for forgetting.

In addition to the straightforward unlearning approaches above, recent studies have frequently

utilized the Newton update as a fundamental step for removing data influence [47, 59, 126, 143].

These methods typically leverage the Fisher Information Matrix (FIM) to gauge the sensitivity of

the model’s output to perturbations in its parameters. For example, Fisher Forgetting [47] employs

a scrubbing approach where noise is added to parameters based on their relative importance in

distinguishing the forget set from the remaining data set. Mehta et al. [113] employs conditional

independence coefficient to identify sufficient sets of parameters for targeted unlearning.

As machine unlearning often involve privacy protection regulations, some methods also in-

corporated the principles of differential privacy (DP) [1] to ensure the unlearning outcome does

not inadvertently reveal information about the data that has been removed. Izzo [67, 179] adhere

to the DP framework to ensure a high probabilistic similarity between models before and after

unlearning. [59] introduced the concept of certified unlearning, grounded in information theory

and specifically tailored to the Fisher Information Matrix. Certified Minimax Unlearning [98] has

developed an algorithm specifically for minimax models. This method removes data influences

through a total Hessian update and incorporates the Gaussian Mechanism to achieve (ϵ, δ)-minimax

unlearning certification, ensuring a balance between data removal and model integrity. [27] propose

a data deletion technique that ensures the privacy of deleted records. [161] investigated the machine

88

Figure 6.1: Number of similar samples to be forgotten for guaranteed unlearning. The portion
of unlearned samples is consistent with the difficulty of unlearning. "Feasible" and "Infeasible"
datapoints are shown with yellow markers.

unlearning in the context of SGD and streaming removal requests, but ensured that their method is

differentially private. DP algorithms provide the upper bound for the unlearning scheme, but they

don’t guarantee the full unlearning of requested data [120].

Other research efforts extend into various domains of unlearning, such as knowledge distillation

[28], selective forgetting for lifelong learning [147], federated unlearning [22], online unlearning

[25, 91], and exploring adversarial attacks using machine unlearning methods [32, 165]. Instead of

aiming to follow privacy protection regulation, those approaches focus on reduce the vulnerability

of models to adversarial attacks by forgetting training examples [68].

The majority of the literature on machine unlearning primarily concentrates on the development

of unlearning algorithms or unlearning approximation techniques for selectively forgetting data

from a trained model. As such, the corresponding evaluation metrics are designed to favor the

performance difference between algorithms on highly aggregated level (e.g. success rate). In

fact, a common assumption underlying much of this research is that unlearning operations are

universally feasible for all data points within a dataset, where effectiveness of unlearning will behave

consistently across different datasets. This assumption often overlooks the potential variability in

unlearning efficacy due to differences in data characteristics or model dependencies, suggesting

a need for more nuanced studies that evaluate the specific conditions under which MU can be

effectively implemented.

6.2 Understanding Difficulty of Unlearning

In this section, we first investigate the main factors that impact effectiveness of machine unlearning

with corresponding data analysis and intuition justifications. We then present our proposed definition

of the unlearning cost that scores each individual data points with their difficulty of being unlearned

from a trained model.

89

6.2.1 Factors that Affect Difficulty of Unlearning

Intuitively, to quantify success of unlearning operation, one may evaluate the quality of the unlearned

model ϑ with respect to the common expectation mentioned in previous section. Particularly,

when the forget set contains a single sample (xf , yf), we expect the prediction of the unlearned

model on that data point to be same as of a model trained without the data point (a.k.a Certified

Unlearning [59]), reflecting that the model’s ignorance the to forgotten example. However, it is

often impractical to verify the success of unlearning by comparing to a re-trained model; such

comparison lose the practical value of unlearning. Hence, evaluation criteria of successful unlearning

operation in practice often falls back to measuring 1) the shift of prediction (e.g. altering predicted

classification label) along with 2) the model performance preservation criterion (See Eq. 6.1).

Unfortunately, the two metrics mentioned above are often a pair of trade-off, resulting the

following factors that jointly pose challenges for defining the difficulty of unlearning.

1. Size of Unlearning Expansion: Altering prediction outcome of target sample may negatively

impact model performance. When a guaranteed unlearning is desired, one might need to

expand unlearning operation to a broader training sample set (the similar data samples) such

that unlearning of target sample with respect to decision shift can be successful [23]. While

selection of unlearning algorithm may vary the size of the expansion, the need of expanding

forget set for guaranteed unlearning remains consistent, as shown in Figure 6.1.

2. Resistance to Inference Attack: Also called Membership Attack [24, 46, 152]. In a

membership inference attack, adversaries use the model’s outputs, such as confidence scores,

to ascertain if a specific data point was part of the training set, without needing direct access

to the model’s internal parameters. With identical unlearning operations (e.g. number of

unlearning step, learning rate, and other hyper-parameters), data points often show different

level of resistance to the inference attack, which is an alternative factor of measuring the

difficulty of unlearning.

3. Geometric Distance to Decision Boundary: The distance of a data point to the decision

boundary of a model often closely associated with the predictive confidence. A data point with

lower predictive confidence (larger uncertainty) is closer to the decision boundary [119]. A

data with higher uncertainty might be easier to unlearn compared to those with high predictive

confidence [23]. However, predictive confidence does not account for the relationships among

similar examples. A data point with low predictive confidence might be deeply embedded

90

within a complex region of the decision boundary, requiring significant modifications to

unlearn. Hence, it remains to be a noisy index.

4. Tolerance of Performance Deduction: For an easily unlearn-able data point, guaranteed

unlearning is achievable with minimal impact on the model’s predictive performance [96].

Here the model performance measurement is on a holdout validation dataset rather than

remaining training dataset (as given in Equation 6.1). Conversely, an infeasible data point

would require significant changes to the model or the removal of numerous similar samples,

leading to a substantial deviation in performance metrics.

5. Number of Unlearning Steps: Number of Unlearning Steps evaluates the computational

efficiency of the unlearning method, indicating how quickly the model can be updated to

forget the specified data. For a given unlearning algorithm, the metric can be approximated

through wall clock duration [120].

6. Distance of Parameter Shift: valuation often includes layer-wise and activation-wise

distances. Layer-wise distance measures the weight differences between the unlearned and

original models, while activation-wise distance assesses their activation differences given the

same input [47, 158]. These criteria can be used to measure the efficacy of unlearning.

With the identified factors that affect difficulty of unlearning, one my seek for a coherent

scoring systems that can rank training data points from the most easy to the most challenging for

unlearning operations. In the next section, we will discuss ideas for developing scoring heuristics to

differentiate the relationships between training data and their unlearning feasibility.

6.3 Scoring Unlearning Difficulty

By summarizing the unlearning difficulty factors above, we note that they can be clustered into two

major factor groups, namely 1) data points with/without strong ties (factor 1, 4-6) and 2) predictive

confidence (factor 2-3). Hence, to develop a scoring heuristic, we are looking for a metric that

jointly consider the two major factor groups.

6.3.1 Kernel Stein Discrepancy (KSD)

The KSD [100] provides a robust measure to evaluate the goodness-of-fit between a machine

learning model and its training dataset. KSD originates from a mathematical theorem known as

91

Stein’s Identity [75], which posits that for a smooth distribution p(x) and a function ϕ(x) satisfying

the condition lim||x||→∞ p(x)ϕ(x) = 0, the following equation holds for any function ϕ:

Ex∼p[ϕ(x)∇x log p(x) +∇xϕ(x)] =

Ex∼p[Apϕ(x)] = 0, ∀ϕ
(6.2)

where Ap denotes the Stein operator, encapsulating the distribution p(x) in terms of derivatives.

Stein’s Discrepancy, derived from Stein’s Identity, quantifies the difference between two distri-

butions. Traditionally, finding the optimal function in the space ϕ ∈ F has been computationally

prohibitive, which limited the practical application of native Stein’s Discrepancy. Luckily, the

introduction of Kernelized Stein Discrepancy mitigated the issue by employing the kernel trick.

