
ON THE ROBUSTNESS OF QUANTIZED CONVOLUTIONAL
NEURAL NETWORKS

by

Jack Langille

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

August 2024

© Copyright by Jack Langille, 2024

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . viii

List of Abbreviations and Symbols Used ix

Acknowledgements . xi

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Related Work . 4

Chapter 2 Theory and Background 8

2.1 Quantization . 8

2.2 Input Perturbations . 15

2.3 Degradation Metrics . 19

Chapter 3 Methods . 24

3.1 Model Selection and Dataset . 24

3.2 Quantization Scheme . 27

3.3 Experimental Setup and Procedure 28

Chapter 4 Results . 34

4.1 Baseline Results . 34

4.2 Perturbed Results . 35
4.2.1 AWGN . 35
4.2.2 Brownian Noise . 40
4.2.3 Vertical Occlusions . 45
4.2.4 Horizontal Occlusions . 50

Chapter 5 Conclusion . 57

ii

Bibliography . 59

Appendix A Quantization Python Code 63

Appendix B Average KL Divergence Python Code 66

iii

List of Tables

3.1 Details of studied models. All data retrieved from PyTorch doc-
umentation [32]. 26

3.2 Quantization parameters. Note that quantization range, scale,
and zero point are learned parameters during calibration with
observers. 27

3.3 Summary of FP32 ResNet-18’s first convolutional layer architec-
ture. 28

3.4 Summary of INT8 ResNet-18’s first convolutional layer architec-
ture. 28

4.1 Baseline unperturbed results. 35

4.2 Baseline unperturbed KL divergences for each model pair. . . . 35

4.3 Tabulated top-1 accuracies for various levels of AWGN. 39

4.4 Tabulated top-5 accuracies for various levels of AWGN. 39

4.5 Tabulated F1 scores for various levels of AWGN. 39

4.6 KL divergences for each model pair under various levels of AWGN. 40

4.7 Tabulated top-1 accuracies for various levels of Brownian noise. 44

4.8 Tabulated top-5 accuracies for various levels of Brownian noise. 44

4.9 Tabulated F1 scores for various levels of Brownian noise. 44

4.10 KL divergences for each model pair under various levels of Brow-
nian noise. 45

4.11 Tabulated top-1 accuracies under various amounts of vertical
occlusion. 49

4.12 Tabulated top-5 accuracies under various amounts of vertical
occlusion. 49

4.13 Tabulated F1 scores under various amounts of vertical occlusion. 49

4.14 KL divergences for each model pair under various amounts of
vertical occlusion. 50

iv

4.15 Tabulated top-1 accuracies under various amounts of horizontal
occlusion. 54

4.16 Tabulated top-5 accuracies under various amounts of horizontal
occlusion. 54

4.17 Tabulated F1 scores under various amounts of horizontal occlusion. 54

4.18 KL divergences for each model pair under various amounts of
horizontal occlusion. 55

v

List of Figures

1.1 Visual depiction of a convolution operation. Weights are the
elements of the filter/kernel, and activations are the result of
passing the feature map’s elements through an activation function. 2

2.1 FP32 weights before (top) and after (bottom) 4-bit fake quan-
tization. 9

2.2 KDE plots of full precision ResNet-18 weights and activations. 11

2.3 KDE plots of quantized ResNet-18 weights and activations. . . 14

2.4 Demonstrations of various levels of studied noise. 19

2.5 KL divergence for standard normal distribution with distribu-
tions of varying standard deviations. 23

3.1 Architecture diagrams of the studied models: (a) VGG-16, (b)
ResNet-18, and (c) SqueezeNet1 1. conv3-64 denotes a convo-
lutional layer with kernel size 3 × 3 and an output of 64 fea-
tures; fc-n denotes an n-channel fully-connected layer; conv1-n
denotes a 1× 1 kernel with n output features. 31

3.2 Sample imagery from the FGVC-A dataset. Note that (c) and
(b) belong to the same class but have different branding. . . . 32

3.3 Class counts for FGVC-Aircraft family dataset. 33

4.1 Top-1 and top-5 accuracies for each model’s FP32/INT8 pair
for varying levels of AWGN. 37

4.2 F1 scores for each model’s FP32/INT8 pair for varying levels
of AWGN. 38

4.3 KL divergences for each model pair under various levels of AWGN. 40

4.4 Top-1 and top-5 accuracies for each model’s FP32/INT8 pair
for varying levels of Brownian noise. 42

4.5 F1 scores for each model’s FP32/INT8 pair for varying levels
of Brownian noise. 43

4.6 KL divergences for each model pair under various levels of
Brownian noise. 45

vi

4.7 Top-1 and top-5 accuracies for each model’s FP32/INT8 pair
under various amounts of vertical occlusion. 47

4.8 F1 scores for each model’s FP32/INT8 pair under various amounts
of vertical occlusion. 48

4.9 KL divergences for each model pair under various amounts of
vertical occlusion. 50

4.10 Top-1 and top-5 accuracies for each model’s FP32/INT8 pair
under various amounts of horizontal occlusion. 52

4.11 F1 scores for each model’s FP32/INT8 pair under various amounts
of horizontal occlusion. 53

4.12 KL divergences for each model pair under various amounts of
horizontal occlusion. 55

vii

Abstract

This thesis studies the performance and robustness of post-training INT8 quantized

convolutional neural networks under various perturbation regimes. Perturbations in-

clude additive white Gaussian noise (AWGN), spatially correlated Brownian noise,

and structured vertical and horizontal occlusions. Three state-of-the-art models, in-

cluding VGG-16, ResNet-18, and SqueezeNet1 1, are examined. Performance metrics

include top-1 accuracy, top-5 accuracy, and F1 score. We also employ Kullback-

Leibler (KL) divergence to measure differences in model confidences in their out-

put class probabilities. We depart from traditional benchmark datasets and instead

study fine-grained visual classification to a) better model real-world image classifica-

tion tasks where specificity of sub-classes derived from a parent class is favored over

generality and b) better stress the reduced precision model. This research aims to

identify points of instability or ill-conditioning in the quantized model relative to its

full-precision version to provide experimental bounds on quantization for deployment

in scenarios where random perturbation may be present, as is common in computer

vision systems owing to thermal noise, sensor faults, and environmental conditions.

It was found that across all three models and under each perturbation scheme, the

relative error between the quantized and full-precision model was consistently low,

with the maximum error being in VGG-16 under Brownian noise with a top-1 accu-

racy drop of 1.62% in the quantized model. We also find that KL divergence was on

the same order of magnitude as the unperturbed tests across all perturbation regimes

except Brownian noise, where maximum divergences ranged from 1.6631 (VGG-16)

to 2.3271 (SqueezeNet1 1). While secondary to quantization-induced errors, it was

also observed that, in general, models were most sensitive to vertical occlusions, with

accuracy degrading to sub-50% at the lowest level of perturbation.

viii

List of Abbreviations and Symbols Used

ASIC Application-specific integrated circuit.

AWGN Additive white Gaussian noise.

CIFAR Canadian Institute For Advanced Research.

CNN Convolutional neural network.

FFT Fast Fourier transform.

FGVC Fine-grained visual classification.

FGVC-A Fine-grained visual classification-aircraft.

FLOPS Floating-point operations.

FP32 32-bit floating-point.

FPGA Field-programmable-gate arrays.

GFLOP Giga floating point operations.

IFFT Inverse fast Fourier transform.

INT8 8-bit integer.

KDE Kernel density estimation.

KL Kullback-Leibler.

MAC Multiply-accumulate.

MNIST Modified National Institute of Standards and Technology database.

PTQ Post training quantization.

ix

QAT Quantization aware training.

ReLU Rectified-linear unit.

SOTA State-of-the-art.

x

Acknowledgements

I would like to thank my supervisor, Dr. Issam Hammad, for his guidance throughout

this project. His expertise in machine learning was invaluable for its completion. I

also thank Dr. Guy Kember for his input and wisdom in experiment design. Without

their continued support, this research would not have been possible. Additionally, I

extend my gratitude to Dr. Kamal El-Sankary for being a member of my committee

and assisting in the initial design of this project.

xi

Chapter 1

Introduction

1.1 Motivation

Convolutional neural networks (CNNs) have emerged as an effective means of model-

ing relationships in spatially expressive data, introducing a new domain of computer

vision tasks ranging from image classification and segmentation to object detection

and video processing. The concept of the convolutional layer was introduced in the

1989 paper Handwritten digit recognition with a back-propagation network [7]. This

concept was refined in 1998 with the introduction of LeNet-5, the first formalized CNN

[20]. Since LeNet-5, CNNs have become ubiquitous in the machine learning ecosys-

tem. Today, popular CNN model architectures include AlexNet [19], VGGNet [39],

and ResNet [15]. While no doubt impressive in classification accuracy and general-

ization ability, these models suffer in their increasing parameter counts - as capability

increases, so does the model’s size. VGGNet is predicated on this concept, as they

sought to show that model performance scales with model size [39]. When discussing

size in neural networks, we are referring to the parameter count. In CNNs, param-

eters are predominately comprised of filter weights and activations, both typically

stored as 32-bit floating-point numbers (FP32). Weights are the model’s learnable

parameters, and activations are the outputs of input data passing through non-linear

functions like a rectified linear unit (ReLU). The convolution operation repeatedly

computes a filter’s dot product with a corresponding receptive field as it slides over

the entire input space, as shown in Figure 1.1. Each filter embeds a specific spatial

pattern, such as a horizontal edge, and is learned during training.

In hardware, this process is performed by multiply-accumulate (MAC) blocks,

which are resource-intensive compared to other standard processor operations. Fur-

ther, using FP32 introduces complexities to the operation, as floating-point operations

must keep track of the exponent, mantissa, and special numbers like NaN and infin-

ity. The increased bit-width of a floating-point number requires more memory and

1

2

Figure 1.1: Visual depiction of a convolution operation. Weights are the elements of
the filter/kernel, and activations are the result of passing the feature map’s elements
through an activation function.

cache, yielding slower data movement per memory access. This results in slower for-

ward passes, higher memory consumption, and increased disk space for storage. This

also has other downstream effects, such as increased heat emission and power draw

[28] [40].

Thus, there is motivation to reduce such networks’ complexity and size while

maintaining original model performance. To this end, there are several approaches,

such as pruning [2], low-rank tensor approximations [31], approximate multipliers [14]

[23] and quantization [28]. This thesis will examine quantization, as it has emerged as

a popular approach to the problem of network optimization [40][28][41]. Quantization

differs from pruning and tensor approximations in that it does not seek to explicitly

remove or drop parameters but rather reduce the precision of parameters. To illustrate

this, consider VGG-16, which has 138 million parameters [39], consuming roughly

530 megabytes of memory and disk space. If, through some quantization scheme, we

reduced the bit-width of each parameter to that of an 8-bit integer (INT8), our model

space consumption would decrease by a factor of 4 to 130 megabytes and significantly

decrease inference latency. For instance, [11] observed an inference latency decrease

from 131.8 ms to 3.5 ms with ResNet-50 by implementing 8-bit quantization! This

is particularly attractive in the context of embedded systems as hardware such as

field-programmable-gate arrays (FPGAs) and application-specific integrated circuits

(ASICs) can be designed to use any bit-width numerical representation [40] and are

3

often expected to have near real-time processing and are resource constrained [12]

[14].

