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Abstract 

The apple is an economically and culturally important fruit crop grown in temperate 
regions around the world. The apple stands to benefit greatly from modern genomics, 
including the application of genomics informed breeding and gene editing technologies. 
However, the discovery of the DNA sequences, or causal alleles, that control apple 
phenotypes remains as a key barrier to the rapid advancement of genomics informed 
breeding and gene editing in apple. The objective of this thesis is to advance the current 
state of knowledge in the areas of apple phenomics and genomics by leveraging the 
wealth of phenotypic and genetic diversity in Canada’s Apple Biodiversity Collection 
(ABC). The present thesis presents a series of studies aimed at quantifying multiple 
apple phenotypes and revealing the identity of causal alleles that control them. 
Specifically, this research aims to provide a detailed comparison of the phenotypic 
differences between domesticated and wild apples, and to make contributions toward 
the discovery of causal alleles controlling apple phenotypes. In chapter 1, I compare the 
domestic apple to its wild progenitor by analysing 10 key agricultural phenotypes. This 
analysis reveals significant differences in key agricultural phenotypes between the two 
species. For example, domesticated apples contain 68% less phenolic content than 
their wild counterparts, on average. This investigation suggests that domesticated 
apples have significantly diverged from their primary wild progenitor species, and that 
wild apples may offer important germplasm for breeding in the future. In chapter 2, I use 
a pool-sequencing genomics approach to scan the genome for regions that control 
ripening time, phenolic content, and fruit softening. This investigation identifies a 
number of regions in the genome that are likely to harbour causal alleles. For instance, 
the analysis in chapter three identifies a region upstream of a well-known transcription 
factor gene NAC18.1 as being potentially causal for ripening time. In chapter 4, a 
genome wide association study is conducted using high depth DNA sequence data from 
97 diverse samples from the ABC with the aim of discovering the causal allele for 
ripening time in apple. Results from chapter 4 delimit a narrow region of the genome on 
chromosome 3 probable to harbour the causal allele for ripening time, and illustrate 
some challenges associated with generating gene editing targets from association 
studies. Finally, a reference panel is generated for future genotype imputation in the 
ABC population. Chapter 5 summarises the findings of this thesis and provides context 
and prospective directions for enabling gene editing technologies in apple in the near 
future. Causal allele discovery in apple will remain challenging moving forward, however 
the research presented here represents key steps towards identifying causal alleles for 
a few key phenotypes and provides a foundation for unlocking the full mapping potential 
of Canada’s ABC.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

INTRODUCTION 

Global food production must increase by at least 55% by 2050 in order to sustain 

the growing human population, which is projected to reach 9.7 billion (McKenzie & 

Williams, 2015). In meeting this demand, it will be critical to leverage the world's 

diversity of crops for sustainable and robust food production. While the majority of 

human-consumed calories come from a small number of widely produced annual crops 

(maize, rice, wheat, and soy), perennial crops play an essential role in our food system: 

they include species that account for approximately one eighth of the world’s food 

producing surface (Gaut et al., 2015). 

The apple (Malus domestica) is a perennial crop that is the world's third most 

produced fruit by weight (FAOSTAT, 2020), and Canada’s second most valuable fruit 

crop (Agriculture and Agri-Food Canada, 2022). While tremendous progress has been 

made via traditional breeding in apple, there remains much to be gained in terms of 

apple nutrition, fruit quality, climate resilience, and disease resistance. However, apple 

improvement remains a serious challenge and the slow breeding cycle leaves the apple 

industry slow to adapt to changes in agricultural practices, conditions, regulations, and 

consumer expectations (Pereira-Lorenzo et al., 2018). In a time of powerful biological 

and data analytics tools, improvement of apple varieties through an understanding of 

the plant's molecular biology will be critical for the timely development of improved apple 

varieties. Given the importance of the apple industry and apple variety improvement, it 

is critical that all available biological approaches be used to further understand the 
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fundamental biology of apple, and novel strategies be employed to accelerate variety 

improvement. 

Genomics is a field that holds promise to dramatically advance the improvement 

of agricultural species (Abberton et al., 2016), including apple. Genomics, the study of 

an organism's DNA sequence, has already had a significant impact on apple 

improvement and agricultural crops more broadly. The increasing number of genomic 

approaches and genetic resources, like accessible DNA sequencing and reference 

genomes, has ushered in an era of unrivalled ability to explore and understand the 

apple genome (Peace et al., 2019; X. Sun, Jiao, et al., 2020; Y. Sun, Shang, et al., 

2022). Understanding the genetic control of traits is a core objective of genetics, and an 

understanding of the genetic underpinnings of key traits in apple will be essential for 

rapid improvement of varieties in the future, particularly by leveraging technologies such 

as gene editing.     

To advance apple variety improvement, whether it be through genomics assisted 

breeding or gene editing, the genetic control of key traits must be sufficiently 

characterised. Genetic mapping, particularly using diversity panel populations, whole 

genome sequencing, and statistical association methods such as the genome-wide 

association study (GWAS), stands as a promising method to discover causal DNA 

sequences that control apple plant traits. Given the demand for high quality apple 

varieties, and the persistent challenges in improvement, high resolution genetic 

mapping experiments hold immense promise for the future of apple improvement.  

The goal of this work is to explore and analyse the phenome and the genome of 

the apple in an attempt to discover DNA sequences that control important agricultural 
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traits in apple. First, phenotype data from the domesticated apple and its wild progenitor 

species is analysed to better understand the distribution of apple phenotypes and the 

influence of domestication on key apple phenotypes. Then, phenotype data from a 

diverse collection of domesticated apple species is used in tandem with next generation 

sequencing technologies to scan the genome for regions that could be impacting key 

agricultural traits. Finally, a diverse apple population is leveraged to conduct association 

mapping for the genetic control of ripening time and to lay the groundwork for future 

genetic mapping studies. 

 
LITERATURE REVIEW 

 
HISTORIC AND MODERN CONTEXT OF THE APPLE 

 
History and evolution of the apple 

 The apple (Malus domestica) belongs to Rosaceae, a large plant family 

containing multiple fruiting species including peaches, pears, plums, apricots, cherries, 

strawberries and almonds. The apple is one of the world's most ancient crops, 

domesticated more than 5,000 years ago in the Tian Shan region of central Asia 

(Cornille et al., 2014, 2019). The first apples to be cultivated were domesticated from M. 

sieversii (Cornille et al., 2012; Harris et al., 2002). Following domestication, apples were 

brought West along the Silk Road trading routes where multiple Malus species, 

including M. bacatta, M. orientalis, and M. sylvestris hybridised (Cornille et al., 2014). A 

complex history of bidirectional hybridization over thousands of years makes accurately 

resolving the relationships between these species difficult, but it is clear that each 

contributed significantly to the genome of the modern domesticated apple (X. Sun, Jiao, 
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et al., 2020). Archeological evidence suggests that apples were established as a 

cultivated crop in Greek societies as early as 300 BC, and that agriculturalists at the 

time had already discovered advanced grafting and storage techniques (Juniper & 

Mabberley, 2006). Over the last 2,000 years, the apple has become one of the globe's 

most important agricultural fruit species.  

 

Economic, cultural, and agricultural importance of the apple  

 The apple is the world's third most valuable fruit crop, worth $79B annually 

(FAOSTAT, 2022). In temperate countries, apple production often represents a 

significant proportion of fruit production. For example, in Canada the farm gate value of 

apple was $242M as of 2021, accounting for more than one fifth of the total farm gate 

value of fruit for the nation (Agriculture and Agri-Food Canada, 2022). In addition to 

being a major economic driver in the fruit production industry, the apple continues to 

play a critical role in contemporary culture. The apple appears in modern folklore, art, 

interpretations of the Bible, and is frequently used to symbolise fruit, health, and 

nutrition (Juniper & Mabberley, 2006). Apples are important for agricultural systems in 

temperate regions, as they provide key economic opportunities for food producers, 

sequester more carbon than annual crops, and offer unique opportunities for 

connectivity between producers and consumers (Kreitzman et al., 2020; Vallebona et 

al., 2016).  
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Wild apple species 

 There are at least 30 species within the genus Malus, and the phylogeny of the 

genus is likely to be rewritten and updated in the future (Robinson et al., 2001). Apple 

species in this genus are able to hybridise, making the relationships between the 

species ambiguous. Domesticated apples have long been cultivated in regions where 

wild apples grow naturally, facilitating hybridization events spanning hundreds or 

thousands of years, further complicating the relationships between Malus species 

(Cornille et al., 2014). Wild apples, which have already contributed significantly to the 

genome of M. domestica (X. Sun, Jiao, et al., 2020), offer unique traits and genetics that 

could be of value for modern apple improvement in the future. Fruit traits among wild 

species are highly variable: M. baccata produces small berry-like fruits (Cornille et al., 

2012) while M. sieversii can produce large fruits with eating quality comparable to 

modern cultivars (Volk et al., 2013). Wild species are also frequently examined for 

disease resistance traits, and have been a major source of genetic material for breeding 

programmes focussed on resistance to apple canker and fire blight (Harshman et al., 

2017; Kost et al., 2015; X. Liu et al., 2021; Schlathölter et al., 2023). Importantly, wild 

apple species are also a source of important phenolic compounds (Volz & McGhie, 

2011; N. Wang et al., 2018), that produce the red flesh apple phenotype and play 

essential roles in human nutrition and health (Huber & Rupasinghe, 2009). While some 

understanding of wild apple traits has been established, there is still much to be gained 

through comprehensive phenotypic comparisons between wild and domesticated 

apples. Wild apple species will be a crucial source of genetic breeding material in the 
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future, and as such it will be important to comprehensively understand the traits of wild 

apple species, as well as their relationship to the domesticated apple.  

 

APPLE BIOCHEMISTRY AND RIPENING 

The nutritional value of apples  

 The apple plays a key role in the modern human diet as a source of vitamins, 

minerals and bioactive compounds. Phenolic compounds are a well-studied group of 

secondary metabolites present in apples (Lu & Foo, 1997) which are more abundant in 

fruit skin tissues (Takos et al., 2006) and contribute significantly to the nutritional value 

of apples (Dixon et al., 2005). There are five major groups of polyphenols: flavan-3-

ols/procyanidins, dihydrochalcones, flavonols, anthocyanins, and phenolic acids (Huber 

& Rupasinghe, 2009; Rupasinghe et al., 2017). Nutrition studies have elucidated the 

impressive human health benefits of consuming phenolic compounds, which include 

decreased risk of cardiovascular disease, type 2 diabetes, inflammation, metabolic 

disorders, and some cancers (D. Lin et al., 2016; Shetty & Wahlqvist, 2004). Phenolic 

compounds are also known to be antimicrobial and are a focus for the basis of plant-

derived medicines (Ahmed et al., 2016; Kawabata et al., 2019; Wijesundara et al., 

2021). In the US, 22% of the polyphenols in the human diet originate from apples, which 

makes apples a primary dietary source of these antioxidant compounds (Vinson et al., 

2001). Unfortunately, as of 2019, only 10% of North Americans were meeting their daily 

recommended fruit and vegetable requirements (S. H. Lee et al., 2022), undoubtedly 

leading to poorer population health outcomes. While most of the population in North 

America fails to reach adequate fruit consumption, apples play a vital role as the most 
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available fruit for consumption (Weber et al., 2023) due to their excellent storability, 

affordable cost, and production on both hemispheres of the planet. The health benefits 

of eating apples has been long recognized, and apples are likely to continue to be a 

major source of human nutrition in the future.  

 

Climacteric fruit ripening and ethylene 

 Fruit ripening is an important aspect of fruit biology and can be broadly divided 

into two classes: climacteric and non-climacteric. Apples are a climacteric fruit, meaning 

they undergo a ripening process that is characterised by peaks in respiration and 

ethylene production (McMurchie et al., 1972; Oeller et al., 1991). While there is variation 

in ripening mechanisms between species, ripening in climacteric fruits is controlled by 

similar regulatory networks (Adams-Phillips et al., 2004; Giovannoni, 2004; Lü et al., 

2018). Many fruits including tomato, banana, pear, peach, apricot, fig, and papaya are 

considered climacteric.   

Ripening is a complex physiological process characterised by changes in fruit 

colour, texture, firmness, volatile organic compound (VOC) production, sugar 

metabolism, and anthocyanin production (Dandekari et al., 2004; Defilippi et al., 2005). 

The ripening process in apple (and other climacteric fruits) is largely mediated by the 

plant hormone ethylene (Blanpied, 1972; McMurchie et al., 1972), a small gaseous 

hydrocarbon. Ethylene production can be viewed as a two step process. First, S-

adenosyl-l-Met (SAM) is converted into 1-amino-cyclopropane-1-carboxylic acid (ACC) 

by the enzyme ACC synthase (ACS). Second, ACC is converted into ethylene via ACC 

oxidase (ACO) (S. F. Yang & Hoffman, 1984). Two systems of ethylene production have 
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been defined in fruit: system 1 and system 2, which are autoinhibitory and autocatalytic, 

respectively. System 1 primarily functions during normal plant growth, whereas system 

2 functions during fruit maturity and ripening (Barry & Giovannoni, 2007; McMurchie et 

al., 1972). The crucial role of ethylene in fruit ripening is difficult to overstate, as 

ethylene insensitive plants are unable to produce ripe fruit (Lanahan et al., 1994; Oeller 

et al., 1991; Yen et al., 1995). Further, evidence strongly suggests that ethylene impacts 

the regulation of dozens or hundreds of genes crucial to the ripening network (Tadiello 

et al., 2016). Although ethylene is arguably the most important hormone in the 

development and ripening of climacteric fruits, it fits into a larger network of genes and 

hormones that make up a highly complex fruit ripening mechanism.  

 Numerous genes are involved in the apple ripening process, many of which 

have poorly understood roles. For example, evidence suggests that NAC18.1, the 

homolog of tomato non-ripening (NOR), is a high-level regulator of the ripening 

mechanism in apple (Migicovsky et al., 2021), but the precise details of its modes and 

degree of interaction with other genes in the ripening network remain unclear. As 

another example of complex ripening interactions, ethylene response factor 4 (ERF4) 

mutants have been discovered to have differential influence on apple ripening, including 

ERF4s ability to bind TOPLESS co-repressor 4 (TPL4) and regulate ERF3 and 

ethylene. However, computational analysis suggests that ERF4 may be interacting with 

thousands of genes, many of which have unknown functions (Y. Hu et al., 2020). 

Research is ongoing to understand the many interacting genes involved in apple 

ripening.  
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It is important to understand ripening because it directly impacts the quality and 

production of fruit. In the case of apple, ripening time is important for multiple entities in 

the fruit supply chain, as fruits are often stored for up to a year before reaching 

supermarket shelves. The timing and effects of ripening are also important for apple 

producers, who must carefully plan the harvest, storage, and ripening of each year's 

crop in order to ensure farm profitability (R. Blakey, personal communications, 2022; M. 

Van Meekran, personal communications, 2021). For example, if an entire orchard is 

planted with a single variety, an entire years harvest will ripen and require picking within 

the same 10 day period, creating an unmanageable logistics challenge for growers. The 

industrial importance of ripening time in apples is well evidenced by the fact that the top 

9 cultivars in the USA are homozygous for an allele linked to late harvest date 

(Migicovsky et al., 2021). A deeper understanding of the mechanisms controlling apple 

ripening is key for unlocking accelerated breeding for key traits in apple, including and 

improved fruit storage and firmness.  

 

APPLE BREEDING  

 
Breeding history of apple  

 The fundamental life-cycle traits of the apple make for a unique model of 

domestication and breeding that is dramatically different from annual crops. Apples 

have long generation times (requiring 5-7 years to produce fruit) and are self-

incompatible, meaning they display obligate outcrossing. These two biological 

constraints create long timelines for apple improvement via traditional crossing. Given 

the evidence suggesting that grafting techniques have been commonplace since 300 
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BCE (Juniper & Mabberley, 2006; Zohary & Hopf, 2000), one may expect that the clonal 

propagation of a small number of elite varieties would have narrowed diversity among 

apples during the thousands of years since domestication of the crop. However, there is 

little to suggest that a major domestication bottleneck occurred during apple 

domestication and breeding (Cornille et al., 2012), and high levels of diversity still 

remain in breeding populations today (S. Kumar et al., 2010; Watts  et al., 2021). It has 

been hypothesised that the explanation for this paradox is accounted for by long-

standing traditional breeding methods in multiple regions (Cornille et al., 2014). It is 

widely accepted that for thousands of years apple growers were independently selecting 

varieties generated through natural pollinations (also known as “chance seedlings”). It is 

suspected that the outcrossing nature of apple, the geographical distance between 

breeding groups, and differences in taste preferences between human communities has 

preserved high levels of diversity within the crop (Cornille et al., 2014). In addition, the 

hybridization of wild species in these breeding areas is likely to have worked to further 

preserve genetic diversity.  

 

Modern breeding techniques  

 Apple variety improvement remains a difficult challenge for modern breeders due 

to a number of major barriers. Apple trees are large plants, with a long juvenile phase, a 

highly heterozygous genome, self-incompatibility, and expensive maintenance, 

evaluation, and tree care. Together these biological constraints result in a lengthy and 

costly breeding cycle that has largely inhibited the rapid improvement of apple cultivars. 

For example, modern breeding programs still require about 25 years to produce just 3 
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new marketable cultivars (Peil et al., 2008). Despite the industry's high annual value, 

these major barriers remain and the vast majority of apple breeding today is done via 

traditional breeding, a process that largely resembles the techniques used by the 

earliest cultivators of the crop. In recent decades novel tools such as Marker Assisted 

Selection (MAS) have been developed to help decrease the cost of apple breeding 

programmes (Edge-Garza et al., 2015; Luby & Shaw, 2001; Migicovsky & Myles, 2017). 

MAS uses genetic markers that are in linkage with quantitative trait loci (QTL), genetic 

regions associated with plant traits, providing breeders a method to screen plants for 

desirable genotypes at early developmental stages. While genetic screening via MAS 

can significantly reduce the required capital to grow potentially winning varieties to 

maturity, the overall breeding process is essentially the same as those described 

previously and still requires decades of investment. In addition, the markers used in 

MAS are often not strong predictors of the traits of interest, leaving significant 

guesswork and error in the breeding process (Migicovsky et al., 2021). Apple breeding 

is further complicated by the fact that many alleles controlling important traits, such as 

disease resistance, are present exclusively in wild germplasm (Kostick, Teh, & Evans, 

2021). Genetic sources of these alleles often have many undesirable fruit quality traits, 

and introgressing wild alleles into elite backgrounds can take multiple decades (Iezzoni 

et al., 2020). To truly accelerate variety improvement, precise molecular tools that 

address multiple challenges faced in the breeding process must be discovered, 

adapted, and applied in apple.  
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GENETIC MODIFICATION AND GENE EDITING IN AGRICULTURE 

Genetic modification in agricultural plants 

 Molecular biology techniques that enable direct changes to the genome of an 

organism have provided tremendous progress in agriculture. In plant species, methods 

that could create precise and permanent changes to the DNA of the genome date back 

to about the 1980’s, upon the discovery and investigation of Agrobacterium 

tumefaciens, the causative bacterial pathogen of crown gall disease (E. Nester et al., 

2005; Zaenen et al., 1974; Zambryski et al., 1980). The A. tumefaciens transformation 

system makes use of a unique suite of Virulence (Vir) genes to move Transfer DNA (T-

DNA), encoded on a plasmid, into the target plant cell where the VIR proteins mediate 

T-DNA integration into the genome (SB Gelvin, 2003). Since its discovery, A. 

tumefaciens has been engineered to transfer precise T-DNA segments into the plant 

cell for permanent genome integration to produce plants, such as soy and rice, with 

novel or improved traits (Do et al., 2019; Pompili et al., 2020; Schlathölter et al., 2023; 

Ye et al., 2000).  

Direct engineering of the plant genome was a major step for plant science and 

agriculture, and has led to the production of numerous transgenic plants that serve as 

important inputs of the modern agricultural system (ISAAA, 2023). Addition of genetic 

material to the plant genome via Agrobacterium-mediated transformation remains an 

area of intense focus today, despite some negative public sentiment towards transgenic 

organisms. Some examples of important agricultural crop varieties generated with 

transgenic Agrobacterium techniques include Golden Rice (Ye et al., 2000), the Arctic® 

Apple (Stowe & Dhingra, 2020), the Norfolk Purple Tomato® (Butelli et al., 2008), the 



 
13 

PinkGlow® Pineapple (Fabricant, 2022), and most recently Conscious Greens ® 

(Karlson et al., 2022).  

Although it is an extremely useful genome modification tool, Agrobacterium 

mediated transfer has some significant drawbacks. First, only some plant families are 

susceptible to infection by Agrobacterium, meaning that genome modification is 

challenging or impossible for some crop species using this method (E. W. Nester, 2014; 

SB Gelvin, 2003). Second, integration of T-DNA into the genome is random, and T-DNA 

insertions can often cause undesirable consequences if the integration interrupts 

functional regions of the genome. Finally, in many countries transgenic plants are 

regarded as Genetically Modified Organisms (GMOs) and are either highly regulated or 

banned altogether (Jenkins et al., 2023). Taken together, these aspects of 

Agrobacterium-mediated transfer have pushed plant biologists to look towards other 

tools, such as gene editing, as a less controversial approach for making meaningful 

agricultural improvements.  

 
Gene Editing and CRISPR technology 

 Gene editing is capable of making targeted mutations to the genomes of plant 

species (Bortesi & Fischer, 2015; Doudna & Charpentier, 2014; Jinek et al., 2012) (as 

well as bacteria and mammals) and represents a novel approach for the improvement of 

agricultural crops. Gene editing systems have already been used to generate improved 

traits in numerous crops, including rice, wheat, and tomato (Nekrasov et al., 2017; H. 

Zhang et al., 2014; Y. Zhang et al., 2018). As the successor of previous editing systems 

such as transcription activator-like effector nucleases (TALENs) and zinc-finger 

nucleases (ZFNs), gene editing using the clustered regularly interspaced short 
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palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system 

(CRISPR/Cas) has risen to popularity due to its simplicity and modularity (Randhawa & 

Sengar, 2021).  

The CRISPR based system achieves gene editing through two basic 

components: a ribonucleic acid (RNA) and an active enzyme (Jinek et al., 2012). These 

components are bound together into a ribonucleoprotein complex (RNP), which is the 

complete functional gene editing complex. The guide RNA (gRNA) in the CRISPR 

system provides specific DNA site targeting: the easily-programmable gRNA can be 

modified to match a sequence of the host DNA to guide the complex to the desired 

genomic location for action. The enzyme in CRISPR systems is most commonly a 

nuclease (however other enzymes can be substituted), which cleaves DNA at the 

targeted region (Doudna & Charpentier, 2014). Cleaved DNA is recognized by the cell's 

repair machinery as a double stranded break (DSB) and typically repaired through one 

of two pathways (K. Chen et al., 2019). Non-homologous end joining (NHEJ) is the 

default repair mechanism and usually results in insertions or deletions of several DNA 

nucleotides. If the DNA cut is targeted to a gene coding region, this repair pathway is 

useful in generating knockout, or loss-of-function, mutations. This mechanism has been 

used to generate commercial varieties of waxy corn and high oleic soy (Voytas, 2019; 

Waltz, 2016), as well as mustard greens lacking bitter compounds (Karlson et al., 2022). 

The less-frequent repair pathway is homology-directed repair (HDR), whereby DNA is 

repaired by the cell based on overlapping template sequences of nearby DNA. By 

leveraging the template-matching mechanism of HDR, it is possible to add desired 

nucleotide sequences to a targeted region of a genome by supplying the cell with 
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exogenous DNA with homologous flanking sequences (Van Vu et al., 2020), offering 

powerful opportunities for introducing precise genetic changes.  

Perhaps the simplest genetic variation that can be produced by gene editing is 

small insertions/deletions (indels). Indels were among the first forms of variation 

introduced using gene editing (Doudna & Charpentier, 2014), and are typically 

introduced via a double stranded break to the DNA at a specific location in the genome. 

The cell’s endogenous repair mechanisms then repairs the DNA break, typically through 

NHEJ, reliably introducing small indels at the break site. Indels are useful in generating 

knock-outs of target genes to produce novel or improved phenotypes (S. Tian et al., 

2017; Y. Wang et al., 2014; Zheng et al., 2020). For example, CRISPR gene editing has 

been used in Brassica species to knock out myrosinase genes that produce pungent 

bitter molecules, resulting in a less bitter nutrient-dense leafy green (Karlson et al., 

2022). Indels can also be used to generate variation in regulatory elements that control 

gene expression. Targeted editing of regulatory elements introduces novel cis-

regulatory alleles that give rise to gene expression patterns beyond what is observed in 

natural populations. This approach, often referred to as “promoter bashing”, can provide 

beneficial quantitative variation in gene regulation and expression (Rodríguez-Leal et 

al., 2017). Already, the promoter bashing approach has been used to alter known 

promoter sequences in tomato to produce varieties with different fruit sizes and organ 

numbers (Rodríguez-Leal et al., 2017). The mutation of regulatory and non-coding 

regions of the genome has been applied to produce multiple phenotypes, including 

disease resistance, increased yield, and decreased amylose content in rice (C. Li et al., 

2022; J. Li, Chen, et al., 2022; X. Song et al., 2022). The introduction of indels using 
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gene editing has already proved useful in generating novel crop varieties, but only 

represents one of many types of genetic variation that can be generated through gene 

editing. 

Recent advancements in gene editing have discovered alternative enzymes that 

can be substituted in the CRISPR gene editing system to produce a myriad of specific 

DNA mutations. Base editing (Komor et al., 2016), prime editing (Anzalone et al., 2019), 

and twin prime editing (Anzalone et al., 2021) are novel approaches for making specific 

non-random mutations to the genome. Base editors consist of a modified CRISPR 

cassette with an alternate enzyme module capable of making specific point mutations. 

There are two major classes of base editors, cytosine base editors (Komor et al., 2016) 

and adenosine base editors (Gaudelli et al., 2017), that can collectively mediate all 

possible transition mutations (C→T, G→A, A→G, and T→C). These powerful DNA 

editors enable single nucleotide alleles to be specifically altered to desired genotypes, 

potentially enabling specific alleles to be changed within the genome. Single point 

mutations in acetolactate synthase genes via cytosine base editing have been 

generated to create herbicide resistant tomato and potato varieties (Veillet et al., 2019). 

Base editors represent the first CRISPR-based gene editing technology to enable 

specific allele changes, but two more technologies have recently built on this 

advancement. Prime editing and twin prime editing are adaptations on the classic 

CRISPR gene editing system, and enable a wide range of specific mutations to be 

introduced into the genome. Prime editing uses a reverse transcriptase enzyme, a DNA 

nicase enzyme, and an extended prime editing guide RNA (pegRNA) to produce all 

twelve possible base-to-base point mutations and sequence-specific insertions and 
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deletions up to 44 bp and 80bp, respectively (Anzalone et al., 2019). Twin prime editing 

is an advanced application of prime editing, whereby two CRISPR-pegRNA constructs 

are used in tandem to reverse transcribe complementary single stranded DNA 

sequences, which then anneal and replace endogenous DNA (Anzalone et al., 2021). 

Twin prime editing can achieve large insertions (up to 5000 bp) and inversions (up to 

40kb) in human cells. While significant ground has been made in optimising prime 

editing (Zong et al., 2022), twin prime editing has yet to be successfully applied to 

plants. Genome modification through CRISPR-based approaches is a rapidly evolving 

field, with advances being reported frequently in the literature  (P. J. Chen & Liu, 2022; 

C. Sun et al., 2023). The full CRISPR gene editing suite of technologies offers the ability 

to generate a wide array of genetic variation that offer the potential to revolutionise 

agriculture. 

Gene editing technologies are in many cases limited by the presence of a 

sequence specific motif, known as the protospacer adjacent motif (PAM), that is 

required for CRISPR/Cas enzymatic action. The PAM is a short nucleotide NGG 

sequence that must be present at the 3’ end of the gene editing target sequence in 

order for the Cas9 enzyme to cleave DNA (Jinek et al., 2012). Therefore, if a desired 

gene editing target does not have an NGG sequence in sufficient proximity, then the 

edit is often impossible to create (Sander & Joung, 2014). This requirement, until 

recently, produced a significant constraint on the types of DNA sequences that could be 

targeted by gene editing. However, new developments have largely alleviated this 

constraint through the discovery of Cas family proteins with fewer, or in some cases no, 

PAM requirements (Endo et al., 2019; Q. Ren et al., 2021). Given the progress that has 
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been made in a few short years since the 2012 discovery of gene editing, there is strong 

potential for the discovery of enzymes that will entirely alleviate the constraints of PAM 

sequences in the future.  