This approach redefines the search for an optimal function ϕ in F to finding an appropriate kernel

function κ. KSD is defined as:

S(q, p) = Ex,x′∼q[κp(x, x
′)] (6.3)

where κp(x, x′) = Ax
pAx′

p k(x, x
′) and can operate with any arbitrary kernel function k(x, x′).

This formulation allows for a more feasible application in various practical scenarios, making KSD

a valuable tool for assessing model-data compatibility. Indeed, in the goodness-of-fitness context,

the p distribution often represent predictive distribution of model parameterized with θ, while q

distribution denotes the data distribution.

Interestingly, by examining the parameterized kernel defined on pairs of training data points as

follows
κθ((xa, ya), (xb, yb)) = Aa

θAb
θk(a, b)

= ∇a∇bk(a, b) ⇒ Raw Feature Similarity

+ k(a, b)∇a logPθ(a)∇b logPθ(b) ⇒ Score Similarity

+∇ak(a, b)∇b logPθ(b)

+∇bk(a, b)∇a logPθ(a),

⎫⎬⎭ ⇒

⎧⎨⎩Mutual Influence of

Prediction Shifts

(6.4)

we note it can serve as base of evaluating the difficulty of machine unlearning well given it

measures both model augmented data similarity (tie) and hypothetic predictive confidence shifts (as

gradient/score).

92

Figure 6.2: Top-2 most easy and hard training samples for machine unlearning flagged by the four
proposed unlearning difficulty scoring functions. While the samples flagged vary based on the
different scoring function, we note that the easily unlearnable samples are often less representative
of the class label, while the hardly unlearnable samples are often typical.

6.3.2 Unlearning Difficulty Scoring with KSD

While the parameterized kernel defined by KSD described has potential to distinguish data points

with respect to the difficuty of unlearning, KSD itself does not sufficient to be a scoring function

since it is defined on a pair of data points. To corporate Stein Kennel to rank datapoints unlearning

difficulty, we need to aggregate pair-wise kernel values for each data point such that

Agg({κθ((xi, yi), (xj, yj))| ∀j s.t. (xj, yj) ∈ Dt}), (6.5)

which requires designing heuristics by carefully examining the distribution of stein kernel values

for each data point a.

We analyzed several scoring heuristics to evaluate data points based on their impact on the KSD

measure.

• Marginalized KSD (MKSD): The MKSD scoring mechanism considers both the immediate

proximity of neighboring data points and the extent of strong similarities, as indicated by

elevated Stein Kernel values. Consequently, the scoring heuristic sums over the Stein kernel

values between a data point and all others in the dataset

AggMKSD((xi, yi)) = Σn
j=1κθ((xi, yi), (xj, yj)) (6.6)

A higher Marginalized KSD (MKSD) score suggests greater similarity and a larger “resistance

93

set," implying that more extensive sections of the training data would need to be unlearned

alongside the target data point—a scenario that is typically undesirable. To efficiently address

this, we rank the training data from the lowest to the highest MKSD, identifying data points

that range from easy to difficult to unlearn.

• Marginalized Standardized KSD (MSKSD): Intuitively, a data point surrounded by a large

number of similar points poses more challenges in unlearning due to its strong connections

within the dataset. To effectively highlight such data points, we define the MSKSD which

aggregates these standardized exponential values. A higher MSKSD value indicates stronger

and more extensive similarities with other data points, suggesting a higher complexity in

unlearning these particular instances.

AggMSKSD((xi, yi)) =
n∑︂

j=1

eκ̂θ((xi,yi),(xj ,yj)), (6.7)

where we denote standardized Stein kernel values as κ̂. The standardization operation can

reduce the influence of magnitude of Stein kernel values in the heuristic; the aggregation will

be influenced by the distribution (or skewness) of Stein kernel values.

• Stein Score Norm (SSN): Data points that are proximate to the decision boundary exhibit

higher gradient magnitudes, making it easier to adjust the boundary in response to these points

compared to those located deeper within each class. We propose that data points with high

SSN (see Equation 6.8) are positioned away from the dense centers of their classes, making

them prime candidates for unlearning. By identifying and ranking data points with the highest

Stein Score Norms, we can effectively pinpoint those that are closer to the decision boundary.

AggSSN((xi, yi)) = ||∇θ logPθ(xi, yi)|| (6.8)

• Entropy Marginalized Standardized KSD (EMSKSD): Uncertainty in the predictive

confidence of a datapoint can be indication of closeness to decision boundary. Incorporating

94

datapoints predictive uncertainty with the similarity scoring in the following formula:

AggEMSKSD((xi, yi)) =
AggMSKSD((xi, yi))

H(ŷi)

H(ŷi) = −
n∑︂

l=1

ŷi,l log(ŷi,l) ŷi,l = fθ(xi)

(6.9)

Here, H(ŷi) is the entropy of the predicted probabilities. EMSKSD can obtain points close

to the decision boundary with small number of correlated samples.

The scoring heuristics above are not comparable based on our analysis as shown in Figure 6.2;

they flag different types of difficulty of unlearning. MKSD tends to flag apparent outliers in the

training samples as easily unlearnable training samples, whereas EMSKSD flags less obvious but

abnormal training samples, such as truck on paper, fake horse or wrongly labeled numbers.

6.4 Evaluation and Analysis

In this section, we assess the effectiveness of various unlearning approximation methods on data

points ranked from easy to hard for unlearning against the scoring heuristics proposed. Specifically,

we want to answer the following questions through the experiments:

• Q1: Given easily and hardly unlearnable data points flagged out by the scoring heuristics, do

the resulting unleared model show different predictive performance?

• Q2: Which of the proposed scoring heuristics show better predictive alignment with actual

unlearning outcome?

• Q3: Which unlearning algorithm show better performance when facing hardly unlearnable

data points?

6.4.1 Experimental setups

Datasets and models We conducted our evaluation on three datasets: MNIST, CIFAR-10, and

SVHN. Each dataset was classified using a different model: a simple two-layer CNN classifier

for the MNIST, and ResNet18 for the CIFAR-10 and SVHN. The following sections provide a

detailed analysis of each model’s performance on these datasets. Details of datasets and models are

presented in Table 6.1.

95

Dataset Model Layers Batch Size Number of Classes Learning Rate Samples

4 Gaussian Blob 2-layer Neural Network 2 32 4 0.001 2000
MNIST 2-layer CNN 2 150 10 0.001 54000
CIFAR10 ResNet18 18 150 10 0.01 45000
SVHN ResNet18 18 64 10 0.001 58000

Table 6.1: This table details the datasets and models used in evaluating unlearning algorithms,
specifying the models applied to each dataset, including the number of layers, batch sizes, number
of classes, learning rates, and sample sizes. The information presented provides insight into the
computational frameworks employed to analyze the 4 Gaussian Blob, MNIST, and CIFAR-10
datasets, demonstrating the diversity of approaches used in the study.

Unlearning methods In our experimental setup, we evaluated three primary unlearning base-

lines in addition to retraining. These baselines include GradAsc, FT, and FF. Additionally, and

finally Retraining the model without the forgetting set. Although the interest in guaranteed unlearn-

ing initially stemmed from the challenges associated with accessing retrained models, achieving

guaranteed unlearning for feasible datapoints by retraining presents an intriguing opportunity to

explore the characteristics of data points that can be unlearned more readily. If we can achieve guar-

anteed unlearning for a single data point through retraining, it validates our assumption regarding

the varying levels of unlearning feasibility, as it has been shown that generalization ability of ml

model [170] prevents unlearning single samples.

Criteria To assess the effectiveness of unlearning, we measured the accuracy and loss of

unlearned model. Additionally, we calculated the layer-wise distance between unlearned fθu and

original fθ. We conducted a Membership Inference Attack (MIA) on the unlearned model (MIA-

Efficacy) to ascertain how many samples from the forgetting set Df were correctly classified as

non-training samples. We assessed the MIA-efficacy using a confidence-based attack method [152].