As noted, a crucial aspect when reducing a model’s complexity is defining per-

formance criteria and understanding how it changes. Much of the current machine

learning discourse concerns raw accuracy or other metrics such as the F1 score. While

these metrics are indeed essential and grant an immediate understanding of the pro-

portion of correct predictions, they can be misleading alone. More precisely, such

metrics are binary; they consider the case of a true or false prediction. The issue

here is that they offer no insight into how confident a model is in its prediction.

This notion is particularly important in quantized/base model pairs, as to de-risk the

lack of precision introduced by quantization, we must fully understand how a given

model’s robustness is changing. To this end, we pair traditional metrics of accuracy

and F1 score with an examination of the output class probabilities in a given full

precision/quantized model pair using Kullback-Leibler (KL) divergence.

To the best of our knowledge, studies relating to quantization have solely evalu-

ated their quantization strategies using datasets in which the test set is no different

than the training set. More precisely, the data used to test quantized models is un-

perturbed relative to the training set. This reveals a significant gap, as real-world

applications, ranging from autonomous systems to medical imaging, frequently en-

counter unexpected perturbations and various forms of noise. Moreover, adversarial

attacks designed to fool CNNs by deliberately perturbing the input space have be-

come an increasing area of study [37]. The absence of rigorous testing under these

conditions poses a substantial risk. A lack of insight into the robustness of quan-

tized networks against such perturbations could result in unforeseen failures in model

deployment owing both to innocuous random environmental noise and deliberate ad-

versarial attacks. To be precise, we consider robustness to be the performance of a

model when faced with external perturbations to its input space, e.g. noise. This

is in contrast to resiliency, which is concerned with the model’s architectural fea-

tures itself, i.e. if model features change or are lost entirely, how does the model’s

performance degrade?

Furthermore, we depart from standard benchmarks such as ImageNet [8], Mod-

ified National Institute of Standards and Technology database (MNIST) [21], and

4

Canadian Institute For Advanced Research (CIFAR) [18] and instead study fine-

grained visual classification (FGVC), using the fine-grained visual classification air-

craft (FGVC-A) dataset [26]. The goal of FGVC is to classify subcategories of a

broader category, in this case, families of aircraft. The rationale for this is several-

fold. Firstly, the differences between classes in FGVC are comparatively subtle1. It

is expected that as these subtleties are perturbed, we are better stressing the reduced

precision model as its expressive power, or capacity for spatial embedding, is limited.

Conversely, if degradation is not observed, it suggests that lower precision models

are as robust as their full precision counterparts even under unseen perturbations,

further proving their viability for real-world deployment and further supporting the

notion that contemporary models have inherent redundancies beyond that of offering

robustness. The MNIST dataset was also not examined due to its simplistic nature

- low-resolution monochromatic images - and subsequent lack of relevance in real-

world scenarios. Further, it is not expected that quantization would challenge an

MNIST-trained model as each of the models studied has achieved near-perfect or

perfect accuracy on MNIST. Lastly, we contend that studying FGVC is more relevant

to practical computer vision implementations, where a model is trained to classify

subcategories of a parent category - rather than generally classifying a wide range of

uncorrelated classes - as is often the case in medical imaging, autonomous vehicles,

and surveillance systems. We hope this study will serve as an objective contribution

to understanding how quantized networks trained for targeted FGVC tasks behave

against unseen perturbations and in doing so, characterize their viability in real-world

applications.

1.2 Related Work

As noted earlier, neural network quantization has garnered popularity with the grow-

ing demand for edge computing and efficient hardware utilization. [28] provides an

essential reference for the mechanics of neural network quantization and will be used

as the primary source when implementing our quantizers. Specifically, they introduce

and discuss the design parameters when implementing quantization, including the bit

1A helpful illustration of this is considering the visual differences between a Boeing 737 and a
Boeing 777, versus the differences between a hummingbird and a school bus, all of which are classes
in [26] and [8] respectively.

5

resolution, quantization range, scale factor, zero point, and level of granularity (per

tensor and channel). Additionally, they define two main classes of quantization al-

gorithms: quantization aware training (QAT) and post-training quantization (PTQ).

[28] also provides experimental results for their quantizers under various configura-

tions for common model architectures, which is crucial, as it sets a ground truth for

what we should expect in terms of performance under the same quantization scheme.

The primary takeaway from this work is the choice to study PTQ. This is because, in

most cases, PTQ is sufficient for 8-bit quantization while maintaining close to FP32

accuracy [28]. Moreover, PTQ is simpler than QAT as it does not require a complete

re-training step but rather a simple calibration set without needing a labeled dataset.

While it is true that QAT generally permits lower bit resolutions (as low as 1-bit),

we feel it is not relevant as to yield the benefits of sub-8-bit resolutions, specialized

hardware is required [40]. That is to say, 8-bit quantization is more prevalent in its

adoption in real-world deployment and, thus, of more relevance to this research.

While still based on the core fundamentals outlined in [28], novel quantization

schemes based on different optimizations or target criteria have been a very popular

area of research in the past decade. [24] designed an optimal post-training quantizer

scheme based on optimizing the signal-to-quantization-noise ratio. They used statis-

tics about the underlying distribution of weights and activations to determine the

optimal bit resolution and step size - interestingly, as will be discussed later, this is

how frameworks like PyTorch implement quantization [32]. This approach was tested

with an AlexNet-like model on the CIFAR-10 dataset, in which they achieved 4-bit

weight and activation quantization with an error rate of 8.30% [24]. [42] implemented

a filter clustering approach to create quantized ”codebooks” for weights and activa-

tions, permitting high compression rates. On VGG-16, this method achieved a 30.5×
compression with an error rate of just 0.2% [42]. Other approaches include ternary

weight networks [22] and binarized neural networks [5] [35]. While these are certainly

advances in low-precision machine learning, there is a commonality of only measur-

ing accuracy and, further, considering standard benchmark datasets like ImageNet,

CIFAR, and MNIST. That is, there is ample evidence to suggest that the current

landscape of quantization has not yet considered a) targeted FGVC tasks, b) changes

in confidence, and c) quantization robustness under perturbation.

6

In contrast, several studies examine the performance of full-precision networks un-

der perturbation. [9] studied the impacts of Gaussian blur, additive white Gaussian

noise (AWGN), JPEG compression, and contrast manipulation on common state-of-

the-art (SOTA) networks including CaffeNet, VGG-16, VGG-CNN-S, and GoogleNet,

pre-trained on ImageNet. Their experiments revealed several key insights that are

complimentary to this work. Firstly, they found that in terms of accuracy, each model

was most susceptible to blur. As they note, this is fairly intuitive as the feature space

of an CNN is a collection of textures and edges, and any distortions therein will sub-

sequently degrade model performance. Another interesting result is that each model

degrades at similar rates with increasing perturbation, with VGG-16 and GoogleNet

exhibiting marginally higher robustness, most likely owing to their relative depth.

[10] also studied model performance under perturbation, but rather than studying

known perturbation sources like blur, AWGN, or compression, they explore three

mathematically defined noise regimes: random noise, semi-random noise, and worst-

case (adversarial) perturbations. They define robustness as the minimal perturbation

required to change a model’s output, with the random noise regime involving per-

turbations in random directions within the input space and the semi-random noise

regime introducing an adversarial component by selecting sub-spaces of varying di-

mensions of the input. They relate the robustness of a model to its decision boundary

curvature and show that when this boundary has small curvature, models are robust

to random noise in high dimensional classification problems [10]. However, for semi-

random noise with an adversarial component, each model studied was deemed not

robust and vulnerable.

As noted in the previous section, we are interested in extending our measure of

performance beyond measures of accuracy to characterize confidence and robustness.

[30] investigates this with the goal of better understanding the tension between model

complexity and generalization capacity. They note that typically, large networks gen-

eralize better than smaller counterparts, an observation that contradicts traditional

notions of function complexity. This question is relevant to this research as we are

balancing these two extremes; we are reducing the parameter precision and, thereby,

information storage capacity, but we are not reducing the overall parameter count of

the network. [30] develops three noise regimes, each of which is defined with respect

7

to the training data manifold: a) a random ellipse, unlikely to pass near actual data,

b) an ellipse passing through three training points, and c) an ellipse passing through

three training points of the same class. They then analyze the model’s sensitivity

by computing the average Frobenius norm for the batch Jacobian matrices of each

model’s output neurons with respect to the input space, i.e., answering the question:

how does the model’s output confidence change as the input space is perturbed?. From

this, several results emerge. Firstly, they observe that generalization is strongly cor-

related with sensitivity by observing that factors conducive to generalization, such as

data augmentation, and ReLU activation functions, yield more robust models [30].

Secondly, they find that in all cases, model robustness degrades as input data departs

from the training data manifold. The limitation of this approach is that it relies on

the assumptions that perturbations are small such that the output activation func-

tion can be well-approximated by its first order Taylor expansion - large perturbations

would require a more accurate approximation using higher order terms. Secondly, this

method assumes perturbations are Gaussian in nature, for mathematical convenience.

Given we wish to extend our study of noise beyond uncorrelated random perturba-

tions to highly structured noise, we will not be employing this measure of robustness.

In summary, these studies illustrate a rich but fragmented area of research. Plenty

of work has been done on quantization methods and schemes, all yielding impressive

results. Others have studied network performance under perturbation, while others

have studied and proposed sensitivity and robustness metrics. As quantized networks

continue to garner attention in embedded devices and edge applications, so will the

relevance of this gap. This thesis aims to fill this gap by integrating each of these top-

ics into a coherent characterization of quantized network performance under various

perturbation regimes.

Chapter 2

Theory and Background

2.1 Quantization

Quantization is the non-linear mapping of a domain of continuous amplitude inputs

onto a finite set of output levels. In neural network quantization, we are concerned

with the mapping of the continuous set of possible FP32 numbers to a finite subset

of INT8 numbers. In accordance with typical approaches to network quantization,

we are quantizing the weights and outputs (activations) of each convolutional filter

[28] [40] [41]. To realize the gains offered by INT8 arithmetic, specialized hardware

for INT8 MAC operations must be used. Namely, this involves quantizing and con-

verting the weights and inputs to INT8, performing MAC operations, and quantizing

and converting the output, or activations, to INT8. However, frameworks such as

PyTorch typically use FP32 for parameter representation. We reconcile this gap by

performing ”fake quantization”, in which we map each FP32 parameter to its near-

est quantization level on an INT8 quantization grid. Thus, our quantized model is

not a true INT8 model, and we will not experience inference time reductions, energy

savings, or hardware optimizations. For the purposes of this research, fake quantiza-

tion is entirely appropriate as we are solely concerned with numerical and statistical

characteristics of a quantized network. In theory, these two schemes should yield the

exact same results in terms of model performance, as the size of set of possible weights

and activations is the same in both real and fake quantization. To achieve true INT8

quantization, one would need to perform an additional conversion step, targeted for

specific hardware.

Figure 2.1 illustrates the process of fake quantization, where 100 FP32 parame-

ters, sampled from a standard normal distribution, are mapped to a symmetric 4-bit

quantization grid. We use 4 bits for this example to clearly visualize the quantization

process, as an INT8 grid’s 256 levels would be too dense to effectively illustrate.

In the plot, we observe that the original FP32 values, which range approximately

8

9

from -2 to +2, are now mapped to discrete levels between -8 and +7 in the quantized

grid. This new range is determined by the 4-bit resolution, providing 16 possible

quantization levels. Because the grid is symmetric about 0, the range extends from

−2b−1 to 2b−1−1. In this case, the scale is set to 0.1, meaning each quantization level

represents a 0.1 increment in the original floating-point values.

