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“If there is one thing in mathematics that fascinates me more than anything else
(and doubtless always has), it is neither ‘number’ nor ‘size,’ but always form.”

A. Grothendieck

“Ma non ti rendi conto di quant’è bello? Che non ti porti il peso del mondo sulle spalle,
che sei soltanto un filo d’erba in un prato? Non ti senti più leggero?”

Sarah - Strappare lungo i bordi. Zerocalcare
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Abstract

In his Lectures on Noncommutative Geometry, Ginzburg proposes a theory of algebraic

noncommutative (affine) geometry. One of the fundamental insights of noncom-

mutative geometry is to regard associative, not necessarily commutative, algebras

as geometric spaces. In the last section of the aforementioned lectures, Ginzburg

suggests an ambitious generalization of his work: he observes that most of the con-

structions he characterized in the noncommutative case, carry over into the realm

of operadic algebras and he proposes a theory of operadic geometry. From a philo-

sophical viewpoint one wonders if the similarities captured by Ginzburg could

hide a deeper phenomenon: a common language which captures some important

features of these examples. In this thesis, tangent category theory is applied for the

first time to describe the patterns and similarities observed by Ginzburg. This work

largely extends Cruttwell and Lemay’s attempt to employ tangent category theory

to capture significant features of commutative algebraic geometry. From the per-

spective of operad theory, this thesis translates in the context of tangent categories

some important operadic constructions, such as derivations, enveloping operads,

and modules. From the perspective of tangent category theory, it provides new

examples of noncommutative non-pointwise models of geometry described with

tangent categories. First, we show that each operad is canonically associated with

two tangent categories: the algebraic and the geometric tangent categories. Once

we have established the functorial correspondence between operads and tangent

categories, we describe two important constructions. First, we show an equivalence

between slice tangent categories and enveloping operads; second, we employ this

result to classify differential bundles as modules over the operadic algebras. In the

last chapter, we apply the established relationship between operads and tangent

categories to the theory of algebraic deformation. First, we prove that the category

of operads itself and its opposite carry two tangent structures, which are closely re-

lated to deformations. Finally, we explore some ideas, inspired by tangent category

theory, to classify all infinitesimal deformations of an operadic algebra.
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Chapter 1

Introduction

One of the fundamental insights of differential calculus is that polynomial functions

can locally approximate any sufficiently smooth real-valued function. The simplest

case consists of approximating a real-valued function near a certain point by a first-

order polynomial. The function’s first derivative at the given point fully determines

such a polynomial.

Similarly, differential geometry allows one to locally approximate some suffi-

ciently smooth space near a certain point via a linear space at the given point.

However, in the same way that not every function can be differentiated, not every

geometric space admits a local linear approximation at each point. To solve this

technicality, differential geometry restricts its attention to a certain class of geo-

metric spaces, known as smooth manifolds. These spaces exhibit a local linear

behaviour. Informally, this means that, at any given point, there is a vector space,

known as the tangent space at that point, which provides a good approximation of

the space in a neighbourhood of the point.

A philosophical question arises: is differential geometry the ultimate theory of

geometric spaces or are smooth manifolds just an example of such an object? Is

there a more general theory of geometry for which differential geometry is only

one of many models? A natural mathematical language to formulate and answer

this question is category theory.

One of the aims of category theory consists of studying mathematical objects in

a model-independent fashion: instead of characterizing a specific class of objects

by a direct description, the categorical approach is interested in the operations and

structures required to define and study these objects.

Starting from Lawvere’s ideas, Kock developed a categorical approach to dif-

ferential geometry, known as synthetic differential geometry (cf. [37]) which aims to

1
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give a precise interpretation of the concept of infinitesimal quantity. Partially in-

spired by this attempt to categorify differential geometry, Rosický proposed a more

general approach in [53], in which he introduced the concept of tangent category.

He also showed that representable tangent categories capture synthetic differential

geometry, proving this approach is more general. The simplicity and generality of

this theory perfectly fit our purposes.

Informally, a tangent category is a collection of objects, interpreted as geometric

spaces, a collection of morphisms, representing the transformations between these

spaces, and a particular structure which allows one to axiomatize the idea that these

spaces are locally linear. Cockett and Cruttwell in [12] revisited and generalized this

notion and showed how tangent category theory generalizes categorical theories

of differentiation such as Cartesian differential categories.

One of the interesting aspects of tangent category theory is encapsulated within

the categorical framework in which this language is developed. Instead of selecting

a specific class of spaces which manifest a local linear behaviour, the approach of

tangent category theory is to provide the fundamental structures and operations

which allow for a geometric interpretation of a collection of abstract objects. Within

this perspective, differential geometry becomes a model of a more general theory

of geometry: tangent category theory.

Assuming this interpretation, it is natural to wonder which other models of

geometry can be described by tangent category theory. Recently, Cruttwell and

Lemay in [18] employed tangent category theory to describe certain aspects of

algebraic geometry. In particular, they proved that the opposite of the category

of commutative and unital algebras, which is equivalent to the category of affine

schemes, comes equipped with a tangent structure. They also extended this result

to the category of schemes and they classified differential bundles, which can be

interpreted as vector bundles in a tangent category, in terms of modules over

the algebras. This striking connection between commutative algebra, algebraic

geometry, and tangent category theory suggests a deeper phenomenon: other

algebraic objects, like associative, Lie, or Poisson algebras, might also carry a tangent

structure. The first goal of this thesis is to explore this possibility, linking operad

theory with tangent categories.
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The relationship between algebra and geometry is one of the most fascinat-

ing well-studied mathematical phenomena: from algebraic topology to algebraic

geometry, from noncommutative geometry to Lie group theory, geometry and

algebra appear as manifestations of two sides of the same coin. An important

example of this relationship is represented by the celebrated theorem of Gelfand

and Naimark [49, Theorem 8.33] which proves that a locally compact Hausdorff

topological space is fully described by the associated unital and commutative C∗-
algebra of its continuous complex-valued functions. This result is the starting point

of noncommutative geometry which aims to interpret associative, not necessarily

commutative, algebras as geometric spaces. For an introduction to this subject, we

advise the reader to consult [36] and [16].

In theoretical physics, noncommutative geometry is related to the quantization

of a classical theory.

The Gelfand-Naimark-Segal theorem [49, Theorem 14.3] classifies the repres-

entations of the C∗-algebra of observables of a system. In particular, it shows that

the observables in a commutative algebra are represented as continuous functions

over a suitable topological space while observables in a noncommutative algebra

are represented as linear operators over a suitable Hilbert space. From the point of

view of Physics, this means that commutative algebras represent classical systems,

while noncommutative algebras encode quantum systems.

Furthermore, noncommutative geometry finds application in quantum gravity,

suggesting that spacetime itself could be regarded as a noncommutative space (see

for example, [2]).

One striking feature of noncommutative geometry is the absence of a classical

notion of points: noncommutative spaces cannot be interpreted as sets of points

equipped with extra structure. On the other hand, the categorical approach rejects

a pointwise interpretation and embraces the idea that mathematical objects can

be fully described, up to isomorphism, from their transformations, that is from

the study of the morphisms among those objects. This encourages us to wonder

whether or not non-commutative geometry can be interpreted as a model of tangent

category theory.

However, so far, the main examples of tangent categories in the literature are
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only classical examples; they describe the geometry of pointwise spaces, like differ-

ential geometry or algebraic geometry. One of the goals of this thesis is to present

a nontrivial example of a tangent category which can be employed to study non-

commutative geometry. The main inspiration comes from Ginzburg’s work on

noncommutative algebraic geometry, presented in [25].

Ginzburg, in the introduction of these notes, describes two kinds of noncom-

mutative geometries: noncommutative geometry in the small and noncommutative

geometry in the large. In his words: 1

“The former is a generalization of the conventional ‘commutative’ algebraic geo-
metry to the noncommutative world. The objects that one studies here should be
thought of as noncommutative deformations, sometimes referred to as quantizations,
of their commutative counterparts. A typical example of this approach is the way of
thinking about the universal enveloping algebra of a finite dimensional Lie algebra 𝔤 as
a deformation of the symmetric algebra S(𝔤), which is isomorphic to the polynomial al-
gebra.
As opposed to the noncommutative geometry ‘in the small’, noncommutative geo-
metry ‘in the large’ is not a generalization of commutative theory. The world of
noncommutative geometry ‘in the large’ does not contain [the] commutative world as
a special case, but is only similar, parallel, to it. The concepts and results that one
develops here, do not specialize to their commutative analogues. Consider for instance
the notion of smoothness that exists both in commutative algebraic geometry and
in noncommutative algebraic geometry ‘in the large’. A commutative algebra A may
be smooth in the sense of commutative algebraic geometry, and at the same time be
non-smooth from the point of view of noncommutative geometry ‘in the large’.”

In Example 3.81, we discuss this distinction from the point of view of tangent

category theory; we show that the tangent morphism which compares the tangent

category of commutative algebraic geometry with the tangent category of noncom-

mutative algebraic geometry does not preserve the tangent structure strongly, i.e.

it is not a strong tangent morphism.

1Paragraph in the introduction of [25]. The original text is in normal font. The words here in

bold are in italics in the original text
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Ginzburg also suggests the existence of other kinds of geometries associated

with other algebraic objects. He dedicates a final section of his notes [25] to extend

his results to a new plethora of algebraic theories, parametrized by operads.

An operad is a mathematical machinery which encodes the 𝑛-ary operations

and axioms of an algebraic theory. Consider for instance associative algebras. These

objects are vector spaces equipped with a binary associative operation. Similarly,

Lie algebras are vector spaces, equipped with a binary operation, satisfying two

conditions: anticommutativity and the Jacobi identity. Both associative and Lie

algebras are examples of algebraic objects generated by a suitable operad.

Concretely, an operad is a mathematical object which can be presented as a list

of operations of an algebraic theory, grouped by their arity, subject to the relations

established by the theory. For example, the operad which generates associative

algebras contains all 𝑛-ary operations generated by composing a binary operation

𝜇 which satisfies the associativity condition (Example 3.7).

The representations of an operad form the algebraic theory associated with the

operad. In particular, the theory of associative algebras is the algebraic theory of

the operad 𝒜𝓈𝓈, known as the associative operad and the theory of Lie algebras is the

algebraic theory of the operad ℒ𝒾ℯ, known as the Lie operad.

Although the main motivation of this thesis is to investigate the relationship

between noncommutative geometry and tangent category theory, our approach

extends to a larger family of geometries: we present a canonical construction that

associates to every operad a corresponding geometric theory, axiomatized by a

tangent structure on the opposite of the category of the representations of the

operad, also known as algebras of the operad.

We also show that this construction is functorial: morphisms of operads corres-

pond to morphisms of tangent categories.

We also show that this functorial correspondence reflects an intimate relation-

ship between operads and tangent categories by discussing how some constructions

of operad theory translate to the associated tangent categories. In particular, we

focus our attention on the geometric theory of the enveloping operad associated

with a 𝒫-algebra, on the compatibility between this functorial relationship and we

employ this relationship to classify differential bundles.



6

One important source of noncommutative spaces is provided by deformation

theory. The main idea of deformation theory consists of slightly deforming an

algebraic or geometric object in a compatible way with the operations and axioms

that describe such an object. The deformation of associative algebras, first studied

by Gerstenhaber (see for example [23]), allows one to deform a commutative algebra

to a noncommutative one, by twisting the original commutative multiplication map

with some extra noncommutative terms. This idea extends to the realm of algebraic

theories generated by operads, so one can deform operadic algebras to obtain new

ones.

The idea of deforming an algebraic object can be seen as defining a path in the

space of algebraic objects of a certain type. However, there is not such a thing as

a differential structure over the collection of algebras of an operad. We believe

that tangent category theory can provide a minimal geometric setting in which

deformations can be interpreted as paths of a suitable geometric space.

In the last chapter we introduce some ideas to explore this intuition. In particu-

lar, we show that the category Operad of operads is itself a tangent category whose

vector fields are strictly related to infinitesimal deformations of operadic algebras.

We show that the opposite category, Operadop
, carries a tangent structure which

is also related to infinitesimal deformations. We dedicate a final section to identi-

fying some of the issues of this approach. To solve these issues, we propose two

new approaches to classifying infinitesimal deformations as sections of a suitable

differential bundle in the geometric tangent category of the operad, and as sections

of the unit of a tangent comonad.

1.1 Outline

This thesis is organized into six distinct chapters. In Chapter 1, we establish the

structure of the thesis and we set up the adopted notation and naming conventions.

Chapter 2 is dedicated to tangent category theory. In particular, in Section 2.1, we

motivate and introduce the concept of a tangent category. Section 2.2 is dedicated

to exploring some of the main constructions of tangent category theory.

In particular, in Section 2.2.1, we recall the notion of vector fields over an object
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of a tangent category, in Section 2.2.2, we recall the notion of differential objects and

explain why a tangent structure provides a notion of local linearity for its objects.

Section 2.2.3 is dedicated to a new concept in tangent category theory, tangent

display maps.

This new notion plays a crucial role in Section 2.2.4 in which we revisit the

construction of the slice tangent category and in Section 2.2.5, dedicated to differ-

ential bundles. We conclude Section 2.2, by recalling, in Section 2.2.6 an important

construction: the adjoint of a tangent category.

We conclude Chapter 2 with an introduction to a formal approach to tangent

category theory, introduced by the author in [42]. Section 2.3 is dedicated to ex-

ploring this new approach, by introducing the notion of tangent objects. Finally, in

Section 2.4 we review the concept of tangent monad and prove that every tangent

monad admits the construction of algebras (Theorem 2.73).

In Chapter 3 we present the two main constructions of this thesis: the algebraic

and the geometric tangent categories of an operad. First, in Section 3.2 we recall

the definition of an operad over a symmetric monoidal category. In Section 3.3, we

recall the definition of algebras of an operad. Section 3.4 is dedicated to the first

main result of this thesis: we prove that the monad associated with an algebraic

operad is a coCartesian differential monad.

In Section 3.5 we construct the algebraic tangent category of an algebraic operad

harnessing the fact that the associated monad is a coCartesian differential monad

(Theorem 3.26). We dedicate Section 2.2.1 and 3.5.2 to classify vector fields and to

prove the functoriality of the operation which sends an operad to the corresponding

algebraic tangent category, respectively.

Section 3.6 presents the construction of the geometric tangent category asso-

ciated with an operad. We also classify the corresponding vector fields, in Sec-

tion 3.6.1, and discuss functoriality in Section 3.6.2.

In Chapter 4, we examine the relationship between some constructions of operad

theory and tangent category theory. We start, in Section 4.2, by reconsidering the

construction of the slice tangent category in terms of a right adjoint functor of the
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functor Term : cTngCat→ TngPair (Theorem 4.12).

This allows us to compare in Section 4.2.1 the tangent category of the enveloping

operad of a 𝒫-algebra 𝐴 with the slice tangent category over 𝐴 of the geometric

tangent category of the operad 𝒫. In particular, we show they are equivalent

(Theorem 4.17).

In Section 4.3, we harness this equivalence to classify differential bundles. First,

in Section 4.3.1, we classify differential objects in the geometric tangent category

of a given operad and then, in Section 4.3.2, we show that differential bundles are

equivalent to modules over operadic algebras.

In Chapter 5, we explore some connections between operad theory, tangent

category theory, and algebraic deformation theory. In Section 5.1, we recall the

main ideas and definitions of algebraic deformation theory and in Section 5.2 we

link infinitesimal deformations of operadic algebras with vector fields of a new

tangent category: the tangent category of operads (Theorem 5.22).

In Section 5.2.1, we show that the category of tangent monads over a given

tangent category also constitutes a tangent category (Theorem 5.30) and we show

the relationship between the tangent category of operads and the one of tangent

monads (Theorem 5.33). We also show in Section 5.2.2 that the tangent category of

operads is corepresentable (Theorem 5.38) and consequently that the opposite of

the category of operads is also a tangent category (Corollary 5.39).

Finally, in Section 5.3 we discuss two different approaches to classify all infin-

itesimal deformations of an operadic algebra.

Finally, Chapter 6 is dedicated to the conclusions. First, in Section 6.1 we briefly

recall the story of this thesis highlighting the main results. Second, in Section 6.2

we discuss a few directions for future work on this subject.

1.2 Contribution statement

Part of the work of this thesis has been written up as papers which are currently in

the process of publication:
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• The Rosický Tangent Categories of Algebras over an Operad, in collaboration with

Sacha Ikonicoff and Jean-Simon Lemay ([29]).

Chapter 3 contains most of the work done in this paper. This paper was the

natural confluence of three different and independent research projects of the

three authors.

In particular, Ikonicoff proved that every operad is associated with a coCartesian

differential monad and consequently, the opposite of the Kleisli category of

the operad is a Cartesian differential category. The author of this thesis, in-

dependently showed that the monad associated with an operad is a tangent

monad and consequently, he showed that the category of algebras of an op-

erad and its opposite carry each a tangent structure, the one adjoint to the

other.

Finally, Lemay investigated the relationship between coCartesian differential

monads and tangent monads, providing a natural language to compare the

approaches explored by Ikonicoff and the author. The paper [29] is the natural

result of these three efforts. Functoriality was not explored in much detail

in the paper [29] and only in the paper [41] it was properly addressed. The

classification of differential objects presented in the first paper and inspired

by the work of Cruttwell and Lemay in [18], was proved in the operadic case

by the author.

• The differential bundles of the geometric tangent category of an operad ([41]).

Chapter 4 presents the work done in this paper, with the exception of Sec-

tion 4.3.1 which is still part of the first paper.

• The Grothendieck construction in the context of tangent categories ([42]).

The notion of tangent objects presented in Section 2.3 was first presented in

this paper.

In addition, the research done for Section 2.2.3, dedicated to tangent display maps,

is a joint effort between Geoffrey Cruttwell and the author and it will appear in a

future paper.

In Section 2.3, Definition 2.52 was proposed by Rory Lucyshyn-Wright during
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an informal discussion with the author. As reported in Remark 2.53, Lucyshyn-

Wright correctly pointed out that the limits in the definition of a tangent object

must be pointwise for this definition to agree with the usual definition of a tangent

category when the base 2-category is the 2-category Cat of categories.

1.3 Notation and naming conventions

A generic category is denoted by X; we adopt the font Cat to denote a specific

category, e.g. the category of categories. Identity morphisms are denoted by

id𝐴 : 𝐴 → 𝐴, for an object 𝐴, or simply by id, when the object is clear from the

context. To denote the composition of two composable morphisms 𝑓 : 𝐴→ 𝐵 and

𝑔 : 𝐵→ 𝐶 we adopt both the following conventions:

• diagrammatic composition, simply denoted by juxtaposition, i.e. 𝑓 𝑔 : 𝐴
𝑓
−→ 𝐵

𝑔
−→

𝐶;

• functional composition, denoted by the usual 𝑔 ◦ 𝑓 := 𝑓 𝑔.

We adopt diagrammatic composition when we interpret two composable morph-

isms as abstract morphisms of an ambient category, while we adopt functional

composition when we interpret two composable morphisms as functors between

two categories, or as pointwise-defined functions between concrete objects.

To show the commutativity of a given diagram we often decompose the diagram

into smaller ones, each commutative. For instance, consider the following diagram:

• • •

• • •

• • •

𝑓 𝑔

𝛾

𝛾′

𝛼

𝛼′

𝑓 ′′ 𝑔′′

𝑓 ′ 𝑔′

𝛽

𝛽′

Nat (𝑔,𝑔′;𝛽,𝛾)

(1.2)

In the left top square, we used naturality; in the right top square we used the

compatibility between the morphisms 𝑔 and 𝑔′ with 𝛽 and 𝛾; in the bottom left
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square we employed Equation (1.2); finally, in the bottom right square, we used

that 𝑔′𝛾′ = 𝛽′ℎ′ on the nose.

For a pullback diagram:

𝐴 ×𝐶 𝐵 𝐵

𝐴 𝐶

⌟
𝑔

𝑓

we denote the projections by 𝜋1 : 𝐴×𝐶 𝐵→ 𝐴 and by 𝜋2 : 𝐴×𝐶 𝐵→ 𝐵 and when the

diagram is an 𝑛-fold pullback then the 𝑘-th projection is denoted by 𝜋𝑘 . Given two

morphisms 𝛼 : 𝐷 → 𝐴 and 𝛽 : 𝐷 → 𝐵 such that 𝛼 𝑓 = 𝛽𝑔, the unique morphism

𝐷 → 𝐴 ×𝐶 𝐵 defined by the universality of the pullback is denoted by ⟨𝛼, 𝛽⟩. For a

pushout diagram:

𝐶 𝐵

𝐴 𝐴 +𝐶 𝐵

𝑔

𝑓

⌟

the injections 𝐴 → 𝐴 +𝐶 𝐵 and 𝐵 → 𝐴 +𝐶 𝐵 are respectively denoted by 𝜄1 and 𝜄2

and for 𝑛-fold pushouts the 𝑘-th injection is denoted by 𝜄𝑘 . Given two morphisms

𝛼 : 𝐴→ 𝐷 and 𝛽 : 𝐵→ 𝐷 such that 𝑓 𝛼 = 𝑔𝛽, the unique morphism induced by the

universality of the pushout is denoted by [𝛼, 𝛽].
Given two pullback diagrams:

𝐴 ×𝐶 𝐵 𝐵

𝐴 𝐶

⌟
𝑔

𝑓

𝐴′ ×𝐶′ 𝐵′ 𝐵′

𝐴′ 𝐶′

⌟

𝑔′

𝑓 ′

and two morphisms 𝛼 : 𝐴→ 𝐴′ and 𝛽 : 𝐵→ 𝐵′ such that 𝜋1𝛼 𝑓 ′ = 𝜋2𝛽𝑔′, we denote

the unique morphism ⟨𝜋1𝛼,𝜋2𝛽⟩ simply by 𝛼×𝛽. Similarly, for pushouts, we denote

the unique morphism [𝛼𝜄1, 𝛽𝜄2] : 𝐴 +𝐶 𝐵 → 𝐴 +𝐶′ 𝐵′ (whenever well-defined) by

𝛼 + 𝛽.
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Figure 1.1: Concept map of Chapters 2, 3, and 4

1.4 Style of the thesis

For a smoother narration, we decided not to separate the background from the

new contents presented in this thesis. In particular, we adopted the convention

to dedicate background sections only to the concepts, like for tangent categories

and operads, which appear at least twice in the thesis and introduce the rest of the

known definitions and results only where required. Consequently, every chapter

is a mix of known and new results. To avoid confusion and to stress the difference

we decorate with an asterisk
∗

any definition or result that is already present in

the literature not including those by the author. In the text preceding each such

definition or result, we also report the reference to the original source. On the other

hand, the new definitions and results are not decorated with the asterisk.

1.5 Concept map of the thesis

The diagram in Figure 1.1 represents the structure of Chapters 2, 3, and 4:

from operads to cCDMs Theorem 3.26: the monad associated with an algebraic
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operad is a coCartesian differential monad;

from cCDMs to tangent monads Propositions 3.25 and 3.24: coCartesian differ-

ential monads are tangent monads over a tangent category induced by bi-

products;

from operads to tangent monads Corollary 3.27: the monad associated with an

algebraic operad is a tangent monad;

from tangent monads to tangent categories Theorem 2.73 and Proposition 3.40

(cf. [15]): the category of algebras of a tangent monad has a canonical tangent

structure and the resulting tangent category is precisely the construction of

algebras of a tangent monad.

Definition 3.28: algebraic tangent category of an operad;

cCDMs to tangent categories Corollary 3.54: the opposite of the category of al-

gebras of a coCartesian differential monad is a tangent category (provided

the existence of reflexive coequalizers).

Definition 3.56 and Theorem 3.68: geometric tangent category of an operad;

from cCDMs to CDCs Proposition 3.23 (cf. [30]): the coKleisli category of a coCartesian

differential monad is a Cartesian differential category.

Theorem 4.20; the free algebras of an algebraic operad are differential objects

in the geometric tangent category of the operad;

from CDCs to tangent categories Proposition [12, Proposition 4.7]: every Cartesian

differential category is a Cartesian tangent category;

from tangent categories to CDCs via diff. objects [12, Theorem 4.11]: the category

of differential objects of a Cartesian tangent category is a Cartesian differential

category.

Corollary 4.31: the differential objects in the geometric tangent category of an

operad 𝒫 are equivalent to left modules over 𝒫(1);

from diff. objects to diff. bundles [11, Proposition 5.12]: differential objects are

differential bundles over the terminal object;
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from diff. bundles to diff. objects via the slice tangent category [11, Proposition 5.12]:

differential bundles are differential objects in the slice tangent category.

Theorem 4.17: the slice tangent category over a 𝒫-affine scheme 𝐴 in the

geometric tangent category of an operad 𝒫 is equivalent to the geometric

tangent category of the enveloping operad of (𝒫;𝐴);

from tangent categories to CDCs via diff. bundles Consequence of Theorem [11,

Theorem 5.14]: the category of differential bundles of a Cartesian tangent

category is a Cartesian differential category.

Theorem 4.35; differential bundles over a 𝒫-affine scheme 𝐴 in the geometric

tangent category of an operad 𝒫 are equivalent to modules over 𝐴 in the

operadic sense;

from tangent categories to vector fields Definition 2.15 (cf. [12]): vector fields are

sections of the projection;

from cCDMs to derivations Definition 3.33 (cf. [30]): for an algebra of a coCartesian

differential monad there is a well-defined notion of a derivation.

Lemma 3.34: derivations in the operadic sense are precisely derivations w.r.t.

the associated coCartesian differential monad;

from operads to derivations Definition 5.12 (cf. [46]): for an algebra of an algeb-

raic operad there is a well-defined notion of derivation.

Theorems 3.36 and 3.74: vector fields over a 𝒫-affine scheme in the algebraic

and the geometric tangent categories of an operad are equivalent to deriva-

tions over 𝐴.

The diagram in Figure 1.2 represents the structure of Chapter 5:

from operads to tangent monads Theorem 5.33: the functor which sends an al-

gebraic operad to the corresponding tangent monad extends to a strong tan-

gent morphism between the tangent category of operads (Theorem 5.22) and

the tangent category of tangent monads over the base tangent category of

𝑅-modules (Theorem 5.30);

operadop
Theorem 5.38: the opposite of the category of algebraic operads is a

representable tangent category;
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Figure 1.2: Concept map of Chapter 5

relationship between vector fields and derivations Theorem 5.50: vector fields

over an operad in the tangent categories of operads and its opposite are

equivalent to derivations over the operad;

from derivations to deformations Example 5.11: derivations of an operad gener-

ate (only trivial, see Section 5.3) infinitesimal deformations of the correspond-

ing algebras;

classification infinitesimal deformations Theorems 5.58 and 5.60: for every 𝒫-

algebra 𝐴, there is a differential bundle 𝑞 : 𝐴→ L𝐴 in the geometric tangent

category of the operad 𝒫 whose sections classify all infinitesimal deforma-

tions of𝐴. Moreover, there is a tangent comonadΛ over the geometric tangent

category of 𝒫 whose counit classifies all infinitesimal deformations of each

𝐴.



Chapter 2

Towards a universal language of differentiation in geometry

Tangent category theory aims to axiomatize the fundamental structures of differ-

ential geometry, such as the tangent bundle functor, in a categorical approach. One

of the main goals of this thesis is to explore what other models of geometry can be

described employing tangent category theory, with particular interests in applic-

ations to non-commutative geometry. This chapter is dedicated to reviewing the

main definitions and results of the theory which play a role in our story. We also

introduce two new concepts: tangent display maps, which will be employed in the

construction of the slice tangent category, and tangent objects, which will be used

to prove that every tangent monad admits the construction of algebras.

Section 2.1 is dedicated to motivating and reviewing the definition and the ax-

ioms of a tangent category. In the second section (Section 2.2), we review some

constructions of tangent category theory. First (Section 2.2.1), we introduce vector

fields and we discuss the definition of the Lie bracket between vector fields; then,

in Section 2.2.2, we review the notion of differential object. Section 2.2.3 is ded-

icated to introducing the new notion of tangent display map and in Section 2.2.4

we employ it to discuss the construction of the slice tangent category. We then

recall (Section 2.2.5) the notion of differential bundle and we show (Section 2.2.6)

under which conditions the opposite of a tangent category is still a tangent cat-

egory. Section 2.3 is dedicated to introducing the concept of tangent object, which

formalizes the notion of tangent category in a generic strict 2-category. There-

fore, in Section 5.2.1 we first review the concept of tangent monad and then we

employ the notion of tangent object to prove that tangent monads over a given

tangent category admit the construction of algebras, which defines the same tan-

gent category as the one discussed by Cockett, Lemay, and Lucyshyn-Wright in [15].

Figure 2.1 displays the concept map of this chapter.

16
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Figure 2.1: The concept map of the chapter

2.1 An introduction to tangent category theory

One of the most crucial insights of differential geometry is the idea of replicating

mathematically the geometric experience we have of our planet: even if the global

geometry of planet Earth is approximately that of a sphere, our daily experience

suggests that we can locally approximate it by a plane. Mathematically, this in-

tuition can be formalized by associating to each point of a given space 𝑀, e.g. a

sphere, a linear space T𝑥𝑀, known as the tangent space of 𝑀 at 𝑥, which, within

a local chart, is approximately equal to the original space 𝑀. The collection of all

these linear spaces T𝑥𝑀, parametrized by the points 𝑥 of𝑀, forms a new geometric

space T𝑀 known as the tangent bundle of 𝑀, which locally can be described via a

pair of coordinates (𝑥, 𝑣) formed by a point 𝑥 of the original space 𝑀 with a tangent

vector 𝑣 belonging to the tangent space T𝑥𝑀 of 𝑀 at 𝑥.

The tangent bundle of a space is the main protagonist in tangent category theory:

the idea is to give a geometric description of an abstract object, assuming that such

an object has an associated tangent bundle. But what is a tangent bundle of an

abstract object? From differential geometry, one knows that the tangent bundle of

a geometric space is, first of all, a vector bundle. Informally, a vector bundle 𝐸 is a
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collection of disjoint but isomorphic linear spaces 𝐸𝑥 , known as the fibres, indexed

by the points 𝑥 of another geometric space 𝑀, called the base space.

Mathematically, this can be modelled by a surjection 𝑞 : 𝐸 → 𝑀, called the

projection, which “forgets” about the fibres, together with an injection 𝑧𝑞 : 𝑀 → 𝐸,

called the zero-morphism which associates to each point of the base space 𝑀,

the zero vector in the linear space 𝐸𝑥 = 𝑞−1(𝑥), and with a collection of binary

operations (𝑠𝑞)𝑥 : 𝐸𝑥 × 𝐸𝑥 → 𝐸𝑥 on each fibre, which allows one to sum vectors of

the same fibre. Instead of considering collections of binary operations, one can

consider the vector bundle 𝐸2 whose fibre (𝐸2)𝑥 is the product 𝐸𝑥 × 𝐸𝑥 and then

introduce a function 𝑠𝑞 : 𝐸2→ 𝐸. Categorically, 𝐸2 is the pullback of the projection

with itself:

𝐸2 𝐸

𝐸 𝑀

𝑞

𝑞

𝜋1

𝜋2

⌟

One also notices that the sum 𝑠𝑞 is commutative, associative, and unital with

the unit given by 𝑞𝑧𝑞 . So far, we described the algebraic structures of a vector

bundle. So, the tangent bundle must be equipped with a projection 𝑝 : T𝑀 → 𝑀,

a zero-morphism 𝑧 : 𝑀 → T𝑀, and a sum morphism 𝑠 : T2𝑀 → T𝑀, where T2𝑀

denotes the pullback of 𝑝 along itself. However, in order to give a fully geometric

interpretation of an abstract object 𝑀, one also needs T𝑀 to be locally trivial. This

means that the tangent bundle must be locally isomorphic to a product of a local

chart of the original space and of a linear space.

Surprisingly, this property can be axiomatized with the introduction of the

vertical lift, that is a map 𝑙 : T𝑀 → T2𝑀 whose codomain is the tangent bundle of

the tangent bundle of 𝑀, i.e. T2𝑀 := T(T𝑀). To understand the role of the vertical

lift, consider first the vertical bundle, which is the vector bundle 𝑉𝑀 → 𝑀 whose

fibres are the kernels of the differential of the projection. Categorically, 𝑉𝑀 is the
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(a) Representation of a double tangent

vector

(b) Representation of (𝑥, 0, 0, 𝑣) ∈ T2𝑀

Figure 2.2: Heuristic representations of the elements of T2𝑀.

pullback of T𝑝 along the zero morphism:

𝑉𝑀 T2𝑀

𝑀 T𝑀

T𝑝

𝑧

𝑝∗

𝜉

⌟

where, for a map 𝑓 : 𝑀 → 𝑁 of geometric spaces, locally T 𝑓 : T𝑀 → T𝑁 sends a

pair (𝑥, 𝑣) formed by a point 𝑥 of 𝑀 and a tangent vector 𝑣 ∈ T𝑥𝑀 to ( 𝑓 (𝑥), d 𝑓𝑥(𝑣)),
where d 𝑓𝑥 is the differential of 𝑓 at 𝑥. With this definition, one can immediately see

that 𝑉𝑀 is a subbundle of T2𝑀, via the inclusion 𝜉 : 𝑉𝑀 → T2𝑀.

Thanks to the local triviality of the tangent bundle, one can locally represent

a point of T𝑀 as a pair (𝑥, 𝑣) formed by a point 𝑥 ∈ 𝑀 and by a tangent vector

𝑣 ∈ T𝑥𝑀. Similarly, the double tangent bundle T2𝑀 can be locally represented by a

tuple (𝑥, 𝑢, 𝑣, 𝜔) formed by a point 𝑥 ∈ 𝑀, two tangent vectors 𝑢, 𝑣 ∈ T𝑥𝑀, and

a double tangent vector 𝜔, which is a tangent vector of the space T𝑀 at (𝑥, 𝑢).
Informally, a tangent vector can be regarded as an infinitesimal path. Similarly,

a double tangent vector can be regarded as an infinitesimal homotopy between

infinitesimal paths. In Figure 2.2a we represented this intuition.

Thanks to the local triviality of T𝑀 and T2𝑀 we can then introduce a function

𝑙 : T𝑀 → T2𝑀 which sends (𝑥, 𝑣) to (𝑥, 0, 0, 𝑣). Pictorially, the element (𝑥, 0, 0, 𝑣)
can be represented as in Figure 2.2b. We can also define the map 𝜉 : T2𝑀 → T2𝑀,

which sends a triple (𝑥; 𝑢, 𝑣) formed by a point 𝑥 ∈ 𝑀 and two tangent vectors
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𝑢, 𝑣 ∈ T𝑥𝑀 to (𝑥, 𝑢, 0, 𝑣). Notice that:

𝜉 = (𝑧T × 𝑙)T𝑠

It is straightforward to prove that, by definition, 𝜉T𝑝 = 𝜉𝑝T𝑝𝑧, which implies

that the image of 𝜉 is a subbundle of the vertical bundle. Categorically, from the

universality of the pullback, we define a unique dashed morphism:

T2𝑀 T2𝑀

𝑉𝑀 T2𝑀

T𝑀 𝑀 T𝑀

T𝑝

𝑧

𝑝∗

𝜉

⌟

𝜋1

𝑝

𝜉

However, thanks to the local representation of T2𝑀 we conclude that if (𝑥, 𝑢, 𝑣, 𝜔)
belongs in the image of 𝜉, i.e. is a point of the vertical bundle, then 𝑣 = 0, since

T𝑝(𝑥, 𝑢, 𝑣, 𝜔) = (𝑥, 𝑣). This implies that the unique morphism T2𝑀 → 𝑉𝑀 is

an isomorphism. This is precisely the universality axiom formulated by Cockett

and Cruttwell to axiomatize the local triviality of the tangent bundle in a tangent

category.

In Figure 2.2a we schematically represented the idea of a double tangent vector,

that is a point in T2𝑀, as an infinitesimal homotopy between infinitesimal paths.

In this pictorial interpretation, a tangent vector 𝑢 is an infinitesimal path which

“moves” a point 𝑥 of 𝑀 of an infinitesimal distance in the direction and orientation

of the arrow 𝑢. In the picture, we represented the endpoint of this infinitesimal

path as 𝑥+d𝑢𝑥, where d𝑢𝑥 represents an infinitesimal quantity in the direction and

orientation of the arrow 𝑢. Similarly, the vector 𝑣 can be regarded as an infinitesimal

path from 𝑥 to 𝑥 + d𝑣𝑥. So, an infinitesimal homotopy 𝜔 can be regarded as

an infinitesimal path of infinitesimal paths. Notice that since the homotopy is

infinitesimal, it can be regarded as an infinitesimal parallelogram, that is the left

and right sides and the top and bottom sides must be parallel. Using the notation

introduced, one finds that the right bottom corner in the picture can be represented

in two different ways: 𝑥 + d𝑢𝑥 + d𝑣𝑥 + d𝑣d𝑢𝑥 and 𝑥 + d𝑣𝑥 + d𝑢𝑥 + d𝑢d𝑣𝑥. Since
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these are two representations of the same point one wants d𝑢d𝑣𝑥 = d𝑣d𝑢𝑥. This

heuristic explanation in differential geometry is equivalent to the symmetry of the

Hessian matrix, that is the commutativity of the partial derivatives 𝜕𝑖𝜕𝑗 𝑓 = 𝜕𝑗𝜕𝑖 𝑓 .

To axiomatize this symmetry one introduces an isomorphism 𝑐 : T2𝑀 → T2𝑀,

called the canonical flip. This is precisely the axiomatization of a tangent category

proposed by Cockett and Cruttwell in [12]. Let’s recall this concept formally. Let’s

start recalling the notion of additive bundle.

Definition★ 2.1. In a category X, an additive bundle consists of a morphism 𝑞 : 𝐸 → 𝑀

which, in the slice categoryX/𝑀 ofX over 𝑀 is a commutative monoid, with respect to the
Cartesian product ofX/𝑀, i.e pullbacks of 𝑞 along itself inX. More concretely, an additive
bundle is a morphism 𝑞 : 𝐸→ 𝑀 equipped with a section 𝑧 : 𝑀 → 𝐸, for which the 𝑛-fold
pullbacks 𝑞𝑛 : 𝐸𝑛 → 𝑀 of 𝑞 along itself exist, and together with a morphism 𝑠 : 𝐸2 → 𝐸

for which 𝑠𝑞 = 𝑞2 which satisfies associativity and unitality.

Definition★ 2.2. A tangent structure T over a category X consists of the following data:

1. An endofunctor T: X→ X, called the tangent bundle functor;

2. A natural transformation 𝑝 : T ⇒ idX, called the projection, for which the 𝑛-
fold pullbacks of 𝑝 along itself exist. Such pullbacks are denoted by T𝑛 and the
corresponding projections by 𝜋𝑘 : T𝑛 ⇒ T;

3. A natural transformation 𝑧 : idX⇒ T, called the zero morphism;

4. A natural transformation 𝑠 : T2⇒ T, called the sum morphism;

such that, for every object 𝑀 of X, the triple (𝑝 : T𝑀 → 𝑀, 𝑧 : 𝑀 → T𝑀, 𝑠 : T2𝑀 →
T𝑀) constitutes an additive bundle;

5. A natural transformation 𝑙 : T ⇒ T2, called the vertical lift, for which (𝑙 , 𝑧) is a
morphism of additive bundles;

where, given two additive bundles (𝑞 : 𝐸→ 𝑀, 𝑧𝑞 : 𝑀 → 𝐸, 𝑠𝑞 : 𝐸2→ 𝐸) and (𝑞′ : 𝐸′→
𝑀′, 𝑧′𝑞 : 𝑀′ → 𝐸′, 𝑠′𝑞 : 𝐸′2 → 𝐸′), we call a pair ( 𝑓 : 𝐸 → 𝐸′, 𝑔 : 𝑀 → 𝑀′) a morphism
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of additive bundles if the following diagrams commute:

𝐸 𝐸′

𝑀 𝑀′

𝑞 𝑞′

𝑔

𝑓
𝐸 𝐸′

𝑀 𝑀′

𝑧𝑞 𝑧′𝑞

𝑔

𝑓
𝐸2 𝐸′2

𝐸 𝐸′

𝑠𝑞 𝑠′𝑞

𝑓

𝑓×𝑀 𝑓

6. A natural transformation 𝑐 : T2 ⇒ T2, called the canonical flip, for which (𝑐, idT)
is a morphism of additive bundles.

Moreover, we have the following compatibilities:

T2𝑀 T2𝑀

T2𝑀

𝑐

𝑐

T𝑀 T2𝑀

T2𝑀

𝑙

𝑐
𝑙

T2𝑀 T2𝑀

T3𝑀 T3𝑀 T3𝑀

𝑐

𝑙T

T𝑐 𝑐T

T𝑙

T𝑀 T2𝑀

T2𝑀 T3𝑀

𝑙

𝑙

T𝑙

𝑙T

T3𝑀 T3𝑀 T3𝑀

T3𝑀 T3𝑀 T3𝑀
T𝑐 𝑐T

T𝑐 𝑐T

T𝑐𝑐T

Finally, the vertical lift is universal, that is the following diagram:

T2𝑀 T2𝑀

𝑀 T𝑀

𝜉

𝜋1𝑝

𝑧

T𝑝

is a pullback diagram, where:

𝜉 := (𝑙 ×𝑀 𝑧T)T𝑠 : T2⇒ T2

A category X with a tangent structure T forms a tangent category. A tangent category
has negatives if there is also an extra:
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7. A natural transformation 𝑛 : T ⇒ T, called the negation, for which the following
diagram commutes:

T𝑀 T2𝑀

T𝑀

⟨𝑝𝑧,𝑛⟩

𝑠

Remark 2.3. The original definition of a tangent category due to Rosický was

equivalent to a tangent category with negatives, in the sense we consider here.

Notation 2.4. A generic tangent category is denoted by (X,T) where X represents

the underlying category and T is the tangent structure. In particular, the tangent

bundle functor is denoted by the same letter as the one used for the tangent structure

but in a different font, i.e. if T denotes the tangent structure then T denotes the

associated tangent bundle functor; the projection, the zero morphism, the sum

morphism, the vertical lift, and the canonical flip are denoted respectively by the

letters 𝑝, 𝑧, 𝑠, 𝑙, and 𝑐.

When the tangent structure has negatives, the negation is denoted by 𝑛. Moreover,

we adopt the following convention: when the symbol used to indicate the tangent

structure is decorated with a superscript or a subscript, the same superscript or sub-

script is applied to the tangent bundle functor, the projection, the zero morphism,

the sum morphism, the vertical lift, and the canonical flip. The same convention

extends to the negation if the tangent structure has negatives.

Sometimes, for the sake of clarity, we add the superscript
(T)

to the natural

transformations 𝑝, 𝑧, 𝑠, 𝑙, 𝑐 and 𝑛 to stress the fact that these are part of the tangent

structure T, where T denotes the tangent bundle functor.

In the original definition of [12], the map 𝜉 : T2𝑀 → T2𝑀, defined by 𝜉 : =
(𝑧T× 𝑙)T𝑠, was denoted by the letter 𝑣. Since 𝑣 is already adopted in other contexts

in this thesis, for the sake of clarity, we decided to employ the Greek letter 𝜉, instead.

Morphisms of tangent categories come in different flavours and, for the purpose

of our discussion, we need to distinguish them.

Definition★ 2.5. Given two tangent categories (X,T) and (X′,T′), a lax tangent morph-
ism (𝐹, 𝛼) : (X,T) → (X′,T′) consists of a functor 𝐹 : X → X′ together with a natural
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transformation 𝛼 : 𝐹 ◦ T ⇒ T′ ◦ 𝐹, called the lax distributive law of the morphism,
compatible with the two tangent structures as follows:

𝐹 ◦ T T′ ◦ 𝐹

𝐹 𝐹

𝛼

𝐹𝑝 𝑝′𝐹

𝐹 ◦ T T′ ◦ 𝐹

𝐹 𝐹

𝛼

𝐹𝑧 𝑧′𝐹

𝐹 ◦ T2 T′2 ◦ 𝐹

𝐹 ◦ T T′ ◦ 𝐹

⟨𝐹𝜋1𝛼,𝐹𝜋2𝛼⟩

𝐹𝑠 𝑠′𝐹

𝛼

𝐹 ◦ T T′ ◦ 𝐹

𝐹 ◦ T2 T′ ◦ 𝐹 ◦ T T′2 ◦ 𝐹

𝛼

𝐹𝑙 𝑙′𝐹

𝛼T T′𝛼

𝐹 ◦ T2 T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹

𝐹 ◦ T2 T′ ◦ 𝐹 ◦ T T′2 ◦ 𝐹

𝛼T

𝐹𝑐

T′𝛼

𝑐′𝐹

𝛼T T′𝛼

Similarly, a colax tangent morphism (𝐺, 𝛽) : (X,T) ↛ (X′,T′) consists of a functor
𝐺 : X→ X′ and a natural transformation 𝛽 : T′◦𝐺⇒ 𝐺◦T, called the colax distributive
law of the morphism, which is compatible with the tangent structures precisely as for a lax
tangent morphism morphism but with the direction of the distributive law reversed.

A strong tangent morphism is lax tangent morphism whose distributive law is in-
vertible. Finally, a strong tangent morphism is strict if the distributive law is the identity
morphism.

Notation 2.6. When (𝐹, 𝛼) is a strong tangent morphism, (𝐹, 𝛼−1) is a colax tan-

gent morphism, so in the future, we call both (𝐹, 𝛼) and (𝐹, 𝛼−1) strong tangent

morphisms. Since, by definition, the distributive law of a strict tangent morphism

is trivial, we refer to a functor as a strict tangent morphism, omitting explicitly the

distributive law.

To stress the difference between lax and colax tangent morphisms, we denote the

former one by (𝐹, 𝛼) : (X,T) → (X′,T′) and the latter by (𝐺, 𝛽) : (X,T) ↛ (X′,T′).
We interchangeably adopt the two notations for strong and strict tangent morph-

isms according to the context.
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Definition★ 2.7. Given two lax tangent morphisms (𝐹, 𝛼), (𝐹′, 𝛼′) : (X,T) → (X′,T′), a
lax tangent natural transformation 𝜑 : (𝐹, 𝛼) ⇒ (𝐹′, 𝛼′) consists of a natural trans-
formation 𝜑 : 𝐹⇒ 𝐹′ satisfying the following compatibility condition:

𝐹T𝐴 T′𝐹𝐴

𝐹′T𝐴 T′𝐹′𝐴

𝛼

𝜑T T′𝜑

𝛼′

Similarly, given two colax tangent morphisms (𝐺, 𝛽), (𝐺′, 𝛽′) : (X,T)↛ (X′,T′), a colax
tangent natural transformation 𝜓 : (𝐺, 𝛽) ⇒ (𝐺′, 𝛽′) consists of a natural transforma-
tion 𝜓 : 𝐺⇒ 𝐺′ satisfying the dual of the compatibility condition of a lax tangent natural
transformation, i.e.:

T′𝐺𝐴 𝐺T𝐴

T′𝐺′𝐴 𝐺′T𝐴

𝛽

T′𝜓 𝜓T

𝛽′

Finally, a double tangent cell:

(X◦,T◦) (X•,T•)

(X′◦,T′◦) (X′•,T′•)

(𝐹,𝛼)

(𝐺◦ ,𝛽◦) ❘ (𝐺• ,𝛽•)❘

(𝐹′,𝛼′)

𝜃

where the horizontal morphisms are lax tangent morphisms while the vertical ones are
colax tangent morphisms, is a natural transformation 𝜃 : 𝐹′ ◦ 𝐺◦⇒ 𝐺• ◦ 𝐹 satisfying the
following compatibility condition:

𝐹′T′◦𝐺◦𝐴 T′•𝐹′𝐺◦𝐴 T′•𝐺•𝐹𝐴

𝐹′𝐺◦T◦𝐴 𝐺•𝐹T◦𝐴 𝐺•T•𝐹𝐴
𝜃T◦ 𝐺•𝛼

𝛽•𝐹𝐹′𝛽◦

𝛼′𝐺◦ T′•𝜃
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Notation 2.8. We denote by TngCat the 2-category of tangent categories, whose

1-morphisms are lax tangent morphisms, and 2-morphisms are lax tangent nat-

ural transformations. Similarly, the 2-category of tangent categories, whose 1-

morphisms are colax tangent morphisms, and 2-morphisms are colax tangent nat-

ural transformations is denoted by TngCatco. The 2-subcategory of TngCat whose

1-morphisms are strong is denoted by TngCat≅, and the 2-subcategory of TngCat
whose 1-morphisms are strict is denoted by TngCat=. Finally, we abuse notation

and we also denote by TngCat, TngCatco, TngCat≅, and TngCat= the corresponding

underlying 1-categories.

Example 2.9. Every category X comes equipped with a trivial tangent structure

whose tangent bundle functor, projection, zero, sum, vertical lift, and canonical flip

are all identities.

Example 2.10. The archetypical example of a tangent category is the category of

finite-dimensional smooth manifolds. The tangent bundle functor is the functor

which sends a smooth manifold 𝑀 to its tangent bundle T𝑀, in the classical sense,

and a smooth function 𝑓 : 𝑀 → 𝑁 to the function T 𝑓 : T𝑀 → T𝑁 which in local

coordinates sends a pair (𝑥, 𝑣) formed by a point 𝑥 of 𝑀 and a tangent vector 𝑣

over 𝑥 of 𝑀 to ( 𝑓 (𝑥), d𝑥 𝑓 (𝑣)), where d𝑥 𝑓 is the differential of 𝑓 at 𝑥. The projection,

the zero morphism, the sum morphism, the vertical lift, and the canonical flip

are precisely the homonymous smooth maps of the category of smooth manifolds

(cf. [12, Section 6] for a construction of this tangent structure employing manifold

completion).

Example 2.11. Recall that a category with biproducts, or sometimes called a semi-
additive category, is a category with finite products, denoted by ×, finite cop-

roducts, denoted by +, and for which the unique morphisms 𝑋1 + . . . + 𝑋𝑛 →
𝑋1 × · · · × 𝑋𝑛 , induced by universality, are isomorphisms, for every non-negative

integer 𝑛. Semi-additive categories are enriched over the monoidal category of

commutative monoids. To see this, let X be a category with biproducts and let

𝑓 , 𝑔 : 𝑋 → 𝑌 be two morphisms. Let’s define 𝑓 + 𝑔 : 𝑋 → 𝑌 as follows:

𝑓 + 𝑔 : 𝑋 Δ−→ 𝑋 × 𝑋
𝑓×𝑔
−−−→ 𝑌 × 𝑌 ≅ 𝑌 + 𝑌 +−→ 𝑌
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where Δ : = ⟨id, id⟩ and + : = [id, id] are the unique morphisms induced by the

universality of the binary product and the binary coproduct, respectively. Finally,

define 0: 𝑋 → 𝑌 to be the morphism:

0: 𝑋 !−→ 1 ≅ 0 !−→ 𝑌

where 1 denotes the terminal object and 0 the initial object of X. Since products

and coproducts are isomorphic, we usually use the word biproducts for both and

the notation ⊕.

Every category X with biproducts has a canonical tangent structure, denoted

by

T

, defined as follows:

tangent bundle functor The tangent bundle functor

T: X → X is the diagonal

functor, that is the functor which sends an object 𝑋 to 𝑋 ⊕𝑋 and a morphism

𝑓 : 𝑋 → 𝑌 to 𝑓 ⊕ 𝑓 : 𝑋 ⊕ 𝑋 → 𝑌 ⊕ 𝑌;

projection The projection 𝑝(

T) : T⇒ idX is the projection along the first component:

𝑝 := 𝜋1 = [id𝑋 , !] : 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 1 ≅ 𝑋

zero morphism The zero morphism 𝑧(

T) : idX ⇒

T

is the inclusion in the first

component:

𝑧(

T) := 𝜄1 = ⟨id𝑋 , !⟩ : 𝑋 → 𝑋 ⊕ 𝑋

𝑛-fold pullback The 𝑛-fold pullback

T

𝑛 : X→ X sends an object 𝑋 to 𝑋 ⊕ · · · ⊕ 𝑋⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑛+1 times

and a morphism 𝑓 : 𝑋 → 𝑌 to 𝑓 ⊕ · · · ⊕ 𝑓⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑛+1 times

. The projections 𝜋(

T)
𝑘

: T

𝑛 ⇒

T

send

the first component to the first, and the 𝑘 + 1-th one to the second one:

𝜋(

T)
𝑘

= ⟨𝜋1𝜄1,𝜋𝑘+1𝜄2⟩ : 𝑋 ⊕ · · · ⊕ 𝑋 → 𝑋 ⊕ 𝑋

sum morphism The sum morphism 𝑠(

T) : T

2⇒

T

sends the first component to the

first component and sums the second and the third one together and sends

them to the second component:

𝑠(

T) = id𝑋 ⊕ + : 𝑋 ⊕ 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 𝑋
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vertical lift The vertical lift 𝑙(

T) : T⇒ T2
sends the first component to the first and

the second one to the fourth one:

𝑙(

T) = ⟨𝜄1𝜋1, 𝜄2𝜋4⟩ : 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 𝑋 ⊕ 𝑋 ⊕ 𝑋

canonical flip The canonical flip 𝑐(

T) : T2 ⇒ T2
flips the order of the internal

components:

𝑐(

T) = id𝑋 ⊕ 𝜏 ⊕ id𝑋 : 𝑋 ⊕ 𝑋 ⊕ 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 𝑋 ⊕ 𝑋 ⊕ 𝑋

where 𝜏 = ⟨𝜄2𝜋1, 𝜄1𝜋2⟩ : 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 𝑋.

We want to point out that even though the category X might not have all pull-

backs, the existence of the 𝑛-fold pullbacks of the projection along itself and the

universality of the vertical lift are guaranteed by the existence of biproducts.

IfX is enriched over the monoidal category of Abelian groups, so it is sometimes

called additive, then we can also introduce negatives as follows:

negation The negation 𝑛(

T) : T⇒ T

sends the first component to the first one and

sends the second one to the second one with a negative sign:

𝑛(

T) = id𝑋 ⊕ − : 𝑋 ⊕ 𝑋 → 𝑋 ⊕ 𝑋

An example of a category with biproducts is the category of 𝑅-modules over a

commutative and unital ring 𝑅.

Remark 2.12. Given a category X with biproducts, also the opposite category

Xop
has biproducts. Therefore, from Example 2.11, we conclude that also Xop

has a tangent structure, denoted by T. In Section 2.2.6, we show that, under some

conditions, the opposite of a tangent category is also a tangent category. A category

with biproducts satisfies those conditions, therefore, the opposite of the category

X comes equipped with another tangent structure. By direct inspection, one can

see that these two tangent structures over Xop
are isomorphic.