Ideally, post-unlearning, the model θu should have effectively "forgotten" the information related to

the samples in Df . Successful unlearning is indicated by the MIA predictor accurately classifying

these samples as ones it has not encountered during training.

Training and unlearning setting To ensure consistency in our evaluations, we fixed the

hyperparameters for each algorithm. This standardization facilitates the comparison of our scoring

heuristic across different conditions, thereby enhancing the reliability of our findings regarding

unlearning feasibility. The specific hyperparameters for each algorithm are detailed in Table 6.2.

96

Dataset Algorithm Parameters

4 Gaussian Blob

Fine Tuning LR=0.01, Epochs=10
Gradient Ascent overfit_threshold=1.0, LR=0.01,

Epochs=50
Fisher Forgetting alpha=1e-4
Retraining LR=0.01, Epochs=50

MNIST

Fine Tuning LR=0.1, Epochs=10
Gradient Ascent overfit_threshold=5.0, LR=1e-4,

Epochs=50
Fisher Forgetting alpha=1e-5
Retraining LR=0.1, Epochs=10

CIFAR10

Fine Tuning LR=0.01, Epochs=15
Gradient Ascent overfit_threshold=5.0, LR=1e-4,

Epochs=50
Fisher Forgetting alpha=6e-8
Retraining LR=0.01, Epochs=100

SVHN

Fine Tuning LR=0.01, Epochs=15
Gradient Ascent overfit_threshold=5.0, LR=1e-4,

Epochs=50
Fisher Forgetting alpha=6e-8
Retraining LR=0.01, Epochs=100

Table 6.2: Reporting the parameters of each unlearning approximation algorithm for each dataset.

6.4.2 Experimental results

Initially, we assess the effectiveness of various unlearning approximation methods on data points

ranked from feasible to infeasible for unlearning by the heuristic discussed in 6.3.2. The main

objectives of this experimental phase are 1) comparing the predictive performance of the unlearned

model for infeasible and feasible data points, 2) examining which of our ranking heuristic 6.3.2

better reflects unlearning feasibility, 3) evaluating the performance of each unlearning approximation

algorithm on feasible and infeasible data points, aiming to demonstrate two key points: first, the

difference in unlearning outcomes between feasible and infeasible data points, and second, to refute

the assumption that unlearning feasibility is uniform across all data points, showing instead that

different data points exhibit varying levels of unlearning feasibility. 4) To investigate whether

guaranteed unlearning is achievable for feasible data points and if such unlearning can also be

accomplished through retraining.

To do this, we first rank the training samples using specific sorting heuristics. Based on their

assigned order, we identify the top "Feasible" and "Infeasible" datapoints for unlearning. These

97

retain forget validation

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

MSKSD - 4Gaussian Blob

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

MSKSD - 4Gaussian Blob

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

EMSKSD - 4Gaussian Blob

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

MSKSD - MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

MSKSD - MNIST

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

EMSKSD - MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

EMSKSD - MNIST

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

MSKSD - CIFAR10

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

EMSKSD - CIFAR10

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Ac

cu
ra

cy
GradAsct

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

MSKSD - SVHN

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

GradAsct

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Fisher

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
Retrain

0 500 1000 1500 2000
similar data

0.00

0.25

0.50

0.75

1.00
FineTune

EMSKSD - SVHN

Figure 6.3: Averaged UA, RA, and VA plots for unlearning algorithms on the top 5 feasible and
infeasible datapoints recommended by each sorting heuristic described in Section 6.3.2. The plots
illustrate various scenarios across different datasets: Blob, MNIST, CIFAR-10, and SVHN, showing
how different unlearning algorithms perform under feasible and infeasible conditions.

designations guided the subsequent application of approximation algorithms and retraining strategies

to the selected data points. Throughout the experiments, we progressively increased the number of

similar samples required to be forgotten alongside the target data points, to investigate the point for

obtaining the guaranteed unlearning.

By analyzing Unlearning Accuracy (UA), loss metrics, and Membership Inference Attack

(MIA) efficacy, we glean insights into the characteristics that make certain data points more or

less amenable to unlearning. These insights help us refine our understanding of why unlearning is

straightforward for some data points but challenging for others, thereby enhancing our theoretical

and practical approaches to data privacy and machine learning model management.

The presence of similar samples significantly impacts the unlearning performance of FT. These

similar samples bolster the generalization capability of the model, complicating the unlearning of

specific data points. Sorting heuristics that emphasize the strength of similarity between samples

98

rather than their proximity to the decision boundary are more likely to identify data points that

are amenable to guaranteed unlearning 6.3. For example, a comparative analysis between the

effectiveness of Marginalized Standardized KSD (MSKSD) and Stein Score Norm (EMSKSD), as

illustrated in Figure 6.3, reveals that MSKSD is more adept at pinpointing data points that can be

thoroughly unlearned.

The accuracy findings from the 4 Gaussian Blob dataset are consistent with our anticipations

regarding the compatibility between the Fine Tuning (FT) approach and the selected sorting

algorithms. The top 5 feasible samples ar selected from the cluster with the smallest number of

samples. Although the feasible samples are close to the decision boundary (as GA can unlearn them

without significant damage to the model’s performance), the set of similar samples are incorporating

to the predictive performance of FT and Retrain. So, when the segment of remaining data that are

strongly similar to the feasible datapoints are set aside, the accuracy of forget set immediately drops.

Similar behavior is observed from the MNIST and SVHN.

First, The analysis of the "Feasible" data points recommended by these heuristics, specifically

for the MNIST and 4 Gaussian Blob datasets, revealed several key characteristics. The data points

often exhibit high predicted error values, suggesting that these points are more challenging to model

accurately and, consequently, easier to unlearn. The sorted similar samples centred around the

selected datapoint are usually distributed across other classes. For example, in the MNIST dataset,

the number of present samples in each class is uniformly distributed and it comprises approximately

0.1 of training samples (n). When attempting to unlearn feasible data points identified by MSKSD

and EMSKSD, increasing the number of relevant samples to be unlearned —up to a point that

surpasses the general number of samples within that class (i.e., ∥Df∥≥ 0.1× n)— results in the

remaining dataset Dr still containing some data points from the original class. Consequently, these

residual samples from the original class prevent the model’s prediction accuracy for that class from

dropping to zero.

To explore the diversity of classes among similar samples associated with a recommended data

point, we calculated the Shannon entropy for a subset of these samples. According to the results

shown in Table 6.3, data points selected by the EMSKSD method show varied entropy values

within their similar sample subsets, indicating a mix of classes. In contrast, data points identified

by the MKSD method exhibit the lowest class diversity, suggesting a more homogeneous group of

similar samples. For the CIFAR-10 dataset, the recommended data points display a notably higher

predicted error, and the similar samples identified by their Stein Kernel values belong to the same

99

Dataset EMSKSD MKSD MSKSD SSN
BLOB 0.424 ± 0.006 0.424 ± 0.006 0.420 ± 0.000 0.420 ± 0.000
MNIST 0.427 ± 0.754 0.000 ± 0.000 1.732 ± 0.204 1.092 ± 0.945
CIFAR10 0.008 ± 0.018 0.000 ± 0.000 0.016 ± 0.022 0.016 ± 0.022
SVHN 1.126 ± 0.954 0.000 ± 0.000 1.646 ± 0.386 1.126 ± 0.954

Table 6.3: Class Diversity Measurements for Top Feasible Datapoints: This table shows the class
diversity for the top 5 feasible datapoints selected by each heuristic algorithm. For each feasible
datapoint, class diversity was counted in the top 50 to 450 most relevant samples sorted based on
their Stein Kernel values.

class as the recommended data points. This pattern differs from the MNIST dataset, where the

stylistic similarities between different class samples often lead to misclassifications. Unlike MNIST,

the classes in CIFAR-10, such as "Car" vs. "Airplane," are distinctly differentiable. Thus, similar

samples are typically from the same class. Achieving guaranteed unlearning for CIFAR-10 using

Fine Tuning (FT) or retraining would likely require excluding the entire class to effectively remove

the targeted data point’s influence.