Figure 2.1: FP32 weights before (top) and after (bottom) 4-bit fake quantization.

While it is possible to train a quantized network entirely from scratch, other works

have shown that starting with a pre-trained network is more effective in preserving

model performance [40] [41] [28]. To this end there are two primary approaches:

quantization-aware training (QAT) and post-training quantization (PTQ). QAT is

the process of quantizing the desired parameters and performing a re-training step

in which the quantized parameters are optimized such that quantization errors and

biases are minimized [28]. QAT is shown to yield negligible accuracy loss and high

compression ratios, allowing for as low as 1 bit quantization, but comes at the cost

10

of additional training time and data [40] [28]. In contrast, PTQ allows for much

faster quantization, as it does not require a full re-training step, but rather a small

calibration step using unlabeled data to optimize quantization parameters. PTQ is

favourable as it still yields relatively low accuracy loss, and has been shown to enable

quantization down to as low as 4 bits [40].

This thesis will exclusively consider uniform PTQ. That is, quantization on a pre-

trained model where the step-size between each quantization level is uniform. This is

in contrast to dynamic quantization which seeks to find an optimal arrangement of

quantization levels to minimize an error function such as mean squared error, given

a set number of bits. While dynamic quantization typically yields less error , such

approaches are comparatively niche, with little support in modern machine learning

frameworks. The interested reader is encouraged to look at the seminal work on

dynamic quantization, the Lloyd-Max quantization algorithm [25][27].

To perform PTQ one must first define several quantization parameters: the bit-

width b, the step-size or scale factor, s, and the zero-point z [28]. The bit-width

defines the number of possible levels in the quantization grid. The scale factor sets

the step-size, or the difference between each level, and the zero-point is an integer

chosen such that actual zero is quantized without error, which is important to ensure

activation functions like ReLU do not introduce additional quantization error [28].

Then depending on if one is performing symmetric or affine quantization, parameters

are mapped to the quantization grid depending on the symmetry of the scheme. For

the unsymmetric (affine) case we have:

xINT8 = clamp
(⌊xFP32

s

⌉
+ z, 0, 2b − 1

)
, (2.1)

For the symmetric about z case:

xINT8 = clamp
(⌊xFP32

s

⌉
+ z,−2b−1, 2b−1 − 1

)
, (2.2)

Where ⌊·⌉ is the round-to-nearest integer operator and the clamping function is

defined as:

clamp(x; a, c) =

a if x < a,

x if a ≤ x ≤ c,

c if x > c.

(2.3)

11

Where a and c denote the bounds of the integer grid. Our quantization range

is bounded by qmin and qmax, which is defined depending on if the quantization is

symmetric or asymmetric. For affine quantization, the quantization range is defined

as:

qmin = −sz (2.4)

qmax = s(2b − 1− z) (2.5)

For the symmetric case, z is constrained to 0, and the range is bounded by:

qmin = −s(2b−1) (2.6)

qmax = s(2b−1 − 1) (2.7)

The choice between symmetric or affine quantization is entirely dependent on

the underlying distribution of the parameter of interest. As noted in [28], ReLU

activations are positively skewed, favouring an affine scheme, whereas weights are

approximately symmetric around 0, favouring a symmetric scheme. We demonstrate

this by examining kernel density estimation (KDE) plots of a convolutional layer from

ResNet-18, as shown in 2.2 in which such characteristics are evident.

Figure 2.2: KDE plots of full precision ResNet-18 weights and activations.

Given the non-linear many-to-few nature of quantization, it is considered a lossy

compression scheme, and has inherent error that increases as the bit resolution is

12

decreased. This error owes largely to two sources - clipping and rounding error, com-

bined, referred to as quantization error. Clipping error is induced when data laying

outside of the dynamic range of the quantizer is rounded to the nearest minimum

or maximum bound. We can minimize clipping error by increasing the range of the

quantization grid with a larger scale factor s. However this comes at the cost of

increasing the second type of error, rounding error, as we are increasing the distance

between each quantization level. Thus an optimal quantizer would balance this trade

off to minimize some error metric. To determine this optimal set of parameters,

observation based techniques are typically employed such that quantization error is

minimized.

In practice, frameworks are typically used to interact with and quantize existing

model architectures. For this research we use PyTorch [32] and its quantization

module paired with a third party wrapper library, EasyQuant [36]. At the core

of this quantization module is the above mentioned observer. Observers seek to

determine optimal quantization parameters by collecting statistics about weights and

activations during the PTQ calibration step, which, again, is favourable compared

to QAT as it does not require a full set of labeled data - a random tensor with

appropriate dimensions is entirely sufficient. PyTorch has several observer modules

that employ various algorithms. For this research we employ a min-max observer

for weights and a histogram observer for activations. The min-max observer is a

comparatively simple algorithm that tracks the minimum and maximum values of the

filter weights on a per-channel basis [28]. These min and max values are then used

to determine each filter’s scale factor and zero point using the formulae shown above.

A problem with this algorithm is that it is sensitive to outliers, as such outliers will

skew the quantization range. However, this approach is suitable for weights as their

values are typically zero or near zero with comparatively low variance, and moreover,

weight quantization has been shown to induce less degradation in terms of accuracy,

compared to activations [28]. For activations we employ a histogram observer which

operates by recording frequencies of activation tensor values during a calibration step.

Following this, a histogram is constructed from which the min and max can be set

such that outliers are ignored, e.g., by clamping the range to only cover a certain

percentile of data. From here, like the min-max observer, quantization parameters

13

can be computed. For activations, this operation is performed on a per-layer basis

and for weights, a per filter basis, as per the recommendations outlined in [28]. We

can illustrate the characteristics of each scheme further by examining kernel density

estimation (KDE) plots of the weigths and activations post quantization, as shown

in 2.3. Immediately of note is the higher variance in the quantized plots, this makes

sense and helps confirm the validity of our quantization process as we would expect

that given the reduced resolution of the quantized values, there would be higher

variance or ”spread” in their distribution. We also can observe the two distinct

peaks at each tail, corresponding to -128 and 127, the limits of 8-bit quantization

as −28−1 = −128 and 28−1 − 1 = 127. These peaks are expected as they are the

limits of our quantization range, thus any value falling outside of this range will

be clamped to these two boundaries. To illustrate these characteristics further, the

code snippet below in Listing 1 performs a simple 8-bit symmetric quantization on

randomly generated FP32 data and computes their respective variances. As expected,

the INT8 data has significantly higher variance.

14

Figure 2.3: KDE plots of quantized ResNet-18 weights and activations.

15

Listing 1 Python code demonstrating INT8 quantization and subsequent variances.
import numpy as np

np.random.seed(42)

fp32_weights = np.random.randn(10)

s = 0.01 # Scale

z = 0 # Zero point

b = 8 # Bit resolution

q_min = -(2**(b-1)) # Minimum quantization value

q_max = (2**(b-1)) - 1 # Maximum quantization value

int8_weights = np.clip(np.round(fp32_weights / s)

+ z, q_min, q_max)

variance_fp32 = np.var(fp32_weights)

variance_int8 = np.var(int8_weights)

print(fp32_weights)

print(int8_weights)

print(f"Variance of FP32 weights: {variance_fp32}")

print(f"Variance of INT8 weights: {variance_int8}")

Output:

[0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337

-0.23413696 1.57921282 0.76743473 -0.46947439 0.54256004]

[50. -14. 65. 127. -23. -23. 127. 77. -47. 54.]

Variance of FP32 weights: 0.4704669452131567

Variance of INT8 weights: 3584.6099999999997

2.2 Input Perturbations

We now turn our discussion to the topic of perturbations. Recall our goal is to observe

the relative degradation, if any, induced in the quantized model by perturbing the

input space. In image classification tasks the input space is the flattened vector of an

image’s pixel intensities, x. That is:

x ∈ RH×W×C (2.8)

16

where H is the height, W is the width, and C is the number of channels, e.g. a

red, green and blue image has 3 channels. In this research we examine four forms of

perturbation, additive white Gaussian noise (AWGN), Brownian noise, and vertical

and horizontal structured occlusions. As will be discussed, each of these have rele-

vance in real-world scenarios and were chosen for varying expected impacts on model

performance.

AWGN is a common approach used in noise modelling as it approximates many

real world phenomena. For example, modelling thermal noise and in the limiting

behaviour of other noises such as photon counting and film grain artifacts [13] [3].

In AWGN, each pixel’s noise term is sampled independently and identically from the

same Gaussian distribution, that is, there is no correlation between pixels. Conse-

quently this yields an image that appears grainy, similar to film grain or tv static, as

shown in Figure 2.4. We induce AWGN noise in our input image tensor X as follows.

Given the univariate Gaussian density function with mean µ = 0 and variance σ2:

N (0, σ2) =
1√
2πσ2

e−
(x)2

2σ2 (2.9)

We sample noise on a per-pixel basis, where pixels are indexed by i, j, and k

denoting row, column and channel, respectively, yielding our C channel additive noise

mask ng(i, j, k):

ng(i, j, k) ∼ N (0, σ2) (2.10)

We then generate our perturbed input through simple addition of the noise max to

the original input:

X ′(i, j, k) = X(i, j, k) + ng(i, j, k) (2.11)

Note that we cannot directly use 2.11 as is, as there is a non-zero chance the re-

sulting pixel will be non-negative. To ensure this does not occur, we clamp the noise

distribution, 2.9, to be between ±3σ [3]. In this scheme, we control the ”intensity”

of the noise with the standard deviation σ, that is, increasing standard deviation in-

creases the distortion in the image since higher standard deviation means the sampled

noise values have a higher chance of larger deviation from the zero-valued mean.

Red noise, also known as Brownian noise, differs from AWGN in that it is not

independent and identically distributed, but rather, spatially correlated. Moreover,

17

unlike the flat power spectral density of AWGN, Brownian noise has a power spectral

density proportional to the inverse square of frequency, 1
f2 . Consequently, lower fre-

quencies dominate the noise spectrum. Structurally, pixels are correlated in the sense

that smaller frequencies are amplified, where as higher frequencies are attenuated,

yielding long range correlations in the spatial domain and smooth variations. In ef-

fect, Brownian noise adds blotches and blur-like artifacts to an image, as illustrated

in Figure 2.4. Brownian noise is particularly relevant in vision systems for modelling

natural phenomena like underwater distortions, blur, clouds, as well as in medical

imaging [34] [4].