Example 2.13. The category cRing of commutative and unital rings has a tangent

structure, denoted by

T

, so defined:
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tangent bundle functor The tangent bundle functor

T: cRing→ cRing sends a ring

𝑅 to the ring of dual numbers 𝑅⟨𝜀⟩ = 𝑅[𝑥]/(𝑥2), that is the ring obtained by

quotienting the ring 𝑅[𝑥] of polynomials in 1 variable and coefficients in 𝑅, by

the ideal generated by 𝑥2
. Moreover,

T

sends a morphism : 𝑅 → 𝑅′ of rings

to the morphism

T

𝑓 : 𝑅⟨𝜀⟩ → 𝑅′⟨𝜀⟩, which sends the generator 𝜀 to itself;

The elements of 𝑅⟨𝜀⟩ are terms of the form 𝑎 + 𝑏𝜀 with 𝑎, 𝑏 ∈ 𝑅 and 𝜀2 = 0. So,

T

𝑓 sends 𝑎 + 𝑏𝜀 to 𝑓 (𝑎) + 𝑓 (𝑏)𝜀. An equivalent description of 𝑅⟨𝜀⟩ is given by

the so-called semi-direct product. Consider the ring formed by pairs (𝑎, 𝑏) with

𝑎, 𝑏 ∈ 𝑅. The multiplication is defined as follows:

(𝑎, 𝑏)(𝑎′, 𝑏′) := (𝑎𝑎′, 𝑎𝑏′ + 𝑏𝑎′)

and the unit is (1, 0). This is a commutative and unital ring, denoted by 𝑅 ⋉ 𝑅,

isomorphic to 𝑅⟨𝜀⟩ via the morphism (𝑎, 𝑏) ↦→ 𝑎 + 𝑏𝜀.

projection The projection 𝑝(

T) : T⇒ idcRing is the map which sends the generator

𝜀 to 0:

𝑝 : 𝑅⟨𝜀⟩ → 𝑅

𝑝(

T)(𝑎 + 𝑏𝜀) := 𝑎

zero morphism The zero morphism 𝑧(

T) : idcRing ⇒

T

is the inclusion of 𝑅 into

𝑅⟨𝜀⟩:

𝑧(

T) : 𝑅→ 𝑅⟨𝜀⟩

𝑧(

T)(𝑎) := 𝑎 = 𝑎 + 0𝜀

𝑛-fold pullback The 𝑛-fold pullback

T

𝑛 : cRing→ cRing sends a ring𝑅 to𝑅⟨𝜀1, . . . , 𝜀𝑛⟩,
which is the ring obtained by quotienting 𝑅[𝑥1, . . . , 𝑥𝑛] by the ideals gener-

ated by all 𝑥𝑖𝑥 𝑗 , for 𝑖 , 𝑗 = 1, . . . , 𝑛. Moreover, it sends a morphism 𝑓 : 𝑅→ 𝑅′

to

T

𝑛 𝑓 which sends each generators 𝜀𝑘 to 𝜀𝑘 . The projections 𝜋(

T)
𝑘

: T

𝑛 ⇒

T

send 𝜀𝑖 to 0 for every 𝑖 ≠ 𝑘 and 𝜀𝑘 to 𝜀:

𝜋(

T)
𝑘

: 𝑅⟨𝜀1, . . . , 𝜀𝑛⟩ → 𝑅⟨𝜀⟩

𝜋(

T)
𝑘
(𝑎 + 𝑏1𝜀1 + . . . + 𝑏𝑛𝜀𝑛) := 𝑎 + 𝑏𝑘𝜀
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sum morphism The sum morphism 𝑠(

T) : T

2⇒

T

sends both 𝜀1 and 𝜀2 to 𝜀:

𝑠(

T) : 𝑅⟨𝜀1, 𝜀2⟩ → 𝑅⟨𝜀⟩

𝑠(

T)(𝑎 + 𝑏1𝜀 + 𝑏2𝜀2) := 𝑎 + (𝑏1 + 𝑏2)𝜀

vertical lift The vertical lift 𝑙(

T) : T⇒ T2
sends 𝜀 to 𝜀′𝜀:

𝑙(

T) : 𝑅⟨𝜀⟩ → 𝑅⟨𝜀⟩⟨𝜀′⟩

𝑙(

T)(𝑎 + 𝑏𝜀) := 𝑎 + 𝑏𝜀′𝜀

canonical flip The canonical flip 𝑐(

T) : T2⇒ T2
sends 𝜀 to 𝜀′ and 𝜀′ to 𝜀:

𝑐(

T) : 𝑅⟨𝜀⟩⟨𝜀′⟩ → 𝑅⟨𝜀⟩⟨𝜀′⟩

𝑐(

T)(𝑎 + 𝑏𝜀 + 𝑐𝜀′ + 𝑑𝜀′𝜀) := 𝑎 + 𝑐𝜀 + 𝑏𝜀′ + 𝑑𝜀′𝜀

Finally, since rings have also negatives, we can define the negation as follows:

negation The negation 𝑛(

T) : T⇒ T

sends 𝜀 to −𝜀:

𝑛(

T) : 𝑅⟨𝜀⟩ → 𝑅⟨𝜀⟩

𝑛(

T)(𝑎 + 𝑏𝜀) := 𝑎 − 𝑏𝜀

Example 2.14. Interestingly, also the opposite of the category of commutative and

unital rings cRingop
has a tangent structure that can be described as follows:

tangent bundle functor The tangent bundle functor T: cRingop → cRingop
sends

a ring 𝑅 to the ring 𝑅Z⟨𝜀⟩, which is an exponential object in the category

cRing and that corresponds to the symmetric algebra of the module of Kähler

differentials of 𝑅 (cf. [12, Section 5.4]). Moreover, it sends a morphism 𝑓 : 𝑅→
𝑆 of rings to 𝑓 Z⟨𝜀⟩ : 𝑅Z⟨𝜀⟩ → 𝑆Z⟨𝜀⟩;

projection The projection 𝑝(T) : idcRing ⇒ T is induced by the augmentation map

of Z⟨𝜀⟩, which sends 𝑎 + 𝑏𝜀 to 𝑎;

zero morphism The zero morphism 𝑧(T) : T ⇒ idcRing is induced by the inclusion

of Z into Z⟨𝜀⟩, i.e. Z ∋ 𝑎 ↦→ 𝑎 ∈ Z⟨𝜀⟩;
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𝑛-fold pullback The 𝑛-fold pushout (in cRing) T𝑛 : cRing → cRing sends a ring

𝑅 to 𝑅Z⟨𝜀1 ,...,𝜀𝑛⟩
. Moreover, T𝑛 sends a morphism 𝑓 : 𝑅 → 𝑆 of rings to

𝑓 Z⟨𝜀1 ,...,𝜀𝑛⟩ : 𝑅Z⟨𝜀1 ,...,𝜀𝑛⟩ → 𝑆Z⟨𝜀1 ,...,𝜀𝑛⟩
;

sum morphism The sum morphism 𝑠(T) : T⇒ T2 is induced by the sum morphism

Z⟨𝜀1, 𝜀2⟩ ∋ 𝜀1, 𝜀2 ↦→ 𝜀 ∈ Z⟨𝜀⟩;

vertical lift The vertical lift 𝑙(T) : T2⇒ T is induced by the vertical lift Z⟨𝜀⟩ ∋ 𝜀 ↦→
𝜀′𝜀 ∈ Z⟨𝜀⟩⟨𝜀′⟩;

canonical flip The canonical flip 𝑐(T) : T2 ⇒ T2
is induced by the flip Z⟨𝜀′⟩𝜀⟩ ∋

𝜀, 𝜀′ ↦→ 𝜀′, 𝜀 ∈ Z⟨𝜀⟩⟨𝜀′⟩.

Finally, since rings have also negatives, we can define the negation as follows:

negation The negation 𝑛(T) : T⇒ T is induced by the negation Z⟨𝜀⟩ ∋ 𝜀 ↦→ −𝜀 ∈
Z⟨𝜀⟩.

An equivalent characterization of this tangent structure will be given in Example 3.16.

At this point, one could notice that in the axioms of a tangent category two

important properties of the tangent bundle in the context of differential geometry

are missing. The first is the absence of any reference to the ring of real numbers.

The local approximation of a manifold with an open subset of R𝑛 is probably

one of the most memorable aspects of differential geometry. In particular, the

continuity of real numbers allows one to interpret tangent vectors as tiny paths.

Surprisingly, Cockett and Cruttwell in [14], suggested a way to reconstruct the

ring of real numbers within a tangent category. Their intuition was to define a

curve object in a tangent category as an object together with a fixed point and a

vector field representing an infinitesimal displacement to add to the fixed point

recursively. This shows that the axioms of a tangent category are sufficient to have

the geometric intuition of infinitesimal paths and to reconstruct a “ri(n)g of real

numbers”. At this point, it is important to mention that not every tangent category

admits a curve object.

The second missing characteristic in the axiomatization of tangent categories is

the idea that the tangent space at a point should approximate the geometric space
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within a local neighbourhood of the point. The notion of locality, surprisingly,

is not a natural notion in tangent category theory due to the lack of a topology.

In [12, Chapter 5], Cockett and Cruttwell proposed the notion of restriction tangent

category, aiming to axiomatize partial maps, that are functions whose domain is a

subset of a given set.

Finally, in differential geometry, the ring of real numbers plays another im-

portant role: it provides an action over the fibres of the tangent bundle, i.e. the

scalar multiplication, so that each fibre becomes a real vector space. Surprisingly,

when a differential curve object exists in a tangent category, such an object acts over

each fibre of the tangent bundle of any object (see [14, Section 5.4]). In particular,

the ring of real numbers is a differential curve object for the tangent category of

smooth manifolds. This shows that, even without an explicit reference to the ring

of real numbers, tangent category theory is capable of capturing geometric aspects

comparable to the ones studied by differential geometry.

According to the philosophy of tangent category theory, a tangent structure

is the context which establishes both a notion of linearity and what it means for

a space to be locally linear. Different tangent structures give different notions of

linearity and of local linear behaviour. For example, in the trivial tangent structure
described in Example 2.9 every object is linear. To put this in a slogan: linearity
and local linear behaviour are contextual notions and such a context is established by a
tangent structure. Crucially, for defining the notion of a curve object, encoding the

local triviality condition of the tangent bundle, and finally, establishing the notion

of linearity and local linear behaviour, the universality of the vertical lift is the key

ingredient (cf.‘[11] and [14]).

2.2 Tangent category concepts

So far, we introduced the main ideas that led to the axiomatization of a tangent

category. We also briefly discussed the main philosophy underpinning this theory,

encapsulated in the slogan which sees linearity and local linear behaviour of a

geometric space as contextual notions. To motivate this idea, we dedicate this

section to reviewing some key concepts of tangent category theory.
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2.2.1 Vector fields

Probably one of the most important concepts in differential geometry is the notion

of vector field. Informally, a vector field is a collection of vectors spread along the

entire space which vary smoothly. Mathematically, a vector field is a section of

the projection of the tangent bundle of a space. This definition has an immediate

generalization in the context of tangent category theory. Let’s recall this definition,

introduced in [53].

Definition★ 2.15. A vector field on an object𝑀 of a tangent category (X,T) is a morphism
𝑣 : 𝑀 → T𝑀, which is a section of the projection, that is 𝑣𝑝 = id𝑀 .

Crucially, the vector fields of a given space in differential geometry exhibit

an important algebraic structure: they form a Lie algebra. As initially shown by

Rosickỳ and subsequently revisited by Cockett and Cruttwell in [13], a tangent

category with negatives exhibits such a structure on the set of vector fields over a

fixed object. In particular, the Lie bracket of two vector fields 𝑢, 𝑣 : 𝑀 → T𝑀 is

defined as follows:

[𝑢, 𝑣] := {𝑢T𝑣 − 𝑣T𝑢𝑐}

where 𝑐 denotes the canonical flip, for two maps 𝑓 , 𝑔 : 𝑁 → T2𝑀, 𝑓 − 𝑔 denotes

⟨ 𝑓 , 𝑔𝑛T⟩𝑠T and where, for a morphism 𝑓 : 𝑁 → T2𝑀 for which 𝑓T𝑝 = 𝑓 𝑝T𝑝𝑧,

{ 𝑓 } : 𝑁 → T𝑀 is 𝑓̃𝜋2 where 𝑓̃ denotes the unique morphism defined by the

universality of the vertical lift:

𝑁 T2𝑀

T2𝑀 T2𝑀 T2𝑀

T𝑀 𝑀 T𝑀

T𝑝

𝑧

𝜋1𝑝

𝜉

⌟

𝑓

𝑓

𝑝T

𝑝

𝑓̃

2.2.2 Differential objects and linearity

We want to motivate our belief that a tangent structure provides the context to

introduce a notion of linearity by recalling the notion of a differential object. To



34

do so, first, recall that a Cartesian tangent category (X,T) is a category X with

finite products, equipped with a tangent structure Twhose tangent bundle functor

preserves finite products (see the original [12, Definition 2.8]).

Definition★ 2.16. A differential object in a Cartesian tangent category (X,T) consists
of an object 𝐴 of X together with a morphism 𝜁 : 1→ 𝐴, 1 being the terminal object of X,
and a binary operation 𝜎 : 𝐴 × 𝐴 → 𝐴 so that the triple (𝐴, 𝜁, 𝜎) forms a commutative
monoid object with respect to the monoidal structure induced by the Cartesian product.
Moreover, a differential object comes equipped with a differential projection, which is a
morphism 𝑝̂ : T𝐴 → 𝐴, compatible with the monoidal structure (𝐴, 𝜁, 𝜎), and satisfying
the following universality property. The diagram:

𝐴 T𝐴 𝐴
𝑝 𝑝̂

is a product diagram. Finally, the differential projection is linear, that is, it is compatible
with the vertical lift:

T2𝐴 T𝐴

T𝐴 𝐴
𝑝̂

T𝑝̂

𝑙

𝑝̂

Differential objects, first introduced in [12, Definition 4.8] and then revisited

in [11, Definition 3.1] where the compatibility with the vertical lift was added,

form a generalization of the linear spaces R𝑛 in a tangent category. One of the key

results of Cockett and Cruttwell (cf. [12, Theorems 4.11 and 4.12]) proves that the

category of differential objects of a (Cartesian) tangent category forms a Cartesian

differential category, that is a Cartesian left-additive category (cf. [7]), equipped

with an operation D, known as a derivation operator, which sends a morphism

𝑓 : 𝐴 → 𝐵 to a morphism D[ 𝑓 ] : 𝐴 × 𝐴 → 𝐵. Informally, as explained in [7], by

currying the map D[ 𝑓 ] : 𝐴 × 𝐴 → 𝐵 one obtains a map J[ 𝑓 ] : 𝐴 → Lnr(𝐴, 𝐵) that

can be interpreted as the Jacobian matrix of the smooth map 𝑓 . In particular, the

category DObj(Smooth,T) of the Cartesian tangent category of smooth manifolds

is the Cartesian differential category whose objects are the linear spaces R𝑛 and

whose morphisms 𝑓 : R𝑛 → R𝑚 are smooth functions between linear spaces. The

map J[ 𝑓 ] is then precisely the Jacobian matrix of 𝑓 .



35

2.2.3 Tangent display maps

In differential geometry, there are a few important classes of morphisms, which we

generically refer to as bundles. A bundle consists of a pair of smooth manifolds 𝐸

and 𝑀 respectively known as the total and the base space, together with a smooth

morphism 𝑞 : 𝐸 → 𝑀. Usually, one wants 𝐸 to satisfy some nice properties, like

local triviality, e.g. being a fibre bundle, being equipped with some extra structure,

like being a vector bundle or a principal bundle, or one wants 𝑞 to be regular in

some sense, e.g. being a submersion. The name bundle, which refers to a generic

morphism 𝑞 : 𝐸 → 𝑀, evokes a specific interpretation of 𝐸 as a collection of fibres

𝐸𝑥 := 𝑞−1(𝑥), indexed by the elements 𝑥 of 𝑀. The regularity conditions on 𝐸 or 𝑞

usually address the question of how to make use of this interpretation: for example,

one would like to have extra structures on the fibres or have a notion of transport

of elements from one fibre to the adjacent ones.

Because of the importance of the notion of a bundle in differential geometry, a

large part of research in tangent category theory is devoted to axiomatizing such

classes in the general context of a tangent category. In Section 2.2.5, we recall the

notion of a differential bundle and we discuss how it axiomatizes a vector bundle

in differential geometry.

One technical difficulty encountered by Cockett and Cruttwelll in the attempt to

define the concept of a differential bundle was the requirement for such a bundle to

have all pullbacks along any morphism. Cockett and Cruttwell in [11] proved that,

whenever the pullback exists, the pulled-back morphism of a differential bundle is

still a differential bundle. However, this does not guarantee the existence of such

pullbacks.

The solution presented by Cockett and Cruttwell and also adopted by MacAdam

in [47] was to introduce the notion of a tangent display system, which consists of

a family of morphisms stable under pullbacks and the tangent bundle functor.

Before recalling this definition, we would like to introduce the following jargon

distinction.

Jargon 2.17. In a category X, a morphism 𝑞 : 𝐸 → 𝑀, that is any morphism of X,
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admits all pullbacks if for any morphism 𝑓 : 𝑁 → 𝑀 the pullback diagram:

𝑁 ×𝑀 𝐸 𝐸

𝑁 𝑀

𝜋1

𝜋2

𝑓

𝑞

⌟

exists. We also say that a family of morphisms ℱ ofX is closed under pullbacks if,

whenever the pullback of a morphism 𝑞 : 𝐸 → 𝑀 of ℱ along a generic morphism

𝑓 : 𝑁 → 𝑀 of X exists, then the pulled-back morphism 𝑁 ×𝑀 𝐸 → 𝑁 is also a

morphism of ℱ. Finally, we say that a family ℱ of morphisms of X is stable under
pullbacks if each morphism 𝑞 of ℱ admits all pullbacks and ℱ is closed under

pullbacks.

In a tangent category, one usually prefers to work with tangent pullbacks. Let’s

briefly recall this notion, introduced by MacAdam in [47].

Definition★ 2.18. In a tangent category (X,T), a tangent limit is a limit diagram which
is preserved by all functors T𝑛 , for every positive integer 𝑛. In particular, a tangent
pullback is a pullback whose universality is preserved by all T𝑛 . We are going to extend
the same convention to all other limits, so for example a tangent equalizer is a tangent limit
which is an equalizer and so on.

We now extend the jargon we introduced before to tangent pullbacks.

Jargon 2.19. A morphism 𝑞 : 𝐸→ 𝑀 of a tangent category (X,T) admits all tangent
pullbacks if it admits all pullbacks and each of these is a tangent pullback. We

also say that a family of morphisms ℱ of (X,T) is closed under tangent pullbacks
if, whenever a tangent pullback of a morphism 𝑞 : 𝐸→ 𝑀 of ℱ along a morphism

𝑓 : 𝑁 → 𝑀 of X exists, then the pulled-back morphism 𝑁 ×𝑀 𝐸 → 𝑁 is also

a morphism of ℱ. Finally, a family of morphism ℱ is stable under tangent
pullbacks if it is closed under tangent pullbacks and each morphism of ℱ admits

all tangent pullbacks.

We can now recall the definition of a tangent display system.

Definition★ 2.20. In a tangent category (X,T) a tangent display system consists of a
family ℱ of morphisms of X which is stable under tangent pullbacks and stable under T.
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For a family of morphisms in a generic category X, being stable under an

endofunctor T means if 𝑞 is a morphism of this family, so is T𝑞.

Remark 2.21. Cockett and Cruttwell in [11] required a tangent display system of

a tangent category to also contain all the tangent bundles, that are all morphisms

𝑝 : T𝑀 → 𝑀, for each 𝑀. Then, they defined a display tangent category as a

tangent category equipped with such a tangent display system. Here we decided

to adopt MacAdam’s convention (cf. [47]) for which a tangent display system is not

required to contain the tangent bundles.

A tangent display system is a technical answer to the technical issue of ensuring

the families of bundles we are interested in are stable under tangent pullbacks.

However, from a philosophical point of view, this axiomatization choice is, in our

opinion, awkwardly constrained to treat the interesting class of bundles as a struc-

ture of the tangent category instead of being an intrinsic property of these bundles.

In particular, this approach goes against the general philosophy of differential geo-

metry of requiring local properties of bundles, instead of asking for global properties

of families of bundles.

Finding this approach unsatisfactory for these reasons, we investigated under

which minimal assumptions a bundle is an element of a tangent display system.

We want to dedicate this section to exploring our results, believing that in future

work one will not require the notion of a tangent display system anymore. The

first insight in the right direction comes from the following proposition. First, let’s

recall a classic result of pullbacks.

Lemma★ 2.22. Consider the following diagram:

𝐴 𝐵 𝐶

𝐴′ 𝐵′ 𝐶′

If the outer square and the right square are pullback diagrams, so is the left square.

Proof. This is a well-known property of pullbacks, but for completeness, let’s give
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a sketch of the proof. Consider the following diagram:

𝐷 𝐵

𝐴 𝐵 𝐶

𝐴′ 𝐴′ 𝐵′ 𝐶′

𝑝

𝑓 ′

𝑓

𝑞

𝑔

𝑔′

𝑠

𝑡

ℎ

By employing the universality of the outer diagram, one finds a unique morphism

𝜑 : 𝐷 ⤏ 𝐴 such that 𝜑𝑔′ 𝑓 ′ = 𝑡 𝑓 ′ and 𝜑𝑠 = ℎ:

𝐷 𝐵

𝐴 𝐵 𝐶

𝐴′ 𝐴′ 𝐵′ 𝐶′

𝑝

𝑓 ′

𝑓

𝑞

𝑔

𝑔′

𝑠

𝑡

ℎ

𝜑

We want to show that 𝜑𝑔′ = 𝑡. However, this is a consequence of the right square

being a pullback. It is also straightforward to check that if 𝜑′ : 𝐷 → 𝐴 is a second

morphism for which 𝜑′𝑔′ = 𝑡 and 𝜑′𝑠 = ℎ, then 𝜑′ = 𝜑. □

Lemma 2.23. Consider the family ℱ(X) of morphisms 𝑞 ∈ X which admit all pullbacks.
Then ℱ(X) is stable under pullbacks.

Proof. The proof makes use of Lemma 2.22. Consider first a morphism 𝑞 : 𝐸→ 𝑀 of

ℱ(X) and suppose 𝑓 : 𝑁 → 𝑀 is any morphism of X. Since 𝑞 admits all pullbacks

the pullback of 𝑞 along 𝑓 is well-defined. As a shorthand, let 𝑞′ : 𝐸′ → 𝑁 denote

the pullback of 𝑞 along 𝑓 . We want to show that 𝑞′ also admits all pullbacks. So,
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let 𝑔 : 𝑃 → 𝑁 another morphism of X and consider the following diagram:

𝐸′′ 𝐸′ 𝐸

𝑃 𝑁 𝑀

𝑞′

𝑓

𝑞

𝑔

𝑞′′

𝑔 𝑓

where 𝑞′′ : 𝐸′′ → 𝑃 denotes the pullback of 𝑞 along the composition 𝑔 𝑓 , which

exists because 𝑞 admits all pullbacks. However, this implies the existence of a

unique dash morphism:

𝐸′′ 𝐸′ 𝐸

𝑃 𝑁 𝑀

𝑞′

𝑓

𝑞

𝑔

𝑞′′

𝑔 𝑓

It is clear that the outer and the right squares are pullback diagrams, so thanks to

the Lemma 2.22, also the left square is a pullback. So, we conclude that also 𝑞′

admits all pullbacks, so in particular 𝑞′ belongs to ℱ(X). So, ℱ(X) is closed under

pullbacks and, by definition, each morphism ofℱ(X) admits all pullbacks, soℱ(X)
is stable under pullbacks as expected. □

Let ℱ be a family of morphisms of a category X and suppose ℱ is stable under

pullbacks. So, in particular, every morphism of ℱ admits all pullbacks. This

implies that ℱ is included in ℱ(X), or in other words, ℱ(X) is a maximal family

of morphisms of X which is stable under pullbacks, where the maximality is with

respect to the partial order defined by the inclusion of families of morphisms.

So, without loss of generality, if one needs a class of morphisms in a category X

to be stable under pullbacks, instead of choosing one family of morphisms with

this property, one can simply take any morphism of ℱ(X). This is precisely what

we want for tangent display systems: instead of choosing a specific family of

morphisms satisfying the property of being stable under tangent pullbacks and
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stable under T, we want to find the right property of morphisms which allows us

to have such stabilities for free. To understand how to define such a morphism,

notice that for a morphism 𝑞 : 𝐸 → 𝑀 in a tangent display system, not just 𝑞

admits all tangent pullbacks, but so does T𝑛𝑞. This is due to the fact that a tangent

display system is stable under T, so T𝑛𝑞 must be in the tangent display system and

moreover, the tangent display system must be stable under tangent pullbacks. So,

the intuition is to require for a morphism 𝑞 : 𝐸→ 𝑀 to have that each T𝑛𝑞 admits

tangent pullbacks. Let’s officially introduce this new concept.

Definition 2.24. A tangent display map 𝑞 : 𝐸 → 𝑀 in a tangent category (X,T) is a
morphism for which, for every non-negative integer 𝑛, T𝑛𝑞 (when 𝑛 = 0, T0𝑞 = 𝑞 and for
𝑛 = 1, T1𝑞 = T𝑞) admits all tangent pullbacks.

The following theorem proves that tangent display maps are precisely the de-

sired notion of morphism to work with.

Theorem 2.25. Let𝒟(X,T) denote the family of tangent display maps of a tangent category
(X,T). Then, 𝒟(X,T) is the (unique) maximal tangent display system of (X,T) under the
partial order of inclusions of families of morphisms of X.

Proof. It is straightforward to see that if 𝑞 is a tangent display map, so is T𝑞. Let’s

then prove that 𝒟(X,T) is stable under tangent pullbacks. We are going to make

repeated use of Lemmas 2.22 and 2.23. Consider a tangent display map 𝑞 : 𝐸→ 𝑀

and let 𝑓 : 𝑁 → 𝑀 be a morphism of X. By definition, 𝑞 admits all pullbacks

so let 𝑞′ : 𝐸′ → 𝑀 denote the pullback of 𝑞 along 𝑓 . We want to show that 𝑞′ is

still a tangent display map. Consider a morphism 𝑔 : 𝑃 → 𝑁 . Since 𝑞 admits all

pullbacks, by Lemma 2.23, also 𝑞′ admits all pullbacks. So, the pullback 𝑞′′ of 𝑞′

along 𝑔 is well-defined. We want to show that this pullback is a tangent pullback.

Consider a non-negative integer 𝑛 and the following diagram:

T𝑛𝐸′′ T𝑛𝐸′ T𝑛𝐸

T𝑛𝑃 T𝑛𝑁 T𝑛𝑀

T𝑛𝑞′

T𝑛 𝑓

T𝑛𝑞

T𝑛 𝑔

T𝑛𝑞′′

The outer and the right square diagrams are both pullbacks since 𝑞 admits all

tangent pullbacks. So, by Lemma 2.22, also the left square diagram is a pullback.
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This shows that also 𝑞′ admits all tangent pullbacks. We now need to show that

so does each T𝑚𝑞, for each non-negative integer 𝑚. However, since the pullback

of 𝑞 along 𝑓 must be a tangent pullback, T𝑚𝑞′ is the pullback of T𝑚𝑞 along T𝑚 𝑓 .

However, we already discussed that T𝑞 is also a tangent display map, and by

induction, so is T𝑚𝑞. We also proved that if 𝑞 admits all tangent pullbacks so does

the pullback of 𝑞 along any morphism 𝑓 . So, we conclude that also T𝑚𝑞′ admits all

tangent pullbacks. This proves that 𝒟(X,T) is indeed a tangent display system.

Finally, we previously discussed that if ℱ is any tangent display system and 𝑞

is a morphism of ℱ, then for every non-negative integer 𝑛, T𝑛𝑞 admits all tangent

pullbacks, which is precisely the definition of a tangent display map. So, each

tangent display system is a subfamily of 𝒟(X,T). This implies 𝒟(X,T) to be the

maximal tangent display system, with respect to the partial order of the inclusion

between families of morphisms of X. □

In our convention, we intentionally did not include tangent bundles as part of

a tangent display system (see Remark 2.21). We decide to call a tangent category a

display tangent category when this is the case.

Definition 2.26. A display tangent category consists of a tangent category in which
the tangent bundles 𝑝 : T𝑀 → 𝑀 are all tangent display maps.

Remark 2.27. As discussed in Remark 2.21, in Cockett and Cruttwell’s original

definition a display tangent category consists of a tangent category equipped with

a given tangent display system for which every tangent bundle 𝑝 : T𝑀 → 𝑀 is a

morphism of the tangent display system. The entire purpose of this section is to

eliminate the necessity of choosing a specific tangent display system and instead

take the maximal one, which is characterized as the family of tangent display maps.

So, in some sense, our definition of a display tangent category refines Cockett and

Cruttwell’s original version, in the sense that every display tangent category in

their sense is also a display tangent category in our sense.

Another important operation employed often in the context of classes of morph-

isms in differential geometry is the notion of retraction.

Jargon 2.28. We say that a morphism 𝑞′ : 𝐸′ → 𝑀 is a retraction of a morphism
𝑞 : 𝐸 → 𝑀 if there is a pair of morphisms 𝑟 : 𝐸 ⇆ 𝐸′ : 𝑠, such that 𝑟𝑞′ = 𝑞 and
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𝑠𝑟 = id𝐸′. 𝑟 is known as a retraction and 𝑠 as a section. We also say that a family of

morphisms ℱ is closed under retraction if, for each morphism 𝑞 : 𝐸→ 𝑀 and for

any section-retraction pair 𝑟 : 𝐸 ⇆ 𝐸′ : 𝑠, 𝑞′ is also a morphism in ℱ.

Notice that, if 𝑞′ is a retract of a map 𝑞 along the section-retraction pair 𝑟 : 𝐸 ⇆
𝐸′ : 𝑠, then 𝑠𝑞 = 𝑠𝑟𝑞′ = 𝑞′, so, since 𝑟 commutes with 𝑞 and 𝑞′, and 𝑠 being a

section of 𝑟, also 𝑠 commutes with 𝑞 and 𝑞′. The converse is also true: assuming 𝑠

commutes with 𝑞 and 𝑞′ implies that so does 𝑟, i.e. 𝑟𝑞′ = 𝑟𝑠𝑞 = 𝑞.

One would like tangent display maps to be closed under retraction. This desired

condition plays an important role in the theory of differential bundles, as we clarify

in the following sections. Luckily, we have an interesting criterion under which

tangent display maps in a given tangent category are closed under retraction. To

understand the origin of this result, let’s start by recalling that an idempotent in a

categoryX consists of an endomorphism 𝑒 : 𝐸→ 𝐸 over a given object 𝐸, for which

the composition of 𝑒 with itself, i.e. 𝑒2
, is equal to itself, that is 𝑒2 = 𝑒. In some

sense, an idempotent can be interpreted as an operation which projects elements

of 𝐸 into a subspace 𝐴 of 𝐸, so that over 𝐴 it acts as the identity. In particular,

this analogy is particularly striking in the context of linear operators over vector

spaces equipped with an internal product, in which projectors 𝑒 : 𝐸 → 𝐸 consist

of orthogonal idempotents, that, in particular, are in bĳective correspondence with

subspaces of 𝐸.

This correspondence between subspaces and idempotents is precisely formu-

lated in terms of split idempotents. We say that an idempotent 𝑒 : 𝐸→ 𝐸 splits if it

is the composition of a section-retraction pair 𝑟 : 𝐸 ⇆ 𝐴 : 𝑠. Indeed, if 𝑒 := 𝑟𝑠, using

that 𝑠𝑟 = id𝐴, we immediately conclude 𝑒2 = 𝑟𝑠𝑟𝑠 = 𝑟𝑠 = 𝑒. In general, an idem-

potent does not split; to make every idempotent split one can Cauchy complete the

category. More precisely, the Cauchy completion of a category X, sometimes called

the Karoubi envelope of X, is a category X̄ together with a fully faithful functor

𝜄 : X→ X̄ for which every idempotent of X̄ splits and every object of X̄ is a retract

of an object in the image of 𝜄. In particular, this last condition means that for every

object 𝐴 of X̄ there exists a retraction 𝑟 : 𝜄(𝐸) → 𝐴 for some object 𝐸 ofX. We invite

the interested reader to consult [9] for a discussion of this topic.

One of the crucial examples of Cauchy completion is given by the category of
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finite-dimensional smooth manifolds, which is precisely the Cauchy completion

of the category Open of open subsets of R𝑛 and smooth maps between them. In

particular, this implies that in differential geometry every idempotents split. The

result we are going to prove is that assuming idempotents split, then tangent display

maps are closed under retraction. Let’s start by proving an important property of

the retract of a pullback. We suspect this is a known result in the literature, however,

instead of giving a reference, we decide to give proof.

Lemma 2.29. Consider a pullback diagram:

𝐸′ 𝐸

𝑁 𝑀

𝑓 ′

𝑓

𝑞𝑞′
⌟

Suppose also that𝐴 is a retract of𝐸 and𝐴′ a retract of𝐸′, which means that there are section-
retraction pairs 𝑟 : 𝐸 ⇆ 𝐴 : 𝑠 and 𝑟′ : 𝐸′ → 𝐴′ : 𝑠′, moreover 𝑟𝑠𝑞 = 𝑞 and 𝑟′𝑠′𝑞′ = 𝑞′.
Consider now the diagram:

𝐸′ 𝐴′ 𝐸′

𝐸 𝐴 𝐸

𝑁 𝑁 𝑁

𝑀 𝑀 𝑀

𝑓 ′

𝑓

𝑞

𝑞′

⌟

𝑟′ 𝑠′

𝑟 𝑠

𝑔′

𝑢′

𝑓𝑓

𝑓 ′

𝑞

𝑞′

⌟

𝑢

where 𝑢 := 𝑠𝑞, 𝑢′ := 𝑠′𝑞′, anf 𝑔 := 𝑠′ 𝑓 ′𝑟. Then, the diagram:

𝐴′ 𝐴

𝑁 𝑀

𝑔′

𝑢𝑢′

𝑓

is also a pullback.
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Proof. Let’s consider two morphisms 𝛼 : 𝐵→ 𝐴 and 𝛽 : 𝐵→ 𝑁 , such that 𝛼𝑢 = 𝛽 𝑓 ′.

Then, by universality, we obtain a morphism 𝛾 : 𝐵→ 𝐸′ as follows:

𝐵

𝐸′ 𝐴′ 𝐸′

𝐸 𝐴 𝐸

𝑁 𝑁 𝑁

𝑀 𝑀 𝑀

𝑓 ′

𝑓

𝑞

𝑞′

⌟

𝑟′ 𝑠′

𝑟 𝑠

𝑔′

𝑢′

𝑓𝑓

𝑓 ′

𝑞

𝑞′

⌟

𝛼

𝛽

𝛾

𝑢

which is the unique morphism 𝐵→ 𝐸′ satisfying the following two equations:

𝛾 𝑓 ′ = 𝛼𝑠

𝛾𝑞′ = 𝛽

Let’s define 𝛾′ := 𝛾𝑟′ : 𝐵→ 𝐴′. We have:

𝛾′𝑢′

= 𝛾𝑟′𝑢′

= 𝛾𝑟′𝑠′𝑞′

= 𝛾𝑞′

= 𝛽

Moreover:

𝛾′𝑔′

= 𝛾′𝑔′𝑠𝑟
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= 𝛾′𝑠′ 𝑓 ′𝑟

= 𝛾𝑟′𝑠′ 𝑓 ′𝑟

= 𝛾 𝑓 ′𝑟𝑠𝑟

= 𝛾 𝑓 ′𝑟

= 𝛼𝑠𝑟

= 𝛼

So, 𝛾′ satisfies 𝛾′𝑢′ = 𝛽 and 𝛾′𝑔′ = 𝛼. Let now 𝛾′′ : 𝐵→ 𝐴′ be a second morphism

satisfying the same equations of 𝛾′, so let 𝛿 := 𝛾′′𝑠′, so we have:

𝛿 𝑓 ′

= 𝛾′′𝑠′ 𝑓 ′

= 𝛾′′𝑔′𝑠

= 𝛼𝑠

𝛿𝑞′

= 𝛾′′𝑠′𝑞′

= 𝛾′′𝑢′

= 𝛽

From the universality of the pullback, we conclude that 𝛿 = 𝛾, therefore:

𝛾′′ = 𝛾′′𝑠′𝑟′ = 𝛿𝑟′ = 𝛾𝑟′ = 𝛾′

This proves the desired result. □

Adopting MacAdam’s naming convention (cf. [47]), we recall the following

definition.

Definition★ 2.30. In a tangent category (X,T) a retractive tangent display system is
a tangent display system which is closed under retracts.

We also introduce the following definition.

Definition 2.31. A retractive tangent category is a tangent category whose tangent
display maps are closed under retraction.
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In particular, a retractive display tangent category is a display tangent category

which is also retractive.

Theorem 2.32. Suppose the class of split idempotents of a tangent category (X,T) is closed
under pullbacks, then (X,T) is a retractive tangent category. In particular, every tangent
display system of (X,T) is a retractive tangent display system.

Proof. To prove this result we need to show that if 𝑢 : 𝐴 → 𝑀 is a retract of a

tangent display map 𝑞 : 𝐸→ 𝑀 via a section-retraction pair 𝑟 : 𝐸 ⇆ 𝐴 : 𝑠 for which

𝑟𝑝 = 𝑞 (which implies 𝑠𝑞 = 𝑝), then also 𝑢 is a tangent display map. Let’s start

by considering a morphism 𝑓 : 𝑁 → 𝑀 and let’s show that 𝑢 admits the pullback

along 𝑓 . In order to see this, let’s take a look at the following diagram:

𝐸′ 𝐸′

𝐸 𝐴 𝐸

𝑁 𝑁 𝑁

𝑀 𝑀 𝑀

𝑓 ′

𝑓

𝑞

𝑞′

⌟

𝑟 𝑠

𝑓𝑓

𝑓 ′

𝑞

𝑞′

⌟

𝑒′

𝑢

where 𝑒′ is induced by the universality of the pullback. Notice the pullback of 𝑞

along 𝑓 exists, since 𝑞 is a tangent display map. Notice also that 𝑒′ is an idempotent.

To see this,let 𝑒 = 𝑟𝑠 be the split idempotent defined by 𝑟 and 𝑠 and consider the

following:

𝑒′𝑒′ 𝑓 ′

= 𝑒′ 𝑓 ′𝑒

= 𝑓 ′𝑒𝑒

= 𝑓 ′𝑒

= 𝑒′ 𝑓 ′
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𝑒′𝑒′𝑞′

= 𝑒′𝑞′

= 𝑞′

So, 𝑒′2 satisfies the same equations which uniquely define 𝑒′. So, 𝑒′ is an idempotent.

In particular, 𝑒′ is the pullback of a split idempotent, so by hypothesis, it also splits.

Let 𝑟′ : 𝐸′ ⇆ 𝐴′ : 𝑠′ be the corresponding section-retraction pair, so now we have

the following diagram:

𝐸′ 𝐴′ 𝐸′

𝐸 𝐴 𝐸

𝑁 𝑁 𝑁

𝑀 𝑀 𝑀

𝑓 ′

𝑓

𝑞

𝑞′

⌟

𝑟′ 𝑠′

𝑟 𝑠

𝑔′

𝑢′

𝑓𝑓

𝑓 ′

𝑞

𝑞′

𝑢

⌟

By Lemma 2.29, the diagram:

𝐴′ 𝐴

𝑁 𝑀

𝑞′

𝑓

𝑢

𝑔′

(2.2.1)

is a pullback diagram. This shows that if ℱ(X) is the family of morphisms which

admit all pullbacks, then under the condition that split idempotents are closed

under pullbacks, ℱ(X) is closed under retraction. By definition, a tangent display

map 𝑞 : 𝐸 → 𝑀 is precisely a morphism for each, for every 𝑛, T𝑛𝑞 belongs to

ℱ(X) and each pullback of T𝑛𝑞 along any morphism is preserved by each functor

T𝑚
. Let’s show that the pullback diagram (2.2.1) is a tangent pullback. To do so,
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consider a non-negative integer 𝑚, then:

T𝑚𝐸′ T𝑚𝐴′ T𝑚𝐸′

T𝑚𝐸 T𝑚𝐴 T𝑚𝐸

T𝑚𝑁 T𝑚𝑁 T𝑚𝑁

T𝑚𝑀 T𝑚𝑀 T𝑚𝑀

T𝑚 𝑓 ′

T𝑚 𝑓

T𝑚𝑞

T𝑚𝑞′

⌟

T𝑚𝑟′ T𝑚 𝑠′

T𝑚𝑟 T𝑚 𝑠

T𝑚 𝑔′

T𝑚𝑢′

T𝑚 𝑓T𝑚 𝑓

T𝑚 𝑓 ′

T𝑚𝑞

T𝑚𝑞′

T𝑚𝑢

⌟

This in particular means that T𝑚
of the diagram of Equation (2.2.1) is the retract of

the pullback of T𝑚𝑞 along T𝑚 𝑓 , which, by again Lemma 2.29, is also a pullback.

So, 𝑢 : 𝐴→ 𝑀 admits all tangent pullbacks. Finally, for every non-negative integer

𝑛, T𝑛𝑢 is again the retract of T𝑛𝑞, so, since T𝑛𝑞 admits every tangent pullbacks, so

does T𝑛𝑢, proving once for all that 𝑢 is a tangent display map. □

The condition of Theorem 2.32 which requires the family of split idempotents to

be closed under pullbacks is in particular satisfied by any Cauchy complete category

X, where every idempotent splits. This is because the family of idempotents is

always closed (not necessarily stable) under pullbacks since the pullback of an

idempotent is always an idempotent. As a consequence, we have the following

important corollary.

Corollary 2.33. A tangent structureT over a Cauchy complete categoryX forms a retractive
tangent category (X,T).

Every category X is canonically embedded in a Cauchy complete category,

called the Cauchy completion of X (The notion of a Cauchy complete category

was introduced by Lawvere in [43]. For more details on Cauchy completion, we

refer to [9]). Concretely the Cauchy completion of X, known also as the Karoubi

envelope of X, is the category Split(X) whose objects are pairs (𝑀, 𝑒) formed by

an object 𝑀 of X and an idempotent 𝑒 : 𝑀 → 𝑀 of 𝑀, and whose morphisms

𝑓 : (𝑀, 𝑒) → (𝑀′, 𝑒′) are morphisms 𝑓 : 𝑀 → 𝑀′ of X for which 𝑓 𝑒′ = 𝑒 𝑓 .

Corollary 2.33 establishes an interesting relationship between Cauchy categories

and tangent structures, so it is natural to wonder if the Cauchy completion of a

tangent category is still a tangent category. Let’s start by observing a simple fact.
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Lemma 2.34. Given a categoryX, the functor (−)¯ : End(X) → End(Split(X)) which sends
an endofunctor 𝐹 : X→ X to the endofunctor 𝐹̄ : Split(X) → Split(X) so defined:

𝐹̄(𝑀, 𝑒) := (𝐹𝑀, 𝐹𝑒)

𝐹̄( 𝑓 : (𝑀, 𝑒) → (𝑀′, 𝑒′)) := 𝐹 𝑓 : (𝐹𝑀, 𝐹𝑒) → (𝐹𝑀′, 𝐹𝑒′)

is a strong monoidal functor with respect to the monoidal structure defined by the compos-
ition of endofunctors.

Using Leung’s definition of a tangent category (X,T) as a strong monoidal

functor Weil1 → End(X) which preserves some pullback diagrams (see Section 2.3

for details), one can post-compose this strong monoidal functor with (−)¯ and obtain

a strong monoidal functor Weil1 → End(Split(X)). It is not hard to show that

this strong monoidal functor preserves the required pullbacks to define a tangent

structure on Split(X).

Theorem 2.35. The Cauchy completion Split(X) of a tangent category (X,T) (with neg-
atives) is still a tangent category (with negatives) denoted by Split(X,T) and the fully
faithful functor 𝜄 : X → Split(X) strictly preserves the tangent structures. Moreover, 𝜄
preserves tangent display maps and in particular, if (X,T) is a display tangent category
(with negatives), then so is Split(X,T).

Corollary 2.36. Every (display) tangent category (X,T) (with negatives) is strictly em-
bedded in a retractive (display) tangent category (with negatives).

2.2.4 The slice tangent category

The second construction we want to recall in this brief introduction to tangent

category theory is the slice tangent category of a tangent category (X,T) over a

given object 𝑀. First, recall that the slice category X/𝑀 of a category X over an

object 𝑀 of X is the category whose objects 𝑞𝐸
𝑀

are morphisms of X of the form

𝑞 : 𝐸→ 𝑀 and whose morphisms 𝑓 : 𝑞𝐸
𝑀
→ 𝑞′𝐸

′

𝑀 are morphisms 𝑓 : 𝐸→ 𝐸′ ofX for

which 𝑓 𝑞′ = 𝑞. The idea is to lift the tangent structure T of X to the slice category

X/𝑀.

In order to lift T to the slice category one can employ two different contructions.

On the one hand, one can define the tangent bundle functor T/𝑀 : X/𝑀 → X/𝑀
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which sends a bundle 𝑞𝐸
𝑀

to T𝑞/𝑀, which is the bundle T𝐸
T𝑞
−−→ T𝑀

𝑝
−→ 𝑀. The

natural transformations of this tangent structure are precisely the same natural

transformations of the tangent structure T over the base category X. We are going

to refer to this tangent structure as the “trivial slice tangent structure”.

A second, and more interesting construction, is the “non-trivial” slice tangent

category. For the goals of this thesis, we are going to consider only this last

construction and therefore, we are going to omit the adjective “non-trivial”. The

main idea is to define the tangent bundle of a bundle 𝑞 : 𝐸→ 𝑀 as the pullback of

T𝑞 along the zero morphism, that is the bundle 𝑞(𝑀) : T(𝑀)𝐸→ 𝑀:

T(𝑀)𝐸 T𝐸

𝑀 T𝑀

𝑞(𝑀) T𝑞

𝑧

𝜄

⌟
(2.2.2)

Notice that the notation T(𝑀)𝐸 could be a little misleading, since, as we see in a

moment, T(−) is a functor on the slice category but not on the base category.

The main issue with this definition is that, in a generic tangent category, this

pullback diagram is not defined for every bundle 𝑞 : 𝐸→ 𝑀. Moreover, one needs

this pullback diagram to be a tangent pullback to define the corresponding tangent

structure and one also needs the bundle T𝑞(𝑀) to admit the tangent pullack along

the zero morphism. To solve these issues, there are two main approaches. The first

approach is to focus the attention only on objects 𝑀 of the category X for which

every bundle 𝑞 ∈ X/𝑀 admits all tangent pullbacks. In the original paper [41]

of the author of this thesis, we employed this approach. Here we focus on a

different approach: consider tangent display maps only. This has the advantage of

furnishing a global picture of the classification of differential bundles, by employing

the technology of fibrations, as we discuss in the next section. The main insight is

given by the following lemma.

Lemma 2.37. The bundles 𝑞 : 𝐸→ 𝑀 of a tangent display system ℱ in a tangent category
(X,T) admit the T-pullback of Equation (2.2.2). Moreover, for each 𝑞 in the tangent display
system, 𝑞(𝑀) is automatically a bundle of the same tangent display system.

Proof. Since a tangent display system, by definition, is stable under the tangent
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bundle functor, for every bundle 𝑞 of the tangent display system, T𝑞 is also part

of the tangent display system. Moreover, since a tangent display system is also

stable under pullbacks, then the pullback of T𝑞 along the zero morphism is well-

defined and it defines a new bundle of the tangent display system. Thus, also

T(𝑀)𝑞 = 𝑞(𝑀) is part of the tangent display system. Finally, since every bundle of a

tangent display system is necessarily a tangent display map, the pullback diagram

is a tangent pullback. □

In the following, we denote by 𝒟(X,T;𝑀) the category whose objects are tan-

gent display maps of (X,T) whose target is the fixed object 𝑀 of X, and whose

morphisms are morphisms between bundles. Then, the slice tangent category
Slice(X,T;𝑀) is the tangent category so defined:

tangent bundle functor The tangent bundle functor T(𝑀) : 𝒟(X,T;𝑀) → 𝒟(X,T;𝑀)
is the functor which sends a tangent display map 𝑞𝐸

𝑀
= 𝑞 : 𝐸→ 𝑀 to 𝑞(𝑀)

T(𝑀)𝐸
𝑀 ,

defined by the pullback diagram (2.2.2). Moreover, T(𝑀) sends a morphism

𝑓 : 𝑞𝐸
𝑀
→ 𝑞′𝐸

′

𝑀 to the unique morphism 𝑓 (𝑀) : 𝑞(𝑀)T
(𝑀)𝐸

𝑀 → 𝑞′(𝑀)
𝐸′(𝑀)

𝑀 , induced

by the universality of the pullback diagram (2.2.2):

𝐸′∗

T(𝑀)𝐸 𝑀 T𝐸′

𝑀 T𝐸 T𝑀

T𝑀

𝑞(𝑀)

T𝑞
𝑧

𝜄⌟
T𝑞′T 𝑓

𝜄
𝑞′(𝑀)

𝑓 (𝑀)

𝑧

⌟

projection The projection 𝑝(𝑀) : T(𝑀)⇒ idX/𝑀 is induced by the natural transform-

ation:

T(𝑀)𝐸 𝜄−→ T𝐸
𝑝
−→ 𝐸

for any object 𝑞𝐸
𝑀

;
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zero morphism The zero morphism 𝑧(𝑀) : idX/𝑀 ⇒ T(𝑀) is induced by the natural

transformation defined by the universality of the pullback diagram (2.2.2):

𝐸 T𝐸

T(𝑀)𝐸 T𝐸

𝑀 𝑀 T𝑀

𝑞(𝑀) T𝑞

𝑧

𝜄

⌟

𝑞

𝑧

𝑧(𝑀)

𝑛-fold pullback The 𝑛-fold pullback T(𝑀)𝑛 of the projection 𝑝(𝑀) along itself:

T(𝑀)𝑛 𝑞𝐸
𝑀

T(𝑀)𝑞𝐸
𝑀

T(𝑀)𝑞𝐸
𝑀

T(𝑀)𝑞𝐸
𝑀

𝑞𝐸
𝑀𝑝(𝑀)

𝑝(𝑀)𝜋(𝑀)1

𝜋(𝑀)𝑛

𝜋(𝑀)
𝑘

𝑝(𝑀)

is given by the pullback diagram:

𝐸∗𝑛 T𝑛𝐸

𝑀 T𝑛𝑀

𝑞∗𝑛 T𝑛𝑞

⟨𝑧,...,𝑧⟩

⟨𝜄,...,𝜄⟩

⌟

that is T(𝑀)𝑛 𝑞𝐸
𝑀

= 𝑞
(𝑀)
𝑛 , and the 𝑘-th projection 𝜋(𝑀)

𝑘
: T(𝑀)𝑛 ⇒ T(𝑀) is given

by the natural transformation induced by the universality of the following
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diagram:

T(𝑀)𝐸

𝐸
(𝑀)
𝑛 𝑀 T𝐸

𝑀 T𝑛𝐸 T𝑀

T𝑛𝑀

𝑞
(𝑀)
𝑛

T𝑛𝑞⟨𝑧,...,𝑧⟩

⟨𝜄,...,𝜄⟩⌟

𝜋𝑘

𝜋𝑘

T𝑞

𝜄𝜋(𝑀)
𝑘 𝑞(𝑀)

𝑧

⌟

sum morphism The sum morphism 𝑠(𝑀) : T(𝑀)2 ⇒ T(𝑀) is induced by the natural

transformation defined by the universality of the pullback diagram (2.2.2):

T(𝑀)𝐸2 T2𝐸

T(𝑀)𝐸 T𝐸

𝑀 𝑀 T𝑀

T𝑞

𝑧

𝑠

⟨𝜄,𝜄⟩

𝑞
(𝑀)
2

𝑞(𝑀)

𝜄

𝑠(𝑀)

⌟

vertical lift The vertical lift 𝑙(𝑀) : T(𝑀) ⇒ T(𝑀)2 is induced by the natural trans-

formation defined by the universality of the pullback diagram (2.2.2):

T(𝑀)𝐸 T𝐸

𝐸(𝑀)
2 (T𝐸)∗ T2𝐸

𝑀 𝑀 T𝑀 T2𝑀
𝑧T

(T𝑞)(T𝑀)

𝜄

⌟

𝑧

𝑞(𝑀)
2

𝜄

⌟

𝑞(𝑀)

𝜄

𝑙
𝑙(𝑀)

T2𝑞

where 𝑞(𝑀)
2𝐸∗∗

𝑀 := T(𝑀)2𝑞𝐸
𝑀

;
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canonical flip The canonical flip 𝑐(𝑀) : T(𝑀)2 ⇒ T(𝑀)2 is induced by the natural

transformation defined by the universality of the pullback diagram (2.2.2):

𝐸(𝑀)
2 (T𝐸)(T𝑀) T2𝐸

𝐸(𝑀)
2 (T𝐸)(T𝑀) T2𝐸

𝑀 𝑀 T𝑀 T2𝑀
𝑧T

(T𝑞)(T𝑀)

𝜄

⌟

𝑧

𝑞(𝑀)
2

𝜄

⌟

𝑞(𝑀)
2

𝑐
𝑐(𝑀)

T2𝑞

𝜄𝜄

Moreover, if (X,T)has negatives with negation 𝑛 : T⇒ T, then so does Slice(X,T;𝑀):

negation The negation 𝑛(𝑀) : T(𝑀) ⇒ T(𝑀) is induced by the natural transforma-

tion defined by the universality of the pullback diagram (2.2.2):

T(𝑀)𝐸 T2𝐸

T(𝑀)𝐸 T𝐸

𝑀 𝑀 T𝑀

𝑞(𝑀)

𝑧

⌟

𝜄

T𝑞

𝑛

𝜄

𝑞(𝑀)

𝑛(𝑀)

This construction was first introduced by Rosickỳ in his seminal article [53]. More

recently in [11, Section 5], Cockett and Crutwell showed how this construction

is naturally contextualized within the theory of tangent fibrations. In particu-

lar, they proved that the fibres of the functor 𝒟(X,T) → (X,T) from the tangent

category of morphisms of X, whose tangent bundle functor is T acting on morph-

isms, to a fixed tangent category (X,T), are precisely the slice tangent categories

Slice(X,T;𝑀), parametrized by the objects 𝑀 of X. This result inspired the au-

thor to investigate the relationship between tangent fibrations and the celebrated

Grothendieck construction. We suggest the interested reader to consult [42].
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Remark 2.38. In Rosickỳ’s original version for the construction of the slice tangent

category the pullback diagram (2.2.2) was replaced by the equalizer diagram:

T(𝑀)𝐸 T𝐸 T𝑀𝜄
T𝑞

T𝑞𝑝𝑧

So, in Rosický’s version, the tangent bundle functor T(𝑀) sends 𝑞𝐸
𝑀

to T(𝑀)𝐸 𝜄−→

T𝐸
T𝑞
−−→ T𝑀

𝑝
−→ 𝑀. It is straightforward to show that these two definitions are

equivalent.

Example 2.39. In [18, Section 4.1], Cruttwell and Lemay showed that the tan-

gent category (cAlgop
𝑅
,T) can also be characterized as the slice tangent category of

(cRingop,T) over the ring 𝑅. Indeed, unital and commutative algebras over a ring

𝑅 are equivalently characterized as morphisms 𝑅→ 𝐴 of rings.

2.2.5 Differential bundles

The universality of the vertical lift establishes that the vertical bundle 𝑉𝑀 → 𝑀,

which is the pullback of T𝑝 along the zero morphism, is trivial; that is, 𝑉𝑀 → 𝑀

is isomorphic to the pullback T2𝑀 → 𝑀. In fact, the vertical bundle is precisely

the slice tangent bundle T(𝑀) applied to the projection 𝑝T𝑀
𝑀

. Putting these two facts

together, one concludes that the tangent bundle 𝑝 : T𝑀 → 𝑀 is a differential object

of the slice tangent category Slice(X,T;𝑀), when the projection 𝑝T𝑀
𝑀

is regarded as

an object of such a category.

This suggests interpreting differential objects of the slice tangent category over

an object 𝑀 of (X,T) as vector bundles over 𝑀. This is precisely the intuition

underpinning the definition of differential bundles, first introduced by Cockett

and Cruttwell in [11]. Here, we recall the original definition.

Definition★ 2.40. A differential bundle in a tangent category (X,T) consists of an
additive bundle (𝑞 : 𝐸 → 𝑀, 𝑧𝑞 : 𝑀 → 𝐸, 𝑠𝑞 : 𝐸2 → 𝐸) together with a morphism
𝑙𝑞 : 𝐸→ T𝐸, called the vertical lift, satisfying the following conditions:

1. (𝑙𝑞 , 𝑧) : (𝑞, 𝑧𝑞 , 𝑠𝑞) → (T𝑞,T𝑧𝑞 ,T𝑠𝑞) is an additive bundle morphism;

2. (𝑙𝑞 , 𝑧𝑞) : (𝑞, 𝑧𝑞 , 𝑠𝑞) → (𝑝, 𝑧, 𝑠) is an additive bundle morphism;
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3. The vertical lift is universal, that is, the following diagram:

𝐸2 T𝐸

𝑀 T𝑀

𝜉𝑞

𝜋1𝑞

𝑧𝑞

T𝑞

is a pullback diagram, and it is preserved by all functors T𝑛 , where:

𝜉𝑞 := (𝑙𝑞 ×𝑀 𝑧)T𝑠𝑞

4. The vertical lifts 𝑙 and 𝑙𝑞 are compatible:

𝐸 T𝐸

T𝐸 T2𝐸

𝑙𝑞

𝑙𝑞

𝑙

𝑇𝑙𝑞

The interpretation of differential bundles as vector bundles in a tangent category

acquires solidity in light of MacAdam’s result, presented in [47], which shows that

differential bundles in the tangent category of (connected) smooth manifolds are

precisely vector bundles.

Cockett and Cruttwell also showed that (cf. [11, Corollary 3.5]), for a chosen

point 𝑥 : 1→ 𝑀, i.e. a morphism from the terminal object 1 of X to the object 𝑀,

the local fibre 𝐸𝑥 of a differential bundle 𝑞 : 𝐸 → 𝑀 over 𝑥, obtained by pulling

back 𝑞 : 𝐸→ 𝑀 along 𝑥 : 1→ 𝑀 as follows:

𝐸𝑥 𝐸

1 𝑀
𝑥

𝑞

⌟

is a differential object. The relationship between differential bundles and differen-

tial objects is deeper. Under some conditions, differential bundles are precisely the

differential objects in the slice tangent category. The main issue for this to be true

is that the slice tangent category should contain the differential bundle itself as an
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object. Tangent display systems were initially introduced specifically to solve this

issue. Now, with the new notion of tangent display map, we can simply take the

largest tangent display system: the family of tangent display maps. For this scope,

let’s introduce this concept.