On the other hand, analysis infeasible unlearning revealed that, (i) In the 4-Gaussian Blob dataset,

the application of Grad Ascent significantly deteriorated the model’s performance. (ii) Effective

unlearning in the MNIST dataset required removing a substantial portion of pertinent data. (iii) In

CIFAR10, while individual data points could be unlearned, this often severely impaired the model’s

predictive accuracy. The result demonstrate unlearning infeasible data points is not consistently

achievable across datasets. The most drastic measure to eliminate their influence entirely involves

unlearning the entire class label associated with these points. Conversely, feasible data points can

be effectively removed from the model, achieving guaranteed unlearning. These insights underscore

the complexities involved in effectively unlearning specific data points, especially when they are

embedded within intricate networks of class relationships and high variability in error prediction.

As we further our understanding of these dynamics, it becomes increasingly clear that successful

unlearning requires not only sophisticated algorithmic approaches but also a deep understanding of

the dataset characteristics and the interaction between data points and model architecture.

6.4.3 Membership Inference Attack Evaluation

We examined the effectiveness of unlearning algorithms on data points deemed infeasible by various

sorting heuristics. Each dataset presented unique challenges in addressing these infeasible points,

100

MKSD MSKSD SSN EMSKSD

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

GradAsct

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

Fisher

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

Retrain

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

FineTune

0 9 19 29 39
similar data

0.0
0.2
0.4
0.6
0.8

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.0
0.2
0.4
0.6
0.8

MNIST

0 10 50 100 300
similar data

0.0
0.2
0.4
0.6
0.8

CIFAR10

0 10 50 100 300
similar data

0.0
0.2
0.4
0.6
0.8

SVHN
GradAsct

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

Fisher

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

Retrain

0 9 19 29 39
similar data

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

4Gaussian Blob

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
MNIST

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
CIFAR10

0 10 50 100 300
similar data

0.00

0.25

0.50

0.75

1.00
SVHN

FineTune

Figure 6.4: Comparison of MIA-Efficacy for feasible and infeasible unlearning across different
unlearning approximation methods. The top row presents the efficacy for feasible unlearning
methods: Gradient Ascent, Fisher, Retrain, and Fine-Tune. The bottom row presents the efficacy
for the same methods under infeasible unlearning conditions. Each plot provides insight into the
performance and reliability of the unlearning methods in different scenarios. The legend details the
specifics for each method.

underscoring the complexity inherent in the unlearning process. For example, in the 4-Gaussian

Blob dataset, unlearning infeasible data points required omitting a substantial portion of related

data, which adversely affected both Retraining Accuracy (RA) and Validation Accuracy (VA).

In the case of the MNIST dataset, unlearning infeasible data points either had a negligible

impact on Unlearning Accuracy (UA), RA, and VA or required the exclusion of a significant number

of related data points. However, the Membership Inference Attack (MIA) efficacy, as depicted in

Figure (6.4), indicated that the unlearning efforts were generally unsuccessful, failing to achieve

high scores. GradAscent proved to be the most effective algorithm for tackling infeasible data

points, yet it still struggled to completely dissociate the influence of these points even when a large

number of similar data points were also unlearned. This approach either compromised the model’s

performance or failed to improve the unlearning metrics (UA, RA, and VA), as illustrated in Figures

(6.3), and MIA-efficacy (6.4).

Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this work, we have discussed eXplainable AI (XAI) for non-structured data with a specific focus

on text and graph data. Based on the study of previous methods, we began our research with two

important questions:

• How to design an explanation algorithm for text classifiers that can: 1) produce the local

explanations for varieties of text classifiers, 2) consider the structure of data for designing

the explainer, 3) exploit the white box methods or lexical resources to generate the local

neighbourhood.

• How to design a GNN explanation algorithm that can: 1) produce different perspectives of

explanations, 2) propagate the perturbation to each layer of GNN, 3) control the perturbation

magnitude to generate all types of explanations, and 4) keep the generated explanation as

close as possible to the original data manifold.

To design a text model explainer with the mentioned characteristics we began our research by

designing FEHAN, A modularized Framework for Explaining Hierarchical Attention Network.

FEHAN attempted to locally explain the behaviour of the Hierarchical Attention Network (HAN).

FEHAN distinguished the Informative Sentences (IS) in a given document using the attention

parameters of HAN. Then it generated a set of synthetic documents by replacing the IS with

artificial sentences sampled from a probabilistic model that is trained on the original dataset. The

new set of synthetic documents was exploited to train an interpretable model - a decision tree - from

which the important words can be extracted to construct a saliency map explaining the class label

for a given document. The qualitative and quantitative evaluation of FEHAN proved the superiority

of obtained explanations by FEHAN with respect to the baseline algorithm. Additionally, evaluating

the generated neighbourhood examples indicated that the FEHAN not only preserved the essence of

the original document but also enriched it with semantically similar sentences. This feature of our

101

102

model is significantly strengthened for smaller datasets when the random elimination of words can

result in invalid examples.

In the next step, to overcome the limitations of FEHAN for being a model-dependent explainer,

we introduced DICTA, a model-agnostic explainer for black box text classifiers. DICTA explained

a black box model’s behaviour by evaluating the impact of words and their semantic replacement

on the class distribution of a document. In this way, each word’s value was made explicit, and

replacing it with its semantic replacements such as synonyms and antonyms, allowed us to check

how it is possible to positively or negatively change the class label of a given document. Hence,

the explanations provided by DICTA were more expressive and understandable w.r.t the baseline

models and we were allowed to apply it to the varieties of text classifiers. Evaluation of DICTA’s

synthetic neighbourhoods indicates that DICTA generated semantically similar examples and used

them to train the surrogate model.

Due to the fast development of the graph-structured domain and its application in real-life

problems, we also focused on the XAI for graph data. We presented a perturbation-based method

to provide multiple types explanations for the prediction of GCN model. Our approach perturbs

the input graph and attempts to train the perturbation parameters using targeted loss functions.

The main goal is to provide users with different explanation perspectives. For this purpose, we

designed an algorithm that enables us to generate Counterfactual (CF), Influential Prototypes (PT),

and Exemplars (EXE). CF is considered as a subgraph of the input where the minimum set of

edges, whose absence changes the prediction of the model, are eliminated; PT is considered as a

subgraph of the input with the same label of the graph being explained including only the most

important connections responsible for the prediction; and EXE is supposed to be a subgraph of

the input with the same label of the graph being explained which is very similar to the input and

have common connections responsible for the classification. The most significant aspect of our

explanation method is the design of the loss function. We propose a loss function enabling the

customization of the type of explanation, the control of the magnitude of modifications to the input

(number of removed edges from the graph), and the possibility of keeping the generated explanation

close to the data manifold. The extensive experimental evaluation of our method on three common

node classification datasets w.r.t. different qualitative criteria such as Fidelity, Sparsity, Closeness,

Betweenness and Stability proved our method’s outstanding performance in generating different

explanations w.r.t. the baselines in terms of evaluative criteria.

103

Our HD-Explain presents a Kernel Stein Discrepancy-driven example-based prediction explana-

tion method We performed comprehensive qualitative and quantitative evaluation comparing three

baseline explanation methods using three datasets. The results demonstrated the efficacy of HD-

Explain in generating explanations that are accurate and effective in terms of their granularity level.

In addition, compared to other methods, HD-Explain is flexible to apply on any layer of interest and

can be used to analyze the evolution of a prediction across layers. HD-Explain serves as an important

contribution towards improving the transparency of machine learning models. The development of

HD-Explain, a highly precise and data-centric explanation method for neural classifiers, promises

to significantly enhance the transparency and trustworthiness of machine learning models across

various applications. Furthermore, HD-Explain’s scalable and computationally efficient approach

makes it feasible for deployment in large-scale, real-world applications. This not only promotes

transparency and accountability in AI systems but also paves the way for broader acceptance and

integration of AI technologies in society. By bridging the gap between complex model behavior and

human understanding, HD-Explain fosters a more informed and trust-based relationship between

AI systems and their users. Overall, HD-Explain’s contributions to model interpretability and

transparency have the potential to drive significant advancements in the responsible and ethical use

of AI, ensuring that these technologies are developed and deployed in ways that are understandable,

accountable, and aligned with societal values.