Since its discovery in 2012, CRISPR systems have been applied to more than 

100 crops and model plants (Cardi et al., 2023). The field of gene editing is a rapidly 

evolving field, with modifications continually increasing the specificity, capabilities, and 

applicability of the CRISPR editing system. In the near future, gene editing will likely be 

a breeding tool used across almost all agricultural crops, including apples.  

 
Genetic modification and gene editing in apple  

Apple is among the increasingly long list of perennial fruit species, including 

citrus, grape, cacao, and kiwi (Fister et al., 2018; H. Jia et al., 2017; Pompili et al., 2020; 

C. Ren et al., 2016; Varkonyi-Gasic et al., 2019), in which gene editing systems have, to 

one degree or another, been enabled. Gene editing systems in apple offer potential 

solutions to the long breeding cycle and probabilistic nature of traditional apple 

improvement. Apple improvement via gene editing could, in theory, be used to make 

precise alterations to the genome of the apple to produce novel improved varieties 

without the need to cross two samples, which requires random genetic recombination 

and the growth and maintenance of hundreds or thousands of progeny. Further, altering 

known causal alleles in apple via gene editing would enable the production of novel 

varieties with higher certainty of improving a desired trait, or to introduce commercially 

viable heritage or wild varieties by making precise allele switches. So far, CRISPR 

knock-out varieties have been generated in apples, successfully producing early 

flowering, albino, and disease resistant phenotypes in plantlettes (Charrier et al., 2019; 
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Dalla Costa et al., 2020; Malnoy et al., 2016; Nishitani et al., 2016; Pompili et al., 2020). 

Indeed, CRISPR genome editing holds tremendous promise for accelerated apple 

improvement, however this technology is still in its early stages in apple and faces 

significant challenges in both delivery and target discovery.  

A significant challenge for apple gene editing is the successful regeneration of 

edited apple tissue. Regardless of which transformation technique is used to create 

gene-edited apple varieties, entire plants must be regenerated from a small number of 

cells with the desired genetic alteration (Dalla Costa et al., 2020). To achieve this, apple 

tissues are cultured on media to enable gene editing, and then must be promoted to 

regenerate into full plants (Malnoy et al., 2016; Nishitani et al., 2016). Unfortunately, 

there are dramatic differences across apple varieties in the ability to regenerate full 

plants from edited tissue (Magyar-Tábori et al., 2010). This challenge is evidenced by 

the fact that nearly all of the successful gene editing experiments in apple have been in 

the variety ‘Gala’ (Dalla Costa et al., 2020; Malabarba et al., 2020; Pompili et al., 2020), 

which appears to be the variety most receptive to tissue regeneration techniques. 

Unfortunately, the biological explanation for this phenomenon is not understood, and is 

cited by some as “the biggest bottleneck in plant genome engineering” (Laforest & 

Nadakuduti, 2022). For apple variety improvement, this poses a significant challenge as 

the editing of only a few apple varieties offers limited potential for apple improvement as 

a whole. Further, it is documented that tissue culture protocols frequently result in 

unintended mutagenesis or changes to the epigenetic landscape (Phillips et al., 1994; 

D. Zhang et al., 2014), although it is unclear whether this is the case for perennial 

species. Taken together, there are significant challenges in tissue culture and 
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regeneration that must be overcome in order to unlock the full potential of gene editing 

in apple. 

Gene editing target discovery is another significant barrier to gene editing in 

apple. The prerequisite to gene editing a crop for a targeted phenotype improvement is 

the discovery of the causal genetic variant or genomic region controlling that phenotype. 

To efficiently and strategically enable gene editing, a target allele must first be identified 

before it can be targeted. This is arguably the most difficult step of the gene editing 

process, and has frequently been cited as the rate limiting step in crop improvement 

(Weigel & Nordborg, 2005). Knowledge of the precise identity of the causal allele is 

required to program the gRNA component of the gene editing system (Jinek et al., 

2012), and without this knowledge the technology cannot be effectively applied. Without 

the discovery of causal genetic variants at near-single nucleotide resolution, gene 

editing technology cannot be used in a meaningful way to improve apple varieties. It is 

clear that efforts leveraging whole genome sequencing, statistical mapping approaches, 

and bioinformatics will be key to discovering gene editing targets necessary for 

accelerated apple improvement in the future.  

 

GENETIC MAPPING IN APPLE 

 

The importance of genetic mapping and causal allele discovery in apple  

 Substantial efforts in agricultural genomics are aimed at connecting phenotypes 

and genotypes. The experimental process of discovering and characterising DNA 

segments that control a particular trait, also known as causal alleles, is often referred to 
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as genetic mapping. The discovery of causal alleles is crucial for both genomics 

informed traditional breeding methods (such as MAS) as well as new plant breeding 

techniques (such as gene editing) (Babu et al., 2004; Jinek et al., 2012). In the case of 

MAS, causal alleles are by definition the best possible genetic markers for screening 

progeny. For gene editing purposes, causal allele discovery and characterization is a 

prerequisite for enabling the technology to be used beyond gene knockouts, which have 

limited scope for the improvement of plant traits. Therefore, a gap in causal allele 

discovery leaves only traditional breeding techniques and limited gene editing 

applications available to those tasked with improving apples. In fact, the “chasm” 

between genomics and breeders in Rosaceous crops was deemed so important that a 

multi-institution international project, RosBreed, received $17.7 million in funding from 

the USDA between 2009 and 2019 with an express objective to characterise causal 

alleles which were coined as “jewels of the genome” (Iezzoni et al., 2020). Without 

genetic mapping and causal allele discovery, scientific and industrial progress in apple 

improvement is likely to remain slow.  

 

Genetic mapping in agriculture 

 The principle of mapping a quantitative trait locus (QTL), a genetic locus which 

correlates with variation of a quantitative trait, in plants was first introduced in the 1920’s 

in bean (Sax, 1923). However, QTL mapping was not a major focus in agricultural 

sciences until the 1980’s, after the discovery of polymerase chain reaction (PCR)-based 

molecular markers, development of appropriate statistical tests, and the advent of 

accessible computer software (Ahmad & Anjum, 2018; Bernardo, 2008; Paterson et al., 
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1988). In the decades following, tens of thousands of QTLs have been reported in 

agricultural plants (Kumawat et al., 2016; Malik et al., 2014; Miura et al., 2011; Peace et 

al., 2019; Wisser et al., 2006). Today, there are two primary approaches used for 

genetic mapping in agricultural crops: linkage mapping in parental cross populations 

and association studies in diversity panels. Both methods have strengths and 

limitations, and both are used by groups aimed at discovering causal alleles in important 

agricultural crops.  

 

Linkage Mapping 

Parental cross populations are commonly used to map genotype-phenotype 

relationships via a method called “linkage mapping”. Parental cross (often called bi-

parental cross) populations are generated by crossing two parent varieties and then 

assessing segregating phenotypes and genotypes in the resulting offspring. Linkage 

mapping is an approach that associates genomic regions with phenotypes, ultimately 

connecting QTLs with traits. The primary strength of linkage mapping is the ability to 

detect rare alleles, which are often commercially valuable (Carbonell-Bejerano et al., 

2019; Chagné et al., 2007; Conner et al., 1998). Because parental cross mapping 

populations are generated from only two individual plants, rare alleles carried by those 

parents will segregate in the progeny and can be detected. However, because these 

populations often take time to establish and consist of a small number of generations, 

particularly in perennial species, there are typically few recombination events within the 

population leading to large blocks of genetic linkage disequilibrium (LD) (Myles et al., 

2009). As a consequence, linkage mapping experiments frequently result in the 
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discovery of QTLs that span hundreds of thousands of nucleotides of DNA sequence 

and contain dozens or even hundreds of genes (S. A. Khan, Chibon, et al., 2012; 

Kostick, Teh, Norelli, et al., 2021). With large regions of the genome associated with 

phenotypes, confidently determining the causal allele within the candidate QTL 

becomes difficult or impossible. From a breeding standpoint, large QTLs derived from 

linkage mapping can be impractical, as transferring multiple QTLs across genotypes 

could require the generation of millions of crosses and is likely to result in unwanted 

genetic drag (Bernardo, 2008). Further, QTLs for a given trait are often specific to the 

population in which they were derived, which makes them useful in some mapping 

populations, but renders them ineffective across diverse populations (Sorkheh et al., 

2008). An additional limitation of linkage studies is that they are limited to querying only 

phenotypes and QTLs that segregate within the parents of the population, which 

restricts the number of phenotypes that can be mapped with a given parental cross 

population. This is particularly troublesome when working with perennial species, as 

mapping populations can take decades to establish (Peace et al., 2019). While linkage 

mapping is frequently sufficient for deriving relationships between phenotypes and large 

genetic regions, this strategy rarely provides the genomic resolution required for 

discovering effective breeding markers or gene editing targets within M. domestica. 

 

Genome-wide association studies (GWAS) in agriculture 

Given the drawbacks of linkage mapping approaches, genome wide association 

studies (GWAS) are becoming increasingly popular in agricultural genomics. GWAS use 

statistical models to associate genetic markers from across the genome with a 
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phenotype of interest in populations of unrelated samples (Schaid et al., 2018). GWAS 

are a powerful approach for identifying causal alleles in crop species, but an 

understanding of the assumptions and limitations of the GWAS method is important.  

To generate statistical mapping power, GWAS must be conducted using 

populations of largely unrelated samples. The use of such populations captures a large 

number of genetic recombination events, leading to higher genomic resolution than can 

be achieved in linkage mapping studies (M. A. Khan & Korban, 2012; Myles et al., 

2009). This is because decreased relatedness and increased recombination in a 

population typically results in decreased LD, the non-random association of alleles at 

different loci. When two or more alleles are in close physical proximity they are more 

likely to be inherited together (or “in LD”), and thus associate, which can contribute to 

suboptimal genomic resolution. However, by capturing historic sexual recombination 

across unrelated individuals over a large number of generations, large haplotypes can 

be broken by recombination, and LD decay can be rapid (S. Kumar et al., 2014; Myles 

et al., 2010; Remington et al., 2001; Tenaillon et al., 2001). GWAS approaches in 

diverse populations exploit rapid LD decay to produce high mapping resolution. When 

LD decay in the mapping population is extremely rapid, genotype-phenotype 

associations from GWAS often lead to associations of variants that are causal or within 

<100 nucleotides from the causal variants (Liao et al., 2021). However, because GWAS 

leverages historical recombination and LD decay, the resolution of association studies 

also relies upon the generation of a high density of genetic markers across the genome, 

which has historically been a major technological challenge.  
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There are numerous statistical models that can be used to perform a GWAS. Of 

the many models, the most common are Mixed Linear Models (MLM) or Multi-Locus 

Mixed Models (MLMM) (Tibbs Cortes et al., 2021; Zhou & Stephens, 2012). MLM 

approaches were developed to account for relatedness within mapping populations, as 

traits that are correlated with population structure often contribute to high false positive 

rates (Yu et al., 2006). MLMs therefore include a population structure matrix (Q), which 

accounts for broad level relatedness among samples, and a sample structure matrix (K) 

that accounts for fine-scale relatedness among samples. MLMMs are similar to MLMs, 

except that the former is capable of considering multiple markers as covariates in the 

model, making it the appropriate model for mapping traits with genetic architectures 

controlled by multiple loci (Tibbs Cortes et al., 2021). There are a number of other 

genetic mapping techniques akin to the GWAS approach, including pool-seq (Kofler et 

al., 2011) and k-mer based designs (Voichek & Weigel, 2020), however MLM and 

MLMMs remain the current dominant GWAS mapping methods.  

The primary limitation of GWAS is the inability to detect genotype-phenotype 

associations when the causal allele is rare or when the phenotype is highly correlated 

with population structure (Myles et al., 2009; Schaid et al., 2018). Even when 

appropriate measures are taken to account for relatedness (use of Q and K matrices), 

traits strongly linked with population structure often cannot be reliably mapped. The 

collection of highly diverse germplasm is another significant limitation of the GWAS 

method, as successful sourcing, planting, and maintenance of highly diverse germplasm 

produces significant logistical and budget challenges. However, the high genetic 

resolution achieved through GWAS approaches makes it a powerful method for 
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pinpointing causal alleles that can serve as future genetic markers and gene editing 

targets.  

  

Recent advancements in genetic mapping in apple  

 The primary focus of most genetic mapping in apple over the last several 

decades has been fruit quality improvement and disease resistance. Firmness, 

storability, colour, acidity, sugar content (Brix), along with fire blight and powdery mildew 

resistance have been traits of great importance to breeders and growers and have 

therefore been the primary traits of investigation in mapping populations (Chagné et al., 

2007, 2019; Chagné, Krieger, et al., 2012; Ding et al., 2022; S. Kumar et al., 2022; 

McClure et al., 2018, 2019; Watts et al., 2021; B. Wu et al., 2020).  

 Hundreds of genetic mapping experiments in apple have documented QTLs, and 

some causal alleles, in the literature. Since causal alleles require more data to discover, 

the number of published QTLs far outnumber published discoveries of causal alleles in 

apple. Perhaps the best documented causal allele in apple lies in the Ma1 gene: a SNP 

in the coding region of a malate channel protein controls variation in malic acid content 

in fruit (Bai et al., 2012). While linkage mapping experiments first described QTL that 

contained the causal allele in the late 1990s (Maliepaard et al., 1998), the mutation was 

not characterised at the nucleotide level until 2012 (Bai et al., 2012). Another instance 

of causal allele discovery in apple comes from a biparental cross population between 

the domestic apple and a wild relative, M. robusta (Peil et al., 2007). This population 

was used to map a QTL containing a fire blight resistance gene, FIRE BLIGHT 

RESISTANCE MALUS ROBUSTA 5 (FBMR5), which has since been cloned, 

transformed into an elite M. domestica genetic background (Fahrentrapp et al., 2013), 
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and tested in the field to confirm the alleles function (Schlathölter et al., 2023). The 

causal allele impacting variation in apple skin colour, a transposable element in the 

promoter region of a MYB transcription factor, has also been successfully mapped and 

characterised in recent years (Y. Ban et al., 2007; Espley et al., 2007; Takos et al., 

2006; L. Zhang et al., 2019). While numerous groups have identified the genes that 

contribute to various traits (X. Jia et al., 2022; Migicovsky et al., 2021; Y. Wang et al., 

2023; X. Zhang et al., 2022), the precise alleles controlling variation in those traits still 

have not been discovered and malic acid, skin colour, and fire blight resistance 

represent some of the only discovered causal alleles in apple to date.  

 Although less than a dozen causal alleles have been discovered in apple, 

significant progress has been made in narrowing the genetic location of causal alleles 

for many important traits. Fruit firmness is an important consumer trait in apple and has 

historically been a breeding target in apple. Linkage mapping experiments have 

suggested that variation in polygalacturonase-1 (PG1), a gene related to pectin 

degradation in the cell wall, is likely responsible for variation in fruit firmness (Chagné et 

al., 2019; S. Kumar et al., 2013). However, genetic mapping studies in different 

populations have produced conflicting results and some have proposed ERF and ACO 

genes as putatively causal (Di Guardo et al., 2017; McClure et al., 2018). Currently, the 

causal allele impacting fruit firmness variation remains to be identified from an 

approximately 1 Mb region on chromosome 10.  Phenolic content is another important 

trait in apple, as phenolic compounds contribute to both the nutritional value and the 

bitterness of apple fruits. Linkage mapping studies investigating phenolic content 

production have suggested a QTL on chromosome 16 as putatively causal (S. A. Khan, 
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Schaart, et al., 2012; McClure et al., 2018). While some research suggests that the 

leucoanthocyanidin reductase (LAR1) gene could harbour the causal allele, a number of 

other genes in close proximity to LAR1 are also strong candidates and the causal allele 

has yet to be confidently resolved on chromosome 16 (S. A. Khan, Schaart, et al., 2012; 

McClure et al., 2019). Significant progress has also made in understanding the alleles 

that control the self-compatibility locus in apple, which is ultimately determined by 

alleles in RNA-coding regions (Sheik et al. 2020). Ripening time, an important trait for 

growers, has also been the focus of multiple genetic mapping studies that have been 

unable to discover the causal allele. Although multiple research teams have converged 

on a signal close to the transcription factor NAC18.1, the causal allele has yet to be 

characterised (M. Jung et al., 2020; Larsen et al., 2019; Migicovsky et al., 2021). In 

each case, genetic markers for these traits have been generated and are used for 

breeding programmes, despite the fact that the markers are not the causal allele for the 

given traits (Migicovsky et al., 2021). While markers correlated with causal alleles still 

hold some breeding value, greater apple improvement can be made by replacing low 

confidence markers with causal alleles.  

Due to the major logistic and technological barriers to establishing genetically 

diverse mapping populations, genetic mapping in apple has largely been done in 

biparental cross populations using linkage mapping techniques (Conner et al., 1998; Di 

Guardo et al., 2017; Peace et al., 2019). Because linkage mapping experiments often 

yield results that are impractical for apple breeding, apple breeding still lags behind 

other crops despite the often stated benefits of genomics informed breeding for long 

lived woody fruit species. In response, multiple groups have mounted efforts to generate 
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genetic diversity panels in the hopes of leveraging genetic recombination for mapping 

experiments (Johnson et al., 1999; S. Kumar et al., 2010; Watts et al., 2021).  

Table 1. List of causal alleles discovered in apple.  
Phenotype Chr Associated gene (or 

suspected) 
Variant Type Reference 

Malic acid 
content 

16 Ma1 SNP Bai et al. 2012 

Fire blight 
resistance 

3 FBMR5 Full gene Peil et al. 2007 

Red skin 
colour intensity 

9 MYB10 Indel Espley et al. 2007 
Y. Ban et al. 2007 

Self-
compatibility  

17 S-RNAse PAV Sheik et al. 2020 

 
Challenges in genetic mapping in apple  

 Genetic mapping in apples faces a number of barriers that make the discovery of 

causal alleles a persistent challenge. First, establishing a highly diverse germplasm of 

sufficient size (hundreds or thousands of samples) for powerful association mapping is 

expensive and laborious. Apple cuttings need to be sourced and transported from 

around the world, grafted to uniform rootstock, planted with replicates and controls, and 

maintained over long periods of time in order to conduct genetic mapping. Efforts of this 

magnitude are rare, but have been achieved by some groups (Gross et al., 2013; M. 

Jung et al., 2020; S. Kumar et al., 2010; Migicovsky et al., 2022). Second, genetic 

mapping studies in apple have long been plagued by a limited number of DNA markers. 

The generation of high density marker datasets has been, and to a large degree 

remains, prohibitively expensive. Without dense marker datasets, GWAS lack power 

and resolution and causal genomic regions go undiscovered even if other aspects of the 

experimental design are strong. Finally, recent studies have demonstrated that plant 

genomes are extraordinarily diverse, containing thousands of structural variants and 
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large repetitive regions (Saxena et al., 2014), which creates serious genotyping and 

bioinformatic challenges. The apple genome is no different: it is highly diverse and 

heterozygous, and has recently undergone a whole genome duplication (Bianco et al., 

2016; X. Sun, Jiao, et al., 2020; Velasco, Zharkikh, Affourtit, Dhingra, Cestaro, et al., 

2010). These features of the apple genome make accurately capturing and quantifying 

genetic variation difficult, and doing so remains a persistent challenge in genetic 

mapping in apple. In the future, it will be crucial to address each of these challenges in 

apple breeding and genomics.  

 
 
MODERN GENOMICS AND DIVERSITY PANELS FOR IMPROVED 

GENETIC MAPPING IN APPLE 

 
Advancements in DNA sequencing technologies  

DNA sequencing data is central to the field of genomics. In recent decades, DNA 

sequencing technologies have experienced significant advancements, revolutionising 

genomics and enabling researchers to explore the genomes of organisms with 

unprecedented resolution and throughput (J. Chen et al., 2023; Nurk et al., 2022). The 

most important improvements in DNA sequencing technology have been the dramatic 

decrease in sequencing costs, the availability of multiple sequencing types, and the 

development of multiplexed library preparations (Jain et al., 2016; Wong et al., 2013).  

Perhaps the most important development in DNA sequencing technology since 

the turn of the millennium has been the substantial reduction in sequencing costs. The 

advent of high-throughput sequencing platforms, commonly known as next-generation 

sequencing (NGS) technologies, has enabled researchers to sequence DNA at a 
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fraction of the cost compared to traditional Sanger sequencing methods. This cost 

reduction has largely democratised genomic research, making large-scale sequencing 

projects more feasible and accessible to a broader scientific community (Mardis, 2017; 

Shendure et al., 2017). 

The field of genomics has also witnessed a rapid expansion in the range of 

available DNA sequencing approaches, offering researchers various options to 

generate genetic data. Short-read sequencing, which involves sequencing short DNA 

fragments in parallel, has been widely adopted due to its high throughput and cost-

effectiveness (Metzker, 2010; Shendure et al., 2017). Chemical advancements allowing 

for paired-end (PE) reads for short-read sequencing have further improved the 

reliability, quality, and alignment of short-read DNA sequencing. In addition to short-

read sequencing, the emergence of long-read sequencing technologies has addressed 

the limitations associated with short reads, such as difficulties in resolving repetitive 

regions and structural variation (J. Chen et al., 2023; Shi et al., 2023). Technologies 

such as Pacific Biosciences' HiFi sequencing and Oxford Nanopore Technologies' 

nanopore sequencing have enabled the generation of long DNA sequencing reads, 

offering improved genome assembly, haplotype phasing, gap reduction, and the ability 

to detect complex genomic rearrangements in plants (Jain et al., 2016; Yue et al., 

2023). Recently, long-read technologies have enabled a telomere-to-telomere assembly 

of the corn genome, in which 5 of 10 chromosomes were covered by a single contig (J. 

Chen et al., 2023). Long-read technologies provide a significant step forward in 

sequencing technologies and genome assembly. Further, these single-molecule based 

approaches do not necessarily require template amplification, meaning they are not 
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prone to bias introduced through copy errors and sequence-dependent bias (Shendure 

et al., 2017).  

To maximise the throughput and cost-effectiveness of DNA sequencing, the 

development of multiplexed library preparations has played a pivotal role, particularly for 

experimental designs requiring short-read sequencing. Multiplexing allows multiple DNA 

samples to be sequenced in a single sequencing run, using unique DNA barcodes 

(index sequences) to demultiplex the resulting reads downstream (Wong et al., 2013). 

This approach has significantly increased the efficiency and scalability of DNA 

sequencing experiments, enabling researchers to simultaneously analyse numerous 

samples and achieve higher sample throughput with reduced budgets (Kircher & Kelso, 

2010). 

Improvements in the availability and quality of DNA sequencing data has had a 

dramatic impact on agriculture, particularly in the area of genetic mapping. Accessible 

DNA data has enabled advancements in the production of DNA breeding markers, 

reference genomes, genetic modification, and gene editing, all of which have 

contributed significantly to accelerated plant breeding and scientific understanding of 

plant biology over the past 20 years. As of 2023, reference genomes (often multiple) 

exist for dozens of agricultural crops like rice, corn, soy, wheat, peach, kiwi, grape, 

sweet basil, garlic, black pepper, and vanilla, (J. Chen et al., 2023; Gonda et al., 2020; 

Hasing et al., 2020; L. Hu et al., 2019; Y. Liu et al., 2020; Shi et al., 2023; X. Sun, Zhu, 

et al., 2020; Yue et al., 2023; A. Zhang et al., 2021; H. Zhang et al., 2022). Continuously 

expanding databases, such as Phytozome (Goodstein et al., 2012) and MaizeGDB 

(Woodhouse et al., 2021), store publicly available DNA sequences that further enable 
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affordable crop genomics research, and play an important role in genomics research. 

The ubiquity of DNA data in modern crop research, particularly in non-model or orphan 

crops (Islam et al., 2022; Mansfeld et al., 2021), is a strong indicator of the value and 

utility of DNA sequencing.  

In terms of causal allele discovery in apple, perhaps the most important impact of 

DNA sequencing availability is the generation of high density genetic markers. Until 

about 2015, SNP arrays containing 20k genetic markers were the primary source of 

genotype data for genetic mapping experiments in apple (Laurens et al., 2018), largely 

due to their affordability. Although SNP arrays were developed with the goal of gaining 

sufficient coverage to conduct powerful mapping studies, even the largest apple SNP 

arrays produced an average marker density of one marker per 1.4 kb (Bianco et al., 

2016). This may have been a considerable improvement on previous satellite marker or 

SNP arrays of the past, but the 480k SNP array still does not provide the resolution 

required to identify causal alleles, considering the extremely rapid LD decay in apple (S. 

Kumar et al., 2014; Leforestier et al., 2015; McClure et al., 2018). The use of modern 

DNA sequencing technologies, however, can nearly exhaustively catalogue variants 

across entire genomes.  For example, a recent study in peach used next-generation 

DNA sequencing to generate a marker density of one marker every 66 bp (Tan et al., 

2021). Affordable whole genome DNA sequencing is key to unlocking the high 

resolution marker datasets that enable causal allele discovery in apple.   
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Advancements in genetic resources for apple 

 As discussed previously, DNA sequencing data holds tremendous value for 

understanding and improving crops, and this fact remains true for apple. However, to 

maximise the value and insight of DNA sequencing data, it is important to have access 

to other genomic resources for a target organism. Fortunately, important genomic 

resources have been publicly published for apple in recent years, including multiple 

reference genomes and a large -omics database.  

Arguably the most important genetic resource for genomics studies is the 

reference genome, which is often the first milestone in enabling genomics-focussed 

research in a crop. The first apple genome, that of the ‘Golden Delicious’ apple variety, 

was published in 2010 (Velasco, Zharkikh, Affourtit, Dhingra, Viola, et al., 2010) and 

since then multiple reference genome builds have been constructed, including the 

‘Honeycrisp’ genome and an apple pan-genome (A. Khan et al., 2022; Peace et al., 

2019; Sun et al., 2020). Publication of the reference genome led to advancements in 

apple genomics including single nucleotide polymorphism (SNP) chip development 

(Chagné, Crowhurst, et al., 2012; Chagné et al., 2019), genotyping-by-sequencing 

datasets (GBS) (Larsen et al., 2018; Migicovsky et al., 2022), and ultimately enabled 

higher-resolution genome wide association studies (GWAS) (Di Guardo et al., 2017; 

Larsen et al., 2018; Noh et al., 2020). The combined application of these genomic 

resources has also led to the implementation of MAS in apple breeding programmes 

(Baumgartner et al., 2016; Chagné et al., 2019; Jänsch et al., 2015; S. A. Khan, Chibon, 

et al., 2012).  
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The Genome Database for Rosacea (GDR) is another key genetic resource for 

apple (S. Jung et al., 2019). The GDR provides access to reference genomes, raw 

sequence data, genetic markers, genome annotation files, various Basic Local 

Alignment Search Tools (BLAST), and genome browsing interfaces. The GDR not only 

organises and stores freely available apple data, but acts as a connective hub for 

various tools that aim to maximise the value and impact of biological data collected by 

individual groups. Databases such as GDR are important for advancing research in 

apple and are an excellent example of the benefits of a collaborative spirit of scientific 

inquiry.   

  

Canada’s Apple Biodiversity Collection (ABC)  

 Canada’s Apple Biodiversity Collection (ABC) is among the world's most diverse 

apple germplasm collections, and is an invaluable source of genetic information for 

genetic mapping and variety improvement in apple. Located at the Agriculture and Agri 

Food Canada (AAFC) Kentville Research Station, in Nova Scotia, Canada, (45.071767, 

−64.480466), the orchard contains 1,119 apple varieties, which includes 78 unique 

accessions from the wild progenitor species, M. sieversii. The ABC contains apple 

varieties sourced from the United States Department of Agriculture (USDA) Plant 

Genetic Resources Unit apple germplasm collection (Geneva, New York, USA), the 

Nova Scotia Fruit Growers’ Association Cultivar Evaluation Trial, and breeding material 

from the AAFC Kentville breeding program. The orchard is planted in a randomised 

block design, with each accession grafted onto M.9 rootstock and planted in duplicate. 
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The immense genetic diversity combined with the design of the orchard makes the ABC 

among the most powerful genetic mapping populations ever established in apple.  