Definition 2.41. A display differential bundle in a tangent category (X,T) consists of
a differential bundle whose underlying bundle is a tangent display map.

In a display tangent category every tangent bundle 𝑝 : T𝑀 → 𝑀 is a tangent

display map and therefore a display differential bundle. However, it is not obvious

that a generic differential bundle would be a tangent display map as well. Let’s

introduce formally this concept.

Definition 2.42. A fully display tangent category is a tangent category in which every
differential bundle is a display differential bundle.

In particular, every fully display tangent category is a display tangent category.

In [47, Corollary 3.1.4], MacAdam proved an important characterization of differ-

ential bundles: when the tangent category has negatives, every differential bundle

is the retract of the pullback of a tangent bundle. We can employ this characteriza-

tion to show that when the tangent bundles are tangent display maps, the tangent

category has negatives, and the tangent display maps are closed under retraction,

then every differential bundle becomes automatically a tangent display map.

Theorem 2.43. A retractive display tangent category with negatives is a fully display
tangent category.

Corollary 2.33, proves that every Cauchy complete tangent category is retractive,

so we have the following result.

Corollary 2.44. A Cauchy complete display tangent category with negatives is a fully
display tangent category with negatives.

Putting together that the Cauchy completion of a display tangent category with

negatives is still a display tangent category with negatives (Theorem 2.35 and

Corollary 2.36) and Corollary 2.44 we obtain the following result.

Corollary 2.45. Every display tangent category (X,T)with negatives is strictly embedded
in a fully display tangent category with negatives Split(X,T).
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2.2.6 The adjoint tangent category

In Example 2.13, we showed that the category of commutative and unital rings

comes equipped with a tangent structure

T

whose tangent bundle functor

T

is

the functor which sends a ring 𝑅 to the associated ring of dual numbers 𝑅⟨𝜀⟩ =
𝑅[𝑥]/(𝑥2). Notice that 𝑅⟨𝜀⟩ is isomorphic to 𝑅 ⊗𝐷 where 𝐷 := Z⟨𝜀⟩ and the tensor

product is over the ring Z. On the other hand, also the opposite of the category

of commutative and unital rings has a tangent structure T, whose tangent bundle

functor T sends a ring 𝑅 to 𝑅𝐷 .

It is not a lucky coincidence that in both

T

and T the ring 𝐷 appears in the

definition of the tangent bundle functor. One can also notice that the functors

− ⊗ 𝐷 and (−)𝐷 form an adjunction. This is indeed the reason why these two

tangent structures share 𝐷 in the definition of the tangent bundle functor. In this

section, we recall an important construction due to Cockett and Cruttwell (see [12,

Section 5]) in tangent category theory which explains the relationship between

the two tangent structure on the category of commutative and unital rings and its

opposite. Let’s first recall the notion of an adjunctable tangent category.

Definition★ 2.46. A tangent category (X, T) is adjunctable if the functors

T

𝑛 : X→ X
obtained by pulling back the tangent bundle 𝑝 : T⇒ idX along itself 𝑛 times, admit left
adjoints T𝑛 ⊣

T

𝑛 , for every positive integer 𝑛 (when 𝑛 = 1, T:= T1 and

T

1 =

T

).

Remark 2.47. The terminology adjunctable is new. In the original paper [12], Cockett

and Cruttwell did not introduce a dedicated definition for this concept but they

added the expression dual tangent category. We decided to not use the word dual
since it can be confused with a cotangent structure, which is not related to this

construction. Notice also that in [29], Ikonicoff, the author of this thesis, and

Lemay used the expression “a tangent structure with adjoint tangent structure” for

adjunctable tangent structure.

Cockett and Cruttwell’s result proves that, if a tangent category is adjunctable,

then also the opposite of the underlying category has a tangent structure. Since

this result plays a crucial role in our story, we report here the statement.

Theorem★ 2.48. If a tangent category (X, T) is adjunctable, then the opposite of the
category X, i.e. Xop, has also a tangent structure T whose tangent bundle functor is the
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left adjoint T of

T

and whose natural transformations are the mates of the corresponding
natural transformations of

T

via the adjunctions T𝑛 ⊣

T

𝑛 .

Let’s unwrap the construction of the adjoint tangent structure, i.e. the tangent

structure defined by Theorem 2.48. We denote by (𝜂𝑛 , 𝜀𝑛) : T𝑛 ⊣

T

𝑛 the adjunctions

of Definition 2.46.

tangent bundle functor The tangent bundle functor T: Xop → Xop
is the left ad-

joint T of

T

;

projection The projection 𝑝(T) : idX ⇒ T, regarded as an X-morphism, is defined

as follows:

𝑝(T) : idX
𝜂
−→ T◦ T

𝑝(

T

)T
−−−−→ T

zero morphism The zero morphism 𝑧(T) : T ⇒ idX, regarded as an X-morphism,

is defined as follows:

𝑧(T) : T T𝑧(

T

)
−−−−→ T ◦ T𝜀−→ idX

𝑛-fold pullback The 𝑛-fold pushout (inX) of the projection along itself is given by

the left adjoint T𝑛 of

T

𝑛 . Moreover, the 𝑘-th injection 𝜋(T)
𝑘

: T⇒ T𝑛 , regarded

as an X-morphism, is defined as follows:

𝜋(T)
𝑘

: T
T𝜂𝑛−−−→ T ◦ T

𝑛 ◦ T𝑛

T𝜋(

T

)
𝑘

T𝑛

−−−−−−→ T ◦ T◦ T𝑛
𝜀T𝑛−−−→ T𝑛

sum morphism The sum morphism 𝑠(T) : T⇒ T2, regarded as anX-morphism, is

defined as follows:

𝑠(T) : T
T𝜂2−−→ T ◦ T

2 ◦ T2
T𝑠(

T

)T2−−−−−−→ T ◦ T◦ T2
𝜀T2−−→ T2

vertical lift The vertical lift 𝑙(T) : T2 ⇒ T, regarded as an X-morphism, is defined

as follows:

𝑙(T) : T2 T2𝜂
−−−→ T2 ◦ T◦ T T2 𝑙(

T

)T−−−−−→ T2 ◦ T2 ◦ T T𝜀

T

T−−−−−→ T ◦ T◦ T 𝜀T−−→ T
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canonical flip The canonical flip 𝑐(T) : T2 ⇒ T2
, regarded as an X-morphism, is

defined as follows:

𝑐(T) : T2 T2𝜂
−−−→ T2 ◦ T◦ T

T2

T

𝜂T
−−−−−→ T2 ◦ T2 ◦ T2 T2𝑐(

T

)T2

−−−−−−→

→ T2 ◦ T2 ◦ T2 T𝜀

T

T2

−−−−−→ T ◦ T◦ T2 𝜀T2

−−→ T2

Moreover, if (X, T) has negatives, then also the adjoint tangent category has negat-

ives:

negation The negation 𝑛(T) : T ⇒ T, regarded as an X-morphism, is defined as

follows:

𝑛(T) : T
T𝜂
−−→ T ◦ T◦ T T𝑛(

T

)T−−−−−→ T ◦ T◦ T 𝜀T−−→ T

Checking that all functors

T
𝑛 have left adjoints can be a painful exercise; how-

ever, such a procedure can be simplified under mild conditions. The key obser-

vation is that

T

𝑛 is the 𝑛-fold pullback of the tangent bundle functor T along the

projection. So, when the tangent bundle functor has a left adjoint and there are

enough pushouts, it comes for free that also the

T

𝑛 have left adjoints. This obser-

vation came as a result of a discussion between the author and Martin Frankland,

during the annual Foundational Method of Computer Science conference of 2022.

We would like to thank Frankland for the suggestions and to propose a full proof

of this statement. Here we propose our proof.

Lemma 2.49. Let

T: X→ X be an endofunctor over a category X and let 𝑝(

T) : T⇒ idX
be a natural transformation for which the 𝑛-fold pullback of 𝑝(

T) along itself exists, for every
non-negative integer 𝑛. Suppose that

T

admits a left adjoint T so that (𝜂, 𝜀) : T ⊣ T

is an
adjunction. Define the mate of 𝑝(

T) as follows:

𝑝(T) : idX
𝜂
−→ T◦ T

𝑝(

T

)T
−−−−→ T

If for a non-negative integer 𝑛, 𝑝(T) admits the 𝑛-fold pushout T𝑛 along itself, then T𝑛 is a
left adjoint of

T

𝑛 .
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Proof. The goal is to define the unit 𝜂𝑛 : idX⇒

T

𝑛 ◦T𝑛 and the counit 𝜀𝑛 : T𝑛 ◦

T

𝑛 ⇒
idX. Let’s start with 𝜂𝑛 and consider the following diagram:

𝐴

TT𝐴

T

𝑛T𝑛𝐴

TT𝑛𝐴

TT𝑛𝐴 T𝑛𝐴 T𝐴

TT𝐴 T𝐴

𝜂

T

𝜄1

𝜂

T

𝜄𝑛

𝑝(

T)T𝑛

𝑝(

T)T𝑛𝜋(

T)
1 T𝑛

𝜋(

T)
𝑛 T𝑛

⌟

𝜂𝑛

𝑝(

T)T

𝜄1

𝜄𝑛

𝑝(

T)T

where 𝜄𝑘 : T ⇒ T𝑛 denotes the 𝑘th injection, so in particular 𝜂𝑝(

T)
T 𝜄𝑖 = 𝑝(T)𝜄𝑖 =

𝑝(T)𝜄 𝑗 = 𝜂𝑝(

T)
T 𝜄𝑖 , for 𝑖 , 𝑗 = 1, . . . , 𝑛. So, the morphism 𝜂𝑛 is well-defined as the

unique morphism for which:

𝜂𝑛𝜋
( T)
𝑘

T𝑛 = 𝜂

T

𝜄𝑘

for 𝑘 = 1, . . . , 𝑛. Similarly, for 𝜀𝑛 consider the following diagram:

T

𝑛𝐴 T T

𝑛𝐴 T T

𝐴

T T

𝑛𝐴 T𝑛

T

𝑛𝐴

T T

𝐴 𝐴

𝑝(T)

𝑝(T)

𝜄1

T

𝑛

𝜄𝑛

T

𝑛

⌟

T𝜋(

T)
1

T𝜋(

T)
1

𝜀

𝜀
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Notice that:

T

𝑛𝐴 T T

𝑛𝐴

T

𝐴

TT T

𝐴 T T

𝐴

T

𝐴 𝐴

𝑝(T)

T𝜋(

T)
𝑖

𝜀

𝜋(

T)
𝑖

𝜂

T

𝑝(

T)T T

T

𝜀

𝑝(

T)

𝑝(T)=𝜂𝑝(

T)T

Nat

Δ

and moreover that 𝜋(

T)
𝑖
𝑝(

T) = 𝜋(

T)
𝑗
𝑝(

T)
, for 𝑖 , 𝑗 = 1, . . . , 𝑛. So, we have a unique

morphism 𝜀𝑛 : T𝑛

T

𝑛 ⇒ idX such that:

(𝜄𝑘) T

𝑛𝜀𝑛 = T𝜋(

T)
𝑘

𝜀

for 𝑘 = 1, . . . , 𝑛. The naturality of 𝜂𝑛 and 𝜀𝑛 is a direct consequence of the naturality

of all morphisms involved in the diagrams in which they are constructed. Let’s

prove the triangle equalities for 𝜂𝑛 and 𝜀𝑛 . In particular, we need to show that

T𝑛𝜂𝑛(𝜀𝑛)T𝑛 = idT𝑛 and that (𝜂𝑛) T

𝑛

T

𝑛𝜀𝑛 = id T

𝑛 . Notice first that:

T𝐴 T𝑛𝐴

T T

𝑛T𝑛𝐴 T𝑛

T

𝑛T𝑛𝐴

T TT𝑛𝐴 T𝑛𝐴

T TT𝐴 T𝐴

T𝑛𝜂𝑛

𝜀𝑛T𝑛

𝜄𝑘

T𝜂𝑛

𝜄𝑘

T

𝑛T𝑛

T𝜋(

T)
𝑘

𝜀T𝑛

T𝜂

T T

𝜄𝑘

𝜀T

𝜄𝑘

Nat

(𝜀𝑛 ,𝜄𝑘)

Nat

(𝜂𝑛 ,𝜋(

T)
𝑘
)

Finally, by employing the triangle equality T𝜂𝜀T = idT one finds out that 𝜄𝑘T𝑛𝜂𝑛(𝜀𝑛)T𝑛 =

𝜄𝑘 , for 𝑘 = 1, . . . , 𝑛. So, from the universality of the 𝑛-fold pushout of 𝑝(T) along
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itself, we conclude that T𝑛𝜂𝑛(𝜀𝑛)T𝑛 = idT𝑛 . Conversely, consider th following dia-

gram:

T

𝑛𝐴

T

𝑛T𝑛

T

𝑛𝐴

T

𝑛𝐴

TT𝑛

T

𝑛𝐴

TT T

𝑛𝐴

T

𝑛𝐴

T

𝐴

𝜂𝑛

T

𝑛

T

𝑛𝜀𝑛

𝜋(

T)
𝑘

𝜋(

T)
𝑘

T𝑛

T

𝑛

T

𝜀𝑛

𝜂

T

𝑛

T

𝜄𝑘

T

𝑛

𝜀

T

𝑛 𝜋(

T)
𝑘

So, (𝜂𝑛) T

𝑛

T

𝑛𝜀𝑛𝜋
( T)
𝑘
𝜂 T T

𝜀𝜋(

T)
𝑘

= 𝜋(

T)
𝑘

, for 𝑘 = 1, . . . , 𝑛. Thus, by employing the uni-

versality of the 𝑛-fold pullback of 𝑝(

T)
along itself, we conclude that (𝜂𝑛) T

𝑛

T

𝑛𝜀𝑛 =

id T

𝑛 . □

Proposition 2.50. Let (X, T) be a tangent category whose tangent bundle functor

T

admits
a left adjoint T so that (𝜂, 𝜀) : T ⊣ T

is an adjunction. If the mate 𝑝(T) : idX ⇒ T of the
projection 𝑝(

T) : T⇒ idX admits 𝑛-fold pushouts T𝑛 along itself, then (X, T) is adjunctable.

Corollary 2.51. If X is finitely cocomplete, then a tangent structure

T

over X forms an
adjunctable tangent category (X, T) if and only if its tangent bundle functor

T

admits a
left adjoint T.

2.3 Tangent objects: a formal approach to tangent categories

This section is dedicated to exploring a formal approach to tangent category the-

ory. The author first introduced this approach, in the context of a Grothendieck

construction for tangent fibrations (see [42]). The core concept of this discussion is

the concept of tangent objects.

In this thesis, this formal approach plays an important role in contextualizing

the theory of tangent monads. Tangent monads are 2-monads in the 2-category

TngCat of tangent categories. In Section 2.4, we show that tangent monads are also

tangent objects on the 2-category of monads and we employ this characterization

to show an important result: the tangent category of algebras of a tangent monad

described in [15] is precisely the algebra construction introduced by Street in [56]
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for a 2-monad.

Leung in their Ph.D. thesis [45] proposed a simple and effective classification of

the tangent structures for a given category X. In particular, they show that tangent

structuresT forX are in one-to-one correspondence with strong monoidal functors:

𝐹T : Weil1→ End(X)

from the monoidal category of Weil algebras to the monoidal category of endofunc-

tors over the category X, satisfying extra conditions. A Weil algebra is a commut-

ative and unital N-algebra, obtained by quotienting the N-algebra N[𝑥1, . . . , 𝑥𝑛]
of N-polynomials in 𝑛 variables by an ideal generated by monomials of order

2. In particular, Weil1 is the monoidal category generated by the Weil algebras

𝑊𝑛 : = N[𝑥1, . . . , 𝑥𝑛]/(𝑥𝑖𝑥 𝑗 , 𝑖 ≤ 𝑗), for positive integers 𝑛. As shown by Leung, in

the category Weil1 one can define the following morphisms:

projection The projection 𝑝 : 𝑊 → N, which sends the generator 𝑥 of 𝑊 :=𝑊1
to

0;

zero morphism The zero morphism 𝑧 : N→𝑊 , which sends an integer to itself;

sum morphism The sum morphism 𝑠 : 𝑊2 →𝑊 , which sends the two generators

𝑥1 and 𝑥2 to the unique generator 𝑥;

vertical lift The vertical lift 𝑙 : 𝑊 →𝑊 ⊗𝑊 , which sends the generator 𝑥 to 𝑥 ⊗ 𝑦;

canonical flip The canonical flip 𝑐 : 𝑊 ⊗𝑊 →𝑊 ⊗𝑊 , which sends the generator

𝑥 of the left𝑊 to the generator 𝑦 of the right𝑊 , and viceversa, i.e. 𝑦 to 𝑥.

Leung’s classification results state that a tangent structure T over a category X is

precisely given by a strong monoidal functor 𝐹T which sends the generators𝑊𝑛
of

Weil1 to the functors T𝑛 , and the morphisms listed above to the synonymous natural

transformations of T. In particular, the tangent bundle functor is T = 𝐹T(𝑊), the

double tangent bundle functor is T2 = 𝐹T(𝑊 ⊗𝑊), the projection is 𝑝 = 𝐹T(𝑝) : T =

𝐹T(𝑊) → 𝐹T(N) = idX, etcetera.

In this section we explore a generalization of this classification which leads to

a simple but important tool for our discussion: the concept of tangent object. The
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idea of tangent objects was first introduced by the author of this thesis in [42] to

extend the classical equivalence between fibrations and indexed categories known

as the Grothendieck construction to the realm of tangent categories. The idea is to

propose a formal theory of tangent structures for objects in a strict 2-category. This

is similar in spirit to the formal theory of monads proposed by Street to generalize

the notion of a monad in the context of 2-category theory. For our goal, let C be

a fixed strict 2-category, that is a category enriched over Cat. In future work, we

would like to explore weaker versions of this concept, but for now, let’s focus on

the strict case.

Before defining a tangent object, we first need to introduce an important tech-

nical definition, suggested by Lucyshyn-Wright in an informal discussion with the

author.

Definition 2.52. Given a strict 2-category C and two objects X and Y of C, a limit in the
category C(X,Y) is pointwise when it is preserved by all functors C( 𝑓 ,Y) : C(X,Y) →
C(X′,Y) for each 1-morphism 𝑓 : X′→ X in C.

Remark 2.53. We would like to thank Rory Lucyshyn-Wright for pointing out the

importance of this assumption for tangent objects. This aspect was missing in the

original definition provided by the author.

When the 2-category C is the 2-category Cat of categories, pointwise limits of

C(X,Y) are those limit diagrams in the category of functors of type 𝐹 : X→ Y that

are preserved by the evaluation functor. Concretely, this means that, for an object

𝑋 of X, and a diagram 𝐷 : X0 → C(X,Y), the functor lim𝐷 : X → Y evaluated at

𝑋 is isomorphic to the object lim𝐷(𝑋) of Y, where 𝐷(𝑋) represents the diagram

X0 → Y obtained by evaluating each functor 𝐷𝐴 : X → Y, corresponding to each

𝐴 of X0, at 𝑋.

When the target categoryYhas all finite limits, then also the category of functors

C(X,Y) has all finite limits and each limit is pointwise. However, when the target

category is not known to be finitely complete, there is no guarantee that the limits

of C(X,Y)will be pointwise. A counterexample can be found in [34, Section 3.3].

Unfortunately, in tangent category theory, the requirement of the existence of

limits is a subtle matter since in differential geometry not every pair of morphisms
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admits a pullback. In particular, a tangent category cannot be required to be finitely

complete since this would rule out one of the main examples of a tangent category.

Consequently, in order to make our definition of tangent objects compatible with

the usual notion of a tangent category when C is assumed to be the 2-category

of categories, we need to require the limits involved in the definition of a tangent

object to be pointwise.

Definition 2.54. A tangent object in a 2-category C is an object X of C equipped with
a tangent structure T, which consists of a strong monoidal functor 𝐹T : Weil1→ End(X)
from the monoidal category of Weil algebras to the monoidal category of endomorphisms
over X in C, satisfying the following two universal conditions:

1. 𝐹T preserves the foundational pullbacks, which are pullbacks of the form:

𝐴 ⊗ (𝐵 × 𝐶) 𝐴 ⊗ 𝐶

𝐴 ⊗ 𝐵 𝐴

𝐴⊗𝜋2

𝐴⊗𝜋1

𝐴⊗𝑝

𝐴⊗𝑝
⌟

for all 𝐴, 𝐵, 𝐶 ∈ Weil1 (cf. [45, Definition 3.17]). Moreover, these pullbacks are
pointwise limits;

2. 𝐹T preserves the universality of the vertical lift, i.e. the pullback diagram:

𝑊2 𝑊 ⊗𝑊

N 𝑊

𝜉

𝑊⊗𝑝

𝑧

𝜋1𝑝

⌟

where 𝜉 : = ⟨𝑧 ⊗𝑊, 𝑙⟩(𝑊 ⊗ 𝑠) and 𝜋1 : 𝑊2 → 𝑊 sends 𝑥1 to 𝑥 and 𝑥2 to zero.
Moreover, this pullback is a pointwise limit.

Remark 2.55. In Leung’s original result, the universality of the vertical lift of Defin-

ition 2.54, is replaced with the universality of an equalizer. However, Cockett and

Cruttwell proved in [12, Lemma 2.12] that the universality of the pullback dia-

gram of Definition 2.54 is equivalent to the universality of the equalizer diagram

proposed by Leung. To stay consistent with the rest of the thesis, we adopted the

pullback version.
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Remark 2.56. To classify tangent structures with negatives one can replace the rig

Nwith the ringZ in the definition of a Weil algebra and then introduce the negation

as follows:

negation The negation 𝑛 : 𝑊 →𝑊 sends the generator 𝑥 to −𝑥.

Thus, Leung’s classification extends as follows: tangent structures with negat-

ives T over a category X are in correspondence with strong monoidal functors

𝐹T : Weil−1 → End(X) preserving foundational pullbacks and the universality of the

vertical lift, where Weil−1 is the category of Weil algebras over the ring Z.

Thanks to Remark 2.56, we can also define a tangent object with negatives as

follows.

Definition 2.57. A tangent object with negatives in a 2-category C is an object X of C
together with a tangent structure with negatives T, which consists of a strong monoidal
functor 𝐹T : Weil−1 → End(X), preserving foundational pullbacks and the universality of
the vertical lift as in Definition 2.54.

Using a similar strategy to the one used by Leung to classify tangent structure on

a given category, we can unwrap Definitions 2.54 and 2.57 to have a more concrete

understanding of these key notions. Let’s start by introducing a useful concept.

Definition 2.58. An additive bundle object in a 2-category C is an additive bundle in
the category End(X) of endomorphisms ofX. Concretely, it consists of an objectX ∈ C, two
1-endomorphisms 𝐵 : X → X and 𝐸 : X → X, together with a 2-morphism 𝑞 : 𝐸 ⇒ idX,
called the projection, a 2-morphism 𝑧𝑞 : idX ⇒ 𝐸 called the zero morphism, and a
2-morphism 𝑠𝑞 : 𝐸2⇒ 𝐸, called the sum morphism, satisfying the following properties:

1. 𝑧𝑞 is a section of 𝑞:
𝐸

𝐵 𝐵

𝑞
𝑧𝑞

2. 𝑛-fold pullbacks: for any positive integer 𝑛, the 𝑛-fold pullback of the projection 𝑞

along itself exists in the category End(X) of endomorphisms ofX, is a pointwise limit,
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and its preserved by each 𝐸𝑚 := 𝐸 ◦ . . . ◦ 𝐸, for every positive integer 𝑚. The 𝑘-th
projection 𝜋𝑘 : 𝐸𝑛 ⇒ 𝐸 is denoted by 𝜋𝑘 ;

3. 𝑠𝑞 is a bundle morphism:

𝐸2 𝐸

𝐸 𝐵

𝑠𝑞

𝜋1 𝑞

𝑞

𝐸2 𝐸

𝐸 𝐵

𝑠𝑞

𝜋2 𝑞

𝑞

𝜋𝑘 : 𝐸𝑛 → 𝐸 being the 𝑘-th projection of the pointwise 𝑛-fold pullback;

4. Associativity:

𝐸3 𝐸2

𝐸2 𝐸

id𝐸×𝐴𝑠𝑞

𝑠𝑞×𝐴id𝐸 𝑠𝑞

𝑠𝑞

5. Unitality:

𝐸2 𝐸

𝐸

𝑠𝑞

⟨𝑞𝑧𝑞 ,id𝐸⟩

6. Commutativity:

𝐸2 𝐸

𝐸2 𝐸

𝑠𝑞

𝜏

𝑠𝑞

where 𝜏 : 𝐸2→ 𝐸2 denotes the flip ⟨𝜋2,𝜋1⟩.

A 1-morphism of additive bundle objects (𝜓, 𝜑) : (𝐵, 𝐸, 𝑞, 𝑧𝑞 , 𝑠𝑞) → (𝐵′, 𝐸′, 𝑞′, 𝑧′𝑞 , 𝑠′𝑞)
over X consists of two 2-morphisms 𝜑 : 𝐸 ⇒ 𝐸′ and 𝜓 : 𝐵⇒ 𝐵′, satisfying the following
properties:
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1. Compatibility with the projections:

𝐸 𝐸′

𝐵 𝐵′

𝑔

𝑞 𝑞′

𝑓

2. Compatibility with the zero morphisms:

𝐸 𝐸′

𝐵 𝐵′

𝑔

𝑧𝑞

𝑓

𝑧′𝑞

3. Additivity:

𝐸2 𝐸′2

𝐸 𝐸′

𝑔×𝐵𝑔

𝑠𝑞 𝑠′𝑞

𝑔

Notation 2.59. In the following, we adopt the following convention: given two

1-morphisms T: X→ X, T′ : X′→ X′ and two 2-morphisms:

X X′

X′′ X′

𝑓

X X′

X X′′

𝑔

we write T′ 𝑓 for:

X X′ X′

X′′ X′ X′

T′

𝑓

T′

and 𝑔T for:

X X X′

X X X′′

T

𝑔

T
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A tangent object (X,T) in C is an object X of C equipped with the following

data:

tangent 1-morphism A 1-morphism T: X→ X;

projection A 2-morphism 𝑝:

X X

X X

T

𝑝

zero 2-morphism A 2-morphism 𝑧:

X X

X X
T

𝑧

sum 2-morphism A 2-morphism 𝑠:

X X

X X
T

T2

𝑠

such that (T, 𝑝, 𝑧, 𝑠) is an additive bundle object of C;

vertical lift A 2-morphism 𝑙:

X X

X X X

T

T T

𝑙

so that (𝑧, 𝑙) : (idX,T, 𝑝, 𝑧, 𝑠) → (T,T2,T𝑝,T𝑧,T𝑠) is a morphism of additive

bundle objects;
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canonical flip A 2-morphism 𝑐:

X X X

X X X
T T

𝑐

T T

so that (idT, 𝑐) : (T,T2,T𝑝,T𝑧,T𝑠) → (T,T2, 𝑝T, 𝑧T, 𝑠T) is a morphism of

additive bundle objects.

Moreover, the following conditions are satisfied:

X X

X X X

X X X

T

T T

T T

𝑙

𝑐

=

X X

X X X

T

T T

𝑙

X X X

X X X

X X X

T T

𝑐

T T

T T

𝑐

=

X X X

X X X
T T

T T

X X

X X X

X X X X
T T

TT

T

T

𝑙

𝑙

=

X X

X X X

X X X X
T T

T

T

𝑙

𝑙

T

T
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X X X

X X X

X X X X
T T

T

𝑙

T

T

𝑐

TT

=

X X X

X X X X

X X X X

X X X X

T T

𝑐

T

T

TT

𝑙

TT

T T T

𝑐

X X X X

X X X X

X X X X

X X X X

T T

𝑐

T

T

T

𝑐

TT

T T T

𝑐

TT

=

X X X X

X X X X

X X X X

X X X X
T T

𝑐

T

T

T

𝑐

TT

TT

T T T

𝑐

Finally, the vertical lift is universal in the following sense. The diagram:

T2 T2

idX T

𝜋1𝑝 T𝑝

𝑧

𝜉

is a pointwise pullback in C(X,X), where 𝜉 : = (𝑙 × 𝑧T)T𝑠. We refer to the tuple

T: = (T, 𝑝, 𝑧, 𝑠, 𝑙, 𝑐) as a tangent structure over X. Finally, a tangent object with

negatives is a tangent object equipped with an extra structure:

negation A 2-morphism:

X X

X X

T

T

𝑛
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satisfying the following property:

X X

X X

X X

T

T2

⟨𝑛,id⟩

T

𝑠

=

X X

X X

T

T

We introduce the following naming convention.

Convention 2.60. Given a 2-category C whose objects are called with a name x, we

refer to a tangent object of C as a tangent x.

The next example shows that our naming convention is consistent with the

notion of tangent category, that is, tangent categories are tangent objects in the

2-category of categories.

Example 2.61. The obvious example of tangent objects is given by tangent categor-

ies. Thanks to Leung’s classification theorem, a tangent category is a category

X equipped with a strong monoidal functor 𝐹T : Weil1 → End(X) satisfying some

universality conditions. So, by taking the 2-category Cat of (small) categories, func-

tors and natural transformations, we see that a tangent object of Cat is precisely a

tangent category.

Notice that, as pointed out by Lucyshyn-Wright (see Remark 2.53), for tangent

objects of Cat to be tangent categories, it is important that the limit diagrams

involved in Definition 2.54 are pointwise.

Example 2.62. Let C be a 2-category and consider the 2-category Mnd(C) whose

objects are pairs (X, 𝑆) formed by an object X of C and a formal monad 𝑆 of X.

Recall that a formal monad in a 2-category over an object X consists of a monoid

in the monoidal category End(X) of endomorphisms of X. Concretely, a formal

monad consists of an endomorphism 𝑆 : X → X together with two 2-morphisms

𝜂 : idX⇒ 𝑆 and 𝛾 : 𝑆2⇒ 𝑆, where 𝑆2 := 𝑆 ◦ 𝑆, satisfying associativity and unitality
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conditions. A morphism of formal monads (𝐹, 𝛼) : (X, 𝑆) → (X′, 𝑆′) consists of a

1-morphism 𝐹 : X→ X′ together with a 2-morphism:

X X′

X X′

𝑆 𝑆′

𝐹

𝐹

𝛼

satisfying the following compatibilities with the units 𝜂 and 𝜂′ and the multiplica-

tions 𝛾 and 𝛾′ of the monads 𝑆 and 𝑆′, respectively:

X X′ X′

X X′ X′

𝑆′ 𝜂′

𝐹

𝑆

𝐹

𝛼 =

X X X′

X X′ X′

𝑆 𝜂

𝐹

𝐹

X X′ X′

X X X′

X X X′

𝑆 𝑆′

𝐹

𝐹

𝛼

𝑆

𝑆

𝛾

𝐹 𝑆′

𝛼

=

X X′ X′

X X′ X′

X X X′

𝐹 𝑆′

𝑆′𝛾′

𝑆′𝐹

𝑆 𝐹

𝛼

Finally, given two 1-morphisms (𝐹, 𝛼), (𝐹′, 𝛼′) : (X, 𝑆) → (X′, 𝑆′), a 2-morphism

𝜃 : (𝐹, 𝛼) → (𝐹′, 𝛼′) of Mnd(C) is a natural transformation 𝜃 : 𝐹 ⇒ 𝐹′ satisfying the

following condition:

𝐹 ◦ 𝑆 𝑆′ ◦ 𝐹

𝐹′ ◦ 𝑆 𝑆′ ◦ 𝐹′

𝛼

𝜃𝑆 𝑆′𝜃

𝛼′

By spelling out the details one finds out that a tangent object of Mnd(C) consists

of a tangent object (X,T) of C together with a formal monad 𝑆 of X with a 2-

morphism 𝛼 : 𝑆 ◦T⇒ T◦𝑆 compatible with the tangent structure T ofX. We refer

to (X,T; 𝑆, 𝛼) as a formal tangent monad. When C is the 2-category Cat, formal

tangent monads are precisely tangent monads, as introduced by Cockett, Lemay,
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and Lucyshyn-Wright in [15]. We return to this example in a moment, since tangent

monads play a crucial role in our discussion.

Example 2.63. Let’s consider the 2-category MonCat whose objects are monoidal

categories (X, ⊗, 1, 𝛼,𝜆, 𝜌)with associator 𝛼 and left and right unitors 𝜆 and 𝜌, re-

spectively, 1-morphisms are strong monoidal functors (𝐹, 𝜀, 𝜇) : (X, ⊗, 1, 𝛼,𝜆, 𝜌) →
(X′, ⊗′, 1′, 𝛼′,𝜆′, 𝜌′), i.e. functors 𝐹 : X → X′ together with an isomorphism

𝜀 : 1′→ 𝐹1 and a natural isomorphism 𝜇𝑋,𝑌 : 𝐹(𝑋) ⊗′ 𝐹(𝑌) → 𝐹(𝑋 ⊗𝑌), compatible

with the associators and the unitors, and 2-morphisms are natural transformations

compatible with the morphisms 𝜀 and 𝜇 of the strong monoidal functors.

Then a tangent object of MonCat consists of a monoidal category (X, ⊗, 1, 𝛼,𝜆, 𝜌)
equipped with a tangent structure, so that (X,T) is also a tangent category and with

an isomorphism 1→ T(1), that we call tangent unitor, and a natural isomorphism

T𝑀 ⊗ T𝑁 → T(𝑀 ⊗ 𝑁) that we call tangent distributor, compatible with the

associator and the unitors. Employing the Convention 2.60, we call the tangent

objects of MonCat, tangent monoidal categories.

Notice that the 2-category TngCat of tangent categories admits products. This

allows one to wonder what are pseudomonoids of TngCat. Recall that a pseudo-

monoid in a 2-category C with products consists of an object X, together with two

1-morphisms ⊗ : X × X → X and 𝜂 : 1 → X, 1 being terminal in C, and three

2-isomorphisms:

X ×X ×X X ×X

X ×X X

⊗×idX

idX×⊗ ⊗

⊗

𝛼

X 1 ×X X ×X

X X

𝜂×idX

⊗

⟨!,idX⟩

𝜆

X 𝑋 × 1 X ×X

X X

idX×𝜂

⊗

⟨idX ,!⟩

𝜌

satisfying the same pentagonal and hexagonal diagrams of the associator and

unitors in the definition of a monoidal category.
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In a similar way tangent monads can be equivalently described as formal mon-

ads in the 2-category TngCat of tangent categories (see [15]) or as tangent objects in

the 2-category Mnd(Cat) of monads, it turns out that tangent monoidal categories

can also be equivalently described as pseudo-monoids in the 2-category TngCat
of tangent categories. We refer to this second description as monoidal tangent
categories and in the future, we use tangent monoidal categories and monoidal

tangent categories, interchangeably.

Proposition 2.64. There is an equivalence between the category of tangent monoidal
categories and the category of monoidal tangent categories, defined as pseudo-monoids in
the category of tangent categories.

Example 2.63 can be extended to other classes of monoidal categories. For

example, one can consider braided monoidal categories, symmetric monoidal cat-

egories, or closed symmetric monoidal categories. The corresponding tangent

objects are then called tangent braided monoidal categories, tangent symmetric
monoidal categories, and tangent closed symmetric monoidal categories.

Example 2.65. An enriched category Y over a monoidal category (X, ⊗, 1, 𝛼,𝜆, 𝜌)
consists of a collection of objects together, for each pair 𝑀, 𝑁 of objects, an object

Y(𝑀, 𝑁) of X, which plays the role of the Hom-Set functor (cf. [34]). Moreover,

an enriched category comes equipped with a collection ◦ : Y(𝑁, 𝑃) ⊗ Y(𝑀, 𝑁) →
Y(𝑀, 𝑃) of morphisms ofX, which plays the role of the composition of morphisms,

and a collection id : 1→ Y(𝑀,𝑀) of morphisms of X, which plays the role of the

identity morphisms. One can define a 2-category Enrch whose objects are pairs

(X,Y) formed by a monoidal category X : = (X, ⊗, 1, 𝛼,𝜆, 𝜌) together with an

enriched category Y over X. A 1-morphism (𝐹, 𝐺, 𝛽) : (X,Y) → (X′,Y′) of Enrch
consists of a strong monoidal functor 𝐹 : = (𝐹, 𝜀, 𝜂) : X → X′ together with a pair

(𝐺, 𝛽) : Y → Y′, formed by an operation 𝐺 which sends an object 𝑀 of Y to an

object 𝐺𝑀 of Y′, together with a collection of isomorphisms of X:

𝛽 : 𝐹(Y(𝑀, 𝑁)) → Y′(𝐺𝑀, 𝐺𝑁)

compatible with the morphisms ◦ and id. Finally, 2-morphisms (𝜑,𝜓) : (𝐹, 𝐺, 𝛽) →
(𝐹′, 𝐺′, 𝛽′) between two 1-morphisms (𝐹, 𝐺, 𝛽), (𝐹′, 𝐺′, 𝛽′) : (X,Y) → (X′,Y′) consist
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of a natural transformation of strong monoidal functors 𝜑 : 𝐹→ 𝐹′ together with a

collection of morphisms:

𝜓 : Y′(𝐺𝑀, 𝐺𝑁) → Y′(𝐺′𝑀, 𝐺′𝑁)

satisfying the following condition:

𝐹Y(𝑀, 𝑁) 𝐹′Y(𝑀, 𝑁)

Y′(𝐺𝑀, 𝐺𝑁) Y′(𝐺′𝑀, 𝐺′𝑁)

𝜑

𝛽 𝛽′

𝜓

Spelling out the details one finds that a tangent object of Enrch consists of tan-

gent monoidal category (X,T) together with an X-enriched category Y equipped

with an operation T′ which sends an object 𝑀 to another object T′𝑀 of Y, with

a collection of isomorphisms 𝛽 : T(Y(𝑀, 𝑁)) → Y(T′𝑀,T′𝑁), compatible with ◦
and id. Moreover, Y comes equipped with a list of collections of morphisms of

X, 𝑝′ : Y(T′𝑀,T′𝑁) → Y(𝑀, 𝑁), 𝑧′ : Y(𝑀, 𝑁) → (T′𝑀,T′𝑁), 𝑠′ : Y2(T′𝑀,T′𝑁) →
Y(T′𝑀,T′𝑁),Y2(T′𝑀,T′𝑁)denoting the pullback of 𝑝′ along itself, 𝑙′ : Y(T′𝑀,T′𝑁) →
Y(T′2𝑀,T′2𝑁), and 𝑐 : Y(T′2𝑀,T′2𝑁) → Y(T′2𝑀,T′2𝑁), satisfying some compat-

ibility conditions with the tangent structure of X.

These are only some of the infinitely many examples of tangent objects of a

given 2-category. In the future, we intend to explore notions like tangent model

categories, tangent internal categories, double tangent categories (that are tangent

objects in the 2-category of tangent categories), tangent double categories (that

are tangent objects in the 2-category of double categories), tangent topoi, tangent

sheaves and many more.

The next step is to introduce 1-morphisms of tangent objects.

Definition 2.66. A lax 1-morphism of tangent objects (𝐹, 𝛼) : (X,T) → (X′,T′)
between two tangent objects (X,T) and (X′,T′) in a 2-category C consists of a 1-morphism
𝐹 : X→ X′ of C together with a 2-morphism:

X X

X′ X′

T

T′

𝐹𝐹 𝛼
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so that (𝐹, 𝛼, idX) is a morphism of additive bundle objects and the following conditions are
satisfied:

X X

X′ X′

X′ X X′

T

T′

𝐹𝐹 𝛼

T′ T′

𝑙′

=

X X

X X X

X′ X′ X′

T

T′

𝐹𝛼

T′

T

𝐹 𝐹𝛼

T

𝑙

X X X

X X X

X′ X′ X′

T

T′

𝐹𝛼

T′

T

𝐹 𝐹𝛼

𝑐

T T

=

X X X

X′ X′ X′

X X X

T

T′

𝐹𝛼

T′

T

𝐹 𝐹𝛼

T′

𝑐

T′

Similarly, a colax 1-morphism of tangent objects (𝐺, 𝛽) : (X,T)↛ (X′,T′) consists of
a 1-morphism 𝐺 : X→ X′ together with a 2-morphism:

X X′

X X′

T′T

𝐹

𝐹

𝛽

satisfying similar conditions as 𝛼 above. A lax morphism (𝐹, 𝛼) of tangent objects is strong
if 𝛼 is invertible and strict if 𝛼 is the identity.

We are also interested in defining 2-morphisms of tangent objects.

Definition 2.67. Given two lax 1-morphisms (𝐹, 𝛼), (𝐹′, 𝛼′) : (X,T) → (X′,T′) of tan-
gent objects, a lax 2-morphism of tangent ojects 𝜑 : (𝐹, 𝛼) ⇒ (𝐹′, 𝛼′) consists of a
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2-morphism 𝜑 : 𝐹⇒ 𝐹′ satisfying the following compatibility condition:

𝐹 ◦ T T′ ◦ 𝐹

𝐹′ ◦ T T′ ◦ 𝐹′

𝛼

𝜑T T′𝜑

𝛼′

Similarly, given two colax 1-morphisms (𝐺, 𝛽), (𝐺′, 𝛽′) : (X,T) ↛ (X′,T′) of tangent
objects, a colax 2-morphism of tangent objects 𝜓 : (𝐺, 𝛽) ⇒ (𝐺′, 𝛽′) consists of a
2-morphism 𝜓 : 𝐺 ⇒ 𝐺′ satisfying the dual of the compatibility condition of a lax 2-
morphism, i.e.:

T′ ◦ 𝐺 𝐺 ◦ T

T′ ◦ 𝐺′ 𝐺′ ◦ T

𝛽

T′𝜓 𝜓T

𝛽′

Finally, a double morphism of tangent objects:

(X◦,T◦) (X•,T•)

(X′◦,T′◦) (X′•,T′•)

(𝐹• ,𝛼•)❘(𝐹◦ ,𝛼◦) ❘

(𝐺′,𝛽′)

(𝐺,𝛽)

𝜃

for the lax 1-morphisms (𝐺, 𝛽) and (𝐺′, 𝛽′) and the colax 1-morphisms (𝐹◦, 𝛼◦), (𝐹•, 𝛼•) is
a 2-morphism:

X◦ X′◦

X• X′•𝐹•

𝐹◦

𝐺′𝐺 𝜃
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satisfying the following properties:

X◦ X◦ X′◦

X◦ X′◦ X′◦

X• X′• X′•𝐹•

𝐹◦

𝐺′𝐺 𝜃 𝐺′

T′◦

T′•

𝛽′

T◦ 𝐹◦

𝛼◦

=

X◦ X◦ X′◦

X• X• X′•

X• X′• X′•

𝐹◦

𝐹•

𝐺 𝐺′𝜃

T◦

𝐺

T•

𝛽

𝐹• T′•

𝛼•

Tangent objects of a 2-category C together with lax tangent 1-morphisms and

lax 2-morphisms form a 2-category Tng(C). Similarly, tangent objects of C to-

gether with colax tangent 1-morphisms and colax 2-morphisms form a 2-category

Tngco(C). The 2-subcategory of Tng(C) whose 1-morphisms are strong, that is the

distributive law is invertible, is denoted by Tng≅(C) and the 2-subcategory of Tng(C)
whose 1-morphisms are strict, i.e. the distributive law is the identity, is denoted by

Tng=(C). Finally, tangent objects together with lax tangent 1-morphisms as hori-

zontal morphisms, colax tangent 1-morphisms as vertical morphisms, and double

tangent cells for double cells form also a double category denoted by Tng(C). When

C is the 2-category Cat of categories, the double category Tng(Cat) is precisely the

double categoryTngCat of tangent categories, first described in [41, Proposition 2.2].

We conclude this section, by showing that the operation Tng which sends a

2-category C to the 2-category Tng(C) of tangent objects of C extends to a 2-functor.

For this purpose, we first need to select the correct class of morphisms between 2-

categories. Indeed, if 𝐹 : C→ C′ is an arbitrary 2-functor and (X,T) a tangent object

of C, there is no reason, in general, that 𝐹X is also a tangent object of C′. The main

issue is that, to make 𝐹X into a tangent object, the 2-functor 𝐹 must preserve the

𝑛-fold pullbacks of the projection with itself and the universality of the vertical lift.

Recall that a 2-functor 𝐹 : C→ C′ (notice that here we work with strict 2-functors) is

an operation which sends objects 𝑀, 1-morphisms 𝑓 : 𝑀 → 𝑁 , and 2-morphisms

𝜃 : 𝑓 ⇒ 𝑔 of C to objects 𝐹0𝑀, 1-morphisms 𝐹1 𝑓 : 𝐹0𝑀 → 𝐹0𝑁 , and 2-morphisms

𝐹2𝜃 : 𝐹1 𝑓 ⇒ 𝐹2𝑔, respectively, in a compatible way with the composition and the

identities.
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Definition 2.68. A 2-functor 𝐹 : C → C′ is 2-pullback preserving if it preserves pull-
backs of the form:

• •

• •

𝑝

𝑞

𝜋1

𝜋2

⌟

where 𝑝, 𝑞,𝜋1, and 𝜋2 are 2-morphisms.

If 𝐹 is a 2-pullback preserving 2-functor and (X,T) a tangent object of C, it is not

hard to see that, 𝐹X := 𝐹0X comes equipped with a tangent structure so defined:

tangent bundle morphism The tangent bundle morphism 𝐹T: 𝐹X→ 𝐹X is given

by:

𝐹1T: 𝐹0X→ 𝐹0X

projection The projection 𝐹𝑝 : 𝐹T⇒ id𝐹X is given by:

𝐹2𝑝 : 𝐹1T⇒ 𝐹1idX = id𝐹0X

zero morphism The zero morphism 𝐹𝑧 : id𝐹X⇒ 𝐹T is given by:

𝐹2𝑧 : id𝐹0X = 𝐹1idX⇒ 𝐹1T

sum morphism The sum morphism 𝐹𝑠 : (𝐹T)2⇒ 𝐹T is given by::

(𝐹1T)2 ≅ 𝐹1(T2)
𝐹2𝑠
==⇒ 𝐹1T

vertical lift The vertical lift 𝐹𝑙 : 𝐹T⇒ (𝐹T)2 is given by:

𝐹2𝑙 : 𝐹1T⇒ 𝐹1(T2) = (𝐹1T)2

canonical flip The canonical flip 𝐹𝑐 : (𝐹T)2⇒ (𝐹T)2 is given by:

𝐹2𝑐 : (𝐹1T)2 = 𝐹1(T2) ⇒ 𝐹1(T2) = (𝐹1T)2

Moreover, if (X,T) has negatives with negation 𝑛, then:
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negation The negation 𝐹𝑛 : 𝐹T⇒ 𝐹T is given by:

𝐹2𝑛 : 𝐹1T⇒ 𝐹1T

Remark 2.69. Note that tangential continuity is only a sufficient condition for a

2-functor to preserve tangent objects. Indeed, one can ask for stricter conditions on

2-functors. For the sake of simplicity, we decided to adopt the weaker condition

expressed by Definition 2.68.

(Strict) 2-categories, 2-functors, and 2-natural transformations form a 2-category

denoted by 2Cat. Moreover, the composition of two 2-pullback preserving 2-

functors is still a 2-pullback preserving 2-functor. Thus, also 2-categories, 2-

pullback preserving 2-functors and 2-natural transformations form a 2-category

that will be denoted by 2CatT-cts.

Proposition 2.70. The operation Tng which sends a 2-category C to the 2-category Tng(C)
of tangent objects of C extends to a 2-functor Tng : 2CatT-cts → 2Cat. Similarly, also Tngco,
Tng≅, and Tng= extend to 2-functors 2CatT-cts → 2Cat.

2.4 Formal tangent monads

In Example 2.62, we introduced tangent monads as tangent objects of the 2-category

Mnd(Cat) of monads. This notion plays a crucial role in the whole story of this

thesis. Therefore, we dedicate this section to recalling the fundamental results of

the theory of tangent monads.

Recall first that a monad over a category X consists of an endofunctor 𝑆 : X→
X together with a multiplication 𝛾 : 𝑆2 → 𝑆 and a unit 𝜂 : idX → 𝑆, satisfying

associativity and unitality. The simplest example of a monad is given by a monoid

𝑀 of a monoidal category X. Indeed, if 𝑀 is such a monoid, then the functor

𝑀 ⊗ − : X → X acting on X by tensoring by 𝑀 on the left, inherits a monad

structure from the multiplication and the unit of 𝑀. Informally, a monad can be

interpreted as an algebraic theory. This interpretation is particularly striking when

the monad is the monad of an operad, as we will discuss later.

The models of such a theory are called algebras of the monad and the correspond-

ing category Alg(𝑆) is known as the Eilenberg-Moore category of 𝑆. Concretely, an
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algebra of 𝑆 consists of an object 𝐴 of the category X where the monad is defined

upon, together with a morphism 𝑆𝐴 → 𝐴, called the structure map of the al-

gebra, compatible with the multiplication and the unit of the monad 𝑆. When the

monad is the functor 𝑀 ⊗ − associated with a monoid 𝑀, then the structure map

𝑀 ⊗𝐴→ 𝐴 can be interpreted as an action of the monoid 𝑀 on the object 𝐴. So, in

this sense, the structure map can be phrased as a representation of the monad over

the object 𝐴. This interpretation will be more clear in the case of operads, as we

will discuss later. In this section, we show that this interpretation, when applied to

tangent monads, allows one to think of them as geometric theories and their algebras

as geometric spaces.

Tangent monads were first introduced in [15] as monads 𝑆 over a given tangent

category (X,T) together with a distributive law 𝛼 : 𝑆 ◦ T ⇒ T ◦ 𝑆, which is a

natural transformation compatible with the composition 𝛾 : 𝑆2 ⇒ 𝑆 and the unit

𝜂 : idX ⇒ 𝑆 of the monad, compatible with the tangent structure. In particular,

this latter assumption is equivalent to stating that (𝑆, 𝛼) : (X,T) → (X,T) is a lax

tangent morphism. As mentioned in the original paper, a tangent monad can be

equivalently characterized as a formal monad in the 2-category TngCat of tangent

categories.

The first main result (cf. [15, Proposition 20]) establishes that the Eilenberg-

Moore category of a tangent monad comes equipped with a tangent structure

which is strictly preserved by the forgetful functor. In this section, we use the new

technology of tangent objects to extend this result to formal monads of an arbitrary

2-category.

For this purpose, recall the notion from Street’s formal monad theory [56] of

a 2-category C which admits the construction of algebras. This happens when the

2-functor C → Mnd(C) which sends an object X of C to (X, 1), 1 being the trivial

monad, i.e. the monad whose underlying endofunctor is the identity functor and

so are its multiplication and unit, admits a 2-right adjoint AlgC : Mnd(C) → C.

The 2-category Cat admits the construction of algebras and in particular, the 2-

functor Alg := AlgCat sends a monad 𝑆 over a given categoryX to the corresponding

Eilenberg-Moore category.

Street proved in [56, Theorem 2] that if C is a 2-category which admits the
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construction of algebras and 𝑆 is a formal monad of C, then 𝑆 is generated by an

adjunction of C, that is, there are two 1-morphisms 𝐹 : X ⇆ Alg(𝑆) : 𝑈 together

with two 2-morphisms 𝜂 : idX ⇒ 𝑈 ◦ 𝐹 and 𝜀 : 𝐹 ◦𝑈 ⇒ idX satisfying the triangle

identities and respectively called the unit and the counit of the adjunction. This

result, which is a classic result of monad theory (see [3, Proposition 10.3]), extends

to formal monads.

Lemma 2.71. The 2-category Tng(Mnd(C)) of tangent objects of the 2-category of formal
monads of a 2-category C is isomorphic to the 2-category Mnd(Tng(C)) of formal monads
of the 2-category of tangent objects of C.

Proof. First, consider a formal monad 𝑆 over an objectX of C. Then, given a tangent

structure on 𝑆, the tangent bundle functor consists of a morphism (T, 𝛼) : (X, 𝑆) →
(X, 𝑆) of formal monads, that is a 1-morphism T: X → X of C together with a

2-morphism 𝛼 : 𝑆 ◦ T ⇒ 𝑆 ◦ T of C, compatible with the multiplication and the

unit of 𝑆. Moreover, the projection, the zero morphism, the sum morphism, the

vertical lift, and the canonical flip of such a tangent structure correspond to 2-

morphisms 𝑝, 𝑧, 𝑠, 𝑙, and 𝑐, respectively, of C, compatible with the distributive law

𝛼, and satisfying the axioms of a tangent structure. It is easy to see that (X,T),
where T is precisely given by (T, 𝑝, 𝑧, 𝑠, 𝑙, 𝑐) is a tangent object of C, and that (𝑆, 𝛼)
constitutes a formal monad over (X,T) in the 2-category Tng(C) of tangent objects

over C. So, every object (X, 𝑆;T, 𝛼) of Tng(Mnd(C)) defines an object (X,T; 𝑆, 𝛼)
of Mnd(Tng(C)). Conversely, it is clear that a formal monad (X,T; 𝑆, 𝛼) of Tng(C)
defines a tangent object (X, 𝑆;T, 𝛼) of Mnd(C).

Let (𝐹, 𝜑; 𝛽) : (X, 𝑆;T, 𝛼) → (X′, 𝑆′;T′, 𝛼′)be a lax tangent morphism of Tng(Mnd(C)).
This is a 1-morphism 𝐹 : X → X′ of C together with a distributive law 𝜑 : 𝑆′ ◦
𝐹 ⇒ 𝐹 ◦ 𝑆, compatible with the monad structures, and a lax distributive law

𝛽 : 𝐹 ◦ T⇒ T′ ◦ 𝐹, compatible with 𝜑, 𝛼, and 𝛼′. This corresponds to a morphism

(𝐹, 𝛽; 𝜑) : (X,T; 𝑆, 𝛼) → (X′,T′; 𝑆′, 𝛼′) of formal monads of Tng(C). The converse is

straightforward. Finally, take into consideration a lax 2-morphism 𝜃 : (𝐹, 𝜑; 𝛽) ⇒
(𝐺,𝜓; 𝛾) between two lax tangent 1-morphisms (𝐹, 𝜑; 𝛽), (𝐺,𝜓; 𝛾) : (X, 𝑆;T, 𝛼) →
(X′, 𝑆′;T′, 𝛼′). This consists of a 2-morphism 𝜃 : 𝐹 ⇒ 𝐺, compatible with 𝜑 and

𝜓, and with 𝛼 and 𝛼′. However, this is also a 2-morphism 𝜃 : (𝐹, 𝛽; 𝜑) ⇒ (𝐺, 𝛾;𝜓)
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between the corresponding morphisms of formal monads of Tng(C). The converse

is also true. □

Remark 2.72. In light of Lemma 2.71, it is natural to wonder whether or not

Tngco(Mnd(C)) and Mnd(Tngco(C)) are also isomorphic 2-categories, for a 2-category

C. However, this is not the case. To see this, notice that objects of Tngco(Mnd(C))
are tangent objects over the 2-category of formal monads over C. Thus, the objects

of Tngco(Mnd(C)) are the same objects as those of Tng(Mnd(C)). On the contrary,

the objects of Mnd(Tngco(C)) are formal monads over the 2-category Tngco(C), that

are tuples (X,T; 𝑆, 𝛽), where 𝛽 : T ◦ 𝑆 ⇒ 𝑆 ◦ T, since (𝑆, 𝛽) : (X,T) ↛ (X,T) is a

colax tangent 1-morphism. To fix this discrepancy, one can consider the 2-category

Mndco(C) of formal monads, colax 1-morphisms of monads (𝐹, 𝛽) : (X, 𝑆)↛ (X′, 𝑆′)
which are 1-morphisms 𝐹 : X→ X′ together with a 2-morphism:

X X

X′ X′

𝑆

𝑆′

𝐹 𝐹𝛽

compatible with the multiplication and the unit of the monads, and 2-morphisms

𝜃 : (𝐹, 𝛽) ⇒ (𝐺, 𝛾)which consists of natural transformations 𝜃 : 𝐹⇒ 𝐺, compatible

with 𝛽 and 𝛾. Then, it is not hard to see that Tngco(Mndco(C)) = Mndco(Tngco(C)).

Theorem 2.73. If C is a 2-category which admits the construction of algebras, so does the
2-category Tng(C) of tangent objects of C. Moreover, if (X,T) is a tangent object of C and
(𝑆, 𝛼) is a formal tangent monad of (X,T), then the object Alg(𝑆) ∈ C is also a tangent
object of C and the right adjoint morphism𝑈 : (Alg(𝑆),T(𝑆)) → (X,T) is a strict tangent
morphism.