7.2 Future research direction

In the past three years, the paradigm of ML research has dramatically shifted from locally trained

models to leveraging pre-trained foundation models, whether in computer vision or large language

models. As a result, the focus has shifted from local model training to accessible pre-trained

models. To explain the behavior of these models, we must adopt a data-centric approach. Data-

centric explanation methods are crucial since traditional parameter-based explanation techniques

are outdated and inadequate for these large black-box models, particularly state-space models. Data

is the primary resource for understanding these complex models, and it must be utilized to its full

potential.

Drawing inspiration from a scenario where an observer explains a person’s behavior by inves-

tigating their behavioral traits and creating a behavior profile, we can apply a similar approach

to foundation models. An observer can query the model with variations of given data points and

observe the variations in the model’s responses. This method can help create a detailed profile of

104

the model’s behavior and decision-making process.

Data-Centric Explanation for Large Language Models

Large language models (LLMs) have transformed natural language processing, but their black-

box nature presents significant interpretability challenges. Future research should focus on de-

veloping data-centric methods to explain LLMs’ behavior. This involves analyzing input-output

relationships, utilizing attention mechanisms, and examining the impact of training data on model

predictions. By studying how these models process data, researchers can gain insights into their

decision-making processes.

Data-Centric Explanation for Computer Vision Models

Foundation models in computer vision, such as convolutional neural networks (CNNs) and

vision transformers (ViTs), have achieved remarkable success but remain challenging to interpret.

Future research should develop data-centric explanation techniques to elucidate how these models

process visual information. This could involve studying the influence of specific training images on

model predictions, using saliency maps to identify important features, and conducting dataset-level

analyses to understand model biases and weaknesses. A data-centric approach can provide a clearer

understanding of computer vision models’ operations and decision-making processes.

Data-Centric Explanation for State-Space Models

State-space models, commonly used in time series analysis and control systems, present unique

interpretability challenges due to their dynamic and complex structure. Traditional parameter-based

explanations are insufficient, necessitating a data-centric approach. Future research should explore

methods to explain state-space models by analyzing the data they process and the states they

transition through. This could include examining the influence of specific data points on state

transitions, understanding the role of historical data in shaping model predictions, and developing

visualization techniques to illustrate state dynamics. By focusing on the data aspects of state-space

models, researchers can better interpret their behavior and improve their transparency.

In summary, the shift towards pre-trained foundation models in ML necessitates a paradigm

shift in how we approach model interpretability. Data-centric explanations offer a promising avenue

for understanding these complex systems, and future research should prioritize the development and

application of such techniques across various domains, including large language models, computer

vision models, and state-space models.

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security, pages 308–318, 2016.

[2] Mohiuddin Ahmed and AKM Najmul Islam. Deep learning: hope or hype. Annals of Data
Science, pages 1–6, 2020.

[3] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-
explaining neural networks. Advances in neural information processing systems, 31, 2018.

[4] Ariful Islam Anik and Andrea Bunt. Data-centric explanations: explaining training data
of machine learning systems to promote transparency. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems, pages 1–13, 2021.

[5] Shahin Atakishiyev, Mohammad Salameh, Hengshuai Yao, and Randy Goebel. Explainable
artificial intelligence for autonomous driving: A comprehensive overview and field guide for
future research directions. arXiv preprint arXiv:2112.11561, 2021.

[6] Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein. A diagnos-
tic study of explainability techniques for text classification. arXiv preprint arXiv:2009.13295,
2020.

[7] Steve Azzolin, Antonio Longa, Pietro Barbiero, Pietro Liò, and Andrea Passerini.
Global explainability of gnns via logic combination of learned concepts. arXiv preprint
arXiv:2210.07147, 2022.

[8] Davide Bacciu, Federico Errica, and Alessio Micheli. Contextual graph markov model: A
deep and generative approach to graph processing. In International Conference on Machine
Learning, pages 294–303. PMLR, 2018.

[9] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[10] Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam, and
Yong Zhang. Robust counterfactual explanations on graph neural networks. Advances in
Neural Information Processing Systems, 34:5644–5655, 2021.

[11] Alessandro Barp, Francois-Xavier Briol, Andrew Duncan, Mark Girolami, and Lester Mackey.
Minimum stein discrepancy estimators. Advances in Neural Information Processing Systems,
32, 2019.

105

106

[12] Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying
explanatory training samples via relative influence. In International Conference on Artificial
Intelligence and Statistics, pages 1899–1909. PMLR, 2020.

[13] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network
dissection: Quantifying interpretability of deep visual representations. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 6541–6549, 2017.

[14] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 141–159. IEEE, 2021.

[15] Andrew P Bradley. The use of the area under the roc curve in the evaluation of machine
learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[16] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[17] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 93–104, 2000.

[18] Nadia Burkart and Marco F Huber. A survey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

[19] Ruth MJ Byrne. Counterfactuals in explainable artificial intelligence (xai): Evidence from
human reasoning. In IJCAI, pages 6276–6282, 2019.

[20] Carrie J Cai, Jonas Jongejan, and Jess Holbrook. The effects of example-based explanations
in a machine learning interface. In Proceedings of the 24th international conference on
intelligent user interfaces, pages 258–262, 2019.

[21] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In
2015 IEEE symposium on security and privacy, pages 463–480. IEEE, 2015.

[22] Tianshi Che, Yang Zhou, Zijie Zhang, Lingjuan Lyu, Ji Liu, Da Yan, Dejing Dou, and Jun
Huan. Fast federated machine unlearning with nonlinear functional theory. In International
conference on machine learning, pages 4241–4268. PMLR, 2023.

[23] Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning:
Rapid forgetting of deep networks via shifting the decision boundary. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7766–7775,
2023.

[24] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang
Zhang. When machine unlearning jeopardizes privacy. In Proceedings of the 2021 ACM
SIGSAC conference on computer and communications security, pages 896–911, 2021.

107

[25] Yuantao Chen, Jie Xiong, Weihong Xu, and Jingwen Zuo. A novel online incremental
and decremental learning algorithm based on variable support vector machine. Cluster
Computing, 22:7435–7445, 2019.

[26] Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, and Chunyan Miao. Hydra: Hypergra-
dient data relevance analysis for interpreting deep neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 7081–7089, 2021.

[27] Rishav Chourasia and Neil Shah. Forget unlearning: Towards true data-deletion in machine
learning. In International Conference on Machine Learning, pages 6028–6073. PMLR, 2023.

[28] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad
teaching induce forgetting? unlearning in deep networks using an incompetent teacher. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 7210–7217,
2023.

[29] Kacper Chwialkowski, Heiko Strathmann, and Arthur Gretton. A kernel test of goodness of
fit. In International conference on machine learning, pages 2606–2615. PMLR, 2016.

[30] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and
Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity. Journal of
medicinal chemistry, 34(2):786–797, 1991.

[31] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan
Shanmugam, and Payel Das. Explanations based on the missing: Towards contrastive
explanations with pertinent negatives. Advances in neural information processing systems,
31, 2018.

[32] Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden
poison: Machine unlearning enables camouflaged poisoning attacks. In NeurIPS ML Safety
Workshop, 2022.

[33] Yinpeng Dong, Hang Su, Jun Zhu, and Bo Zhang. Improving interpretability of deep neural
networks with semantic information. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4306–4314, 2017.

[34] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning. arXiv preprint arXiv:1702.08608, 2017.

[35] Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for
graph neural networks. In Machine Learning and Knowledge Discovery in Databases.
Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17,
2021, Proceedings, Part II 21, pages 302–318. Springer, 2021.

[36] EP EC. Regulation (eu) 2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing directive 95/46/ec (general data protection
regulation)(text with eea relevance). eli, 2016.