The ABC has already been the focus of phenomics and genomics research in 

recent years. Historically, the collection of high quality phenotype data from large 

populations has been a major challenge for perennial crop species, including apple, 

resulting in what has been cited as the “phenotyping bottleneck” (Furbank & Tester, 

2011), which limits the ability to conduct high powered experiments (Burleigh et al., 

2013). Importantly, a large phenomics effort was recently undertaken within the ABC to 

address the phenotyping bottleneck (Watts et al., 2021). Tremendous amounts of 

human labour, aided by advances in phenotyping equipment such as penetrometers 

and cold storage facilities, have resulted in a comprehensive phenomic characterization 

of the ABC (Watts et al., 2021). This wealth of data is not only essential for genetic 

mapping, but also for advancing our understanding of phenotypic variation of apple, 

historical improvement of apple, and relationships between wild and domesticated 

apples.  

Given the unique challenges in genetically mapping traits in apple (outlined 

above), research leveraging the ABC holds great potential to generate impactful insights 

into apple biology, domestication and accelerated variety improvement. The ABC is the 

source germplasm for the research contained within this thesis, and is used to advance 

apple improvement, agricultural genomics, and plant biology more broadly.  
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CONCLUDING REMARKS 

At the time of this writing, gene editing technology appears to offer the greatest 

potential for rapid apple variety improvement and numerous advancements in the field 

of gene editing have made its application in apple a real possibility in the near future. 

Therefore, the overall goal of this thesis is to move the current state of knowledge closer 

towards enabling gene editing in apple. Of the major challenges that make gene editing 

difficult in apple, developing a deeper understanding of apple phenotypes and 

discovering the causal allele(s) that control them are arguably the most obstructive. The 

ABC is uniquely suited to address these challenges. The present thesis presents a 

series of studies aimed at quantifying multiple apple phenotypes and revealing the 

identity of causal alleles that control them. Causal alleles discovered in this thesis will 

serve as gene editing targets once other important discoveries are made in plant 

science. Other research groups will make progress in areas of apple tissue culture, 

plant regeneration, and gene editing protocols, each of which represents an 

independent challenge that must be addressed to enable effective gene editing in apple. 

In the near future, causal alleles from this work will serve as gene editing targets that 

can be integrated with discoveries from other groups to provide breeders with gene 

editing capabilities that hold potential to dramatically accelerate the speed at which 

apple varieties can be improved and improve apple agriculture as a whole.   
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RESEARCH OBJECTIVES AND HYPOTHESES 

Project overview  

 A deeper understanding of apple phenotypes and the genetics controlling those 

phenotypes is crucial for timely and meaningful variety improvement in the near future. 

In chapter 2, I conduct an experiment to understand how the apple has changed since 

domestication, and where the apple phenome is likely to progress in the future. Using 

comprehensive phenomic data, I analyse the trait differences between the domesticated 

apple and its primary wild progenitor, and observe recent trends in apple phenotypes 

over a 200 year period of breeding. In chapter 3, I leverage whole genome sequencing 

(WGS) across pooled DNA samples to scan the genome for signals of genetic 

differentiation between groups of apples that show dramatically different ripening times, 

phenolic content production, and softening during storage. Following chapter 3, it 

becomes clear that whole genome sequencing across many samples in the ABC is 

likely necessary to determine the causal allele(s) controlling plant traits. Therefore, in 

chapter 4 I conduct a genetic mapping experiment for ripening time by sequencing the 

genomes of 97 diverse apple varieties to high depth and conducting a GWAS, while 

setting the stage for future mapping experiments that can leverage advancements in 

low pass sequencing and imputation. In chapter 5, I conclude with a discussion of the 

overall results from this thesis, my scientific opinions and learnings during the project, 

and outline future directions for genetic mapping and improvement in apple. Overall, my 

thesis describes phenotypic diversity and change in apple, improves our understanding 

of the apple genome, lays the groundwork for large-scale mapping experiments in the 
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future, and moves the scientific state of knowledge closer to enabling gene editing for 

apple improvement. 

 

Thesis objective  

The present thesis aims to improve the current understanding of apple phenotypes and 

the genetic mechanisms that control them.  

 

Research objectives 

 
Chapter 2 

The objective of chapter 2 is to quantify the differences in ten phenotypes between the 

domesticated apple (M. domestica) and its primary wild progenitor (M. sieversii), and 

evaluate how the apple has changed during recent apple improvement.  

 

Hypotheses:  

● Phenology traits will differ between domesticated and wild progenitor apple 

species.  

● Domesticated apples will be heavier, less acidic, and less phenolic.  

● Phenotypic effects of apple domestication over the last 200 years will be 

detectable: apple cultivars released in more recent years will be less phenolic, 

have higher soluble solid content, and retain firmness in storage better than older 

cultivars.  
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Chapter 3 

The objective of chapter 3 is to discover the causal allele(s) responsible for ripening, 

softening, and phenolic content in apple (M. domestica) using a pool-sequencing 

approach.   

 

Hypotheses:  

● The causal allele for ripening will be within the coding region of NAC18.1 on 

chromosome 3.  

● The causal allele for softening (percent firmness lost during storage) will be 

within the coding region of ERF (MDP0000855671) located on chromosome 10.  

● The causal allele for phenolic content will be within the coding region of LAR1 on 

chromosome 16.  

 

Chapter 4 

The objective of chapter 4 is to discover and characterise the causal allele(s) 

responsible for ripening time in apple by leveraging whole genome sequencing from a 

diverse reference panel.  

 

Hypothesis:  

● The causal allele for ripening time in apple will be in the region immediately 

upstream of NAC18.1 on chromosome 3.  
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Chapter 2: Phenotypic divergence between the wild and cultivated 

apple 

 

The contents of this chapter are published as: 

Davies, T., Watts, S., McClure, K., Migicovsky, Z., & Myles, S. (2022). Phenotypic 

divergence between the cultivated apple (Malus domestica) and its primary wild 

progenitor (Malus sieversii). PLoS One, 17(3), e0250751. 

https://doi.org/10.1371/journal.pone.0250751 

 
 
Rationale 

If the domesticated apple is to experience meaningful phenotype improvement in the 

future, it is important to quantify and understand apple phenotypic change over time. 

Here, I quantify the phenotypic relationship between wild and domesticated apple 

species and the phenotype changes that have occurred in the domesticated apple over 

time. This analysis will demonstrate where the phenome of the apple has been 

historically and what trends have likely shaped the apple phenotype in the recent past. 

Further, it provides insight into the potential of wild apple germplasm as a source of 

valuable alleles for agricultural improvement. Perhaps most importantly, a deeper 

understanding of apple phenotypes helps inform researchers and breeders about which 

phenotypes could potentially be altered in the future via breeding or gene editing. 

Overall, the first chapter of this thesis aimed to accurately quantify the phenotypic 

changes that have occurred since apple domestication and during recent centuries of 

breeding.   
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Abstract  

An understanding of the relationship between the cultivated apple (Malus domestica) 

and its primary wild progenitor species (M. sieversii) not only provides an understanding 

of how apples have been improved in the past, but may be useful for apple 

improvement in the future. We measured 10 phenotypes in over 1000 unique apple 

accessions belonging to M. domestica and M. sieversii from Canada’s Apple 

Biodiversity Collection. Using principal components analysis (PCA), we determined that 

M. domestica and M. sieversii differ significantly in phenotypic space and are nearly 

completely distinguishable as two separate groups. We found that M. domestica had a 

shorter juvenile phase than M. sieversii and that cultivated trees produced flowers and 

ripe fruit later than their wild progenitors. Cultivated apples were also 3.6 times heavier, 

43% less acidic, and had 68% less phenolic content than wild apples. Using historical 

records, we found that apple breeding over the past 200 years has resulted in a trend 

towards apples that have higher soluble solids, are less bitter, and soften less during 

storage. Our results quantify the significant changes in phenotype that have taken place 

since apple domestication, and provide evidence that apple breeding has led to 

continued phenotypic divergence of the cultivated apple from its wild progenitor species.  

 
 
Introduction 

 
A detailed understanding of crop wild relatives (CRWs) is crucial for the future of 

agricultural production and sustainability. CRWs represent unique genetic pools that 

could provide important traits such as disease and pest resistance and drought 
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tolerance to agriculturally important crop species (Cowan et al., 2020; Seiler et al., 

2017). As the world's population continues to grow and the effects of climate change 

become more pronounced, crops will face new and more severe challenges (Lesk et al., 

2016; Luck et al., 2011). Wild relatives of crops offer a rich source of genetic diversity 

that can be used to develop new varieties that are better adapted to changing 

environmental conditions (Brozynska et al., 2016). By conserving and utilizing the 

genetic resources found among CRWs, food production systems can be built to be 

more resilient, sustainable, and able to meet the demands of a growing global 

population. 

 

CRWs of apple hold significant value for the future of apple agriculture. Wild relatives of 

the apple possess a wealth of genetic diversity, including traits such as disease 

resistance, nutritional content, and tolerance to environmental stress (Kost et al., 2015; 

Smanalieva et al., 2020; Volk et al., 2015). By incorporating the genes from these wild 

relatives into apple varieties, breeders can develop apples that are better adapted to 

changing climates and more resistant to pests and diseases (Migicovsky & Myles, 

2017). Additionally, wild apple relatives can be used to conserve the genetic diversity of 

apples, which is essential for maintaining the long-term health and sustainability of the 

apple industry. Further, a thorough understanding of apple wild relatives could provide 

insights into the evolution of the domesticated apple and the patterns of artificial 

selection over the last few millennia. Finally, a comprehensive comparison of the 

domesticated apple and its wild ancestors could reveal valuable information about 

specific phenotype structure and trait heredity, which would be informative for 
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downstream genetic mapping efforts. By characterizing the wild relative species of the 

apple, a more accurate vision of both what apples have been historically and what 

apples could be in the future can be formed.  

 

The domesticated apple (Malus domestica) belongs to the genus Malus, which consists 

of 30-55 interfertile species that grow primarily in temperate climates. Archaeological 

evidence suggests that apples have been cultivated for at least 3,000 years (Zohary & 

Hopf, 2000) and that they have had immense cultural, religious, culinary and economic 

importance for centuries (Cornille et al., 2014; Ferree & Warrington, 2003; Juniper & 

Mabberley, 2006). Genomic evidence suggests that as apples were transported west 

into Europe along the Silk Road from Central Asia, hybridization and introgression from 

multiple Malus species created the modern cultivated apple (M. domestica) (Cornille et 

al., 2014; Duan et al., 2017). While there has been introgression from multiple species, 

including Malus sylvestris and Malus baccata, to the M. domestica genome, Malus 

sieversii of Kazakhstan is widely recognized as the primary ancestor of the cultivated 

apple (Duan et al., 2017; X. Sun, Jiao, et al., 2020; Velasco, Zharkikh, Affourtit, Dhingra, 

Viola, et al., 2010).  

 

Today, the cultivated apple is the 3rd most produced fruit crop in the world (FAOSTAT, 

2020). Accordingly, apple fruit quality and phenology traits have been a major focus for 

breeding programs around the world (M. Jung et al., 2020; McClure et al., 2018; 

Urrestarazu et al., 2017), and both wild and domesticated germplasm are routinely 

evaluated for their potential use by apple breeders (Gottschalk & van Nocker, 2013; M. 



 
45 

A. Khan et al., 2014). Traits such as precocity, harvest date and flowering date have 

practical implications for apple producers, as these traits influence investment timelines, 

crop quality and fruit damage risk. Weight, firmness, sugar content, acidity and phenolic 

content are important considerations for processors and consumers, who have specific 

preferences for these quality attributes when choosing to purchase apples (Cliff et al., 

2016). Many of these fruit quality traits have been targets for improvement in breeding 

programs around the world, and current genetic mapping efforts remain focused on 

these phenotypes (Iezzoni et al., 2020; McClure et al., 2019; B. Wu et al., 2020). 

Cost-effective trait improvement in apples is critical since the investment costs of 

growing apple trees are high. Apple trees are large plants with a long juvenile phase: 

new trees often only start bearing fruit 5 years into the life cycle, requiring growers to 

invest heavily before generating revenue. Thus, producers typically grow only 

thoroughly evaluated and historically successful apple varieties. As a result, a small 

number of well-established varieties dominate the cultivated population. For example, in 

2019 over 50% of all commercially produced apples in the US consisted of only 4 apple 

cultivars (WAPA, 2018). The global population of apples is dominated by a small 

number of elite varieties, despite an immense source of genetic and phenotypic 

diversity available for apple improvement (Migicovsky, Gardner, et al., 2021). 

Decreased diversity in apples, and agricultural crops more broadly, has resulted in an 

increased interest in the use of crop wild relatives (CWRs) for agricultural improvement. 

CWRs offer genetic and phenotypic diversity that can be leveraged in the breeding of 

novel cultivars with desirable traits such as disease resistance or flesh colour (McCouch 

et al., 2013). By 1997 the world economy had gained approximately $115 billion in 
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benefits from the use of CWRs as sources of resistance to environmental change and 

disease (Pimentel et al., 1997). An understanding of how fruit quality and phenology 

vary within the cultivated apple’s wild relatives is essential to future apple improvement.  

 

Phenotyping large and diverse populations of plants is labour intensive and frequently 

results in a  “phenotyping bottleneck” (Furbank & Tester, 2011), leaving crop 

researchers without powerful fruit quality data for analysis. Recently, comprehensive 

phenotyping of Canada’s Apple Biodiversity Collection (ABC) generated measurements 

for fruit phenotypes in a collection of more than 1000 wild and cultivated apple 

accessions (Watts et al., 2021). In the present work, we explored ten phenotypes from 

the ABC and determined the degree to which the cultivated apple differed from its 

primary wild progenitor, M. sieversii, and how cultivated apples have changed over the 

past 200 years of breeding and improvement. 

 
Materials and methods 

 
Phenotype data 
 
The phenotype data analysed here were collected from Canada’s Apple Biodiversity 

Collection (ABC) and were part of previously published work (Watts et al., 2021). Briefly, 

the ABC is an apple germplasm collection located at the Agriculture and Agri-Food 

Canada (AAFC) Kentville Research Station in Nova Scotia, Canada (45.071767, -

64.480466). The ABC contains 1119 unique accessions of apples planted in duplicate 

on M.9 rootstock in an incomplete randomised block design. The apple accessions in 

the ABC consist of accessions from the United States Department of Agriculture 



 
47 

(USDA) Plant Genetic Resources Unit apple germplasm collection in Geneva, NY, USA; 

commercial cultivars from the Nova Scotia Fruit Growers’ Association Cultivar 

Evaluation Trial; and diverse breeding material from AAFC Kentville. The orchard 

consists largely of M. domestica accessions, but also contains 78 M. sieversii 

accessions.  

 

Phenotype data from the ABC were collected in 2016 and 2017 (Watts et al., 2021). 

Here we focus on 10 phenotypes most relevant for assessing how apples have changed 

during domestication, breeding and improvement. Precocity was measured as a score 

of 1-4, indicating year of bloom; 1 (2014), 2 (2015), 3 (2016) and score 4 indicated that 

the tree had not yet bloomed as of 2016. Flowering date was measured in 2016 as the 

date in Julian days when the youngest wood displayed >80% of flowers at king bloom 

stage. Since it often took more than one day to harvest the entire orchard, harvest date 

was recorded in Julian days as the Monday of the week of harvest. Firmness was 

measured as the average firmness in kg/cm2 at harvest of five apples measured using a 

penetrometer. Weight was measured as the average weight in grams of five apples at 

harvest. Acidity was measured as the malic acid content in mg/mL of combined juice 

from five apples measured using titration. Soluble solids were measured as °Brix of the 

juice of five apples using a refractometer. Phenolic content was measured as µmol 

GAE/g of fresh weight. Percent acidity change was measured by subtracting the acidity 

at harvest from the acidity after 90 days storage and then dividing by the acidity at 

harvest. Percent firmness change was measured by subtracting the firmness at harvest 
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from the firmness after 90 days storage and then dividing by the firmness at harvest. 

Sample sizes for each phenotype are listed in Table 1.  

 

Table 2-1. Sample sizes by phenotype.  

 

Phenotype M. domestica M. sieversii 

Precocity 797 76 

Flowering Date 768 74 

Harvest Date 647 59 

Firmness 644 59 

Weight 644 58 

Acidity 626 56 

Soluble Solids 644 56 

Phenolic Content 399 9 

% Change in acidity during storage 449 19 

% Change in firmness during storage 409 27 

 

Data analysis 

Principal components analysis (PCA) was conducted using a scaled and centred matrix 

of the 10 phenotypes listed in Table 1 using the prcomp() function in R 4.0.2 (R Core 



 
49 

Team, 2020). A Wilcoxon signed-rank test was used to determine whether the 

phenotypes and PC values differed significantly between wild and cultivated apples. 

 

A Pearson correlation was used to assess relationships between phenotypes and the 

release year of cultivated apples. Where appropriate, the significance threshold was 

Bonferroni-corrected to account for 10 comparisons. Data visualisation was performed 

using the ggplot2 R package (Wickham, 2016).  

 
Results  

 
PCA of the 10 phenotypes revealed modest overlap between cultivated and wild apples 

in phenotypic space (Fig. 2-1A, 2-1B). Wild and cultivated apples were significantly 

different along PC1 (W = 53893, p = 3.56 x 10-26), PC2 (W = 13066, p = 2.07 x 10-17 ) 

and PC3 (W = 39203, p = 0.0002; Fig. 2-1C).  
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Fig 2-1. PCA of ten phenotypes in wild (N = 79) and cultivated apples (N = 801). A) PC1 

vs PC2. B) PC1 vs PC3. The proportion of the variance explained by each PC is shown 

in parentheses on each axis. C) The difference between wild and cultivated apples for 

PCs 1, 2 and 3 are shown as violin plots. P values from a Wilcoxon test comparing PC 

values between cultivated and wild apples are shown for each of the first three PCs.  

 

To visualise and assess the difference between cultivated and wild apples for each 

individual phenotype, we produced density plots to visualise each species’ distribution 



 
51 

for each phenotype and tested whether phenotypes differed between the two species 

(Fig. 2-2).  



 
52 
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Fig 2-2. Overlapping density plots of 10 phenotypes comparing values from wild and 

cultivated apples. The phenotype associated with each plot is shown along the X axis. 

The W and Bonferroni-corrected P values report the results of performing a Wilcoxon 

rank sum test of the difference between the phenotypic distributions of wild and 

cultivated apples.  

 

Wild and cultivated apples differed significantly for 6 of the 10 phenotypes tested, 

including precocity (W = 23838, p = 0.021), flowering date (W = 48984, p = 7.52x10-24), 

harvest date (W = 30482, p = 2.99x10-13), weight (W = 36255, p = 1.44x10-31), acidity 

(W = 8480, p = 5.1x10-9), and phenolic content (W = 352, p = 5.59x10-5). We found that, 

on average, cultivated apples produce flowers for the first time 21% (0.38 years) earlier 

than wild apples. Within a growing season, cultivated apples flower 3 days later, and are 

harvested 15 days later than wild apples. Cultivated apples are also 3.6 times heavier, 

43% less acidic, and 68% lower in phenolic content than their wild progenitors. In 

comparison, wild and cultivated apples did not differ significantly for firmness, soluble 

solids, or changes in acidity or firmness during storage.  
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Fig 2-3. Phenotype values of cultivated apples as a function of their release year with a 

comparison to values in their wild ancestor, M. sieversii. Phenotypes include phenolic 
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content (A), firmness change during storage (B), flowering date (C), and soluble solids 

(D). Values for cultivated apples are blue, and the values observed for M. sieversii are 

represented in yellow as a violin plot on the left side of each plot. The R and P values 

from a Pearson correlation between phenotypic values and release year are shown 

within each scatter plot.  
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Fig 2-4. Phenotypes of cultivated apples as a function of their release year with a 

comparison to the ancestral state. Phenotypes include acidity change during storage, 

acidity, precocity, harvest date, firmness, and weight. Cultivated apple scores for each 

phenotype are shown in blue, and the ancestral state of each phenotype is represented 

in yellow as a density distribution of values from M. sieversii. The R and P values from a 

Pearson correlation between phenotypic values and release year are shown within each 

scatter plot. 

 

To visualize phenotypic change within cultivated apples over time, apples’ phenotypes 

are displayed as a function of their release year (Fig. 2-3 & Appendix I-I). We found 

significant correlations with release year for phenolic content (R = -0.364, p = 2.34x10-

6), change in firmness during storage (R = 0.222, p = 0.00265), flowering date (R = -

0.172, p = 0.00247), and soluble solids (R = 0.123 , p = 0.0469) and determined that 

cultivated apples have shifted closer to the mean of wild apples for flowering date and 

firmness change, but further from the mean of wild apples for phenolic content and 

soluble solids. 

 
Discussion  

 
Apples have been cultivated for over 3000 years, but because vegetative propagation 

has been practised for 2000 years, it has been suggested that only about 100 

generations have elapsed since apple domestication (Spengler, 2019). Despite this 

relatively short window for apple improvement, we found that cultivated apples are 

nearly entirely phenotypically distinct from their primary wild progenitor, M. sieversii (Fig. 
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2-1). Phenotypic differences are frequently used as an approximate measure of 

relatedness, and the separation in principal component space observed here is in 

agreement with genomic studies that have shown significant differentiation between the 

genomes of M. domestica and M. sieversii (Duan et al., 2017; Migicovsky, Gardner, et 

al., 2021). It is worth acknowledging that we observed some overlap between wild and 

cultivated apples in phenotypic space. The PCA performed here made use of only 10 

phenotypes, and it is possible that more differentiation would be observed with more 

measures of the apple phenome. Further, each variable in PCA should ideally capture 

an independent biological feature of apples. However, some phenotypes analysed here 

are correlated, such as harvest date and firmness (Watts  et al., 2021), and their 

variation may be driven by the same biological feature (Migicovsky et al., 2021). 

Therefore, interpreting our PCA as a quantification of the degree of phenotypic 

differentiation between cultivated and wild apples should take these caveats into 

consideration. 

 

We found significant differences between wild and cultivated apples for several 

phenology traits including precocity, flowering date, and harvest date (Fig. 2-2). 

Cultivated apple trees flower and bear fruit at a younger age. Due to the long juvenile 

phase of apple trees, plants with the ability to bear fruit earlier in their life cycle are 

desirable for growers because revenue is generated earlier. It is therefore possible that 

precocity has been selected for during apple improvement.  
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Flowering date was 17% (3 days) later in cultivated apples than wild apples. Frost 

during blossoming can cause loss, damage or reduced marketability of fruits (Eccel et 

al., 2009), making flowering time an important consideration for growers when planting 

orchards. Additionally, apples with later flowering dates tend to be firmer (Nybom et al., 

2013; Watts  et al., 2021), and firmer apples are preferred by consumers (Harker et al., 

2008). The later flowering date in cultivated apples could therefore be a by-product of 

selection for firm apples. Similarly, selection for firm apples may explain why cultivated 

apples were harvested 15 days later than wild apples, since harvest date and firmness 

are strongly correlated (Nybom et al., 2013; Watts  et al., 2021). It is well established 

that harvest date is a reliable predictor of fruit firmness, and these two phenotypes may 

be regulated by a common molecular pathway (Migicovsky et al., 2021). Thus, 

preference for firm fruit could be directly impacting the selection for apples with later 

harvest dates.  

 

We found significant differences between cultivated and wild apples across multiple fruit 

traits including weight, acidity, and phenolic content (Fig. 2-2). Cultivated apples are 

3.6x heavier than wild apples, in agreement with previous comparisons between these 

two species (S. Kumar et al., 2014). Consumers prefer large, visually appealing fruit 

(Carew & Smith, 2004; Skreli & Imami, 2012), so selection for large fruit size may 

explain our observation. We also found that cultivated apples are 43% less acidic than 

wild counterparts. Acidity contributes to the sour taste of apples, and apple preference 

is heavily influenced by acid/sugar ratios (Hampson et al., 2000). Given this 

relationship, it is not surprising that cultivated apples, which are primarily consumed as 
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fresh fruit (Lutes, 2019), have lower acid than wild apples but do not differ in soluble 

solid content. Finally, cultivated apples have, on average, 68% less phenolic content 

than wild apples. Phenolic compounds, which offer nutritional benefits (D. Lin et al., 

2016), are partially responsible for the enzymatic browning that occurs when apple flesh 

is exposed to oxygen (Holderbaum et al., 2010). Browned flesh is visually unappealing 

and typically results in negative effects on flavour, making apples that resist browning 

more appealing to producers and consumers (Holderbaum et al., 2010). In fact, the only 

genetically modified apple variety on the market today, ArcticTM Apples, was designed to 

silence genes related to enzymatic browning and was advertised as “the original 

nonbrowning apple” (Stowe & Dhingra, 2020). The human aversion to apple browning 

has likely contributed to the decline in phenolic content in cultivated apples, despite the 

nutritional benefits of such compounds. In addition, some evidence suggests that fruit 

size impacts polyphenol accumulation in apples (Busatto et al., 2019), which could help 

explain why we observe lower phenolic content in cultivated apples.   

 

According to the present analysis, many phenotypes of cultivated apples have 

dramatically changed since divergence from the primary progenitor species, M. 

sieversii. These differences represent phenotypic separation that could be leveraged in 

the improvement of cultivated apples, and emphasizes the potentially functional 

diversity provided by CWRs. While wild apples from this investigation may not offer 

improved fruit quality phenotypes that are currently attractive to consumers, they hold 

phenotypic variation that could be important for apple improvement in the future. For 

example, breeders could exploit the high phenolic content of wild apples to improve the 
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nutritional quality of cultivated apples. Further, traits from wild apple varieties could 

potentially benefit the cider industry, which values high acidity and phenolic content 

(Mattila et al., 2006).  

 

Analysis of cultivated apple phenotypes as a function of release year revealed changes 

over the past 200 years in phenolic content, change in firmness during storage, 

flowering date, and soluble solids (Fig. 2-3). In particular, as shown previously (Watts  et 

al., 2021), phenolic content has decreased over time. Phenolic content is associated 

with bitter taste (Soares et al., 2013), and modern varieties therefore likely taste less 

bitter on average than older varieties. Although selection for decreased bitterness could 

explain our observation, the relationship between low phenolic content and decreased 

flesh browning could also explain why modern cultivated apples tend to have less 

phenolics (Toivonen, 2006). In comparison, wild apples tend to have higher phenolic 

content, indicating that cultivated varieties are diverging from the ancestral state. 

Similarly, more recently released apple cultivars soften less during storage than older 

cultivars, diverging from the ancestral state. The extended storage and long-distance 

shipment of apples has become increasingly routine over the past several decades, and 

selection for reduced softening during storage may explain why firmness retention has 

improved over time. Storage and transport have also been key targets in tomato 

breeding (Kramer & Redenbaugh, 1994), and the demand for fruit that performs well 

during extended storage and transport is unlikely to subside.  
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Flowering date is an important trait for apple production, and varies widely across the 

genus Malus (Gottschalk & van Nocker, 2013). Later flowering apple trees are less 

likely to be impacted by frost damage (Eccel et al., 2009) and more likely to be firm 

(Watts  et al., 2021), which is preferred by consumers. Despite the understood benefits 

of growing apples with later flowering dates, we found that more recently released 

varieties had earlier flowering dates. The trend towards earlier flowering varieties could 

indicate that selection for other traits has indirectly impacted flowering date. 

Alternatively, growers could be preferring earlier flowering varieties in an attempt to 

manage fruit ripening times during the harvest season. Cultivated varieties are trending 

towards the ancestral state of earlier flowering dates, which suggests that wild apples 

could offer valuable genetic material for breeding earlier harvested varieties.  

 

Finally, we found that more modern cultivated apples are only slightly higher in soluble 

solid content. Previous investigations have reported that firm apples tend to have higher 

sugar content (McClure et al., 2018; Migicovsky et al., 2016; Nybom et al., 2013), so our 

observation that modern apple varieties tend to have higher soluble solids content 

(SSC) may be at least partially be driven by recent selection for increased firmness. 