Proof. First, notice that by definition the 2-functor Alg : Mnd(C) → C is a right

adjoint, thus it preserves limits. Similarly, the 2-functor Inc : C → Mnd(C) which

sends X ∈ C to (X, 1) is also a right adjoint, as proved in [56, Theorem 1]. In

particular, it is the right adjoint of the 2-functor Mnd(C) → C which sends a

pair (X, 𝑆) to X. So, also Inc is 2-pullback preserving and therefore, Inc ⊣ Alg
forms an adjunction in 2CatT-cts. As a 2-functor, Tng preserves adjunctions, thus



86

Tng(Inc) : Tng(C) ⇆ TngMnd(C) : Tng(Alg) is an adjunction. Finally, the 2-category

TngMnd(C) of tangent monads is equivalent to the 2-category MndTng(C) of formal

monads in the 2-category of tangent objects of C. This proves that Tng(C) admits

the construction of algebras.

To prove that the right adjoint 𝑈 : (Alg(𝑆),T(𝑆)) → (X,T) is a strict tangent

morphism, first let’s recall the construction of the adjunction 𝐹 : X ⇆ Alg(𝑆) : 𝑈
associated to a generic formal monad, as illustrated by Street’s original paper. By

definition, the 2-functors Alg and Inc form an adjunction Inc ⊣ Alg, whose counit, for

every formal monad 𝑆 over an objectX, is a morphism of monads (Alg(𝑆), 1Alg(𝑆)) →
(X, 𝑆), where 1Alg(𝑆) denotes the trivial formal monad over Alg(𝑆). In particular,

the underlying 1-morphism of the counit is the morphism 𝑈 : Alg(𝑆) → X, which

represents the right adjoint in the adjunction 𝐹 ⊣ 𝑈 , associated with the formal

monad 𝑆. Keeping in mind the origin of this right adjoint 𝑈 , notice that the

counit of the induced adjunction Alg : Tng(C)⇆ Mnd(Tng(C)) : Inc is precisely given

by Tng(𝜀). By definition, given a natural transformation 𝜃 : 𝐹 ⇒ 𝐺 from a (2-

pullback preserving) 2-functor 𝐹 : C → C′ to another 2-functor 𝐺 : C → C′, the

corresponding natural transformation Tng(𝜃) : Tng(𝐹) ⇒ Tng(𝐺) is defined, for

every tangent object (X,T) of C, as the tangent morphism (𝐹X, 𝐹T) → (𝐺X, 𝐺T),
whose underlying 1-morphism is 𝜃 : 𝐹X → 𝐺X. Interestingly, the distributive

law is just the identity, since 𝜃(𝐹T) = (𝐺T)𝜃 on the nose. In short, every natural

transformation 𝜃 is sent by Tng to a strict tangent natural transformation. In

particular, this applies to the counit of the adjunction Inc ⊣ Alg and therefore, the

right adjoint𝑈 : (Alg(𝑆),T(𝑆)) → (X,T) is a strict tangent morphism. □

Remark 2.74. One of the key facts employed in the proof of Theorem 2.73 is that

TngMnd(C) ≅ Mnd(Tng(C)). One could wonder if, assuming that C admits the

construction of algebras, then also Tngco(C)will admit this construction. However,

as pointed out in Remark 2.72, Tngco(Mnd(C)) is not isomorphic to Mnd(Tngco(C)).

When C is the 2-category Cat of categories, Cockett, Lemay, and Lucyshyn-

Wright already showed (cf. [12, Proposition 20]) that the category of algebras Alg(𝑆)
of a tangent monad (𝑆, 𝛼) over a tangent category (X,T) is also a tangent category

for which the forgetful functor 𝑈 : Alg(𝑆) → X preserves the tangent structure

strictly. Concretely, the tangent structure T(𝑆) over the category of algebras Alg(𝑆)
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of a tangent monad (𝑆, 𝛼) is so defined:

tangent bundle morphism The tangent bundle morphism T(𝑆) : Alg(𝑆) → Alg(𝑆)
sends and algebra 𝐴 of 𝑆 with structure map 𝜃 : 𝑆𝐴 → 𝐴 to the algebra T𝐴
with structure map:

𝑆T𝐴 𝛼−→ T𝑆𝐴 T𝜃−−→ T𝐴

Moreover, it sends a morphism 𝑓 : 𝐴→ 𝐵 of algebras of 𝑆 to T 𝑓 ;

while the projection, the zero morphism, the sum morphism, the vertical lift, and

the canonical flip are defined by the corresponding natural transformations of T.

When T has negatives, so does T(𝑆), with negation 𝑛 as in T.

In the next proposition, we show that this construction is precisely the one

obtained by Theorem 2.73 in the special case of C = Cat, that is the 2-functor

Alg : TngMnd→ TngCat which sends a tangent monad (𝑆, 𝛼) to the tangent category

(Alg(𝑆),T(𝑆)) is precisely the algebra 2-functor, right adjoint to the inclusion functor

Inc.

Proposition 2.75. The 2-category TngCat of tangent categories admits the construction
of algebras. Moreover, the Eilenberg-Moore object (Alg(𝑆),T(𝑆)) associated with a tangent
monad (𝑆, 𝛼) over a given tangent category (X,T) is precisely the tangent category described
by Cockett, Lemay, and Lucyshyn-Wright in [15].

Proof. First, as proved by Street in [56, Theorem 7], notice that the 2-category

Cat of categories admits the construction of algebras and that the 2-functor Alg
sends a monad to the corresponding Eilenberg-Moore category. Thanks to The-

orem 2.73, Tng(Cat) also admits the construction of algebras. However, as noticed

in Example 2.61, Tng(Cat) is the 2-category TngCat of tangent categories.

In order to prove the second part of this result, recall the definition of the 2-

functor Alg : Mnd→ Cat. Alg sends a morphism of monads (𝐹, 𝛼) : (X, 𝑆) → (X, 𝑆),
formed by a functor 𝐹 : X→ X′ together with a natural transformation 𝛼 : 𝑆′ ◦ 𝐹⇒
𝐹 ◦ 𝑆, to the functor Alg(𝐹, 𝛼) which sends a algebra 𝐴 of 𝑆 with structure map

𝜃 : 𝑆𝐴→ 𝐴, to the algebra 𝐹𝐴 of 𝑆′ with structure map:

𝑆′𝐹𝐴
𝛼−→ 𝐹𝑆𝐴

𝐹𝜃−−→ 𝐹𝐴
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Moreover, Alg sends a natural transformation 𝜑 : (𝐹, 𝛼) ⇒ (𝐺, 𝛽) between two

morphisms of monads (𝐹, 𝛼), (𝐺, 𝛽) : (X, 𝑆) → (X′, 𝑆′), to the natural transforma-

tion Alg(𝐹, 𝛼) ⇒ Alg(𝐺, 𝛽), defined by 𝜑. Now, recall that the 2-functor:

Alg : Mnd(TngCat) → TngCat

defined in Theorem 2.73, under the identification Mnd(TngCat) = TngMnd, sends a

tangent object (X,T; 𝑆, 𝛼)of Mnd, whose tangent bundle morphism (T, 𝛼) : (X, 𝑆) →
(X, 𝑆) is given by the tangent bundle functor T: X → X together with the dis-

tributive law 𝛼 : 𝑆 ◦T⇒ T◦𝑆, to the tangent object (Alg(X, 𝑆),Alg(T)). The tangent

bundle morphism is given by Alg(T, 𝛼)which sends an algebra𝐴 of 𝑆with structure

map 𝜃 : 𝑆𝐴→ 𝐴 to the algebra T𝐴 with structure map:

𝑆T𝐴 𝛼−→ T𝑆𝐴 T𝜃−−→ T𝐴

Moreover, it sends a morphism 𝑓 : 𝐴 → 𝐵 of algebras of 𝑆 to T 𝑓 . Finally, all the

natural transformations 𝑝, 𝑧, 𝑠, 𝑙, and 𝑐 are precisely given by the corresponding

natural transformations of T. □

Remark 2.76. Proposition 2.75 explains why Tngco(C) does not admit the construc-

tion of algebras. Take C to be the 2-category Cat of categories and a formal monad

(𝑆, 𝛽) over Tngco(Cat), which consists of a formal monad 𝑆 over a category X, to-

gether with a colax distributive law 𝛽 : T◦𝑆⇒ 𝑆 ◦T. Now, let 𝐴 be an algebra with

structure map 𝑆𝐴→ 𝐴 of 𝑆. In Proposition 2.75, in order to lift the tangent struc-

ture to Alg(𝑆), we employed the distributive law 𝛼 : 𝑆 ◦ T⇒ T ◦ 𝑆 and defined the

tangent bundle of 𝐴 as the algebra T𝐴 with structure map 𝑆T𝐴 𝛼−→ T𝑆𝐴 T𝜃−−→ T𝐴.

However, the colax distributive law 𝛽 is pointing in the wrong direction.



Chapter 3

The geometric theories of an operad

In the previous chapter, we explored some important examples (Examples 2.10, 2.13,

and 2.14) of models of geometry described using tangent category theory. These

examples have in common that they represent the geometry of commutative and

point-wise spaces, like affine schemes or smooth manifolds. The first main goal

of this thesis is to show that tangent category theory applies to a larger family

of geometries, including algebraic non-commutative geometry. To construct these

examples, we employ the concept of operad and we show that every algebraic

operad generates two tangent categories: the algebraic and the geometric tangent

categories of an operad.

We start in Section 3.1 by recalling the tangent category of affine schemes and

by discussing the motivation which brought us to employ operad theory to explore

new kinds of geometries. In Section 3.2, we review the definition of an operad

and in Section 3.3 we recall the notion of an algebra over an operad. Section 3.4 is

dedicated to proving that the monad associated with an algebraic operad carries

the structure of a coCartesian differential monad. Section 3.5 is entirely dedicated

to the algebraic tangent category of an operad and to classifying its vector fields

(Section 3.5.1) and to prove the functoriality of the operation which sends an op-

erad to its algebraic tangent category (Section 3.5.2). Similarly, in Section 3.6, we

introduce the geometric tangent category of an operad and we classify its vector

fields (Section 3.6.1) and discuss the functoriality of the operation which sends an

operad to its geometric tangent category (Section 3.6.2).

Figure 3.1 displays the concept map of this chapter.
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Figure 3.1: The concept map of the chapter

3.1 Motivation

One of the main goals of this thesis is to employ tangent category theory in the

study of noncommutative geometry. The original idea of noncommutative geo-

metry is to treat associative, not necessarily commutative, algebras as geometric

spaces. Morally this resembles the approach of algebraic geometry, which looks

at commutative and unital rings as affine schemes. The starting point of our work

is the paper [18] in which Cruttwell and Lemay show how to construct a tangent

structure to capture some key geometric features of affine schemes. In particular,

they prove that the opposite of the category of unital and commutative algebras

cAlgop
over a commutative and unital ring 𝑅 comes equipped with the following

tangent structure:

tangent bundle functor The tangent bundle functor T: cAlgop → cAlgop
sends an

algebra 𝐴 to the symmetric algebra of the module of Kähler differentials, that

is T𝐴 := S𝐴Ω𝐴. Concretely, such an algebra is generated by all the elements

𝑎 of 𝐴 together with the symbols d𝑎, for every 𝑎 ∈ 𝐴, satisfying the following
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relations:

𝑎 · 𝑏 = 𝑎𝑏

d(𝑟𝑎 + 𝑠𝑏) = 𝑟d𝑎 + 𝑠d𝑏

d(𝑎𝑏) = 𝑎d𝑏 + 𝑏d𝑎

where · represents the multiplication of T𝐴 and the juxtaposition the one of

𝐴; for every 𝑎, 𝑏 ∈ 𝐴 and every 𝑟, 𝑠 ∈ 𝑅. Moreover, T sends a morphism

of algebras 𝑓 : 𝐴 → 𝐵 to the morphism T 𝑓 of algebras which sends each

generator 𝑎 ∈ 𝐴 to 𝑓 (𝑎) and each d𝑎 to d 𝑓 (𝑎);

projection The projection 𝑝 : idcAlgop ⇒ T, regarded as a morphism of algebras,

sends each 𝑎 ∈ 𝐴 to itself;

zero morphism The zero morphism 𝑧 : T ⇒ idcAlgop , regarded as a morphism of

algebras, sends each generator 𝑎 ∈ 𝐴 to itself, and each d𝑎 to 0;

𝑛-fold pullback The 𝑛-fold pullback of the projection along itself, in the category

cAlg corresponds to the pushout T𝑛 . Concretely, T𝑛𝐴 is the tensor product

of T𝐴 over 𝐴 𝑛-times, where the 𝐴-module structure of T𝐴 is induced by

the projection. Alternatively, T𝑛𝐴 can be described as the commutative and

unital algebra generated by all elements 𝑎 of 𝐴 and symbols d1𝑎, . . . , d𝑛𝑎,
satisfying the following relations:

𝑎 · 𝑏 = 𝑎𝑏

d𝑘(𝑟𝑎 + 𝑠𝑏) = 𝑟d𝑘𝑎 + 𝑠d𝑘𝑏

d𝑘(𝑎𝑏) = 𝑎d𝑘𝑏 + 𝑏d𝑘𝑎

for every 𝑎, 𝑏 ∈ 𝐴, 𝑟, 𝑠 ∈ 𝑅, and 𝑘 = 1, . . . , 𝑛;

sum morphism The sum morphism 𝑠 : T ⇒ T2, regarded as a morphism of al-

gebras, sends each generator 𝑎 ∈ 𝐴 to itself and each d1𝑎 to d1𝑎 + d2𝑎. In the

equivalent description of T2𝐴 as the tensor product T𝐴 ⊗𝐴 T𝐴, d1𝑎 + d2𝑎 is

represented by d𝑎 ⊗ 1 + 1 ⊗ d𝑎, 1 being the unit of 𝐴;

vertical lift The vertical lift 𝑙 : T2⇒ T, regarded as a morphism of algebras, sends

each generator 𝑎 ∈ 𝐴 to itself, each d𝑎 and each d′𝑎 to 0, and each d′d𝑎 to d𝑎,
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where d′ denotes the Kähler differentials associated to the second T in the

composition T2 = T ◦ T;

canonical flip The canonical flip 𝑐 : T2⇒ T2
, regarded as a morphism of algebras,

sends each generator 𝑎 ∈ 𝐴 to itself, each d𝑎 to d′𝑎, each d′𝑎 to d𝑎, and each

d′d𝑎 to d′d𝑎.

Moreover, since 𝑅 has negatives, this tangent structure has also negatives given by:

negation The negation 𝑛 : T ⇒ T, regarded as a morphisms of algebras, sends

each generator 𝑎 ∈ 𝐴 to itself and each d𝑎 to −d𝑎.

We refer to the tangent category just described as the geometric tangent category
of affine schemes.

3.2 Operads: the factories of algebraic objects

Our first goal is to generalize this construction to other kinds of algebraic objects,

like associative algebras. This will produce the first example of a tangent cat-

egory which captures some key geometric features of algebraic noncommutative

geometry. This is of course far from being an exhaustive description of noncom-

mutative geometry with tangent category theory. However, it opens the doors to a

new exploration and builds the basis for future work in this direction.

In this section we extend Cruttwell and Lemay’s construction to a large family

of algebraic objects: the algebras of an operad. To put it in a slogan: operads are
mathematical factories of algebraic objects. In this sense, operads are related to monads,

as we will soon discuss. Informally, an algebraic object 𝐴 is given by an object, e.g.

a set, a space, or a module, together with a list of operations 𝜇, which take 𝑛 inputs

from 𝐴 and return a single output in 𝐴. These operations satisfy some relations.

For example, an associative algebra is an 𝑅-module together with an operation 𝜇

which takes two inputs of 𝐴 and returns an output of 𝐴 and such that, for every

𝑎, 𝑏, and 𝑐 of 𝐴, 𝜇(𝑎, 𝜇(𝑏, 𝑐)) = 𝜇(𝜇(𝑎, 𝑏), 𝑐). One can start thinking of such a 𝜇 as a
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tree:

𝜇

Then, the associativity relation can be expressed as an equation between trees:

𝜇

𝜇

=

𝜇

𝜇

Notice that in order to express such a relation one needs a composition of trees,

that is, given two trees:

𝜇 𝜈

the first one with 𝑚 inputs and the second one with 𝑛 inputs, we want to compose

𝜈 with 𝜇 along the 𝑘-th input of 𝜇:

𝜇

𝜈
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More generally, if 𝜇1, . . . , 𝜇𝑚 are trees with 𝑘1, . . . , 𝑘𝑚 inputs, respectively, and 𝜇 is

a tree with 𝑚 inputs, we want to be able to compose each 𝜇𝑖 with 𝜇 along the 𝑖-th

input of 𝜇. We will represent the resulting tree with 𝑘1 + . . . + 𝑘𝑚 inputs by:

𝜇(𝜇1, . . . , 𝜇𝑚)

or by:

𝛾(𝜇;𝜇1, . . . , 𝜇𝑚)

Notice that such an operation 𝛾 is associative in the following sense:

𝜇
(︂
𝜇1(𝜈(1)1 , . . . , 𝜈(1)

𝑘1
), . . . , 𝜇𝑚(𝜈(𝑚)1 , . . . , 𝜈(𝑚)

𝑘𝑚
)
)︂
=

𝜇(𝜇1, . . . , 𝜇𝑚)
(︂
𝜈(1)1 , . . . , 𝜈(1)

𝑘1
, . . . , 𝜈(𝑚)1 , . . . , 𝜈(𝑚)

𝑘𝑘

)︂
where the left-hand side of this equation is the tree formed by composing each 𝜇𝑖

with the trees 𝜈(𝑖)1 , . . . , 𝜈
(𝑖)
𝑘𝑖

and then composing the resulting trees 𝜇𝑖
(︂
𝜈(𝑖)1 , . . . , 𝜈

(𝑖)
𝑘𝑖

)︂
with 𝜇 along the corresponding inputs, while the right-hand side represents the

tree formed by first composing each 𝜇1, . . . , 𝜇𝑚 with 𝜇 and then composing the 𝜈(𝑖)
𝑗𝑖

to the corresponding input of 𝜇(𝜇1, . . . , 𝜇𝑚).
Secondly, to be able to abstractly represent the equation that expresses associ-

ativity for the binary tree 𝜇, we also need to have a special tree 1 with 1 input and

1 output which plays the role of the identity, that is such that:

1(𝜇) = 𝜇 = 𝜇(1, . . . , 1)

for any other tree 𝜇 with 𝑚 inputs and 1 output. Thanks to the operation 𝛾 and the

unit 1, we can represent the associativity condition by the equation:

𝜇(𝜇, 1) = 𝜇(1, 𝜇) (3.2.1)

Finally, to express symmetries we also need an action of the symmetric groups over

the spaces of trees. To understand this, consider commutative algebras. These are

algebraic objects equipped with a binary operation 𝜇 which satisfies the associativ-

ity condition of Equation (3.2.1), together with the condition 𝜇(𝑎, 𝑏) = 𝜇(𝑏, 𝑎). The
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idea is to change the tree 𝜇 into a new tree 𝜇op
:

𝜇

where the two inputs have been shuffled by the permutation 𝜏 = (1 2). In general,

given a tree 𝜇 with 𝑚 inputs and a permutation 𝜎 ∈ S𝑚 over 𝑚 elements, we denote

by 𝜇 · 𝜎 the tree with 𝑚 inputs obtained by shuffling the 𝑚 inputs of 𝜇 with the

permutation 𝜎. So, in our example, we write 𝜇op = 𝜇 · 𝜏. So, the commutation

condition reads as:

𝜇 · 𝜏 = 𝜇

In a nutshell, this shows that every algebraic object can be axiomatized by a se-

quence {𝒫(𝑛)} where 𝒫(𝑛) is an object which collects all trees with 𝑛 inputs, with

an associative operation 𝛾 : 𝒫(𝑚) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑚) → 𝒫(𝑘1 + . . . + 𝑘𝑚)which

composes trees, with a unit 1𝒫 ∈ 𝒫(1) which plays the role of the identity, and

with a right action 𝒫(𝑛) × S𝑛 → 𝒫(𝑛) of the symmetric group S𝑛 which shuffles

the 𝑛 inputs of the trees in 𝒫(𝑛).
This is precisely the definition of an operad. For a complete introduction to the

theory of operads, we advise the reader to consult [46]. Let’s recall the definition,

beginning with establishing some useful notation.

Notation 3.1. Symmetric monoidal categories are denoted by the letter E and,

for the sake of simplicity, in the computations, we treat them as strict monoidal

categories equipped with a symmetric braiding.

A sequence of objects in a symmetric monoidal category E is denoted by {𝐸(𝑛)}.
The symmetric group over 𝑛 distinct elements is denoted by S𝑛 and the right action

over the entries of a symmetric sequence by 𝜌. The 𝑛-fold tensor product𝐴⊗ . . .⊗𝐴
of𝐴with itself is denoted by𝐴⊗𝑛 , and the left action of S𝑛 on𝐴⊗𝑛 via the symmetric

braiding is denoted by 𝜆.



96

Definition★ 3.2. An operad over a symmetric monoidal category E consists of a sequence
{𝒫(𝑛)} of objects ofE together with a collection of morphisms 𝛾𝑚;𝑘1 ,...,𝑘𝑚 : 𝒫(𝑚)⊗𝒫(𝑘1)⊗
. . .⊗𝒫(𝑘𝑚) → 𝒫(𝑘1+. . .+𝑘𝑚) for every tuple of non-negative integers𝑚; 𝑘1, . . . , 𝑘𝑚 ∈ N,
called the multiplication maps of 𝒫, and a morphism 1 → 𝒫(1), called the unit of 𝒫,
satisfying the following properties:

𝒫(𝑚) ⊗𝒫(𝑘1) ⊗𝒫(𝑖(1)1 ) ⊗ . . . ⊗𝒫(𝑖(1)
𝑗𝑘1
) ⊗ . . . ⊗𝒫(𝑘𝑚) ⊗𝒫(𝑖(𝑚)1 ) ⊗ . . . ⊗𝒫(𝑖(𝑚)

𝑗𝑘𝑚
) 𝒫(𝑚) ⊗𝒫(𝑖(1)1 + . . . + 𝑖

(1)
𝑗𝑘1
) ⊗ . . . ⊗𝒫(𝑖(𝑚)1 + . . . + 𝑖(𝑚)

𝑗𝑘𝑚
)

𝒫(𝑚) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑚) ⊗𝒫(𝑖(1)1 ) ⊗ . . . ⊗𝒫(𝑖(1)
𝑗𝑘1
) ⊗ . . . ⊗𝒫(𝑖(𝑚)1 ) ⊗ . . . ⊗𝒫(𝑖(𝑚)

𝑗𝑘𝑚
)

𝒫(𝑘1 + . . . + 𝑘𝑚) ⊗𝒫(𝑖(1)1 ) ⊗ . . . ⊗𝒫(𝑖(1)
𝑗𝑘1
) ⊗ . . . ⊗𝒫(𝑖(𝑚)1 ) ⊗ . . . ⊗𝒫(𝑖(𝑚)

𝑗𝑘𝑚
) 𝒫(𝑖(1)1 + . . . + 𝑖

(1)
𝑗𝑘1
+ . . . + 𝑖(𝑚)1 + . . . + 𝑖(𝑚)

𝑗𝑘𝑚
)

𝒫(𝑚)⊗𝛾⊗...⊗𝛾

𝛾

≅

𝛾⊗𝒫(𝑖(1)1 )⊗...⊗𝒫(𝑖
(1)
𝑗𝑘1
)⊗...⊗𝒫(𝑖(𝑚)1 )⊗...⊗𝒫(𝑖

(𝑚)
𝑗𝑘𝑚
)

𝛾

𝒫(1) ⊗𝒫(𝑛) 𝒫(𝑛)

1 ⊗𝒫(𝑛)

𝜂⊗𝒫(𝑛)𝑎

𝛾

≅

𝒫(𝑛) ⊗𝒫(1) 𝒫(𝑛)

𝒫(𝑛) ⊗ 1

𝒫(𝑛)⊗𝜂

𝛾

≅

Moreover, for each 𝑛 ∈ N, there is a right action of the symmetric group S𝑛 on 𝒫(𝑛). More
precisely, if Aut(𝒫(𝑛)) denotes the group of automorphisms of 𝒫(𝑛), then there is a group
homomorphism 𝜌𝑛 : Sop

𝑛 → Aut(𝒫(𝑛)), where Sop
𝑛 denotes the group of permutations over

𝑛 elements and composition, the opposite of the composition of S𝑛 . The multiplication maps
are equivariant with respect to 𝜌, that is:

𝒫(𝑚) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑚) 𝒫(𝑚) ⊗𝒫(𝑘𝜎(1)) ⊗ . . . ⊗𝒫(𝑘𝜎(𝑚))

𝒫(𝑘1 + . . . + 𝑘𝑚) 𝒫(𝑘1 + . . . + 𝑘𝑚)

𝜌(𝜎)⊗𝜀(𝜎)

𝛾 𝛾

𝜌(𝜎𝑘1 ,...,𝑘𝑚 )

where 𝜎 ∈ S𝑚 and 𝜎𝑘1 ,...,𝑘𝑚 ∈ S𝑘1+...+𝑘𝑚 denotes the permutation which shuffles each block of
𝑘1, 𝑘2, . . . , 𝑘𝑚 elements via 𝜎 as each block was a single element. Moreover, 𝜀(𝜎) represents
the action of the symmetric group via the symmetric braiding. Finally:

𝒫(𝑚) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑚) 𝒫(𝑚) ⊗𝒫(𝑘𝜎(1)) ⊗ . . . ⊗𝒫(𝑘𝜎(𝑚))

𝒫(𝑘1 + . . . + 𝑘𝑚) 𝒫(𝑘1 + . . . + 𝑘𝑚)

𝒫(𝑚)⊗𝜌(𝜎1)⊗...⊗𝜌(𝜎𝑚)

𝛾 𝛾

𝜌(𝜎1⊕𝜎2⊕···⊕𝜎𝑚)
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where 𝜎1 ⊕ · · · ⊕ 𝜎𝑚 denotes the permutation over 𝑘1 + . . . + 𝑘𝑚 elements which acts on
each block of 𝑘1, 𝑘2, . . . , 𝑘𝑚 elements as 𝜎1, 𝜎2, . . . , 𝜎𝑚 , respectively.

Remark 3.3. It is important to point out that there are many alternative but equi-

valent characterizations of (symmetric) operads, among which operads are defined

as monoids in the symmetric monoidal category of symmetric sequences, or as

algebras of a monad. We invite the interested reader to consult [46, Section 5],

which explores different approaches.

Notation 3.4. For operads in a symmetric monoidal category E we adopt the font

𝒫. We refer to operads over the symmetric monoidal category of 𝑅-modules, for a

commutative and unital ring 𝑅, as algebraic operads. For an algebraic operad 𝒫,

we denote the generic element of 𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 by (𝜇; 𝑎1, . . . , 𝑎𝑛) or, sometimes by

(𝜇; 𝑎⃗). In particular, this denotes an orbit of the right action of the symmetric group

of the representative of 𝜇 ⊗ 𝑎1 ⊗ . . . ⊗ 𝑎𝑛 .

The unit of an operad 𝒫 is denoted by 1𝒫 or simply by 1, the multiplication by

𝛾𝒫 or just 𝛾, and the associated monad by S𝒫. When the operad is algebraic, we

denote the multiplication map by:

𝜇(𝜇1, . . . , 𝜇𝑛) := 𝛾(𝜇;𝜇1, . . . , 𝜇𝑛)

Usually, one requires the symmetric monoidal category E to have colimits. This

assumption will be clear in a moment. For now, let’s clarify the assumptions we

need for our construction in the following convention:

Convention 3.5. In the following, we denote by E a strict symmetric monoidal

category whose tensor product is denoted by ⊗ and unit by 1 with countable

colimits and for which the tensor product ⊗ commutes with countable colimits in

each variable.

As proved in [48, Proposition 4.7], under Convention 3.5, an operad 𝒫 of E

generates a monad defined as follows:

endofunctor The endofunctor S𝒫 : E→ E, called the Shur functor of 𝒫, is defined

as follows:

S𝒫(𝑉) :=
⨁︂
𝑛∈N

𝒫(𝑛) ⊗S𝑛 𝑉⊗𝑛
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where ⊗S𝑛 denotes the coequalizer 𝒫(𝑛) ⊗ 𝑉⊗𝑛/S𝑛 between the right action

of S𝑛 acting over 𝒫(𝑛) and the left action of S𝑛 over 𝑉⊗𝑛 by shuffling via the

symmetric braiding;

multiplication The multiplication 𝛾 : S2
𝒫
⇒ S𝒫 is induced by the maps 𝛾 : 𝒫(𝑛) ⊗

𝒫(𝑘1) ⊗ . . . ⊗ 𝒫(𝑘𝑛) → 𝒫(𝑘1 + . . . + 𝑘𝑛), which lift to the coequalizer being

equivariant under the action of the symmetric groups;

unit The unit 𝜂 : idE⇒ S𝒫 is induced by the unit 𝜂 : 1→ 𝒫(1).

Our discussion will mostly focus on algebraic operads, which are operads over the

symmetric monoidal category Mod𝑅 of modules over a commutative and unital

ring 𝑅. In this case, we can interpret S𝒫𝑉 in a pointwise fashion as the 𝑅-module

generated by elements of the form:

(𝜇; 𝑥1, . . . , 𝑥𝑚)

formed by trees with𝑚 inputs 𝜇 together with𝑚 elements 𝑥1, . . . , 𝑥𝑚 of𝑉 , fufilling

the following equivariant relation:

(𝜇 · 𝜎; 𝑥1, . . . , 𝑥𝑚) = (𝜇; 𝑥𝜎(1), . . . , 𝑥𝜎(𝑚))

Similarly, S2
𝒫
𝑉 is the 𝑅-module generated by elements:(︂

𝜇; (𝜇1; 𝑥(1)1 , . . . , 𝑥
(1)
𝑘1
), . . . , (𝜇𝑚; 𝑥(𝑚)1 , . . . , 𝑥

(𝑚)
𝑘𝑚
)
)︂

satisfying a similar equivariant relation. So, the multiplication map is defined by:

𝛾
(︂
𝜇; (𝜇1; 𝑥(1)1 , . . . , 𝑥

(1)
𝑘1
), . . . , (𝜇𝑚; 𝑥(𝑚)1 , . . . , 𝑥

(𝑚)
𝑘𝑚
)
)︂

:=

=

(︂
𝜇(𝜇1, . . . , 𝜇𝑚); 𝑥(1)1 , . . . , 𝑥

(1)
𝑘1
, . . . , 𝑥

(𝑚)
1 , . . . , 𝑥

(𝑚)
𝑘𝑚

)︂
The unit map 𝜂 is defined as follows:

𝜂(𝑥) = (1𝒫; 𝑥)

for any 𝑥 ∈ 𝑉 . For now, we are going to keep the discussion more general andEwill

be considered a generic symmetric monoidal category satisfying Convention 3.5.
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Example 3.6. Consider an associative and unital algebra 𝐴 over a commutative and

unital ring 𝑅. Then, we can define the operad 𝐴• which is an operad over the

monoidal category Mod𝑅, and whose sequence 𝐴•(𝑛) is the trivial 𝑅-module 0 for

every 𝑛 ≠ 1 and 𝐴•(1) = 𝐴. The multiplication and the unit of 𝐴• is induced by the

multiplication and the unit of 𝐴. So, the corresponding monad S𝐴• is the monad

which sends an 𝑅-module 𝑉 to 𝐴 ⊗ 𝑉 .

More generally, given a monoid object 𝐴 of the symmetric monoidal category

E, 𝐴• is the operad over Ewhose only non-trivial entry (0 represents here the initial

object of E) is 𝐴•(1) = 𝐴 and whose multiplication and unit are induced by the ones

of 𝐴. So, S𝐴•𝑉 = 𝐴 ⊗ 𝑉 .

Example 3.7. The associative operad 𝒜𝓈𝓈 is the algebraic operad generated by the

binary tree 𝜇, satisfying Relation (3.2.1). Concretely, 𝒜𝓈𝓈(𝑛) is the group ring 𝑅[S𝑛],
the multiplication sends (𝜎; 𝜎1, . . . , 𝜎𝑚) ∈ 𝑅[S𝑚] ⊗ 𝑅[S𝑘1] ⊗ . . . ⊗ 𝑅[S𝑘𝑚 ] to the

permutation which acts on 𝑀 : = 𝑘1 + . . . + 𝑘𝑚 elements as follows: the first 𝑘𝜎(1)

elements are shuffled by 𝜎𝜎(1), the second 𝑘𝜎(2) elements are shuffled by 𝜎𝜎(2) and

so on up to the last 𝑘𝜎(𝑚) elements that are shuffled by 𝜎𝜎(𝑚). Finally, the unit is the

unique generator of 𝒜𝓈𝓈(1) = 𝑅[S1] = 𝑅[1𝒜𝓈𝓈].
To justify this presentation of 𝒜𝓈𝓈, notice that 𝒜𝓈𝓈(2) is generated by the two

binary trees 𝜇 and 𝜇op
. Similarly, 𝒜𝓈𝓈(3) is generated by the ternary trees 𝜇(𝜇, 1)

and 𝜇(1, 𝜇), together with all the possible permutations of the inputs of these trees.

However, because of the associativity relation, we have that 𝜇(𝜇, 1) = 𝜇(1, 𝜇), so

the remaining trees after the imposition of this relation must be in bĳection with

S3. Similarly, the generators of 𝒜𝓈𝓈(𝑛) are in bĳection with the elements of S𝑛 .

The operad 𝓊𝒜𝓈𝓈 is also generated by 𝜇 ∈ 𝓊𝒜𝓈𝓈(2) satisfying Relation (3.2.1),

and by a 0-ary operation 𝜂 ∈ 𝓊𝒜𝓈𝓈(0), for which, 𝜇(𝜂, 1) = 1 = 𝜇(1, 𝜂). Concretely,

𝓊𝒜𝓈𝓈(𝑛) = 𝒜𝓈𝓈(𝑛) for every 𝑛 > 0 and 𝓊𝒜𝓈𝓈(0) = 𝑅.

Example 3.8. The commutative operad 𝒞ℴ𝓂 is the algebraic operad generated

by the binary tree 𝜇 which satisfies the associativity condition of Equation (3.2.1)

together with𝜇op = 𝜇 ·𝜏 = 𝜇. To construct𝒞ℴ𝓂, one can start with𝒜𝓈𝓈 and quotient

by the relation 𝜇op = 𝜇. So, 𝒞ℴ𝓂(2) = 𝑅. 𝒞ℴ𝓂(3) is generated by 𝜇(𝜇, 1) = 𝜇(1, 𝜇).
Moreover, for any permutation 𝜎 ∈ S3, 𝜇(𝜇, 1) · 𝜎 is equivalent to one of the

following expressions: 𝜇(𝜇, 1), 𝜇op(𝜇, 1), 𝜇(𝜇op, 1), 𝜇op(𝜇op, 1). However, because
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of the identification 𝜇op = 𝜇, these are equal to 𝜇(𝜇, 1). So, also 𝒞ℴ𝓂(3) = 𝑅.

Similarly, for any 𝑛 > 0, 𝒞ℴ𝓂(𝑛) = 𝑅. For 𝑛 = 0, we have 𝒞ℴ𝓂(0) = 0. If we take

𝒞ℴ𝓂(1), then we obtain the operad 𝓊𝒞ℴ𝓂, which is the unitary and commutative

operad.

Example 3.9. The Lie operad ℒ𝒾ℯ is the algebraic operad generated by the binary

tree 𝜈 satisfying the following relations:

𝜈 + 𝜈 · 𝜏 = 0

𝜈(𝜈, 1) + 𝜈(𝜈, 1) · 𝜎 + 𝜈(𝜈, 1) · 𝜎2 = 0

where 𝜏 = (1 2) ∈ S2 and 𝜎 := (1 2 3) ∈ S3. For a more explicit presentation of

ℒ𝒾ℯ we refer the reader to [46, Section 13.2.3].

Example 3.10. The Poisson operad 𝒫ℴ𝒾𝓈 is the algebraic operad generated by two

binary trees 𝜇 and 𝜈, 𝜇 satisfying the same relations as the binary tree that generates

𝒞ℴ𝓂 and 𝜈 satisfying the same relations as the binary tree that generates ℒ𝒾ℯ.

Moreover, they satisfy the following compatibility:

𝜈(𝜇, 1) = 𝜇(1, 𝜈) + 𝜇(𝜈, 1) · 𝜎

where 𝜎 := (2 3) ∈ S3. Concretely, this relation reads as [𝑎𝑏, 𝑐] = 𝑎[𝑏, 𝑐] + [𝑎, 𝑐]𝑏,
for any 𝑎, 𝑏, 𝑐, where [, ] := 𝜈 and juxtaposition represents 𝜇.

Example 3.11. Suppose that E is also closed, that is it admits an internal Hom-

functor [, ]. Then, we can introduce the ℰ𝓃𝒹(𝑉) operad, for 𝑉 ∈ E, defined by

ℰ𝓃𝒹(𝑉)(𝑛) := [𝑉⊗𝑛 , 𝑉]. The multiplication is induced by the internal composition:

𝛾 : [𝑉⊗𝑚 , 𝑉] ⊗ [𝑉⊗𝑘1 , 𝑉] ⊗ . . . ⊗ [𝑉⊗𝑘𝑚 , 𝑉] → [𝑉⊗(𝑘1+...+𝑘𝑚), 𝑉]

and the unit is given by the internal identity morphism 1 ∈ [𝑉,𝑉].

3.3 Algebras of operads

So far we recalled and motivated the definition of an operad. At this point, we want

to point out that there are numerous generalizations of this concept, among which
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there are coloured operads (which are related to multicategories), non-symmetric

operads, planar operads, props, pros, and many others. We invite the reader to

consult [46, Chapter 5] for a list of some of these extensions. The next step is to

show that an operad generates algebraic objects. The main idea is to refer to the

algebraic theory of an operad as the category of representations of the operad. Let’s

briefly recall this notion (see [46, Chapter 5]).

Definition★ 3.12. An algebra of an operad 𝒫 consists of an object 𝐴 of E together with a
collection of morphisms:

𝜃𝑛 : 𝒫(𝑛) ⊗ 𝐴𝑛 → 𝐴

called structure maps of the algebra, compatible with the multiplication, the unit of the
operad, as follows:

𝒫(𝑚) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑚) ⊗ 𝐴⊗(𝑘1+...+𝑘𝑚) 𝒫(𝑘+. . . + 𝑘𝑚) ⊗ 𝐴⊗(𝑘1+...+𝑘𝑚)

𝒫(𝑚) ⊗𝒫(𝑘1) ⊗ 𝐴⊗𝑘1 ⊗ . . . ⊗𝒫(𝑘𝑚) ⊗ 𝐴⊗𝑘𝑚

𝒫(𝑚) ⊗ 𝐴⊗𝑚 𝐴

𝜃

𝛾⊗𝐴⊗(𝑘1+...+𝑘𝑚 )

≅

𝒫(𝑚)⊗𝜃⊗...⊗𝜃

𝜃

𝒫(1) ⊗ 𝐴 𝐴

1 ⊗ 𝐴

𝜂⊗𝐴

𝜃

≅

and satisfying the following equivariant condition with respect to the symmetric actions:

𝒫(𝑛) ⊗ 𝐴⊗𝑛 𝒫(𝑛) ⊗ 𝐴⊗𝑛

𝐴 𝐴

𝜌(𝜎)⊗𝜀(𝜎)

𝜃 𝜃

Thanks to the compatibility between 𝜃 and the operad structure, the relations

on the trees 𝜇 are reflected in the properties of the operations 𝜇 : 𝐴 ⊗ . . . ⊗ 𝐴→ 𝐴.
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Notation 3.13. For an algebra 𝐴 of an operad 𝒫, we denote by 𝜃 : S𝒫𝐴 → 𝐴 the

corresponding structure map and, when 𝒫 is algebraic, we adopt the convention

to write:

𝜇𝐴(𝑎1, . . . , 𝑎𝑛) := 𝜇(𝑎1, . . . , 𝑎𝑛) := 𝜃(𝜇; 𝑎1, . . . , 𝑎𝑛)

Example 3.14. Consider an associative and unital algebra 𝐴, then an algebra 𝑀 of

the operad 𝐴• has a unique non-trivial map 𝜃 : 𝐴 ⊗ 𝑀 → 𝑀, which is compatible

with the multiplication and the unit of 𝐴, that is:

(𝑎𝑏)(𝑥) = 𝑎(𝑏(𝑥))

1(𝑥) = 𝑥

So, 𝑀 is a left-module of 𝐴.

Example 3.15. Consider the operad 𝒜𝓈𝓈. An algebra 𝐴 of 𝒜𝓈𝓈 consists of an 𝑅-

module together with linear morphisms 𝜃 : 𝑅[S𝑛] ⊗ 𝐴⊗𝑛 → 𝐴. Since 𝒜𝓈𝓈 is

generated by the binary tree 𝜇, the algebraic structure of 𝐴 is fully specified by

𝜃2 : 𝑅[S2]⊗𝐴⊗𝐴→ 𝐴, which sends (𝜇; 𝑎, 𝑏) to 𝜇(𝑎, 𝑏) and (𝜇op; 𝑎, 𝑏) = (𝜇 ·𝜏; 𝑎, 𝑏) =
(𝜇; 𝑏, 𝑎) to 𝜇op(𝑎, 𝑏) = 𝜇(𝑏, 𝑎). Moreover, 𝜃3 : 𝑅[S3] ⊗ 𝐴 ⊗ 𝐴 ⊗ 𝐴 → 𝐴 sends

(𝜇(𝜇, 1); 𝑎, 𝑏, 𝑐) to 𝜇(𝜇(𝑎, 𝑏), 𝑐) and sends (𝜇(1, 𝜇); 𝑎, 𝑏, 𝑐) to 𝜇(𝑎, 𝜇(𝑏, 𝑐)). However,

since 𝜇(𝜇, 1) = 𝜇(1, 𝜇), we have that:

𝜇(𝜇(𝑎, 𝑏), 𝑐) = 𝜇(𝑎, 𝜇(𝑏, 𝑐))

So, 𝐴 is precisely an associative algebra.

Example 3.16. Consider the operad 𝒞ℴ𝓂. An algebra 𝐴 of 𝒞ℴ𝓂 consists of an

𝑅-module together with linear morphisms 𝜃 : 𝐴⊗𝑛 = 𝑅 ⊗ 𝐴⊗𝑛 → 𝐴. Since 𝒞ℴ𝓂

is generated by the binary tree 𝜇, the algebraic structure of 𝐴 is fully specified by

𝜃2 : 𝐴⊗𝐴→ 𝐴, which sends (𝜇; 𝑎, 𝑏) to 𝜇(𝑎, 𝑏) and (𝜇op; 𝑎, 𝑏) to 𝜇op(𝑎, 𝑏). However,

since 𝜇 = 𝜇op
we have that:

𝜇(𝑎, 𝑏) = 𝜇op(𝑎, 𝑏) = 𝜇(𝑏, 𝑎)

Using a similar argument of Example 3.15, we also conclude that 𝜇(𝜇(𝑎, 𝑏), 𝑐) =
𝜇(𝑎, 𝜇(𝑏, 𝑐)). So, 𝐴 is precisely a commutative algebra. When we consider the

operad 𝓊𝒞ℴ𝓂, then an algebra 𝐴 of 𝓊𝒞ℴ𝓂 is a unital and commutative algebra.
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Example 3.17. Consider the operad ℒ𝒾ℯ. An algebra 𝐴 of ℒ𝒾ℯ consists of an 𝑅-

module together with linear morphisms 𝜃 : 𝐴⊗𝑛 = ℒ𝒾ℯ(𝑛) ⊗ 𝐴⊗𝑛 → 𝐴. Since ℒ𝒾ℯ

is generated by the binary tree 𝜈, the algebraic structure of 𝐴 is fully specified by

𝜃2 : ℒ𝒾ℯ(2)⊗𝐴⊗𝐴→ 𝐴, which sends (𝜈; 𝑎, 𝑏) to 𝜈(𝑎, 𝑏). Moreover, since 𝜈+𝜈op = 0,

we have that 𝜃2(𝜈 + 𝜈op; 𝑎, 𝑏) is sent to 𝜈(𝑎, 𝑏) + 𝜈op(𝑎, 𝑏) = 0, so we have that:

𝜈(𝑏, 𝑎) = 𝜈op(𝑎, 𝑏) = −𝜈(𝑎, 𝑏)

Moreover, 𝜃3 : ℒ𝒾ℯ(3)⊗𝐴⊗𝐴⊗𝐴→ 𝐴 sends (𝜈(𝜈, 1)+𝜈(𝜈, 1) ·𝜎+𝜈(𝜈, 1) ·𝜎2; 𝑎, 𝑏, 𝑐)
to:

𝜈(𝜈(𝑎, 𝑏), 𝑐) + 𝜈(𝜈(𝑐, 𝑎), 𝑏) + 𝜈(𝜈(𝑏, 𝑐), 𝑎) = 0

which is the Jacobi identity. So, 𝐴 is precisely a Lie algebra.

Example 3.18. Adopting a similar argument as in Examples 3.16 and 3.17, one can

easily see that an algebra 𝐴 of the operad 𝒫ℴ𝒾𝓈 is an 𝑅-module equipped with two

binary operations 𝜇 and 𝜈, such that (𝐴, 𝜇) is a commutative algebra and (𝐴, 𝜈)
is a Lie algebra. Moreover, the structure map 𝜃3 : 𝒫ℴ𝒾𝓈(3) ⊗ 𝐴 ⊗ 𝐴 ⊗ 𝐴 → 𝐴

sends (𝜈(𝜇, 1); 𝑎, 𝑏, 𝑐) to 𝜈(𝜇(𝑎, 𝑏), 𝑐) and (𝜇(1, 𝜈)+𝜇(𝜈, 1) ·𝜎; 𝑎, 𝑏, 𝑐) to 𝜇(𝑎, 𝜈(𝑏, 𝑐))+
𝜇(𝜈(𝑎, 𝑐), 𝑏) and thanks to the relation 𝜈(𝜇, 1) = 𝜇(1, 𝜈) + 𝜇(𝜈, 1) · 𝜎 we have that:

𝜈(𝜇(𝑎, 𝑏), 𝑐) = 𝜇(𝑎, 𝜈(𝑏, 𝑐)) + 𝜇(𝜈(𝑎, 𝑐), 𝑏)

This implies that 𝐴 is a Poisson algebra.

Let’s introduce now morphisms of 𝒫-algebras.

Definition★ 3.19. Given two algebras 𝐴 and 𝐵 of an operad 𝒫 with structure maps 𝜃(𝐴)

and 𝜃(𝐵), respectively, a morphism of algebras 𝑓 : 𝐴→ 𝐵 consists of a morphism 𝑓 : 𝐴→ 𝐵

of E, compatible with the structure maps of 𝐴 and 𝐵, that is:

𝒫(𝑛) ⊗ 𝐴⊗𝑛 𝐴

𝒫(𝑛) ⊗ 𝐵⊗𝑛 𝐵

𝑓𝒫(𝑛)⊗ 𝑓 ⊗𝑛

𝜃(𝐴)

𝜃(𝐵)
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Algebras of an operad 𝒫 together with their morphisms form a category de-

noted by Alg𝒫.

In Section 2.4 we recalled that a monad is a machine which produces algebraic

objects and we also mentioned that every operad 𝒫 is associated with a monad S𝒫.

So, it is natural to wonder if the algebraic objects produced by the monad S𝒫 are

the same as the algebras of 𝒫. Indeed, an algebra of the monad S𝒫 consists of an

object 𝐴 of E together with a map S𝒫𝐴→ 𝐴, that is:⨁︂
𝑛∈N

𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 → 𝐴

By definition of coproduct, this is equivalent to a collection of morphisms𝜃𝑛 : 𝒫(𝑛)⊗
𝐴⊗𝑛 → 𝐴, compatible with the multiplication and the unit of the monad and

equivariant with respect to the symmetric actions. This last property comes dir-

ectly from the definition of ⊗S𝑛 . Finally, recall that the multiplication and the unit

of S𝒫 are induced by the multiplication and the unit of 𝒫, so it is easy to see that

an algebra of S𝒫 is precisely an algebra of 𝒫 and vice versa. Similarly, morphisms

of algebras of operads correspond to morphisms of algebras of the corresponding

monads, so we have that Alg𝒫 ≅ AlgS𝒫
.

3.4 The coCartesian differential monad of an operad

The main goal of this chapter is to associate each algebraic operad with a tangent

category which can be interpreted as a legitimate geometric theory of the operad.

The key step of our argument is to show that the monad associated with an operad

is a tangent monad. However, in order to obtain a tangent monad, we first need

a tangent structure on the base category E. For this purpose, in this section, we

focus on a special class of symmetric monoidal categories which carry a canonical

tangent structure. Let’s introduce this via the following convention.

Convention 3.20. We denote by E a symmetric monoidal category satisfying Con-

vention 3.5. We also assume that E has finite biproducts (see Example 2.11) and

that finite biproducts commute with the tensor product in each variable.

The archetypical example of such a monoidal category is the category of 𝑅-

modules over a commutative and unital ring 𝑅. When E = Mod𝑅 we use the
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convention to call operads over such an E, algebraic operads. This convention is the

one adopted by Loday and Vallette in [46].

The key ingredient is the presence of biproducts, which means that finite

products and finite coproducts exist and that the unique morphism between them

induced by universality is an isomorphism. As already discussed in Example 2.11,

a category with biproducts has a canonical tangent structure, called the tangent
structure induced by biproducts, denoted by

T

. Our goal consists of proving that

the monad associated with an operad is a tangent monad over the tangent category

induced by biproducts. Interestingly, when the base tangent category is induced

by biproduct, tangent monads are equivalent to a simpler concept, investigated by

Ikonicoff and Lemay in [30]: coCartesian differential monads. Let’s recall here this

notion.

Definition★ 3.21. LetX be a category with biproducts. Then, a coCartesian differential
monad over X consists of a monad 𝑆 over X together with a natural transformation
𝜕 : 𝑆 ⇒ 𝑆 ◦ T

, called the differential combinator, where
T

is the functor which sends
each object 𝑋 of X to 𝑋 ⊕ 𝑋 and each morphism 𝑓 : 𝑋 → 𝑌 to 𝑓 ⊕ 𝑓 , satisfying the
following conditions:

zero rule

𝑆𝐴 𝑆(𝐴 ⊕ 𝐴)

𝑆𝐴

𝑆𝜋1

𝜕

0

additive rule

𝑆𝐴 𝑆(𝐴 ⊕ 𝐴)

𝑆(𝐴 ⊕ 𝐴)

𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴) ⊕ 𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴) 𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴)

𝜕

𝑆(id𝐴⊕Δ)

𝜕

⟨𝑆(id𝐴⊕𝜄1),𝑆(id𝐴⊕𝜄2)⟩

+
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linear rule
𝑆𝐴 𝑆(𝐴 ⊕ 𝐴)

𝐴 𝐴 ⊕ 𝐴

𝜕

𝜂 𝜂

𝜄2

chain rule

𝑆2𝐴 𝑆(𝑆𝐴 ⊕ 𝑆𝐴) 𝑆2(𝐴 ⊕ 𝐴)

𝑆𝐴 𝑆(𝐴 ⊕ 𝐴)
𝜕

𝛾 𝛾

𝜕𝑆 𝑆(⟨𝑆𝜄1 ,𝜕⟩)

lift rule
𝑆(𝐴 ⊕ 𝐴) 𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴)

𝑆𝐴 𝑆(𝐴 ⊕ 𝐴)

𝜕

𝜕

𝑆(𝜋1⊕𝜋4)

𝜕

symmetry rule

𝑆𝐴 𝑆(𝐴 ⊕ 𝐴)

𝑆(𝐴 ⊕ 𝐴)

𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴) 𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴)

𝜕

𝜕

𝜕

𝜕

𝑆(id𝐴⊕𝜏⊕id𝐴)

where 𝜏 : 𝐴 ⊕ 𝐴→ 𝐴 ⊕ 𝐴 is the canonical flip ⟨𝜄1𝜋2, 𝜄2𝜋1⟩.

Remark 3.22. In the original [30, Definition 3.1], instead of a coCartesian differential

monad, the authors introduced the dual notion, that is a Cartesian differential

comonad. Since operads are usually associated with monads, not comonads, here

we prefer to employ the version introduced in Definition 3.21. The name was

already introduced in [29].
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Ikonicoff and Lemay’s original motivation for introducing coCartesian differen-

tial monads was to construct a monad which could generate a Cartesian differential

category (see [7]). They showed that the opposite of the Kleisli category of a

coCartesian differential monad is, in fact, a Cartesian differential category. Since

this result plays an important role in our story we want to recall this result here.

First, recall that the coKleisli category Klop(𝑆) of a monad 𝑆 over a category E is the

category whose objects are the objects ofX and morphisms 𝑓 : 𝐴→ 𝐵 corresponds

to morphisms of X of the form [[ 𝑓 ]] : 𝐵 → 𝑆𝐴, and composition of 𝑓 : 𝐴 → 𝐵 and

𝑔 : 𝐵→ 𝐶 is given by:

[[ 𝑓 𝑔]] : 𝐶
[[𝑔]]
−−→ 𝑆𝐵

𝑆[[ 𝑓 ]]
−−−→ 𝑆2𝐴

𝛾
−→ 𝑆𝐴

where 𝛾 : 𝑆2⇒ 𝑆 is the monad multiplication. Finally, the identity morphisms are

given by [[id𝐴]] := 𝜂 : 𝐴→ 𝑆𝐴, where 𝜂 is the unit of the monad.

Proposition★ 3.23. The coKleisli category Klop(𝑆) of a coCartesian differential monad
(𝑆, 𝜕) is a Cartesian differential category, whose product is the same as the one on E and
whose differential combinator D sends a morphism 𝑓 : 𝐴→ 𝐵 to:

[[D 𝑓 ]] : 𝐵
[[ 𝑓 ]]
−−→ 𝑆𝐴

𝜕−→ 𝑆(𝐴 ⊕ 𝐴)

The Kleisli category of a monad, i.e. the dual of Klop(𝑆), is the category of free

algebras of the monad. For an algebra 𝐴 to be free means that 𝐴 = 𝑆𝐴′ for some

object 𝐴′ and the structure map of 𝐴 is given by 𝑆𝐴 = 𝑆2𝐴′
𝛾
−→ 𝑆𝐴′ = 𝐴. So, a

morphism 𝑓 : 𝐴 → 𝐵 between two free algebras is a morphism 𝑓 : 𝑆𝐴′ → 𝑆𝐵′,

for some 𝐴′ and 𝐵′. By precomposing with the unit 𝜂 of the monad, we obtain a

morphism [[ 𝑓 ]] : 𝐴′
𝜂
−→ 𝑆𝐴′

𝑓
−→ 𝐵. Let Free(𝑆) be the category of free algebras of 𝑆

and all morphisms of algebras between them. Then, we have a functor:

Free(𝑆) → Kl(𝑆)

which sends each free algebra 𝑆𝐴′ to 𝐴′ and each morphism 𝑓 : 𝑆𝐴′ → 𝑆𝐵′ to

[[ 𝑓 ]] : 𝐴′
𝜂
−→ 𝑆𝐴′

𝑓
−→ 𝑆𝐵′. Similarly, each object 𝐴′ of Kl(𝑆) can be sent to 𝑆𝐴′ ∈ Free(𝑆)

and each morphism 𝑓 : 𝐴′ → 𝐵′ is sent to 𝑆𝐴′
𝑆[[ 𝑓 ]]
−−−→ 𝑆2𝐵′

𝛾
−→ 𝑆𝐵′. This induces an

equivalence between Kl(𝑆) and Free(𝑆). So, in particular, dualizing, we have that

Klop(𝑆) ≅ Freeop(𝑆).
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This, in particular, implies that the subcategory of free algebras of a coCartesian

differential monad is a Cartesian differential category. So, it is natural to wonder

if this Cartesian differential category could be associated with the category of

differential objects of a larger tangent category (see Section 2.2.2). The trick consists

of showing that every coCartesian differential monad is also a tangent monad with

respect to the base tangent category induced by biproducts.

Proposition 3.24. Consider a category with biproducts X. If (𝑆, 𝜕) is a coCartesian
differential monad over X then, 𝑆 equipped with the natural transformation:

𝛼 : 𝑆(𝐴 ⊕ 𝐴)
⟨𝑆(𝜋1),∇⟩−−−−−−−→ 𝑆𝐴 ⊕ 𝑆𝐴

is a tangent monad over the tangent category (X, T) induced by biproducts, where∇ : 𝑆(𝐴⊕
𝐴) → 𝑆𝐴 is the natural transformation defined as follows:

∇ : 𝑆(𝐴 ⊕ 𝐴) 𝜕−→ 𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴)
𝑆(𝜋1+𝜋4)−−−−−−−→ 𝑆𝐴

Proof. The proof is a long but straightforward computation. We invite the interested

reader to consult the original paper [29]. □

Surprisingly, the converse of Proposition 3.24 also holds: every tangent monad

over a tangent category induced by biproducts is a coCartesian differential monad.