To generate Brownian noise, we start with white noise, ng(i, j, k), sampled from

2.9. We then apply the fast Fourier transform (FFT) to this noise on a per channel

basis, that is for each channel, compute the frequency component, W (u, v, z):

W (u, v, z) = FFT[ng(i, j, k)] (2.12)

We then scale this frequency component according to the 1
f2 rule:

B(u, v, z) =
W (u, v, z)

(u2 + v2 + z2)
(2.13)

Finally, we apply the inverse FFT (IFFT)to convert back to the spatial domain,

and add the resulting noise to the image:

b(i, j, k) = IFFT[B(u, v, z)] (2.14)

X ′(i, j, k) = X(i, j, k) + b(i, j, k) (2.15)

Similar to AWGN, the intensity factor in Brownian noise is the standard devi-

ation, σ. However, as will be shown when we discuss the experimental procedure,

Brownian noise needs a comparatively larger values to yield noticeable distortions

and subsequent impacts to model performance. This is because in AWGN, σ directly

controls the noise of each pixel where a small σ results in small changes, but as these

changes are uniformly distributed across all pixels, the overall perturbation to the

image is significant. That is, AWGN does not account for spatial structure in the

image, leading to a high-frequency noise pattern that noticeably alters the image

even at small values of σ. We discuss this further in Section 3.3 when selecting our

noise intensity values. We can however, qualitatively compare their relative impacts

18

to develop some level of comparison. As shown in 4.2 we can observe approximately

the same level of degradation for σ = 0.1 in AWGN as σ = 10 for Brownian noise,

for instance we see VGG-16’s top-1 FP32 and INT8 accuracy is 0.7777 and 0.7795

respectively in AWGN and 0.7795 and 0.7756 respectively under Brownian noise.

Lastly, we examine highly structured noise in the form of vertical and horizontal

black out occlusions, or streaks, applied within a pre-defined bounding box of the

classification target within each image, as shown in Figure 2.4. We generate these

as having constant width such that increasing the number of streaks increases the

amount of the image covered. The study of complete regions of occlusion is relevant

in fields such as satellite imagery where it is not uncommon to experience sensor mal-

functions or data corruption during transmission or due to solar radiation, resulting

in rows or columns of dead pixels. We control the intensity or degree of perturbation

induced by such occlusions by adjusting the number of streaks present in the class’

bounding box region. It is expected that comparatively, such occlusions will signifi-

cantly degrade performance. This is because CNNs rely on filters to extract features

such as edges from images and we are injecting points of high contrast, which may

cause irrelevant feature activation and false edge identification. Moreover, streaks

may cover important or distinguishing features of a target class such as its engine or

wing structure, again, confusing the network. The question here then becomes one of

robustness, that is, when faced with a total loss of information how does the network

rely on other features to identify a class.

19

(a) AWGN with σ = 0.3 (far left) and σ = 0.6 (left). Brownian noise with σ = 40 (right)
and σ = 70 (far right).

(b) Vertical occlusions with 3 (far left) and 5 (left) streaks. Horizontal occlusions with 3
(right) and 5 (far right) streaks.

Figure 2.4: Demonstrations of various levels of studied noise.

2.3 Degradation Metrics

We consider several metrics to characterize the degradation of a given INT8 model

with respect to its FP32 counterpart. Firstly, we consider accuracy and F1. Recall

that generally, a given classifier can yield any of the following outputs:

• True positive (TP) - the classifier correctly identifies an input as belonging to

its true class

• True negative (TN) - the classifier correctly identifies an input as not belonging

to an incorrect class

• False positive (FP) - the classifier wrongly identifies an input as belonging to

an incorrect class

• False negative (FN) - the classifier fails to identify an input as belonging to its

true class

Accuracy is a measure of the proportion of correctly classified instances among the

total instances. It provides a clear indication of the overall immediate performance of

20

the model. In the context of model quantization, comparing the accuracy of the INT8

model to that of the FP32 model helps to quantify the drop in absolute classification

performance and is calculated as:

accuracy =
TP + TN

TP + TN + FP + FN
(2.16)

Specifically, we examine both top-1 accuracy and top-5 accuracy. Top-1 accuracy

considers a prediction correct if the model output matches the true label, and top-

5 accuracy considers a prediction correct if the true label is amongst the model’s

top-5 highest output probabilities. The utility in examining top-5 is that it reflects

how often a model is essentially close to being correct, even if its not exact. The

notion of top-5 accuracy originates from ImageNet [8], where within the broader

dataset there existed several groupings of related sub-classes with subtle differences.

Consequently, a more nuanced metric that captures if a model was close to being

correct was desired. This is particularly relevant in our study of FGVC where the

distinctions between classes are very subtle - it allows us to see if a model is near

correct and thus permits some ambiguity. Functionally, this may indicate that a

model is learning some important features for a given class but needs further training

or optimization to satisfy the fine-grained subtleties between similar classes e.g. the

wing structure between a Boeing 737 and a Boeing 777. However, accuracy does not

give insight into the type of errors the model is making. To examine the specific types

of errors, we can employ precision and recall and aggregate them with the F1 score.

Precision is the ratio of true positive predictions to the total predicted positives,

indicating how many of the predicted positives are actually positive, that is:

precision =
TP

TP + FP
(2.17)

Recall is the ratio of true positive predictions to the total actual positives, indicating

how many of the actual positive instances are captured by the model, or:

recall =
TP

TP + FN
(2.18)

We then compute the F1 score to understand how balanced the model is in terms

of its error modes by computing the harmonic average of precision (avoiding false

positives) and recall (avoiding false negatives):

F1 =
2× precision× recall

precision+ recall
(2.19)

21

Accuracy and F1 alone do not offer insight into the sensitivity or confidence of a

model’s predictions, meaning they fail to reflect how confident the model is about its

decisions. This omission can have significant implications, as models with the same

accuracy or F1 score might have vastly different levels of reliability and robustness,

particularly against unexpected or random perturbations.

To analyze sensitivity and robustness we examine the class output probabilities

using the Kullback-Leibler KL divergence. KL divergence, introduced in [1], quantifies

how close an approximate distribution Q is to the true or baseline distribution P [38].

Mathematically it is defined as:

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
(2.20)

Where i is the number of possible states. In our context, we wish to compare the

divergence of an INT8 quantized model’s output class probabilities to its full-precision

counterpart, given K output classes. It is asymmetric, i.e. (DKL(P ∥ Q) ̸= DKL(Q ∥
P)), and always non-negative, reaching zero if and only if P and Q are identical. We

denote the INT8 and FP32 models’ class probability distributions as Pint8 and Pfp32.

Thus we get:

DKL(Pfp32 ∥ Pint8) =
K∑
k=1

Pfp32(k) log
Pfp32(k)

Pint8(k)
(2.21)

We demonstrate this by synthetically generating a standard normal distribution

and computing its KL divergence with other distributions of varying standard de-

viations, as shown in Figure 2.5. We can readily observe that as we increase the

standard deviation, the KL divergence increases. Intuitively, we are measuring the

additional information required to encode data points from a true distribution using

an approximate distribution, i.e., it is the cost of assuming Q , given that the true

distribution is P [1].

In our study, this effectively allows us to measure the information loss introduced

by quantization, as well as with respect to input perturbations. If we observe similar

accuracy and/or F1 scores but high KL divergence, it may suggest that while the

quantized model did not lose accuracy, it is less confident in its predictions. For

example, consider a FP32 model that yields the following output probabilities: class

22

1: 0.7, class 2: 0.2, class 3: 0.1, and an INT8 model that yields: class 1: 0.5, class

2: 0.4, class 3: 0.1, where the true label is class 1. Both models correctly classified

class 1 as the true label, however, they have markedly different confidences in their

prediction. Moreover, examining KL divergence under different perturbation regimes

can guide targeted optimization in quantization parameter selection, or even the

applicability of quantization entirely. It is important to recognize, however, that this

metric assumes the FP32 model is the true baseline distribution. We contend that

this is a fair characterization as, in reality, it is the theoretical best we can do in terms

of capacity for information embedding per parameter. It is true that the baseline in

this case is then dynamic, in the sense that the distribution of the FP32 model will

change with perturbation. Given that both the FP32 and INT8 models are tested

on the exact same input with the exact same perturbation, we are then answering

the question under perturbation level X, how does our quantized model deviate in its

probabilities from what would otherwise be outputted given no quantization?.

23

Figure 2.5: KL divergence for standard normal distribution with distributions of
varying standard deviations.

Chapter 3

Methods

3.1 Model Selection and Dataset

To fully assess the impacts of quantization on a given model, we select three SOTA

models, all of various sizes and architectural features. In order of largest to smallest,

we study VGG-16 [39], ResNet-18 [15], and SqueezeNet1 1 [17]. These models are

commonplace in the current CNN landscape and often used as SOTA benchmarks

in conjunction with datasets like MNIST, CIFAR, and ImageNet. More importantly,

however, is their differing size, with VGG-16 being the largest model in terms of

parameters and memory footprint and SqueezeNet1 1 being the smallest, designed

specifically for use on embedded platforms. Moreover, each model implements unique

design philosophies and architectural features; VGG-16 is designed for depth, ResNet

implements skip connections between layers, and SqueezeNet1 1 uses an expand/-

compression scheme. What follows is a brief discussion of each of these models.

VGG-16

VGG, developed by researchers at the University of Oxford in 2015, is a CNN predi-

cated on the notion of network depth paired with smaller filter sizes of 3× 3, a stark

departure from other SOTA models like AlexNet’s 11 × 11 filter size [19]. VGG uses

these 3 × 3 filters in each convolutional layer, paired with a ReLU activation func-

tion. In addition to these convolutional layers, five max-pooling layers are added,

each with a 2 × 2 pixel window [39]. Following the convolutional layer and max-

pooling stack, two 4096-channel fully-connected layers are implemented, followed by

a final n-channel fully-connected layer and softmax activation function, where n is

the number of output classes. There are several configurations of VGG, ranging from

11 convolutional layers to 19 convolutional layers. We study VGG-16 as it has less

than a 1% top-1 error discrepancy with VGG-19 at a smaller memory footprint [39].

24

25

This VGG-16 configuration has 13 weight layers (convolutional layers), followed by

the above fully-connected layers [39]. See Figure 3.1a for a diagram of VGG-16’s

architecture and Table 3.1 for a summary of its relative size.

ResNet-18

Developed at Mirocsoft in 2015, the ResNet family of CNNs seeks to address the

problem of vanishing gradients1. ResNet begins with a 7 × 7 convolutional layer

followed by a 3 × 3 max-pooling layer followed by a series of convolutional layers

with ReLU activations [15]. There are several configurations of ResNet, ranging from

18-layer to 152-layer. We study the 18-layer configuration shown in Figure 3.1b,

ResNet-18, to serve as the intermediary model between larger networks like VGG-

16 and smaller networks like SqueezeNet1 1. ResNet-18 uses eight residual blocks,

where each block is comprised of 2 convolutional layers with ReLU activations followed

by an average-pooling layer and finally an n-channel output layer with the softmax

activation function [15]. See Figure 3.1b for a block diagram of this architecture

and Table 3.1 for a summary of its relative size and benchmark performance. ResNet

differs from conventional networks in its introduction and use of shortcut connections.

Consider the input to an above-mentioned block or grouping of convolutional layers

as x. Shortcut connections skip a grouping of layers and add the previous block’s

x to the current grouping’s output. That is, for a given residual block, its output

is F (x) + x. These shortcut connections alleviate the vanishing gradient problem,

thereby allowing for comparatively high layer counts - as many as 152.

SqueezeNet1 1

SqueezeNet1 1 is the smallest of the three chosen networks, specifically designed for

applications in embedded systems and edge applications while still maintaining levels

of accuracy comparable to its contemporaries [17]. SqueezeNet1 1’s main building

block is the fire module: a squeeze convolution layer with 1× 1 filter size feeding into

1The vanishing gradients phenomenon occurs during training when the gradients of the loss
function with respect to each weight diminish as they are propagated backward through the network’s
layers. This diminishment is primarily caused by the repeated multiplication of gradients that are
less than 1 through the deep network structure, particularly when using activation functions like
sigmoid or tanh. Since the updates to the weights in each layer depend on these gradients, the
process can slow down or completely stagnate the network’s learning ability.