Further, a number of studies have suggested that the sugar content of apples is a key 

factor affecting consumer preference (Cliff et al., 2016; Harker et al., 2008). Although 

SSC is only a modest predictor of perceived sweetness (Aprea et al., 2017), consumer’s 

preference for sweet apples could underlie the upward trend in soluble solid content 

seen in modern cultivated apples.  
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Several caveats of the present analysis are worth noting. First, we only considered one 

of the multiple progenitor species of M. domestica here (X. Sun, Jiao, et al., 2020). 

Therefore, only a fraction of the ancestry of the cultivated apple is captured by M. 

sieversii, and a more inclusive pool of ancestral species would yield a more 

comprehensive comparison of wild and cultivated apples. Second, it is unknown how 

representative the current sample of wild apples is of the broader M. sieversii 

population. It is possible that the wild apple varieties within the ABC represent only an 

unrepresentative subset of M. sieversii, and thus do not accurately capture the diversity 

of the species. Further, there has been evidence of gene flow between cultivated and 

wild apples (Cornille et al., 2013), which could mean that the wild species from the 

current investigation have experienced gene introgression from cultivated trees, and 

thus do not accurately represent the wild progenitor. Finally, the relatively small sample 

size in several comparisons limited the power of some of our analyses (Table 3-1).  

 

Our work demonstrates that cultivated and wild apples have diverged phenotypically, 

and that hundreds of years of apple improvement have shaped the variation in fruit and 

phenology we observe among cultivated apples today. Wild apples offer potentially 

valuable pools of genetic material that may be helpful for apple improvement. Future 

comprehensive phenomic evaluations, including metabolomic and transcriptomic 

analyses, across diverse wild apple species will help further assess the degree to which 

the apple’s wild relatives may contribute to improving apple cultivar development.  
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Conclusions 

 
There are many difficulties associated with finding suitable populations for the 

comparison of cultivated and wild relative species, particularly in long lived woody 

perennial crops such as apple. However, by leveraging the vast diversity and large size 

of the ABC, the present study provides a meaningful comparison of the cultivated apple 

and its primary wild progenitor. According to the present analysis, the domesticated 

apple and its primary wild progenitor are distinguishable across multiple phenotypes. 

This analysis revealed that cultivated apples are significantly heavier, less acidic, and 

have lower total phenolic contents than their wild ancestor. Further, cultivated apples 

flower later, have later harvest dates, and bear fruit within fewer growing seasons than 

wild apples. Historical analysis revealed that more modern cultivated apple varieties are 

higher in soluble solids, have lower total phenolic content, flower earlier, and retain 

more firmness during storage in comparison to older varieties. Overall, this analysis 

revealed that the phenome of these two species of apple have significantly diverged, 

and that historical breeding trends are detectable in this population.  

 

Importantly, this analysis detected recent trends in apple phenotypes, particularly 

increases in firmness retention, decreases in total phenolic content, earlier flowering 

dates, and increases in soluble solids. Patterns observed in these phenotypes indicate 

there may have been significant selection for these phenotypes in the last 200 years. 

This conclusion is supported by the fact that many contemporary apple breeding 

programs continue to target improvements in these phenotypes today (Rob Blakey, 

personal communications, 2021, Kevin Brandt, personal communications, 2021, Erin 
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Wallich, personal communications, 2021). The discovery of the alleles controlling these 

traits could therefore offer a path to rapid phenotype improvement and provide value to 

the apple industry. In the future, it may be wise to put efforts towards discovering the 

causal DNA sequences controlling these traits, as such discoveries could aid apple 

breeders and benefit our agricultural system.  

 
Data availability  

 
All data presented are freely available to the public via Watts et al. (Watts  et al., 2021). 

Statistical analyses presented here can be found on GitHub at 

https://github.com/MylesLab/Wild_vs_cultivated.  
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Chapter 3: Pool-seq of diverse apple germplasm reveals candidate 

loci underlying ripening time, phenolic content, and softening.  

 

The contents of this chapter are published as: 

Davies, T., & Myles, S. (2023). Pool-seq of diverse apple germplasm reveals candidate 

loci underlying ripening time, phenolic content, and softening. Fruit Research, 3(1). 

https://doi.org/10.48130/FruRes-2023-0011 

 
Rationale 

Previous genetic mapping efforts from our research group and others indicate 

that GBS data does not offer the marker density and genomic resolution required to 

detect the causal allele(s) controlling apple phenotypes (Larsen et al., 2018; McClure et 

al., 2018). Because the GBS data in the ABC population is relatively sparse 

(approximately 1 variant per 2kb), it is unlikely that causal alleles are to be found among 

the GBS markers. Rather, GBS markers are likely to be in linkage with causal alleles 

but offer little additional information as to the specific identity or location of the allele(s). 

In all but the most fortunate of circumstances, in which a GBS marker happens to be the 

causal variant, our GBS marker dataset will not enable the confident detection of causal 

alleles at the nucleotide level in the ABC. Therefore, increased genetic resolution in the 

ABC population needs to be generated to move closer to discovering causal alleles. 

The aforementioned mapping attempts have made it clear that a precise mapping of 

causal alleles for key traits will remain difficult without the resolution provided by whole 

genome sequencing (WGS) data. Pooled sequencing approaches are cost-effective and 
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provide high-density marker data, essentially saturating the genome with markers. For 

these reasons, the pool-sequencing approach was selected as the method of choice in 

this chapter. 

 

This chapter aims to scan the genome for causal alleles controlling three agriculturally 

important fruit phenotypes: ripening time, softening, and total phenolic content. Of the 

three phenotypes, ripening time has been the focal point of a substantial body of work 

(M. Jung et al., 2020; Larsen et al., 2019; McClure et al., 2018; Urrestarazu et al., 

2017). In previous mapping experiments it was hypothesised that a coding variant in the 

first exon of NAC18.1, a transcription factor, controlled harvest date (Migicovsky et al., 

2021; Watts et al., 2023). However, functional experiments by our group determined 

that not only were there multiple coding sequence variants impacting the protein 

structure of NAC18.1, but that two coding region haplotypes at NAC18.1 produced no 

significant differences in transgenic tomato fruit ripening (Migicovsky et al., 2021). 

Therefore, the question addressed in the following chapter is: Is the causal variant 

controlling ripening time in the coding region of NAC18.1 or in a nearby non-coding 

region? To address this question, WGS data is leveraged to examine the genome in 

high resolution. In this chapter, I employ a WGS pool-sequencing approach with the 

goal of discovering the causal alleles for ripening time, fruit softening, and total phenolic 

content.  

 

Abstract 
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Ripening time, softening, and phenolic content are phenotypes of considerable 

commercial importance in apples. Identifying causal genetic variants controlling these 

traits not only advances marker-assisted breeding, but it is also an essential step for the 

application of gene editing technologies in apples. To advance the discovery of genetic 

variants associated with these phenotypes, we examined allele frequency differences 

between groups of phenotypically extreme samples from Canada’s Apple Biodiversity 

Collection using pooled whole genome sequencing (pool-seq). We sequenced pooled 

DNA samples to an average read depth of 150x and scanned the genome for allelic 

differentiation between pools. For each phenotype, we identified >20 million genetic 

variants and identified numerous candidate genes. We identified loci on chromosomes 3 

and 4 associated with ripening time, the former suggesting that regulatory variants 

upstream of a previously identified transcription factor NAC18.1 may be causal. Our 

analysis identified candidate regions on chromosomes 4, 8, and 16 associated with 

phenolic content, and suggested a cluster of UDP-Glycosyltransferase family genes as 

candidates for polyphenol production. Further, we identified regions on chromosomes 

17 and 10 associated with softening and suggest a Long-chain fatty alcohol 

dehydrogenase family gene as putatively causal. 

 

Introduction 
  

Apples (Malus x domestica Borhk) are an ancient crop species, with evidence of 

domestication dating to at least 3,000 years ago (Zohary & Hopf, 2000). Today, apples 

are the world's third most valuable fruit crop worth $77 billion annually (FAOSTAT, 
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2021), and they are widely recognized as an important source of sustenance and 

nutrition for the human population. Continuous improvement of apple varieties is 

important for the sustainability and success of the industry, but breeding improved apple 

varieties remains a difficult challenge. Apple trees are highly heterozygous and require 

expensive maintenance, resulting in a costly breeding process. Further, when breeding 

for fruit quality traits, new varieties cannot be assessed until trees have matured through 

the juvenile phase, which can take 4-7 years. These biological characteristics make 

apples an excellent candidate for the use of molecular breeding tools that can 

accelerate breeding cycles and reduce the costs of bringing new apple varieties to 

market. 

Molecular breeding tools offer valuable strategies for breeders to reduce 

breeding costs and more efficiently improve crops. For complex traits controlled by 

numerous small effect loci, the use of genome-wide genetic markers is now widely used 

in a genomic selection (GS) framework (Heffner et al., 2009). For traits controlled by a 

small number of large effect loci, however, marker assisted selection (MAS) using a 

small number of markers, can significantly decrease costs during apple variety 

improvement (Edge-Garza et al., 2015; Luby & Shaw, 2001). Ideally, genetic markers 

used for MAS are causal alleles that control traits targeted for improvement. However, 

many genetic markers used for apple breeding are only linked to desirable traits based 

on genetic mapping studies but have not been shown to be causal (Migicovsky et al., 

2021; Nybom et al., 2013). Thus, there remains uncertainty about the degree to which 
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markers used for MAS in diverse apple germplasm accurately predict phenotypes and 

are effective in reducing breeding costs. 

In recent years, molecular techniques such as gene editing have become 

valuable tools for crop improvement, allowing researchers to make targeted changes to 

DNA sequences in elite germplasm in numerous crops (H. Jia et al., 2017; Svitashev et 

al., 2015; F. Wang et al., 2016). While a number of barriers must be overcome before 

genome editing can be effectively applied for apple cultivar improvement, the approach 

holds tremendous promise for apple cultivar improvement, possibly through gene 

knock-outs (Charrier et al., 2019) or targeted allele swaps mediated via the application 

of base editors (Malabarba et al., 2020). In most cases, gene editing will require the 

identification of causal genetic variants for commercially important traits, however few 

have been previously identified. To date, genetic mapping studies in apple have 

generally lacked the sample size, diversity and marker density required to identify 

causal genetic variants at nucleotide resolution. The discovery of causal genetic 

variants underpinning important agricultural traits thus continues to be a challenge in 

apple, and ultimately limits the ability of breeders to make improvements in key 

agricultural traits via genome editing technologies. 

To advance apple improvement via gene editing, it is critical to identify causal 

alleles controlling important agricultural traits. Ripening time, phenolic content, and 

softening are three important fruit traits in apple as they impact labor management, fruit 

nutrition, and fruit storage, respectively. Numerous genetic mapping studies have 

investigated these traits in the past (Bink et al., 2014; Chagné, Krieger, et al., 2012; 



 
72 

McClure et al., 2019; Migicovsky et al., 2021; Nybom et al., 2013) and they are likely to 

remain target traits for apple improvement in the future. Therefore, an understanding of 

the genetic architecture and causal genetic variants underlying these traits is important 

for future apple variety improvement. 

Numerous attempts have been made to map the causal alleles underpinning 

ripening time, phenolic content, and softening in apple. Multiple genome wide 

association studies (GWAS)(M. Jung et al., 2020; Larsen et al., 2019; Migicovsky et al., 

2016; Urrestarazu et al., 2017) and functional genomics evidence (Migicovsky et al., 

2021) suggest that NAC18.1 (MD03G1222600), a transcription factor on chromosome 

3, is a key gene involved in ripening time variation in apple. However, the causal 

allele(s) in or around NAC18.1 responsible for ripening time variation remain unknown. 

Similarly, the causal allele(s) for phenolic content in apple remain elusive, despite a 

number of investigations proposing leucoanthocyanidin reductase (LAR1), on 

chromosome 16 (Chagné, Krieger, et al., 2012; S. A. Khan, Chibon, et al., 2012; 

McClure et al., 2019) as a candidate gene for phenolic content production. While QTLs 

associated with fruit softening have been identified on multiple chromosomes, and the 

genes PG1 and ERF have been either functionally validated or proposed as putatively 

causal in determining the storability of apple fruits (Di Guardo et al., 2017; McClure et 

al., 2018; B. Wu et al., 2021), causal alleles for softening also remain unknown. Despite 

numerous attempts through both linkage mapping and GWAS, the precise locations of 

causal genetic variants underlying these three traits remain unknown. 
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The discovery of causal alleles for key traits in apple has remained challenging in 

large part due to the costs of gathering high quality phenotype and genotype data 

across sufficiently diverse populations. With the rapid expansion of high-throughput 

DNA sequencing in recent years, whole genome sequencing of pooled DNA samples 

has become a powerful cost-effective approach to identify allele frequency differences 

between populations that differ in phenotype. By pooling DNA samples from extremes 

of a phenotype distribution, genomic regions with extreme allele frequency differences 

between pools are identified as loci that potentially harbour causal genetic variants for 

the phenotype of interest. This method has been successfully used to identify causal 

loci in non-model organisms such as geese, watermelon, and cannabis (Dong et al., 

2018; S. Ren et al., 2021; Welling et al., 2020). In apple, pool-seq approaches have 

been used to investigate the genetic basis of acidity, weeping, and internal browning 

traits (S. Ban & Xu, 2020; Dougherty et al., 2018; S. Kumar et al., 2022). Here, we use a 

pool-sequencing approach (Kofler et al., 2011) to evaluate allele frequency differences 

between sub-populations of apples from a diverse population that vary markedly for 

ripening time, polyphenol production, and softening. Allele frequency differences and a 

modified chi-squared test (Spitzer et al., 2019) were used here to scan the genome for 

regions with the largest allele frequency differences between groups, and genes in 

these regions were curated and discussed. 
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Materials and methods 

Pool selection and DNA sequencing 

DNA was extracted from leaf tissue collected from Canada’s Apple Biodiversity 

Collection (ABC) in Kentville, Nova Scotia, Canada, as described in Migicovsky et al 

(Migicovsky et al., 2021). For each phenotype examined here (ripening time, phenolic 

content, and softening), 50 M. domestica accessions from the ABC with the most 

extreme phenotypic values were selected from each tail of the phenotype distribution 

(Fig. 3-1), forming two groups of 50 accessions (except in cases where DNA extraction 

failed) for each phenotype. DNA from accessions within each of the selected groups 

was combined into a pool, with DNA from each sample represented in equimolar 

concentration. DNA extraction and pooling was performed by Platform Genetics Inc. A 

total of six equimolar DNA pools were formed: late harvested (N= 50), early harvested 

(N= 49), high phenolic content (N= 50), low phenolic content (N= 49), low softening (N= 

50), high softening (N= 50). For phenotypic selection, apple phenotype measurements 

from 2017 measured by Watts et al.(Watts, Migicovsky, McClure, et al., 2021) were 

used. Ripening time was measured as the Julian day of the year in which the fruit were 

deemed ripe and ready for harvest. Phenolic content was measured as micromolar of 

gallic acid equivalents per gram of fresh weight (μmolGAE/g) via a Folin–Ciocalteu 

assay. Softening was measured as the percent change in firmness between harvest 

and 3 months post-storage, as measured by a penetrometer. Details of the germplasm 

used, the experimental design of the orchard, and the phenotyping protocols are 

provided in Watts et al (Watts, Migicovsky, McClure, et al., 2021). 
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         Pooled libraries were prepared and whole genome sequencing was performed by 

the McGill Genome Centre. DNA libraries were prepared using a Lucigen PCR-free 

NxSeq kit. Each pool was sequenced on a single lane of Illumina NovaSeq6000 S4 v1.5 

PE150 in high output mode. 

  

Sequence data pre-processing, mapping and variant calling 

         FastQ files from each pool were aligned to the Golden Delicious double haploid 

reference genome (Daccord et al., 2017) using the MiniMap2 alignment tool (H. Li, 

2018). Binary Alignment Map (BAM) files were produced following the GATK Best 

Practices guidelines (https://gatk.broadinstitute.org). Mapped BAM files were coordinate 

sorted and indexed with Samtools sort and index functions(H. Li & Durbin, 2009). 

Sequencing duplicates were marked with Picard MarkDuplicates 

(http://broadinstitute.github.io/picard/). Samtools was used to produce 3 mpileup files, 

one for each of the three phenotypes. The Popoolation2 pipeline (Kofler et al., 2011) 

was used to produce three sync files from each mpileup file (Appendix II-I). To reduce 

the number of false positive variants, only variants supported by a read depth of 50-

500x in each pool with a combined alternate allele count of at least 10 were considered 

for downstream analyses (Ries et al., 2016; Welling et al., 2020). 

Allele frequency estimation, candidate region identification, and gene model curation 

         Allele frequency estimates (AFe) for each pool were generated for each site in 

the genome using the snp-frequency-diff.pl script within Popoolation2 (Kofler et al., 



 
76 

2011). Delta-AFe values were calculated as the absolute difference of AFe at each 

variant between pools. AFe and delta-AFe values were calculated and analyzed with 

the poolSeq package in R (Taus et al., 2017). Allele counts at each position were used 

to conduct a modified chi-squared test (CST) in R using the adapted.chi.squared 

function within the ACER package (Spitzer et al., 2019). Delta-AFe values and CST p-

values for each variant site were visualised using the qqman package in R (D. Turner, 

2018). Candidate regions for each phenotype were defined as regions of the genome 

within 20 kb of the top and bottom 0.001% of delta-AFe and CST p-values, respectively. 

Gene annotations were produced by Daccord et al (Daccord et al., 2017).  

  

Gene Ontology (GO) Enrichment analysis 

To identify candidate genes involved in each phenotype, protein coding genes 

within 20 kb of variants within both the 0.001% lowest CST p-values and 0.001% 

highest delta-AFe values for each phenotype were curated and reduced to a unique set 

(MD IDs) (Table S2,S3,S4). This resulted in 21, 385, and 321 candidate genes for 

ripening time, phenolics, and softening, respectfully. Genome wide annotations as well 

as annotations for genes associated with top hits from each phenotype were imported 

using the topGO package in R (Alexa & Rahnenfuhrer, 2020). Gene enrichment in 

biological process ontology was tested using the topGO package with algorithm 

parameters ‘weight01’, to account for GO hierarchy, and ‘fishers’ as the test statistic. 
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Results 

Phenotype distributions 

Ripening time, phenolic content, and softening trait values were each roughly 

normally distributed in the ABC population, with the phenolic content distribution 

showing an extended tail containing apples with high phenolic content (Fig. 1). Ripening 

time in the population ranged from 225-290 Julian days, with a mean ripening time of 

261 Julian days. The early and late pools ranged from 225-236 (mean 229) and 282-

290 (mean 289) Julian days, respectively. The mean value for total phenolic content in 

the ABC population was 4.34 μmolGAE/g. The low and high phenolic content pools had 

phenolic content values that ranged from 0.3-2.2 (mean 1.4) and 6.1-27.9 (mean 10.0) 

μmolGAE/g, respectively. On average, apples lost about a third of their firmness during 

storage: change in firmness within the population ranged from -67.7% to 13.4%, with a 

mean change in firmness of -37.8%. The high and low softening pools had percent 

change in firmness values that ranged from -67.7 to -51.1% (mean -56.2%) and -19.7-

13.4% (mean -10.9%), respectively. 
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Fig. 3-1. Phenotype distributions for ripening time, phenolic content, and softening. 

Green and orange bars represent accessions selected for pooled sequencing. 

  

Genome sequencing and variant calling 
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DNA sequencing produced a combined 2.8 billion reads comprising more than 

864 billion base pairs of DNA sequence. Mapping rates for the libraries varied from 

95.96 to 96.54%. Read depth for pools ranged from 128.4-184.6x (Table S1). Average 

read depth across all six pools was 150.4x (Appendix II-II). After filtering for positions 

with read depths within the acceptable read depth range (50-500x), we obtained 81%, 

82% and 81% coverage of the apple reference genome for ripening time, phenolic 

content, and softening, respectively. The mean number of variants called for each 

phenotype was 25,506,587 (Table S1). 

  

Candidate region identification 

The highest observed delta-AFe value for ripening time was 0.923 found on 

chromosome 4. Chromosomes 3, 4, 7, and 16 harbored variants with delta-AFe values 

greater than 0.8 (Fig. 3-2a). Two notable peaks, on chromosomes 3 and 4, were 

identified by delta-AFe and CST analysis (Fig. 3-2a,b). The signal on chromosome 3 

consists of a 76.7 kb region, from 30,656,169 to 30,732,938 bp (Fig. 3-2c). Within this 

window, 259 variants had delta-AFe values > 0.8. The variant with the highest local 

delta-AFe (0.907) was an A/G SNP at bp 30,702,958, approximately 4.7 kb upstream of 

a NAC transcription factor previously associated with ripening time(Larsen et al., 2019; 

Migicovsky et al., 2016; Migicovsky et al., 2021). The same variant scored the lowest 

local CST p-value (1.81x10-126). The second peak on chromosome 4 spanned 

approximately 10 kb (Fig. 3-2d). This signal contains a C/A SNP located at 1,482,075 
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bp, with the single highest delta-AFe (0.923) and lowest CST p-value (9.39x10-127) for 

ripening time. This variant window contained 12 variants with delta-AFe values > 0.8. 

None of the variants from the peak on chromosome 4 were within annotated gene-

coding regions, however the peak is within 15 kb of the coding region of a histidine 

kinase gene (MD04G1013100) and a methionine tRNA ligase gene (MD04G1013000). 

Twenty-one unique genes, 9 of which had associated GO terms, were within candidate 

regions for ripening time. We report significantly enriched GO terms (Table S2) for 

genes in these regions, which included metabolic processes and phosphatidylinositol 

phosphate biosynthetic processes. 
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Fig. 3-2 Manhattan plots for genome wide delta-AFe and chi-squared test p-values for 

ripening time. a Delta-AFe values and b chi-squared test p-values from variants 

detected across the genome. c-d Zoom-in plots for signals on chromosome 3 and 

chromosome 4. Yellow bars indicate gene coding regions. Red bar outlines the 

NAC18.1 coding region. The red dot is the D5Y SNP, a putatively causal non-

synonymous mutation previously identified in the NAC18.1 gene (Migicovsky et al., 

2021) . “R” on the X-axis of the genome-wide plots indicates the “random” chromosome 

containing contigs that remain unanchored to the reference genome. 

  

For phenolic content, four candidate regions were identified: chromosomes 4, 7, 

8 and 16 harboured variants with delta-AFe values greater than 0.7 (Fig. 3-3a). The 

variant with the single highest delta-AFe between pools (0.784) was a C/T SNP at 

3,857,519 bp on chromosome 4 (Fig. 3-3c), within the 3’-UTR region of a 

Tetratricopeptide repeat (TPR)-like superfamily protein gene (MD04G1034700). The 

signal on chromosome 4 is also within 11.5 kb of two Transcriptional factor B3 family 

protein (MD04G1034500, MD04G1034600) genes and a glutathione peroxidase 2 

(MD04G1034400) gene. A signal on chromosome 8 was identified (Fig. 3-3d) and 

contained a T/C SNP at 28,726,105 bp with the smallest p-value (9.8x10-30) for phenolic 

content and a delta-AFe of 0.766. There were 7 variants with delta-AFe values above 

0.7 in this region on chromosome 8. Of these variants, none were within coding regions 

of genes, and the nearest gene was Ubiquinol-cytochrome C reductase hinge protein 

gene (MD08G1223400) approximately 8.9 kb downstream. Another signal on 
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chromosome 8 was identified containing 5 variants with delta-AFe values above 0.7, the 

highest of which is 0.77 at 11,325,518 bp. This group of variants does not fall within any 

annotated gene coding regions, but is within 5 kb of suspected coding regions of two 

genes of unknown function (MD08G1122700 and MD08G1122800). Two candidate 

regions on were detected on chromosome 16 (Fig. 3-3a,b): a single variant with the 

highest delta-AFe (0.77) on chromosome 16, and a group of variants forming a 49 kb 

window (3,839,333-3,889,319 bp) approximately 1.1 MB downstream of the 

aforementioned variant. The single variant was a T/C SNP at 2,727,461 bp, 46 bp 

upstream of an unannotated gene (MD16G1038200). Within the large window of 

variants on chromosome 16 (Fig. 3-3e), a C/A SNP at 3,864,330 bp had the smallest p-

value (4.9x10-29) and had the highest local delta-AFe (0.75). This variant was the only 

variant in the region with a delta-AFe greater than 0.7, while 7 other variants had delta-

AFe > 0.6. While the SNP with the strongest signal in this region was not within the 

coding region of any gene, it was 668 bp upstream of a UDP-Glycosyltransferase 

superfamily protein (UGT) gene (MD16G1054500). Additionally, multiple variants within 

the candidate region on chromosome 16 were within coding sequences of 

Tetratricopeptide repeat (TPR)-like superfamily protein (MD16G1054700) and a UGT 

protein (MD16G1054400). Additionally, another 4 UGT genes (MD16G1054300, 

MD16G1054400, MD16G1054500, MD16G1054600) are within 7.1 kb of the variant 

with the highest delta-AFe at this locus. 358 unique genes, 188 of which had associated 

GO terms, were within candidate regions for phenolic content. We report the top 10 GO 
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enrichment terms (Table S3), which included menaquinone biosynthetic processes, 

heme A biosynthetic processes, and polyamine metabolic processes. 
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Fig. 3-3 Manhattan plots of delta-AFe and chi-squared test p-values for phenolic 

content. a Delta-AFe values and b chi-squared test p-values from variants detected 

across the genome. c-d Zoom-in plots for signals on chromosome 4, chromosome 8, 

and 16. Yellow bars indicate protein coding regions. 

  

Candidate regions for apple softening during storage were identified on 

chromosomes 6, 10, 12, and 17 (Fig. 3-4a,b). The strongest signal for softening was on 

chromosome 17 (Fig. 3-4d), and the variant with both the lowest p-value (1.95x10-43) 

and highest delta-AFe (0.807) for softening was a G/A SNP at position 9,760,456 bp on 

chromosome 17. This signal spanned an approximately 1.6 kb region, from 9,758,808-

9,760,456 bp. Eight other variants in this region had delta-AFe values > 0.7. This signal 

overlaps with a gap (approximately 5.5 kb) of variants (Fig. 3-4d) as reads from the high 

softening pool, on average, failed to satisfy the minimum read depth cut off (average 

depth 38x) in this region, while reads from the low softening pool aligned to this region 

with sufficient depth (average depth 52x). The coding regions of a Sterile alpha motif 

(SAM) domain-containing protein (MD17G1113700), vacuolar protein sorting 11 

(MD17G1113900), as well as two other unannotated genes (Table S4) were within 10 

kb of the signal on chromosome 17. The variant on chromosome 6 most strongly 

associated with softening was a C/T SNP at 30,803,965 bp, had a delta-AFe of 0.734 

and a p-value of 7.8x10-25. The signal in this region spans roughly 12.9 kb (30,803,965-

30,816,936 bp) (Fig. 3-4c). The nearest gene to this signal is approximately 18 kb 

downstream and encodes a 5S RNA (MD06G1167800). 321 unique genes, 158 of 



 
87 

which had associated GO terms, were candidate regions for softening. We report the 

top 10 GO terms for enrichment for these genes (Table S4), which included 

mitochondrial fission, regulation of DNA-templated transcription, leaf senescence, and 

cold acclimation. 
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Fig. 3-4 Manhattan plots for genome wide delta-AFe and chi-squared test p-values for 

apple softening. a Delta-AFe values and b chi-squared test p-values from variants 

detected across the genome. c-d Zoom-in plots for signals on chromosome 6 and 

chromosome 17. Yellow bars indicate protein coding regions. 

Discussion 
  

We aimed to identify candidate genes and putatively causal variants 

underpinning three economically important apple phenotypes: ripening time, phenolic 

content, and softening. Here, we used a pool-seq approach (Kofler et al., 2011), a cost-

effective WGS method that has been successfully employed to identify putatively causal 

alleles for phenotypes in other plant species (Dong et al., 2018; Ranavat et al., 2021; 

Welling et al., 2020), to scan the genome for regions of genetic differentiation between 

groups of samples with extreme phenotypes. Candidate regions discussed below were 

defined as regions of the genome within 20 kb of the strongest signals from our 

genome-wide scan for each trait. 