Proposition 3.25. If X is a category with biproducts and

T

is the tangent structure on X
induced by biproducts, then every tangent monad (𝑆, 𝛼) over (X, T) defines a coCartesian
differential monad (𝑆, 𝜕) whose differential combinator is defined as follows:

𝜕 : 𝑆𝐴
𝑆⟨id𝐴 ,0,0,id𝐴⟩−−−−−−−−−−→ 𝑆(𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴) 𝛼𝐴⊕𝐴−−−−→ 𝑆(𝐴 ⊕ 𝐴) ⊕ 𝑆(𝐴 ⊕ 𝐴) 𝜋2−→ 𝑆(𝐴 ⊕ 𝐴)

Proof. The proof is a long but straightforward computation. We invite the interested

reader to consult the original paper [29]. □

Propositions 3.24 and 3.25 show that the notion of coCartesian differential

monad over a category with biproducts and the one of a tangent monad over a

tangent category induced by biproducts are equivalent. We now employ this equi-

valence to prove the main result of this section. For this purpose, consider an object
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𝐴 of the base monoidal category E and, for each integer 𝑛, consider the maps so

defined:

𝛿𝑘 := 𝜄1 ⊗ . . . ⊗ 𝜄2⏞⏟⏟⏞
𝑘-th position

⊗ . . . ⊗ 𝜄1 : 𝐴⊗𝑛 → (𝐴 ⊕ 𝐴)⊗𝑛

where the index 𝑘 runs from 1 to 𝑛 and 𝜄1 and 𝜄2 denote the inclusions 𝐴→ 𝐴 ⊕ 𝐴
in the first and the second component, respectively. For E = Mod𝑅, 𝛿𝑘 corresponds

to the following map:

𝛿𝑘(𝑥1, . . . , 𝑥𝑛) = ((𝑥1, 0), . . . , (0, 𝑥𝑘), . . . , (𝑥𝑛 , 0))

This family of maps induces a morphism, for each 𝑛:

𝜕𝑛 :=
𝑛∑︂
𝑘=1

id𝒫(𝑛) ⊗ 𝛿𝑘 : 𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 → 𝒫(𝑛) ⊗S𝑛 (𝐴 ⊕ 𝐴)⊗𝑛

In particular, one can employ such morphisms to define:

𝜕𝒫 :
⨁︂
𝑛∈N

𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛
⨁︁

𝑛∈N 𝜕𝑛−−−−−−→
⨁︂
𝑛∈N

𝒫(𝑛) ⊗S𝑛 (𝐴 ⊕ 𝐴)⊗𝑛 (3.4.1)

Theorem 3.26. The monad S𝒫 associated with an operad 𝒫 over a monoidal category E
satisfying Convention 3.20 is a coCartesian differential monad whose differential combinator
𝜕𝒫 is defined in Equation (3.4.1).

Proof. We decide here to give the proof in the algebraic case, i.e. when E = Mod𝑅.

This is for two reasons: first, the proof in the algebraic case really clarifies each

aspect of the theorem, while the notation for the general case obscures the meaning

of it. Second, when one understands the proof in the algebraic case, one can easily

see how the proof generalizes to the general case. This is because all the steps in

the proof involve only morphisms which can be defined in any monoidal category

with biproducts. In the algebraic case, we do not use any specific aspect of the

category Mod𝑅.

Let’s start with the zero rule, which reads S𝒫(𝜋1) ◦ 𝜕 = 0:

(S𝒫(𝜋1)) ◦ 𝜕)(𝜇; 𝑎1, . . . , 𝑎𝑛)

= S𝒫(𝜋1)
(︄
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑛 , 0))

)︄



110

=

𝑛∑︂
𝑘=1
(𝜇;𝜋1(𝑎1, 0), . . . ,𝜋1(0, 𝑎𝑘), . . . ,𝜋1(𝑎𝑛 , 0))

=

𝑛∑︂
𝑘=1
(𝜇; 𝑎1, . . . , 0, . . . , 𝑎𝑛)

= 0

The additive rule, which reads as S𝒫(id ⊕ Δ) ◦ 𝜕 = + ⊕ ⟨S𝒫(id ⊕ 𝜄1), S𝒫(id ⊕ 𝜄2)⟩ ◦ 𝜕,

can be proven as follows:

(S𝒫(id ⊕ Δ) ◦ 𝜕)(𝜇; 𝑎1, . . . , 𝑎𝑛)

= S𝒫(id ⊕ Δ)
(︄
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑛 , 0))

)︄
=

𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0, 0), . . . , (0, 𝑎𝑘 , 𝑎𝑘), . . . , (𝑎𝑛 , 0, 0))

Let’s now consider the right-hand side of the equation:

(+ ⊕ ⟨S𝒫(id ⊕ 𝜄1), S𝒫(id ⊕ 𝜄2)⟩ ◦ 𝜕)(𝜇; 𝑎1, . . . , 𝑎𝑛)

= (+ ⊕ ⟨S𝒫(id ⊕ 𝜄1), S𝒫(id ⊕ 𝜄2)⟩)
(︄
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑛 , 0))

)︄
=

𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0, 0), . . . , (0, 𝑎𝑘 , 0), . . . , (𝑎𝑛 , 0, 0)) +

+(𝜇; (𝑎1, 0, 0), . . . , (0, 0, 𝑎𝑘), . . . , (𝑎𝑛 , 0, 0))

=

𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0, 0), . . . , (0, 𝑎𝑘 , 𝑎𝑘), . . . , (𝑎𝑛 , 0, 0))

The next step is to show the linear rule 𝜕 ◦ 𝜂 = 𝜂 ◦ 𝜄2:

(𝜕 ◦ 𝜂)(𝑎)

= 𝜕(1𝒫; 𝑎)

= (1𝒫; (0, 𝑎))

= (1𝒫; 𝜄2(𝑎))

= 𝜂(𝜄2(𝑎))

The chain rule requires that 𝛾◦S𝒫(⟨S𝒫(𝜄1), 𝜕⟩)◦𝜕S𝒫
= 𝜕◦𝛾. To represent the generic

element of S2
𝒫
𝐴, we adopt the convention of denoting by 𝑎⃗𝑘 a tuple 𝑎

(𝑘)
1 , . . . , 𝑎

(𝑘)
𝑛 of
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elements of 𝐴:

(𝛾 ◦ S𝒫(⟨S𝒫(𝜄1), 𝜕⟩) ◦ 𝜕S𝒫
) (𝜇; (𝜇1; 𝑎⃗1), . . . , (𝜇𝑛; 𝑎⃗𝑛))

= (𝛾 ◦ S𝒫(⟨S𝒫(𝜄1), 𝜕⟩)) ⎛⎜⎝
𝑛∑︂
𝑗=1
(𝜇; ((𝜇1; 𝑎⃗1), 0), . . . , (0, (𝜇𝑗; 𝑎⃗ 𝑗)), . . . , ((𝜇𝑛; 𝑎⃗𝑛), 0))⎞⎟⎠

= 𝛾
⎛⎜⎝
𝑛∑︂
𝑗=1

(︂
𝜇; (𝜇1; ((𝑎(1)1 , 0), . . . , (𝑎(1)

𝑘1
, 0)), . . .

. . . ,

𝑘 𝑗∑︂
𝑖 𝑗=1
(𝜇𝑘 ; (𝑎(𝑗)1 , 0), . . . , (0, 𝑎(𝑗)

𝑖 𝑗
), . . . , (𝑎(𝑗)

𝑘 𝑗
, 0)), . . .

. . . , (𝜇𝑛; ((𝑎(𝑛)1 , 0), . . . , (𝑎(𝑛)
𝑘𝑛
, 0))))

)︂)︂
=

𝑛∑︂
𝑗=1

𝑘 𝑗∑︂
𝑖 𝑗=1
(𝜇(𝜇1, . . . , 𝜇𝑛); (𝑎(1)1 , 0), . . . , (0, 𝑎(𝑗)

𝑖 𝑗
), . . . , (𝑎(𝑛)

𝑘𝑛
, 0))

= 𝜕(𝜇(𝜇1, . . . , 𝜇𝑛); 𝑎⃗1, . . . , 𝑎⃗𝑛)

= (𝜕 ◦ 𝛾)(𝜇; (𝜇1; 𝑎⃗1), . . . , (𝜇𝑛; 𝑎⃗𝑛))

To prove the lift rule is to show that S𝒫(𝜋1 ⊕ 𝜋4) ◦ 𝜕 ◦ 𝜕 = 𝜕:

(S𝒫(𝜋1 ⊕ 𝜋4) ◦ 𝜕 ◦ 𝜕)(𝜇; 𝑎1, . . . , 𝑎𝑛)

= (S𝒫(𝜋1 ⊕ 𝜋4) ◦ 𝜕)
(︄
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑛 , 0))

)︄
= S𝒫(𝜋1 ⊕ 𝜋4) ⎛⎜⎝

𝑛∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜇; (𝑎1, 0, 0, 0), . . . , (0, 0, 𝑎 𝑗 , 0), . . .

. . . , (0, 𝑎𝑘 , 0, 0), . . . , (𝑎𝑛 , 0, 0, 0))+

+
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0, 0, 0), . . . , (0, 0, 0, 𝑎𝑘), . . . , (𝑎𝑛 , 0, 0, 0))

)︄
=

𝑛∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜇; (𝑎1, 0), . . . , (0, 0), . . . , (0, 0), . . . , (𝑎𝑛 , 0)) +

+
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑛 , 0))

=

𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑛 , 0))
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= 𝜕(𝜇; 𝑎1, . . . , 𝑎𝑛)

Finally, the symmetry rule 𝜕 ◦ 𝜕 = S𝒫(id ⊕ 𝜏 ⊕ id) ◦ 𝜕 ◦ 𝜕 reads as follows:

(S𝒫(id ⊕ 𝜏 ⊕ id) ◦ 𝜕 ◦ 𝜕)(𝜇; 𝑎1, . . . , 𝑎𝑛)

= S𝒫(id ⊕ 𝜏 ⊕ id) ⎛⎜⎝
𝑛∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜇; (𝑎1, 0, 0, 0), . . . , (0, 0, 𝑎 𝑗 , 0), . . .

, . . . (0, 𝑎𝑘 , 0, 0), . . . , (𝑎𝑛 , 0, 0, 0))+

+
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0, 0, 0), . . . , (0, 0, 0, 𝑎𝑘), . . . , (𝑎𝑛 , 0, 0, 0))

)︄
=

𝑛∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜇; (𝑎1, 0, 0, 0), . . . , (0, 𝑎 𝑗 , 0, 0), . . . , (0, 0, 𝑎𝑘 , 0), . . . , (𝑎𝑛 , 0, 0, 0)) +

+
𝑛∑︂
𝑘=1
(𝜇; (𝑎1, 0, 0, 0), . . . , (0, 0, 0, 𝑎𝑘), . . . , (𝑎𝑛 , 0, 0, 0)

= (𝜕 ◦ 𝜕)(𝜇; 𝑎1, . . . , 𝑎𝑛)

This concludes the proof. □

In the algebraic case, i.e. when E = Mod𝑅, the differential combinator 𝜕𝒫 is

defined over generators as follows:

𝜕𝒫(𝜇; 𝑥1, . . . , 𝑥𝑛) =
𝑛∑︂
𝑘=1
(𝜇; (𝑥1, 0), . . . , (0, 𝑥𝑘), . . . , (𝑥𝑛 , 0))

Since coCartesian differential monads are tangent monads, we obtain that the

monad associated with an operad is a tangent monad. Consider now the following

morphisms:

𝜌𝑘 : 𝜋1 ⊗ . . . ⊗ 𝜋2⏞⏟⏟⏞
𝑘-th position

⊗ . . . ⊗ 𝜋1 : (𝐴 ⊕ 𝐴)⊗𝑛 → 𝐴⊗𝑛

In the algebraic case, 𝜌𝑘 is defined as follows:

𝜌𝑘((𝑥1, 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)) = (𝑥1, . . . , 𝑦𝑘 , . . . , 𝑥𝑛)

From this, let’s introduce the following:

𝛼𝑛 :=
𝑛∑︂
𝑘=1
⟨id𝒫(𝑛) ⊗ 𝜋⊗𝑛1 , id𝒫 ⊗ 𝜌𝑘⟩ : 𝒫(𝑛) ⊗S𝑛 (𝐴 ⊕ 𝐴)⊗𝑛 →



113

→
(︁
𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛

)︁
⊕

(︁
𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛

)︁
In the algebraic case, we have:

𝛼𝑛(𝜇; (𝑥1, . . . , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)) =
(︄
(𝜇; 𝑥1, . . . , 𝑥𝑛),

𝑛∑︂
𝑘=1
(𝜇; 𝑥1, . . . , 𝑦𝑘 , . . . , 𝑥𝑛)

)︄
Finally, let 𝛼 be so defined:

𝛼𝒫 :
⨁︂
𝑛∈N

𝒫(𝑛) ⊗S𝑛 (𝐴 ⊕ 𝐴)⊗𝑛
⊕𝑛∈N𝛼𝑛−−−−−→

⨁︂
𝑛∈N

𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 ⊕𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 (3.4.2)

Corollary 3.27. The monad associated with an operad 𝒫 is a tangent monad whose
distributive law is defined in Equation (3.4.2).

3.5 The algebraic tangent category of an operad

Theorem 2.73 shows that the category of algebras of a tangent monad is a tangent

category. On the other hand, Corollary 3.27 establishes that the monad associated

with an operad over a symmetric monoidal category Ewith biproducts is a tangent

monad. Putting together these two facts, we conclude that the category of algebras

of an operad comes equipped with a canonical tangent structure.

Definition 3.28. The algebraic tangent category Alg(𝒫) of an operad 𝒫 over a sym-
metric monoidal category E satisfying Convention 3.20, is the Eilenberg-Moore object of
the tangent monad associated with the operad 𝒫, described in Corollary 3.27.

This section is dedicated to providing a complete description of this tangent

category. The first step is to understand the tangent bundle functor. It turns out

that the tangent bundle functor

T

sends a 𝒫-algebra 𝐴 with structure map 𝜃 to

the 𝒫-algebra 𝐴 ⋉ 𝐴, known as the semidirect product of 𝐴 with itself (see [46,

Section 12.3.2]). Concretely, 𝐴 ⋉ 𝐴 is the 𝒫-algebra over the object 𝐴 ⊕ 𝐴 whose

structure map is defined as follows:

𝒫(𝑛) ⊗ (𝐴 ⊕ 𝐴)⊗𝑛 𝛼𝑛−−→ 𝒫(𝑛) ⊗ 𝐴⊗𝑛 ⊕𝒫(𝑛) ⊗ 𝐴⊗𝑛 𝜃⊕𝜃−−−→ 𝐴 ⊕ 𝐴

When E = Mod𝑅, the structure map is defined by:

𝜇((𝑎1, 𝑏1), . . . , (𝑎𝑚 , 𝑏𝑚)) :=
(︄
𝜇(𝑎1, . . . , 𝑎𝑚),

𝑚∑︂
𝑘=1
(𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑚)

)︄
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Lemma 3.29. The tangent bundle functor

T: Alg𝒫 → Alg𝒫 of the algebraic tangent
category of an operad 𝒫 sends an algebra 𝐴 to the semi-direct product of 𝐴 with itself, i.e.
𝐴 ⋉ 𝐴, and a morphism of algebras 𝑓 : 𝐴 → 𝐵 to 𝑓 ⋉ 𝑓 : 𝐴 ⋉ 𝐴 → 𝐵 ⋉ 𝐵, which, as a
E-morphism is just 𝑓 ⊕ 𝑓 .

Then, the algebraic tangent category Alg(𝒫)of an operad𝒫 is defined as follows:

category The objects of Alg(𝒫) are 𝒫-algebras and morphisms are morphisms of

𝒫-algebras;

tangent bundle functor The tangent bundle functor

T: Alg(𝒫) → Alg(𝒫) sends 𝐴

to 𝐴 ⋉ 𝐴 and 𝑓 : 𝐴→ 𝐵 to 𝑓 ⋉ 𝑓 : 𝐴 ⋉ 𝐴→ 𝐵 ⋉ 𝐵;

projection The projection 𝑝(

T) : T⇒ idAlg(𝒫) is the natural transformation whose

underlying E-morphism is the projection from the first component 𝜋1 : 𝐴 ⊕
𝐴→ 𝐴;

zero morphism The zero morphism 𝑧(
T) : idAlg(𝒫) ⇒

T
is the natural transforma-

tion whose underlying E-morphism is the injection into the first component

𝜄1 : 𝐴→ 𝐴 ⊕ 𝐴;

𝑛-fold pullback The 𝑛-fold pullback

T

𝑛 : Alg(𝒫) → Alg(𝒫) of the projection along

itself is the functor which sends an algebra 𝐴 to 𝐴 ⋉ 𝐴𝑛 , with 𝐴𝑛 = 𝐴 ⊕ · · · ⊕
𝐴. Moreover, the 𝑘-th projection, denoted by 𝜋(

T)
𝑘

: T

𝑛 ⇒

T

is the natural

transformation whose underlying E-morphism projects the first component

in the first component and the (𝑘+1)-th component to the second component,

i.e. 𝐴 ⊕ 𝐴𝑛 id𝐴⊕𝜄𝑘𝜋2−−−−−−→ 𝐴 ⊕ 𝐴;

sum morphism The sum morphism 𝑠(

T) : T

2 ⇒

T

is the natural transformation

whose underlying E-morphism acts as the identity in the first component

and sums the other two, that is 𝐴 ⊕ 𝐴2 id𝐴⊕+−−−−→ 𝐴 ⊕ 𝐴;

vertical lift The vertical lift 𝑙(

T) : T⇒ T2
, where

T2
denotes

T◦ T

, is the natural

transformation whose underlying E-morphism sends the first component to

the first one and the second component to the fourth one, that is 𝐴⊕𝐴 id𝐴⊕𝜋4−−−−−→
𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴;
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canonical flip The canonical flip 𝑐(

T) : T2⇒ T2
is the natural transformation whose

underlying E-morphism switches the internal components, that is 𝐴 ⊕ 𝐴 ⊕
𝐴 ⊕ 𝐴 id𝐴⊕𝜏⊕id𝐴−−−−−−−→ 𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴, where 𝜏 : 𝐴 ⊕ 𝐵 → 𝐵 ⊕ 𝐴 is the canonical

braiding.

Finally, if E is additive, which means that it is also Ab-enriched, then Alg(𝒫) has

also negatives:

negation The negation 𝑛(

T) : T⇒ T

is the natural transformation whose underly-

ing E-morphism acts as the identity on the first component and negates the

second one, that is 𝐴 ⊕ 𝐴 id𝐴⊕−−−−−→ 𝐴 ⊕ 𝐴.

When𝒫 is algebraic, that isE = Mod𝑅, then we have a more concrete description

of the algebraic tangent structure of 𝒫. We already described the semi-direct

product of a 𝒫-algebra 𝐴 with itself, then the natural transformations are defined

as follows:

𝑝(

T)(𝑎, 𝑢) := 𝑎

𝑧(

T)(𝑎) := (𝑎, 0)

𝑠(

T)(𝑎; 𝑢1, 𝑢2) := (𝑎, 𝑢1 + 𝑢2)

𝑙(

T)(𝑎, 𝑢) := (𝑎, 0, 0, 𝑢)

𝑐(

T)(𝑎, 𝑢, 𝑣, 𝑤) := (𝑎, 𝑣, 𝑢, 𝑤)

𝑛(

T)(𝑎, 𝑢) := (𝑎,−𝑢)

(3.5.1)

Example 3.30. Consider the symmetric monoidal category of Z-modules, i.e. the

category of abelian groups. This category is additive. Consider the operad 𝓊𝒞ℴ𝓂

described in Example 3.8 over ModZ. Then, the category of algebras of 𝓊𝒞ℴ𝓂 is the

category cRing of commutative and unital rings. Spelling out the details about the

tangent bundle functor

T

, one realizes that the semi-direct product 𝑅 ⋉ 𝑅 of a ring

𝑅 with itself, is isomorphic to the ring 𝑅⟨𝜀⟩ of dual numbers, which we recall is the

ring of terms 𝑟 + 𝑠𝜀 with 𝜀2 = 0. In particular, the isomorphism sends 𝑅⋉𝑅 ∋ (𝑟, 𝑠)
to 𝑟 + 𝑠𝜀. Thus the algebraic tangent category Alg(𝓊𝒞ℴ𝓂) is isomorphic to the

tangent category (cRing, T) described in Example 2.13.

Example 3.31. Consider the symmetric monoidal category of Z-modules and the

operad 𝓊𝒜𝓈𝓈 described in Example 3.7 over ModZ. The category of algebras of 𝓊𝒜𝓈𝓈
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is the category Ring of unital and associative, but not necessarily commutative,

rings. Again, one can represent the tangent bundle functor

T

𝑅 as 𝑅 ⋉ 𝑅 ≅ 𝑅⟨𝜀⟩.
Although this tangent structure is quite similar to the one of cRing, this is the first

example of a non-trivial tangent structure on the category of non-commutative

rings.

Example 3.32. The algebraic tangent category Alg(ℒ𝒾ℯ) of the operad ℒ𝒾ℯ, de-

scribed in Example 3.9, over Mod𝑅 is the tangent category over the category of Lie

algebras, whose tangent bundle functor

T

sends a Lie algebra 𝔤 to the Lie algebra

𝔤 ⋉ 𝔤, which is the the Lie algebra over 𝔤 ⊕ 𝔤 whose Lie bracket is so defined:

[(𝑔, ℎ), (𝑔′, ℎ′)] = ([𝑔, 𝑔′], [𝑔, ℎ′] + [𝑔′, ℎ])

The projection, the zero morphism, the sum morphism, the lift, and the canonical

flip are defined as in Equation (3.5.1).

3.5.1 Vector fields in the algebraic tangent category of an operad

Remember that a vector field in a tangent category is a section of the projection.

So, it is natural to wonder what vector fields in the algebraic tangent category

of an operad represent. Since the algebraic tangent category of an operad is the

Eilenberg-Moore object in the category of tangent categories of a tangent monad,

one could also ask the same question for the tangent category of algebras of a generic

tangent monad. In general, we do not have a good characterization of vector fields

in this abstract context, unless the tangent monad is in fact a coCartesian differential

monad. Let’s start by recalling the definition of a derivation over an algebra of a

coCartesian differential monad (see [44]).

Definition★ 3.33. Let (𝑆, 𝜕) be a coCartesian differential monad over a category X with
biproducts. An 𝑆-derivation over an 𝑆-algebra (𝐴, 𝜃 : 𝑆𝐴 → 𝐴) is an X-morphism
𝛿 : 𝐴→ 𝐴 making the following diagram commutative:

𝑆𝐴 𝐴

𝑆(𝐴 ⊕ 𝐴) 𝑆𝐴 𝐴

𝜃

𝛿

𝜃

𝜕

𝑆(𝜋1+𝜋2𝛿)
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Consider now an algebraic operad 𝒫 and a 𝒫-algebra 𝐴. A 𝒫-derivation of

𝐴 over 𝐴 consists of a morphism of 𝑅-modules 𝛿 : 𝐴 → 𝐴 such that, for every

𝑎1, . . . , 𝑎𝑚 and every 𝜇 ∈ 𝒫(𝑚):

𝛿(𝜇(𝑎1, . . . , 𝑎𝑚)) =
𝑚∑︂
𝑘=1

𝜇(𝑎1, . . . , 𝛿(𝑎𝑘), . . . , 𝑎𝑚) (3.5.2)

It is natural to wonder if this notion of derivation coincides with the derivation

associated with the coCartesian differential monad of the operad.

Lemma 3.34. For an algebraic operad 𝒫, 𝒫-derivations of a 𝒫-algebra 𝐴 are precisely S𝒫-
derivations of 𝐴, when the monad S𝒫 is equipped with the differential combinator defined
in Theorem 3.26.

Proof. Spelling out the definition of an S𝒫-derivation, one finds out that such a

derivation consists of a morphism of 𝑅-modules 𝛿 : 𝐴→ 𝐴 such that:

𝛿(𝜇(𝑎1, . . . , 𝑎𝑚))

= 𝜃(S𝒫(𝜋1 + 𝜋2𝛿)(𝜕(𝜇; 𝑎1, . . . , 𝑎𝑚)))

= 𝜃

(︄
S𝒫(𝜋1 + 𝜋2𝛿)

(︄
𝑚∑︂
𝑘=1
(𝜇; (𝑎1, 0), . . . , (0, 𝑎𝑘), . . . , (𝑎𝑚 , 0))

)︄)︄
= 𝜃

(︄
𝑛∑︂
𝑘=1
(𝜇; 𝑎1, . . . , 𝛿(𝑎𝑘), . . . , 𝑎𝑚)

)︄
=

𝑛∑︂
𝑘=1

𝜇(𝑎1, . . . , 𝛿(𝑎𝑘), . . . , 𝑎𝑚)

which is precisely the Leibniz rule of Equation 3.5.2. □

The main result of this section is that, for a coCartesian differential monad,

the vector fields in the corresponding algebraic tangent category are equivalent to

derivations.

Proposition 3.35. Let Alg(𝑆, 𝜕) denote the tangent category associated with a coCartesian
differential monad (𝑆, 𝜕). The vector fields 𝑣 : 𝐴→ T

𝐴 over an 𝑆-algebra 𝐴 in the tangent
category Alg(𝑆, 𝜕) are equivalent to 𝑆-derivations over 𝐴. Moreover, if the base category
is additive, then this equivalence lifts to an isomorphism of Lie algebras between the Lie
algebra of vector fields, whose Lie bracket is defined as in Section 2.2.1, and the Lie algebra
of 𝑆-derivations, whose Lie bracket is given by the commutator.
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Proof. Let’s start by proving that vector fields are equivalent to 𝑆-derivations. Con-

sider a vector field 𝑣 : 𝐴→ T

𝐴. Since

T

𝐴, as an E-object, is 𝐴⊕𝐴, one can consider

the E-morphism 𝛿𝑣 : 𝐴 𝑣−→ T

𝐴
𝜋2−→ 𝐴. We want to show that 𝛿𝑣 is indeed an 𝑆-

derivation. First of all, since 𝑣 is an 𝑆-algebra morphism, the following diagram

commutes:

𝑆𝐴 𝑆

T

𝐴

T

𝑆𝐴

𝐴

T

𝐴
𝑣

𝑆𝑣

𝜃

𝛼

T

𝜃

where 𝛼 : 𝑆 ◦ T⇒ T◦ 𝑆 is the natural transformation:

𝛼 : 𝑆(𝐴 ⊕ 𝐴)
⟨𝑆(𝜋1),𝜕𝑆(𝜋1+𝜋4)⟩−−−−−−−−−−−−−→ 𝑆𝐴 ⊕ 𝑆𝐴

Since, by definition, 𝛿𝑣 = 𝑣𝜋2 and 𝑣𝜋1 = 𝑣𝑝 = id𝐴, we have that:

(𝑣 ⊕ 𝑣)(𝜋1 + 𝜋4) = 𝜋1 + 𝜋2𝛿𝑣

Thus:

𝜕𝐴𝑆(𝜋1 + 𝜋2𝛿𝑣)𝜃

= 𝜕𝐴𝑆((𝑣 ⊕ 𝑣)(𝜋1 + 𝜋4))𝜃

= 𝜕𝐴𝑆(𝑣 ⊕ 𝑣)𝑆(𝜋1 + 𝜋4)𝜃

= 𝑆(𝑣)𝜕𝐴⊕𝐴𝑆(𝜋1 + 𝜋4)𝜃

= 𝑆(𝑣) T

𝜃𝛼𝜋2

= 𝜃𝑣𝜋2

= 𝜃𝛿𝑣

where we computed 𝜕𝐴⊕𝐴𝑆(𝜋1+𝜋4)𝜃 =

T

𝜃𝛼𝜋2. Let’s now consider an 𝑆-derivation

𝛿 : 𝐴→ 𝐴 and let’s consider 𝑣𝛿 : 𝐴
⟨id𝐴 ,𝛿⟩−−−−−→ T

𝐴. By construction, 𝑣𝛿𝑝 = 𝑣𝛿𝜋1 = id𝐴.

We need to show that 𝑣 is a morphism of 𝑆-algebras. Notice first:

(𝑣𝛿 ⊕ 𝑣𝛿)(𝜋1 + 𝜋4) = 𝜋1 + 𝜋2𝛿



119

Then:

𝑆(𝑣𝛿)⟨𝑆(𝜋1), 𝜕𝑆(𝜋1 + 𝜋4)⟩𝜃

= ⟨𝑆(𝑣𝛿𝜋1)𝜃, 𝑆(𝑣𝛿)𝜕𝑆(𝜋1 + 𝜋4)𝜃⟩

= ⟨𝜃, 𝜕𝑆(𝑣𝛿 ⊕ 𝑣𝛿)𝑆(𝜋1 + 𝜋4)𝜃⟩

= ⟨𝜃, 𝜕𝑆((𝑣𝛿 ⊕ 𝑣𝛿)(𝜋1 + 𝜋4))𝜃⟩

= ⟨𝜃, 𝜕𝑆(𝜋1 + 𝜋2𝛿)𝜃⟩

= ⟨𝜃, 𝜃𝛿⟩

= 𝜃⟨id𝐴 , 𝛿⟩

= 𝜃𝑣𝛿

Clearly, the functions 𝑣 ↦→ 𝛿𝑣 and 𝛿 ↦→ 𝑣𝛿 are inverse to each other. Now, suppose

that the base category is additive and let’s show that the Lie bracket is preserved by

𝑣 ↦→ 𝛿𝑣 . Let’s start by noticing that on the base category, where biproducts induce

the tangent structure, vector fields are precisely morphisms 𝑣 : 𝐴 → 𝐴 ⊕ 𝐴 for

which 𝑣𝜋1 = id𝐴. So, vector fields are in bĳective correspondence with morphisms

𝛿𝑣 : 𝐴→ 𝐴. Let’s now consider two vector fields 𝑢, 𝑣 : 𝐴→ 𝐴 ⊕ 𝐴; then:

[𝑢, 𝑣] = {𝑢 T

𝑣 − 𝑣 T

𝑢𝑐}

In particular:

𝑢

T

𝑣 : 𝐴
⟨id𝐴 ,𝛿𝑣 ,𝛿𝑢 ,𝛿𝑣◦𝛿𝑢⟩−−−−−−−−−−−−−→ 𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴

𝑣

T

𝑢𝑐 : 𝐴
⟨id𝐴 ,𝛿𝑣 ,𝛿𝑢 ,𝛿𝑢◦𝛿𝑣⟩−−−−−−−−−−−−−→ 𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴

𝑢

T

𝑣 − 𝑣 T

𝑢𝑐 : 𝐴
⟨id𝐴 ,0,0,𝛿𝑣◦𝛿𝑢−𝛿𝑢◦𝛿𝑣⟩−−−−−−−−−−−−−−−−→ 𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴

Since the base tangent structure is induced by biproducts, every object has the

structure of a differential object, so, in particular, the bracket operation {−} consists

of precomposing a morphism 𝑓 : 𝐵 → T2𝐴 = 𝐴 ⊕ 𝐴 ⊕ 𝐴 ⊕ 𝐴 for which 𝑓𝜋3 = 0
with 𝜋4. So:

[𝑢, 𝑣] = {𝑢 T

𝑣 − 𝑣 T

𝑢𝑐} = (𝑢 T

𝑣 − 𝑣 T

𝑢𝑐)𝜋4 : 𝐴
⟨id𝐴 ,𝛿𝑣◦𝛿𝑢−𝛿𝑢◦𝛿𝑣⟩−−−−−−−−−−−−−−→ 𝐴 ⊕ 𝐴

Therefore, under the bĳective correspondence 𝑣 ↦→ ⟨id𝐴 , 𝛿𝑣⟩ between vector fields

of the base tangent category and morphisms 𝛿𝑣 : 𝐴 → 𝐴, the Lie bracket induced
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by the tangent structure corresponds to the Lie bracket defined by the commutator.

To conclude, notice that the forgetful functor Alg(𝑆, 𝜕) → (X, T) is a strict tangent

morphism. Thus, the Lie bracket lifts along the forgetful functor and therefore,

when X is additive, the bĳective correspondence between vector fields in Alg(𝑆, 𝜕)
and 𝑆-derivations becomes an isomorphism of Lie algebras. □

By putting together that the algebraic tangent category Alg(𝒫) of an operad

𝒫 is the algebraic tangent category of a coCartesian differential monad (S𝒫 , 𝜕𝒫)
and that, for an algebraic operad 𝒫 S𝒫-derivations are 𝒫-derivations, one finds

a complete classification of vector fields in the algebraic tangent category of an

operad.

Theorem 3.36. For an algebraic operad 𝒫, there is an isomorphism of Lie algebras between
the Lie algebra of vector fields 𝑣 : 𝐴→ T

𝐴 of the algebraic tangent category Alg(𝒫) whose
Lie bracket is induced by the algebraic tangent structure, and derivations 𝛿 : 𝐴→ 𝐴 in the
operadic sense, whose Lie bracket is defined by the commutator.

3.5.2 The functoriality of the algebraic construction

So far, we have shown that the category of algebras Alg𝒫 of an operad 𝒫 over a

symmetric monoidal category with biproducts carries a canonical tangent structure

T

𝒫. In particular, we call this tangent category the algebraic tangent category of 𝒫

and, when 𝒫 is algebraic, we have a complete characterization of the vector fields

in terms of derivations over operadic algebras.

It is natural to wonder if the operation which sends an operad 𝒫 to its cor-

responding algebraic tangent category Alg(𝒫) is functorial. In particular, one is

interested in seeing if morphisms of operads are canonically sent to morphisms

between the corresponding tangent categories in a compatible way with the com-

position and the identities. In this section, we explore this question. The first

step is to recall the definition of a morphism of operads. For the purpose of this

discussion, we keep the base symmetric category E fixed and we only consider

morphisms of operads over this base category (see [46, Chapter 5]).

Definition★ 3.37. A morphism of operads 𝜑 : 𝒫 → 𝒫
′ between two operads 𝒫 and

𝒫
′ over the base category E consists of a sequence {𝜑𝑛 : 𝒫(𝑛) → 𝒫

′(𝑛)} of morphisms of
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E, compatible with the unit and the symmetric actions of the operad 𝒫. Concretely, these
compatibilities are expressed via the commutativity of the following diagrams:

1 𝒫(1)

𝒫
′(1)

𝜂

𝜂′
𝛾

𝒫(𝑛) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑛) 𝒫(𝑘1 + . . . + 𝑘𝑛)

𝒫
′(𝑛) ⊗𝒫

′(𝑘1) ⊗ . . . ⊗𝒫
′(𝑘𝑛) 𝒫

′(𝑘1 + . . . + 𝑘𝑛)

𝛾

𝛾′

𝜑𝑛⊗𝜑𝑘1⊗...⊗𝜑𝑘𝑛 𝜑𝑘1+...+𝑘𝑛

Furthermore, 𝜑 is equivariant with respect to the symmetric actions of the operads.

In the following, when there is no confusion, we simplify notation by omitting

the subscript 𝑛 in the morphisms 𝜑𝑛 . For algebraic operads 𝒫 and 𝒫
′
, a morph-

ism of operads is a sequence {𝜑𝑛 : 𝒫(𝑛) → 𝒫
′(𝑛)} of morphisms of 𝑅-modules

satisfying the following conditions:

𝜑(1𝒫) = 1𝒫′

𝜑(𝜇(𝜇1, . . . , 𝜇𝑚)) = 𝜑(𝜇)(𝜑(𝜇1), . . . , 𝜑(𝜇𝑛))

𝜑(𝜇 · 𝜎) = 𝜑(𝜇) · 𝜎

Example 3.38. Consider the algebraic operads𝒜𝓈𝓈 and𝒞ℴ𝓂, respectively described

in Examples 3.7 and 3.8. Both 𝒜𝓈𝓈 and 𝒞ℴ𝓂 are generated by a binary tree. To

distinguish, we denote by𝜇 and 𝜈 the two binary trees of𝒜𝓈𝓈 and𝒞ℴ𝓂, respectively.

Moreover, both 𝜇 and 𝜈 satisfy the same relation:

𝜇(1, 𝜇) = 𝜇(𝜇, 1)

𝜈(1, 𝜈) = 𝜈(𝜈, 1)

which encodes associativity. However, 𝜈 satisfies an extra relation:

𝜈 · 𝜏 = 𝜈

which encodes commutativity. Despite this difference, thanks to the associativity

relation, there is a morphism of operads 𝒜𝓈𝓈 → 𝒞ℴ𝓂 which sends 𝜇 to 𝜈. In

fact, one can see 𝒞ℴ𝓂 as the coequalizer in the category of operads of the maps

id, 𝜏 : 𝒜𝓈𝓈→ 𝒜𝓈𝓈, where 𝜏 sends 𝜇 to 𝜇 · 𝜏, with 𝜏 = (1 2). Then, the coequalizer

map 𝒜𝓈𝓈 ⤏ 𝒞ℴ𝓂 is precisely the morphism which sends 𝜇 to 𝜈.
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Equivalently, from the concrete description of the operads𝒜𝓈𝓈 and𝒞ℴ𝓂, one can

describe the morphism 𝜑 : 𝒜𝓈𝓈→ 𝒞ℴ𝓂 as the sequence of morphisms 𝑅[S𝑛] → 𝑅

which send each generator 𝜎 ∈ S𝑛 to 1, for every 𝑛 > 0, and the trivial morphism

0→ 0 for 𝑛 = 0.

This morphism lifts to the unital versions of these two operads. In particular,

the operads 𝓊𝒜𝓈𝓈 and 𝓊𝒞ℴ𝓂 are generated by a binary tree and by a unitary tree 𝑒,

for which:

𝜇(𝑒 , 1) = 1 = 𝜇(1, 𝑒)

𝜈(𝑒 , 1) = 1 = 𝜈(1, 𝑒)

Thus, there is a morphism of operads 𝜑 : 𝓊𝒜𝓈𝓈 → 𝓊𝒞ℴ𝓂 which sends 𝑒 to itself

and 𝜇 to 𝜈. Concretely, this morphism is defined as 𝜑 : 𝒜𝓈𝓈→ 𝒞ℴ𝓂 for each 𝑛 > 0
and for 𝑛 = 0 it is just the identity 𝑅→ 𝑅.

Example 3.39. It is well-known that an associative algebra 𝐴 equipped with the

commutator [, ] defines a Lie algebra. This extends to a functor Alg𝒜𝓈𝓈 → Algℒ𝒾ℯ

from the category of associative algebras to the one of Lie algebras. It turns out this

functor is induced by a morphism of operads ℒ𝒾ℯ→ 𝒜𝓈𝓈. For a description of this

morphism we refer to [46, Section 13.2.5].

Operads over E together with their morphisms form a category denoted by

Operad(E). WhenE is clear from the context we omit it from the notation. Moreover,

for algebraic operads, we simplify notation and denote by Operad𝑅 the category

Operad(Mod𝑅).
A morphism of operads 𝜑 : 𝒫→ 𝒫

′
induces a morphism of monads S𝜑 : S𝒫 →

S𝒫′ between the corresponding monads. When the operads are algebraic, this

morphism is defined as follows:

(𝜇; 𝑥1, . . . , 𝑥𝑚) ↦→ (𝜑(𝜇); 𝑥1, . . . , 𝑥𝑚)

where (𝜇; 𝑥1, . . . , 𝑥𝑚) is the generic element of S𝒫𝑉 , for an 𝑅-module 𝑉 . On the

other hand, a morphism of monads 𝜑 : 𝑆→ 𝑆′ between two monads over a category

X, induces a functor 𝜑∗ : Alg𝑆′ → Alg𝑆, which sends an 𝑆′-algebra 𝐴 with structure

map𝜃 : 𝑆′𝐴→ 𝐴 to the 𝑆-algebra𝐴with structure map 𝑆𝐴
𝜑
−→ 𝑆′𝐴

𝜃−→ 𝐴. Moreover,
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𝜑∗ sends a morphism of 𝑆′-algebras 𝑓 : 𝐴 → 𝐵 to the morphism of 𝑆-algebra

𝜑∗ 𝑓 : 𝜑∗𝐴→ 𝜑∗𝐵 whose underlying X-morphism is just 𝑓 . So, by putting together

these two functorial operations, Operad(E) → Mnd(E) and Alg : Mndop(E) → Cat,
one finds a functor Alg : Operadop(E) → Cat which sends an operad to the corres-

ponding category Alg𝒫 of algebras and a morphism of operads 𝜑 : 𝒫→ 𝒫
′
to the

corresponding functor 𝜑∗ : Alg𝒫′ → Alg𝒫.

The first question is to see whether or not, for a morphism of operads 𝜑 : 𝒫→
𝒫
′
, 𝜑∗ lifts to a tangent morphism between the algebraic tangent categories of the

two operads. To begin with, notice that, for any tangent category (X,T), there

is a functor TngMnd(X,T)op → TngCat which sends a tangent monad (𝑆, 𝛼) over

(X,T) to the corresponding algebraic tangent category Alg(𝑆, 𝛼) and a morphism

𝜑 : (𝑆, 𝛼) → (𝑆′, 𝛼) of tangent monads, which consists of a morphism of monads

𝜑 : 𝑆 → 𝑆′ which is compatible with the distributive laws, to the strict tangent

morphism 𝜑∗ : Alg(𝑆, 𝛼) → Alg(𝑆′, 𝛼′).
To construct this functor, recall that, for Theorem 2.73, if a 2-category C admits

the construction of algebras, so does Tng(C), so in particular there is a 2-functor

Alg : TngMnd(C) ≅ Mnd(Tng(C)) → C. Since we are only interested in tangent

monads over a given tangent category, we can precompose this functor with the

inclusion functor TngMndop(C;X,T) → TngMnd(C) of tangent monads over a fixed

tangent object (X,T).
Notice that, by convention, morphisms 𝜑 : 𝑆′← 𝑆 in the category Mndop(C;X) of

monads over a fixed X correspond to morphisms (idX, 𝜑) : (X, 𝑆) → (X, 𝑆′). Simil-

arly, morphisms of TngMndop(C;X,T) 𝜑(𝑆′, 𝛼′) ← (𝑆, 𝛼) correspond to morphisms

(id(X,T), 𝜑) : Alg(𝑆, 𝛼) → Alg(𝑆′, 𝛼′). This is the reason why one needs to take the

opposite of the category TngMnd(C;X,T).
When we apply this construction to the 2-category Cat of algebras, which ad-

mits the construction of algebras, we obtain precisely the functor TngMnd(X,T) →
TngCat. Moreover, by unpacking the construction of algebras Alg : Mnd(Cat) → Cat
it is easy to see that a morphism 𝜑 : (𝑆, 𝛼) → (𝑆′, 𝛼) of tangent monads, which con-

sists of a morphism of monads 𝜑 : 𝑆→ 𝑆′which is compatible with the distributive

laws, is sent by Alg to a strict tangent morphism. Let’s summarise this discussion

as a result.
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Proposition 3.40. The functor Alg : Mndop(X) → Cat which sends a monad 𝑆 over a fixed
category X to the corresponding category of algebras Alg𝑆 and a morphism 𝜑 : 𝑆′ ← 𝑆

of monads (opposite) to 𝜑∗ : Alg𝑆′ → Alg𝑆, extends to a functor Alg : TngMndop(X;T) →
TngCat=.

The next step consists of showing that a morphism 𝜑 : 𝒫 → 𝒫
′

of operads

is compatible with the differential combinators of the corresponding coCartesian

differential monads. In particular, we want to show that the following diagram

commutes:

S𝒫𝐴 S𝒫(𝐴 ⊕ 𝐴)

S𝒫′𝐴 S𝒫′(𝐴 ⊕ 𝐴)

𝜕𝒫

𝜕𝒫′

S𝜑𝐴 S𝜑(𝐴⊕𝐴)

Proposition 3.41. The morphism S𝜑 : S𝒫 → S𝒫′ of monads induced by a morphism
𝜑 : 𝒫 → 𝒫

′ is compatible with the differential combinators. In particular, the functor
S : Operad(E) → Mnd(E) extends to a functor S : Operad(E) → TngMnd(E, T), which
sends an operad𝒫 to the corresponding tangent monad (S𝒫 , 𝛼𝒫) and a morphism 𝜑 : 𝒫→
𝒫
′ of operads to a morphism S𝜑 : (S𝒫 , 𝛼𝒫) → (S𝒫′ , 𝛼𝒫′) of tangent monads.

Proof. Recalling Equation (3.4.1), it is easy to see that the diagram:

𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 𝒫(𝑛) ⊗S𝑛 (𝐴 ⊕ 𝐴)⊗𝑛

𝒫
′(𝑛) ⊗S𝑛 𝐴⊗𝑛 𝒫

′(𝑛) ⊗S𝑛 (𝐴 ⊕ 𝐴)⊗𝑛

∑︁𝑛
𝑘=1 id𝒫⊗𝛿𝑘

∑︁𝑛
𝑘=1 id𝒫′⊗𝛿𝑘

𝜑⊗𝐴⊗𝑛 𝜑⊗(𝐴⊕𝐴)⊗𝑛

commutes and so, in particular, S𝜑 is compatible with the differential combinat-

ors. Moreover, the correspondence between coCartesian differential monads and

tangent monads over the tangent category induced by biproducts extends to a func-

tor. In particular, it is not hard to see that a morphism of coCartesian differential

monads, which consists of a morphism of monads compatible with the differential

combinators, is sent to a morphism of tangent monads. Therefore, the operation

which sends an operad to its corresponding tangent monad extends to a functor

Operad(E) → TngMnd(E, T). □
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By putting together the two functors S : Operad(E) → TngMnd(E, T) and

Alg : TngMndop(E, T) → TngCat= we obtain a functor Alg∗ : Operadop(E) → TngCat=.

Proposition 3.42. The operation which sends an operad 𝒫 to the corresponding algebraic
tangent category Alg(𝒫) extends to a functor Alg∗ : Operadop(E) → TngCat=.

Interestingly, the functor 𝜑∗ : Alg𝒫′ → Alg𝒫 induced by a morphism 𝜑 : 𝒫→ 𝒫
′

of operads admits a left adjoint 𝜑! : Alg𝒫 → Alg𝒫′. Concretely, 𝜑! sends a𝒫-algebra

𝐴 to the 𝒫
′
-algebra 𝜑!𝐴 defined by identifying the two algebra structures over the

free algebra S𝒫′𝐴, induced by the multiplication of the operad 𝒫
′
, that is the free

algebra structure, and the one induced by the structure map of 𝐴 as a 𝒫-algebra.

In a nutshell, 𝜑! is the coequalizer in the category of 𝒫
′
-algebras between the

morphisms S𝒫′S𝒫𝐴
S𝒫′S𝜑
−−−−→ S2

𝒫′𝐴
𝛾′

−→ S𝒫′𝐴 and S𝒫′S𝒫𝐴
S𝒫′𝜃−−−→ S𝒫′𝐴:

S𝒫′S𝒫𝐴 S2
𝒫′𝐴 S𝒫′𝐴 𝜑!𝐴

S𝒫′S𝜑 𝛾′

S𝒫′𝜃

In particular, the structure map of 𝜑!𝐴 is induced by 𝛾′ as follows:

S2
𝒫′S𝒫𝐴 S3

𝒫′𝐴 S2
𝒫′𝐴 S𝒫′𝜑!𝐴

S𝒫′S𝒫𝐴 S2
𝒫′𝐴 S𝒫′𝐴 𝜑!𝐴

S𝒫′S𝜑 𝛾′

S𝒫′𝜃

S𝒫′𝛾
′S2

𝒫′S𝜑

S2
𝒫′𝜃

𝛾′𝛾′S𝒫′𝛾′S𝒫 𝜃!

Moreover, a morphism 𝑓 : 𝐴 → 𝐵 between two 𝒫-algebras is sent to the unique

morphism 𝜑! 𝑓 : 𝜑!𝐴→ 𝜑!𝐵:

S𝒫′S𝒫𝐴 S2
𝒫′𝐴 S𝒫′𝐴 𝜑!𝐴

S𝒫′S𝒫𝐵 S2
𝒫′𝐵 S𝒫′𝐵 𝜑!𝐵

S𝒫′S𝜑 𝛾′

S𝒫′𝜃

𝛾′S𝒫′S𝜑

S𝒫′𝜃

𝜑! 𝑓S𝒫′ 𝑓S2
𝒫′ 𝑓S𝒫′S𝒫 𝑓
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Example 3.43. As discussed in Example 3.38, there is a canonical morphism of

operads 𝜑 : 𝒜𝓈𝓈 → 𝒞ℴ𝓂, which sends the generator 𝜇 of 𝒜𝓈𝓈 to the generator

𝜈 of 𝒞ℴ𝓂. This induces an a pair of adjoint functors 𝜑! : Alg𝒜𝓈𝓈 ⇆ Alg𝒞ℴ𝓂 : 𝜑∗.
The right adjoint 𝜑∗ sends a commutative algebra to its underlying associative

algebra and a morphism of commutative algebras to the underlying morphism of

associative algebras. More interesting is the left adjoint 𝜑! which consists of the

abelianization functor, which sends an associative algebra 𝐴 to its abelianization

𝐴/[𝐴, 𝐴]. Concretely, 𝐴/[𝐴, 𝐴] is the quotient between the algebra 𝐴 and the

ideal known as the commutator of 𝐴, generated by all the terms of the form

[𝑎, 𝑏] : = 𝑎𝑏 − 𝑏𝑎. A morphism 𝑓 : 𝐴 → 𝐵 of associative algebras lifts to the

quotient, since 𝑓 [𝑎, 𝑏] = 𝑓 (𝑎𝑏 − 𝑏𝑎) = 𝑓 (𝑎) 𝑓 (𝑏) − 𝑓 (𝑏) 𝑓 (𝑎) = [ 𝑓 (𝑎), 𝑓 (𝑏)]. The lift

𝑓̄ : 𝐴/[𝐴, 𝐴] → 𝐵/[𝐵, 𝐵] is precisely 𝜑! 𝑓 .

Example 3.44. As discussed in Example 3.39, there is a canonical morphism of

operads 𝜑 : ℒ𝒾ℯ → 𝓊𝒜𝓈𝓈. This induces an a pair of adjoint functors 𝜑! : Algℒ𝒾ℯ ⇆

Alg𝓊𝒜𝓈𝓈 : 𝜑∗. The right adjoint 𝜑∗ sends an associative algebra 𝐴 to the Lie algebra

over𝐴whose Lie bracket is defined by the commutator [, ] : 𝐴⊗𝐴→ 𝐴, [, ] : (𝑎, 𝑏) ↦→
[𝑎, 𝑏] : = 𝑎𝑏 − 𝑏𝑎 of 𝐴. The left adjoint 𝜑! sends a Lie algebra 𝔤 to its universal

enveloping algebra Env(𝔤). Concretely, Env(𝔤) is obtained by quotienting the tensor

algebra Tens(𝔤), i.e. the free associative algebra generated by elements of 𝔤, by the

quotient generated by 𝑎 ⊗ 𝑏 − 𝑏 ⊗ 𝑎 − [𝑎, 𝑏], where [, ] denotes the Lie bracket of 𝔤.

A morphism 𝑓 : 𝔤 → 𝔤′ of Lie algebras lifts to the quotient, since 𝑓 (𝑎 ⊗ 𝑏 −
𝑏 ⊗ 𝑎 − [𝑎, 𝑏]) = 𝑓 (𝑎) ⊗ 𝑓 (𝑏) − 𝑓 (𝑏) ⊗ 𝑓 (𝑎) − [ 𝑓 (𝑎), 𝑓 (𝑏)], and the lifted morphism

𝑓̄ : Env(𝔤) → Env(𝔤′) is precisely 𝜑! 𝑓 .

At this point, it is natural to wonder if the functor Operad(E) → Cat which

sends an operad 𝒫 to Alg𝒫 and a morphism 𝜑 : 𝒫 → 𝒫
′

of operads to the left

adjoint 𝜑! : Alg𝒫 → Alg𝒫′ also extends to a tangent morphism. This question

opens a more general question: if the underlying functor 𝐺 : X → X′ of a tan-

gent morphism (𝐺, 𝛽) : (X,T) → (X′,T′) between two tangent categories admits

a left adjoint 𝐹 : X′ → X, does the left adjoint 𝐹 extend to a tangent morphism

(𝐹, 𝛼) : (X′,T′) → (X,T)?
The answer is positive whenever (𝐺, 𝛽) is a colax tangent morphism. In par-

ticular, the left adjoint extends to a lax tangent morphism (𝐹, 𝛼). This interesting
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relationship between colax and lax tangent morphisms has a natural contextual-

ization in the double category TngCat of tangent categories. Recall, that tangent

objects can be organized in a double category whose horizontal morphisms are

lax tangent morphisms and vertical morphisms are colax tangent morphisms (cf.

Section 2.3). Recall also that a conjunction is a generalization in the context of

double categories of an adjunction (see [52, Definition 7]).

Definition★ 3.45. In a double category, a conjunction (𝜂, 𝜀) : 𝐹 ⊣ 𝐺 consists of a hori-
zontal morphism 𝐹 : X→ X′ and vertical morphism 𝐺 : X′↛ X together with two double
cells:

X X′

X X

𝐹

𝐺

❘❘ 𝜂

X′ X′

X X′

𝐺

❘

𝐹

❘𝜀

satisfying triangle equalities.

Proposition 3.46. A conjunction (𝐹, 𝛼) : (X,T)⇆ (X′,T′) : (𝐺, 𝛽) in the double category
Tng(C) of tangent objects of a 2-category C consists of an adjunction (𝜂, 𝜀) : 𝐹 ⊣ 𝐺 in C
together with a colax distributive law 𝛽 : T ◦𝐺⇒ 𝐺 ◦T′ and its mate 𝛼 : 𝐹 ◦T⇒ T′ ◦ 𝐹
along the adjunction (𝜂, 𝜀) : 𝐹 ⊣ 𝐺. In particular, 𝛼 is defined by:

𝛼 : 𝐹 ◦ T
𝐹T𝜂
−−−→ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹

𝐹𝛽𝐹
−−−→ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝜀T′𝐹−−−→ T′ ◦ 𝐹

Proof. Let’s start by proving that (𝐹, 𝛼) is a lax tangent morphism. The first step is

to show that 𝛼 is compatible with the projections, i.e. 𝛼𝑝′
𝐹
= 𝐹𝑝, where 𝑝′ denotes

the projection of the tangent structure T′. We will adopt a similar notation for

the other 2-morphisms of the tangent structures. This amounts to showing the

commutativity of the following diagram:

𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 T′ ◦ 𝐹

𝐹 ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ 𝐹

𝐹 𝐹

𝐹𝜂

𝐹𝑝 𝑝′
𝐹

(𝐹◦T)𝜂 𝐹𝛽𝐹 𝜀T′◦𝐹

𝐹𝑝𝐺◦𝐹 (𝐹◦𝐺)𝑝′
𝐹

𝜀𝐹

Nat Nat

Δ

(𝛽;𝑝,𝑝′)
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To express the commutativity of the diagrams that compose the whole diagram we

adopted the following convention: with Nat we denote commutativity by naturality;

by (𝛽; 𝑝, 𝑝′) we denote the compatibility between 𝛽 and the projections; and Δ

indicates the triangle identities between the unit and the counit of the adjunction.

In the following, we adopt a similar notation.