26

an expand layer that is a mix of 1 × 1 and 3 × 3 filters [17]. The squeeze layer acts

as a bottleneck to reduce the depth of the data passing through the network, thereby

decreasing the number of parameters and subsequent resource overhead. The expand

layer’s 1×1 filters function to increase the dimensionality from the compressed output

of the preceding squeeze layer, adding depth to the feature maps. Concurrently, the

3 × 3 filters in the expand layer work on the expanded feature maps to capture

spatial patterns from the input, such as edges and their orientation. A diagram

of SqueezeNet1 1’s architecture is given in Figure 3.1c. SqueezeNet1 1’s parameter

count and benchmark performance are provided in Table 3.1.

An important quantity when considering a network, specifically its relative size,

is the number of operations it must perform during a forward pass or inference,

typically measured by the number of floating point operations (FLOPS). In the case

of neural networks, a floating point operation occurs in the previously discussed MAC

block. Higher FLOPS induces hardware overhead and thus serves as a bottleneck.

Table 3.1 compares several quantities for the three considered networks alongside

their respective benchmark top-1 accuracies on the ImageNet dataset. As expected,

accuracy degrades with decreasing parameter counts and FLOPS.

Table 3.1: Details of studied models. All data retrieved from PyTorch documentation
[32].

Model Parameter Count (millions) Size (MB) GFLOPs ImageNet Top-1 Acc.
VGG-16 138.4 527.8 15.47 71.592
ResNet-18 11.7 44.7 1.81 69.758

SqueezeNet1 1 1.2 4.7 0.35 58.178

To study fine-grained visual classification FGVC, we select the fine-grained vi-

sual classification aircraft (FGVC-A) dataset [26]. Many well-known FGVC datasets

exist - for example, natural species [6], birds [16], or flowers [29]. However, as the

dataset authors note, aircraft as a classification target offer several unique aspects.

Firstly, aircraft vary significantly depending on their size (hobbyist project planes to

large transport aircraft), purpose (commercial, pleasure, or military), and technol-

ogy (turbine propulsion, propeller, glider, etc.), all of which yield different structural

features such as the wing shape and size, fuselage style, landing gear/wheels, and

engine mounting. Another interesting feature of FGVC-A is that planes like airliners

27

and military aircraft are often reused by different organizations and have slight mod-

ifications such as branding and camouflage while still belonging to the same class.

The dataset provides several classification tasks and labels, including aircraft model

(most specific), variant, family, and manufacturer (least specific). This thesis studies

the family classification task, in which 70 labels are used for different families. The

families dataset groups together similar model variants and is considered intermediate

difficulty [26]. Examples of families include Boeing-737, which includes variants like

737-200, 737-300, etc. [26]. While the variants dataset is balanced - there are 100

variants, with each variant class having 100 images -, the families dataset, a sub-set

of variants, is not balanced, as shown below in Figure 3.3. We can see that the class

”Boeing 737” dominates, which is expected, as there is a comparatively large amount

of variants within the Boeing 737 family that are being grouped into this class2. See

Figure 3.2 for example imagery from the dataset.

3.2 Quantization Scheme

We know describe our quantization methods and the specific quantization parameters

used. In general, we follow the recommendations outlined in [28] and perform PTQ on

each model’s weights and activations according to the parameters given in Table 3.2.

Python code for this quantization scheme’s implementation is provided in Appendix

A.

Table 3.2: Quantization parameters. Note that quantization range, scale, and zero
point are learned parameters during calibration with observers.

Parameter Weights Activations
Observer Min/max Histogram
Bit width 8 8
Initial Min. -127 0
Initial Max. 128 255
Initial Scale 0.1 0.1

Initial Zero Point 0.0 0.0
Symmetry Symmetric Affine
Resolution Per-channel Per-tensor

We can verify the validity of our implementation by printing out and comparing

2The Boeing 737 family class contains the variants 737-200, 737-300, ..., 737-900.

28

the FP32 and INT8 model architectures using PyTorch’s torchsummary package [32].

For example we can see the changes to ResNet-18’s first convolution/pooling/activa-

tion layer. Note the inclusion of the min/max observer for the weights and histogram

observer for the activations. Moreover, we can see the inclusion of the fake quantize

modules containing the quantized weights.

Table 3.3: Summary of FP32 ResNet-18’s first convolutional layer architecture.

Layer Output Shape
Conv2d-1 [-1, 64, 112, 112]

BatchNorm2d-2 [-1, 64, 112, 112]
ReLU-3 [-1, 64, 112, 112]

MaxPool2d-4 [-1, 64, 56, 56]

Table 3.4: Summary of INT8 ResNet-18’s first convolutional layer architecture.

Layer Output Shape
HistogramObserver-1 [-1, 3, 224, 224]

EQLearnableFakeQuantize-2 [-1, 3, 224, 224]
PerChannelMinMaxObserver-3 [-1, 3, 7, 7]
EQLearnableFakeQuantize-4 [-1, 3, 7, 7]

BatchNorm2d-5 [-1, 64, 112, 112]
HistogramObserver-6 [-1, 64, 112, 112]

EQLearnableFakeQuantize-7 [-1, 64, 112, 112]
MaxPool2d-8 [-1, 64, 56, 56]

3.3 Experimental Setup and Procedure

We now outline the procedure for quantifying the performance of the models intro-

duced in Section 3.1, according to the metrics discussed in Section 2.2.

Model Training

Models were downloaded from PyTorch’s model zoo [32], with pre-trained weights for

ImageNet [8]. Each model was adjusted to have 70 output neurons, in accordance with

the FGVC-aircraft families classification task. Models were trained for 250 epochs on

a training set of shuffled 3333 images, using the cross-entropy loss function to measure

the prediction error. The stochastic gradient descent optimizer was employed with a

29

learning rate of 0.001 and a momentum of 0.9 to update the model parameters during

training. Additionally, a learning rate scheduler was applied to decrease the learning

rate by a factor of 0.1 every 50 epochs.

Perturbation Intensities

We experiment the performance of each model under each of the perturbations dis-

cussed in Section 2.2. As noted, each of these perturbations has its own respective

intensity parameter. For AWGN and Brownian noise it is standard deviation, and the

number of streaks for vertical and horizontal occlusions. In each case, the intensity

range was qualitatively selected to best capture the full spectrum of degradation, as

is shown in the accuracy/F1 plots in Section 4.2. For AWGN we study standard

deviations ranging from 0 to 1 with a step size of 0.1 from 0.1 to 0.6, and then 0.2

from 0.6 to 1.0 as beyond 0.6 model performance plateaus. For Brownian noise we

study standard deviations ranging from 10 to 80 with a step size of 10. For vertical

and horizontal occlusions we select streaks ranging from 2 to 6 with step sizes of 1,

where each streak is 2% of the size of a given target’s bounding box. Note that the

inclusion of even 1 streak yielded significant degradation across all metrics, and as

more streaks were added, performance quickly degraded to near 0 across all metrics.

Also, as discussed in Section 2.2 the Brownian perturbation regime required compar-

atively higher standard deviations than AWGN to yield any noticeable degradation.

This is expected, as Brownian noise is smoother and more structured than AWGN,

owing to its 1/f 2 spectrum, making it less disruptive to the image’s overall structure

and features when compared to AWGN’s direct pixel-by-pixel variations. For each

perturbation scheme each model’s FP32/INT8 pair were tested on the full test set of

3333 images. We demonstrate the impacts sample size has on performance in Section

4.1.

Degradation Metrics Computation

Recall from Section 2.3, we are interested in computing 4 primary metrics, top-1 ac-

curacy, top-5 accuracy, F1-score, and KL divergence. Top 1 accuracy, top 5 accuracy,

and F1 score are easily computed using Scikit-learn [33]. To compute KL divergence

we store the 70 class output probabilities for each model pair and compute the KL

30

divergence between them, on a per image basis, for each perturbation level. We then

compute the average KL divergence across the entire test set of 3333 images, for each

perturbation level, resulting a in a single scalar averaged measure for each model pair.

Code for this process is presented in Appendix B.

31

(a) VGG-16 (b) ResNet-18 (c) SqueezeNet1 1

Figure 3.1: Architecture diagrams of the studied models: (a) VGG-16, (b) ResNet-18,
and (c) SqueezeNet1 1. conv3-64 denotes a convolutional layer with kernel size 3× 3
and an output of 64 features; fc-n denotes an n-channel fully-connected layer; conv1-n
denotes a 1× 1 kernel with n output features.

32

(a) Cessna-172 (b) F/A-18

(c) Boeing-707 (d) Boeing-707

Figure 3.2: Sample imagery from the FGVC-A dataset. Note that (c) and (b) belong
to the same class but have different branding.

33

Figure 3.3: Class counts for FGVC-Aircraft family dataset.

Chapter 4

Results

4.1 Baseline Results

We now present the results of our experiments. We begin by examining the unper-

turbed results to establish a baseline. Table 4.1 presents accuracy and F1 scores for

each model FP32 and INT8 pair. Immediately, we can see that VGG-16 performs the

best in all categories and SqueezeNet1 1 the worst. This expected result matches the

general trend presented in Table 3.1 and supports the notion that sheer parameter

count manifested as layer depth yields higher accuracy. Moreover, the relative error

rates between each model pair match the results presented in [28]. As expected, we

can see that top-1 accuracy is comparatively more degenerate than top-5 accuracy

across all models - SqueezeNet1 1 exhibits a 14% top-1 accuracy drop compared to

VGG-16 but only a 6% drop in top-5 accuracy. This is indicative of the nature of

FGVC where it is likely that smaller models like SqueezeNet1 1 lack the expressive

power to capture the subtleties between similar classes but can make a near correct

prediction. We also see that F1 - the average of a model’s ability to avoid false posi-

tives (precision) and false negatives (recall) - follows the same trend as top-1 accuracy.

Most notable, however, is that we observe very little degeneration in model perfor-

mance across all three metrics post-quantization. This result is congruent with [28]

[40] [41] and confirms that our quantization scheme is implemented and performing

as expected. Table 4.2 presents KL divergences for each model pair. Interestingly,

ResNet-18 exhibits the lowest KL divergence by an order of magnitude, and VGG-16

the highest. While all relatively low, these results may reflect each model’s architec-

ture. For instance, ResNet-18’s skip connections, as discussed in Section 3.1, may

aid in mitigating quantization error propagation where VGG-16’s depth without such

connections may exacerbate quantization error propagation.

34

35

Table 4.1: Baseline unperturbed results.

SqueezeNet1 1 ResNet-18 VGG-16
Metric FP32 INT8 FP32 INT8 FP32 INT8

Top-1 Accuracy 0.6268 0.6250 0.7204 0.7192 0.7843 0.7828
Top-5 Accuracy 0.8866 0.8866 0.9241 0.9256 0.9487 0.9475

F1 Score 0.6287 0.6268 0.7153 0.7145 0.7835 0.7828

Table 4.2: Baseline unperturbed KL divergences for each model pair.