  

Further evidence that NAC18.1 impacts ripening time in apple and a novel signal on 

chromosome 4 

There is strong evidence that ripening time in apple is controlled by a 

transcription factor on chromosome 3, NAC18.1 (M. Jung et al., 2020; Larsen et al., 

2019; Migicovsky et al., 2021), the homolog of the well-studied NOR ripening gene in 
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tomato. Numerous variants in the coding region of this gene have been discovered in 

apple (Migicovsky et al., 2021), however, no strong evidence of causal variant(s) 

underlying ripening time has been revealed to date. Our pool-seq approach successfully 

identified a candidate locus encompassing the NAC18.1 region on chromosome 3. The 

candidate region for ripening time is a roughly 80 kb window of variants showing high 

delta-AFe values (Fig. 3-2c). While hundreds of high delta-AFe variants exist within the 

coding region of nearby genes, including the previously identified nonsynonymous SNP 

D5Y within NAC18.1 (Fig. 3-2c)(Migicovsky et al., 2021), the most extreme delta-AFe 

and CST p-values for ripening time did not lie within the coding region of NAC18.1. The 

strongest signal within the chromosome 3 window was 4.6 kb upstream of the gene 

NAC18.1, which suggests that the causal variants for ripening time may be regulatory 

variants impacting the expression of NAC18.1. Thus, our results suggest that ripening 

time in apple is likely impacted by genetic changes in regulatory elements that affect the 

expression of NAC18.1 rather than non-synonymous changes to its coding region. Our 

findings here are similar to those in peach, in which genomic variation approximately 10 

kb upstream of a NAC transcription factor has been found to influence the ripening 

period of peach fruit through modulated gene expression (Tan et al., 2021). 

Additionally, a 4 kb gap in variant detection appears approximately 20 kb 

upstream of NAC18.1 (Fig. 3-2c). Read depths from the early ripening time pool fell 

below the depth threshold in this region (see Methods), resulting in a segment within the 

chromosome 3 signal in which no variants were called (Fig. 3-2c). This gap in variant 

calling was caused by low sequence coverage in the early harvest pool, but not in the 
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late harvest pool. This observation suggests that a deletion of sequence upstream of 

the NAC18.1 locus may result in earlier harvested apples. This is consistent with 

observations in peach in which a tandem repeat variant is associated with elevated 

NAC expression in early-ripening accessions (Tan et al., 2021). Similar gaps in delta-

AFe values were identified in a pool-seq approach examining cannabinoid synthesis in 

cannabis and suggest that presence/absence variants may be involved in that 

phenotype (Welling et al., 2020). A recent study demonstrated that the 

presence/absence of TEs can impact the regulation of transcription factors, ultimately 

influencing plant traits like flower colour (Y. Tian et al., 2022). Taken together, our 

results suggest genetic variation in the regulatory region of NAC18.1 is likely playing a 

key role in ripening time in apple. 

We also detected a candidate region on chromosome 4 for ripening time, which 

represents a novel locus for this phenotype. The strongest signal in this region does not 

include variants within coding regions of any nearby genes, but could indicate variants 

impacting gene regulation. The closest gene to the top hit on chromosome 4 is a 

histidine kinase (MD04G1013100), belonging to a family of multi-functional proteins that 

often play a role in signal transduction and cellular reception in plants (Hoang et al., 

2021). Given that apple ripening is regulated in large part by cell signalling and plant 

hormones (Busatto et al., 2017; Seymour et al., 2013), it follows that variation in or near 

genes related to signal transduction and reception may lead to variation in ripening time. 

A recent RNA-seq study determined that genes on chromosome 4 likely impact ripening 

period in apple (Nawaz et al., 2021). The top hit on chromosome 4 in the present work 
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is approximately 0.5 Mb downstream of a Homeodomain-like superfamily gene 

(MD04G1008300) that has been previously been linked to the early ripening phenotype 

in a mutant Hanfu apple variety (Nawaz et al., 2021). Because this Homeodomain-like 

superfamily gene is over 0.5 Mb downstream from our strongest signal on chromosome 

4, it remains unclear if this gene and the signal detected in the present work are linked. 

The signal on chromosome 4 was unexpected given that numerous previous 

genetic mapping studies of apple ripening time (Larsen et al., 2019; McClure et al., 

2018, 2019) identified only a single peak near NAC18.1 on chromosome 3 but never 

yielded a signal on chromosome 4 for ripening time. The signal on chromosome 4 was 

likely detected in the present study due to the higher marker density obtained here 

compared to previous studies that relied on relatively low-density genotyping-by-

sequencing (GBS) data. The variants that make up the signal on chromosome 4 fall in a 

region of the genome that lacked markers completely in previous mapping studies 

(Appendix II-III). While this signal could be an artefact of erroneous read mapping or 

reference genome misconstruction, we suggest that this novel candidate region for 

apple ripening time on chromosome 4 is worthy of future investigation. 

  

  

Signals for phenolic content production detected across the genome 

Multiple candidate genomic regions for total phenolic content were detected, 

including signals on chromosomes 4, 7, 8 and 16 (Fig. 3-3a,b). This suggests a complex 
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genetic architecture underlying total phenolic content involving numerous loci, 

consistent with both the way in which the phenotype was measured and the complexity 

of phenolic content production in apple fruit. Total phenolic content captures the total 

reductive potential of apple tissue and therefore measures the collective concentration 

of many phenolic compounds. Given that the measure of total phenolic content captures 

the cumulative reductive capacity of multiple secondary metabolites, it is unsurprising 

that we detect numerous candidate regions for this phenotype across the genome. 

The candidate region containing the variant with the largest delta-AFe value for 

total phenolic content was detected on chromosome 4. This signal is a single SNP (Fig. 

3-3c) in the 3’-UTR region of a (TPR)-like superfamily protein gene (MD04G1034700). 

TPR motifs facilitate protein-protein interactions and TPR-containing proteins have long 

been implicated in complex plant processes and plant hormone signalling networks 

including cytokinin and gibberellin responses as well as ethylene biosynthesis 

(Greenboim-Wainberg et al., 2005; Z. Lin et al., 2009; Schapire et al., 2006). Because 

the production of phenolic compounds is often linked to stress and various 

environmental cues, it is possible that this (TPR)-like superfamily protein plays a role in 

hormone signalling networks that influence polyphenol production. 3’-UTR regions are 

untranslated regulatory regions of mRNA, and 3’-UTR sequences can impact 

polyadenylation, translation efficiency, and stability of mRNAs (Srivastava et al., 2018). 

Therefore, while the exact role of TPR-like superfamily protein remains unclear, the 

variant detected here may be influencing translational regulation of the (TPR)-like 

superfamily protein and downstream total phenolic content production. 
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We also detected two candidate regions for total phenolic content on 

chromosome 8 (Fig. 3-3a,b). The first region, located at approximately 11.3 Mb, 

consisted of multiple variants with high delta-AFe values. However, none of these 

variants fell within protein coding regions and the nearest coding regions are 

unannotated. It is possible that one or both of the unannotated genes in the region are 

involved in phenolic content production, but without proper annotation, their involvement 

in phenolic content production remains uncertain. The second region on chromosome 8, 

located at approximately 28.7 Mb, consists of a peak of variants centered around a T/C 

SNP at 28,726,105 bp, which had the smallest CST p-value for the phenolic content 

phenotype. The nearest gene to this signal is a Ubiquinol-cytochrome C reductase 

hinge protein gene (MD08G1223400), approximately 8.9 kb downstream of the top SNP 

in the region. By measuring total phenolic content with the Folin–Ciocalteu assay, it is 

assumed that redox potential from substrates other than polyphenols is approximately 

constant across cultivars. However, if there is variation in reducing substrates other than 

polyphenols, then signals in the genome contributing to variance in non-polyphenolic 

substrates may be detected instead. Given that Ubiquinol-cytochrome C reductase 

encodes a key enzyme in the oxidative phosphorylation process within the 

mitochondria, the signal we detected at this locus may be picking up on genetic 

variation contributing to the amount of Ubiquinol-cytochrome C reductase produced in 

the cell rather than genetic variation contributing to phenolic content production. To our 

knowledge, while many other attempts to map phenolic content production in apple 

have been made (Chagné, Krieger, et al., 2012; S. A. Khan, Schaart, et al., 2012; S. 
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Kumar et al., 2022; McClure et al., 2019), only one has provided evidence for the 

involvement of chromosome 8 (S. A. Khan, Chibon, et al., 2012), suggesting that at 

least one of the signals found on chromosome 8 could be an artefact of measuring other 

reducing compounds in apple. Further investigations in discovering genes underlying 

phenolic content in apple would be wise to use phenotyping methods such as liquid 

chromatography–mass spectrometry or high-performance liquid chromatography, which 

can accurately quantify specific polyphenols.  

Two candidate regions were also detected on chromosome 16 (Fig. 3-3a,b). The 

first region consisted of a cluster of variants around 3.8 Mb (Fig. 3-3e) and the second 

of a single variant at 2.7 Mb. The former cluster, a 50 kb window of variants with high 

delta-AFe and CST p-values (Fig. 3-3e), is roughly centred around a C/A SNP at 

3,864,330 bp. Notably, there are 4 annotated UGT gene coding regions within 7.1 kb of 

this SNP. UGTs belong to a large gene family that produce glycosides by catalysing the 

transfer of sugar subunits between molecules (Lairson et al., 2008). Some UGTs are 

understood to catalyse the final steps in producing phenolic compounds in apple 

including phloridzin, quercetin glycosides, cyanidin pentoside, and kaempterol 

glycosides (Jugdé et al., 2008; S. A. Khan, Schaart, et al., 2012). One of the UGTs in 

this region is UDP-glycosyltransferase 89B1, also known as flavonol 3-O-

glucosyltransferase, which catalyses the glucosylation of flavonols (Lim et al., 2004) and 

contributes to the production of diverse phenolic compounds (Holton & Cornish, 1995). 

Further, flavonol 3-O-glucosyltransferase has been previously implicated in the 

production of anthocyanin in strawberries and apple (Given et al., 1988; Ju et al., 1995). 
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Moreover, decreased expression of flavonoid 3-glucosyltransferase was found to be 

associated with lower anthocyanin production in sweet cherry (Prunus avium), a closely 

related species (Qi et al., 2022). This is consistent with previous linkage mapping 

studies in apple that have suggested UGTs as candidate genes for phenolic content 

production in apple (S. A. Khan, Chibon, et al., 2012). Taken together, the strong signal 

detected in this cluster of UGT genes suggest that UGTs on chromosome 16 may play 

a role in phenolic compound production in apple fruit. Further, variation impacting one or 

more UGTs on chromosome 16 could explain the QTL for kaempferol glycosides and 

phloridzin observed by Khan et al. (2012). We propose that UGTs on chromosome 16 

represent strong candidate genes for polyphenol production in apples.  

The variant with the single highest delta-AFe value on chromosome 16 was a 

T/C SNP at 2,727,461 bp. This SNP is approximately 1.1 Mb upstream of the UGT 

cluster discussed above, but only 189 kb upstream of LAR1, a gene identified by 

multiple previous studies as a strong candidate gene for phenolic content production in 

apple (Chagné, Krieger, et al., 2012; S. A. Khan, Chibon, et al., 2012; McClure et al., 

2019). In other plant species, LAR1 is directly involved in the production of catechin, a 

precursor component of procyanidins (Tanner et al., 2003). McClure et al. (McClure et 

al., 2019) suggested that LAR1 may be involved in the production of many apple 

polyphenols after detecting signals near LAR1 for multiple individually measured 

phenolic compounds. Linkage mapping experiments have also implicated a QTL 

hotspot on chromosome 16 for phenolic content that includes LAR1 (Chagné, Krieger, 

et al., 2012; S. A. Khan, Chibon, et al., 2012). Khan et al. (S. A. Khan, Schaart, et al., 
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2012) provided evidence that differences in LAR1 expression, rather than coding region 

variation, was responsible for differences in polyphenol production among apple 

accessions. We did not detect a strong signal in the LAR1 region in this study, however 

this is not the result of low sequence read depth in the LAR1 region. It is possible that 

the SNP detected here is impacting a regulatory element and influencing LAR1 

expression, but given the distance between this variant and LAR1 (189kb), we view this 

explanation as improbable. Instead, it seems more likely that this variant is picking up a 

signal related to another gene in the region, perhaps a transcription factor, that acts 

upstream of LAR1, as postulated by Khan et al (S. A. Khan, Schaart, et al., 2012). 

Despite the relatively high marker density employed in this experiment, the precise 

location of variants on chromosome 16 affecting phenolic content in apple remain 

unclear. 

Multiple loci implicated in apple fruit softening 

We found signals of allelic differentiation between softening pools on 

chromosomes 5, 6, 10, 16, and 17 (Fig. 3-4a,b). Evidence of loci on multiple 

chromosomes affecting softening is consistent with the hypothesis that fruit firmness is 

multigenic(Bink et al., 2014). Of the signals detected in the present study, those on 

chromosomes 6 and 17 were the strongest (Fig. 3-4a,b). The candidate region on 

chromosome 6 spans roughly 13 kb, with the nearest protein coding sequence 18 kb 

downstream. As none of the variants with the highest AFe values from this region were 

within the coding sequences of nearby genes, this signal may be detecting genetic 
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variation in regulatory elements. While there are numerous genes within 20 kb in either 

direction of this signal (Table S4), a group of three Tetratricopeptide repeat (TPR)-like 

superfamily proteins (MD06G1168400, MD06G1168500, MD06G1168800) about 20 kb 

downstream are noteworthy. Proteins with TPR domains are common in plant hormone 

signalling (Kou et al., 2021; R. Kumar et al., 2014; Moya-León et al., 2019), and since 

fruit softening is largely driven through hormone-mediated ripening (Schapire et al., 

2006), it could be that these (TPR)-like superfamily proteins are impacting softening 

related pathways in apple. Linkage experiments have identified QTLs for fruit firmness 

on chromosome 6 in the past (Bink et al., 2014; Liebhard et al., 2003), but could not 

identify putatively causal genes. Our results are in agreement with these linkage 

studies, and suggest that a locus on chromosome 6 plays a significant role in fruit 

softening. 

We detected a candidate region for softening on chromosome 17 made up of two 

narrow regions of variants with high allelic differentiation between pools (Fig. 3-4d). The 

signal in this region is approximately 6 kb downstream of coding sequences for both a 

Sterile alpha motif (SAM) domain-containing (MD17G1113700) gene as well as a 

vacuolar protein sorting 11 (vps11) (MD17G1113900) gene. The former is from a family 

of plant proteins that is still not fully understood, but known to function in a vast number 

of cellular processes in plants, from DNA protection to stomatal light response(Denay et 

al., 2017). The latter, vps11, belongs to a large family of proteins involved in diverse 

cellular processes from virus resistance to leaf growth and senescence in plants 

(Agaoua et al., 2022; Yamazaki et al., 2008). Interestingly, the narrow regions that make 
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up the signal on chromosome 17 are formed of variants in a region of low variant 

detection (Fig. 3-4d) due to low read depth in the high softening pool. As seen in other 

pool-seq studies in plants (Welling et al., 2020), large differences in read depths 

between pools may indicate a region containing structural variation. Here, such a 

difference could indicate that the signal on chromosome 17 is driven by 

presence/absence variation or a complex genomic rearrangement responsible for 

variation in softening among accessions. This signal, and the discrepancy in read depth 

between pools, could represent a transposable or repetitive element that is largely 

absent in the high softening group, and present in the low softening group, for example. 

Further mapping studies using diverse germplasm with high-density marker data is 

required to understand the structure of this genomic region and its relationship to fruit 

softening. 

Chromosome 10 has been suggested to harbour alleles responsible for apple 

fruit softening by multiple groups (Costa et al., 2010; S. Kumar et al., 2013; Longhi et 

al., 2012; McClure et al., 2018; X. Yang et al., 2022), and a signal on chromosome 10 is 

detected in the present study (Fig. 3-4a,b).  Previous attempts to map fruit softening in 

the diverse apple population used here have detected SNPs associated with softening 

near an ethylene response factor (ERF)(MD10G1184800)(McClure et al., 2018). 

However, the strongest signal on chromosome 10 in the present study is 972 kb 

upstream of ERF, and closer to PG1 (Appendix II-IV), a well-studied fruit firmness gene 

(Costa, 2015), which has been suggested by many groups as a promising candidate 

gene for apple softening (Costa et al., 2010; S. Kumar et al., 2013; Longhi et al., 2012). 
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In fact, a variant in PG1 is considered by many as a “functional SNP” and is frequently 

used to predict firmness in apple germplasm (Baumgartner et al., 2016). Further, Di 

Guardo et al. (2017) have provided evidence that expression of PG1 is correlated with 

apple fruit softening. Interestingly, the variant on chromosome 10 most strongly 

associated with softening in the present study is 451 kb upstream of PG1. This 

suggests that the signal we detect may be caused by a long-range regulatory element 

impacting PG1 expression, consistent with the relationship proposed by Di Guardo et al 

(Di Guardo et al., 2017). However, given the density of genetic variants in the present 

work, the rapid LD decay in our population (Migicovsky et al., 2022), and the 

questionable utility of PG1 variants to predict fruit firmness (Chagné et al., 2019; 

McClure et al., 2018; Migicovsky et al., 2021), it is also possible that this signal is 

detecting another gene that influences fruit softening nearby. The strongest signal 

detected on chromosome 10 in the present study is immediately upstream of a Long-

chain fatty alcohol dehydrogenase family protein (MD10G1176100). This family of 

genes is known to be involved in the production of fatty alcohols, which contribute to 

forming plant cuticular waxes(Bernard & Joubès, 2013; Samuels et al., 2008). Plant 

waxes are important for preventing non-stomatal water loss (Riederer & Schreiber, 

2001), and have been implicated in contributing to the storability of blueberry fruits (Chu 

et al., 2018). While there is some evidence that wax composition impacts apple 

softening (Chai et al., 2020), the link between the production of waxes on the peel of 

apple and fruit storability remains unclear. Nonetheless, we suggest that Long-chain 
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fatty alcohol dehydrogenase family protein should be considered as a candidate gene 

for apple fruit softening. 

The discovery of many regions of the genome associated with softening is in 

agreement with previous studies suggesting that this trait is multigenic. QTLs for 

softening have been mapped to chromosomes 5, 6, 10, and 16 (Amyotte et al., 2017; 

Bink et al., 2014; Costa, 2015; Di Guardo et al., 2017; Liebhard et al., 2003; McClure et 

al., 2018; B. Wu et al., 2021), all of which are detected in the present work. Given the 

complexity of fruit softening during storage and the number of loci discovered, our work 

is in agreement with previous suggestions that the genetic architecture of apple 

softening is multigenic. 

         It is worth noting that in the present study, DNA sequencing reads from each of 

the pools covered roughly 80% of the reference genome, meaning that nearly 20% of 

the positions in the reference genome were not considered in the present analysis. This 

leaves a considerable portion of the genome unexamined. Future works should aim to 

examine as much of the genome as possible, perhaps through the use of pangenomes 

or alternative DNA sequencing methods. 

  

Conclusions  

  

To date, there have been few causal alleles discovered in apple. With the rise of gene 

editing technologies and the continued need for improved fruit varieties, the discovery of 

causal alleles is key for accelerated fruit improvement. In this study, we scanned the 
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apple genome for genetic differentiation between groups of phenotypically divergent 

samples with the aim of finding regions of the genome responsible for variation in 

ripening time, phenolic content production, and fruit softening. Our study provides 

further evidence that NAC18.1 is involved in controlling ripening time, suggests that 

genetic variation impacting the expression of NAC18.1 may be causal, and implicates a 

novel locus for ripening time on chromosome 4. Further, this investigation identified 

multiple loci across the genome related to phenolic content production, and suggests 

that a cluster UGT genes on chromosome 16, among others, may be responsible for 

variation in phenolic content production. Finally, the strong signals detected on multiple 

chromosomes in the present work suggest a complex genetic architecture for softening, 

and implicates many candidate genes, including a gene related to fruit wax production 

on chromosome 10. Across all phenotypes, there is a recurring theme: many signal 

peaks appear in non-coding regions of the genome in relatively close proximity to 

genes. This indicates that regulatory variants are likely to play a larger role in the control 

of plant phenotypes than I had anticipated or predicted. Together, the genomic 

resolution provided by the data in this work sheds light on the genomic control of 

important phenotypes and will support future efforts to enable genomics-assisted 

improvement of apples. 

 

The pool-seq experiment in this chapter was successful in generating numerous novel 

insights, and provided strong evidence that the causal variant for ripening time is in the 

regulatory region upstream of NAC18.1. Further, the pool-seq approach emphasises the 

power of WGS for causal allele discovery: it is clear that the ability to examine the 
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genome at the nucleotide level is essential for identifying causal alleles. This is well 

evidenced by the relatively narrow signal peaks in the present study, which allow for 

delimiting of small regions of the genome likely to harbour causal alleles. However, 

while the pool-seq experiment from the present chapter does provide a number of 

important findings, causal alleles cannot be identified with confidence in part due to key 

drawbacks inherent to the pool-seq approach. First, pool-seq data cannot link specific 

DNA sequences to the samples in which they are derived. This means that variants and 

haplotypes cannot be discerned from the genetic information on a sample specific 

basis. Second, the pool-seq approach does not accurately consider insertions and 

deletions, and fails to detect some genetic variation due to extreme read depths, 

thereby disregarding key variant types known to impact phenotypes. In the future, 

methodologies that make use of WGS from many samples will be key for generating 

detailed genomic data that is high resolution and sample specific. Under ideal 

circumstances, a large diverse apple population is sequenced to high depth and queried 

for variants. Then, association mapping methods could leverage the high resolution 

WGS data and a large population size to effectively map causal alleles with precision. 

However, such projects require substantial budgets and smaller, more manageable 

projects are likely to be the most pragmatic path forward.  

Data availability 
 
The datasets generated during and/or analysed during the current study are available in 

the NCBI SRA repository (https://www.ncbi.nlm.nih.gov/sra/PRJNA929465). 
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Chapter 4: Mapping of the causal allele(s) controlling ripening time in 

apple 

 
Rationale 

 
After analysing the results and considering the strengths and weaknesses of the genetic 

mapping approaches used thus far (see Chapter 3: Conclusions), it became clear that 

whole genome sequencing across many samples from the ABC was going to be 

essential for effective causal allele discovery. Therefore, sequencing a highly diverse 

group of samples from the ABC to high depth is a logical and reasonable step towards 

mapping causal alleles. The generation of WGS from a diverse subset of samples from 

the ABC provides the opportunity to reach two primary outcomes. First, it immediately 

provides enough genetic information to conduct a high resolution genome wide 

association study for ripening time. Second, the WGS data can serve as a “reference 

panel” for genotype imputation across the rest of the ABC in the future. A reference 

panel is a subset of samples from the ABC sequenced to high depth that can be used to 

fill in missing or low confidence genotype calls for the remainder of the ABC population 

through a process called imputation. Imputation using a high quality reference panel 

enables high accuracy genotype information to be generated for an entire population at 

significantly lower cost. The generation of a reference panel represents a significant 

investment in the mapping potential of the ABC in the future, and enables association 

mapping of numerous traits measured in the population at a later time.  
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With regards to ripening time, multiple studies have indicated that this phenotype is 

likely controlled by a single large effect locus on chromosome 3 (Davies & Myles, 2023; 

M. Jung et al., 2020; Larsen et al., 2019; Migicovsky et al., 2021; Watts et al., 2023), 

making ripening time a strong candidate for a WGS GWAS using reference panel 

samples. A more detailed association study aimed at ripening time would provide 

evidence for either a coding or regulatory variant as the causal allele, helping to resolve 

ambiguous lines of evidence from the previous reports (Davies & Myles, 2023; 

Migicovsky et al., 2021; Watts et al., 2023). Ideally, an association study leveraging high 

depth sequencing and a diverse sample set provides enough resolution to uncover the 

causal allele(s), although complex genetic variation may remain hard to query. In this 

chapter, I select a diverse group of samples from the ABC and generate a high quality 

reference panel from high depth WGS data. Then, I conduct a genome wide association 

study with the aim of discovering the causal allele for ripening time.  

 

Abstract 

 
Elucidating the causal allele(s) controlling ripening time in apple is important not only for 

fully understanding the genetic control of the trait, but also for enabling the use of 

precise breeding techniques and gene editing technologies. Genetic data was collected 

from 97 of the most genetically diverse samples from Canada’s Apple Biodiversity 

Collection and sequenced at high depth using short read whole genome sequencing. 

Genetic polymorphisms were called from DNA sequencing data and resulted in 49M 

genetic variants across the apple genome. A genome wide association study was 

conducted and identified a 45.7kb signal on chromosome 3 associated with ripening 
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time. Within this signal region, transcription factor NAC18.1 is the only annotated gene. 

Genetic variants 11.3kb upstream of NAC18.1 produced strongest associations with 

ripening time, and suggest that genetic variants in the upstream regulatory region 

control ripening time in apple. A read-depth analysis across samples suggests that 

another region, also in the NAC18.1 upstream region, could be influencing ripening 

time. Together the results here suggest that genetic variation in the promoter or 

upstream regulatory region of NAC18.1 likely harbours the causal allele(s) controlling 

ripening time. Finally, the region associated with ripening time in apple was analysed to 

illustrate the potential viability and challenges of employing gene editing technologies 

based solely on association study results. Importantly, the genetic variants produced in 

this chapter represent a high quality reference panel that will be well suited for the 

imputation of variants across the remainder of Canada’s Apple Biodiversity Collection in 

the future, laying the groundwork for some of the largest and most detailed association 

mapping in apple in the near future.  

 
Introduction 

 
The breeding of improved fruit cultivars is the primary objective of fruit breeding science. 

Consumer desires, supply chain preferences, environmental conditions, agricultural 

practices, and governmental policies are a few of the many factors considered by 

modern breeders and experimentalists attempting to produce novel improved fruit 

cultivars (Dalla Costa et al., 2017; Finger & Möhring, 2024; Iezzoni et al., 2020; Ru et 

al., 2015). In recent decades, apple fruit breeding science has largely transitioned from 

traditional trial-and-error breeding methods to genomics-informed breeding approaches 
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that glean valuable information from plant DNA sequences (S. Kumar et al., 2012; 

Peace et al., 2019; Troggio et al., 2012). Today, the discovery of causal alleles — the 

DNA nucleotide sequences that control traits — is an important step for accelerated 

apple cultivar improvement (Iezzoni et al., 2020). A detailed understanding of causal 

alleles controlling key traits not only offers key information for marker assisted selection 

(MAS) and genomic selection (GS), but it is necessary to enable novel gene editing 

technologies, such as Clustered Regularly Interspaced Palindromic Repeats (CRISPR) 

(Jinek et al., 2012). Despite the clear value of discovering causal alleles in apple, few 

are known to date, rendering the effective application of the newest gene editing 

technologies challenging in apple. If apple trait improvement efforts are to experience 

significant acceleration in the near future, causal alleles controlling key traits must be 

confidently mapped and characterised.  

 

Locating the precise genomic identity of causal alleles remains a significant challenge 

for biologists. In recent decades the use of statistical models, particularly genome wide 

association studies (GWAS), that detect associations between genetic markers and 

phenotypes have risen in popularity (Abdellaoui et al., 2023). Association studies in 

plants have a number of advantages over traditional mapping techniques (Korte & 

Farlow, 2013). First, because association studies do not require plant crosses or 

detailed pedigree information, large datasets are often possible to collect. Second, since 

large groups of unrelated samples are typically used in association studies, generations 

of historical recombination can be leveraged to generate high mapping power and 

genomic resolution. Well designed GWA studies can be powerful enough to discover 
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causal alleles across the tree of life, as seen in bears, cannabis, and humans (Kenny et 

al., 2012; Leckie et al., 2023; Puckett et al., 2023).  

 

The ability of GWAS approaches to detect causal alleles directly from genotype and 

phenotype data means that, in theory, useful breeding markers and gene editing targets 

can be used by breeders without the need for expensive functional investigations. The 

key to efficiently identifying causal alleles via GWAS-based genetic mapping in diverse 

populations is high variant density: only the query of genetic variants that cover the 

genome at high density will enable the discovery of causal alleles from genotype and 

phenotype data. Therefore, to generate the genotype data necessary for such 

experiments, genetic variants of high quality and density must be collected from the 

target population. Collection and generation of genomic data that can support high 

density variant calling typically requires the generation of whole genome sequence 

(WGS) data at considerable depth (>10x), which can be prohibitively expensive. 