108

[37] Radwa Elshawi, Mouaz H Al-Mallah, and Sherif Sakr. On the interpretability of machine
learning-based model for predicting hypertension. BMC medical informatics and decision
making, 19(1):1–32, 2019.

[38] Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut
Güçlü, and Marcel Van Gerven. Explainable and interpretable models in computer vision
and machine learning. Springer, 2018.

[39] Patrick Esser, Robin Rombach, and Bjorn Ommer. A disentangling invertible interpretation
network for explaining latent representations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9223–9232, 2020.

[40] Evan N Feinberg, Debnil Sur, Zhenqin Wu, Brooke E Husic, Huanghao Mai, Yang Li, Saisai
Sun, Jianyi Yang, Bharath Ramsundar, and Vijay S Pande. Potentialnet for molecular property
prediction. ACS central science, 4(11):1520–1530, 2018.

[41] John Rupert Firth. Selected papers of JR Firth, 1952-59. Indiana University Press, 1968.

[42] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using
graph convolutional networks. Advances in neural information processing systems, 30, 2017.

[43] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In icml,
volume 99, pages 124–133. Citeseer, 1999.

[44] Marcello Frixione and Antonio Lieto. Exemplars, prototypes and conceptual spaces. In
Biologically Inspired Cognitive Architectures 2012, pages 131–136. Springer, 2013.

[45] Mary Gick and Stan Matwin. The importance of causal structure and facts in evaluating
explanations. In Machine Learning Proceedings 1991, pages 51–54. Elsevier, 1991.

[46] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and Stefano
Soatto. Mixed-privacy forgetting in deep networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 792–801, 2021.

[47] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless
net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9304–9312, 2020.

[48] Jackson Gorham, Anant Raj, and Lester Mackey. Stochastic stein discrepancies. Advances
in Neural Information Processing Systems, 33:17931–17942, 2020.

[49] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516–11524,
2021.

[50] Christopher Grimsley, Elijah Mayfield, and Julia R.S. Bursten. Why attention is not explana-
tion: Surgical intervention and causal reasoning about neural models. In Proceedings of The
12th Language Resources and Evaluation Conference, pages 1780–1790, Marseille, France,
May 2020. European Language Resources Association.

109

[51] R Guidotti, A Monreale, and L Cariaggi. Investigating neighborhood generation for explana-
tions of image classifiers. PAKDD, 2019.

[52] Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and
benchmarking. Data Mining and Knowledge Discovery, pages 1–55, 2022.

[53] Riccardo Guidotti and Anna Monreale. Data-agnostic local neighborhood generation. In
2020 IEEE International Conference on Data Mining (ICDM), pages 1040–1045. IEEE,
2020.

[54] Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salvatore Ruggieri,
and Franco Turini. Factual and counterfactual explanations for black box decision making.
IEEE Intelligent Systems, 2019.

[55] Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Black box explanation
by learning image exemplars in the latent feature space. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 189–205. Springer, 2019.

[56] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black box models. ACM computing
surveys (CSUR), 51(5):1–42, 2018.

[57] Riccardo Guidotti, Anna Monreale, Francesco Spinnato, Dino Pedreschi, and Fosca Giannotti.
Explaining any time series classifier. In 2020 IEEE Second International Conference on
Cognitive Machine Intelligence (CogMI), pages 167–176. IEEE, 2020.

[58] Riccardo Guidotti, Jacopo Soldani, Davide Neri, Antonio Brogi, and Dino Pedreschi. Helping
your docker images to spread based on explainable models. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 205–221. Springer, 2018.

[59] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data
removal from machine learning models. In Hal Daumé III and Aarti Singh, editors, Proceed-
ings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 3832–3842. PMLR, 13–18 Jul 2020.

[60] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris
Waites. Adaptive machine unlearning. Advances in Neural Information Processing Systems,
34:16319–16330, 2021.

[61] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fash-
ion trends with one-class collaborative filtering. In proceedings of the 25th international
conference on world wide web, pages 507–517, 2016.

[62] Robert R Hoffman and Gary Klein. Explaining explanation, part 1: theoretical foundations.
IEEE Intelligent Systems, 32(3):68–73, 2017.

[63] Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, and Tieniu Tan. Hierarchical graph convolu-
tional networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667,
2019.

110

[64] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang. Graphlime:
Local interpretable model explanations for graph neural networks. IEEE Transactions on
Knowledge and Data Engineering, 2022.

[65] Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment
analysis of social media text. In Proceedings of the International AAAI Conference on Web
and Social Media, volume 8, 2014.

[66] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Baesens. An
empirical evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decision Support Systems, 51(1):141–154, 2011.

[67] Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data
deletion from machine learning models. In International Conference on Artificial Intelligence
and Statistics, pages 2008–2016. PMLR, 2021.

[68] Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas
Carlini, Eric Wallace, Shuang Song, Abhradeep Guha Thakurta, Nicolas Papernot, and
Chiyuan Zhang. Measuring forgetting of memorized training examples. In The Eleventh
International Conference on Learning Representations, 2023.

[69] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert
Systems with Applications, 207:117921, 2022.

[70] Xiaodong Jiang, Ronghang Zhu, Sheng Li, and Pengsheng Ji. Co-embedding of nodes and
edges with graph neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020.

[71] José Jiménez-Luna, Francesca Grisoni, and Gisbert Schneider. Drug discovery with explain-
able artificial intelligence. Nature Machine Intelligence, 2(10):573–584, 2020.

[72] Koganti Krishna Jyothi, Subba Reddy Borra, Koganti Srilakshmi, Praveen Kumar Balachan-
dran, Ganesh Prasad Reddy, Ilhami Colak, C Dhanamjayulu, Ravikumar Chinthaginjala, and
Baseem Khan. A novel optimized neural network model for cyber attack detection using
enhanced whale optimization algorithm. Scientific Reports, 14(1):5590, 2024.

[73] Antonis Kakas and Loizos Michael. Abduction and argumentation for explainable machine
learning: A position survey. arXiv preprint arXiv:2010.12896, 2020.

[74] Jaykumar Kakkad, Jaspal Jannu, Kartik Sharma, Charu Aggarwal, and Sourav Medya. A
survey on explainability of graph neural networks. arXiv preprint arXiv:2306.01958, 2023.

[75] Sudheesh Kumar Kattumannil. On stein’s identity and its applications. Statistics & probability
letters, 79(12):1444–1449, 2009.

[76] Jeroen Kazius, Ross McGuire, and Roberta Bursi. Derivation and validation of toxicophores
for mutagenicity prediction. Journal of medicinal chemistry, 48(1):312–320, 2005.

111

[77] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural
network for few-shot learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11–20, 2019.

[78] Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon. Interpretation of nlp models through
input marginalization. arXiv preprint arXiv:2010.13984, 2020.

[79] Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

[80] Gary King and Langche Zeng. Logistic regression in rare events data. Political analysis,
9(2):137–163, 2001.

[81] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[82] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885–1894. PMLR, 2017.

[83] Ron Kohavi, George H John, et al. Wrappers for feature subset selection. Artificial intelli-
gence, 97(1-2):273–324, 1997.

[84] Anna Korba, Pierre-Cyril Aubin-Frankowski, Szymon Majewski, and Pierre Ablin. Kernel
stein discrepancy descent. In International Conference on Machine Learning, pages 5719–
5730. PMLR, 2021.

[85] Tatsuya Kubokawa. Stein’s identities and the related topics: an instructive explanation on
shrinkage, characterization, normal approximation and goodness-of-fit. Japanese Journal of
Statistics and Data Science, pages 1–45, 2024.

[86] Orestis Panagiotis Lampridis, Riccardo Guidotti, Salvatore Ruggieri, and Grigorios
Tsoumakas. Explaining sentiment prediction by generating exemplars in the latent space.
Undergraduate thesis, Aristotle University of Thessaloniki, School of Informatics, 2019.

[87] John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classification using structural
attention. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1666–1674, 2018.