The second step is to prove the compatibility with the zero morphisms. This

amounts to showing that 𝐹𝑧𝛼 = 𝑧′
𝐹
, i.e.:

𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 T′ ◦ 𝐹

𝐹 ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ 𝐹

𝐹 𝐹

𝐹𝜂

𝐹𝑧 𝑧′
𝐹

(𝐹◦T)𝜂 𝐹𝛽𝐹 𝜀T′◦𝐹

𝐹𝑧𝐺◦𝐹 (𝐹◦𝐺)𝑧′
𝐹

𝜀𝐹

Nat Nat

Δ

(𝛽;𝑧,𝑧′)

Let’s show the compatibility with the sum morphism, which is (𝛼)2𝑠′𝐹 = 𝐹𝑠𝛼:

𝐹 ◦ T2 𝐹 ◦ T2 ◦ 𝐺2 ◦ 𝐹2 𝐹 ◦ 𝐺2 ◦ T′2 ◦ 𝐹2 T′2 ◦ 𝐹2

𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹

𝐹𝑠 𝑠′
𝐹

(𝐹◦T2)𝜂2 𝐹(𝛽2)𝐹2
(𝜀2)T′2◦𝐹2

(𝐹◦T)𝜂 𝐹𝛽𝐹 𝜀T′◦𝐹

𝐹𝑠𝐺◦𝐹 (𝐹◦𝐺)𝑠′
𝐹Nat Nat(𝛽;𝑠,𝑠′)

Let’s now show the compatibility with the vertical lifts, i.e. 𝛼𝑙′
𝐹
= 𝐹𝑙𝛼TT′𝛼:

𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹

𝐹 ◦ T2 ◦ 𝐺 ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′2 ◦ 𝐹

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹

𝐹 ◦ T2 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 T′2 ◦ 𝐹

T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T

(𝐹◦T)𝜂 𝐹𝛽𝐹 𝜀T′◦𝐹

𝐹𝑙 𝑙′
𝐹

(𝐹◦T)𝜂𝐺◦T′◦𝐹

(𝐹◦T)𝜂T 𝐹𝛽𝐹◦T

(T′◦𝐹◦T)𝜂

(T′◦𝐹)𝛽𝐹 T′𝜀T′◦𝐹

𝜀T′◦𝐹◦T◦𝐺◦𝐹

(𝐹◦𝐺◦T′◦𝐹)𝛽𝐹

(𝐹◦T◦𝐺◦𝐹◦T)𝜂 𝜀T′◦𝐹◦𝐺◦T′◦𝐹

(𝐹◦T◦𝐺◦𝐹)𝛽𝐹

(𝐹◦T2)𝜂

(𝐹◦T)𝜂T◦𝐺◦𝐹 (𝐹◦𝐺◦T′)𝜀T′◦𝐹

𝜀T′2◦𝐹

(𝐹◦T)𝛽𝐹 𝐹𝛽T′◦𝐹

𝐹𝑙𝐺◦𝐹 (𝐹◦𝐺)𝑙′
𝐹

Nat Nat

Nat

(𝐹◦T◦𝐺)𝜀T′◦𝐹

𝐹𝛽𝐹◦𝐺◦T′◦𝐹

𝐹𝛽𝐹◦T◦𝐺◦𝐹

(𝐹◦𝐺◦T′◦𝐹◦T)𝜂

𝜀T′◦𝐹◦T

(𝛽;𝑙 ,𝑙′)

Nat Nat

Nat

NatNat

Nat

Δ Nat
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Finally, the compatibility with the canonical flips, i.e. 𝛼TT′𝛼𝑐′
𝐹
= 𝐹𝑐𝛼TT′𝛼:

T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T

𝐹 ◦ T2 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 T′2 ◦ 𝐹

𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺T′ ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐹 ◦ T2 ◦ 𝐺 ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′2 ◦ 𝐹

𝐹 ◦ T2 ◦ 𝐺 ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′2 ◦ 𝐹

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹

𝐹 ◦ T2 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 T′ ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 T′2 ◦ 𝐹

T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T

𝑐′
𝐹

(𝐹◦T)𝜂𝐺◦T′◦𝐹

(𝐹◦T)𝜂T 𝐹𝛽𝐹◦T

(T′◦𝐹◦T)𝜂

T′◦𝐹𝛽𝐹 T′𝜀T′◦𝐹

𝜀T′◦𝐹◦T◦𝐺◦𝐹

(𝐹◦𝐺◦T′◦𝐹)𝛽𝐹

(𝐹◦T◦𝐺◦𝐹◦T)𝜂 𝜀T′◦𝐹◦𝐺◦T′◦𝐹

(𝐹𝑜T◦𝐺◦𝐹)𝛽𝐹

(𝐹◦T2)𝜂

(𝐹◦T)𝜂T◦𝐺◦𝐹 (𝐹◦𝐺◦T′)𝜀T′◦𝐹

𝜀T′2◦𝐹

(𝐹◦T)𝛽𝐹 𝐹𝛽T′◦𝐹

Nat

(𝐹◦T◦𝐺)𝜀T′◦𝐹

𝐹𝛽𝐹◦𝐺◦T′◦𝐹

𝐹𝛽𝐹◦T◦𝐺◦𝐹

(𝐹◦𝐺◦T′◦𝐹◦T)𝜂

𝜀T′◦𝐹◦T

𝐹𝑐

(𝐹◦T)𝛽𝐹 𝐹𝛽T′◦𝐹

𝐹𝑐𝐺◦𝐹 (𝐹◦𝐺)𝑐′
𝐹

(𝐹◦T)𝜂𝐺◦T′◦𝐹 (𝐹◦T◦𝐺)𝜀T′◦𝐹

(𝐹◦T)𝜂T◦𝐺◦𝐹 (𝐹◦𝐺◦T′)𝜀T′◦𝐹

𝐹𝛽𝐹◦𝐺◦T′◦𝐹(𝐹◦T◦𝐺◦𝐹)𝛽𝐹

𝐹𝛽𝐹◦T◦𝐺◦𝐹
𝐹𝛽𝐹◦𝐺◦T′◦𝐹

(𝐹◦T)𝜂T 𝐹𝛽𝐹◦T

𝜀T′◦𝐹◦T (T′◦𝐹◦T)𝜂

(T′◦𝐹)𝛽𝐹 T′𝜀T′◦𝐹

𝜀T′◦𝐹◦𝐺◦T′◦𝐹(𝐹◦T◦𝐺◦𝐹◦T)𝜂

(𝐹◦𝐺◦T′◦𝐹◦T)𝜂 𝜀T′◦𝐹◦T◦𝐺◦𝐹

𝜀T′2◦𝐹(𝐹◦T2)𝜂

Nat Δ

NatNat

Nat

Nat

Δ
Nat Nat

(𝛽;𝑐,𝑐′)

NatNat

Nat

NatNat

Nat

Nat

Nat Nat

Nat

So far, we proved that (𝐹, 𝛼) is a lax tangent morphism. The next step is to prove

that:

(X,T) (X′,T′)

(X,T) (X,T)

❘ (𝐺,𝛽)❘

(𝐹,𝛼)

𝜂

(X′,T′) (X′,T′)

(X,T) (X′,T′)

(𝐺,𝛽) ❘

(𝐹,𝛼)

❘𝜀
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are tangent double cells. This amounts to showing the commutativity of the fol-

lowing diagrams:

T 𝐺 ◦ 𝐹 ◦ T

T ◦ 𝐺 ◦ 𝐹 𝐺 ◦ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹

𝐺 ◦ T′ ◦ 𝐹 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹

𝐺 ◦ T′ ◦ 𝐹 𝐺 ◦ T′ ◦ 𝐹

𝜂T

(𝐺◦𝐹◦T)𝜂T𝜂

𝜂T◦𝐺◦𝐹

Nat

(𝐺◦𝐹)𝛽𝐹

𝐺𝜀𝑄◦𝐹

𝛽𝐹

𝜂𝐺◦T′◦𝐹

Nat

Δ

𝐹 ◦ T ◦ 𝐺 𝐹 ◦ T ◦ 𝐺

𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 𝐹 ◦ T ◦ 𝐺

𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ 𝐺 𝐹 ◦ 𝐺 ◦ T′

T′ ◦ 𝐹 ◦ 𝐺 T′

(𝐹◦T)𝜂𝐺

(𝐹◦T◦𝐺)𝜀

𝐹𝛽𝐹𝛽𝐹◦𝐺

(𝐹◦𝐺◦T′)𝜀

Nat

Δ

𝜀T′◦𝐹◦𝐺

T′𝜀

𝜀′TNat

The converse is a straightforward computation we leave for the reader to spell

out. □

Remark 3.47. Consider a strong tangent morphism (𝐺, 𝛽) : (X′,T′) → (X,T)whose

underlying functor 𝐺 admits a left adjoint 𝐹 : X → X′. Since a strong tangent

morphism is, in particular, a colax tangent morphism, by Proposition 3.46, we

conclude that 𝐹 extends to a lax tangent morphism (𝐹, 𝛼)whose distributive law is

induced by 𝛽 via mates along the adjunction between the two underlying functors.

Since (𝐺, 𝛽) is strong, a natural question is whether or not also (𝐹, 𝛼) is strong,

i.e. if also 𝛼 is an isomorphism. The answer is no, as explained in Remark 3.52.

The reason why the operation of taking the conjoint of a colax tangent morphism

does not preserve strength comes from the fact that the mate of the inverse of the

distributive law 𝛽 is not, in general, well-defined.

The key observation is that the distributive law 𝛼 that makes the left adjoint

𝐹 of the underlying functor of a colax tangent morphism (𝐺, 𝛽) into a lax tangent

morphism (𝐹, 𝛼) is fully determined by the colax distributive law 𝛽. On the other

hand, the tangent morphism Alg∗(𝜑) associated with a morphism 𝜑 of operads is

a strict tangent morphism whose underlying functor 𝜑∗ has a left adjoint 𝜑!. Since

strong, and then, in particular, strict, tangent morphisms are also colax tangent

morphisms, Proposition 3.46 implies that 𝜑! comes equipped with a lax distributive
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law which makes it into a lax tangent morphism. From this, we argue that the

operation which sends an operad𝒫 to its algebraic tangent category Alg(𝒫) extends

to a covariant functor which sends a morphism of operads 𝜑 to a lax tangent

morphism whose underlying functor is 𝜑!.

In order to fully characterize the associated distributive law 𝛽! : 𝜑! ◦

T⇒ T◦𝜑!,

we first need to fully understand the unit and the counit of the adjunction (𝜂, 𝜀) : 𝜑! ⊣
𝜑∗. The unit 𝜂 : 𝐴→ 𝜑∗𝜑!𝐴 is defined by the E-morphism:

𝜂 : 𝐴
1𝒫′−−→ S𝒫′𝐴→ 𝜑!𝐴

where1𝒫′ denotes the unit of the monad associated to𝒫
′
and the second morphism

is the coequalizer morphism. To define the counit, consider a 𝒫
′
-algebra 𝐵 with

structure map 𝜃 : S𝒫′𝐵→ 𝐵, then:

S𝒫′S𝒫𝐵 S2
𝒫′𝐵 S𝒫′𝐵 𝜑!𝜑∗𝐵

S𝒫′𝐵 𝐵

𝛾′S𝒫′S𝜑

𝜃S𝒫′𝜃

𝜃

S𝒫′(𝜑∗𝜃)
𝜀

where 𝜑∗𝜃 denotes the structure map of 𝜑∗𝐵.

Proposition 3.48. The operation which sends an operad 𝒫, over a symmetric monoidal
categoryEwhich satisfies Convention 3.20, to its algebraic tangent category Alg(𝒫) extends
to a pseudofunctor Operad(E) → TngCat which sends a morphism 𝜑! : 𝒫→ 𝒫

′ to the lax
tangent morphism (𝜑!, 𝛽!) : Alg(𝒫) → Alg(𝒫′), where 𝛽! is the distributive law defined as
follows:

𝛽! : 𝜑! ◦

T𝜑!

T

𝜂
−−−→ 𝜑! ◦

T◦ 𝜑∗ ◦ 𝜑! = 𝜑! ◦ 𝜑∗ ◦

T◦ 𝜑!
𝜀

T

𝜑!−−−→ T◦ 𝜑!

Remark 3.49. Notice that, since the left adjoint of a given functor is only determined

up to a unique isomorphism, we need to choose for each morphism 𝜑 of operads

of a representative of the class of isomorphism of left adjoints of the functor 𝜑∗.

This implies that Alg! cannot be a strict functor, but rather a pseudofunctor whose

associator and unitors are induced by these unique isomorphisms between left

adjoints.
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For algebraic operads 𝒫 and 𝒫
′

and a morphism 𝜑 : 𝒫 → 𝒫
′

of operads the

distributive law 𝛽! is defined as follows. Given a 𝒫-algebra 𝐴, 𝜑!(

T(𝒫)𝐴) is the

𝒫
′
-algebra generated by pairs (𝑎, 𝑏) for 𝑎, 𝑏 ∈ 𝐴, satisfying some suitable relations

defined by the coequalizer that defines 𝜑!. Similarly, also

T(𝒫′)(𝜑!𝐴) is generated

by pairs (𝑎, 𝑏) for 𝑎, 𝑏 ∈ 𝐴. So, 𝛽! sends each generator (𝑎, 𝑏) to the corresponding

generator (𝑎, 𝑏).

Example 3.50. Consider the operads𝒜𝓈𝓈 and𝒞ℴ𝓂 of Examples 3.7 and 3.8, respect-

ively. Since the generator 𝜈 of 𝒞ℴ𝓂 satisfies the same relation as the generator 𝜇 of

𝒜𝓈𝓈, there is a quotient morphism 𝜑 : 𝒜𝓈𝓈→ 𝒞ℴ𝓂 of operads (see Example 3.43),

which sends 𝜇 to 𝜈, and that induces an adjunction:

𝜑! : Alg𝒜𝓈𝓈 ⇆ Alg𝒞ℴ𝓂 : 𝜑∗

𝜑∗ sends a commutative algebra 𝐵 to the underlying associative algebra 𝜑∗𝐵, while

𝜑! sends an associative algebra 𝐴 to its abelianization 𝐴/[𝐴, 𝐴], where [𝐴, 𝐴] de-

notes the commutator, i.e. the ideal generated by symbols 𝑎𝑏 − 𝑏𝑎, for any 𝑎, 𝑏 ∈ 𝐴.

The functor Alg∗maps the morphism of operads𝜑 to the strict tangent morphism

over the pullback functor 𝜑∗, which makes Alg(𝒞ℴ𝓂) a tangent subcategory of

Alg(𝒜𝓈𝓈).
The functor Alg! maps the morphism of operads 𝜑 to the lax tangent morphism

whose underlying functor is the abelianization functor 𝜑!. To understand what is

the corresponding distributive law 𝜑! ◦

T(𝒜𝓈𝓈) → T(𝒞ℴ𝓂) ◦ 𝜑!, first notice that, for

an associative algebra 𝐴, 𝜑!(

T(𝒜𝓈𝓈)(𝐴)) is the abelianization of 𝐴 ⋉ 𝐴. It is not hard

to see that this is isomorphic to 𝜑!(𝐴) ⋉ 𝜑!(𝐴) which is precisely

T(𝒞ℴ𝓂)(𝜑!(𝐴)).
On the other hand, the distributive law sends the generator (𝑎, 𝑏) ∈ 𝜑!(𝐴 ⋉ 𝐴)
to (𝑎, 𝑏) ∈ 𝜑!(𝐴) ⋉ 𝜑!(𝐴). Thus, the distributive law is precisely the isomorphism

between the abelianization of𝐴⋉𝐴 and the semi-direct product of the abelianization

of 𝐴 with itself.

Example 3.51. Consider the operad ℒ𝒾ℯ described in Example 3.9. There is a

canonical morphism of operads 𝜑 : ℒ𝒾ℯ→ 𝓊𝒜𝓈𝓈 (see 3.39). Consider the induced

adjunction:

𝜑! : Algℒ𝒾ℯ ⇆ Alg𝓊𝒜𝓈𝓈 : 𝜑∗
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The pullback functor 𝜑∗ sends an associative algebra𝐴 to the underlying Lie algebra

with Lie brackets defined by the commutator [𝑎, 𝑏] := 𝑎𝑏 − 𝑏𝑎. On the other hand,

the left adjoint 𝜑! sends a Lie algebra 𝔤 to its universal enveloping algebra Env𝔤.

The functor Alg∗ sends 𝜑 to the strict tangent morphism whose underlying

functor is the pullback functor 𝜑∗. The functor Alg! sends 𝜑 to the lax tangent

morphism whose underlying functor is the universal enveloping algebra functor

𝜑!. To understand the distributive law 𝜑! ◦

T(ℒ𝒾ℯ) → T(𝓊𝒜𝓈𝓈) ◦ 𝜑!, we first take a

closer look at 𝜑!(

T(ℒ𝒾ℯ)(𝔤)) and

T(𝓊𝒜𝓈𝓈)(𝜑!(𝔤)), for a Lie algebra 𝔤. The former is the

universal enveloping algebra of the semi-direct product 𝔤 ⋉ 𝔤. Concretely, this is

the associative algebra generated by pairs (𝑔, ℎ) for each 𝑔, ℎ ∈ 𝔤, satisfying the

relation:

(𝑔, ℎ)(𝑔′, ℎ′) − (𝑔′, ℎ′)(𝑔, ℎ) = ([𝑔, 𝑔′], [𝑔, ℎ′] + [ℎ, 𝑔′]) (3.5.3)

The second one is the semi-direct product of the universal enveloping algebra with

itself. Concretely, this is the associative algebra of pairs (𝑔, ℎ) for 𝑔, ℎ ∈ Env𝔤,

satisfying the relations:

(𝑔, ℎ)(𝑔′, ℎ′) = (𝑔𝑔′, 𝑔ℎ′ + ℎ𝑔′)

𝑔ℎ − ℎ𝑔 = [𝑔, ℎ]
(3.5.4)

It is straightforward to see that the latter relations imply the former ones, thus

there is a canonical morphism of Lie algebras 𝜑!(

T(ℒ𝒾ℯ)(𝔤)) → T(𝓊𝒜𝓈𝓈)(𝜑!(𝔤)), which

corresponds to the distributive law.

Remark 3.52. Proposition 3.42 shows that the functor Alg∗ sends a morphism of

operads to a strict tangent morphism. One can imagine that Alg! should also send

a morphism of operads to a strict, or maybe strong, tangent morphism. However,

as discussed in Remark 3.47, the operation of taking conjoints does not preserve

strength. In particular, Example 3.51 furnishes a counterexample of this conjecture,

indeed the relations of Equation (3.5.3) do not imply relations of Equation (3.5.4).
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3.6 The geometric tangent category of an operad

A well-known fact of algebraic geometry (cf. [19]) establishes that the category of

affine schemes over𝑅 and the opposite of the category of commutative and unital𝑅-

algebras are equivalent. Starting from this observation, one would like to interpret

the opposite of the category of algebras over a given operad 𝒫 as operadic affine

schemes of type 𝒫. Inspired by this insight, Ginzburg in [25] and [26] suggested

to think of operadic algebras in a geometric sense. Crucially, not the category of

operadic algebras, but its opposite is the correct category to establish a geometric

interpretation of these objects.

To understand why this is the case, let us consider the example of commutative

and unital algebras. From a categorical point of view, a point of an object 𝐴 in a

category consists of a morphism from the terminal object to 𝐴. In the category

cAlg of commutative and unital algebras, the terminal object is the zero algebra, so

the only point of an algebra 𝐴 is just the zero 0: 0 → 𝐴. On the contrary, in the

opposite of the category of commutative and unital algebras cAlgop
, the terminal

object is the ring 𝑅, so a point of an affine scheme 𝐴, i.e. an algebra seen as an

object in cAlgop
, consists of an algebra morphism 𝜔 : 𝐴→ 𝑅.

To understand why this is a good notion of point, consider the coordinate ring

𝐴 : = 𝑅[𝑥, 𝑦]/(𝑝(𝑥, 𝑦)) of a polynomial 𝑝(𝑥, 𝑦) in two variables. Then, a point of

𝐴 consists of a morphism of algebras 𝜔 : 𝑅[𝑥, 𝑦]/(𝑝(𝑥, 𝑦)) → 𝑅, which is fully

determined by the values 𝑥0 := 𝜔(𝑥) and 𝑦0 := 𝜔(𝑦). However, from the relations

which define the algebra 𝐴, 𝑝(𝑥0, 𝑦0) = 0. So, a point 𝜔 : 𝐴→ 𝑅 in the categorical

sense is equivalent to a point on the affine scheme represented by the locus of the

polynomial 𝑝(𝑥, 𝑦).
Another important reason why one should consider the opposite of the cat-

egory of algebras as the category of true geometric objects, is the Gelfand-Naimark

functor. Such a functor sends a finite-dimensional Hausdorff locally compact to-

pological space 𝑀 to the commutative 𝐶∗-algebra of complex-valued continuous

functions of 𝑀. This functor, which is contravariant, establishes an equivalence

between the categories of Hausdorff, locally compact, topological spaces and the

opposite of the category of commutative 𝐶∗-algebras. In particular, this equival-

ence suggests treating the opposite of the category of 𝐶∗-algebras as a category of
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geometric objects.

From the perspective of tangent category theory, one would like to define a

tangent structure on the opposite of the category of operadic algebras capable

of capturing the geometry of operadic affine schemes. This has already been

explored by Cruttwell and Lemay for commutative and unital algebras ([18]). In

particular, as shown in Example 2.14, the opposite of commutative and unital

rings cRingop
comes equipped with a tangent structure. This tangent structure,

first introduced by Cockett and Cruttwell in [12], was then extensively studied by

Cruttwell and Lemay as the correct tangent structure capable of capturing some

important geometric features of affine schemes.

As explained in Section 2.2.6, the existence of a tangent structure on cRingop
is

a consequence of the adjunctability of the tangent structure on cRing. With this

in mind, it is natural to wonder a more general question: when is the tangent

category of algebras of a tangent monad adjunctable (see Section 2.2.6)? Cockett,

Lemay, and Lucyshyn-Wright in [15, Theorem 26] answered this question in the

context of differential categories with finite biproducts. Here, we want to extend

the same idea for a general tangent monad. The main idea is to employ Johnstone’s

adjoint lifting theorem [33, Theorem 2] which establishes that, for a monad 𝑆

over a category X, given an endofunctor

T: X → X of X and a distributive law

𝛼 : 𝑆 ◦ T⇒ T◦ 𝑆 so that

T

can be lifted to the algebras

T: Alg𝑆 → Alg𝑆, if the

category Alg𝑆 of algebras of 𝑆 admits coequalizers of reflexive pairs, then whenever

T

has a left adjoint T, so does the left

T

. In particular, this implies that when Alg𝑆 is

finitely cocomplete, then adjunctions of endofunctors T ⊣ T

over the base category

X can be lifted along the forgetful functor Alg𝑆 → X.

Proposition 3.53. Suppose the category of algebras Alg𝑆 of a tangent monad (𝑆, 𝛼) over a
tangent category (X, T) admits coequalizers of reflexive pairs. If (X, T) is adjunctable, so
is the tangent category Alg(𝑆, 𝛼) = (Alg𝑆 ,

T(𝑆)). In particular, Geom(𝑆, 𝛼) := (Algop
𝑆
,T(𝑆))

is a tangent category. Finally, if X has negatives, then so does Geom(𝑆, 𝛼).

Proof. This result follows directly from the adjoint lifting theorem: since the cat-

egory Alg𝑆 admits coequalizers of reflexive pairs, the adjunctions T𝑛 ⊣

T

𝑛 defined

by the adjunctability of (X, T) can be lifted to Alg𝑆, so in particular, the lifted tangent

bundle functor

T(𝑆)
admits a left adjoint T(𝑆). Now, consider the 𝑛-fold pullback
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T

𝑛 of the projection 𝑝(

T)
along itself. The lift

T(𝑆)
𝑛 is the functors which map an

𝑆-algebra 𝐴 with structure map 𝜃 : 𝑆𝐴 → 𝐴, to the 𝑆-algebra

T

𝑛𝐴 with structure

map 𝑆

T

𝑛𝐴
𝛼𝑛−−→ T

𝑛𝑆𝐴

T

𝑛𝜃−−−→ T

𝑛𝐴, where 𝛼𝑛 is the unique morphism defined by the

universality of the diagram:

𝑆

T

𝑛𝐴 𝑆

T

𝐴

T

𝑛𝑆𝐴

T

𝑆𝐴

T

𝑆𝐴 𝑆𝐴

𝑆

T

𝐴 𝑆𝐴

𝑝(

T)𝑆

𝑝(

T)𝑆𝜋(

T)
1 𝑆

𝜋(

T)
𝑛 𝑆

⌟

𝑆𝜋(

T)
1

𝑆𝜋(

T)
𝑛

𝛼

𝛼
𝛼𝑛

𝑆𝑝(

T)

𝑆𝑝(

T)

On the other hand, this is also the 𝑛-fold pullback of the projection 𝑝(𝑆) : T(𝑆) ⇒
idAlg𝑆 along itself. Thus, the left adjoint T𝑛 of

T

𝑛 is lifted to the left adjoint T(𝑆)𝑛 of

T(𝑆)
𝑛 . Thus, Alg(𝑆, 𝛼) is adjunctable. □

Corollary 3.54. Suppose X is a category with biproducts and (𝑆, 𝜕) a coCartesian differ-
ential monad over X. Then, if the category Alg𝑆 of algebras of 𝑆 admits coequalizers of
reflexive pairs, the algebraic tangent category Alg(𝑆, 𝜕) = (Alg𝑆 ,

T(𝑆)) is adjunctable and in
particular, Geom(𝑆, 𝜕) = (Algop

𝑆
,T(𝑆)) is a tangent category. Finally, if X is also additive,

then Geom(𝑆, 𝜕) has negatives.

Proof. The algebraic tangent category Alg(𝑆, 𝜕) of a coCartesian differential monad

is the algebraic tangent category of the associated tangent monad over the tangent

category (X, T) induced by biproducts. However, each functor

T

𝑛 , which sends an

object 𝐴 ofX to 𝐴⊕𝐴⊕ · · · ⊕𝐴 ((𝑛+1)-times) is self-adjoint. So, by Proposition 3.53

we conclude that the algebraic tangent category Alg(𝑆, 𝜕) of (𝑆, 𝜕) is adjunctable. □

We are finally in the position to define the tangent category of operadic affine

schemes over a given operad. The idea is to apply Corollary 3.54 to the coCartesian

differential monad associated with an operad 𝒫 and obtain a tangent structure

T(𝒫) over the category Algop
𝒫

of operadic affine schemes over 𝒫.
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Theorem 3.55. The algebraic tangent category Alg(𝒫) of an operad 𝒫 defined over a
symmetric monoidal category E with biproducts satisfying Convention 3.20 is adjunctable
and in particular, the category of operadic affine schemes Geom(𝒫) : = (Algop

𝒫
,T(𝒫)) is a

tangent category. Finally, if E is also additive, then Geom(𝒫) has negatives.

Proof. The first step is to realize that the category Alg𝒫 of operadic algebras has

finite colimits, so in particular, has coequalizers of reflexive pairs. This is proved

in [48, Proposition 6.4]. Notice in particular, thatE, by Convention 3.20, satisfies the

hypothesis of this result. Then, for Corollary 3.54, the algebraic tangent category

of the operad 𝒫, which is, by definition, the algebraic tangent category of the

associated coCartesiann differential monad, is adjunctable. □

Definition 3.56. The geometric tangent category of an operad𝒫 is the tangent category
Geom(𝒫) over the category of operadic affine schemes defined in Theorem 3.55.

Theorem 3.55 furnishes an abstract definition of the tangent category of operadic

affine schemes over a given operad. In the rest of this section, we want to give

a concrete description of this tangent category. The key is to characterize the left

adjoint T(𝒫) of the algebraic tangent bundle functor

T(𝒫)
. A suggestion to construct

T(𝒫) comes from the definition of the tangent bundle functor T over the opposite

category of commutative and unital algebras, as described by Cruttwell and Lemay

in [18]. Concretely, the tangent bundle functor sends a commutative and unital

algebra 𝐴 to the symmetric algebra over 𝐴 of the module of Kähler differentials

Ω𝐴 of 𝐴, i.e. T𝐴 = S𝐴Ω𝐴. One can extend the notion of the module of Kähler

differentials to operadic algebras. For this purpose, let’s first recall the notion of a

module over an algebra over an operad. The interested reader can find this notion

in [27] or [46, Section 12.3.1].

Definition★ 3.57. A module over a 𝒫-algebra 𝐴 consists of an object 𝑀 of the base
monoidal category E equipped with a collection of morphisms of E, called the structure
map of 𝑀:

𝜓𝑛+1 : 𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀 → 𝑀
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compatible with the algebra structure map as follows:

𝒫(𝑛) ⊗𝒫(𝑘1) ⊗ 𝐴⊗𝑘1 ⊗ . . . ⊗𝒫(𝑘𝑛 + 1) ⊗ 𝐴⊗𝑘𝑛 ⊗ 𝑀 𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀

𝒫(𝑛) ⊗𝒫(𝑘1) ⊗ . . . ⊗𝒫(𝑘𝑛 + 1) ⊗ 𝐴⊗(𝑘1+...+𝑘𝑛) ⊗ 𝑀

𝒫(𝑘1 + . . . + 𝑘𝑛 + 1) ⊗ 𝐴⊗(𝑘1+...+𝑘𝑛) ⊗ 𝑀 𝑀

𝒫(𝑛+1)⊗𝜃⊗...⊗𝜓

𝛾⊗𝐴⊗𝑘1⊗...⊗𝐴⊗𝑘𝑛⊗𝑀

≅

𝜓

𝜓

and satisfying an equivariant condition with respect to the symmetric actions. Given two
𝐴-modules 𝑀 and 𝑀′ a morphism of 𝐴-modules 𝑔 : 𝑀 → 𝑀′ consists of an E-morphism
𝑔 : 𝑀 → 𝑀′ satisfying the following compatibility with the module structures:

𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀 𝑀

𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀′ 𝑀′

𝜓

𝜓′

𝒫(𝑛+1)⊗𝐴⊗𝑛⊗𝑔 𝑔

Notation 3.58. For an 𝐴-module 𝑀 of a 𝒫-algebra 𝐴, we denote the structure map

by 𝜓 : 𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗𝑀 → 𝑀. When 𝒫 is algebraic, we adopt the convention to

write:

𝜇𝑀(𝑎1, . . . , 𝑎𝑛 , 𝑥) := 𝜇(𝑎1, . . . , 𝑎𝑛 , 𝑥) := 𝜓(𝜇; 𝑎1, . . . , 𝑎𝑛 , 𝑥)

Moreover, we also write 𝜇𝑀(𝑎1, . . . , 𝑥, . . . , 𝑎𝑛) := 𝜇(𝑎1, . . . , 𝑎𝑘−1, 𝑥, 𝑎𝑘+1, . . . , 𝑎𝑛) for

𝜇 ∈ 𝒫(𝑛+1), 𝑎1, . . . , 𝑎𝑘−1, 𝑎𝑘+1, . . . , 𝑎𝑛 ∈ 𝐴 and 𝑥 ∈ 𝑀 to denote (𝜇 ·𝜎)(𝑎1, . . . , 𝑎𝑛 , 𝑥),
for 𝜎 = (𝑘 𝑘 + 1 . . . 𝑛 + 1).

For algebraic operads, the compatibility condition of Definition 3.57 reads as

follows:

𝜇
(︂
𝜇1𝐴(𝑎

(1)
1 , . . . , 𝑎

(1)
𝑘1
), . . . , 𝜇𝑛𝑀(𝑎

(𝑛)
1 , . . . , 𝑎

(𝑛)
𝑘𝑛
, 𝑥)

)︂
= 𝜇(𝜇1, . . . , 𝜇𝑛)𝑀(𝑎(1)1 , . . . , 𝑎

(𝑛)
𝑘𝑛
, 𝑥)

The equivariant condition, in this context, reads as follows:

(𝜇 · 𝜎)(𝑎1, . . . , 𝑎𝑛 , 𝑥) = 𝜇(𝑎𝜎(1), . . . , 𝑎𝜎(𝑛), 𝑥)
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for every 𝜎 ∈ S𝑛 where S𝑛 is regarded as subgroup of S𝑛+1. In the following, in the

context of algebraic operads, we adopt the convention of writing:

𝜇(𝑎1, . . . , 𝑥, . . . , 𝑎𝑛)

where 𝑥 ∈ 𝑀 is in the 𝑘-th position, for:

(𝜇 · 𝜎)(𝑎1, . . . , 𝑎𝑛 , 𝑥)

where 𝜎 = (𝑘 . . . 𝑛 + 1) represents the cyclic permutation (going counterclock-

wise) which shifts the last 𝑛 + 1 − 𝑘 terms. The next step is to recall the notion of

derivation for operadic algebras (see [46, Section 12.3.7]).

Definition★ 3.59. A derivation of a 𝒫-algebra 𝐴 over an 𝐴-module 𝑀 consists of an
E-morphism 𝛿 : 𝐴→ 𝑀 satisfying the following condition:

𝒫(𝑛 + 1) ⊗ 𝐴⊗(𝑛+1)
𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀

𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀 𝑀

𝒫(𝑛+1)⊗𝐴⊗𝑛⊗𝛿

𝜓
∑︁𝑛+1
𝑘=1 𝛿𝑘

𝜓

where 𝛿𝑘 is defined as follows:

𝛿𝑘 : 𝒫(𝑛 + 1) ⊗ 𝐴⊗(𝑛+1) 𝒫(𝑛+1)⊗𝐴⊗(𝑘−1)⊗𝛿⊗𝐴⊗(𝑛−𝑘)
−−−−−−−−−−−−−−−−−−−−→ 𝒫(𝑛 + 1) ⊗ 𝐴⊗(𝑘−1) ⊗ 𝑀 ⊗ 𝐴⊗(𝑛−𝑘)→

𝜌𝜎⊗𝜀−−−→ 𝒫(𝑛 + 1) ⊗ 𝐴⊗𝑛 ⊗ 𝑀

with 𝜌𝜎 the right action of the symmetric group S𝑛+1 over 𝒫(𝑛+1), 𝜎 = (𝑘 . . . 𝑛+1),
and 𝜀 the shuffling induced by the braiding.

For algebraic operads, a derivation of a 𝒫-algebra 𝐴 over an 𝐴-module 𝑀 is an

𝑅-linear morphism 𝛿 : 𝐴→ 𝑀 satisfying the following condition:

𝛿(𝜇(𝑎1, . . . , 𝑎𝑛+1)) =
𝑛+1∑︂
𝑘=1

𝜇(𝑎1, . . . , 𝛿(𝑎𝑘), . . . , 𝑎𝑛+1)

In particular, for the operad 𝒜𝓈𝓈 of Example 3.7, since it is generated by a binary

tree 𝜇 ∈ 𝒜𝓈𝓈(2), the condition for a 𝑅-linear morphism 𝛿 : 𝐴→ 𝑀 to be a derivation

in the operadic sense is precisely the usual Leibniz rule:

𝛿(𝜇(𝑎, 𝑏)) = 𝜇(𝛿(𝑎), 𝑏) + 𝜇(𝑎, 𝛿(𝑏))
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It is straightforward to see that for a morphism 𝑓 : 𝐴 → 𝐵 of 𝒫-algebras, and a

derivation 𝛿 : 𝐵→ 𝑁 of 𝐵 over a 𝐵-module𝑁 , the composition 𝐴
𝑓
−→ 𝐵

𝛿−→ 𝑁 defines

a derivation 𝑓 ∗𝛿 : 𝐴→ 𝑓 ∗𝑁 of 𝐴 over the 𝐴-module 𝑓 ∗𝑁 , whose module structure

is the restriction of scalars of 𝑁 via 𝑓 . Moreover, for an 𝐴-module morphism

𝑔 : 𝑀 → 𝑁 and a derivation 𝛿 : 𝐴 → 𝑀, it is also straightforward to see that the

composition 𝐴
𝛿−→ 𝑀

𝑔
−→ 𝑁 is also a derivation of 𝐴. This induces a functor:

Der(𝐴,−) : Mod𝐴 → Mod𝑅

which sends an 𝐴-module 𝑀 to the 𝑅-module of derivations 𝛿 : 𝐴→ 𝑀 of 𝐴 over

𝑀 and a morphism 𝑔 : 𝑀 → 𝑁 of 𝐴-modules to the 𝑅-linear morphism which

sends a derivation 𝛿𝐴 → 𝑀 to the composition 𝛿𝑔 : 𝐴 → 𝑁 . When the operad is

algebraic this functor is representable by an 𝐴-module Ω𝐴. This is equivalent to

saying that there is a natural isomorphism:

Der(𝐴, 𝑀) ≅ Mod𝐴(Ω𝐴, 𝑀)

Concretely,Ω𝐴 is the𝐴-module generated by symbols d𝑎, for every 𝑎 ∈ 𝐴 satisfying

the following relations:

d(𝑟𝑎 + 𝑠𝑏) = 𝑟d𝑎 + 𝑠d𝑏

d(𝜇(𝑎1, . . . , 𝑎𝑛)) =
𝑛∑︂
𝑘=1

𝜇(𝑎1, . . . , d𝑎𝑘 , . . . , 𝑎𝑛)

where on the right side of the last equation we employed the 𝐴-module structure.

In particular, Ω𝐴 is the 𝐴-module equipped with a derivation d : 𝐴→ Ω𝐴, which

is the 𝑅-linear morphism which sends 𝑎 ∈ 𝐴 to d𝑎 ∈ Ω𝐴, uniquely defined by

the following universality condition. If 𝛿 : 𝐴 → 𝑀 is a derivation of 𝐴 over an

𝐴-module 𝑀, 𝛿 factors uniquely through d, i.e. there is a unique morphism of

𝐴-modules 𝛿̄ : Ω𝐴→ 𝑀 such that the diagram:

𝐴 Ω𝐴

𝑀

d

𝛿
𝛿̄

commutes.
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Definition★ 3.60. For an algebraic operad 𝒫 the module of Kähler differentials of a
𝒫-algebra 𝐴 is the 𝐴-module Ω𝐴 equipped by the universal derivation d : 𝐴 → Ω𝐴 as
defined above.

For the operad 𝓊𝒞ℴ𝓂 of Example 3.8, it is not hard to see that the module

of Kähler differentials Ω𝐴 of a unital and commutative algebra 𝐴 is precisely the

usual notion of this module. In particular, Ω𝐴 ≅ 𝐼/𝐼2, where 𝐼 is the kernel of the

multiplication map 𝜈 : 𝐴 ⊗ 𝐴→ 𝐴.

Since a morphism 𝑓 : 𝐴→ 𝐵 sends derivations 𝛿 : 𝐵→ 𝑁 of 𝐵 over a 𝐵-module

𝑁 to derivations 𝑓 ∗𝛿 : 𝐴→ 𝑓 ∗𝑁 , this, together with the representability of Der(𝐴,−),
implies that the operation which sends an 𝒫-algebra 𝐴 to the module of Kähler

differentials Ω𝐴, extends to a functor Ω : Alg𝒫 → Mod which sends a 𝒫-algebra 𝐴

to the pair (𝐴,Ω𝐴) and a morphism 𝑓 : 𝐴 → 𝐵 to 𝑓 : 𝐴 → 𝐵 equipped with the

morphism Ω𝐴→ 𝑓 ∗Ω𝐵 of 𝐴-modules which send each d𝑎 ∈ Ω𝐴 to d 𝑓 (𝑎) ∈ 𝑓 ∗Ω𝐵.

In order to define the tangent bundle functor T: Algop
𝒫
→ Algop

𝒫
we need to send

the 𝐴-module Ω𝐴 back to a 𝒫-algebra without losing the information about the

Kähler differentials. For the commutative and unital case, this was done by sending

Ω𝐴 to the symmetric algebra over 𝐴 of Ω𝐴, S𝐴Ω𝐴. We want to define a similar

construction for operadic algebras. To characterize more generally the functor S𝐴,

consider the functor:

Restr𝐴 : 𝐴/Alg𝒫 → Mod𝐴

which sends a morphism of 𝒫-algebras 𝑞 : 𝐴 → 𝐵 to the 𝐴-module 𝑞∗𝐵 over 𝐵

induced by 𝑞 and a morphism 𝑓 : 𝐵 → 𝐵′, such that 𝑞 𝑓 = 𝑞′ for 𝑞 : 𝐴 → 𝐵 and

𝑞′ : 𝐴→ 𝐵′, to the morphism of𝐴-modules 𝑞∗𝐵→ 𝑞∗𝐵′, whose underlying 𝑅-linear

morphism is 𝑓 . This functor admits a left adjoint Free𝐴 : Mod𝐴 → 𝐴/Alg𝒫, which

sends an 𝐴-module 𝑀 to the free 𝒫-algebra under 𝐴, 𝐴→ Free𝐴𝑀 of 𝑀.

Lemma 3.61. For an algebraic operad𝒫 and a𝒫-algebra𝐴, the functor Restr𝐴 : 𝐴/Alg𝒫 →
Mod𝐴 which sends a morphism of 𝒫-algebras 𝐴→ 𝐵 to the corresponding 𝐴-module, has
a left adjoint Free𝐴 : Mod𝐴 → 𝐴/Alg𝒫, which sends an 𝐴-module 𝑀 to the 𝒫-algebra
under 𝐴, 𝐴→ Free𝐴𝑀. In particular, Free𝐴𝑀, is the 𝒫-algebra obtained by quotienting
the free 𝒫-algebra S𝒫(𝐴 ⊕ 𝑀) by the ideal generated by the relations:

(𝜇; (𝑎1, 0), . . . , (𝑎𝑘 , 𝑥), . . . , (𝑎𝑛 , 0)) = (𝜇𝐴(𝑎1, . . . , 𝑎𝑛), 𝜇𝑀(𝑎1, . . . , 𝑎𝑘−1, 𝑥, 𝑎𝑘+1, . . . , 𝑎𝑛))
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for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, 𝑥 ∈ 𝑀, 𝜇 ∈ 𝒫(𝑛), and any positive integer 𝑛.

Proof. First, notice that the 𝑅-linear morphism 𝜄𝐴 : 𝐴→ Free𝐴𝑀 which sends 𝑎 ∈ 𝐴
to (𝑎, 0) ∈ Free𝐴𝑀 is a well-defined 𝒫-algebra morphism, since the relations imply

that:

𝜇Free𝐴𝑀(𝜄𝐴(𝑎1), . . . , 𝜄𝐴(𝑎𝑛))

= (𝜇; (𝑎1, 0), . . . , (𝑎𝑛 , 0))

= (𝜇𝐴(𝑎1, . . . , 𝑎𝑛), 𝜇𝑀(𝑎1, . . . , 0, . . . , 𝑎𝑛))

= (𝜇𝑎(𝑎1, . . . , 𝑎𝑛), 0)

= 𝜄𝐴(𝜇𝐴(𝑎1, . . . , 𝑎𝑛))

In order to show that Free𝐴 is a left adjoint of Restr𝐴, let’s define the unit 𝜂 : 𝑀 →
Restr𝐴Free𝐴𝑀 and the counit 𝜀 : Free𝐴Restr𝐴(𝑞 : 𝐴 → 𝐵) → 𝑞. First, notice that

Restr𝐴Free𝐴𝑀 is the 𝐴-module induced by the 𝒫-algebra morphism 𝜄𝐴 : 𝐴 →
Free𝐴𝑀. Let’s show that the 𝑅-linear morphism 𝜄𝑀 : 𝑀 → Free𝐴𝑀 which sends

𝑥 ∈ 𝑀 to (0, 𝑥) ∈ Free𝐴𝑀 is a well-defined morphism of 𝐴-modules:

𝜇Free𝐴𝑀(𝑎1, . . . , 𝑎𝑛 , 𝜄𝑀(𝑥))

= (𝜇; (𝑎1, 0), . . . , (𝑎𝑛 , 0), (0, 𝑥))

= (𝜇𝐴(𝑎1, . . . , 𝑎𝑛 , 0), 𝜇𝑀(𝑎1, . . . , 𝑎𝑛 , 𝑥))

= (0, 𝜇𝑀(𝑎1, . . . , 𝑎𝑛 , 𝑥))

= 𝜄𝑀(𝜇𝑀(𝑎1, . . . , 𝑎𝑛 , 𝑥))

So, 𝜂𝑀 : = 𝜄𝑀 . Let’s now focus on the counit. First, realize that, for a morph-

ism 𝑞 : 𝐴 → 𝐵 of 𝒫-algebras, Free𝐴Restr𝐴(𝑞) is the morphism 𝜄𝐴 : 𝐴 → Free𝐴𝐵
of 𝒫-algebras which sends 𝑎 ∈ 𝐴 to (𝑎, 0) ∈ Free𝐴𝐵, where 𝐵 is the 𝐴-module

with module structure induced by 𝑞. Let’s define on generators (𝑎, 𝑏) ∈ 𝐴 ⊕
𝐵 the morphism 𝜋𝐵 : Free𝐴𝐵 → 𝐵 which sends (𝑎, 𝑏) to 𝑏. As an 𝐴-module

morphism, this extends to a morphism which sends (𝜇; (𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛)) to∑︁𝑛
𝑘=1 𝜇𝐵(𝑞(𝑎1), . . . , 𝑞(𝑎𝑘−1), 𝑏𝑘 , 𝑞(𝑎𝑘+1), . . . , 𝑞(𝑎𝑛)). Let’s show this lifts to the quo-

tient:

𝜋𝐵(𝜇; (𝑎1, 0), . . . , (𝑎𝑘 , 𝑏), . . . , (𝑎𝑛 , 0)) = 𝜇𝐵(𝑎1, . . . , 𝑎𝑘−1, 𝑏, 𝑎𝑘+1, . . . , 𝑎𝑛)
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𝜋𝐵(𝜇𝐴(𝑎1, . . . , 𝑎𝑛), 𝜇𝑞∗𝐵(𝑎1, . . . , 𝑏, . . . , 𝑎𝑛)) =

= 𝜇𝐵(𝑞(𝑎1), . . . , 𝑞(𝑎𝑘−1), 𝑏, 𝑞(𝑎𝑘+1), . . . , 𝑞(𝑎𝑛))

where we denoted by 𝑞∗𝐵 the 𝐴-module 𝐵 induced by 𝑞. Let 𝜀 be 𝜋𝐵. We now need

to prove the triangle identities 𝜀Free𝐴 ◦Free𝐴𝜂 = idFree𝐴 and Restr𝐴𝜀◦𝜂Restr𝐴 = idRestr𝐴 .

Consider (𝑎, 𝑥) ∈ 𝐴 ⊕ 𝑀. Then, we have:

𝜀Free𝐴(Free𝐴𝜂(𝑎, 𝑥))

= 𝜀Free𝐴(Free𝐴𝜂((0, 0), (𝑎, 𝑥)))

= (𝑎, 𝑥)

Let’s now consider 𝑞 : 𝐴→ 𝐵 and 𝑏 ∈ 𝐵:

Restr𝐴𝜀(𝜂Restr𝐴(𝑏))

= Restr𝐴𝜀(0, 𝑏)

= 𝑏

This proves that Free𝐴 is a left adjoint of Restr𝐴. □

Remark 3.62. In the following, for the sake of simplicity, we adopt the same notation

for the functor Free𝐴 : Mod𝐴 → 𝐴/Alg𝒫 which sends an 𝐴-module 𝑀 to the 𝒫-

algebra morphism 𝜄𝐴 : 𝐴→ Free𝐴𝑀 and the 𝒫-algebra Free𝐴𝑀, codomain of 𝜄𝐴.

Remark 3.63. Free𝐴 sends an 𝐴-module morphism 𝑔 : 𝑀 → 𝑀′ to the morphism of

𝒫-algebras under 𝐴, Free𝐴𝑔 : Free𝐴𝑀 → Free𝐴𝑀′ which sends the generator (𝑎, 𝑥)
to (𝑎, 𝑓 (𝑥)).

The next step is to compose the two functorsΩ : Alg𝒫 → Mod and Free𝐴 : Mod𝐴 →
𝐴/Alg𝒫 together.

Lemma 3.64. For a 𝒫-algebra 𝐴, the 𝒫-algebra Free𝐴Ω𝐴 can be represented as the 𝒫-
algebra generated by all elements 𝑎 of 𝐴 and symbols d(𝒫)𝑎, for each 𝑎 of 𝐴, satisfying the
following relations:

𝜇T𝐴(𝑎1, . . . , 𝑎𝑛) = 𝜇𝐴(𝑎1, . . . , 𝑎𝑛)

d(𝒫)(𝑟𝑎 + 𝑠𝑏) = 𝑟d(𝒫)𝑎 + 𝑠d(𝒫)𝑏
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d(𝒫)(𝜇T𝐴(𝑎1, . . . , 𝑎𝑛)) =
𝑛∑︂
𝑘=1

𝜇T𝐴(𝑎1, . . . , d(𝒫)𝑎𝑘 , . . . , 𝑎𝑛)

for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴.

Proof. By construction, Free𝐴Ω𝐴 is the 𝒫-algebra defined as the quotient of the free

𝒫-algebra over 𝐴 ⊕ Ω𝐴 by the relations:

(𝜇; (𝑎1, 0), . . . , (𝑎𝑘 , d(𝒫)𝑏), . . . , (𝑎𝑛 , 0)) = (𝜇𝐴(𝑎1, . . . , 𝑎𝑛), 𝜇Ω𝐴(𝑎1, . . . , d(𝒫)𝑏, . . . , 𝑎𝑛))

for every 𝑎1, . . . , 𝑎𝑛 , 𝑏 ∈ 𝐴. The image of the 𝒫-algebra 𝜄𝐴 : 𝐴 → Free𝐴Ω𝐴 which

sends 𝑎 ∈ 𝐴 to (𝑎, 0) defines a copy of 𝐴 inside of Free𝐴Ω𝐴. Denote by T𝐴 the

𝒫-algebra generated by all 𝑎 and all d(𝒫)𝐴 as above and define the morphism

𝜑 : Free𝐴Ω𝐴 → T𝐴 which sends (𝑎, d(𝒫)𝑏) to 𝑎 + d(𝒫)𝑏. Let’s prove this is a well-

defined morphism of 𝒫-algebras:

𝜑(𝜇; (𝑎1, 0), . . . , (𝑎𝑘 , d(𝒫)𝑏), . . . , (𝑎𝑛 , 0)

= 𝜇T𝐴(𝑎1 + 0, . . . , 𝑎𝑘 + d(𝒫)𝑏, . . . , 𝑎𝑛 + 0)

= 𝜇T𝐴(𝑎1, . . . , 𝑎𝑘 , . . . , 𝑎𝑛) + 𝜇T𝐴(𝑎1, . . . , d(𝒫)𝑏, . . . , 𝑎𝑛)

= 𝜇𝐴(𝑎1, . . . , 𝑎𝑛) + 𝜇Ω𝐴(𝑎1, . . . , d(𝒫)𝑏, . . . , 𝑎𝑛)

𝜑(𝜇𝐴(𝑎1, . . . , 𝑎𝑛), 𝜇Ω𝐴(𝑎1, . . . , d(𝒫)𝑏, . . . , 𝑎𝑛))

= 𝜇𝐴(𝑎1, . . . , 𝑎𝑛) + 𝜇Ω𝐴(𝑎1, . . . , d(𝒫)𝑏, . . . , 𝑎𝑛)

Let’s now consider the morphism 𝜓 : T𝐴→ Free𝐴Ω𝐴 which sends the generator 𝑎

to (𝑎, 0) and d(𝒫)𝑎 to (0, d(𝒫)𝑎). Let’s first show this is a well-defined morphism of

𝒫-algebras:

𝜓(𝜇T𝐴(𝑎1, . . . , 𝑎𝑛))

= (𝜇; (𝑎1, 0), . . . , (𝑎𝑛 , 0))

= (𝜇𝐴(𝑎1, . . . , 𝑎𝑛), 0)

= 𝜓(𝜇𝐴(𝑎1, . . . , 𝑎𝑛))

𝜓(d(𝒫)(𝑟𝑎 + 𝑠𝑏))
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= (0, d(𝒫)(𝑟𝑎 + 𝑠𝑏))

= 𝑟(0, d(𝒫)𝑎) + 𝑠(0, d(𝒫)𝑏)

= 𝑟𝜓(d(𝒫)𝑎) + 𝑠𝜓(d(𝒫)𝑏)

𝜓(d(𝒫)(𝜇T𝐴(𝑎1, . . . , 𝑎𝑛)))

= (0, d(𝒫)(𝜇𝐴(𝑎1, . . . , 𝑎𝑛)))

=

(︄
0,

𝑛∑︂
𝑘=1

𝜇Ω𝐴(𝑎1, . . . , d(𝒫)𝑎𝑘 , . . . , 𝑎𝑛)
)︄

= 𝜓(𝜇T𝐴(𝑎1, . . . , d(𝒫)𝑎𝑘 , . . . , 𝑎𝑛))

Finally, notice that:

𝜑(𝜓(𝑎)) = 𝜑(𝑎, 0) = 𝑎 + 0 = 𝑎

𝜑(𝜓(d(𝒫)𝑎)) = 𝜑(0, d(𝒫)𝑎) = 0 + d(𝒫)𝑎 = d(𝒫)𝑎

𝜓(𝜑(𝑎, d(𝒫)𝑏)) = 𝜓(𝑎 + d(𝒫)𝑏)) = (𝑎, 0) + (0, d(𝒫)𝑏) = (𝑎, d(𝒫)𝑏)

So, 𝜓 and 𝜑 are inverses to each other. □

Remark 3.65. In the following, for the sake of simplicity, we simplify notation and

omit the superscript
(𝒫)

when the operad 𝒫 is clear from the context. Moreover,

we will not distinguish between Free𝐴Ω𝐴 and T𝐴.

Remark 3.66. Given a morphism 𝑓 : 𝐴 → 𝐵 of 𝒫-algebras, T sends 𝑓 to the 𝒫-

algebra morphism T 𝑓 : T𝐴 → T𝐵 which sends the generators 𝑎 and d(𝒫)𝑎 to 𝑓 (𝑎)
and d(𝒫) 𝑓 (𝑎), respectively.

Lemma 3.67. The functor T(𝒫) : Alg𝒫 → Alg𝒫, which sends a 𝒫-algebra 𝐴 to T(𝒫)𝐴 :=
T𝐴, is a left adjoint of the tangent bundle functor

T(𝒫) : Alg𝒫 → Alg𝒫 of the algebraic
tangent structure of 𝒫.