Further, effective use of GWAS models requires a diverse population with enough 

historical recombination that linkage disequilibrium (LD) decays rapidly at short genomic 

intervals. Establishing, maintaining, and accessing such a population is both expensive 

and laborious, and has historically been a major barrier for conducting a high powered 

GWAS in long-lived woody perennials like apple (Iezzoni et al., 2020). Together, the 

cost of high coverage genotype data and the access to a diverse population have been 

the primary barriers to high resolution and high power GWAS-based mapping attempts 

in apple.  
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Fortunately, recent advances in bioinformatics, specifically in the area of genotype 

imputation, have made it possible for genotype data from large populations to be 

accurately imputed from low-pass DNA sequencing at significantly reduced cost 

(Buckley et al., 2022; J. H. Li et al., 2021, 2023; Martin et al., 2021; Snelling et al., 

2020). Low-pass imputation uses bioinformatic algorithms to make informed inferences 

about the genotype identities of samples sequenced at low depth (<1x). However, this 

method is only viable provided a reference panel of high sequencing depth (>10x) and 

quality is established first, typically from a diverse subset of the larger population. Low-

pass imputation methods require a reference panel as the basis for imputation, and use 

the high quality variant information from the reference panel to fill in genotypes at 

variant sites among samples sequenced at low depths. Through this method, a 

reference panel from a small number of samples (<100) can be leveraged to generate 

accurate genotype information across large populations (Buckley et al., 2022; Snelling 

et al., 2020). Therefore, if cost effective GWAS mapping approaches are to be used in 

the future, it is important for high quality variants to be called from diverse reference 

panels, particularly in organisms where DNA sequencing costs remain a primary barrier 

to genetic mapping. As such, a reference panel for Canada’s Apple Biodiversity 

Collection (ABC) would set the stage for accurate imputation across thousands of 

samples, and open the door for arguably the most powerful genetic mapping 

experiments in apple to date.  

 

Association mapping studies have discovered causal alleles in apple, including malic 

acid production (Bai et al., 2012) and budbreak (Watson et al., 2024) . Discovery of 
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causal alleles controlling key agricultural traits holds value for apple breeders as the fruit 

industry continues to put efforts towards producing new and improved apple varieties. 

Of the traits most deeply investigated in apple, the genomic control of ripening time has 

garnered attention for its impact on harvesting logistics and regional growability. A 

substantial body of scientific work focuses on the genetic control of ripening time in 

apple (Larsen et al., 2019; Migicovsky et al., 2021; Watts et al., 2023; G. Zhang et al., 

2018). As climates in temperate regions of the world change and experience increased 

severe weather events, alterations to the ripening time of apple trees will be key for 

breeding cultivars that are climate-change resistant and well suited for existing apple 

production regions (Pfleiderer et al., 2019). Despite decades of previous investigations 

into the molecular basis of ripening time, including QTL mapping (Chagné et al., 2014; 

Liebhard et al., 2003), GWAS (Larsen et al., 2019; Watts et al., 2023), and transgenics 

(Migicovsky et al., 2021), the causal alleles for ripening time in apple remain unknown. It 

is clear that NAC18.1, a transcription factor on chromosome 3, plays a key role in the 

ripening time of apple cultivars. However, the location and nature of the different alleles 

at the NAC18.1 gene that control ripening time remain unidentified. While mutations to 

the coding sequence of the gene have been suggested as causal (Migicovsky et al., 

2021; Watts et al., 2023), there is also evidence suggesting a genetic mutation in the 

promoter region of the gene influences variation in ripening time (Davies & Myles, 

2023).  

 

The purpose of this chapter is twofold: to generate a high quality reference panel for 

future imputation efforts at Canada’s Apple Biodiversity Collection (ABC), and to 
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conduct a genetic mapping experiment to elucidate the causal allele(s) controlling 

ripening time in apple. To achieve this, I generated WGS data from a diverse subset of 

samples from Canada’s ABC to 20x depth. I then implemented a bioinformatics pipeline 

to generate high-quality and high-density genotype data from across the genome. The 

result is, to my knowledge, the highest resolution genetic variant data produced in 

apples to date. Then, I used a GWAS-based mapping approach using this diverse 

group of apple cultivars from Canada’s ABC in an attempt to map the causal allele for 

ripening time.  

 
Materials and methods 

 
Sample selection and GWAS power analysis 

 
To determine if a GWAS using a small number of samples (109) from the ABC yielded 

enough power to detect large effect loci, a GWAS for ripening time was performed using 

250k SNPs and 109 diverse samples. To select a group of 109 samples that maximise 

genetic diversity for a GWAS, SVcollecter (Ranallo-Benavidez et al., 2021) was 

employed. Genome-wide SNP data from previous work (Migicovsky et al., 2022) was 

randomly downsampled to 125k genome wide SNPs across the 109 samples. 

Phenotype data was retrieved from previously published literature (Watts  et al., 2021). 

A sample structure matrix (k-matrix) was generated from the bed, bim, and fam PLINK 

files via PLINK. A population stratification matrix (q-matrix) was generated in R using 

the princomp function. The PLINK files, k-matix, q-matrix and phenotype data were 

used to perform a GWAS using a linear mixed model (LMM) via GEMMA (Zhou & 

Stephens, 2012) with the flag -gk and a minor allele frequency (MAF) threshold of 0.05. 
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Manhattan plots and QQ plot for the GWAS were visualized via the qqman package in 

R.  

 

DNA collection  

 

Fresh bud tissue from selected samples was collected from the ABC in the spring of 

2022 and sent to Platform Genetics (Vineland, Ontario) for DNA extraction and library 

preparation. DNA libraries were sent to Gencove (New York, New York) for Illumina 

NovaSeq paired end (PE) short read (150bp) sequencing to an average depth of 20x 

per sample. Out of the 109 samples sent to Gencove for sequencing, 12 failed quality 

tests, primarily due to low DNA yield from extractions, and data from 97 samples were 

thus used for downstream analyses.  

 

DNA sequencing pre-processing, read alignment, and variant calling 

 

 DNA data was processed using a custom bioinformatics pipeline generated for 

this project (Figure 4-1). Raw DNA reads in the form of fastq files were retrieved from 

the Gencove platform and the quality of PE reads for each sample were accessed using 

the quality control software FastQC (Andrews, 2010). Library adapter sequences were 

removed with Trimmomatic (Bolger et al., 2014) using the ILLUMINACLIP function and 

sequences with low quality read scores were removed with the SLIDINGWINDOW 

function using a window size of 5 and a minimum average base phred score of 20. 

Sequencing read pairs and read depth distributions are shown in Appendix III-II. PE 
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reads were aligned to the Golden Delicious reference genome GDDH13 version 1.1 

(Velasco, Zharkikh, Affourtit, Dhingra, Viola, et al., 2010) using the Burrows-Wheeler 

Aligner (BWA) (H. Li & Durbin, 2009) using the ‘mem’ algorithm and the -M flag. 

Sequence Alignment Map (SAM) files for each sample were coordinate sorted using the 

Picard SortSam tool (http://broadinstitute.github.io/picard/). SAM files for each sample 

were scanned for duplicate reads using Picard MarkDuplicates and duplicated reads 

were assigned appropriate flags. SAM files were converted to Binary Alignment 

Mapping (BAM) files to optimise storage and efficiency in downstream processing. 

Variants were called from sample-specific BAM files using GATK HaplotypeCaller in 

GVCF mode, using a local re-alignment variant calling algorithm (Van der Auwera & 

O’Connor, 2020), producing GVCF files for each sample. GVCF files from each sample 

were combined by chromosome to optimise computational efficiency (i.e. variants from 

each of the 18 chromosomes across samples were combined separately) using GATK 

GenomicsDBImport, creating a Genomics Data Base (GDB) for each of the 18 

chromosomes. GATK GenotyopeGVCF was used in GDB mode to perform joint 

genotyping for each chromosome, resulting in a Variant Calling Format (VCF) file for 

each chromosome containing all variants across all samples. From each chromosome 

VCF file, SNPs and indels were extracted using GATK SelectVariants to include biallelic 

SNPs as well as indels up to 60bp in length. Picard MergeVCFs was used to combine 

SNPs and indels, respectively, from each chromosome into separate VCF files. 

MergeVCFs was used to combine SNPs and indels from across all samples to produce 

a final dataset of raw variants in a single VCF file. All bioinformatic steps were 
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performed using custom bash scripts to reduce computational load and runtimes on the 

ComputeCanada Beluga cluster.  

 

 

Fig 4-1. Bioinformatics workflow. Yellow box indicates the raw (unfiltered) variant 

dataset. The green box indicates the final filtered variant dataset.  

 

Genotype quality control 
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Genotype quality filtering was performed according to GATK best practices (Van der 

Auwera & O’Connor, 2020), with some adjustments based on the structure of the raw 

variant data. Thresholds for Base Quality Score Recalibration (BQSR) and 

bootstrapping of SNPs were QD < 1.0, FS > 60.0, MQ < 40, MQRankSum < 12.5, and 

ReadPosRankSum < 8.5. Thresholds for BQSR and bootstrapping of indels were QD < 

1.0, FS > 200.0, and SOR < 10.0. Base recalibration tables were generated for each 

sample using GATK BaseRecalibrator and the filtered SNPs and indels generated 

previously. BAMs from each sample were then recalibrated using GATK ApplyBQSR 

with the -bqsr flag, producing recalibrated BAMs for each sample.  

 

Following BAM recalibration, variants were re-called from BAM files using the same 

steps as outlined in the previous subsection, resulting in a final dataset of high quality 

variants from across the cohort contained in a single VCF file. BCFtools-vstats software 

package was used to generate quality metrics across variants (H. Li, 2011). The final 

variant dataset was filtered to only include biallelic SNPs and indels. Genotype 

concordance was calculated between the final WGS VCF file and previous GBS data 

from the population (Migicovsky et al., 2022) using BCFtools stats package (H. Li, 

2011). 

 

Genome-Wide Association Study 

 

Phenotype data was retrieved from previous work (Watts  et al., 2021), and formatted in 

R to conform to the standards required by GEMMA. 76 of 97 samples had ripening time 



 
117 

data and were suitable for GWAS. A sample structure matrix (k-matrix) was generated 

from the VCF file via PLINK and GEMMA with the flag -gk. A population stratification 

matrix (q-matrix) was generated in R using the princomp PCA function. The VCF, k-

matix, q-matrix and phenotype data were used to perform a GWAS using a linear mixed 

model via GEMMA using a minor allele frequency (MAF) threshold of 0.02. Manhattan 

plots and QQ plots for the GWAS were visualised via the qqman package in R. Zoom-in 

plots were generated using the ggplot2 package (Wickham, 2016) and p values were 

multiple test corrected with a Bonferroni correction. Genic regions shown in manhattan 

plots were taken from the Golden Delicious reference genome annotation (Genome 

Database for Rosaecea, 2023). The peach structural variant homologous region was 

located by retrieving the causal SV from (Tan et al., 2021) and aligning the variant 

region to the apple reference genome using NCBI blastx algorithm (Altschul et al., 

1990).  

 

Sliding window WGS read depth analysis 

 

Read depth at each genomic position in the genome was extracted from each sample 

using Samtools depth using the -a flag. A sliding window algorithm was applied to the 

entire genome to calculate the mean read depth for non overlapping 100bp windows 

across the genome for each sample. Window read depths were then normalised by 

subtracting the mean and dividing by the standard deviation of all windows across the 

genome. A Pearson correlation test was conducted between mean window read depths 

and the ripening time for each sample, using the cor.test function in R. Results of the 
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correlation test were visualised using the plot function and p values were corrected for 

multiple comparisons using the Bonferroni correction.  

 

Pooled read depth analysis 

  

Read depths at all positions in the genome were extracted from pooled sequencing data 

from the harvest date pools generated in Chapter 3. For each genomic position, read 

depths were standardised by subtracting the genome-wide mean read depth and 

dividing by genome-wide standard deviation using the ‘scale’ function in R. The 

absolute value of the difference between standardised read depths of pools was 

calculated and plotted.  

 

Linkage disequilibrium comparisons 

 

Linkage disequilibrium (LD) across the 76 WGS samples was calculated for all variants 

within 1kb of one another using PLINK. The WGS VCF file was subsampled down to 

contain only the 17 SNPs in the NAC18.1 region captured by GBS data (Migicovsky et 

al., 2022) using VCFtools --snps function. VCFs containing only those 17 SNPs across 

all available samples (76 for WGS, 1116 for GBS) were converted into hapmap file 

format using Tassel (Bradbury et al., 2007), and pairwise LD was calculated between all 

17 SNPs using the LDHeatmap package in R (Shin et al., 2006). Visualisations were 

produced with ggplot2 (Wickham, 2016) and LDHeatmap packages in R. The p values 
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generated by the MLMM GWAS for GBS data were taken directly from Watts et al. 

(2023).  

 

CRISPR editing sites 

 

The reference genome sequence from the 50kb signal region on chromosome 3 

(30680020-30720000bp) was analysed for CRISPR/cas9 target sequences using the 

CRISPRscan software (Moreno-Mateos et al., 2015). CRISPR target sequences were 

counted by CRISPRscan quality score, defined as <40 = low, 40-60 = medium, >60 = 

high quality.  

 

Code availability 

 

All custom scripts generated for the materials and methods of this chapter are available 

at https://github.com/MylesLab/Ripening_time_WGS.  

 

Results 

Sample selection  

 

To examine the overall genetic diversity of the ABC sample pool and ensure that the 

samples selected for the experiment were not biassed, I selected 109 diverse samples 

from the ABC that capture the maximum genetic diversity from the ABC. First, the 

genetic landscape of the ABC population was visualised via principal components 
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analysis (PCA) (Fig 4-2). Samples from the ABC population were then chosen using an 

algorithm designed to select subpopulations that capture the maximum genetic diversity 

from large populations, and plotted in PC space to ensure they captured the majority of 

the genetic landscape. To ensure that the subset of 109 samples capture most of the 

variation in ripening time across the ABC, a comparison was made between ripening 

times of the subset of 109 samples and the ripening times of 837 samples from the ABC 

for which ripening time data were available. The result (Appendix III-I) suggests that the 

method employed to select the subset of 109 samples was relatively unbiased in terms 

of ripening time as the comparison between ripening time distributions described above 

(Appendix III-I) revealed no significant difference (p = 0.06).  
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Fig 4-2. Genomic PCA plot for ABC population on the first two principal components 

using genotype data from previous work (Migicovsky et al., 2022). Each dot represents 

a sample from the ABC population in genomic principal component space. X and Y 

axes represent the first and second PCs, respectively, and the variance explained by 

each PC is shown in parentheses. Samples highlighted in orange were selected for 

WGS downstream.  

 

GWAS power analysis 
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To investigate the degree to which whole-genome sequencing paired with GWAS can 

lead to the discovery of large effect loci even when using small sample sizes, I selected 

109 samples from the full set of 1116 samples from the ABC (described above) and ran 

GWAS for ripening time, which has a known large effect locus on chromosome 3. To 

determine if GWAS signals for large effect loci may be detectable even in relatively 

small sample sizes from the population studied here, a Linear Mixed Model (LMM) using 

125k genome-wide GBS SNPs from 109 selected samples was conducted to ensure the 

proposed experiment would yield enough power before proceeding with WGS 

sequencing. The GWAS proved sufficient to detect a strong signal on chromosome 3 

previously associated with ripening time (Fig 4-3). The top SNP associated with ripening 

time was the D5Y SNP, as previously discovered by Migicovsky et al. (2021).   

 

 

 

Fig 4-3. Genome wide manhattan plot from a standard MLM using 125k GBS SNPs and 

ripening time data from 109 diverse samples from the ABC. Each dot represents a SNP. 
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The horizontal dotted line is the Bonferroni-corrected significance threshold. The SNP 

most significantly associated with ripening time is the same SNP that was discovered 

previously in other studies (Larsen et al., 2019; Watts et al., 2023). 

 

WGS and the final variants 

 

The mean read depth across the 97 WGS samples was 17.5x (Appendix III-II). The final 

dataset of high quality variants from these samples in VCF format contained 43,506,958 

SNPs and 5,785,765 indels, for a total of 49,292,723 biallelic variants across the 

genome. A distribution of indel lengths called from the variant calling pipeline is shown 

in Appendix III-III. SNP abundance per chromosome varied between 1.8M and 3.1M, 

and indel abundance per chromosome varied between 252k and 422k (Appendix III, 

Table I). Mean variant frequency across the genome was one variant/14.4bp or 69.4 

variants/kb (Appendix III, Table I). The mean minor allele frequency (MAF)(Fig 4-4) at 

variant sites was 0.07. Between-sample genotype non-reference discordance (NRD) 

between WGS samples and GBS sequenced samples was 39.6%. NRD reported here 

was calculated as the ratio of mismatching sites and the total number of sites, excluding 

matching homozygous reference allele sites (Appendix III-V).  
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Fig 4-4. Minor allele frequency distribution at variant sites across samples, which totals  

43,506,958 SNPs and 5,785,765 indels.  

 

GWAS  

 

To conduct the GWAS on samples with WGS data, LMM was run using the GEMMA 

software. After filtering variants (MAF = 0.02, missingness = 0.05), a total of 25,769,077 

variants were used to perform a GWAS with 76 samples that had ripening time 

phenotype data. The Linear Mixed Model revealed a single significant peak on 

chromosome 3 (Fig 4-5A), which consists of a 45.7 kb region (30681.7-30727.5kb) 

containing 2,832 variants (Fig 4-5B), 343 of which were significantly associated with 

ripening time after multiple test correction. Within this peak three variants shared the 
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lowest p-value (3.0x10-11), 30709586 (T/C SNP), 30709593 (C/T SNP), and 30709888 

(T/A SNP) (Fig 4-6). The minor allele frequencies of each of these SNPs was also the 

same (0.32). For these three variants, there are only two haplotypes present in the 

samples (haplotype A: T/C/T, haplotype B: C/T/A)(Fig 4-6). These variants are 

approximately 11.3kb upstream of NAC18.1, which is the nearest gene coding region. 

Many significantly associated variants within this peak formed a roughly 45.7kb block of 

variants that constitutes the signal on chromosome 3. The QQ plot from the model 

indicated a mild skew towards low p values (Fig 4-5C). The genomic inflation factor 

(lambda value) for this model was 1.045.  
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Fig 4-5. Manhattan and QQ plots for the GWAS of ripening time using 76 samples and 

25,769,077 variants derived from WGS data. (A) Genome-wide manhattan plot for 

ripening time showing a single strong peak on chromosome 3. (B) A zoom-in plot of the 

significant peak on chromosome 3, the only region of the genome showing a significant 

GWAS signal. The red vertical bar indicates the NAC18.1 coding region. The green 

vertical bar represents the region with top GWAS SNPs. The yellow bar represents a 

region of low read depth. The blue vertical bar represents the homologous genomic 

region in apple of the causal mutation for ripening time discovered in peach (Tan et al., 

2021). (C) A QQ plot from MLM model showing a skew towards an excess of low 

observed P values from the GWAS.  
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Figure 4-6. Ripening times for haplotype identities for the interval capturing the top 3 

strongest associated SNPs (30709586-30709888bp) from the 76 sample GWAS for 

ripening time. The distribution of ripening time values is shown for each haplotype 

identity: each dot represents a single sample from the GWAS.  

 

Sliding window WGS read depth analysis 
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To investigate the possible impact of structural variants or copy number variants on 

ripening time, a correlational analysis between normalised read depths in 100pb non 

overlapping windows and ripening time across the 76 selected samples was 

undertaken. This analysis revealed a strong association between read depth windows 

on chromosome 3 and ripening time (Appendix III-V)(Fig 4-7B). In addition, the R values 

from the correlation test indicated a single strong signal on chromosome 3 (Appendix III-

VI). The test identified a positive correlation between read depths and ripening time in 

the chromosome 3 peak region: later ripening varieties had a larger number of 

sequencing reads at this genomic region. This signal consists of an approximately 45.7 

kb region spanning 30680-30725kb on chromosome 3. The single strongest correlation, 

and smallest p value, from the test was found in the window spanning 30721701-

30721800bp on chromosome 3. For this specific window, the normalised mean read 

depth was significantly correlated with ripening time after correcting for multiple 

comparisons (r = 0.75, p = 1.16x10-14) (Appendix III-VII). When compared to results 

from the GWAS, the strongest read depth associations were found in the same 45.7 kb 

region as the most strongly associated variants from the GWAS model. However, 

although the 100bp windows most strongly correlated with ripening time were in the 

same 45.7kb region (30.68 - 30.72 Mb, Fig 4-7B) as the top hits identified by the GWAS 

(Fig 4-7A), the strongest signals from the two tests did not directly overlap. More 

precisely, the normalised read depth analysis identified the strongest signal at 30718-

30724kb (yellow bar indicated on Fig 4-7B), and GWAS identified strong associations 

spanning from 30689-30718kb and 30724-30728kb (Fig 4-7A)(on either side of the 

normalised read depth signal). However, the GWAS did not detect significant 
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associations within the region identified by the normalised read depth analysis (Fig 4-

7B), only on either side of that signal. To summarise, the read depth analysis and the 

GWAS identify a signal in the same 45.7kb region on chromosome 3, however the 

strongest associations from both tests do not overlap within that window.  
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Fig 4-7. Evidence of association with ripening time for genetic markers and read depth 

on chromosome 3. (A) A Manhattan plot from the GWAS showing 80kb of chromosome 

3, including the 45.7 kb region significantly associated with ripening time. The horizontal 

line is the Bonferroni-corrected significance threshold. Markers above the dotted line are 

considered significantly associated with ripening time. (B) A zoom-in plot for P values 

from normalised 100 bp mean read depth correlations (C) A zoom-in plot for 

standardised read depth analysis from chapter 3. The red bar indicates the NAC18.1 

coding region. The green bar represents the region with top GWAS SNPs.The yellow 

bar represents a low read depth region. The blue bar represents the homologous region 

of the causal mutation for ripening time in peach. 

 

Pooled read depth analysis 

 

To further investigate the possible impact of copy number variation or structural variants 

on ripening time, data from a previous experiment (Chapter 3) in which groups of 

samples with extreme (early and late) ripening times were sequenced via WGS, was 

analysed to examine differences in read depths between ripening time groups. The 

absolute difference between normalised read depths of different ripening time groups 

from Chapter 3 (Davies & Myles, 2023) at each nucleotide in the genome were 

compared (Fig 4-7C). This analysis revealed a strong peak in the NAC18.1 region. The 

largest absolute difference between normalised read depths was 0.29 at 30720635bp, 

in the same low read depth region (yellow bar indicated on Fig 4-7C) identified by the 

sliding window read depth analysis. Further, the largest normalised read depth 
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difference from the pooled analysis (0.29 at 30720635bp) was 1.1kb from the strongest 

correlation identified by the sliding window read depth analysis.  

 

Linkage disequilibrium comparisons 

 

Mean and median LD (r2 values) for the 76 WGS samples were 0.25 and 0.09, 

respectively over 1kb windows (Appendix III-VIII). Pairwise LD among 17 SNPs from the 

NAC18.1 region revealed higher mean and median levels of LD in the WGS samples 

(mean R2 = 0.42, median R2 = 0.21) than in the GBS samples (mean R2 = 0.38, median 

R2 = 0.08) (Fig 4-8). In both cases, the SNPs most strongly associated with ripening 

time, located 20.5kb apart, were in strong linkage (Fig 4-8).  
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Fig 4-8. LD plots of GWAS results from the GBS samples (A) (Migicovski et al., 2021) 

and WGS samples (A). Only SNPs found in the NAC18.1 region from Migicovski et al., 

2021 were used to compare LD in the region. Manhattan plots represent results from 

the GBS experiment and the WGS experiment, respectfully.  

 

 

CRISPR editing sites  

 

CRISPRScan analysis of the 50kb genomic region containing the GWAS signal for 

ripening time revealed a total of 4054 possible CRISPR gene editing sites, distributed 

approximately evenly across the region (Fig 4-9A). Of the CRISPR editing sites, 1601 

were of medium quality, and 407 were of high quality (Fig 4-9B). Within the coding 
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sequence of NAC18.1, there were 231 total CRISPR editing sites, 44 of which were 

medium quality, and 48 of which were high quality.  
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Fig 4-9. Cumulative counts of CRISPR gene editing sites across the 50kb signal region 

on Chromosome 3 (30.68-30.73Mb). (A) CRISPR editing site counts by quality. (B) The 

cumulative CRISPR editing sites across the region. High, medium and high, and all 

quality CRISPR editing site counts are shown in black, dark gray, and light gray, 

respectively.  

 
Discussion  

 

Sample selection and preliminary GWAS power analysis 

 

While the primary aim of this chapter is to conduct GWAS to discover the causal allele 

controlling ripening time in apple, it is important to note that the genomic variant dataset 

(N=97) generated in this chapter lays the foundation for future imputation of genotypes 

across the ABC. Genotype imputation is the process of filling in missing genotypes by 

using data from closely related samples and other genotypes in close linkage 

disequilibrium to the missing genotype. Imputation methods are effective approaches for 

inferring the genotypes of large numbers of samples in a population without the need to 

generate DNA sequence data at high depths, which is costly (Guan & Stephens, 2008; 

Marchini et al., 2007; Servin & Stephens, 2007). With the increasing availability of low-

pass sequencing (sequencing at <1x depth), imputation has become critical for 

generating reliable genotype data across large, diverse mapping populations (J. H. Li et 

al., 2021, 2023; Martin et al., 2021), and is a viable approach for imputation of 

genotypes across the ABC. However, reliable imputation requires the generation of a 

high quality variant dataset from a diverse and representative subset of the larger 
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population, often termed a “reference panel” (Guan & Stephens, 2008; Marchini et al., 

2007; Servin & Stephens, 2007). The variants from the reference panel must be of high 

quality and confidence, and typically require high sequencing depths (>10x) to ensure 

that downstream imputation of the rest of the population is reliable (Martin et al., 2021). 

The dataset of variants generated from the 97 samples in this chapter represent a high-

quality genotype reference panel for the ABC. In future work, this reference panel will be 

used to impute genotype data across more than 1000 samples in the population, 

unlocking genetic mapping approaches with high power and resolution.  

 

When selecting samples to be included in a reference panel for imputation, the aim is to 

include samples that capture as much of the genetic diversity of the entire population as 

possible. To select samples from the ABC that were diverse, I employed a selection 

algorithm that is specifically designed to select subpopulations that contain maximum 

genetic variation and diversity (Ranallo-Benavidez et al., 2021). After examining the 

algorithm's sample recommendation, I selected (N=109) samples spanning the entire 

genetic PC space of the population (Fig 4-2), such that the samples chosen for deep 

sequencing in this chapter are likely to capture maximum genetic diversity and variation 

observed across the larger ABC population. The selection of diverse samples at this 

stage is important for future genotype imputation, as imputed genotypes across the rest 

of the population will come directly from, and are therefore directly limited by, the 

variants called from the reference panel. 
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While the reference panel needed to be diverse, it also needed to provide sufficient 

power to detect causal alleles via a GWAS. During the experimental design phase of 

the current chapter, the degree to which sample size would be a limiting factor for the 

statistical mapping power of the GWAS experiment was unclear. Before sequencing the 

selected samples (N=109) at high depth, it was important to ensure that a GWAS with 

this sample size would yield enough power to detect a strong effect locus. Multiple 

studies in apple have discovered strong hits for ripening time at the NAC18.1 locus on 

chromosome 3 (Davies & Myles, 2023; Larsen et al., 2019; Migicovsky et al., 2016; 

Migicovsky 2021; Watts et al., 2023). As it is clear that a single strong effect locus 

controls ripening time in apple and related fruit species (Bin et al., 2022; Dirlewanger et 

al., 2012; Tan et al., 2021), a sufficiently powerful GWAS model should detect a single, 

strong signal for this trait. Specifically, a sufficiently powerful GWAS model should 

detect a single peak towards the end of chromosome 3. Following this logic, I conducted 

a preliminary GWAS by sub-sampling data from Migicovski et al. (2016) to ensure an 

association study using the reference panel would be viable. The preliminary GWAS 

(Fig 3) detected a single strong peak on chromosome 3 for ripening time. This was a 

strong indication that a GWAS using WGS data from 109 samples from the ABC was a 

viable approach to mapping ripening time in apple.  