Model Pair KL Divergence
SqueezeNet1 1 0.0138
ResNet-18 0.0082
VGG-16 0.0182

4.2 Perturbed Results

4.2.1 AWGN

We begin by looking at the impacts of AWGN, presented in Figure 4.1, and Tables

4.3, 4.4 and 4.5. Across all models and metrics, we see steep degeneration beginning

at σ = 0.2 and plateauing at σ = 0.8, indicating a point of potential ill-conditioning

in this particular noise regime. As expected, top-5 accuracy is consistently higher

than top-1 by a 20% - 30% margin, with the gap between them widening as noise

levels increase. This result suggests that while the exact classification becomes more

challenging, the correct class will likely remain among the top 5 predictions. Moreover,

in line with our baseline observations, VGG-16 generally outperforms ResNet-18 and

SqueezeNet1 1, and ResNet-18 typically outperforms SqueezeNet1 1, with the gap

narrowing at higher noise levels. F1 scores follow similar trends to accuracy metrics

but show a steeper decline with respect to noise, suggesting that both precision and

recall are possibly more severely impacted by noise than accuracy metrics. Most

important to this study, however, is that in all cases, we see no significant divergence

in performance curves between each FP32/ INT8 model pair, directly supporting the

notion that quantized models, under AWGN are just as robust, according to accuracy

and F1 metrics, irrespective of overall losses. That is, while a model may lose accuracy

with increasing noise, the quantized model does not exhibit ill-conditioning relative

36

to its FP32 counterpart. Figure 4.3 and Table 4.6 presents the KL divergences under

AWGN. Here, we witness interesting non-linear behavior - under AWGN, each model’s

INT8 representation exhibits peak divergence in its class output probabilities in the

σ = 0.4 - 0.6 range. Also, in line with the trend in baseline KL divergences, VGG-16

demonstrates the highest divergence despite being less sensitive in its accuracy and F1

response curves. This suggests that while VGG-16 in its INT8 form is demonstrably

robust according to accuracy and f1, its output distribution shifts from its FP32

form, potentially indicating decreased overall confidence or misplaced confidence.

This result is particularly relevant in threshold-based systems where decisions are

made based on some output probability threshold; this may induce increased false

positives or false negatives. The drop in KL divergence after σ = 0.6 is most likely

due to the model pairs reaching a saturation point in error, where, in effect, each

model pair is equally weak and unable to make any meaningful predictions, which

is evidenced in the accuracy plots where we can see sub-20% top-1 accuracy and

sub-40% top-5 accuracy for both each quantized and full-precision model.

37

Figure 4.1: Top-1 and top-5 accuracies for each model’s FP32/INT8 pair for varying
levels of AWGN.

38

Figure 4.2: F1 scores for each model’s FP32/INT8 pair for varying levels of AWGN.

39

Table 4.3: Tabulated top-1 accuracies for various levels of AWGN.

SqueezeNet1 1 ResNet-18 VGG-16
Std Dev FP32 INT8 FP32 INT8 FP32 INT8

0.1 0.6115 0.6082 0.7117 0.7117 0.7777 0.7795
0.2 0.5206 0.5257 0.6268 0.6193 0.7024 0.7033
0.3 0.3723 0.3789 0.4686 0.4656 0.5407 0.5323
0.4 0.2337 0.2430 0.2973 0.2997 0.3408 0.3345
0.5 0.1386 0.1464 0.1782 0.1755 0.1806 0.1734
0.6 0.0939 0.0945 0.1107 0.1038 0.0975 0.0987
0.8 0.0741 0.0747 0.0663 0.0648 0.0480 0.0471
1.0 0.0753 0.0720 0.0552 0.0585 0.0402 0.0408

Table 4.4: Tabulated top-5 accuracies for various levels of AWGN.

SqueezeNet1 1 ResNet-18 VGG-16
Std Dev FP32 INT8 FP32 INT8 FP32 INT8

0.1 0.8794 0.8830 0.9208 0.9190 0.9415 0.9406
0.2 0.8245 0.8254 0.8791 0.8725 0.9118 0.9031
0.3 0.7012 0.7111 0.7624 0.7537 0.8185 0.8137
0.4 0.5158 0.5287 0.5851 0.5734 0.6463 0.6385
0.5 0.3459 0.3555 0.4245 0.4101 0.4737 0.4734
0.6 0.2424 0.2463 0.3096 0.2934 0.3456 0.3426
0.8 0.1755 0.1764 0.2136 0.2127 0.2439 0.2424
1.0 0.1605 0.1608 0.2076 0.2025 0.2142 0.2217

Table 4.5: Tabulated F1 scores for various levels of AWGN.

SqueezeNet1 1 ResNet-18 VGG-16
Std Dev FP32 INT8 FP32 INT8 FP32 INT8

0.1 0.6149 0.6128 0.7126 0.7131 0.7792 0.7817
0.2 0.5314 0.5330 0.6380 0.6312 0.7106 0.7126
0.3 0.3758 0.3821 0.4893 0.4874 0.5554 0.5478
0.4 0.2159 0.2297 0.3061 0.3093 0.3589 0.3527
0.5 0.1047 0.1146 0.1667 0.1613 0.1876 0.1796
0.6 0.0489 0.0511 0.0875 0.0825 0.0882 0.0902
0.8 0.0190 0.0216 0.0315 0.0304 0.0229 0.0215
1.0 0.0164 0.0167 0.0165 0.0170 0.0072 0.0074

40

Figure 4.3: KL divergences for each model pair under various levels of AWGN.

Table 4.6: KL divergences for each model pair under various levels of AWGN.

Std Dev SqueezeNet1 1 ResNet-18 VGG-16
0.1 0.0412 0.0325 0.0496
0.2 0.1043 0.0838 0.1424
0.3 0.1672 0.1435 0.2554
0.4 0.1926 0.2030 0.3375
0.5 0.1722 0.2145 0.2961
0.6 0.1280 0.2052 0.2216
0.8 0.0641 0.1526 0.1076
1.0 0.0374 0.1043 0.0546

4.2.2 Brownian Noise

Next, we examine the impacts of varying levels of Brownian noise. Figure 4.4 and

Tables 4.7 and 4.8 presents the top-1 and top-5 accuracies where we can see very

different response curve compared to the AWGN results. It is clear that, as expected,

the effects of Brownian noise are much more gradual compared to AWGN, as the

spatial correlation of Brownian noise yields a much smoother noise pattern. Like

AWGN, we see VGG-16 outperform all models as it maintains top-1 accuracy above

50% top-5 accuracy above 70% until σ = 50. Interestingly, we can see that Brow-

nian noise seems to induce a relatively large error in the quantized model from the

41

FP32 model compared to AWGN, especially in VGG-16 in the σ = 10-50 range. In

terms of F1, as shown in Figure 4.5 and Table 4.9, we also observe more significant

discrepancies between the quantized and full-precision models, for instance, VGG-16

around 2% error in F1 at σ = 20. Also, as expected, the top-5 accuracy is consis-

tently higher than the top-1 accuracy in all three models. Further, KL divergence, as

shown in Figure 4.6 and Table 4.10 is much higher than AWGN and does not have

the same peaking behavior shown in Figure 4.3 - instead we see a steady increase

with noise across all three models. Like AWGN, VGG-16 exhibits the highest diver-

gence, again suggesting a comparatively higher discrepancy in the model’s confidence

amongst output classes when making predictions. ResNet-18, in contrast, yields the

lowest divergence. Overall, we can see that the impacts of Brownian are much more

gradual; however, they induce significantly higher KL divergences when compared to

AWGN.

42

Figure 4.4: Top-1 and top-5 accuracies for each model’s FP32/INT8 pair for varying
levels of Brownian noise.

43

Figure 4.5: F1 scores for each model’s FP32/INT8 pair for varying levels of Brownian
noise.

44

Table 4.7: Tabulated top-1 accuracies for various levels of Brownian noise.

SqueezeNet1 1 ResNet-18 VGG-16
Std Dev FP32 INT8 FP32 INT8 FP32 INT8

10 0.6058 0.6067 0.6916 0.6805 0.7795 0.7756
20 0.5470 0.5560 0.6076 0.6043 0.7720 0.7558
30 0.4599 0.4548 0.5242 0.5335 0.7414 0.7309
40 0.3867 0.3753 0.4458 0.4380 0.7069 0.6925
50 0.3174 0.3072 0.3738 0.3816 0.6529 0.6523
60 0.2604 0.2577 0.3147 0.3177 0.6034 0.5998
70 0.2016 0.2184 0.2619 0.2682 0.5473 0.5503
80 0.1755 0.1818 0.2271 0.2286 0.4836 0.4764

Table 4.8: Tabulated top-5 accuracies for various levels of Brownian noise.

SqueezeNet1 1 ResNet-18 VGG-16
Std Dev FP32 INT8 FP32 INT8 FP32 INT8

10 0.8728 0.8800 0.9046 0.9025 0.9427 0.9427
20 0.8386 0.8416 0.8563 0.8617 0.9328 0.9331
30 0.7816 0.7783 0.7996 0.8062 0.9175 0.9187
40 0.7138 0.7066 0.7279 0.7342 0.9037 0.8983
50 0.6433 0.6343 0.6529 0.6718 0.8791 0.8737
60 0.5680 0.5572 0.5986 0.5950 0.8356 0.8407
70 0.4914 0.5011 0.5371 0.5491 0.8059 0.7978
80 0.4344 0.4398 0.4884 0.4836 0.7606 0.7534

Table 4.9: Tabulated F1 scores for various levels of Brownian noise.

SqueezeNet1 1 ResNet-18 VGG-16
Std Dev FP32 INT8 FP32 INT8 FP32 INT8

10 0.6062 0.6084 0.6883 0.6773 0.7793 0.7759
20 0.5505 0.5587 0.6044 0.6024 0.7716 0.7557
30 0.4634 0.4579 0.5176 0.5318 0.7404 0.7301
40 0.3828 0.3693 0.4407 0.4335 0.7083 0.6938
50 0.3036 0.2923 0.3578 0.3685 0.6546 0.6549
60 0.2387 0.2310 0.2979 0.3019 0.6051 0.6040
70 0.1716 0.1876 0.2411 0.2448 0.5523 0.5562
80 0.1369 0.1462 0.2020 0.2018 0.4878 0.4786

45

Figure 4.6: KL divergences for each model pair under various levels of Brownian
noise.

Table 4.10: KL divergences for each model pair under various levels of Brownian
noise.

Std Dev SqueezeNet1 1 ResNet-18 VGG-16
10 0.2467 0.1967 0.1046
20 0.6221 0.4133 0.2727
30 1.0892 0.6193 0.4699
40 1.4975 0.7471 0.7132
50 1.8430 0.9018 1.0345
60 2.1109 1.0067 1.2726
70 2.2820 1.1416 1.5653
80 2.3271 1.2215 1.6631

4.2.3 Vertical Occlusions

We now look at the results for varying amounts of vertical occlusion, given in Figures

4.7, 4.8 and Tables 4.11, 4.12 and 4.13. In general, we see performance degradation

in accuracy and F1 gradually dropping off, similar to Brownian noise, which is an

expected feature as occlusions are another form of highly structured noise. However,

unlike Brownian noise, the initial drop in accuracy from just two streaks is significant,

with all models yielding less than 50% top-1 accuracy. Top-5 accuracy, however, is

46

not as impacted until five streaks for ResNet-18 and VGG-16. On the other hand,

SqueezeNet1 1 demonstrates considerably worse performance across all metrics. This

is likely due to its comparatively small parameter space and lack of redundancy.