Proof. To prove that T: = T(𝒫) is a left adjoint of

T: = T(𝒫)
, let’s define the unit

𝜂 : 𝐴→ TT𝐴 and the counit 𝜀T T

𝐴→ 𝐴. Let 𝜂 be the morphism which sends 𝑎 ∈ 𝐴
to (𝑎, d𝑎) ∈ TT𝐴 and let 𝜀 be the morphism which sends the generators (𝑎, 𝑏) ∈ T T

𝐴

to 𝑎 and d(𝑎, 𝑏) ∈ T T

𝐴 to 𝑏. Let’s start by showing they are well-defined:

𝜂(𝜇𝐴(𝑎1, . . . , 𝑎𝑛))
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= (𝜇T𝐴(𝑎1, . . . , 𝑎𝑛), d(𝜇T𝐴(𝑎1, . . . , 𝑎𝑛))

= (𝜇𝐴(𝑎1, . . . , 𝑎𝑛),
𝑛∑︂
𝑘=1

𝜇T𝐴(𝑎1, . . . , d𝑎𝑘 , . . . , 𝑎𝑛))

= 𝜇 TT𝐴((𝑎1, d𝑎1), . . . , (𝑎𝑛 , d𝑎𝑛))

= 𝜇 TT𝐴(𝜂(𝑎1), . . . , 𝜂(𝑎𝑛))

𝜀(𝜇T

T

𝐴((𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛)))

= 𝜇𝐴(𝑎1, . . . , 𝑎𝑛)

= 𝜇𝐴(𝜀(𝑎1, 𝑏1), . . . , 𝜀(𝑎𝑛 , 𝑏𝑛))

= 𝜇T

T

𝐴(𝜀(𝑎1, 𝑏1), . . . , 𝜀(𝑎𝑛 , 𝑏𝑛))

𝜀(d(𝑟(𝑎, 𝑏) + 𝑠(𝑎′, 𝑏′)))

= (0, d(𝑟𝑏 + 𝑠𝑏′))

= 𝑟(0, d𝑏) + 𝑠(0, d𝑏′)

= 𝑟𝜀(d(𝑎, 𝑏)) + 𝑠𝜀(d(𝑎′, 𝑏′))

𝜀(d(𝜇((𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛))))

= 𝜀(d(𝜇(𝑎1, . . . , 𝑎𝑛),
𝑛∑︂
𝑘=1

𝜇(𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)))

=

𝑛∑︂
𝑘=1

𝜇(𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)

=

𝑛∑︂
𝑘=1

𝜇(𝜀(𝑎1, 𝑏1), . . . , 𝜀(d(𝑎𝑘 , 𝑏𝑘)), . . . , 𝜀(𝑎𝑛 , 𝑏𝑛))

= 𝜀(
𝑛∑︂
𝑘=1

𝜇((𝑎1, 𝑏1), . . . , d(𝑎𝑘 , 𝑏𝑘), . . . , (𝑎𝑛 , 𝑏𝑛))

This shows that 𝜂 and 𝜀 are well-defined 𝒫-algebra morphisms. Let’s prove the

triangle identities:

T

𝜀(𝜂 T)(𝑎, 𝑏))

=

T

𝜀((𝑎, 𝑏), d(𝑎, 𝑏))

= (𝜀(𝑎, 𝑏), 𝜀(d(𝑎, 𝑏)))
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= (𝑎, 𝑏)

𝜀T(T𝜂(𝑎))

= 𝜀T(𝑎, d𝑎)

= 𝑎

𝜀T(T𝜂(d𝑎))

= 𝜀T(d(𝑎, d𝑎))

= d𝑎

This proves that T is a left adjoint of

T

. □

Theorem 3.68. For an algebraic operad 𝒫, the geometric tangent category Geom(𝒫)
defined in Theorem 3.55 is given as follows. For the sake of clarity, all morphisms are
regarded as morphisms of 𝒫-algebras:

tangent bundle functor The tangent bundle functor T(𝒫) : Algop
𝒫
→ Algop

𝒫
, regarded as

an endofunctor of Alg𝒫, is the left adjoint of the algebraic tangent bundle functor

T(𝒫) described in Lemma 3.64;

projection The projection 𝑝(T) : idGeom(𝒫)⇒ T(𝒫) is the natural transformation 𝑝(T) : 𝐴→
T(𝒫)𝐴 which sends 𝑎 ∈ 𝐴 to 𝑎 ∈ T(𝒫)𝐴;

zero morphism The zero morphism 𝑧(T) : T(𝒫) ⇒ idGeom(𝒫) is the natural transforma-
tion 𝑧(T) : T(𝒫)𝐴→ 𝐴 which sends 𝑎 ∈ T(𝒫)𝐴 to 𝑎 ∈ 𝐴 and d(𝒫)𝑎 to 0;

𝑛-fold pullback The 𝑛-fold pushout (in Alg𝒫) of the projection along itself is the functor
T(𝒫)𝑛 : Alg𝒫 → Alg𝒫 which sends an algebra 𝐴 to the algebra T(𝒫)𝑛 𝐴 generated by
all 𝑎 of 𝐴 and symbols d(𝒫)1 𝑎, . . . , d(𝒫)𝑛 𝑎, for each 𝑎 ∈ 𝐴, satisfying the following
relations:

𝜇T(𝒫)𝑛 𝐴
(𝑎1, . . . , 𝑎𝑛) = 𝜇𝐴(𝑎1, . . . , 𝑎𝑛)

d(𝒫)
𝑖
(𝑟𝑎 + 𝑠𝑏) = 𝑟d(𝒫)

𝑖
𝑎 + 𝑠d(𝒫)

𝑖
𝑏

d(𝒫)
𝑖
(𝜇T(𝒫)𝑛 𝐴

(𝑎1, . . . , 𝑎𝑛)) =
𝑛∑︂
𝑘=1

𝜇T(𝒫)𝑛 𝐴
(𝑎1, . . . , d(𝒫)𝑖

𝑎𝑘 , . . . , 𝑎𝑛)

for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 and every 𝑖 = 1, . . . , 𝑛;
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sum morphism The sum morphism 𝑠(T) : T(𝒫) ⇒ T(𝒫)2 is the natural transformation
𝑠(T) : T(𝒫)𝐴→ T(𝒫)2 𝐴 which sends 𝑎 ∈ T(𝒫)𝐴 to 𝑎 ∈ T(𝒫)2 𝐴 and d(𝒫)𝑎 to d(𝒫)1 𝑎 +
d(𝒫)2 𝑎;

vertical lift The vertical lift 𝑙(T) : T(𝒫)2⇒ T(𝒫) is the natural transformation 𝑙(T) : T(𝒫)2𝐴→
T(𝒫)𝐴which sends 𝑎 ∈ T(𝒫)2𝐴 to 𝑎 ∈ T(𝒫)𝐴, d(𝒫)𝑎 ∈ T(𝒫)2𝐴 and d(𝒫)′𝑎 ∈ T(𝒫)2𝐴
to 0 ∈ T(𝒫)𝐴, and d(𝒫)′d(𝒫)𝑎 ∈ T(𝒫)2𝐴 to d(𝒫)𝑎 ∈ T(𝒫)𝐴;

canonical flip The canonical flip 𝑐(T) : T(𝒫)2 ⇒ T(𝒫)2 is the natural transformation
𝑐(T) : T(𝒫)2𝐴→ T(𝒫)2𝐴 which sends 𝑎 ∈ T(𝒫)2𝐴 to 𝑎 ∈ T(𝒫)2𝐴, d(𝒫)𝑎 ∈ T(𝒫)2𝐴
to d(𝒫)′𝑎 ∈ T(𝒫)2𝐴, d(𝒫)′𝑎 ∈ T(𝒫)2𝐴 to d(𝒫)𝑎 ∈ T(𝒫)2𝐴, and d(𝒫)′d(𝒫)𝑎 ∈ T(𝒫)2𝐴
to d(𝒫)′d(𝒫)𝑎 ∈ T(𝒫)2𝐴;

negation The negation 𝑛(T) : T(𝒫)⇒ T(𝒫) is the natural transformation 𝑛(T) : T(𝒫)𝐴→
T(𝒫)𝐴which sends 𝑎 ∈ T(𝒫)𝐴 to 𝑎 ∈ T(𝒫)𝐴 and d(𝒫)𝑎 ∈ T(𝒫)𝐴 to−d(𝒫)𝑎 ∈ T(𝒫)𝐴.

Example 3.69. Consider the operad𝓊𝒞ℴ𝓂described in Example 3.8. The module of

Kähler differentialsΩ𝐴 of a commutative and unital algebra𝐴 is precisely the usual

notion of the module of Kähler differentials of 𝐴. Concretely, Ω𝐴 is the quotient

of the kernel 𝐼 of the multiplication map 𝜈 : 𝐴 ⊗ 𝐴 → 𝐴 by 𝐼2, i.e. Ω𝐴 = 𝐼/𝐼2.

Equivalently, Ω𝐴 can be described as the 𝐴-module of symbols d𝑎, for each 𝑎 ∈ 𝐴,

such that:

d(𝑎𝑏) = 𝑎d𝑏 + 𝑏d𝑎

for every 𝑎, 𝑏 ∈ 𝐴. The functor Free𝐴 sends an 𝐴-module, which is precisely a

left 𝐴-module, 𝑀 to the symmetric algebra over 𝐴, i.e. S𝐴𝑀. Concretely, if 𝑀 is

a free module of 𝐴 generated by a set of generators Γ, then S𝐴Γ is the algebra of

polynomials in the variables Γ and coefficients in 𝐴.

Putting together these two pieces of information we obtain a description of the

geometric tangent structure associated with 𝓊𝒞ℴ𝓂:

tangent bundle functor The tangent bundle functor T: cAlgop → cAlgop
, regarded

as an endofunctor of cAlg, sends a commutative and unital algebra 𝐴 to S𝐴Ω𝐴
and a morphism 𝑓 : 𝐴 → 𝐵 to the morphism S 𝑓Ω 𝑓 which sends each 𝑎 ∈ 𝐴
and each d𝑎 ∈ Ω𝐴 to 𝑓 (𝑎) and d 𝑓 (𝑎), respectively;
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projection The projection 𝑝(T) : idGeom(𝓊𝒞ℴ𝓂)⇒ T, regarded as a morphism of cAlg,

is the natural transformation 𝑝(T) : 𝐴→ T𝐴 which sends 𝑎 ∈ 𝐴 to 𝑎 ∈ T𝐴;

zero morphism The zero morphism 𝑧(T) : T⇒ idGeom(𝓊𝒞ℴ𝓂), regarded as a morph-

ism of cAlg, is the natural transformation 𝑧(T) : T𝐴→ 𝐴 which sends 𝑎 ∈ T𝐴
to 𝑎 ∈ 𝐴 and d𝑎 to 0;

𝑛-fold pullback The 𝑛-fold pushout (in cAlg) of the projection along itself is the

functor T𝑛 : cAlg→ cAlg which sends an algebra 𝐴 to the algebra T𝑛𝐴 which

is the 𝑛-fold tensor product T𝐴 ⊗𝐴 . . . ⊗𝐴 T𝐴 of T𝐴 over 𝐴 𝑛-times;

sum morphism The sum morphism 𝑠(T) : T ⇒ T2, regarded as a morphism of

cAlg, is the natural transformation 𝑠(T) : T𝐴 → T2𝐴 which sends 𝑎 ∈ T𝐴 to

𝑎 ∈ T2𝐴 and d𝑎 to d𝑎 ⊗ 1 + 1 ⊗ d𝑎;

vertical lift The vertical lift 𝑙(T) : T2 ⇒ T, regarded as a morphism of cAlg, is the

natural transformation 𝑙(T) : T2𝐴 → T𝐴 which sends 𝑎 ∈ T2𝐴 to 𝑎 ∈ T𝐴,

d𝑎 ∈ T2𝐴 and d′𝑎 ∈ T2𝐴 to 0 ∈ T𝐴, and d′d𝑎 ∈ T2𝐴 to d𝑎 ∈ T𝐴;

canonical flip The canonical flip 𝑐(T) : T2 ⇒ T2
, regarded as a morphism of cAlg,

is the natural transformation 𝑐(T) : T2𝐴 → T2𝐴 which sends 𝑎 ∈ T2𝐴 to

𝑎 ∈ T2𝐴, d𝑎 ∈ T2𝐴 to d′𝑎 ∈ T2𝐴, d′𝑎 ∈ T2𝐴 to d𝑎 ∈ T2𝐴, and d′d𝑎 ∈ T2𝐴 to

d′d𝑎 ∈ T2𝐴;

negation The negation 𝑛(T) : T⇒ T, regarded as a morphism of cAlg, is the natural

transformation 𝑛(T) : T𝐴→ T𝐴 which sends 𝑎 ∈ T𝐴 to 𝑎 ∈ T𝐴 and d𝑎 ∈ T𝐴
to −d𝑎 ∈ T𝐴.

This tangent category is precisely the tangent structure originally described by

Cockett and Cruttwell in [12] and recently re-analyzed by Cruttwell and Lemay

in [18]. In particular, when the base ring is 𝑅 = Z, this is also precisely the tangent

category described in Example 2.14.

Example 3.70. Consider the operad 𝓊𝒜𝓈𝓈 described in Example 3.7. The module of

Kähler differentials Ω𝐴 of an associative and unital algebra 𝐴 is the noncommut-

ative version of the usual notion of the module of Kähler differentials. Concretely,

Ω𝐴 is precisely the kernel 𝐼 of the multiplication map 𝜈 : 𝐴 ⊗ 𝐴 → 𝐴 by 𝐼2, i.e.
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Ω𝐴 = 𝐼, as described by Ginzburg in [25]. Equivalently, Ω𝐴 can be described as

the 𝐴-bimodule of symbols d𝑎, for each 𝑎 ∈ 𝐴, such that:

d(𝑎𝑏) = 𝑎d𝑏 + d𝑎 · 𝑏

for every 𝑎, 𝑏 ∈ 𝐴. The functor Free𝐴 sends an 𝐴-module, which is precisely a

𝐴-bimodule, 𝑀 to the tensor algebra over 𝐴, i.e. Tens𝐴𝑀. Concretely, if 𝑀 is a

free module of 𝐴 generated by a set of generators Γ, then Tens𝐴Γ is the algebra of

noncommutative polynomials in the variables Γ and coefficients in 𝐴.

Putting together these two pieces of information we obtain a description of the

geometric tangent structure associated with 𝓊𝒜𝓈𝓈:

tangent bundle functor The tangent bundle functor T: Algop → Algop
, regarded as

an endofunctor of Alg, sends a commutative and unital algebra 𝐴 to Tens𝐴Ω𝐴
and a morphism 𝑓 : 𝐴→ 𝐵 to the morphism Tens 𝑓Ω 𝑓 which sends each 𝑎 ∈ 𝐴
and each d𝑎 ∈ Ω𝐴 to 𝑓 (𝑎) and d 𝑓 (𝑎), respectively;

projection The projection 𝑝(T) : idGeom(𝓊𝒜𝓈𝓈) ⇒ T, regarded as a morphism of Alg,

is the natural transformation 𝑝(T) : 𝐴→ T𝐴 which sends 𝑎 ∈ 𝐴 to 𝑎 ∈ T𝐴;

zero morphism The zero morphism 𝑧(T) : T ⇒ idGeom(𝓊𝒜𝓈𝓈), regarded as a morph-

ism of Alg, is the natural transformation 𝑧(T) : T𝐴 → 𝐴 which sends 𝑎 ∈ T𝐴
to 𝑎 ∈ 𝐴 and d𝑎 to 0;

𝑛-fold pullback The 𝑛-fold pushout (in Alg) of the projection along itself is the

functor T𝑛 : Alg→ Alg which sends an algebra 𝐴 to the algebra T𝑛𝐴 which is

the 𝑛-fold free product T𝐴 ∗𝐴 · · · ∗𝐴 T𝐴 of T𝐴 over 𝐴 𝑛-times;

sum morphism The sum morphism 𝑠(T) : T⇒ T2, regarded as a morphism of Alg,

is the natural transformation 𝑠(T) : T𝐴→ T2𝐴which sends 𝑎 ∈ T𝐴 to 𝑎 ∈ T2𝐴

and d𝑎 to d𝑎 ∗ 1 + 1 ∗ d𝑎;

vertical lift The vertical lift 𝑙(T) : T2 ⇒ T, regarded as a morphism of Alg, is the

natural transformation 𝑙(T) : T2𝐴 → T𝐴 which sends 𝑎 ∈ T2𝐴 to 𝑎 ∈ T𝐴,

d𝑎 ∈ T2𝐴 and d′𝑎 ∈ T2𝐴 to 0 ∈ T𝐴, and d′d𝑎 ∈ T2𝐴 to d𝑎 ∈ T𝐴;
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canonical flip The canonical flip 𝑐(T) : T2⇒ T2
, regarded as a morphism of Alg, is

the natural transformation 𝑐(T) : T2𝐴→ T2𝐴which sends 𝑎 ∈ T2𝐴 to 𝑎 ∈ T2𝐴,

d𝑎 ∈ T2𝐴 to d′𝑎 ∈ T2𝐴, d′𝑎 ∈ T2𝐴 to d𝑎 ∈ T2𝐴, and d′d𝑎 ∈ T2𝐴 to d′d𝑎 ∈ T2𝐴;

negation The negation 𝑛(T) : T⇒ T, regarded as a morphism of Alg, is the natural

transformation 𝑛(T) : T𝐴→ T𝐴 which sends 𝑎 ∈ T𝐴 to 𝑎 ∈ T𝐴 and d𝑎 ∈ T𝐴
to −d𝑎 ∈ T𝐴.

This represents a completely new example of a tangent category and the first

instance of non-commutative geometry, this being the category of non-commutative

affine schemes, described using tangent category theory.

Example 3.71. Consider the operad ℒ𝒾ℯ described in Example 3.9.

tangent bundle functor The tangent bundle functor T: LieAlgop → LieAlgop
, re-

garded as an endofunctor of LieAlg, sends a Lie algebra 𝔤 to the Lie algebra

generated by all 𝑔 ∈ 𝔤 and all d𝑔, for each 𝑔 ∈ 𝔤, such that:

[𝑔, ℎ]T𝔤 = [𝑔, ℎ]𝔤
d(𝑟𝑔 + 𝑠ℎ) = 𝑟d𝑔 + 𝑠dℎ

d[𝑔, ℎ] = [d𝑔, ℎ] + [𝑔, dℎ]

projection The projection 𝑝(T) : idGeom(ℒ𝒾ℯ)⇒ T, regarded as a morphism of LieAlg,

is the natural transformation 𝑝(T) : 𝔤→ T𝔤 which sends 𝑔 ∈ 𝔤 to 𝑔 ∈ T𝔤;

zero morphism The zero morphism 𝑧(T) : T⇒ idGeom(ℒ𝒾ℯ), regarded as a morphism

of LieAlg, is the natural transformation 𝑧(T) : T𝔤 → 𝔤 which sends 𝑔 ∈ T𝔤 to

𝑔 ∈ 𝔤 and d𝑔 to 0;

𝑛-fold pullback The 𝑛-fold pushout (in LieAlg) of the projection along itself is the

functor T𝑛 : LieAlg → LieAlg which sends an algebra 𝔤 to the algebra T𝑛𝔤

which is generated by all 𝑔 ∈ 𝔤 and all d1𝑔, . . . , d𝑛𝑔, for each 𝑔 ∈ 𝔤, such that:

[𝑔, ℎ]T𝔤 = [𝑔, ℎ]𝔤
d𝑘(𝑟𝑔 + 𝑠ℎ) = 𝑟d𝑘 𝑔 + 𝑠d𝑘ℎ

d𝑘[𝑔, ℎ] = [d𝑘 𝑔, ℎ] + [𝑔, d𝑘ℎ]

for every 𝑘 = 1, . . . , 𝑛;
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sum morphism The sum morphism 𝑠(T) : T ⇒ T2, regarded as a morphism of

LieAlg, is the natural transformation 𝑠(T) : T𝔤 → T2𝔤 which sends 𝑔 ∈ T𝔤 to

𝑔 ∈ T2𝔤 and d𝑔 to d1𝑔 + d2𝑔;

vertical lift The vertical lift 𝑙(T) : T2 ⇒ T, regarded as a morphism of LieAlg, is

the natural transformation 𝑙(T) : T2𝔤 → T𝔤 which sends 𝑔 ∈ T2𝔤 to 𝑔 ∈ T𝔤,

d𝑔 ∈ T2𝔤 and d′𝑔 ∈ T2𝔤 to 0 ∈ T𝔤, and d′d𝑔 ∈ T2𝔤 to d𝑔 ∈ T𝔤;

canonical flip The canonical flip 𝑐(T) : T2⇒ T2
, regarded as a morphism of LieAlg,

is the natural transformation 𝑐(T) : T2𝔤→ T2𝔤which sends 𝑔 ∈ T2𝔤 to 𝑔 ∈ T2𝔤,

d𝑔 ∈ T2𝔤 to d′𝑔 ∈ T2𝔤, d′𝑔 ∈ T2𝔤 to d𝑔 ∈ T2𝔤, and d′d𝑔 ∈ T2𝔤 to d′d𝑔 ∈ T2𝔤;

negation The negation 𝑛(T) : T ⇒ T, regarded as a morphism of LieAlg, is the

natural transformation 𝑛(T) : T𝔤 → T𝔤 which sends 𝑔 ∈ T𝔤 to 𝑔 ∈ T𝔤 and

d𝑔 ∈ T𝔤 to −d𝑔 ∈ T𝔤.

3.6.1 Vector fields in the geometric tangent category of an operad

For an adjunctable tangent category (X, T) vector fields over an object 𝑀 are in

bĳection with the vector fields of the adjoint tangent category (Xop,T) over 𝑀. This

comes directly from the adjunction T ⊣ T

between the tangent bundle functors.

Indeed, each morphism 𝑣 : 𝑀 → T

𝑀 corresponds to a morphism 𝑣̄ : T𝑀 → 𝑀

and vice versa. Less obviously, in the presence of negatives, the Lie bracket of

vector fields (see Section 2.2.1 for this construction) is also preserved. Recall, that,

the Lie bracket between two vector fields 𝑣1, 𝑣2 : 𝑀 → T

𝑀 is defined as follows:

[𝑣1, 𝑣2](

T) = {𝑣1

T

𝑣2 − 𝑣2

T

1𝑐
( T)}(

T)

Recall that, given a morphism 𝑓 : 𝑁 → T2𝑀 for which 𝑓

T

𝑝(

T) = 𝑓 𝑝(

T)𝑝(

T)𝑧(

T)
,

{ 𝑓 }(

T) : 𝑁 → T

𝑀 is the unique morphism such that

⟨︁
{ 𝑓 }(

T), 𝑓 𝑝(

T)⟩︁ 𝜈( T) = 𝑓

(see [12, Section 2.5]). To simplify notation, let’s write {{ 𝑓 }}(

T)
for the morphism⟨︁

{ 𝑓 }(

T), 𝑓 𝑝
⟩︁( T) : 𝑁 → T

2𝑀.

Lemma 3.72. Let (X, T) be an adjunctable tangent category with adjoint tangent category
(Xop,T) and let 𝑓 : 𝑁 → T T2𝑀 be a morphism, where 𝑀 and 𝑁 are objects of X, for
which 𝑓

T

𝑝(

T) = 𝑓 𝑝(

T)𝑝(

T)𝑧(

T). The following formula holds:

{ 𝑓 ♯}(T) = { 𝑓 }(

T)♯
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where 𝑓 ♯ : T2𝑁 → 𝑀 is the mate of 𝑓 along the adjunction (𝜂, 𝑒𝜀) : T ⊣ T

, that is:

𝑓 ♯ : T2𝑁
T2 𝑓
−−−→ T2 T2𝑀 T𝜀

T

−−−→ T T

𝑀
𝜀−→ 𝑀

Proof. To prove this result, we need to show that the mate {{ 𝑓 }}(

T)♯ : T2𝑁 → 𝑀 of

the unique morphism {{ 𝑓 }}(

T) : 𝑁 → T

2𝑀 satisfies the same universality property

as

{︁{︁
𝑓 ♯

}︁}︁(T)
, that is:

𝜈(T){{ 𝑓 }}(

T)♯
= 𝑓 ♯

Recalling that 𝜈(T) is the mate of 𝜈(

T)
and using that mates preserve pasting diagrams

(cf. [1, Proposition 2.2]), one concludes that 𝜈(T){{ 𝑓 }}(

T)♯
is the mate of {{ 𝑓 }}(

T) 𝜈(

T) =

𝑓 . Finally, from the definition of {{ 𝑓 }} we conclude that { 𝑓 ♯}(T) = { 𝑓 }(

T)♯
. □

Proposition 3.73. Suppose (X, T) is an adjunctable tangent category. There is a bĳective
correspondence between vector fields of (X, T) over an object 𝑀 ∈ X and vector fields of the
adjoint tangent category (Xop,T) over 𝑀. Moreover, if (X, T) has negatives (and thus so
does (Xop,T)) this bĳective correspondence preserves the Lie bracket.

Proof. Let’s start by defining the correspondence. Consider a vector field 𝑣 : 𝑀 →

T

𝑀 over an object 𝑀 in (X T). Since T is left adjoint of

T

, 𝑣 corresponds to a

morphism 𝑣♯ : T𝑀 → 𝑀. Concretely, 𝑣♯ is defined as follows:

𝑣♯ : T𝑀 T𝑣−−→ T T

𝑀
𝜀−→ 𝑀

where 𝜀 represents the counit of the adjunction T ⊣ T

. We need to show that

𝑣♯, regarded as a morphism 𝑣♯ : 𝑀 ← T𝑀 of Xop
, is a section of the projection

𝑝(T) : T𝑀 ← 𝑀. Recall that 𝑝(T) (as an X-morphism) is the mate of 𝑝(

T)
. Using

that mates preserve pasting diagrams whenever the mate of each diagram is well-

defined (cf. [1, Proposition 2.2]), one concludes that 𝑝(T)𝑣(♯) (in X) is the mate of

𝑣𝑝(

T) = id𝑀 . So, we conclude that 𝑣(♯) is a vector field in (Xop,T). Similarly, given a

vector field 𝑢 : 𝑀 ← T𝑀 over 𝑀 in (Xop,T), employing the adjunction T ⊣ T

, we

find a morphism 𝑢♭ : 𝑀 → T

𝑀, defined as follows:

𝑢♭ : 𝑀
𝜂
−→ TT𝑀

T

𝑢−−→ T

𝑀
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Using a similar argument as the one employed before, it is straightforward to see

that 𝑢♭
is a section of 𝑝(

T)
. Moreover, it is also easy to see that (𝑣♯)♭ = 𝑣 and that

(𝑢♭)♯ = 𝑢. Let’s now focus on the Lie brackets. First, recall that the Lie brackets

between two vector fields 𝑢1, 𝑢2 : 𝑀 ← T𝑀 of (Xop,T) are defined as follows:

[𝑢1, 𝑢2] = {T𝑢2𝑢1 − 𝑐(T)T𝑢1𝑢2}(T)

where the composition is in X. Consider now, two vector fields 𝑣1, 𝑣2 : 𝑀 → T

𝑀

of (X, T) and consider [𝑣♯1, 𝑣
♯
2]. Since the negation 𝑛(T), the sum morphism 𝑠(T),

and canonical flip 𝑐(T) are mates along the adjunction (𝜂, 𝜀) : T ⊣ T

, employing that

mates of pasting diagrams is the pasting of the mates, whenever the mate of each

diagram is well-defined we conclude that 𝜑♯ : = T𝑣♯2𝑣
♯
1 − 𝑐TT𝑣♯1𝑣

♯
2 is the mate of

𝜑 := 𝑣1

T

𝑣2 − 𝑣2

T

𝑣1𝑐
( T)

. Finally, employing Lemma 3.72, we conclude:

[𝑣♯1, 𝑣
♯
2](T) = {𝜑♯}(T) = {𝜑}(

T)♯ = [𝑣1, 𝑣2](

T)♯

This concludes the proof. □

Theorem 3.74. For an operad 𝒫 the Lie algebra VField(Geom(𝒫);𝐴) of vector fields in
the geometric tangent category Geom(𝒫) over an operadic affine scheme 𝐴 is isomorphic to
the Lie algebra DerS𝒫

(𝐴) of S𝒫-derivations over 𝐴. Moreover, when 𝒫 is algebraic, these
two Lie algebras are also isomorphic to the Lie algebra Der𝒫(𝐴) of 𝒫-derivations.

3.6.2 The functoriality of the geometric construction

In this section, we want to address the question of how the adjunctions induced by

morphisms of operads between the corresponding categories of algebras interact

with the geometric tangent structures. In Section 3.5.2 we fully characterized how

these adjunctions interact with the algebraic tangent structures. We also character-

ized the geometric tangent category of an operad as the adjoint tangent category

of the algebraic one. So, it is natural to pose a more general question: does the

operation (−)op
which sends an adjunctable tangent category to its adjoint extend

to a functor which sends a tangent morphism to a tangent morphism between the

adjoint tangent categories? Solving this problem will answer the first question.

The crucial observation is the following. Suppose (X, T) and (X′, T′) are two

adjunctable tangent categories whose adjoint tangent categories are respectively
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(Xop,T) and (X′op,T′). Consider a lax tangent morphism (𝐹, 𝛼) : (X, T) → (X′, T′),
whose distributive law is 𝛼 : 𝐹 ◦ T⇒ T′ ◦ 𝐹. Then we can define 𝛼op

as follows:

𝛼op : T′ ◦ 𝐹 T′𝐹𝜃−−−→ T′ ◦ 𝐹 ◦ T◦ T T′𝛼T−−−−→ T′ ◦ T′ ◦ 𝐹 ◦ T 𝜏′𝐹T−−−→ 𝐹 ◦ T

where (𝜃, 𝜏) : T ⊣ T

and (𝜃′, 𝜏′) : T′ ⊣ T′
. We claim that (𝐹op, 𝛼op) : (Xop,T) →

(X′op,T′) is also a lax tangent morphism.

In the following, let’s denote by adjTngCat the 2-category of adjunctable tangent

categories, lax tangent morphisms, and natural transformations compatible with

the distributive laws of the tangent morphisms.

Proposition 3.75. The operation which takes an adjunctable tangent category (X, T) to its
associated adjoint tangent category (Xop,T) extends to a pseudofunctor (−)op : adjTngCat→
adjTngCat, which equips the 2-category adjTngCat with an endofunctor together with a nat-
ural isomorphism (−)op ◦ (−)op ≅ idadjTngCat.

Proof. By definition, the natural transformations (i.e. projection etcetera) of the

adjoint tangent structure T of a tangent structure

T

are mates along the adjunction

(𝜃, 𝜏) : T ⊣ T

between the tangent bundle functors of the corresponding natural

transformations of

T

. Thanks to [1, Proposition 2.2], the mate of a pasting dia-

gram is the pasting diagram of the mates, as long as the mate of each morph-

ism of the diagram is well-defined. Therefore, given a lax tangent morphism

(𝐹, 𝛼) the distributive law 𝛼op
is compatible with the tangent structures and thus

(𝐹op, 𝛼op) is a lax tangent morphism between the corresponding adjoint tangent

categories. To prove that (−)op
is a pseudofunctor notice first that, given three ad-

junctable tangent categories (X, T), (X′, T′), and (X′′, T′′) with adjoint tangent cat-

egories (Xop,T), (X′op,T′) and (X′′op,T′′), respectively, and two lax tangent morph-

isms (𝐹, 𝛼) : (X, T) → (X′, T′) and (𝐺, 𝛽) : (X′, T′) → (X′′, T′′), the composition of

(𝐹op, 𝛼op) with (𝐺op, 𝛽op) is (𝐺op ◦ 𝐹op, 𝐺𝛼op ◦ 𝛽op
𝐹
). This must be compared with

the opposite of the composition (𝐺 ◦ 𝐹, 𝛽𝐹 ◦ 𝐺𝛼). However, for the pasting dia-

gram property of mates, these are the same lax tangent morphism. Similarly, we

can argue that (idop
X , id

opT) corresponds precisely to (idXop , idT). Finally, notice that if

(X, T) is adjunctable, then so is its adjoint tangent category (Xop,T) and its adjoint

is (isomorphic to) (X, T). □
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Remark 3.76. We point out that (−)op
defined by Proposition 3.75 is only a pseudo-

functor and not a strict functor because the choice of a left adjoint for the tangent

bundle functor

T

is only unique up to a unique isomorphism. This implies that

associativity and unitality are only defined up to a unique isomorphism, which

defines the associator and the left and the right unitors of (−)op
.

Remark 3.77. One could hope that a similar endofunctor (−)op
could also occur in

the 2-category adjTngCatco of adjunctable tangent categories, colax tangent morph-

isms, and corresponding tangent natural transformations. However, this is not

the case. The reason is that mates of the colax distributive laws along the adjunc-

tions of the tangent bundle functors are simply not well-defined. This breaking

of symmetry plays a crucial role in understanding the differences between non-

commutative algebraic geometry and the geometry of affine schemes. We will

come back to this point later in Example 3.81.

Before proving the functoriality of the operation which takes an operad to its

geometric tangent category, we notice an interesting fact.

Lemma 3.78. Consider a strong tangent morphism (𝐺, 𝛼) : (X′, T′) → (X, T) between
two adjunctable tangent categories. Suppose also that the functor 𝐺 has a left adjoint 𝐹 ⊣ 𝐺
and write 𝛽 := 𝛼−1 : T◦ 𝐺 ⇒ 𝐺 ◦ T′ for the inverse of 𝛼 : 𝐺 ◦ T′ ⇒ T◦ 𝐺. Then the
corresponding tangent morphism (𝐹op, (𝛽!)op) : (Xop,T) → (X′op,T′) over the left adjoint
𝐹 and between the adjoint tangent categories is also strong.

Proof. By Proposition 3.46, the mate of 𝛽 along the adjunction 𝐹 ⊣ 𝐺 defines a lax

tangent morphism (𝐹, 𝛽!) : (X,

T) → (X′, T′), where 𝛽! : 𝐹 ◦

T⇒ T′ ◦ 𝐹.

By Proposition 3.75, the mate of the distributive law 𝛼 along the adjunctions

between the tangent bundle functors and their left adjoint defines a lax tangent

morphism (𝐺op, 𝛼op) : (X′op,T′) → (Xop,T), so that, as an X-morphism, 𝛼op : T ◦
𝐺 ⇒ 𝐺 ◦ T′. Similarly, 𝛽! defines, again by mating, a lax tangent morphism

(𝐹op, (𝛽!)op) : (Xop,T) → (X′op,T′) , so that, as aX′-morphism, (𝛽!)op : T′◦𝐹⇒ 𝐹◦T.

Interestingly, 𝛼op
admits a second mate along the adjunction (𝜂, 𝜀) : 𝐹 ⊣ 𝐺:

(𝛼op)! : 𝐹 ◦ T
𝐹T𝜂
−−−→ 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹𝛼op𝐹−−−−→ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 𝜀T′𝐹−−−→ T′ ◦ 𝐹
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regarded as a morphism in X′. Thus, we also obtain a colax tangent morphism

(𝐹op, (𝛼op)!) : (Xop,T) ↛ (X′op,T′). To prove that (𝛼op)! is the inverse of (𝛽!)op
,

consider the following diagram:

𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ T′ ◦ 𝐹 𝐹 ◦ T ◦ T◦ 𝐺 ◦ T′ ◦ 𝐹 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 T′ ◦ 𝐹

𝐹 ◦ T ◦ T◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T◦ T 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ T′ ◦ 𝐹 ◦ T◦ T T′ ◦ 𝐹 ◦ T◦ T

𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ T◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ T′ ◦ 𝐹 ◦ T◦ 𝐺 ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ T◦ 𝐺 ◦ 𝐹 ◦ T

𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ T′ ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T T′ ◦ 𝐹 ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T

𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ T′ ◦ T′ ◦ 𝐹 ◦ T T′ ◦ T′ ◦ 𝐹 ◦ T

𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝑇

𝐹T𝜂 𝐹T𝐺𝜃′𝐹 𝐹T𝛼T′𝐹 𝐹𝜏𝐺T′𝐹 𝜀T′𝐹

T′𝐹𝜃

T′𝐹 T

𝜂T

T′𝐹𝛽𝐹T

T′𝜀 T′𝐹T

𝜏′𝐹T

𝐹T𝐺 T′T′𝐹𝜃

𝐹T𝐺 T′T′𝐹 T

𝜂T

𝐹T𝐺 T′T′𝐹𝛽𝐹T

𝐹T𝐺 T′T′𝜀 T′𝐹T

𝐹T𝐺 T′𝜏′𝐹T

𝐹T𝛼𝐹T 𝐹𝜏𝐺𝐹T 𝜀𝐹T

Nat

𝐹T𝐺𝜃′ T′𝐹T

𝐹T𝐺𝐹𝜃

𝐹T𝐺𝐹 T

𝜂T

𝐹T𝐺𝐹𝛽𝐹T

𝐹T𝐺𝜀 T′𝐹T

Nat

𝐹T𝜃

𝐹T T

𝜂T

𝐹T𝛽𝐹T

𝐹T𝜂𝐺

T′𝐹T

Nat

Δ

Δ

where (𝜂, 𝜀) : 𝐹 ⊣ 𝐺, (𝜃, 𝜏) : T ⊣ T

and (𝜃′, 𝜏′) : T′ ⊣ T′
. This shows that the

following diagram commutes:

𝐹 ◦ T T′ ◦ 𝐹

𝐹 ◦ T ◦ T◦ T

𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T

𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ T

(𝛼op)!

(𝛽!)op

𝐹T𝜃

𝐹T T

𝜂T

𝐹T𝛽𝐹T

𝐹T𝛼𝐹T 𝐹𝜏𝐺𝐹T 𝜀𝐹T

However:

𝐹 ◦ T 𝐹 ◦ T

𝐹 ◦ T ◦ T◦ T 𝐹 ◦ T

𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T

𝐹 ◦ T ◦ 𝐺 ◦ T′ ◦ 𝐹 ◦ T 𝐹 ◦ T ◦ T◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ 𝐺 ◦ 𝐹 ◦ T 𝐹 ◦ T

𝐹T𝜃

𝐹T T

𝜂T

𝐹T𝛽𝐹T

𝐹T𝛼𝐹T 𝐹𝜏𝐺𝐹T 𝜀𝐹T

𝐹𝜏T

𝐹𝜂T

Nat

𝛽=𝛼−1

Δ

Δ

We just proved that (𝛽!)op ◦ (𝛼op)! = id𝐹T. Similarly, one can prove the converse and

conclude that (𝛼op)! is the inverse of (𝛽!)op
, as expected. □
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Remark 3.79. Given a pair of conjoints (𝐹, 𝛽!) ⊣ (𝐺, 𝛼) in the double category

of tangent categories where (𝐺, 𝛼) is a strong tangent morphism, Lemma 3.78

establishes that the pseudofunctor (−)op
maps (𝐹, 𝛽!) ⊣ (𝐺, 𝛼) to another pair of

conjoints (𝐺op, 𝛼op) ⊣ (𝐹op, (𝛽!)op) and that (𝐹op, (𝛽!)op) is also a strong tangent

morphism. However, if (𝐺, 𝛼) is strict this does not imply that (𝐹op, (𝛽!)op) is strict

as well.

In the following diagram, we represent the proof of Lemma 3.78.

𝛽 𝛽!

𝛼 (𝛽!)op

𝛼op (𝛼op)!

𝐹⊣𝐺

(−)op

(−)op

𝐹⊣𝐺

inverses

inverses

Starting from 𝛽, which is the inverse of the strong distributive law 𝛼, by moving to

the right, i.e. by mating along the adjunction 𝐹 ⊣ 𝐺, we obtain a lax distributive

𝛽!, which, as noticed in Remark 3.52, in general, is not invertible. By moving down

from 𝛽!, by applying the pseudofunctor (−)op
, we obtain a lax distributive law

(𝛽!)op
. Similarly, by starting from 𝛼 and moving down, i.e. applying (−)op

, we

obtain a lax distributive law 𝛼op
, which, as mentioned in Remark 3.76, in general,

is not invertible. Finally, by moving from 𝛼op
to the right, i.e. by mating along the

adjunction 𝐹 ⊣ 𝐺, we obtain a colax distributive law (𝛼op)! which turns out to be

the inverse of (𝛽!)op
.

We can now prove the functoriality of the operation which takes an operad to its

associated geometric tangent category. Similarly, as for the algebraic counterpart

of this construction, this operation extends to two functors, one mapping operad

morphisms 𝜑 to a lax tangent morphism whose underlying functor is (𝜑∗)op
and

the second to a strong tangent morphism whose underlying functor is 𝜑op
! .

Proposition 3.80. The operation which takes an operad 𝒫 to its associated geometric
tangent category Geom(𝒫) extends to a contravariant pseudofunctor Geom∗ : Operadop →
TngCat which sends a morphism of operads 𝜑 : 𝒫 → 𝒫

′ to the lax tangent morphism
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(𝜑∗, 𝛼∗) : Geom(𝒫′) → Geom(𝒫), where 𝛼∗ is defined as follows:

𝛼∗ : T ◦ 𝜑∗
T𝜑∗𝜃′

−−−−→ T ◦ 𝜑∗ ◦ T′ ◦ T′ = T ◦ T◦ 𝜑∗ ◦ T′
𝜏𝜑∗T′
−−−−→ 𝜑∗ ◦ T′

where (𝜃, 𝜏) : T ⊣ T

and (𝜃′, 𝜏′) : T′ ⊣ T′ and we adopted the notation T: = T(𝒫),

T:= T(𝒫), T′ := T(𝒫′), and

T′ := T(𝒫′).
Moreover, the same operation extends also to a covariant pseudofunctor Geom! : Operad→

TngCat≅ which sends a morphism of operads 𝜑 : 𝒫→ 𝒫
′ to the strong tangent morphism

(𝜑!, 𝛼!) : Geom(𝒫) → Geom(𝒫′), where 𝛼! is defined as follows:

𝛼! : T′ ◦ 𝜑!
T′𝜑!𝜃−−−−→ T′ ◦ 𝜑! ◦

T◦ T
T′𝛽!T−−−−→ T′ ◦ T′ ◦ 𝜑! ◦ T

𝜏′𝜑!T−−−−→ 𝜑! ◦ T

where 𝛽! is defined as in Proposition 3.48.

Concretely, given a morphism 𝜑 : 𝒫 → 𝒫
′

and a 𝒫
′
-algebra 𝐵, 𝜑∗(T′𝐵) is

a 𝒫-algebra generated by all 𝑏 ∈ 𝐵 and by symbols d′𝑏, for 𝑏 ∈ 𝐵, satisfying

suitable relations. On the other hand, T(𝜑∗𝐵) is generated by all 𝑏 ∈ 𝐵 and by

symbols d𝑏, for 𝑏 ∈ 𝐵, satisfying suitable relations. Thus, the distributive law

𝛼∗ : T(𝜑∗𝐵) → 𝜑∗(T′𝐵) associated with 𝜑∗ sends each 𝑏 to 𝑏 and each d𝑏 to d′𝑏.
Similarly, given a 𝒫-algebra 𝐴, 𝜑!(T𝐴) is generated by all 𝑎 ∈ 𝐴 and by d𝑎 for

𝑎 ∈ 𝐴, satisfying suitable relations. On the other hand, T′(𝜑!𝐴) is generated by all

𝑎 ∈ 𝐴 and by d′𝑎, for 𝑎 ∈ 𝐴, satisfying suitable relations. Thus, the distributive law

𝛼! : 𝜑!(T𝐴) → T′(𝜑!𝐴) sends each 𝑎 to 𝑎 and each d𝑎 to d′𝑎.

Example 3.81. In Example 3.51 we showed how the canonical morphism of operads

𝜑 : 𝓊𝒜𝓈𝓈→ 𝓊𝒞ℴ𝓂 is mapped by the functors Alg∗ and Alg!. The functor Geom∗maps

𝜑 to the lax tangent morphism defined over the pullback functor 𝜑∗. Interestingly,

this lax tangent morphism is not strong, i.e. the distributive law T(𝓊𝒜𝓈𝓈) ◦ 𝜑∗ →
𝜑∗ ◦ T(𝓊𝒞ℴ𝓂) (as a 𝓊𝒜𝓈𝓈-algebra morphism) is not an isomorphism.

To prove that, notice that the module of Kähler differentials Ω(𝓊𝒞ℴ𝓂)𝐴 of a

commutative algebra 𝐴 is given by quotienting the ideal 𝐼 : = ker (𝜈 : 𝐴 ⊗𝑅 𝐴 →
𝐴), where 𝜈 represents the multiplication of 𝐴, by 𝐼2, i.e. Ω𝐴 = 𝐼/𝐼2. If 𝐵 is

an associative algebra, the corresponding module of Kähler differentials Ω(𝓊𝒜𝓈𝓈)𝐵

is simply given by the ideal 𝐼 : = ker (𝜇 : 𝐵 ⊗𝑅 𝐵 → 𝐵), where 𝜇 represents the

multiplication of 𝐵 (see [25] for a detailed description of both the modules of

Kähler differentials in the commutative and in the associative case).
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Thus, for a commutative algebra𝐴, there is a natural quotient mapΩ(𝓊𝒜𝓈𝓈)𝜋∗(𝐴) =
𝐼 → 𝐼/𝐼2 = Ω(𝓊𝒞ℴ𝓂)𝐴. The distributive law is induced precisely by this quotient

map since it maps the symbols d(𝓊𝒜𝓈𝓈)𝑎 to d(𝓊𝒞ℴ𝓂)𝑎. If the distributive law was an

isomorphism such a comparison map between the modules of Kähler differentials

would be invertible, which it clearly is not. We note that a similar argument was

used by Ginzburg in [25] to distinguish between “noncommutative geometry in the
small, and noncommutative geometry in the large”, meaning that the former “is a

generalization of the conventional ‘commutative’ algebraic geometry to the non-

commutative world”. The latter instead “is not a generalization of commutative

theory. The world of noncommutative geometry ‘in the large’ does not contain

commutative world as a special case, but is only similar, parallel, to it.” ([25,

Introduction]).

Finally, the functor T! maps the morphism of operads 𝜑 to the strong tangent

morphism whose underlying functor is the (opposite of the) abelianization functor

𝜑!. The corresponding distributive law T(𝓊𝒞ℴ𝓂)◦𝜑!⇒ 𝜑!◦T(𝓊𝒜𝓈𝓈) (as a commutative

algebra morphism) is the commutative algebra morphism:

T(𝓊𝒞ℴ𝓂) (𝐴/[𝐴, 𝐴]) → T(𝓊𝒜𝓈𝓈)𝐴/
[︂
T(𝓊𝒜𝓈𝓈)𝐴,T(𝓊𝒜𝓈𝓈)𝐴

]︂
which sends the generators [𝑎] and d(𝓊𝒞ℴ𝓂)[𝑎] to [𝑎] and [d(𝓊𝒜𝓈𝓈)𝑎], respectively,

where we used the square brackets to indicate the left coset given by the commutator

and an element of the associative algebra 𝐴. It is not hard to see that the algebra

morphism T(𝓊𝒜𝓈𝓈)𝐴→ T(𝓊𝒞ℴ𝓂)(𝐴/[𝐴, 𝐴]) which sends each 𝑎 to [𝑎] and d(𝓊𝒜𝓈𝓈)𝑎 to

d(𝓊𝒞ℴ𝓂)[𝑎] is well-defined and provides an inverse for the distributive law.

Example 3.82. In Example 3.51 we showed how the canonical morphism of operads

𝜑 : ℒ𝒾ℯ→ 𝓊𝒜𝓈𝓈 is mapped by the functors Alg∗ and Alg!. The functor Geom∗ maps

𝜑 to the lax tangent morphism whose underlying functor is (the opposite of) 𝜑∗. In

order to understand the distributive law T(ℒ𝒾ℯ) ◦𝜑∗⇒ 𝜑∗ ◦T(𝓊𝒜𝓈𝓈) (as an associative

algebra morphism), let’s first take a closer look at T(ℒ𝒾ℯ)(𝜑∗(𝐴)) and 𝜑∗(T(𝓊𝒜𝓈𝓈)(𝐴))
for an associative algebra 𝐴. The former one is the Lie algebra generated by 𝑎 ∈ 𝐴
and by symbols d(ℒ𝒾ℯ)𝑎 for each 𝑎 ∈ 𝐴, satisfying the following relations:

[𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎
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d(ℒ𝒾ℯ)([𝑎, 𝑏]) = [d(ℒ𝒾ℯ)𝑎, 𝑏] + [𝑎, d(ℒ𝒾ℯ)𝑏]

The second algebra is generated by 𝑎 ∈ 𝐴 and by symbols d(𝓊𝒜𝓈𝓈)𝑎 for each 𝑎 ∈ 𝐴,

satisfying the following relations:

[𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎

d(𝓊𝒜𝓈𝓈)(𝑎𝑏) = d(𝓊𝒜𝓈𝓈)𝑎 · 𝑏 + 𝑎d(𝓊𝒜𝓈𝓈)𝑏

[𝑎, d(𝓊𝒜𝓈𝓈)𝑏] = 𝑎d(𝓊𝒜𝓈𝓈)𝑏 − d(𝓊𝒜𝓈𝓈)𝑏 · 𝑎

[d(𝓊𝒜𝓈𝓈)𝑎, d(𝓊𝒜𝓈𝓈)𝑏] = d(𝓊𝒜𝓈𝓈)𝑎d(𝓊𝒜𝓈𝓈)𝑏 − d(𝓊𝒜𝓈𝓈)𝑏d(𝓊𝒜𝓈𝓈)𝑎

Note that the relations of the former one are implied by the relations of the latter.

The canonical quotient map T(ℒ𝒾ℯ)(𝜑∗(𝐴)) → 𝜑∗(T(𝓊𝒜𝓈𝓈)(𝐴)) corresponds to the

distributive law. Note that such a map is not an isomorphism.

Finally, the functor Geom! maps 𝜑 to the lax tangent morphism whose under-

lying functor is the (opposite of the) universal enveloping algebra functor 𝜑!. To

understand the distributive law T(𝓊𝒜𝓈𝓈) ◦ 𝜑!⇒ 𝜑! ◦T(ℒ𝒾ℯ)
(as an associative algebra

morphism), we first take a closer look at T(𝓊𝒜𝓈𝓈)(𝜑!(𝔤)) and 𝜑!(T(ℒ𝒾ℯ)(𝔤)) for a Lie

algebra 𝔤. The former is the associative algebra generated by all 𝑔 ∈ 𝔤 and by

symbols d(𝓊𝒜𝓈𝓈)𝑔 for each 𝑔 ∈ 𝔤 and satisfying the relations:

𝑔ℎ − ℎ𝑔 = [𝑔, ℎ]

d(𝓊𝒜𝓈𝓈)(𝑔ℎ) = d(𝓊𝒜𝓈𝓈)𝑔 · ℎ + 𝑔d(𝓊𝒜𝓈𝓈)ℎ

The latter is the associative algebra generated by 𝑔 ∈ 𝔤 and by symbols d(ℒ𝒾ℯ)𝑔 for

each 𝑔 ∈ 𝔤, satisfying the relations:

𝑔ℎ − ℎ𝑔 = [𝑔, ℎ]

d(ℒ𝒾ℯ)𝑔 · ℎ − ℎd(ℒ𝒾ℯ)𝑔 = [d(ℒ𝒾ℯ)𝑔, ℎ]

𝑔d(ℒ𝒾ℯ)ℎ − d(ℒ𝒾ℯ)ℎ · 𝑔 = [𝑔, d(ℒ𝒾ℯ)ℎ]

d(ℒ𝒾ℯ)𝑔 · d(ℒ𝒾ℯ)ℎ − d(ℒ𝒾ℯ)ℎ · d(ℒ𝒾ℯ)𝑔 = [d(ℒ𝒾ℯ)𝑔, d(ℒ𝒾ℯ)ℎ]

d(ℒ𝒾ℯ)[𝑔, ℎ] = [d(ℒ𝒾ℯ)𝑔, ℎ] + [ℎ, d(ℒ𝒾ℯ)𝑔]

Because the first set of relations implies the latter, this allows us to define a morph-

ism of associative algebras 𝜑!(T(ℒ𝒾ℯ)(𝔤)) → T(𝓊𝒜𝓈𝓈)(𝜑!(𝔤)), which corresponds to

the (inverse of the) distributive law. Thanks to Lemma 3.78, this morphism is an

isomorphism.



Chapter 4

The differential bundles of the geometric tangent category of an

operad

In Section 2.2.5 we recalled an important construction of tangent category theory:

differential bundles. As mentioned earlier, differential bundles represent the ana-

logs of smooth vector bundles in the context of a tangent category. In the original

definition of Cockett and Cruttwell (cf. [10, Definition 2.2]), the underlying bundle

of a differential bundle was not required to be a tangent display map (indeed this

is only a more recent concept). However, in [11, Section 4.21] the same authors

introduced the concept of display differential bundle as a differential bundle which

is also a map of a given tangent display system. Then, using this notion, they

proved that display differential bundles over a given object 𝑀 in a tangent category

(X,T) are precisely differential objects in the slice tangent category (X,T)/𝑀 over

𝑀.

Thanks to the introduction of tangent display maps as in Definition 2.24, we

can now forget about the choice of a tangent display system and work directly with

tangent display maps. So, as in Definition 2.41, for a display differential bundle we

mean a differential bundle which is also a tangent display map.

As mentioned, the construction of the slice category (X,T)/𝑀 plays a crucial

role in the story of differential bundles. The goal of this chapter is twofold: under-

standing what the slice category of the geometric category Geom(𝒫) is for a given

algebraic operad 𝒫 over an operadic affine scheme 𝐴, and classifying differential

bundles in Geom(𝒫). In particular, in operad theory, the enveloping operad 𝒫
(𝐴)

of a 𝒫-algebra 𝐴 is the operad whose algebras are equivalent to morphisms of

𝒫-algebras of type 𝐴→ 𝐸, i.e. Alg
𝒫(𝐴) ≅ 𝐴/Alg𝒫. When we consider the opposite

of the category of 𝒫-algebras we obtain:

Algop
𝒫(𝐴)
≅ Algop

𝒫
/𝐴

162
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Figure 4.1: The concept map of the chapter

since the coslice of a category is the slice of the opposite category. So, it is nat-

ural to wonder what is the relationship between the geometric tangent category

Geom(𝒫(𝐴)) of the enveloping operad of a 𝒫-algebra 𝐴 and the slice tangent cat-

egory Geom(𝒫)/𝐴 of the geometric tangent category of 𝒫 over 𝐴. In Section 4.2.1

we prove that these two tangent categories are equivalent to each other, proving

that slicing behaves well with respect to the operation which sends an operad to its

geometric tangent category. In particular, this shows that the slice tangent category

of the geometric tangent category of an operad is still a geometric tangent category

of an operad.

This fact can be harnessed to simplify the classification of differential bundles

in Geom(𝒫). The idea is to classify differential objects in the geometric tangent

category of an arbitrary operad and then look at differential objects in Geom(𝒫(𝐴)).
Employing that Geom(𝒫(𝐴)) ≅ Geom(𝒫)/𝐴 and that differential bundles in Geom(𝒫)
over𝐴 are precisely differential objects in Geom(𝒫)/𝐴we conclude the classification

of differential bundles.

This proof strategy for the classification of differential bundles fully relies on
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the equivalence between the slice of Geom(𝒫) and Geom(𝒫(𝐴)). In order to prove

this equivalence, we first need to reconceptualize the operation of taking the slice

of a tangent category in terms of a right adjoint. In Section 4.1 we discuss this

point, in Section 4.2.1 we recall the construction of the enveloping operad, and

we prove the first the equivalence Geom(𝒫(𝐴)) ≅ Geom(𝒫)/𝐴. In Section 4.3.1 we

classify differential objects in the geometric tangent category of any given operad,

and finally, we classify differential bundles, in Section 4.3.2.

Figure 4.1 displays the concept map of this chapter.

4.1 The slice of the geometric tangent category of an operad

This section is dedicated to understanding the slice tangent category of the geo-

metric tangent category of a given operad over an operadic affine scheme. The

first step is to revisit the construction of the slice of a given tangent category. We

want to show that the operation which sends a pair formed by a tangent category

(X,T) together with an object 𝐴 of X, to the corresponding slice tangent category

(X,T)/𝐴 extends to a right adjoint functor of the functor Term which singles out

the terminal object ∗ of a Cartesian tangent category, i.e. Term(X,T) : = ((X,T); ∗).
Let’s start by recalling the notion of a Cartesian tangent category.

Definition★ 4.1. A Cartesian tangent category is a tangent category (X,T) whose un-
derlying category X has finite products (including the terminal object) and for which the
tangent bundle functor preserves these products. Moreover, given two Cartesian tangent
categories (X,T) and (X′,T′), a Cartesian (lax/colax/strong/strict) tangent morphism
(𝐹, 𝛼) : (X,T) → (X′,T′) is a (lax/colax/strong/strict) tangent morphism (𝐹, 𝛼) whose
underlying functor 𝐹 : X → X′ preserves Cartesian products (including the terminal ob-
ject).

Cartesian tangent categories together with Cartesian lax tangent morphisms

form a category denoted by cTngCat.

Example 4.2. For a given operad 𝒫 the algebraic tangent category Alg(𝒫) of 𝒫 is

Cartesian. This is a direct consequence of the fact that Alg𝒫 is complete and that
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the algebraic tangent bundle functor

T(𝒫)
is a right adjoint and thus it preserves all

limits.

Example 4.3. For a given operad𝒫 the geometric tangent category Geom(𝒫) of𝒫 is

Cartesian. This is a direct consequence of the fact that Alg𝒫 is cocomplete and that

the geometric tangent bundle functor

T(𝒫)
, regarded as an endofunctor of Alg𝒫, is

a left adjoint and thus it preserves all colimits.

One can see that the slice tangent category (X,T)/𝐴 of any (non-necessarily

Cartesian) tangent category over a given object is always a Cartesian tangent cat-

egory. Indeed, since the objects of (X,T)/𝐴 are the tangent display maps 𝑞 : 𝐸→ 𝐴

of (X,T) with 𝐴 for codomain, given two such tangent display maps 𝑞 : 𝐸 → 𝐴

and 𝑞′ : 𝐸′ → 𝐴, the pullback 𝑞 ×𝐴 𝑞′ : 𝐸 ×𝐴 𝐸′ → 𝐴 in X of 𝑞 along 𝑞′ always

exists. However, regarded as an object of (X,T)/𝐴, 𝑞 ×𝐴 𝑞′ is the Cartesian product

of 𝑞 with 𝑞′. By induction, all finite products (the terminal objects will just be

the tangent display map id𝐴 : 𝐴 → 𝐴) exist in (X,T)/𝐴. Finally, since T in X pre-

serves pullbacks between tangent display maps, the tangent bundle functor T(𝐴) of

(X,T)/𝐴 preserves products in (X,T)/𝐴.

Lemma 4.4. The slice tangent category (X,T)/𝐴 of a tangent category (X,T) over a given
object 𝐴 of X is a Cartesian tangent category.

Let’s introduce the category of tangent pairs.

Definition 4.5. A tangent pair consists of a pair ((X,T);𝐴) formed by a tangent category
(X,T) and an object 𝐴 ofX. Moreover, a morphism ((X,T);𝐴) → ((X′,T′);𝐴′) of tangent
pairs consists of a pair ((𝐹, 𝛼); 𝜑) formed by a lax tangent morphism (𝐹, 𝛼) : (X,T) →
(X′,T′) which preserves tangent display maps over 𝐴 i.e. for which every tangent display
map 𝑞 : 𝐸 → 𝐴 is sent to a tangent display map 𝐹𝑞 : 𝐹𝐸 → 𝐹𝐴, together with an
isomorphism 𝜑 : 𝐹𝐴→ 𝐴′ of X′.

The composition of two morphisms ((𝐹, 𝛼); 𝜑) : ((X,T);𝐴) → ((X′,T′);𝐴′),
((𝐺, 𝛽);𝜓) : ((X′,T′);𝐴′) → ((X′′,T′′);𝐴′′) of tangent pairs is defined as the tan-

gent morphism (𝐺, 𝛽) ◦ (𝐹, 𝛼) = (𝐺 ◦ 𝐹, 𝐺𝛼𝛽𝐹) together with the isomorphism

𝐺𝐹𝐴
𝐺𝜑
−−→ 𝐺𝐴′

𝜓
−→ 𝐴′′. Notice, in particular, that since 𝐺 preserves tangent dis-

play maps and tangent display maps are closed under composition, this defines a
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morphism of tangent pairs. Therefore, tangent pairs together with their morphisms

form a category denoted by TngPair.
We are now in the position to introduce the pseudofunctor Term : cTngCat →

TngPair which sends a Cartesian tangent category (X,T) to the tangent pair ((X,T); ∗),
∗ being the terminal object of X. The terminal object ∗ is uniquely defined only up

to unique isomorphisms; therefore, to define Term we are making a choice of one

of the terminal objects of each X. In the following, we abuse notation and refer to ∗
as the terminal object.