 

WGS of selected samples 

 

DNA extractions failed to produce sufficient DNA for 12 samples, leaving 97 samples 

with WGS data. Low yields from DNA extractions are frequently caused by the presence 
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of high plant fibre, resins, polysaccharides, tannins, and polyphenol content naturally 

abundant in the leaf tissues which interfere with DNA extraction chemistry (Fang et al., 

1992; Murray & Thompson, 1980; Webb & Knapp, 1990). In the future, it would be wise 

to account for such failures by preparing approximately 15% more samples for library 

preparation than anticipated to ensure that failures in library preparation and 

sequencing are mitigated. Although 12 failed samples represented a noteworthy 

decrease in sample size from the preliminary GWAS, I was confident that the power of 

the GWAS would still be sufficient to map the ripening time locus. From the 97 samples 

successfully sequenced, the mean read depth was 17.5x (max: 36.2x, min: 

7.2x)(Appendix III-II), sufficiently deep for high quality variant calling, and no samples 

needed to be excluded on the basis of low read depth.  

 

Reference panel genotype data 

 

The final reference panel genotype data is high resolution: it contains 49.3M variants 

across the genome, an average of one variant per 15bp. This high density is equal or 

more high-density than similar variant calling efforts in highly heterozygous crop species 

(Holušová et al., 2023; Z. Liang et al., 2019; M.-Y. Zhang et al., 2021), and to my 

knowledge, is the most high-density genome-wide genotype data generated in apple to 

date. Woody perennials, and plants more generally, are well known to have complex 

genomes with high levels of genetic variation (Bayer et al., 2020; Z. Liang et al., 2019; 

Saxena et al., 2014) and the high density of variants seen in this chapter should be 

expected from the selected samples as they were specifically selected to capture high 
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genetic diversity from the ABC. The MAF distribution observed in the dataset was as 

expected (Fig 4-4), with most variants in the ABC being rare (Migicovsky et al., 2022). 

Overall, the high density and high quality genomic data is essential for GWAS mapping 

and will be important for future imputation based experiments, as a high density 

genotype data is crucial for leveraging LD decay for high resolution GWAS. This 

reference panel will likely be the basis of the largest mapping experiments (in terms of 

sample size and marker density) in apple in the near future.  

 

GWAS  

 

The GWAS using the WGS genotype data detected a single strong signal on 

chromosome 3 in the NAC18.1 region (Fig 4-5A&B), as hypothesised. The signal 

spanned a 45.7kb region in which NAC18.1 is the only annotated gene. The three 

variants with the strongest association with ripening time were within 302bp of one 

another (green bar, Fig 4-5), 11.3kb upstream of NAC18.1 (coded on the antisense 

strand) (red bar, Fig 4-5). This suggests that the causal variant impacting ripening time 

may be a regulatory variant, impacting the upstream regulatory regions controlling 

transcription of NAC18.1. While this evidence does agree with the signal detected by 

Migicovski et al. (2016), it is not consistent with the hypothesis from that publication that 

the causal variant for ripening time is the D5Y SNP in the coding region of the NAC18.1 

gene. Although the D5Y SNP was a reasonable putatively causal allele based on 

previous low-density genetic mapping studies (Larsen et al., 2019; Migicovsky et al., 

2021), functional work using transgenic tomatoes showed no significant difference in 
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ripening time between plants bearing alternate alleles at D5Y (Migicovsky et al., 2021). 

This suggests that coding region SNPs in NAC18.1 previously thought to impact 

ripening time are not causal, and that variants upstream of NAC18.1 within non-coding 

regions more likely control ripening time. The findings here are also consistent with the 

results from Chapter 3 (Davies & Myles, 2023), which suggested that a regulatory 

variant approximately 5kb kilobases upstream of the NAC18.1 coding region controls 

ripening time. However, the present experiment indicates that the causal variant is 

further upstream of NAC18.1 than previously suggested (Davies & Myles, 2023). 

Further, in contrast to the data from Chapter 3, the present experiment detected no 

signal on Chromosome 4 for ripening time, which calls the novel signal on chromosome 

4 reported by Davies et al. 2023 into question.  

 

The traditional approach for mapping causal genomic regions in perennial plants, 

particularly in apple, uses bi-parental crosses with highly related breeding material and 

low density SNP markers (Bianco et al., 2016; Chagné, Crowhurst, et al., 2012; Chagné 

et al., 2007, 2019; Kostick, Teh, Norelli, et al., 2021). However, mapping via bi-parental 

crosses from existing breeding material routinely results in large genomic intervals, 

often spanning megabases or hundreds of kilobases (S. A. Khan, Chibon, et al., 2012; 

Kostick, Teh, Norelli, et al., 2021; Myles et al., 2009) making the identification of 

potentially causal alleles nearly impossible. Here, using a small number of samples, I 

delimit a region that is 302bp in length using a GWAS in a diverse population that likely 

contains the causal variant for ripening time in apple. This result is evidence that 

mapping experiments using largely unrelated samples, high resolution markers, and 
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GWAS is more effective at identifying potentially causal alleles than traditional genetic 

mapping approaches that rely on bi-parental crosses. With increases in sample size, the 

current approach could potentially capture more genetic diversity and resolution and 

lead to the discovery of causal alleles or narrow regions containing causal alleles 

controlling numerous apple traits.   

 

Top GWAS hits form a haplotype 

 

The three SNPs most strongly associated with ripening time fall within a 302bp region of 

the genome in which only two haplotypes are present in the samples (haplotype A: 

T/C/T, haplotype B: C/T/A)(Fig 4-6). These three SNPs are in complete linkage and 

have the same allele frequencies and thus the same p values from the GWAS. Samples 

from the experiment that are homozygous for haplotype A have the latest ripening time 

and samples homozygous for haplotype B have the earliest ripening times, with the 

heterozygote samples showing intermediate ripening times (Fig 4-6). This is evidence of 

incomplete dominance in ripening time, which is consistent with the ripening time 

literature in fruits (Tan et al., 2021; R. Wang et al., 2020; Watts et al., 2023). Due to the 

sample size of the present experiment, there is an insufficient amount of recombination 

to break down the haplotype any further, as all three SNPs are in perfect linkage 

disequilibrium. Therefore, this 302bp region containing two haplotypes is the narrowest 

genomic region that the present experiment can delimit for the control of ripening time. 

Genotype and phenotype data from more samples is required to capture recombination 

that breaks this region into smaller haplotypes.  
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While it is likely that the causal allele for ripening time in apple lies within the 302bp 

region identified above, it remains possible that the causal variant lies outside this 

region. Complex genetic mechanisms such as allelic heterogeneity, which frequently 

control plant traits, can create spurious associations between SNPs and phenotypes 

even when the impacts of relatedness and population structure have been statistically 

controlled as was done in the present experiment (Korte & Farlow, 2013; Vilhjálmsson & 

Nordborg, 2013). For example, flowering time in Arabidopsis is perhaps the most well 

studied plant phenotype, and GWAS has been used repeatedly in the past to fine-map 

potentially causal alleles for flowering time (Atwell et al., 2010; Brachi et al., 2010; Zan 

& Carlborg, 2019). Although a well characterised variant in the AOP2 gene was long 

thought to be a major contributor to flowering time in Arabidopsis based on GWAS 

results, recent re-analysis of GWAS data have provided evidence that this association 

may be caused by fitting an association model for a single causal locus when in fact 

there are two causative loci in close proximity (Sasaki et al., 2021). Therefore, in the 

present study it is possible that a complex mechanism, such as allelic heterogeneity, 

that is not captured by the GWAS model used here could be controlling ripening time. It 

is clear that statements of causality cannot be confidently made from GWAS 

associations alone and that further functional work, such as gene expression analysis 

and transgenic experiments, must be performed to confirm the precise location and 

effect of causal alleles.   
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Within the peak region on chromosome 3, I identified a region of low read depth 

(discussed below) as well as a homologous region of high sequence similarity to that of 

the causal region for ripening time in peach (Tan et al., 2021). In peach, a complex SV 

has been documented to control ripening time by impacting the transcription of a peach 

NAC transcription factor, a homolog of MdNAC18.1. The 2kb causal region from the 

peach reference genome showed a high level of homology (E value = 10-41, identities = 

75%) with the apple reference genome in the region upstream of NAC18.1. Although 

the genetic mechanism controlling ripening time is not fully understood in peach, it is 

possible that the causal variant in apple is of similar identity or acts via a similar 

mechanism. Although the most strongly associated SNPs from the present GWAS are 

not directly in the peach homologous region, it is possible that the causal allele in both 

species is impacting a conserved regulatory structure, and that the same locus controls 

ripening time in both species. The idea that a conserved locus controls ripening time 

across species in Rosacea is the logical extension of previous hypotheses (Dirlewanger 

et al., 2012), supported by evidence whereby ripening time is associated with the same 

locus in peach, apricot, wild strawberry, and sweet cherry (Dirlewanger et al., 2012; X. 

Li et al., 2023). To more accurately locate the causal allele in apple at this locus, a 

higher level of LD decay within the genomic region of interest is required (discussed 

below). To achieve this, a GWAS with more samples may suffice, although long read 

sequencing of the region may be required to confidently capture and resolve haplotypes 

or complex structural variations.  

 

Sliding window WGS read depth analysis 
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While calling variants from short read data is a robust method to produce high quality 

genotype data in the form of SNPs and short indels, this approach has limited potential 

for directly calling structural variants (SVs), such as copy number variants (CNVs) and 

presence-absence variants (PAVs) (Francia et al., 2015). Instead, SVs are best 

discovered via long read sequencing (Ho et al., 2020; Sedlazeck et al., 2018). However, 

in lieu of long read sequencing, read depth information from short read WGS can be 

used as a proxy to examine patterns of DNA abundance in samples. In fact, read depth 

information is key for a number of computational models designed to discover SVs 

(Francia et al., 2015; Ho et al., 2020). SV detection methods leveraging read depth 

information are often based on the principle that SVs typically change the abundance of 

a DNA sequence (greater or fewer copies of a given sequence) in relation to the 

reference genome. If samples are sequenced to a known depth, it is often reasonable to 

assume that read depths will be relatively uniform across the genome. Following this 

logic, it is reasonable to compare the read depths for genomic positions to trait data, 

correlating each read depth position from all samples to phenotype data. For example, a 

correlation test could be conducted between the read depths at a given genomic 

position across a group of samples and the ripening time for those samples. This 

correlation could reasonably be made for each position in the genome, with strong 

correlations indicating a relationship between DNA sequence copies and the phenotype, 

providing evidence of structural or copy number genomic variation contributing to the 

phenotype. This basic approach is the basis of a number of SV detection methods, and 

sliding windows are often used for read depth calculations in such cases (Francia et al., 
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2015). Given that the causal allele for ripening time in peach has been characterised as 

a structural variant and an increasingly large body of literature suggests that SVs often 

control plant phenotypes (Cardoso et al., 2014; Hattori et al., 2009; Qiao et al., 2023; 

Saxena et al., 2014; Y. Sun, Wang, et al., 2022; K. Xu et al., 2006), a sliding window 

read depth algorithm using 100bp windows was applied to the WGS dataset.  

 

The sliding window read depth analysis produced strong and significant correlations 

between normalised read depth and ripening time (Fig 4-7B), with the only strong signal 

in the genome on chromosome 3 (Appendix III-V). While the analysis detected the same 

45.7kb region on chromosome 3 as the GWAS analysis, the strongest correlations from 

the sliding window read depth analysis were within an approximately 5kb subregion of 

the 45.7kb signal (Fig 4-7, yellow bar). This region was termed the “low read depth 

region” (Fig 4-7, yellow bar) earlier in the GWAS analysis due to the unusually low read 

depths detected across samples, which was suspected to have decreased the number 

of variants called in this region. The unusually low read depth in this region across most 

samples suggests that the reference genome contains DNA sequence, perhaps a SV, 

that is not common among the samples we sequenced. Interestingly, correlations 

between read depth and ripening time in this low read depth region were the strongest 

in the genome, with read depth being strongly and significantly correlated with late 

ripening time (r = 0.75, Appendix III-VII). Strong correlations between read depth and 

ripening time suggests that a SV in this region may have generated a duplication or 

complex insertion/deletion of DNA sequence that is impacting the ripening time 

phenotype. Given that the region detected in this analysis is approximately 22kb 
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upstream of the NAC18.1 coding region, these results are further evidence that a 

regulatory variant could be impacting ripening time in apple, as previously hypothesised 

(Davies & Myles, 2023). This finding is strikingly similar to ripening time experiments in 

peach, in which samples with a SV upstream of a NAC transcription factor have earlier 

ripening times (Tan et al., 2021). In peach, the causal SV controlling ripening time is a 

deletion relative to the reference genome (peach reference cultivar is Lovell, late 

ripening) and has been shown to decrease expression of NAC in early ripening 

varieties. In fact, deletion of the 26kb region directly upstream of the NAC gene in peach 

abolishes fruit ripening altogether (Nuñez-Lillo et al., 2015). Similarly to peach, the 

apple reference genome, Golden Delicious, is a late ripening variety. These similarities 

suggest, in both peach and apple, DNA sequences upstream of the NAC gene are 

essential for modulating NAC expression and the presence of reference sequence DNA 

is likely responsible for producing the late ripening phenotype. Together, the apple and 

peach data suggest that the deletion of DNA in the region upstream of NAC likely 

results in a decrease in gene expression of NAC, leading to an earlier ripening 

phenotype. Although experiments explicitly measuring gene expression are required to 

test this hypothesis in apple, it agrees with the assertion made by Watts et al. (2023) 

that NAC18.1 is acting as a ‘throttle’ controlling the rate of ripening in apple. Moreover, 

recent studies in strawberry have identified the differential expression of FvRIF, the 

homolog of NAC18.1, as key for controlling fruit ripening (X. Li et al., 2023). These three 

independent lines of evidence (peach, apple and strawberry) are a strong signal that 

genetic variation impacting transcription factor expression is controlling fruit ripening in 

Rosaceous fruit. While the read depth analysis done here was not conclusive, future 
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GWAS-based mapping experiments should consider the use of long read sequencing to 

investigate the presence and potential impact of SVs in this region.   

 

Pool-seq read depth analysis  

 

Because the sliding window read depth analysis (above) suggested that a SV or CNV 

may be impacting ripening time, I hypothesised that read depth data from pooled DNA 

from early and late ripening samples would detect a signal at the same locus. To test 

this, pooled WGS data from chapter 3 was used to compare normalised read depths 

between pools of early and late ripening samples (Davies & Myles, 2023). Interestingly, 

the largest difference in normalised read depths between early and late ripening pools 

was within the low read depth region (Fig 4-7C, yellow bar) identified previously. This 

result further supports the notion that a SV upstream of NAC18.1 may be controlling 

ripening time. Together, the sliding window analysis and the pool-seq analysis provide 

support for the hypothesis that a DNA segment that is present in the late-ripening 

‘Golden Delicious’ reference genome but is altered or deleted in early ripening samples 

is controlling ripening time in apple. Again, to confidently confirm this result and produce 

more detailed information about the sequence identity in this region, long read 

sequencing data across a substantial number of samples will be required.  

 

Linkage disequilibrium (LD) decay and comparison 
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Levels of LD in the GWAS population in the present chapter were similar to levels 

observed in the ABC previously (Migicovsky et al., 2016) and in other high diversity 

perennial fruit crops such as peach, sweet cherry, and pear (Appendix III-

VIII)(Donkpegan et al., 2023; S. Kumar et al., 2017; Micheletti et al., 2015). Due to the 

high diversity of the WGS samples, I hypothesised that LD would be relatively low in the 

WGS genomic data, but reasoned that the LD would be higher in the WGS data than 

that of recent GBS studies which used more samples from the ABC. A comparison of 

LD rates between the present study and previous mapping experiments was made by 

calculating LD for WGS samples and GBS samples from the ABC (Migicovsky et al., 

2022; Watts et al., 2023) at the NAC18.1 signal region. As hypothesised, the present 

study showed low LD overall (mean r2 = 0.25 over 1kb), but when comparing SNPs 

common to both experiments at the NAC18.1 locus, the WGS genomic data LD is 

nearly 3x higher than that of the GBS study (Fig 4-8). This difference in LD can be 

accounted for by the large difference in sample size between WGS (N=76) and GBS 

(N=1116) experiments, as it is well understood that larger sample sizes capture more 

historical recombination events and drive down LD (Nordborg & Tavaré, 2002; Single & 

Thomson, 2016). Because of the key influence of LD on GWAS resolution, this 

highlights the key trade off that was made in the current experiment: by sequencing a 

small number of samples at high depth, GWAS resolution remained lower than it would 

have if more samples were sequenced at lower depth. Therefore, the current GWAS 

had high variant density, but higher than optimal LD. In theory, given a large number of 

samples from the ABC, LD could be driven low enough that GWAS could detect causal 

alleles with near-single base pair resolution. To this end, the large difference in LD 
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decay between the WGS and GBS experiments seen here is a strong indicator that 

future mapping studies that combine the variant density of WGS (as in the current 

study) and vast historical recombination of the ABC (as observed in the GBS samples) 

are likely to enable fine-mapping of causal alleles to narrow genomic regions. This 

bodes well for future studies of the ABC that leverage WGS and imputation for 

elucidating causal alleles for breeding and gene editing.  

 

CRISPR examination  

 

To illustrate the possibility of generating gene editing targets from GWAS results, I 

explored the NAC18.1 signal region associated with ripening time for potential CRISPR 

gene editing sites. The 50kb region associated with ripening time in the present chapter 

was scanned for possible CRISPR gene editing sites with the required protospacer 

adjacent motif (PAM) sequences. The observation of more than 4000 valid CRISPR 

gene editing sites (Fig 4-9) within this 50kb region suggests that efficiently transitioning 

from mapping experiments to functional validation, even when mapping experiments 

have confidently identified a causal region on the order of kilobases, will likely remain 

challenging. Even when considering only the highest quality gene editing sites, there 

are over 400 unique loci that could serve as gene editing targets at this locus. 

Functional testing of 400 unique gene edits across multiple apple lines would require 

the regeneration and propagation of thousands of plants, and tree care for several years 

to appropriately evaluate ripening time. A functional experiment of this magnitude would 

require prohibitive levels of capital, labour, and time resources. While limited functional 
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experiments have been accomplished in apple in the recent past (Jiang et al., 2022; 

Kost et al., 2015; Schlathölter et al., 2023), to my knowledge, there are no examples of 

evaluating gene editing in a single perennial crop on the scale of hundreds of unique 

gene editing sites at this time. Therefore, the 50kb region associated with ripening time 

found in this chapter is too large to efficiently inform functional work, as thousands of 

successful gene edits must be made to exhaustively evaluate potentially causal alleles 

controlling ripening time. In addition, newly emerging gene editing technologies that are 

not limited by traditional PAM sequences (Endo et al., 2019; Q. Ren et al., 2021) 

continue to increase the number of potential gene editing sites available for validation, 

making fine-mapping of short genomic regions ever more important. The ripening time 

example provided here emphasises the importance of high resolution fine-mapping, as 

narrow regions leave fewer possible gene editing sites for functional validation, and 

decrease the burdon of downstream functional experimentation. In the future, the 

discovery of extremely narrow genomic regions (<1kb) via association studies similar to 

the one conducted here will likely be key for enabling the efficient and successful gene 

editing in apple. 

 

Conclusions  

 

The discovery of causal alleles is arguably the primary barrier to the application of novel 

gene editing technologies in apple. At present, WGS sequencing of large populations 

remains prohibitively expensive and the use of reference panel-based imputation 

approaches is becoming increasingly popular in agriculture (Buckley et al., 2022; J. Li, 
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Wang, et al., 2022; Nosková et al., 2021). Moving forward, imputation based methods 

are likely to be an effective way to provide the genotype data required for causal allele 

discovery in apple. Several studies in recent years have imputed genotypes across 

large populations with comparable reference panel sample sizes to the one developed 

here (Buckley et al., 2022; Nosková et al., 2021). In this chapter, I generated a high 

quality reference panel with over 49M variants from a diverse subset of samples from 

the ABC. This reference panel was then used to conduct GWAS-based mapping 

experiments for ripening time. Mapping analyses done in this chapter discovered a 

signal spanning 47.2kb on chromosome 3 associated with ripening time and delimited a 

302bp region upstream of a transcription factor, NAC18.1, that likely contains the causal 

allele(s) controlling ripening time in apple. This finding strongly suggests that the causal 

allele(s) controlling ripening time is/are regulatory variant(s). However, the causal 

allele(s) for ripening time cannot be delimited with high confidence using the methods in 

this chapter, primarily due to the high linkage disequilibrium attributable to the small 

sample size of the reference panel and the inability of the reference panel to effectively 

query complex genetic variation. This study provides evidence that GWAS using a small 

number of diverse samples can be effective for detecting relatively narrow genomic 

regions that control plant traits. However, the analyses done here indicate that signal 

regions on the order of kilobases are likely too large to inform effective gene editing in 

apple. Given the large number of gene editing sites in the signal region detected in this 

chapter, gene editing for ripening time in apple will be challenging without further 

refining the signal. To more confidently pinpoint the causal allele(s) for ripening time, a 

mapping study with more samples is required, and would be best followed by multiple 
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sequencing methods across samples, detailed NAC18.1 expression studies, and 

transgenic functional research focussed on the NAC18.1 promoter region. Importantly, 

the high quality reference panel generated in this chapter can be leveraged in the near 

future to accurately impute the genotypes of over 1000 samples from Canada’s ABC. 

Imputation on this scale will enable high powered and high resolution genetic mapping 

in apple, and will almost certainly provide the power to detect narrow regions of the 

genome controlling dozens apple phenotypes. In some cases, mapping studies using 

the imputed data may lead to the direct discovery of causal alleles underpinning key 

agricultural traits in apple. This chapter represents a substantial investment in the 

mapping potential of Canada’s ABC and the completion of an essential foundation for 

future association mapping experiments in apple.  
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Chapter 5: Summary, final conclusions, and future work 

 
Summary of findings  

 
The objective of this thesis is to advance the current state of knowledge in the areas of 

apple phenomics and genomics by leveraging the wealth of phenotypic and genetic 

diversity in Canada’s Apple Biodiversity Collection (ABC). Specifically, this research 

aims to provide a detailed comparison of the phenotypic differences between 

domesticated and wild apples, and to make contributions toward the discovery of causal 

alleles controlling apple traits. The approach employed in the present research is to first 

comprehensively examine numerous phenotypes of the domesticated apple, and then 

compare and contrast these phenotypes to its primary wild progenitor species. 

Following this exploration of phenome evolution, a pool-sequencing genomics approach 

is applied in an attempt to map the genomic control of valuable apple phenotypes in the 

domesticated apple. Finally, high depth and high resolution DNA sequence data from 97 

diverse samples from the ABC is generated and analysed with the aim of discovering 

the causal allele for ripening time in apple.  

 

In chapter 2, I compare the phenomes of two important apple species: Malus domestica 

and Malus sieversii, the latter being the primary wild progenitor of the former. This 

statistical comparison analyses 10 plant phenotypes across over 1000 samples from the 

ABC. The phenomes of these two species are significantly different overall. I found that 

domesticated apple trees have shorter juvenile phases and produce ripe fruits later than 

their wild counterparts. Further, on average, fruits from M. domestica are 3.6 times 



 
155 

heavier, 43% less acidic, and have 68% less phenolic content than wild apples. The 

historical analysis suggests that breeding practices over the past 200 years have led to 

apples that are higher in soluble solids, are less bitter, and soften less during storage. 

This research sheds light on the impacts of domestication on the modern apple, and 

highlights the value of crop wild relatives as breeding material for cultivar improvement 

in the future.  

 

In chapter 3, I employ a pool-sequencing approach with the aim of discovering the 

causal DNA sequences controlling ripening time, softening, and phenolic content 

production in apples. I use whole genome sequencing data from phenotypically extreme 

samples from the ABC to scan the apple genome for signals of differentiation between 

groups of samples for each phenotype. This investigation provides further evidence of 

the involvement of the transcription factor NAC18.1, and suggests that the promoter 

region upstream of this gene could harbour the causal allele(s). This is a significant step 

forward in understanding ripening time, in which the nature of the causal allele(s) 

(coding or regulatory sequence) has been a source of uncertainty in recent years. 

Further, this study detects multiple loci associated with phenolic content production and 

implicates a family of UDP-Glycosyltransferase superfamily proteins as potentially 

responsible for variation in this phenotype. Finally, this study suggests a complex 

genetic architecture underlying softening in apple, and provides evidence that a gene 

related to skin wax production could be involved in fruit softening during storage. This 

chapter provides evidence that pooled sequencing approaches are suitable methods for 
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genetic mapping in diploid perennial crops like apple, and reveals a number of novel loci 

potentially controlling important plant traits for future investigation.  

 

In chapter 4, I take critical steps towards unlocking the full mapping potential of 

Canada’s ABC and make progress toward the discovery of the causal allele for ripening 

time. Using DNA from 97 diverse samples from the ABC, I generate a high resolution 

reference panel from high depth WGS data via a custom bioinformatics pipeline. I then 

conduct a GWAS for ripening time using the reference panel. This mapping experiment 

detected a strong signal for ripening time on chromosome 3 and delimits a 302bp region 

upstream of NAC18.1 that likely harbours the causal allele(s) controlling ripening time in 

apple. Analyses from this chapter illustrate that the frequency of CRISPR gene editing 

sites in the genome will likely render the application of gene editing technologies in 

apple challenging without the identification of extremely narrow causal regions (<1kb) or 

the definitive identification of the causal allele(s) for a phenotype. While the causal 

allele(s) for ripening time could not be confidently identified in this experiment, the 

generation of a high quality reference panel represents the completion of an essential 

step for enabling accurate imputation of genotypes for thousands of samples from the 

ABC in the near future. With a reference panel complete, the stage is set for future high-

power and high-resolution GWAS using imputed genotypes in this population, which 

hold the potential to discover numerous valuable causal alleles in apple.  

 

Altogether, the analyses of the apple phenome and genome in this thesis further the 

scientific community's basic understanding of phenotype variation, the effects of 
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domestication and breeding, the genomic control of agricultural phenotypes, and the 

path towards causal allele discovery in high-diversity perennial crops. Further, it 

provides a compelling and pragmatic example of the challenges associated with using 

GWAS to discover causal alleles that could be used as gene editing targets. This 

research contributes to a growing body of work that improves our understanding of the 

genomic control of important apple phenotypes, and also lays important groundwork for 

future high-powered genetic mapping in a highly diverse apple mapping population.  

 

Final conclusions  

 

The most important conclusion from this work was the realisation that the identification 

of causal alleles is far more complicated and challenging than I initially anticipated at the 

beginning of the project. The path from genetic mapping to improved apple varieties 

using gene editing is not composed of a set of well-defined steps, but is better 

understood as a series of probabilistic inferences: there is statistical noise in each step 

of the process that ultimately results in far more uncertainty in the conclusions than I 

initially anticipated. Even with access to a large and highly diverse mapping population, 

it is far more challenging to precisely discover the causal DNA sequences that control a 

phenotype in apple than I predicted. Upon starting this project, I anticipated that multiple 

single nucleotide variants (SNVs) controlling key phenotypes could be identified given 

the appropriate sequencing data and experimental design. However, my search for 

causal SNVs was driven by an oversimplified view of genome organisation and control. 

Recent work has shown that SNVs likely represent only a small fraction of the genetic 
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changes that cause phenotypic variation. Instead, it has become clear that structural 

genetic variation such as CNVs, PAVs, indels, and translocations are often the genetic 

variation that controls plant phenotypes. The pronounced role of structural variation in 

the control of plant phenotypes adds a significant layer of difficulty to detecting causal 

alleles because structural variation is challenging to query using short read sequencing. 

Effective detection of structural genetic variation requires multiple forms of DNA 

sequencing and the use of multiple genomes or pan-genomes. It has become evident 

over the course of this project that the detection of complex variation will be a key 

challenge for causal allele discovery.  

 

Further, it is clear that the genetic control of each phenotype is unique and each 

phenotype requires a unique analysis. For example, if more evidence were to support 

that a coding variant within NAC18.1 was controlling ripening time, a transgenic 

experiment in which the coding sequence was altered or interrupted (gene mutagenesis 

or knockouts, e.g., (X. Li et al., 2023)) or transgenic complementation (using multiple 

NAC18.1 haplotypes, e.g., Migicovsky et al. 2021) may be the logical follow up 

experiment. However, in the case presented here, the causal allele is likely in the 

promoter sequence, making expression (RNAi, virus-induced gene silencing, e.g., Jiang 

et al., 2022) or promoter analysis experiments more appropriate follow up studies. 