Overall, we can see that in terms of accuracy and F1, ResNet-18 performs the best

and exhibits the most minor degradation with increasing perturbation, contrary to

previous results in which VGG-16 performed the best. Another interesting result is

that top-1 and top-5 accuracies do not share the same general trend as F1. Instead,

we see significant degradation in F1 immediately with two streaks and comparatively

rapid decay, suggesting a higher rate of false positives/false negatives compared to true

positives and true negatives. This result may suggest that, as we have an imbalanced

dataset, models struggle more with minority classes as occlusion increases. With

respect to quantization, we see the same general trend as other perturbation regimes,

in that there is minimal divergence between each FP32/INT8 model pair, again,

suggesting that performance degradation is a macroscopic phenomenon - a function of

model architecture and overall size, not parameter-wise information capacity. Indeed,

each model exhibits relatively low KL divergence with the max being 0.0636 for VGG-

16 at two streaks, as shown in Figure 4.9 and Table 4.14. Moreover, the distribution

divergence is relatively constant, with the most significant delta being just 0.0223 for

VGG-16 between 2 and 6 streaks. However, it is notable that ResNet-18 exhibits the

lowest KL divergence, which, paired with its performance in top-1, top-5, and F1,

indicates it is comparatively robust against highly structured perturbation.

47

Figure 4.7: Top-1 and top-5 accuracies for each model’s FP32/INT8 pair under vari-
ous amounts of vertical occlusion.

48

Figure 4.8: F1 scores for each model’s FP32/INT8 pair under various amounts of
vertical occlusion.

49

Table 4.11: Tabulated top-1 accuracies under various amounts of vertical occlusion.

SqueezeNet1 1 ResNet-18 VGG-16
Num. Streaks FP32 INT8 FP32 INT8 FP32 INT8

2 0.3696 0.3729 0.4812 0.4746 0.4887 0.4830
3 0.2268 0.2343 0.3894 0.3756 0.3228 0.3213
4 0.1992 0.1980 0.2985 0.2898 0.2268 0.2244
5 0.1122 0.1134 0.2157 0.2115 0.1665 0.1638
6 0.0651 0.0630 0.1758 0.1725 0.1317 0.1263

Table 4.12: Tabulated top-5 accuracies under various amounts of vertical occlusion.

SqueezeNet1 1 ResNet-18 VGG-16
Num. Streaks FP32 INT8 FP32 INT8 FP32 INT8

2 0.7273 0.7324 0.7831 0.7810 0.7786 0.7798
3 0.5521 0.5485 0.7018 0.6970 0.6373 0.6358
4 0.4749 0.4740 0.6022 0.5887 0.5305 0.5227
5 0.3243 0.3246 0.4866 0.4794 0.4125 0.4113
6 0.1953 0.1953 0.4182 0.4113 0.3444 0.3333

Table 4.13: Tabulated F1 scores under various amounts of vertical occlusion.

SqueezeNet1 1 ResNet-18 VGG-16
Num. Streaks FP32 INT8 FP32 INT8 FP32 INT8

2 0.3689 0.3700 0.4727 0.4657 0.4807 0.4742
3 0.2134 0.2178 0.3841 0.3677 0.3117 0.3083
4 0.1885 0.1883 0.2814 0.2713 0.2002 0.1953
5 0.0937 0.0960 0.1924 0.1871 0.1237 0.1203
6 0.0384 0.0367 0.1622 0.1577 0.0911 0.0868

50

Figure 4.9: KL divergences for each model pair under various amounts of vertical
occlusion.

Table 4.14: KL divergences for each model pair under various amounts of vertical
occlusion.

Num. Streeaks SqueezeNet1 1 ResNet-18 VGG-16
2 0.0281 0.0136 0.0600
3 0.0311 0.0140 0.0636
4 0.0263 0.0129 0.0576
5 0.0228 0.0113 0.0480
6 0.0223 0.0116 0.0413

4.2.4 Horizontal Occlusions

Lastly, we look at horizontal occlusions. Figure 4.10 and Tables 4.15 and 4.16 display

the top-1 and top-5 accuracies, where we can see a similar result to the vertical

occlusions and Brownian noise in that the degradation is gradual. Also similar is that

we see an immediate drop off at just two streaks, again showing that generally, models

are comparatively much more sensitive to highly structured occlusions compared to

AWGN and Brownian noise. Also of note is that VGG-16 performs the best out of

all three models across accuracy and F1, unlike the vertical occlusions. F1, as shown

in Figure 4.11 and Table 4.17, is also similar to the vertical occlusion results, as we

can see a steep decay congruent with the top-1 accuracy curve. Another interesting

51

note is that we generally observe less degradation for the same number of streaks

than vertical occlusions. This may be because the distinguishing features learned

during training are dominated by horizontal edges such as the plane’s fuselage, and

introducing points of high contrast in the form of structured noise is much more

disruptive, as they are guaranteed to intersect the plane’s structure. Further, we see

a widened discrepancy between top-1 and top-5 accuracies with horizontal occlusions

compared to vertical, suggesting it is likely that generally, models are more likely to

have the correct class in their top 5 predictions but struggle with exact classification.

This result is likely exacerbated by the dataset’s nature, in that such occlusion severely

impairs the model’s ability to distinguish between subtleties in the different classes.

We can also see the same behavior as all other studied perturbations with respect to

quantization in that there is minimal divergence between the INT8 and FP32 models

across all metrics, with the max delta being 0.0069 for SqueezeNet1 1 at four streaks.

Most unique to horizontal occlusions is that the KL divergence for all model pairs

is near 0 and shows no clear trend. This indicates that the output distributions are

similar under such perturbation and lack any notable discrepancy.

52

Figure 4.10: Top-1 and top-5 accuracies for each model’s FP32/INT8 pair under
various amounts of horizontal occlusion.

53

Figure 4.11: F1 scores for each model’s FP32/INT8 pair under various amounts of
horizontal occlusion.

54

Table 4.15: Tabulated top-1 accuracies under various amounts of horizontal occlusion.

Num. Streaks SqueezeNet1 1 ResNet-18 VGG-16
FP32 INT8 FP32 INT8 FP32 INT8

2 0.4899 0.4854 0.6169 0.6157 0.6556 0.6469
3 0.4485 0.4506 0.5491 0.5512 0.5896 0.5815
4 0.3558 0.3483 0.4644 0.4614 0.4578 0.4548
5 0.3225 0.3222 0.4086 0.4110 0.3945 0.3894
6 0.2745 0.2691 0.3384 0.3414 0.3129 0.3084

Table 4.16: Tabulated top-5 accuracies under various amounts of horizontal occlusion.

SqueezeNet1 1 ResNet-18 VGG-16
Num. Streaks FP32 INT8 FP32 INT8 FP32 INT8

2 0.8167 0.8161 0.8812 0.8815 0.8989 0.8959
3 0.7858 0.7846 0.8296 0.8308 0.8584 0.8557
4 0.7078 0.7102 0.7747 0.7798 0.7696 0.7669
5 0.6832 0.6811 0.7156 0.7195 0.7195 0.7105
6 0.6241 0.6190 0.6448 0.6469 0.6391 0.6343

Table 4.17: Tabulated F1 scores under various amounts of horizontal occlusion.

SqueezeNet1 1 ResNet-18 VGG-16
Num. Streaks FP32 INT8 FP32 INT8 FP32 INT8

2 0.5060 0.5013 0.6141 0.6135 0.6623 0.6546
3 0.4624 0.4655 0.5492 0.5523 0.5954 0.5868
4 0.3741 0.3672 0.4696 0.4653 0.4585 0.4559
5 0.3459 0.3453 0.4133 0.4134 0.3968 0.3913
6 0.2841 0.2775 0.3435 0.3465 0.3080 0.3005

55

Figure 4.12: KL divergences for each model pair under various amounts of horizontal
occlusion.

Table 4.18: KL divergences for each model pair under various amounts of horizontal
occlusion.

Num. Streaks SqueezeNet1 1 ResNet-18 VGG-16
2 3.4174e-05 2.5758e-05 8.5424e-05
3 7.7996e-05 2.0273e-05 1.8579e-05
4 5.5599e-05 1.2955e-05 2.8390e-05
5 2.5089e-05 4.1308e-05 2.1092e-05
6 1.4481e-05 1.5461e-05 1.9827e-05

In summary, our results elicit several clear trends. Firstly, we observe that

AWGN’s accuracy and F1 curves have somewhat negative exponential decay behavior

and plateaus at σ = 0.8. Under Brownian noise, we see a more gradual descent in

error with no plateau. Vertical occlusions yielded the highest degradation in all three

model pairs, with an immediate drop off to sub 50% top-1 accuracy for each model,

for only two streaks added. The effect of horizontal occlusions was less pronounced

and had considerably higher performance metrics for the same number of streaks.

Under all regimes, the INT8 model performs effectively, just as well as the FP32

model, with discrepancies typically being less than 1%. In terms of KL divergence,

AWGN induced a peak divergence at σ = 0.4. Brownian noise yielded the highest

56

overall divergences with maximums of 2.3271, 1.2215, and 1.6631 for SqueezeNet1 1,

ResNet-18, and VGG-16, respectively, and had a steady near-linear increase with in-

creasing σ. Under vertical and horizontal occlusions, we see KL divergences similar

to the baseline results in that they are on the same order of magnitude or lower and

near zero. In general, ResNet-18 exhibits the lowest KL divergence across all per-

turbation regimes, and VGG-16 and SqueezeNet1 1 the highest. Another interesting

result is that in terms of accuracy and F1, VGG-16 outperforms both models under

AWGN and Brownian noise, whereas ResNet-18 outperforms under highly structured

regimes. Again, as discussed prior, this distinction may be indicative of each respec-

tive model’s architecture - e.g., VGG-16’s depth and sheer parameter count induce

robustness under AWGN and Brownian noise, whereas ResNet-18’s skip connections

may mitigate degradation against complete highly structured perturbations like ver-

tical and horizontal streaks.

Chapter 5

Conclusion

We have examined the robustness of FP32 and post-training INT8 quantized under

input perturbations ranging from independent and identically distributed AWGN

to spatially correlated Brownian noise to highly structured vertical and horizontal

occlusions. We considered three SOTA models ranging in parameter count, including

SqueezeNet1 1, ResNet-18, and VGG-16, and measured performance according to

top-1 and top-5 accuracy and F1 score. To measure changes in class output confidence

pre- and post-quantization, we employed KL. We implemented quantization according

to the best practices detailed in [28], using PyTorch [32] paired with EasyQuant [36].

We have found that while degradation was observed amongst all models, substan-

tial degradation in the quantized model relative to the full-precision model was not

observed. Indeed, we see the highest degree of error between the models in VGG-16

under Brownian noise at σ = 20 with a top-1 accuracy drop of 1.62% and a 1.59%

drop in F1. In terms of KL divergence, we see the most significant discrepancy in class

output probabilities under the Brownian noise regime, followed by AWGN. Vertical

and horizontal occlusions were on the same order of magnitude as the baseline results

or near zero.