[88] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger: Generating adversar-
ial text against real-world applications. arXiv preprint arXiv:1812.05271, 2018.

[89] Qiaomei Li, Rachel Cummings, and Yonatan Mintz. Optimal local explainer aggregation for
interpretable prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 12000–12007, 2022.

[90] Xiao-Hui Li, Caleb Chen Cao, Yuhan Shi, Wei Bai, Han Gao, Luyu Qiu, Cong Wang,
Yuanyuan Gao, Shenjia Zhang, Xun Xue, et al. A survey of data-driven and knowledge-aware
explainable ai. IEEE Transactions on Knowledge and Data Engineering, 34(1):29–49, 2020.

112

[91] Yuantong Li, Chi-Hua Wang, and Guang Cheng. Online forgetting process for linear
regression models. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 217–225. PMLR, 13–15 Apr 2021.

[92] Yu Liang, Siguang Li, Chungang Yan, Maozhen Li, and Changjun Jiang. Explaining
the black-box model: A survey of local interpretation methods for deep neural networks.
Neurocomputing, 419:168–182, 2021.

[93] Q Vera Liao, Daniel Gruen, and Sarah Miller. Questioning the ai: informing design practices
for explainable ai user experiences. In Proceedings of the 2020 CHI conference on human
factors in computing systems, pages 1–15, 2020.

[94] Brian Y Lim, Qian Yang, Ashraf M Abdul, and Danding Wang. Why these explanations?
selecting intelligibility types for explanation goals. In IUI Workshops, 2019.

[95] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach.
Applied Stochastic Models in Business and Industry, 17(4):319–330, 2001.

[96] Hengzhu Liu, Ping Xiong, Tianqing Zhu, and Philip S Yu. A survey on machine unlearning:
Techniques and new emerged privacy risks. arXiv preprint arXiv:2406.06186, 2024.

[97] Hui Liu, Qingyu Yin, and William Yang Wang. Towards explainable NLP: A generative
explanation framework for text classification. In Anna Korhonen, David R. Traum, and Lluís
Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers,
pages 5570–5581. Association for Computational Linguistics, 2019.

[98] Jiaqi Liu, Jian Lou, Zhan Qin, and Kui Ren. Certified minimax unlearning with generalization
rates and deletion capacity. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[99] Mengda Liu, Guibo Luo, and Yuesheng Zhu. Machine unlearning with affine hyperplane
shifting and maintaining for image classification. In International Conference on Neural
Information Processing, pages 215–227. Springer, 2023.

[100] Qiang Liu, Jason Lee, and Michael Jordan. A kernelized stein discrepancy for goodness-of-fit
tests. In International conference on machine learning, pages 276–284. PMLR, 2016.

[101] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian
inference algorithm. Advances in neural information processing systems, 29, 2016.

[102] Ana Lucic, Harrie Oosterhuis, Hinda Haned, and Maarten de Rijke. Focus: Flexible optimiz-
able counterfactual explanations for tree ensembles. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pages 5313–5322, 2022.

[103] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio Silvestri.
Cf-gnnexplainer: Counterfactual explanations for graph neural networks. In International
Conference on Artificial Intelligence and Statistics, pages 4499–4511. PMLR, 2022.

113

[104] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. arXiv
preprint arXiv:1705.07874, 2017.

[105] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and
Xiang Zhang. Parameterized explainer for graph neural network. Advances in neural
information processing systems, 33:19620–19631, 2020.

[106] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[107] Jing Ma, Ruocheng Guo, Saumitra Mishra, Aidong Zhang, and Jundong Li. Clear: Generative
counterfactual explanations on graphs. arXiv preprint arXiv:2210.08443, 2022.

[108] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational
Linguistics.

[109] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[110] Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld. Hard to forget: Poisoning
attacks on certified machine unlearning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 7691–7700, 2022.

[111] Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach
to in silico blood-brain barrier penetration modeling. Journal of chemical information and
modeling, 52(6):1686–1697, 2012.

[112] Kyrylo Medianovskyi and Ahti-Veikko Pietarinen. On explainable ai and abductive inference.
Philosophies, 7(2):35, 2022.

[113] Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N Ravi. Deep unlearning via random-
ized conditionally independent hessians. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10422–10431, 2022.

[114] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[115] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[116] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

[117] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

114

[118] Chang S Nam, Jae-Yoon Jung, and Sangwon Lee. Human-Centered Artificial Intelligence:
Research and Applications. Academic Press, 2022.

[119] Hieu T Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Proceedings
of the twenty-first international conference on Machine learning, page 79, 2004.

[120] Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi
Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint
arXiv:2209.02299, 2022.

[121] Danilo Numeroso and Davide Bacciu. Explaining deep graph networks with molecular
counterfactuals. arXiv preprint arXiv:2011.05134, 2020.

[122] Sixun Ouyang, Aonghus Lawlor, Felipe Costa, and Peter Dolog. Improving explainable
recommendations with synthetic reviews. arXiv preprint arXiv:1807.06978, 2018.

[123] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph
convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 5363–5370, 2020.

[124] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos Faloutsos. Estimating
node importance in knowledge graphs using graph neural networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pages
596–606, 2019.

[125] Martin Pawelczyk, Jimmy Z Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, and Seth Neel.
Machine unlearning fails to remove data poisoning attacks. arXiv preprint arXiv:2406.17216,
2024.

[126] Alexandra Peste, Dan Alistarh, and Christoph H Lampert. Ssse: Efficiently erasing samples
from trained machine learning models. arXiv preprint arXiv:2107.03860, 2021.

[127] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation
of black-box models. arXiv preprint arXiv:1806.07421, 2018.

[128] Vitali Petsiuk, Rajiv Jain, Varun Manjunatha, Vlad I Morariu, Ashutosh Mehra, Vicente
Ordonez, and Kate Saenko. Black-box explanation of object detectors via saliency maps.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11443–11452, 2021.

[129] Pedro O Pinheiro and Ronan Collobert. From image-level to pixel-level labeling with
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1713–1721, 2015.

[130] Douglas EV Pires, Tom L Blundell, and David B Ascher. pkcsm: predicting small-molecule
pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal
chemistry, 58(9):4066–4072, 2015.

115

[131] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.
Explainability methods for graph convolutional neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 10772–10781,
2019.

[132] Karl Popper. Conjectures and refutations: The growth of scientific knowledge. routledge,
2014.

[133] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training
data influence by tracing gradient descent. Advances in Neural Information Processing
Systems, 33:19920–19930, 2020.

[134] A. Rane and A. Kumar. Sentiment classification system of twitter data for us airline service
analysis. In 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), volume 01, pages 769–773, 2018.

[135] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao,
Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural
networks for materials science and chemistry. Communications Materials, 3(1):93, 2022.

[136] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[137] Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern
recognition and machine learning. In Structural, Syntactic, and Statistical Pattern Recogni-
tion: Joint IAPR International Workshop, SSPR & SPR 2008, Orlando, USA, December 4-6,
2008. Proceedings, pages 287–297. Springer, 2008.

[138] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

[139] Mahtab Sarvmaili, Riccardo Guidotti, Anna Monreale, Amilcar Soares, Zahra Sadeghi, Fosca
Giannotti, Dino Pedreschi, and Stan Matwin. A Modularized Framework for Explaining
Black Box Classifiers for Text Data. Proceedings of the Canadian Conference on Artificial
Intelligence, may 27 2022. https://caiac.pubpub.org/pub/71c292m6.

[140] Mahtab Sarvmaili, Amilcar Soares, Riccardo Guidotti, Anna Monreale, Fosca Giannotti,
Dino Pedreschi, and Stan Matwin. A modularized framework for explaining hierarchical
attention networks on text classifiers. Proceedings of the Canadian Conference on Artificial
Intelligence, jun 8 2021. https://caiac.pubpub.org/pub/zzjy8kzu.

[141] Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence
functions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 8179–8186, 2022.

[142] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks
for nlp with differentiable edge masking. arXiv preprint arXiv:2010.00577, 2020.