Therefore, it is likely that after mapping causal alleles to narrow regions of the genome, 

each phenotype will require unique types of functional experiments depending on 

GWAS results. I now fully recognize that even with detailed genotype and phenotype 

information from the ABC, there will be no one-size-fits-all approach for identifying 
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causal alleles across phenotypes. Association mapping may delimit narrow regions of 

the genome harbouring causal alleles in the future, but having full confidence in the 

identity of a causal allele at the nucleotide level will likely require orthogonal evidence in 

the form of functional experiments whose design will depend on themode of genetic 

control and type of polymorphism involved in each phenotype. In some cases, such as 

phenolic content production (Chapter 3), phenotypes appear to be controlled by multiple 

loci of small effect, which is not surprising, but adds another layer of difficulty to 

understanding the alleles impacting the variance in that phenotype. Given the unique 

genetic architecture of each trait and the detail with which the causal allele must be 

delimited before gene editing or genetic modification approaches can be used, each 

phenotype likely requires individualised lines of research. Individual lines of 

experimentation for each phenotype necessarily means that discovering causal alleles 

for each phenotype will require significant resources, and phenotypes that offer greatest 

value to our agricultural system should therefore be prioritised. It is clear that causal 

allele discovery will remain challenging and resource intensive, but still offers value both 

to fruit science and the apple industry.  

 

Although wrought with challenges, association mapping still represents a powerful tool 

for mapping causal alleles. There are many examples of such approaches yielding 

causal alleles (Bai et al., 2012; Kenny et al., 2012; Puckett et al., 2023; Qiao et al., 

2023; Tan et al., 2021), however I have come to realise the true extent of the 

investment and time achieve success in this endeavour. Already, genetic mapping in 

Canada’s ABC has required more than a million dollars and a decade of intense design, 
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logistics, and research, and it seems likely that another 10 years is required to map 

causal alleles for many traits at our team's current pace. In addition, association 

mapping is likely to only represent one aspect of effective causal sequence discovery. 

As seen in related Rosaceous crops like strawberry (X. Li et al., 2023; Martín-Pizarro et 

al., 2021; Sánchez-Sevilla et al., 2017), gene expression analysis is a powerful tool to 

discover the genes controlling certain traits, and can be leveraged to determine which 

DNA sequences impact plant phenotypes. Given the immense challenge of genetic 

mapping in plants, the use of association mapping and expression analysis strategies in 

tandem is likely the fastest path towards understanding plant traits.   

 

Importantly, the optimism expressed about gene editing in the introduction of this 

document is likely belied by the true challenges of enabling gene editing technology in 

apple. While gene editing does offer novel and powerful strategies for advancing plant 

science and crop improvement, a number of significant challenges remain over and 

above causal allele discovery. For apple, tissue culture and regeneration may represent 

the single greatest barrier to gene editing (Atkins & Voytas, 2020; Venezia & Creasey 

Krainer, 2021). The successful culturing, editing, and regeneration of apple tissues is 

currently seen with increasing pessimism by those directly focussed on the problem 

(Sophie Watts, personal communications, 2024, Shai Lawit, personal communications, 

2023, Brian Crawford, personal communications, 2023, Franklin Lewis, personal 

communications, 2023). There is a significant bottleneck in discovering effective 

protocols for editing apple genomes and regenerating edited tissue into functional 

plants. As of this writing, only a single apple cultivar, ‘Gala’, has been edited and 
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regenerated successfully . This means that even with the successful discovery of causal 

alleles and application of gene editing in apple, only a single apple cultivar is currently 

available for modification by gene editing. At present, the biological mechanisms 

underpinning tissue culture and regeneration in apple (and perennial trees in general) 

remain highly speculative and supposed advancements in this area are frequently 

guarded by trade secrets (Okanagan Specialty Fruits, Verinomics Inc., Caribou 

Biosciences). Therefore, without significant progress in tissue culture and regeneration, 

gene editing only offers benefits to a handful of cultivars, and cannot deliver on the 

promise of improvements across elite, heirloom, or wild cultivars. This significantly 

reduces the proposed impact of gene editing on cultivar improvement, novel variety 

creation, and the promise of crop re-domestication (Hanak et al., 2022; Lyzenga et al., 

2021; J. Xu et al., 2019).   

 

Even in crops where gene editing has been successfully applied to generate novel 

phenotypes and new consumer products, it is unclear if such products represent 

industrial improvements or commercial successes. For example, the Pairwise Plants 

Conscious Greens® (Karlson et al., 2022), generated using CRISPR gene editing to 

knockout the production of bitter tasting metabolites, is understood in industry circles to 

be a scientific success but a complete market failure that is unlikely to appear on 

grocery store shelves much longer (Eric Ward, personal communications, 2023). Even 

with regulatory changes around the world distinguishing between gene edited and GMO 

food products in recent years (Health Canada, 2022; Turnbull et al., 2021) and reduced 

consumer scepticism towards gene edited foods (Funk, 2020), it remains unclear how 
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trends in governmental regulation and consumer thought will impact the market success 

of gene edited food products. These challenges, both scientific and industrial, have 

dampened my optimism about the promise of gene editing in apple, and have instead 

strengthened my optimism in high-throughput traditional breeding methods and GMO 

techniques.  

 

 
Future directions  

 
Genotype imputation 
 
The studies in chapters 3 and 4, although insightful, are both limited by sample size due 

to the constraints of DNA sequencing costs. Under ideal circumstances, all 1116 

samples from the ABC would be sequenced to high depth, enabling mapping 

experiments that maximise statistical power and fully leverage the vast historical 

recombination captured by the ABC population. High-depth DNA sequencing of the 

entire population would allow for high-confidence genotype calling and thus causal 

allele identification. However, in the future, it is still unlikely that thousands of samples 

from the ABC will be sequenced to high depth due to the high costs associated with 

whole genome sequencing thousands of samples at high depth. Instead, genotype 

imputation offers an opportunity to generate accurate genotype information for 

thousands of samples at a fraction of the cost of deep WGS, and offers comparable 

accuracy to sequencing at high depths (J. H. Li et al., 2021, 2023; Snelling et al., 2020). 

The reference panel generated in chapter 4 sets the stage for genotype imputation of 
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the entire ABC, and will be used to generate accurate genotype information for all 

samples in the ABC following low coverage sequencing of all non-reference samples.  

 

The logical next step from the work presented in this thesis is the collection of low-depth 

sequencing from the remainder of the ABC and the subsequent imputation of genotypes 

across the entire ABC using the reference panel produced in Chapter 4. Imputation is 

becoming an increasingly popular approach for agricultural genomics, and has been 

applied successfully in numerous organisms including pigs, dogs, cattle, and laying 

chickens (Buckley et al., 2022; J. Li, Wang, et al., 2022; Nosková et al., 2021; Snelling 

et al., 2020). Indeed, imputation work at the ABC is already underway and, at the time 

of this writing, DNA from 820 samples from the ABC have been sequenced at low depth 

(1x). These data will be used to impute the genotypes of 820 non-reference samples, 

bringing the number of samples with accurate genome-wide genotype information to 

917. A population of this size with high density genetic markers will provide high 

resolution for future association studies, particularly since LD decay has been shown to 

be rapid in large apple collections, including the ABC (Larsen et al., 2019; McClure et 

al., 2018; Migicovsky et al., 2016). Future association studies using these data will be 

able to leverage both the high genomic variant saturation and the high LD decay from 

the ABC population to delimit causal alleles or narrow regions of the genome harbouring 

causal alleles. In the latter case, targeted sequencing approaches can then be applied 

to narrow regions of the genome associated with phenotypes to elucidate causal alleles. 

Recently, there have been advancements in imputation such that long read sequencing 

can enable imputation of structural variants (Noyvert et al., 2023). The ability to detect 

structural variation is likely to be key for discovering causal alleles in the future, and 
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imputation of structural variation could be a reasonable next step following imputation of 

SNPs and short indels using short read sequencing. In summary, imputation offers a 

cost effective and accurate method of mapping the genomic control of traits in large 

populations, and stands as the most reasonable path forward for investigations at the 

ABC.   

 

The use of multiple sequencing technologies  

In the future, it is highly probable that multiple sequencing approaches will be necessary 

to uncover causal alleles from the ABC. As exemplified in multiple recent studies (Cirilli 

et al., 2022; J.-M. Song et al., 2020; Tan et al., 2021), the use of both long and short 

read sequencing data is an effective approach for discovering complex genetic variation 

that impacts plant phenotypes. For example, two recent publications in peach have 

confidently delimited complex variants that control ripening time and a double flowering 

trait using a combination of short and long read sequencing (Cirilli et al., 2022; Tan et 

al., 2021). These experiments clearly demonstrate that, with sufficient access to diverse 

samples and multiple sequencing technologies, causal alleles can often be confidently 

identified using association studies. As discussed earlier, the increasing number of 

studies finding causal variants that are structural, such as copy number variation, 

presence absence variation, and complex rearrangements, indicates that structural 

variants likely underpin a significant proportion of plant phenotypic variation (Alonge et 

al., 2020; Gabur et al., 2019; Saxena et al., 2014). With this in mind, it will be 

increasingly important to use long read sequencing such as Oxford Nanopore or PacBio 

to accurately discover structural variation. Further, given that regulatory sequences are 
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also likely to play a role in the control of numerous plant phenotypes (see Chapters 3 

and 4), sequencing methods such as Hi-C may also be reasonable for untangling 

associations and interactions between genes and regulatory regions that ultimately 

control plant phenotypes (Song et al. 2020; Zhang et al. 2019; Belton et al. 2012; Eagen 

2018; Kim et al. 2022). In the future, multiple sequencing methods will likely need to be 

applied on a case-by-case basis depending on the genetic structure of the trait to 

discover causal alleles. 

 

Pan-genomes  

Pan-genomes are an emerging resource in plant genetics and are likely to be the 

standard reference genome format in the future (Bayer et al., 2020). Pan-genomes are 

reference sequences generated from multiple samples from a species and therefore 

capture more genetic diversity than can be captured in a single sample’s linear 

reference genome, which is the current standard. To date, dozens of crop pan-genomes 

exist, including builds for rice, maize, wheat, soy, poplar, pepper, sesame, and walnut 

(Hirsch et al., 2014; Y.-H. Li et al., 2014; Montenegro et al., 2017; Ou et al., 2018; 

Pinosio et al., 2016; Schatz et al., 2014; Trouern-Trend et al., 2020; Yu et al., 2019). 

This recent expansion in the number of pan-genomes is largely due to declines in long-

read sequencing and computing costs, both of which are essential resources for the 

generation of pan-genomes (Bayer et al., 2020).  

 

Pan-genomes offer a number of significant advantages over traditional linear reference 

genomes. First, pan-genomes capture more structural variation than linear genomes 
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(Munir et al., 2020). This is important because structural variation has been 

demonstrated to be key for the control of numerous plant phenotypes (Jiao & 

Schneeberger, 2020; Nsabiyera et al., 2019; Schatz et al., 2014; J.-M. Song et al., 

2020), and pan-genomes enable such variation to be more accurately identified. 

Second, it has been demonstrated that alignment of short read sequence data to a 

reference pan-genome significantly improves sequence mapping accuracy and 

downstream quality of variant calls and can also lead to more accurate gene expression 

measurements (Golicz et al., 2016; R. Li et al., 2019; X. Tian et al., 2020). Although the 

accuracy of read mapping and variant calls were relatively high in this work, the use of a 

pan-genome could have improved the mapping accuracy and variant quality of calls 

made in Chapter 4 of this thesis. Finally, pan-genomes capture more of the 

“dispensable genome” — the genes not present in all samples that are captured by a 

pan-genome (Medini et al., 2005). This is significant because the dispensable genome 

is now understood to contain genes and causal alleles that provide important and 

agriculturally relevant phenotypes such as improved flavour in tomato (L. Gao et al., 

2019) and seed weight in pea (Zhao et al., 2020). Overall, pan-genomes represent a 

significant step forward in more completely querying the genomic variation of a crop and 

avoiding the well known single sample bias introduced by using a linear reference 

genome.  

 

It is worth noting that a pan-genome has been constructed for apple; however, it is built 

from the sequences of only three samples from across the genus Malus (X. Sun, Jiao, 

et al., 2020). In the future, apple research is likely to benefit from the addition of dozens 
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of samples to the pan-genome, as seen in other crops in which pan-genome builds 

incorporate upwards of 3000 samples (W. Wang et al., 2018). Looking forward, it is 

almost certain that the current gold standard reference genome in apple, derived from 

the Golden Delicious variety (Daccord et al., 2017), will be replaced soon with an apple 

pan-genome.  

 

K-mer based association mapping 

Methods that allow one to capture a wide spectrum of genetic variation without the cost-

intensive genotyping of SVs at scale will be crucial for effective association mapping in 

the future. One such approach, which observes unique k-mers from short read 

sequencing data to detect genetic variation (Voichek & Weigel, 2020), has proved to be 

a significant improvement over traditional GWAS methods that make use only of SNPs 

or short indels (Lemay et al., 2023). Using this method, k-mers are derived from short 

sequence reads and are used as a proxy for genetic variants in the genome. The 

presence/absence of k-mers in a population can be used to conduct association studies 

to detect polymorphisms associated with a phenotype. The primary advantage of the k-

mer approach is that k-mers are able to detect any genetic variation so long as that 

variation produces a unique k-mer in short read sequencing data. This has been shown 

to effectively capture the vast majority of SVs in plant genomes (Voichek & Weigel, 

2020). Therefore, the k-mer method is not limited to subsets of genetic variation like 

traditional GWAS datasets (e.g., SNPs and indels only), and provides a method of more 

comprehensively surveying the genome for variation. Another important advantage of 

the k-mer based approach is that it does not make use of a reference genome prior to 
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the association test, avoiding much of the bias and error introduced when aligning 

sequence reads to a reference genome. After the association test, k-mers associated 

with a phenotype can be traced back to the sequencing reads from which they 

originated and then mapped to one or more reference genomes, effectively locating 

causal alleles. A recent comparison in soybean demonstrated that this approach is 

significantly better at locating causal alleles via association studies than traditional SV 

or SNP based GWAS (Lemay et al., 2023). However, the k-mer method has been 

reported to produce higher numbers of false positives and requires more intensive and 

careful interpretation of results. At present, a primary barrier for the application of the k-

mer approach in apple is that it relies on the presence/absence of k-mers, which may 

not be suitable for heterozygous crops, in which k-mers for both alleles would be 

observed at heterozygous sites (Lemay et al., 2023; Voichek & Weigel, 2020). Thus, to 

date, it has only been applied to inbred crops that are homozygous (Colque-Little et al., 

2021; Tripodi et al., 2021). Despite this, I applied this methodology to the WGS 

generated in chapter 4 and did detect a strong signal associated with ripening time at 

the NAC18.1 locus (data not shown). That being said, the downstream interpretation of 

the results was burdensome both computationally and conceptually, and further work on 

that project is required to be confident in the quality and validity of the results. The 

detection of a preliminary signal in the NAC18.1 region is encouraging and suggests 

potential for k-mer applications in heterozygous crops like apple in the future. 

Fortunately, a number of tools have been developed to aid in analysis of k-mer results 

(Lemay et al., 2023), and new methods using k-mer counts (Cheng He, et al., 2021) 

may be more suitable for heterozygous crops.  
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Association mapping to gene editing 

In the future, targeted mutagenesis via gene editing using a small number of candidate 

causal alleles from association studies may be the fastest path towards improved apple 

varieties. As seen with recent studies in peach (Cirilli et al., 2022; Tan et al., 2021), 

association studies followed by next generation high depth sequencing in large 

populations can discover the location of causal alleles with a high degree of confidence. 

Therefore, it is conceivable that targeted mutagenesis of potentially causal alleles could 

be undertaken immediately following GWAS and high depth sequencing, rather than 

investing time and resources in functional genomics studies to build confidence in the 

identity of candidate causal alleles. Although functional experiments often provide 

unique insights into the mechanistic control of plant phenotypes, the approximate 

location of the causal allele is not frequently refined using these approaches (X. Li et al., 

2023; Migicovsky et al., 2021). Therefore, functional genomics often provides a deeper 

understanding of the control of a given phenotype than is necessary for producing an 

improved plant, and may be an ineffective use of resources in some cases. Rather than 

investing in functional genomics experiments that often produce modest increases in 

confidence in the identity of causal alleles, it is conceivable to gene edit numerous apple 

plants using a list of lower-confidence causal alleles from association studies for 

evaluation. Although most edits would provide no changes to the targeted phenotype, 

gene editing of potentially causal regions could provide improved phenotypes by 

screening large numbers of edited plants even if the genetic variation introduced is 

novel or poorly understood. This approach was discussed earlier in this document (See 
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Chapter 1) as “promoter bashing”, and could be used to introduce variation to regions of 

the genome that are highly likely to impact phenotypes. It leverages the sequence 

specificity of gene editing and could be conceptualised as a more precise form of 

classic mutagenesis. Studies have demonstrated the efficacy of this approach across 

multiple agricultural species including tobacco, soybean, and rice (Bao et al., 2019; J. 

Gao et al., 2015; C. Li et al., 2022; X. Song et al., 2022). By editing numerous lower 

confidence causal alleles across diverse apple plants at scale, it is plausible that 

targeted mutagenesis could be the fastest way to improve apple varieties. I am hopeful 

that with breakthroughs in other areas of gene editing (described above) that targeted 

mutagenesis approaches can be applied to apple in the future.  

 

Advancements in Gene Editing  

Although I described a sense of dampened optimism towards gene editing technologies 

(see Final Conclusions), it is worth briefly discussing recent advancements in the area 

and the potential the technology may offer apple improvement in the near future. Novel 

discoveries in CRISPR-cas protein complexes have opened a number of paths towards 

genomic improvement in apple, and crops more broadly. PrimeRoots editing (C. Sun et 

al., 2023) is a recent discovery that produces sequence specific insertions and deletions 

up to 11kb in plant genomes. In combination with the gene editing capabilities 

previously discussed, this effectively opens the door for nearly all allele swaps and 

precision insertions and deletions, which could theoretically allow for the precise 

addition, removal, or conversion of many causal alleles found in plants. Genome 

modification through CRISPR-based approaches is a rapidly evolving field, with 
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advances happening frequently (Kweon et al., 2024; R. Liang et al., 2024). Multiple 

groups are making striking progress on improving the efficiency, specificity and 

versatility of CRISPR systems though the careful engineering of Cas proteins and 

CRISPR RNAs (D. Y. Kim et al., 2022; H. Lee et al., 2019; Yan et al., 2017). It is safe to 

assume that the capabilities of CRISPR based systems are likely to expand in the near 

future. The full CRISPR gene editing suite of technologies in their current and future 

forms offer the ability to generate a wide array of genetic variation and could play a vital 

role in apple improvement in the future if significant organism specific barriers (see Final 

Conclusions) are addressed.  

 

Ribozyme-based genome editing technologies  

In 2024, hydrolytic endonucleolytic ribozymes (HYERs) were reported to have DNA 

cleaving capabilities, making the HYER system a candidate as a novel gene editing 

technology (Z.-X. Liu et al., 2024).  Early reports of the technology suggest HYERs 

could work across the tree of life as they have been shown to be active in both E. coli 

and mammalian genomes (Z.-X. Liu et al., 2024). HYERs are a small complex of single 

stranded RNAs that exhibit sequence-specific DNA targeting. In addition, the HYER 

system is far smaller (0.6kb) than previously discovered CRISPR (2-3kb) systems, 

which is attractive in situations where CRISPR construct sizes are prohibitively large. 

Already, careful engineering of native HYER systems has extended the recognition 

sequence of HYER to 20bp, making it equally as specific as CRISPR systems (Z.-X. Liu 

et al., 2024). Because this is an emerging discovery with few formal demonstrations, it 

remains unclear what role this technology could play in agriculture, or if it will be a 
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suitable method for gene editing. However, the discovery of a class of biological 

molecules that can be programmed to alter the genome outside of the CRISPR system 

suggests that numerous similar systems may exist in the natural world, and that we are 

likely at the beginning of a genome engineering tool discovery era.  

 

Genetic Modification Technology 

Genetic modification (GM) refers to the suite of methods that take DNA sequences from 

another species and integrate those sequences into a host genome (Riva et al., 1998; 

SB Gelvin, 2003). These methods offer the ability to introduce novel traits or make 

targeted gene knockouts in an organism, the former being arguably the most powerful 

crop improvement approach to date. The ability to move sequences across the tree of 

life has revolutionised agriculture in many crops (Bullock & Nitsi, 2001; Pray et al., 

2002). For apple, fire blight resistance sequences have been successfully moved from a 

wild apple species, M. robusta, to domesticated apple to produce a fire blight resistant 

Gala variety that is now in the 5th year of field trials and showing great promise (Kost et 

al., 2015; Schlathölter et al., 2023). Given that the ABC contains dozens of wild apple 

cultivars, the ABC could contribute to apple improvement through this approach if 

causal sequences are discovered in the wild population. Since disease related traits 

arguably offer the most impact to the agricultural industry, and because disease 

resistance often comes from wild relatives or distantly related species (Hajjar & 

Hodgkin, 2007; Love, 1999; Wilson et al., 2000), this technology offers tremendous 

potential for apple improvement. GM approaches have already shown market traction in 

apple, with Okanagan Specialty Fruits’ non-browning Arctic Apple® varieties being a 
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commercial success (Neal Carter, personal communications, 2022). Of course, a 

primary barrier for GM technology is public perception and governmental regulation. 

While consumer acceptance of GMOs seems to be increasing (Marette et al., 2021; 

Wunderlich & Gatto, 2015), as demonstrated by the growing movement around the 

Purple Tomato® (Nathan Pumplin, personal communications, 2024), governmental 

regulation across countries remains volatile and uncertain. Further, the regulatory 

process to get GMO plants to market in many countries is burdensome and arguably 

discourages innovative investment in this area. It is clear that any plant varieties with 

GMO status will face significant challenges in some areas of the world, and will be 

subject to some level of disapproval from a portion of the consumer base for the 

foreseeable future. However, I remain optimistic that GM technologies can enable the 

generation of significantly improved apple varieties through gene knockouts and the 

movement of cis- and trans-genes in the future.   

 

Artificial intelligence (AI) in genetic mapping 

In the last few years, the use of artificial intelligence (AI) has been touted as the solution 

to numerous modern challenges from city traffic to online dating (G. Chen & Zhang, 

2022; Y. Wu & Kelly, 2021). In biology, numerous groups are working to apply cutting 

edge AI methods in the hopes of accelerating scientific discovery (Buchelt et al., 2024; 

Hassoun et al., 2022; Nagarajan et al., 2019). For example Google’s AlphaFold 3 AI 

model, which has primarily been used to predict protein folding structure, has recently 

been introduced to the field of science, and AlphaFold 3 founders claim that the model 

“predicts the structure and interactions of all of life’s molecules”. While no doubt the 
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technology is promising, as evidenced by over 20,000 citations and pioneering of a 

novel research field (Jumper et al., 2021), I am cautious of the confidence some 

scientists have in such technologies. Further, other teams which use proprietary AI 

breeding techniques in the pursuit of advancing agriculture, have yet to realise success 

in the form of a field-proven plant or market successful product (Mariano Alvarez, 

personal communications, 2023; Nathan Pumplin, personal communications, 2024). I 

have no doubt that AI will play a role in the advancement of crop improvement in the 

future, however it is not clear how this technology will aid in addressing major 

challenges such as the phenotyping bottleneck (Furbank & Tester, 2011), the collection 

and curation of diverse crop varieties (Iezzoni et al., 2020), and tissue culture and 

regeneration (Atkins & Voytas, 2020; Venezia & Creasey Krainer, 2021).  

 

In conclusion, apple breeding and improvement remains challenging and simultaneous 

advancements in multiple disciplines will be key for marked acceleration of apple variety 

improvement. In terms of causal allele discovery, association mapping and the use of 

multiple forms of WGS will be key in the future and the ability to detect complex genetic 

variation will be essential. Further, it will be important to use multiple mapping 

methodologies and pangenomes to not only identify efficacious breeding targets for 

selective breeding, but also to identify causal alleles and genes from other species that 

can offer benefits to apple via gene editing and genetic modification technologies.   
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Appendix I: Phenotypic divergence between the wild and cultivated 

apple (Chapter 2) 

 

 

Appendix I-I. Phenotypes of cultivated apples as a function of their release year with a 
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comparison to the ancestral state. Phenotypes include acidity change during storage, 

acidity, precocity, harvest date, firmness, and weight. Cultivated apple scores for each 

phenotype are shown in blue, and the ancestral state of each phenotype is represented 

in yellow as a density distribution of values from M. sieversii. The R and p values from a 

Pearson correlation between phenotypic values and release year are shown within each 

scatter plot. 

 
 
Appendix II: Pool-seq of diverse apple germplasm reveals candidate 

loci underlying ripening time, phenolic content, and softening 

(Chapter 3).  

 

 
Appendix II-I. Bioinformatic workflow of the pool-seq GWAS.  
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Appendix II-II. Read depth histograms for each phenotype pool. Red bars indicate read 
depth cutoff limits (50x and 500x). 
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Appendix II-III. Overlap of variants from the present study and previous mapping 
experiments using GBS studies (Migicovsky et al. 2022). 
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Appendix II-IV. Manhattan plots for softening signal on chromosome 10. Delta-AFe (A) 
and CST p-values (B) are represented by black dots, red bars indicate coding regions of 
Long-chain fatty alcohol dehydrogenase family protein (LCFAD) (MD10G1176100), 
PG1, and ERF (MD10G1184800), respectively. 
 
Table II-I. Genome coverage table. Various position read mapping data including total 
genome coverage by position, total genome coverage by percent, and average read 
depth. [ELECTRONIC SUPPLEMENT]  
 
Table II-II. Ripening time extended results. Ripening time top variant hits, candidate 
genes, and top GO enrichment terms. [ELECTRONIC SUPPLEMENT]  
 
Table II-III. Total phenolic content extended results. Total phenolic content top variant 
hits, candidate genes, and top GO enrichment terms. [ELECTRONIC SUPPLEMENT]  
 
Table II-IV. Softening extended results. Softening top variant hits, candidate genes, and 
top GO enrichment terms. [ELECTRONIC SUPPLEMENT]  
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Appendix III: Fine mapping of the causal allele controlling ripening 

time in apple (Chapter 4) 

 

Appendix III-I. Ripening time distributions of the entire ABC population (N = 837) and 
the samples selected for WGS (N = 107). The subset for the 107 sample selected for 
WGS clearly span the entire range of ripening times observed in the entire ABC 
population.   
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Appendix III-II. DNA sequencing read pairs (A) and mean read depth across samples 
(B). The mean number of raw read pairs generated for each sample was 55.6 million. 
The mean and median proportions of reads that passed quality score trimming across 
all samples was 95.79% and 99.94%, respectively. The average read depth across 
samples, after filtering and quality control, was 17.5x. The median insert size from PE 
reads was 292 bp, and the mean insert size was 312 bp.  
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Appendix III-III. Indel length distribution for the WGS final variant dataset. Most indels 
detected in the data were small (< 10 bp), however indels up to 60 bp in size were 
detected.  
 
NRD = 100 * (xRR + xRA + xAA) / (xRR + xRA + xAA + mRA + mAA) 
 
Appendix III-IV. Equation used to calculate non-reference discordance (NRD) for each 
sample between GBS and WGS VCF files. X = mismatches, m = matches, RR = 
reference/reference, RA = reference/alternate, AA = alternate/alternate.  
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Appendix III-V. Manhattan plots for normalized read depth correlations across 100bp 
windows of the genome. A) manhattan plot showing P values for the pearson correlation 
between each window (dot) and ripening time. The red line indicates Bonferroni 
corrected threshold. B) manhattan plot showing r values for the pearson correlation 
between each window (dot) and ripening time. 

 
 
Appendix III-VI. Read depth correlations across 100bp windows on within the strongest 
signal region for ripening time on Chromosome 3.  
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Appendix III-VII. Correlation of normalized read depth across the 100bp window 
spanning 30721701-30721800bp and ripening time for each WGS sample.  
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Appendix III-VIII. Linkage disequilibrium (LD) decay curve from inter-variant distances 
of 10 to 1000 bp in 76 WGS samples.  
 
 
Table I-I. Variant frequency across the genome for WGS variants. [ELECTRONIC 
SUPPLEMENT]  
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