As stated in the introduction, this work sought to address deficiencies in the

current body of research surrounding neural network quantization and, in doing so,

de-risk their deployment in real-world scenarios and provide experimental data to

understand their performance under various perturbation regimes. Based on these

experimental findings, we can conclude that INT8 quantized networks do not ex-

hibit ill-conditioning or exacerbated sensitivity under perturbation, relative to their

FP32 counterpart, and, thus, are just as robust in these noise regimes. Moreover,

these experiments suggest that degradation is a macroscopic phenomenon in that it

is a result of overall model design - e.g., VGG’s depth and parameter count trump

57

58

SqueezeNet1 1’s lighter and reduced parameter space - rather than parameter-to-

parameter precision. We have also identified a clear trade-off between traditional

metrics like F1 and accuracy and model confidence or distribution similarity. For ex-

ample, in the AWGN at σ, we see that VGG-16 outperforms ResNet-18 by a margin

of 5% but also has a higher KL divergence. These experiments showed that bigger

models like VGG-16 scoring higher top-1 accuracy do not necessarily make it ideal, es-

pecially given its significantly higher MACs, and GFLOPs. This is a crucial heuristic

that could be used by designers in model development to identify candidate models

based on expected deployment scenarios; for instance, if thermal noise is expected,

one may consider AWGN, and if similarity in probabilities is more important than

top-1 accuracy, ResNet-18, with 8.5x fewer GFLOPs than VGG-16, may be preferred.

That is, we have identified a crucial trade-off between raw accuracy and F1 with KL

divergence. We sought not to prove that, for example, VGG-16 is the most per-

formant under perturbation, but rather, that there are trade offs when considering

quantization in terms of accuracy and model similarity.

We propose several future research directions to further advance the understanding

of neural network quantization and its robustness under perturbations. First, con-

ducting this same study with quantization-aware training rather than post-training

quantization may reveal subtle differences in robustness and further guide quanti-

zation scheme selection in real-world deployment. Additionally, exploring different

quantization resolutions below 8-bit for both weights and activations could estab-

lish experimental bounds on the aggressiveness of quantization under perturbations.

Another critical area of exploration is examining performance and robustness under

adversarial perturbations, which differ fundamentally from random environmental

perturbations as they can be optimized to degrade performance on a model-specific

basis. Furthermore, expanding this study to include various model types and archi-

tectures and different tasks such as object localization and tracking, natural language

processing, and regression tasks under perturbation may uncover opportunities for

energy and hardware efficiencies in other machine learning applications.

Bibliography

[1] Entropy, Relative Entropy, and Mutual Information, chapter 2, pages 13–55.
John Wiley Sons, Ltd, 2005.

[2] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag.
What is the state of neural network pruning?, 2020.

[3] Alan C. Bovik. The Essential Guide to Image Processing. Academic Press, 2009.

[4] Yen-Ching Chang and Jin-Tsong Jeng. Classifying images of two-dimensional
fractional brownian motion through deep learning and its applications. Applied
Sciences, 13(2), 2023.

[5] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1, 2016.

[6] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large
scale fine-grained categorization and domain-specific transfer learning, 2018.

[7] Y. Le Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and
D. Henderson. Handwritten digit recognition with a back-propagation network,
page 396–404. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1990.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[9] Samuel Dodge and Lina Karam. Understanding how image quality affects deep
neural networks, 2016.

[10] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robust-
ness of classifiers: from adversarial to random noise, 2016.

[11] Jiong Gong, Haihao Shen, Guoming Zhang, Xiaoli Liu, Shane Li, Ge Jin, Ni-
harika Maheshwari, Evarist Fomenko, and Eden Segal. Highly efficient 8-bit low
precision inference of convolutional neural networks with intelcaffe, 2018.

[12] Issam Hammad and Kamal El-Sankary. Impact of approximate multipliers on
vgg deep learning network. IEEE Access, 6:60438–60444, 2018.

[13] Issam Hammad and Kamal El-Sankary. Practical considerations for accuracy
evaluation in sensor-based machine learning and deep learning. Sensors, 19(16),
2019.

59

60

[14] Issam Hammad, Kamal El-Sankary, and Jason Gu. Deep learning training with
simulated approximate multipliers. CoRR, abs/2001.00060, 2020.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition, 2015.

[16] Xiangteng He and Yuxin Peng. Fine-grained visual-textual representation
learning. IEEE Transactions on Circuits and Systems for Video Technology,
30(2):520–531, February 2020.

[17] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,
William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with
50x fewer parameters and ¡0.5mb model size, 2016.

[18] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny
images. Master’s thesis, Department of Computer Science, University of Toronto,
2009.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bot-
tou, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[21] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[22] Fengfu Li, Bin Liu, Xiaoxing Wang, Bo Zhang, and Junchi Yan. Ternary weight
networks, 2022.

[23] Ling Li, Issam Hammad, and Kamal El-Sankary. Dual segmentation approximate
multiplier. Electronics Letters, 57, 05 2021.

[24] Darryl D. Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks, 2016.

[25] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[26] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-grained visual
classification of aircraft. Technical report, 2013.

[27] J. Max. Quantizing for minimum distortion. IRE Transactions on Information
Theory, 6(1):7–12, 1960.

[28] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
van Baalen, and Tijmen Blankevoort. A white paper on neural network quanti-
zation. CoRR, abs/2106.08295, 2021.

61

[29] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification
over a large number of classes. In 2008 Sixth Indian Conference on Computer
Vision, Graphics Image Processing, pages 722–729, 2008.

[30] Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey Pennington, and
Jascha Sohl-Dickstein. Sensitivity and generalization in neural networks: an
empirical study, 2018.

[31] Xinwei Ou, Zhangxin Chen, Ce Zhu, and Yipeng Liu. Low rank optimization
for efficient deep learning: Making a balance between compact architecture and
fast training, 2023.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[34] Hong Qian. Fractional Brownian Motion and Fractional Gaussian Noise, pages
22–33. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[35] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural networks,
2016.

[36] Oscar Savolainen. Oscarsavolainendr/easyquant, Jun 2024.

[37] Jaydip Sen, Abhiraj Sen, and Ananda Chatterjee. Adversarial attacks on image
classification models: Analysis and defense, 2023.

[38] Jonathon Shlens. Notes on kullback-leibler divergence and likelihood, 2014.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[40] Olivia Weng. Neural network quantization for efficient inference: A survey, 2023.

[41] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang
Huang, and Xian-sheng Hua. Quantization networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

62

[42] Zhongzhi Yu, Yemin Shi, Tiejun Huang, and Yizhou Yu. Kernel quantization
for efficient network compression, 2020.

Appendix A

Quantization Python Code

import torch

import torchvision.models as models

import torch.quantization as tq

from torch.ao.quantization.quantize_fx import prepare_qat_fx

from torch.ao.quantization.qconfig_mapping import QConfigMapping

from quant_modules.state_toggling import enable_fake_quant,

enable_PTQ_observer↪→

from quant_modules.learnable_fake_quantize import EQLearnableFakeQuantize

def load_models(num_classes=70, resnet18_path=None, vgg16_path=None,

squeezenet1_1_path=None):↪→

Fetch models from PyTorch

resnet18 = torchvision.models.resnet18(weights=None)

vgg16 = torchvision.models.vgg16(weights=None)

squeezenet1_1 = torchvision.models.squeezenet1_1(weights=None)

Update models to handle 70 classes

resnet18.fc = nn.Linear(resnet18.fc.in_features, num_classes)

vgg16.classifier[6] = nn.Linear(vgg16.classifier[6].in_features,

num_classes)↪→

squeezenet1_1.classifier[1] = nn.Conv2d(512, num_classes,

kernel_size=(1,1), stride=(1,1))↪→

squeezenet1_1.num_classes = num_classes

Load pre-trained parameters from disk

resnet18.load_state_dict(torch.load(resnet18_path, map_location="cpu"))

vgg16.load_state_dict(torch.load(vgg16_path, map_location="cpu"))

squeezenet1_1.load_state_dict(torch.load(squeezenet1_1_path,

map_location="cpu"))↪→

return resnet18, vgg16, squeezenet1_1

63

64

def quantize(model):

Set weight quantization parameters. Initialize scale and zero_point

learnable_weight = lambda channels: EQLearnableFakeQuantize.with_args(

observer=tq.PerChannelMinMaxObserver, # Set histogram type

quant_min=-128, # Symmetric 8-bit min.

quant_max=127, # Symemtric 8-bit max.

dtype=torch.qint8, # Set datatype to int8

qscheme=torch.per_channel_symmetric, # Specify resolution

scale=0.1, # Initial scale

zero_point=0.0, # Initial zero point

use_grad_scaling=True, # Scale gradients

channel_len=channels, # Length of channel dimension

)

Set activation quantization parameters. Initialize scale and

zero_point↪→

learnable_act = EQLearnableFakeQuantize.with_args(

observer=tq.HistogramObserver, # Set histogram type

quant_min=0, # Affine 8-bit min.

quant_max=255, # Affine 8-bit max.

dtype=torch.quint8, # Set datatype to uint8

qscheme=torch.per_tensor_affine, # Specify resolution

scale=0.1, # Initial scale value

zero_point=0.0, # Initial zero point

use_grad_scaling=True, # Use gradient scaling

)

torch.backends.quantized.engine = "qnnpack" # Set quantization engine

to qnnpack↪→

qconfig_mapping = QConfigMapping() # Create qconfig instance

Assign qconfigs to each module in model

for name, module in model.named_modules():

if hasattr(module, "out_channels"):

qconfig = tq.QConfig(

activation=learnable_act,

65

weight=learnable_weight(channels=module.out_channels),

)

qconfig_mapping.set_module_name(name, qconfig)

module.qconfig = qconfig

example_inputs = (torch.randn(1, 3, 224, 224),) # Random input for

calibration↪→

model.eval() # Set model to evaluation mode

quant_model = prepare_qat_fx(model, qconfig_mapping, example_inputs) #

Prepare and calibrate quantized model↪→

quant_model.eval() # Set quant model to evaluation mode

Enable quantization on model

quant_model.apply(enable_fake_quant)

quant_model.apply(enable_PTQ_observer)

return quant_model # Return quantized model

Appendix B

Average KL Divergence Python Code

import numpy as np

from scipy.stats import entropy

def compute_kl_divs(p_fp32, p_int8, m):

"""

Compute kl divergence of int8 probabilities (p_int8) to fp32

probabilities (p_fp32)↪→

for each x (perturbation level) value in m (list of perturbation levels).

"""

kl_divs = []

for i, x in enumerate(m):

p_fp32_sigma = p_fp32[i] # List of 3333 images with 70

probabilitiess each↪→

p_int8_sigma = p_int8[i] # List of 3333 images with 70 probilities

each↪→

kl_div_sum = 0

for j in range(len(p_fp32)):

p_fp32_sigma_image = p_fp32_sigma[j] # Each individual set of 70

probabilities for a given image↪→

p_int8_sigma_image = p_int8_sigma[j] # Each individual set of 70

probabilities for a given image↪→

kl_div_image = entropy(p_fp32_sigma_image, p_int8_sigma_image) #

Compute KL divergence for this image↪→

kl_div_sum += kl_div_image # Accumulate sum

avg_kl_div = kl_div_sum / 3333 # Compute average KL divergence for

this x value↪→

kl_divs.append((x, avg_kl_div)) # Append (x, avg_kl_div) to the list

66

67

return kl_divs # Return the list of (x, avg_kl_div) pairs

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Motivation
	Related Work

	Theory and Background
	Quantization
	Input Perturbations
	Degradation Metrics

	Methods
	Model Selection and Dataset
	Quantization Scheme
	Experimental Setup and Procedure

	Results
	Baseline Results
	Perturbed Results
	AWGN
	Brownian Noise
	Vertical Occlusions
	Horizontal Occlusions

	Conclusion
	Bibliography
	Quantization Python Code
	Average KL Divergence Python Code