116

[143] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember
what you want to forget: Algorithms for machine unlearning. Advances in Neural Information
Processing Systems, 34:18075–18086, 2021.

[144] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international conference on computer vision,
pages 618–626, 2017.

[145] Neel Shah, Ahmed Arshad, Monty B Mazer, Christopher L Carroll, Steven L Shein, and
Kenneth E Remy. The use of machine learning and artificial intelligence within pediatric
critical care. Pediatric research, 93(2):405–412, 2023.

[146] Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Xiaofeng Zhu, and Qing Li. Exploring the
landscape of machine unlearning: A survey and taxonomy. arXiv preprint arXiv:2305.06360,
2023.

[147] Takashi Shibata, Go Irie, Daiki Ikami, and Yu Mitsuzumi. Learning with selective forgetting.
In IJCAI, volume 3, page 4, 2021.

[148] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features
through propagating activation differences. arXiv preprint arXiv:1704.02685, 2017.

[149] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. Not just a
black box: Learning important features through propagating activation differences. arXiv
preprint arXiv:1605.01713, 2016.

[150] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. nature, 550(7676):354–359, 2017.

[151] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[152] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of securing machine learning
models against adversarial examples. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 241–257, 2019.

[153] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 138–145, 2017.

[154] Yi Sui, Ga Wu, and Scott Sanner. Representer point selection via local jacobian expansion
for post-hoc classifier explanation of deep neural networks and ensemble models. Advances
in neural information processing systems, 34:23347–23358, 2021.

[155] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Gradients of counterfactuals. arXiv
preprint arXiv:1611.02639, 2016.

117

[156] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In International conference on machine learning, pages 3319–3328. PMLR, 2017.

[157] Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network
for sentiment classification. In Proceedings of the 2015 conference on empirical methods in
natural language processing, pages 1422–1432, 2015.

[158] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet
effective machine unlearning. IEEE Transactions on Neural Networks and Learning Systems,
2023.

[159] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling
sgd: Understanding factors influencing machine unlearning. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 303–319. IEEE, 2022.

[160] Che-Ping Tsai, Chih-Kuan Yeh, and Pradeep Ravikumar. Sample based explanations via
generalized representers. Advances in Neural Information Processing Systems., 36, 2023.

[161] Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Raman Arora. Machine unlearning
via algorithmic stability. In Conference on Learning Theory, pages 4126–4142. PMLR, 2021.

[162] Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, and Céline Robardet.
What does my gnn really capture? on exploring internal gnn representations. In International
Joint Conference on Artificial Intelligence 2022, 2022.

[163] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

[164] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine
unlearning of features and labels. arXiv preprint arXiv:2108.11577, 2021.

[165] Shaokui Wei, Mingda Zhang, Hongyuan Zha, and Baoyuan Wu. Shared adversarial un-
learning: Backdoor mitigation by unlearning shared adversarial examples. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[166] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre Ducrot,
Thomas Seidel, and Thierry Langer. A compact review of molecular property prediction with
graph neural networks. Drug Discovery Today: Technologies, 37:1–12, 2020.

[167] Mike Wu, Sonali Parbhoo, Michael C Hughes, Volker Roth, and Finale Doshi-Velez. Opti-
mizing for interpretability in deep neural networks with tree regularization. arXiv preprint
arXiv:1908.05254, 2019.

[168] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. Polyjuice: Gen-
erating counterfactuals for explaining, evaluating, and improving models. arXiv preprint
arXiv:2101.00288, 2021.

118

[169] Zhenxing Wu, Jike Wang, Hongyan Du, Dejun Jiang, Yu Kang, Dan Li, Peichen Pan,
Yafeng Deng, Dongsheng Cao, Chang-Yu Hsieh, et al. Chemistry-intuitive explanation of
graph neural networks for molecular property prediction with substructure masking. Nature
Communications, 14(1):2585, 2023.

[170] Jie Xu, Zihan Wu, Cong Wang, and Xiaohua Jia. Machine unlearning: Solutions and
challenges. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024.

[171] Jiasen Yang, Qiang Liu, Vinayak Rao, and Jennifer Neville. Goodness-of-fit testing for
discrete distributions via stein discrepancy. In International Conference on Machine Learning,
pages 5561–5570. PMLR, 2018.

[172] Jiaxi Yang and Yang Zhao. A survey of federated unlearning: A taxonomy, challenges and
future directions. arXiv preprint arXiv:2310.19218, 2023.

[173] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierar-
chical attention networks for document classification. In Proceedings of the 2016 conference
of the North American chapter of the association for computational linguistics: human
language technologies, pages 1480–1489, 2016.

[174] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point
selection for explaining deep neural networks. Advances in neural information processing
systems, 31, 2018.

[175] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnex-
plainer: Generating explanations for graph neural networks. Advances in neural information
processing systems, 32, 2019.

[176] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations
of graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 430–438, 2020.

[177] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[178] Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph
neural networks via subgraph explorations. In International Conference on Machine Learning,
pages 12241–12252. PMLR, 2021.

[179] Binchi Zhang, Yushun Dong, Tianhao Wang, and Jundong Li. Towards certified unlearning
for deep neural networks. In Forty-first International Conference on Machine Learning,
2024.

[180] Quan-shi Zhang and Song-Chun Zhu. Visual interpretability for deep learning: a survey.
Frontiers of Information Technology & Electronic Engineering, 19(1):27–39, 2018.

[181] Shichang Zhang, Yozen Liu, Neil Shah, and Yizhou Sun. Gstarx: Explaining graph neural net-
works with structure-aware cooperative games. Advances in Neural Information Processing
Systems, 35:19810–19823, 2022.

119

[182] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929, 2016.

[183] Jianlong Zhou, Amir H Gandomi, Fang Chen, and Andreas Holzinger. Evaluating the quality
of machine learning explanations: A survey on methods and metrics. Electronics, 10(5):593,
2021.

[184] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Summary of Contribution
	Conference Publication
	Outline

	Literature review
	Model-aware local explainer
	Data-centric Local Explainers
	Text Explainers
	Graph Neural Network Explainer
	Machine Unlearning
	Summary

	Data-centric Text Explanation
	FEHAN
	Hierarchical Attention Network
	Informative Sentences Extraction
	Neighbourhood generator
	Interpretable Classifier and Explanation

	DICTA
	Influential Sentences Extraction
	Neighbourhood Generator
	Local Decision Tree and Explanation

	Evaluation and Analysis
	Quantitative Evaluation (FEHAN)
	Qualitative Evaluation (FEHAN)
	Quantitative Evaluation (DICTA)
	Qualitative Evaluation (DICTA)

	Summary

	Data-centric Graph Explanation
	Graph Neural Networks
	Problem Formulation
	Multi-component Explanation Method for Graph Classification
	Explanation Module
	Adjacency Matrix Perturbation
	Loss Function Optimization
	Explanation procedure

	Evaluation and Analysis
	Quantitative Evaluation
	Qualitative Evaluation

	Summary

	Data-centric Prediction Explanation
	Problem Definition
	Kernelized Stein Discrepancy

	Additional Derivation of Kernelized Stein Discrepancy
	Highly-precise and Data-centric Explanation
	KSD between Model and Training Data
	Prediction Explanation

	Evaluation and Analysis
	Qualitative Evaluation
	Quantitative Evaluation
	Kernel Options
	Discussion: Intuition on why HD-Explain works

	Summary

	Data-centric Assessment of Machine Unlearning Feasibility
	Preliminaries
	Machine Unlearning Definition
	Research Track of Machine Unlearning

	Understanding Difficulty of Unlearning
	Factors that Affect Difficulty of Unlearning

	Scoring Unlearning Difficulty
	Kernel Stein Discrepancy (KSD)
	Unlearning Difficulty Scoring with KSD

	Evaluation and Analysis
	Experimental setups
	Experimental results
	Membership Inference Attack Evaluation

	Conclusion and Future Research
	Conclusion
	Future research direction

	Bibliography