Notice that, since pullbacks over the terminal objects are precisely Cartesian

products, tangent display maps over the terminal object consist of those objects 𝐸

of X for which the Cartesian product 𝐸′ × 𝐸 exists for any other object 𝐸′ and for

which this product is preserved by T, i.e. T(𝐸′ × 𝐸) ≅ T𝐸′ × T𝐸. Therefore, for a

Cartesian tangent category (X,T) tangent display maps over the terminal object are

all the objects. This observation implies that Term is a well-defined functor. Indeed,

given a Cartesian tangent morphism (𝐹, 𝛼) : (X,T) → (X′,T′) let Term(𝐹, 𝛼) be the

pair ((𝐹, 𝛼); !) formed by (𝐹, 𝛼) (notice that Cartesianity implies that 𝐹 sends tangent

display maps of (X,T) over the terminal object ∗ of X to tangent display maps of

X′ over 𝐹∗ ≅ ∗′) and by the isomorphism ! : 𝐹∗ → ∗′ (notice that this is trivially a

tangent display map since it is an isomorphism).

On the other hand, we can also define the pseudofunctor Slice : TngPair →
cTngCat which sends a tangent pair ((X,T);𝐴) to the slice tangent category

Slice((X,T);𝐴) : = (X,T)/𝐴. To understand how Slice acts on morphisms of tan-

gent pairs, we first need to show that we can lift such a morphism to the slice

tangent categories.

In the following, we adopt the following notation. For a tangent display map

𝑞 : 𝐸 → 𝐴 we denote by 𝑞∗ : T(𝐴)𝐸 → 𝐴 the pullback of T𝑞 along 𝑧 (which exists

since 𝑞 is a tangent display map). Moreover, we denote by 𝜉𝑞 : T(𝐴)𝐸 → T𝐸 the

morphism in the pullback diagram commute:

T(𝐴)𝐸 T𝐸

𝐴 T𝐴

T𝑞

𝑧

𝑞∗

𝜉𝑞

⌟
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When 𝑞 is clear from the context, we omit it from the notation.

Remark 4.6. Term and Slice are not strict functors but rather pseudofunctors. This

comes from the fact that terminal objects and slice tangent structures are only

defined up to unique isomorphisms. Thus, the associators and unitors are defined

by these unique isomorphisms.

Proposition 4.7. Consider two tangent pairs ((X,T);𝐴) and ((X′,T′);𝐴′) and a morphism
of tangent pairs ((𝐹, 𝛼); 𝜑) : ((X,T);𝐴) → ((X′,T′);𝐴′). Let 𝑞 : 𝐸 → 𝐴 be a tangent
display map in (X,T) over 𝐴. Finally, consider the morphism 𝜃𝑞 : 𝐹T(𝐴)𝐸→ T′(𝐴′)𝐹𝐸, as
the unique morphism which makes commutative the following diagram:

𝐹T(𝐴)𝐸 𝐹T𝐸

T′(𝐴′)𝐹𝐸 T′𝐹𝐸

T′𝐹𝐴

𝐴′ T′𝐴′

𝐹𝐴 𝐹T𝐴

𝐹𝜉𝑞

𝐹𝑞∗

(𝐹𝑞𝜑)∗

T′𝐹𝑞

𝜉𝐹𝑞

T′𝜑

𝜃𝑞
𝛼

𝑧

𝜑

⌟

𝐹𝑧

𝐹T𝑞

𝛼

Nat

Therefore, the functor:

𝐹 : X/𝐴→ X′/𝐴′

𝐹(𝑞 : 𝐸→ 𝐴) ↦→ (𝐹𝐸
𝐹𝑞
−−→ 𝐹𝐴

𝜑
−→ 𝐴′)

𝐹(𝑔 : (𝑞 : 𝐸→ 𝐴) → (𝑞′ : 𝐸′→ 𝐴)) ↦→ (𝐹𝑔 : (𝐹𝑞𝜑) → (𝐹𝑞′𝜑))

extends to a lax tangent morphism:

(𝐹, 𝛼)/𝜑 : (X,T)/𝐴→ (X′,T′)/𝐴′

whose distributive law is defined by the natural transformation 𝜃𝑞 : 𝐹T(𝐴)𝑞 → T′(𝐴′)𝐹𝑞.
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Proof. For starters, let’s prove the compatibility between 𝜃 and the projections:

𝐹T(𝐴)𝑞 T′(𝐴′)𝐹𝑞

𝐹𝑞

𝐹𝑝(𝐴)

𝑝
(𝐴′)
𝐹

𝜃

which corresponds to the diagram:

𝐹T(𝐴)𝐸 T′(𝐴′)𝐹𝐸

𝐹T𝐸 T′𝐹𝐸

𝐹𝐸 𝐹𝐸

𝜃

𝜉𝐹

𝑝𝐹

𝐹𝜉

𝐹𝑝

𝛼

(𝜃,𝛼;𝜉)

(𝛼;𝑝)

Let’s take into consideration the compatibility diagram between 𝜃 and the zero

morphisms:

𝐹T(𝐴)𝑞 T′(𝐴′)𝐹𝑞

𝐹𝑞

𝜃

𝐹𝑧(𝐴)

𝑧
(𝐴′)
𝐹

To show that, first, consider the diagram:

𝐹T(𝐴)𝐸 T′(𝐴′)𝐹𝐸

𝐹T𝐸 T′𝐹𝐸

𝐹𝐸 𝐹𝐸

𝜃

𝜉𝐹

𝐹𝑧(𝐴)

𝐹𝜉

𝛼

𝐹𝑧 𝑧𝐹

𝑧
(𝐴′)
𝐹

(𝛼,𝜃;𝜉)

(𝑧;𝜉)(𝑧;𝜉)

(𝛼;𝑧)

Thus 𝐹𝑧(𝐴)𝜃𝜉𝐹 = 𝑧
(𝐴′)
𝐹

𝜉𝐹 and from the universality of 𝜉𝐹 we conclude that 𝐹𝑧(𝐴)𝜃 =
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𝑧
(𝐴′)
𝐹

, as expected. The next step is to prove the compatibility with the sum morph-

ism:

𝐹T(𝐴)2 𝑞 T′(𝐴
′)

2 𝐹𝑞

𝐹T(𝐴)𝑞 T′(𝐴′)𝐹𝑞

𝜃×𝜃

𝐹𝑠(𝐴) 𝑠
(𝐴)
𝐹

𝜃

Thus, consider the following diagram:

𝐹T(𝐴)2 𝐸 T′(𝐴
′)

2 𝐹𝐸

𝐹T2𝐸 T′2𝐹𝐸

𝐹T𝐸 T′𝐹𝐸

𝐹T(𝐴)𝐸 T′(𝐴′)𝐹𝐸
𝜃

𝜉𝐹

𝐹𝑠(𝐴)

𝐹𝜉

𝛼

𝑠
(𝐴′)
𝐹

𝜉𝐹×𝜉𝐹

𝑠𝐹

𝐹𝜉×𝐹𝜉

𝐹𝑠

𝛼×𝛼

𝜃×𝜃

(𝑠;𝜉)

(𝛼,𝜃;𝜉)

(𝛼,𝜃;𝜉)

(𝛼;𝑠)(𝑠;𝜉)

Thus, 𝐹𝑠(𝐴)𝜃𝜉𝐹 = (𝜃 × 𝜃)𝑠(𝐴
′)

𝐹
𝜉𝐹 and from the universality of 𝜉𝐹 we conclude that

𝐹𝑠(𝐴)𝜃 = (𝜃 × 𝜃)𝑠(𝐴′), as expected. Let’s prove the compatibility with the lift:

𝐹T(𝐴)𝑞 T′(𝐴′)𝐹𝑞

𝐹(T(𝐴))2𝑞 T′(𝐴′)𝐹T(𝐴)𝑞 (T′(𝐴′))2𝐹𝑞

𝜃

𝐹𝑙(𝐴) 𝑙
(𝐴′)
𝐹

𝜃T(𝐴) T′(𝐴
′)𝜃
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As before, consider the following diagram:

𝐹T(𝐴)𝐸 T′(𝐴′)𝐹𝐸

𝐹T𝐸 T′𝐹𝐸

𝐹T2𝐸 T′𝐹T𝐸 T′2𝐹𝐸

𝐹T(𝐴)T𝐸 T′(𝐴′)𝐹T𝐸 T′(𝐴′)T′𝐹𝐸

𝐹(T(𝐴))2𝐸 T′(𝐴′)𝐹T(𝐴)𝐸 (T′(𝐴′))2𝐹𝐸

𝜃

𝑙
(𝐴′)
𝐹

𝜉T′𝐹

𝐹𝑙(𝐴)

𝜉𝐹

𝑙𝐹

𝐹𝜉

𝛼

𝐹𝑙

𝐹T(𝐴)𝜉

𝐹𝜉T

𝛼T T′𝛼

𝜃T(𝐴) T′(𝐴
′)𝜃

T′(𝐴
′)𝜉T′(𝐴

′)𝐹𝜉

T′(𝐴
′)𝛼𝜃T

𝜉𝐹T Nat(𝛼,𝜃;𝜉)

(𝛼,𝜃;𝜉)

(𝛼;𝑙)

(𝛼,𝜃;𝜉)Nat

(𝑙;𝜉)(𝑙;𝜉)

Therefore, 𝜃𝑙(𝐴
′)

𝐹
T′(𝐴′)𝜉𝜉T′𝐹 = 𝐹𝑙(𝐴)𝜃T(𝐴)T′(𝐴

′)𝜃T′(𝐴′)𝜉𝜉T′𝐹. By the universality of

T′(𝐴′)𝜉𝜉T′𝐹 we conclude that 𝜃𝑙(𝐴
′)

𝐹
= 𝐹𝑙(𝐴)𝜃T(𝐴)T′(𝐴

′)𝜃, as expected. Finally, let’s

prove the compatibility with the canonical flip:

𝐹(T(𝐴))2𝑞 T′(𝐴′)𝐹T(𝐴)𝑞 (T′(𝐴′))2𝐹𝑞

𝐹(T(𝐴))2𝑞 T′(𝐴′)𝐹T(𝐴)𝑞 (T′(𝐴′))2𝐹𝑞

𝐹𝑐(𝐴) 𝑐
(𝐴′)
𝐹

𝜃T(𝐴) T′(𝐴
′)𝜃

𝜃T(𝐴) T′(𝐴
′)𝜃
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Thus:

𝐹(T(𝐴))2𝐸 T′(𝐴′)𝐹T(𝐴)𝐸 (T′(𝐴′))2𝐹𝐸

𝐹T(𝐴)T𝐸 T′(𝐴′)𝐹T𝐸 T′(𝐴′)T′𝐹𝐸

𝐹T𝐸 T′𝐹T𝐸 T′2𝐹𝐸

𝐹T2𝐸 T′𝐹T𝐸 T′2𝐹𝐸

𝐹T(𝐴)T𝐸 T′(𝐴′)𝐹T𝐸 T′(𝐴′)T′𝐹𝐸

𝐹(T(𝐴))2𝐸 T′(𝐴′)𝐹T(𝐴)𝐸 (T′(𝐴′))2𝐹𝐸

𝜉T′𝐹

𝐹𝑐(𝐴) 𝑐𝐹𝐹𝑐

𝐹T(𝐴)𝜉

𝐹𝜉T

𝛼T T′𝛼

𝜃T(𝐴) T′(𝐴
′)𝜃

T′(𝐴
′)𝜉T′(𝐴

′)𝐹𝜉

T′(𝐴
′)𝛼𝜃T

𝜉𝐹T Nat(𝛼,𝜃;𝜉)

𝑐
(𝐴′)
𝐹

T′(𝐴
′)𝜉

𝜉T′𝐹

𝐹T(𝐴)𝜉

𝐹𝜉T 𝜉𝐹T

𝛼T T′𝛼

𝜃T T′(𝐴
′)𝛼

T′(𝐴
′)𝐹𝜉

𝜃T(𝐴) T′(𝐴
′)𝜃

(𝛼,𝜃;𝜉) Nat

(𝛼;𝑐)

(𝛼,𝜃;𝜉)Nat

(𝑐;𝜉) (𝑐;𝜉)

Nat (𝛼,𝜃;𝜉)

This proves that 𝜃T(𝐴)T′(𝐴
′)𝜃𝑐(𝐴

′)
𝐹

T′(𝐴′)𝜉𝜉T′𝐹 = 𝐹𝑐(𝐴)𝜃T(𝐴)T′(𝐴
′)𝜃T′(𝐴′)𝜉𝜉T′𝐹. Finally,

using the universality of T′(𝐴′)𝜉𝜉T′𝐹 we conclude that𝜃T(𝐴)T′(𝐴
′)𝜃𝑐(𝐴

′)
𝐹

= 𝐹𝑐(𝐴)𝜃T(𝐴)T′(𝐴
′)𝜃,

as expected. □

Proposition 4.7 allows us to lift morphisms of tangent pairs to the corresponding

slice tangent categories. Thanks to this, we can define Slice to be the pseudofunctor

which sends a morphism ((𝐹, 𝛼); 𝜑) : ((X,T);𝐴) → ((X′,T′);𝐴′) to the lax tangent

morphism (𝐹, 𝛼)/𝜑. Notice also that since 𝐹 preserves tangent display maps over

𝐴, it also preserves the Cartesian products between tangent display maps over 𝐴.

Remark 4.8. Notice that, to define morphisms of tangent pairs one could have

asked 𝜑 to simply be a tangent display map. However, in order for (𝐹, 𝛼)/𝜑 to

preserve Cartesian products we needed 𝜑 to be an isomorphism.

The next step is to find sufficient conditions on a morphism of tangent pairs for

the corresponding tangent morphism over the slice categories to be strong. This

will play a key role in our story. Let’s introduce a definition.
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Definition 4.9. Given two tangent pairs ((X,T);𝐴) and ((X′,T′);𝐴′), a morphism
((𝐹, 𝛼); 𝜑) : ((X,T);𝐴) → ((X′,T′);𝐴′) of tangent pairs is Cartesian if the following
diagrams:

𝐹T𝐸 T′𝐹𝐸

𝐹T𝐴 T′𝐹𝐴

𝐹T𝑞 T′𝐹𝑞

𝛼

𝛼
𝐹T(𝐴)𝐸 𝐹T𝐸

𝐹𝐴 𝐹T𝐴

𝐹T𝑞

𝐹𝑧

𝐹𝜉𝑞

𝐹𝑞∗

are pullback diagrams, for every tangent display map 𝑞 : 𝐸→ 𝐴 of (X,T) over 𝐴.

Remark 4.10. Notice that, even if the functor 𝐹 underlying a morphism of tangent

pairs preserves tangent display maps over the given object 𝐴 of the pair, it is not

guaranteed that 𝐹 preserves also tangent display maps over T𝐴. This is the reason

why in Definition 4.9 we required the right diagram to be a pullback.

Lemma 4.11. A Cartesian morphism of tangent pairs ((𝐹, 𝛼); 𝜑) : ((X,T);𝐴) → ((X′,T′);𝐴′)
lifts as a strong tangent morphism to the slice tangent categories. Concretely, this means
that the natural transformation 𝜃𝑞 : 𝐹T(𝐴)𝑞 → T′(𝐴′)𝐹𝑞 defined in Proposition 4.7 is
invertible.

Proof. Consider the following diagram:

𝐹T(𝐴)𝐸 𝐹T𝐸 T′𝐹𝐸

𝐹T𝐴

𝐹𝐴 T′𝐹𝐴

𝐴′ T′𝐴′

𝐹𝑣 𝛼

𝐹T(𝐴)𝑞

𝐹𝑧

𝐹T𝑞

𝛼

T′𝐹 𝑓

𝑧𝐹

𝜑

𝑧

T′𝜑

⌟ ⌟

⌟

where we used that 𝐹𝑧𝛼 = 𝑧𝐹. Thanks to the Cartesianity of ((𝐹, 𝛼); 𝜑), this is a

pullback diagram since it is formed by pullback diagrams. In particular, the bottom

square diagram is a pullback because 𝜑 is an isomorphism. On the other hand, by
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definition, 𝜃 is defined by the diagram:

T′(𝐴′)𝐹𝐸

T′𝐹𝐸

𝐴′ 𝐹T𝐸 T′𝐹𝐴

𝐹T(𝐴)𝐸 T′𝐴′

𝐹𝐴

𝐴′

𝐹𝑣

𝛼

𝐹T(𝐴)𝑞

T′𝐹𝑞

𝜑

𝑧

T′𝜑

𝜉𝐹

T′(𝐴
′)(𝐹𝑞𝜑)

𝑧

𝜃

However, the top and the right rectangular sides of this triangular diagram are

pullbacks, so 𝜃 must be an isomorphism. □

We can finally characterize the operation which takes a tangent pair to its slice

tangent category as an adjunction between pseudofunctors.

Theorem 4.12. The pseudofunctors Slice : TngPair ⇆ cTngCat : Term form an adjunc-
tion whose left adjoint is Term, the right adjoint is Slice, the unit (𝑈, 𝜂) : (X,T) →
Slice(Term(X,T)) = (X,T)/∗, as a Cartesian tangent morphism between Cartesian tan-
gent categories, is the isomorphism:

𝑈 : X→ X/∗

𝑈(𝐴) ↦→ (! : 𝐴→ ∗)

𝑈( 𝑓 : 𝐴→ 𝐵) ↦→ ( 𝑓 (! : 𝐴→ ∗) → (! : 𝐵→ ∗))

𝜂 : (𝑈(T𝐴)) = (! : T𝐴→ ∗) idT𝐴−−−→ (! : T𝐴→ ∗) = T(𝑈(𝐴))

and the counit ((𝐶, 𝜀); 𝜑) : Term(Slice((X,T);𝐴)) = ((X,T)/𝐴; id𝐴) → ((X,T);𝐴) is the
morphism of tangent pairs:

𝐶 : (X,T)/𝐴 ↦→ (X,T)

𝐶(𝑞 : 𝐸→ 𝐴) ↦→ 𝐸

𝐶(𝑔 : (𝑞 : 𝐸→ 𝐴) → (𝑞′ : 𝐸′→ 𝐴)) ↦→ (𝑔 : 𝐸→ 𝐸′)
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𝜀 : 𝐶(T(𝐴)(𝑞 : 𝐸→ 𝐴)) = T(𝐴)𝐸
𝜉𝑞
−→ T𝐸 = T(𝐶(𝑞 : 𝐸→ 𝐴))

𝜑 : 𝐶(id𝐴 : 𝐴→ 𝐴) = 𝐴
id𝐴−−→ 𝐴

Proof. Let’s start by noticing that the unit and the counit are well-defined morph-

isms. The underlying functor 𝑈 of the unit is clearly Cartesian, so (𝑈, 𝜂) is well-

defined. Let’s focus on the counit. A tangent display map in (X,T)/𝐴 over

id𝐴 : 𝐴 → 𝐴 consists of an object 𝑞 : 𝐸 → 𝐴 of (X,T)/𝐴, i.e. a tangent display

map of (X,T) over 𝐴, together with a morphism 𝑞′ : 𝐸′ → 𝐴 for which 𝑞′id𝐴 = 𝑞.

This implies that tangent display maps of (X,T)/𝐴 over id𝐴 are also tangent display

maps of (X,T) over 𝐴. So, the underlying functor 𝐶 of the counit sends tangent

display maps to tangent display maps.

The next step is to show that the unit (𝑈, 𝜂) and the counit ((𝐶, 𝜀); 𝜑) satisfy the

triangle identities. Let’s start by considering the following diagram:

Term(X,T) Term(Slice(Term(X,T)))

Term(X,T)

Term(𝑈,𝜂)

((𝐶,𝜀);𝜑)Term

for a tangent category (X,T) with terminal object. However, it is straightforward

to realize that the underlying tangent morphisms (𝐶, 𝜀) and (𝑈, 𝜂) of ((𝐶, 𝜀); 𝜑)Term

and Term(𝑈, 𝜂) define the equivalence between (X,T) and (X,T)/∗ and that, by the

universality of the terminal object, the composition of the comparison morphisms

𝜑 = id∗ and ! : 𝑈∗ → ∗ is the identity over the terminal object. Similarly, by

considering the diagram:

Slice((X,T);𝐴) Slice(Term(Slice((X,T);𝐴)))

Slice((X,T);𝐴)

(𝑈,𝜂)Slice

Slice((𝐶,𝜀);𝜑)

for a tangent pair ((X,T);𝐴), it is straightforward to show the underlying tangent

morphisms of Slice((𝐶, 𝜀); 𝜑) and (𝑈, 𝜂)Slice define the equivalence between (X,T)/𝐴
and ((X,T)/𝐴)/id𝐴 and that the composition of the comparison morphisms gives

the identity. Finally, notice that the unit is always an isomorphism. □
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Remark 4.13. As mentioned in the introduction of Section 2.2.4, in the original pa-

per [41], the author of this thesis employed a different approach to define the slice

tangent category. Instead of considering only tangent display maps as objects of

the slice tangent category, all morphisms with a fixed codomain were considered.

However, since the existence of tangent pullbacks along these morphisms is re-

quired in order to define the slice tangent structure, only so-called sliceable objects
were considered. We suggest the interested reader to consult the original paper

for details. This discrepancy in the definition of the slice tangent category in the

original paper results in a different adjunction. Instead of having an adjunction

Term ⊣ Slice between tangent pairs and Cartesian tangent categories, in the original

paper, we proved the existence of an adjunction between tangent pairs and tangent

categories with a terminal object. We also need to point out that the morphisms of

TngPair in the original paper were not required to preserve tangent display maps.

4.2 The slice tangent categories of the affine schemes over an operad

The previous section was dedicated to characterizing the slicing of tangent cat-

egories via the adjunction between two pseudofunctors. A similar phenomenon

happens in the realm of operads: given an operad 𝒫 and a 𝒫-algebra 𝐴 the en-

veloping operad 𝒫
(𝐴)

of 𝒫 over 𝐴 is the operad whose category of algebras is

equivalent to the coslice category of Alg𝒫 under 𝐴.

The goal of this section is to prove that these phenomena are two faces of the

same coin: the geometric tangent category of the enveloping operad of 𝒫 over 𝐴

is equivalent to the slice tangent category of the geometric tangent category of 𝒫

over 𝐴.

Let’s start by recalling the definition of the enveloping operad of a pair (𝒫;𝐴).
We advise the interested reader to consult [6], [46], or [21]. For this purpose, recall

that since the category of algebras of an operad𝒫 is cocomplete, each operad has an

initial algebra, which corresponds to the𝑅-module𝒫(0) together with the structure

map 𝒫(𝑚) ⊗ 𝒫(0)⊗𝑚 → 𝒫(0) defined by the operadic composition. This allows

us to introduce an operation 𝒫 ↦→ (𝒫;𝒫(0)) between operads and operadic pairs.

Notice that by a operadic pair we mean a pair (𝒫;𝐴) formed by an operad 𝒫 and a



176

𝒫-algebra 𝐴. Moreover, given two operadic pairs (𝒫;𝐴) and (𝒫′;𝐴′) a morphism
of operadic pairs ( 𝑓 ; 𝜑) : (𝒫;𝐴) → (𝒫′;𝐴′) is a morphism of operads 𝑓 : 𝒫 → 𝒫

′

together with a morphism of 𝒫-algebras 𝜑 : 𝐴 → 𝑓 ∗𝐴′, 𝑓 ∗ : Alg𝒫′ → Alg𝒫 being

the pullback functor induced by 𝑓 . Operadic pairs together with their morphisms

form a category that we denote by OprPair. So, we have:

Init : Operad→ OprPair

Init(𝒫) := (𝒫;𝒫(0))

Init( 𝑓 : 𝒫 ↦→ 𝒫
′) := ( 𝑓 ; ! : 𝒫(0) → 𝑓 ∗𝒫′(0))

! being the unique morphism of 𝒫-algebras induced by the universality of the

initial algebra 𝒫(0). Concretely, ! sends an element 𝑢 ∈ 𝒫(0) to 𝑓0(𝑢).
Init admits a left adjoint Env (cf. [6]), which sends an operadic pair (𝒫;𝐴) to the

corresponding enveloping operad Env(𝒫;𝐴) : = 𝒫
(𝐴)

. Following the description

provided by [21, Section 4.1.3], 𝒫
(𝐴)

is generated by the symbols (𝜇; 𝑎1, . . . , 𝑎𝑘 |, for

every 𝜇 ∈ 𝒫(𝑚 + 𝑘), 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴 and every non-negative integer 𝑘 (when 𝑘 = 0,

(𝜇| are the only terms) which satisfy the following relations:

(𝜇; 𝑎1, . . . , 𝜈(𝑎𝑖 , . . . , 𝑎𝑖+𝑛), . . . , 𝑎𝑘+𝑛 | = (𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑎𝑘+𝑛 | (4.2.1)

for 𝜇 ∈ 𝒫(𝑚 + 𝑘), 𝜈 ∈ 𝒫(𝑛) and 𝑎1, . . . , 𝑎𝑘+𝑛 ∈ 𝐴, where we used the notation 𝜇 ◦𝑖 𝜈
for 𝜇(1𝒫 , . . . , 𝜈, . . . , 1𝒫). In particular, it is not hard to see that 𝒫

(𝐴)(0) ≅ 𝐴. So, the

functor Env sends a morphism of operadic pairs ( 𝑓 , 𝜑) : (𝒫;𝐴) → (𝒫′;𝐴′) to the

morphism of operads Env( 𝑓 ; 𝜑) : 𝒫(𝐴)→ 𝒫
′(𝐴′)

defined on generators as follows:

(𝜇; 𝑎1, . . . , 𝑎𝑘 | ↦→ ( 𝑓 (𝜇); 𝜑(𝑎1), . . . , 𝜑(𝑎𝑘)|

From this description of the enveloping operad, it is not hard to see that an algebra𝐴′

of the enveloping operad𝒫
(𝐴)

is precisely given by a𝒫-algebra 𝐶∗𝐴′, 𝐶 : 𝒫→ 𝒫
(𝐴)

being the canonical inclusion 𝜇 ↦→ (𝜇|, together with a morphism of 𝒫-algebras

𝐴→ 𝐶∗𝐴′ induced by the structure map 𝐴 = 𝒫
(𝐴)(0) → 𝐶∗𝐴′ of 𝐴′.

Conversely, every morphism of 𝒫-algebras 𝑓 : 𝐴 → 𝐴′ induces a 𝒫
(𝐴)

-algebra

structure over 𝐴′ defined as follows:

(𝜇; 𝑎1, . . . , 𝑎𝑘 |(𝑏1, . . . , 𝑏𝑚) := 𝜇𝐴′( 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑘), 𝑏1, . . . , 𝑏𝑚)
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for 𝜇 ∈ 𝒫(𝑚 + 𝑘), 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴 and 𝑏1, . . . , 𝑏𝑚 ∈ 𝐴′. This proves that the category

of 𝒫
(𝐴)

-algebras is equivalent to the coslice category of 𝒫-algebras over 𝐴 (cf. [6,

Lemma 1.7]).

4.2.1 The geometric tangent category of the enveloping operad

Theorem 4.12 establishes that Term and Slice form an adjunction and from our

discussion on the enveloping operad we also know that Env and Init form an

adjunction. We would like to compare Term with Init and Slice with Env. However,

Term is a left adjoint, while Init is a right adjoint and similarly, Slice is a right adjoint

and Env is a left adjoint. To solve this issue, we transpose the adjunction Env ⊣ Init
to the opposite categories. To compare these functors, notice that Geom∗ extends to

operadic pairs as follows:

Geom∗ : OprPairop → TngPair

Geom∗(𝒫;𝐴) := (Geom(𝒫);𝐴)

Geom∗(( 𝑓 , 𝜑) : (𝒫;𝐴) → (𝒫′;𝐴′)) :=

(Geom∗( 𝑓 ) = ( 𝑓 ∗, 𝛼∗); 𝜑op : 𝐴← 𝜑∗𝐴′) : (Geom(𝒫);𝐴) → (Geom(𝒫′);𝐴′)

Note that, since Alg𝒫 is cocomplete and the tangent bundle functor is a left adjoint

(and therefore it preserves all colimits), every morphism of Geom(𝒫) is a T(𝒫)-
display map.

Lemma 4.14. The following diagram:

Operadop OprPairop

cTngCat TngPair

Geom∗ Geom∗

Init

Term

commutes.

Proof. It is straightforward to see that, for an operad 𝒫:

Geom∗(Init((𝒫)) = (Geom(𝒫);𝒫(0)) = Term(Geom(𝒫)) = Term(Geom∗(𝒫))
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and for a morphism of operads 𝑓 : 𝒫→ 𝒫
′
:

Geom∗(Init( 𝑓 )) = Geom∗( 𝑓 ; ! : 𝑓 ∗𝒫′(0) ← 𝒫(0)) =

= ( 𝑓 ∗, 𝛼∗; ! : 𝒫(0) → 𝑓 ∗𝒫′(0)) = Term( 𝑓 ∗, 𝛼∗) = Term(Geom∗( 𝑓 ))

So, the diagram commutes. □

Thanks to Lemma 4.14 we can now also compare the functors Env and Slice.

Crucially, to do that we are going to use that Init ⊣ Env (on the opposite categories)

and that Term ⊣ Slice form adjunctions. In general, given a square diagram as

follows:

• •

• •

𝐹′

𝑈′

𝐹

𝑈

𝐺 𝐻

with (𝜂, 𝜀) : 𝐹 ⊣ 𝑈 and (𝜂′, 𝜀′) : 𝐹′ ⊣ 𝑈′ forming adjunctions, then if the diagram:

• •

• •

𝐹′

𝐹

𝐺 𝐻

commutes, then, by using mates (see [35]), we can define the following natural

transformation:

𝐺 ◦𝑈′
𝜂𝐺𝑈′−−−→ 𝑈 ◦ 𝐹 ◦ 𝐺 ◦𝑈′ = 𝑈 ◦ 𝐻 ◦ 𝐹′ ◦𝑈′ 𝑈𝐻𝜀′−−−−→ 𝑈 ◦ 𝐻

A priori, there is no reason to conclude that such a natural transformation is a

natural isomorphism. In order to prove that the natural transformation induced by

the adjunctions Init ⊣ Env, Term ⊣ Slice, and by Lemma 4.14 is an isomorphism, we

need to show that the counit of Init ⊣ Env induces a Cartesian morphism of tangent

pairs over the geometric tangent pairs.

Lemma 4.15. The counit, regarded as a morphism of OprPair, (𝐶, 𝜀) : (𝒫;𝐴) → Init(Env(𝒫;𝐴)) =
(𝒫𝐴;𝒫(𝐴)(0)) of the adjunction Init ⊣ Env induces a Cartesian morphism of tangent pairs:

Geom∗(𝐶, 𝜀) : Geom∗(𝒫(𝐴);𝒫(𝐴)(0)) → Geom∗(𝒫;𝐴)
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Proof. Let’s start by recalling the definition of the counit. 𝐶 : 𝒫 → 𝒫
(𝐴)

is the

morphism of operads which includes 𝒫 into 𝒫
(𝐴)

by mapping 𝜇 ∈ 𝒫(𝑚) into

(𝜇| ∈ 𝒫(𝐴)(𝑚). Moreover, 𝜀 : 𝐴→ 𝐶∗𝒫(𝐴)(0) is the isomorphism 𝐴 ∋ 𝑎 ↦→ (1𝒫; 𝑎 | ∈
𝐶∗𝒫(𝐴)(0), where 1𝒫 ∈ 𝒫(1) is the unit of 𝒫. To see that this is an isomorphism,

notice that the generators of 𝒫
(𝐴)(0) are all the symbols (𝜇; 𝑎1, . . . , 𝑎𝑚 | for every

𝜇 ∈ 𝒫(𝑚) and 𝑎1, . . . , 𝑎𝑚 ∈ 𝐴, but thanks to the relations (4.2.1) we also have:

(𝜇; 𝑎1, . . . , 𝑎𝑚 | = (1𝒫(𝜇); 𝑎1, . . . , 𝑎𝑚 | = (1𝒫;𝜇(𝑎1, . . . , 𝑎𝑚)|

So, with the identification 𝑎 = (1𝒫; 𝑎 | we have that 𝒫
(𝐴)(0) is equal to 𝐴. Notice

also that, given a 𝒫
(𝐴)

-algebra 𝐴′, 𝐶∗𝐴′ is the 𝒫-algebra over 𝐴′with structure map

defined by:

𝜇(𝑏1, . . . , 𝑏𝑚) := (𝜇|𝐴′(𝑏1, . . . , 𝑏𝑚)

To distinguish between the different tangent structures, for this proof we adopt

the following convention: we denote by T the geometric tangent structure of 𝒫, by

T(𝐴
′)

the slice tangent structure on 𝐴′, and by T𝐴 the geometric tangent structure of

𝒫
(𝐴)

.

The Cartesianity of Geom∗(𝐶, 𝜀)means that for a morphism 𝑞 : 𝐴′→ 𝐸 of 𝒫
(𝐴)

-

algebras the diagrams in the category of 𝒫-algebras:

𝐶∗𝑇𝐴𝐴′ 𝐶∗𝑇𝐴𝐸

𝐶∗𝐴′ 𝐶∗(T𝐴)(𝐴
′)𝐸

𝐶∗𝑧𝐴 𝐶∗𝜉𝑞

𝐶∗T𝐴𝑞

𝐶∗𝑞∗

T𝐶∗𝐴′ 𝐶∗T𝐴𝐴
′

T𝐶∗𝐸 𝐶∗T𝐴𝐸

𝛼∗

𝛼∗

T𝐶∗𝑞 𝐶∗T𝐴𝑞

are all pushout diagrams, where 𝑞∗ is the morphism defined by the pushout dia-

gram in Alg
𝒫(𝐴) :

𝑇𝐴𝐴
′ 𝑇𝐴𝐸

𝐴′ (T𝐴)(𝐴
′)𝐸

𝑧𝐴 𝜉𝑞

T𝐴𝑞

𝑞∗

⌟

Let’s then consider the first diagram. Under the identification Alg
𝒫(𝐴) ≅ Alg𝒫/𝐴,

the functor 𝐶∗ : Alg
𝒫(𝐴) ≅ Alg𝒫/𝐴 → Alg𝒫 coincides with the forgetful functor,
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which sends a morphism 𝑓 : 𝐴 → 𝐴′ of 𝒫-algebras to the 𝒫-algebra 𝐴′. Notice

that the forgetful functor X/𝑀 → X from the slice category of a category X over

an object 𝑀 of X preserves all connected limits, therefore, dually, the forgetful

functor 𝑀/X → X preserves all connected colimits. In particular, pushouts are

connected colimits and thus 𝐶∗ preserves all pushouts. Thanks to this general fact,

we conclude that the first diagram is a pushout.

Finally, let’s prove that the diagram which expresses the naturality of 𝛼∗ is also

a pushout. The first step is to lift 𝛼∗ to a morphism of 𝒫
(𝐴)

-algebras 𝛼∗ so that

𝐶∗(𝛼∗) = 𝛼∗. Secondly, we are going to show that 𝛼∗ is a coequalizer morphism

from direct inspection, and finally, we use that 𝐶∗ preserves the universal property

of 𝛼∗ to conclude our result.

Let’s start by noticing that, since 𝐴′ is a 𝒫
(𝐴)

-algebra it corresponds to a morph-

ism of 𝒫-algebras 𝛽 : 𝐴 → 𝐶∗𝐴′. Moreover, using the projection we obtain a

morphism 𝐴
𝛽
−→ 𝐶∗𝐴′

𝑝
−→ T𝐶∗𝐴′ of 𝒫-algebras which defines a new 𝒫

(𝐴)
-algebra

T𝐶∗𝐴′. Concretely, this is the 𝒫
(𝐴)

-algebra defined over T𝐶∗𝐴′ whose structure

map is defined by:

(𝜇; 𝑎1, . . . , 𝑎𝑘 |(𝑥1, . . . , 𝑥𝑚) := 𝜇T𝐶∗𝐴′(𝛽(𝑎1), . . . , 𝛽(𝑎𝑘), 𝑥1, . . . , 𝑥𝑚)

Then, it is not hard to see that 𝛼∗ can be lifted to a morphism of 𝒫
(𝐴)

-algebras

𝛼∗ : T𝐶∗𝐴′ → T𝐴𝐴
′
, which sends an element 𝑦 ∈ T𝐶∗𝐴′ to 𝛼∗(𝑦) ∈ T𝐴𝐴

′
. Re-

call also that, by construction, 𝛼∗ sends the generators 𝑏 and d𝑏 of T𝐶∗𝐴′ to the

corresponding generators 𝑏 and d𝐴𝑏 of 𝐶∗T𝐴𝐴
′
.

By direct inspection we see that the 𝒫
(𝐴)

-algebra T𝐴𝐴
′
is generated by all 𝑏 ∈ 𝐴′

and by symbols d𝐴𝑏 for 𝑏 ∈ 𝐴′, satisfying the following properties:

(𝜇; 𝑎1, . . . , 𝑎𝑘 |T𝐴𝐴′(𝑏1, . . . , 𝑏𝑚) = (𝜇; 𝑎1, . . . , 𝑎𝑘 |𝐴′(𝑏1, . . . , 𝑏𝑚) =

= 𝜇𝐶∗𝐴′(𝛽(𝑎1), . . . , 𝛽(𝑎𝑘), 𝑏1, . . . , 𝑏𝑚)

d𝐴((𝜇; 𝑎1, . . . , 𝑎𝑘 |(𝑏1, . . . , 𝑏𝑚)) =
𝑚∑︂
𝑗=1
(𝜇; 𝑎1, . . . , 𝑎𝑘 |(𝑏1, . . . , d𝐴𝑏 𝑗 , . . . , 𝑏𝑚)

=

𝑚∑︂
𝑗=1

𝜇𝐶∗T𝐴𝐴′(𝛽(𝑎1), . . . , 𝛽(𝑎𝑘), 𝑏1, . . . , d𝐴𝑏 𝑗 , . . . , 𝑏𝑚)

Similarly, it is not hard to see that T𝐶∗𝐴′ is also generated by 𝑏 ∈ 𝐴′ and by symbols
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d𝑏, for 𝑏 ∈ 𝐴′, satisfying the following properties:

(𝜇; 𝑎1, . . . , 𝑎𝑘 |T𝐶∗𝐴′(𝑏1, . . . , 𝑏𝑚) =

= 𝜇T𝐶∗𝐴′(𝛽(𝑎1), . . . , 𝛽(𝑎𝑘), 𝑏1, . . . , 𝑏𝑚) = 𝜇𝐶∗𝐴′(𝛽(𝑎1), . . . , 𝛽(𝑎𝑘), 𝑏1, . . . , 𝑏𝑚)

d(𝜇(𝑏1, . . . , 𝑏𝑚)) =
𝑚∑︂
𝑗=1

𝜇(𝑏1, . . . , d𝑏 𝑗 , . . . , 𝑏𝑚)

It is clear from this that the relations of T𝐴𝐴
′
imply the ones of T𝐶∗𝐴′. Since 𝛼∗ sends

generators to corresponding generators, this implies that T𝐴𝐴
′
can be represented

as a quotient algebra of T𝐶∗𝐴′ over a specific ideal 𝐼, that is T𝐴𝐴
′ ≅ T𝐶∗𝐴′/𝐼, and

that 𝛼∗ is the quotient map T𝐶∗𝐴′ → T𝐶∗𝐴′/𝐼. Direct inspection shows that the

ideal 𝐼 is generated by all the d𝐴(𝛽(𝑎)) for every 𝑎 ∈ 𝐴, that is in T𝐴𝐴
′
, d𝐴(𝛽(𝑎)) = 0.

Using a similar argument as the one we used to prove that the first diagram was

a pushout, we conclude also that 𝛼∗ is a quotient map T𝐶∗𝐴′ → 𝐶∗T𝐴𝐴
′
, so that

𝐶∗T𝐴𝐴
′
is a quotient algebra of T𝐶∗𝐴′ over an ideal 𝐼 generated by d𝐴(𝛽(𝑎)) = 0.

Let’s now come back to the naturality diagram and consider 𝑔 : T𝐶∗𝐸→ 𝐾 and

ℎ : 𝐶∗T𝐴𝐴
′→ 𝐾 as follows:

T𝐶∗𝐴′ 𝐶∗T𝐴𝐴
′

T𝐶∗𝐸 𝐶∗T𝐴𝐸

𝐾

𝛼∗

𝛼∗

T𝐶∗𝑞 𝐶∗T𝐴𝑞

𝑔

ℎ

This implies that:

ℎ(𝑏) = 𝑔(𝑞(𝑏))

ℎ(d𝐴𝑏) = 𝑔(𝑞(d𝑏)) = 𝑔(d𝑞(𝑏))

for every 𝑏 ∈ 𝐴′. Notice that, since 𝐸 is a 𝒫
(𝐴)

-algebra, we can also define a

morphism of 𝒫-algebras 𝛾 : 𝐴→ 𝐸 and that since 𝑞 is a morphism of 𝒫
(𝐴)

-algebras

we have that 𝑞(𝛽(𝑎)) = 𝛾(𝑎). So, to lift 𝑔 to𝐶∗T𝐴𝐸we need to show that 𝑔(d𝛾(𝑎)) = 0,

however, we have the following:

𝑔(d𝛾(𝑎))
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= 𝑔(d 𝑓 (𝛽(𝑎))

= 𝑔(dℎ(d𝐴𝛽(𝑎)))

= 0

where we used that d𝐴𝛽(𝑎) = 0. This proves that we can lift 𝑔 to T𝐶∗𝐸/𝐼 = 𝐶∗T𝐴𝐸,

that is we find a morphism [𝑔, ℎ] : 𝐶∗T𝐴𝐴
′ → 𝐾. We leave it to the reader to

prove that such a morphism is the unique morphism which makes commutative

the following diagram:

T𝐶∗𝐴′ 𝐶∗T𝐴𝐴
′

T𝐶∗𝐸 𝐶∗T𝐴𝐸

𝐾

𝛼∗

𝛼∗

T𝐶∗𝑞 𝐶∗T𝐴𝑞

𝑔

ℎ

[𝑔,ℎ]

This concludes the proof. □

We can prove the main result of this chapter.

Proposition 4.16. Consider the tangent morphism obtained as follows:

Geom∗ ◦ Env
(𝑈;𝜂)Geom∗Env−−−−−−−−−→ Slice ◦ Term ◦ Geom∗ ◦ Env ≅

≅ Slice ◦ Geom∗ ◦ Init ◦ Env
Slice(Geom∗(𝐶,𝜀))
−−−−−−−−−−−−→ Slice ◦ Geom∗

This defines an equivalence of pseudofunctors which makes the following diagram commut-
ative:

Operadop OprPairop

cTngCat TngPair

Geom∗ Geom∗

Env

Slice

Proof. By Theorem 4.12, (𝑈, 𝜂) is an equivalence of tangent categories. Moreover,

thanks to Lemma 4.15, Geom∗(𝐶, 𝜀) is a Cartesian morphism of tangent pairs. By

Lemma 4.11, Slice maps Cartesian morphisms into strong tangent morphisms.
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Thus, Slice(Geom∗(𝐶, 𝜀)) is strong. Finally, thanks to [6, Lemma 1.7] the functorial

component of Slice(Geom∗(𝐶, 𝜀)) is an isomorphism between the categories of 𝒫
(𝐴)

-

algebras and the coslice category of 𝒫-algebras under 𝐴, i.e. the slice category

Algop
𝒫
/𝐴. Therefore, Slice(Geom∗(𝐶, 𝜀)) is an equivalence of tangent categories. □

Theorem 4.17. Given an operad 𝒫 and a 𝒫-algebra 𝐴, the geometric tangent category of
the enveloping operad 𝒫

(𝐴) of 𝒫 over 𝐴 is equivalent, as a tangent category, to the slice
tangent category over 𝐴 of the geometric tangent category of 𝒫. In formulas:

Geom(𝒫(𝐴)) = Geom(𝒫)/𝐴

Thanks to this characterization, we can now understand the vector fields over

a 𝒫
(𝐴)

-algebra. For this purpose, recall that for a morphism of 𝒫-algebras 𝛽 : 𝐴→
𝐴′ and a 𝐴′-module 𝑀 (see Section 2.2.5 for details) a 𝛽-relative derivation is a

derivation 𝛿 : 𝐴′→ 𝑀, i.e. an 𝑅-linear morphism which satisfies the Leibniz rule:

𝛿(𝜇(𝑏1, . . . , 𝑏𝑚)) =
𝑚∑︂
𝑘=1

𝜇(𝑏1, . . . , 𝛿(𝑏𝑘), . . . , 𝑏𝑚)

and moreover 𝛿 ◦ 𝛽 = 0.

Corollary 4.18. For an operad 𝒫, a 𝒫-algebra 𝐴, and a 𝒫(𝐴)-algebra 𝐴′, the vector fields
over 𝐴′ in the geometric tangent category of 𝒫(𝐴) are in bĳective correspondence with
𝛽-relative derivations, 𝛽 : 𝐴 → 𝐶∗𝐴′ being the morphism of 𝒫-algebras corresponding to
the 𝒫(𝐴)-algebra 𝐴′.

Proof. Recall that in [29, Corollary 4.5.3] it was proved that vector fields in a geo-

metric tangent category of an operad correspond to derivations over the operadic

algebras. Concretely, a vector field 𝑣 : T𝐴 → 𝐴, regarded as a morphism of 𝒫-

algebras, corresponds to a derivation 𝛿𝑣 : 𝐴→ 𝐴 defined by:

𝛿𝑣(𝑎) := 𝑣(d𝑎)

Viceversa, a derivation 𝛿 defines a vector field 𝑣𝛿 : T𝐴→ 𝐴 by:

𝑣(𝑎) := 𝑎

𝑣(d𝑎) := 𝛿(𝑎)
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Thanks to Theorem 4.17, we have that Geom(𝒫(𝐴)) ≅ Geom(𝒫)/𝐴, thus, given a

morphism 𝛽 : 𝐴 → 𝐶∗𝐴′, by definition of the slice tangent category, the tangent

bundle functor T(𝐴) of Geom(𝒫)/𝐴 is given by the coequalizer (in the category of

𝒫-algebras):

T𝐶∗𝐴 T𝐶∗𝐴′ T(𝐴)𝐴′
T𝛽

T𝛽𝑧𝑝

𝑣𝛽

or equivalently, by the pushout diagram:

T𝐴 T𝐶∗𝐴′

𝐴 T(𝐴)𝐴′

𝑣𝛽

T𝛽

𝑧

𝛽∗

⌟

This implies that T(𝐴)𝐴′ is the quotient of T𝐶∗𝐴′ by the ideal generated by d𝛽(𝑎), for

every 𝑎 ∈ 𝐴. Therefore, a vector field 𝑣 : T(𝐴)𝐴′ → 𝐴′ corresponds to a derivation

𝛿𝑣 : 𝐴′→ 𝐴′ defined by 𝛿𝑣(𝑏) := 𝑣(d𝑏), and satisfying the following:

𝛿𝑣(𝛽(𝑎)) = 𝑣(d𝛽(𝑎)) = 0

that is a 𝛽-relative derivation of 𝐴′. Conversely, a 𝛽-relative derivation 𝛿 : 𝐴′→ 𝐴′

being a derivation over 𝐴′, defines a vector field 𝑣𝛿 : T𝐶∗𝐴′ → 𝐶∗𝐴′ over 𝐶∗𝐴′ by

𝑣𝛿(𝑏) := 𝑏 and 𝑣𝛿(d𝑏) = 𝛿(𝑏), but since 𝛿 is 𝛽-relative, 𝑣𝛿(d𝛽(𝑎)) = 𝛿(𝛽(𝑎)) = 0, thus

𝑣𝛿 lifts to T(𝐴)𝐴′→ 𝐴′. □

4.3 The classification of differential bundles

This section is dedicated to the classification of differential bundles in the geometric

tangent category of a given algebraic operad. Our approach is in two main steps:

first, we classify differential objects in the geometric tangent category of an arbitrary

operad, and second, we employ that differential objects in the slice tangent category

over a given object are precisely (display) differential bundles. Theorem 4.17 proves

that the slice tangent category Geom(𝒫)/𝐴 of the geometric tangent category of an

operad 𝒫, over an affine scheme 𝐴, is equivalent to the geometric tangent category
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of the enveloping operad 𝒫
(𝐴)

of 𝒫 over 𝐴. Thus, differential bundles over 𝐴 in

Geom(𝒫) are differential objects in Geom(𝒫(𝐴)).
In Section 4.3.1 we prove that differential objects in Geom(𝒫) are equivalent to

left modules over the unital and associative ring 𝒫(1). This implies that differential

bundles over an arbitrary operadic affine scheme 𝐴 of an operad 𝒫 are equivalent

to modules over the 𝒫-algebra 𝐴. We also show that linear morphisms (linear

in the tangent category sense) between differential bundles correspond to linear

morphisms (linear in the algebraic sense) between the corresponding modules

in a contravariant fashion. In a nutshell, we prove the following equivalence of

categories:

DBndlnr(Geom(𝒫);𝐴) ≅ Modop(𝒫;𝐴)

where on the left we denote the category of differential bundles of Geom(𝒫) over

𝐴 and linear morphisms and on the right the opposite of the category of modules

over the operadic algebra 𝐴, in the operadic sense.

Finally, we show that this equivalence is also an equivalence between tangent

categories, where the tangent structure of Modop(𝒫;𝐴) is the adjoint tangent struc-

ture of the one induced by biproducts, and the one of DBndlnr(Geom(𝒫);𝐴) is the

restriction to differential bundles and linear morphisms of the slice tangent struc-

ture of Geom(𝒫)/𝐴.

4.3.1 The classification of differential objects

Intuitively speaking, differential objects, reviewed in Section 2.2.2, are objects in

a tangent category which behave like Euclidean spaces in the category of smooth

manifolds: they have a distinct point, the zero, they have a translation symmetry,

axiomatized by the sum operation, and their tangent bundle is trivial.

In Section 3.4 we proved that the monad associated with an operad, assum-

ing the base monoidal category to have biproducts as in Convention 3.20, is a

coCartesian differential monad. We also discussed how a coCartesian differential

monad is precisely a monad for which the associated coKleisli category, i.e. the op-

posite of the Kleisli category, is a Cartesian differential category. Since differential

objects also form a Cartesian differential category, it is natural to wonder whether
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or not the differential objects of the geometric tangent category of an operad form

precisely the coKleisli category of the associated coCartesian differential monad.

To investigate this question, first consider a tangent monad (𝑆, 𝛼) over an ad-

junctable tangent category (X, T) and whose category of algebras admits reflexive

coequalizers, so that Algop
𝑆

is a tangent category denoted by Geom(𝑆). Therefore,

the free functor 𝐹 : X → Alg𝑆 which sends objects 𝐴 of the base category X to the

corresponding free algebras 𝐹(𝐴) = (𝑆𝐴, 𝛾), 𝛾 being the monad multiplication, ex-

tends to a strong tangent morphism (𝐹, 𝜏) : (Xop,T) → Geom(𝑆) between the adjoint

tangent categories.

To understand why this is the case, recall that the forgetful functor𝑈 : Alg(𝑆) →
(X, T) is a strict tangent morphism. Employing Lemma 3.78 to the strict, so in

particular strong, tangent morphism 𝑈 we conclude that the free functor 𝐹 : X→
Algop

𝑆
, which is the left adjoint of 𝑈 , extends to a strong tangent morphism over

the adjoint tangent categories: (𝐹, 𝜏) : (Xop,T) → Geom(𝑆), where we recall that

Geom(𝑆) denotes the adjoint tangent category of Alg(𝑆). Strong tangent morphisms

preserve differential objects so all free 𝑆-algebras generated by differential objects

of the base tangent category (X, T) are also differential objects of Geom(𝑆).

Proposition 4.19. If (𝑆, 𝛼) is a tangent monad over an adjunctable tangent category (X, T)
and the category of algebras of 𝑆 have reflexive coequalizers, the free functor 𝐹 : X → Alg
restricts to a functor DObj(X,T) → DObj(Geom(𝑆)).

Theorem 4.20. The free algebras of a coCartesian differential monad (𝑆, 𝜕) are differential
objects in the geometric tangent category Geom(𝑆) of (𝑆, 𝜕). In particular, free algebras of an
operad 𝒫 defined over a monoidal category which satisfies Convention 3.20, are differential
objects in Geom(𝒫).

Proof. Thanks to Proposition 4.19 the free functor 𝐹 : X→ Alg𝑆 extends to a strong

tangent morphism (X, T) → Geom(𝑆). Moreover, since

T

is the tangent structure

induced by biproducts, every object ofX is a differential object in (X, T). In particu-

lar, DObj(X,T) ≅ X. Since strong tangent morphisms preserve differential objects,

every free 𝑆-algebra is a differential object in Geom(𝑆). □

Unfortunately, this result does not guarantee the converse: there could be dif-

ferential objects in Geom(𝒫) which are not free algebras. Indeed, Example 3.14



187

constitutes a counterexample. We leave it to future work to classify for which tan-

gent monads differential objects in their geometric tangent categories are precisely

the free algebras.

To provide a complete classification of differential objects of the geometric tan-

gent category of an operad we first recall that, in a Cartesian tangent category,

differential objects can be regarded as differential bundles over the terminal object

(cf. [11, Proposition 3.4]).

Proposition★ 4.21. In a Cartesian tangent category, differential objects are precisely dif-
ferential bundles over the terminal object.

Interestingly, also (linear) morphisms of differential objects are carried over by

the correspondence between differential objects and differential bundles over the

terminal object and so it extends to an equivalence of categories. For this purpose,

recall that a morphism of differential objects is linear if it preserves the differential

projection and a morphism of differential bundles is linear if it preserves the vertical

lift.

Proposition 4.22. Given a Cartesian tangent category (X,T), the category DObjlnr(X,T)
of differential objects and linear morphisms is equivalent to the category DBndlnr((X,T); ∗)
of differential bundles over the terminal object ∗ and linear morphisms.

The second step is to recall that, in the presence of negatives, differential bundles

can be fully characterized as pre-differential bundles satisfying Rosický’s univer-

sality condition, as shown by MacAdam in [47].

Definition★ 4.23. A pre-differential bundle in a tangent category (X,T) consists of a
morphism 𝑞 : 𝐸→ 𝑀 together with a section 𝑧𝑞 : 𝑀 → 𝐸, called the zero morphism and
morphism 𝑙𝑞 : 𝐸→ T𝐸, called the vertical lift, for which the following axioms hold:

𝑀 𝐸

𝑀

𝑧𝑞

𝑞

𝐸 T𝐸

𝑀 𝐸

𝑙𝑞

𝑝𝑞

𝑧𝑞

𝐸 T𝐸

𝑀 𝐸

𝑧𝑞

𝑙𝑞

𝑧𝑞

𝑧

T𝐸 T2𝐸

𝐸 T𝐸

𝑙𝑞

𝑙

𝑙𝑞

T𝑙𝑞
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Moreover, in a Cartesian tangent category (X,T), a pre-differential bundle is universal if
the 𝑛-fold tangent pullback of the projection 𝑞 along itself exists and the following diagram:

𝐸 T𝐸

𝑀 T𝑀 × 𝐸

𝑙𝑞

⟨T𝑞,𝑝⟩𝑞

⟨𝑧,𝑧𝑞⟩

is a tangent pullback.

MacAdam proved (cf. [47, Corollary 2.2.5]) that, when a tangent category has

negatives, it suffices to have a universal pre-differential bundle to define a differen-

tial bundle uniquely. In particular, a universal pre-differential bundle comes with

a sum morphism 𝑠𝑞 : 𝐸2→ 𝐸. Let’s restate this important result.

Proposition★ 4.24. In a tangent category with negatives, differential bundles are equivalent
to universal pre-differential bundles.

Since the geometric tangent category of an algebraic operad has negatives, in

our proof, we treat differential objects as universal pre-differential bundles over

the terminal object. Recall also that the terminal object of Geom(𝒫) is the initial

𝒫-algebra 𝒫(0). With this in mind, let’s start by showing that the functor Free𝒫(0)
sends modules over the initial 𝒫-algebra 𝒫(0) to differential objects of Geom(𝒫).

Proposition 4.25. Let 𝑀 ∈ Mod𝒫(0) be a 𝒫(0)-module (in the operadic sense, see Defini-
tion 3.57). Therefore, the 𝒫-algebra Free𝒫(0)𝑀 is a differential object in Geom(𝒫).

Proof. First note that the functor Free𝒫(0) : Mod𝒫(0) → Alg𝒫 is well-defined since

𝒫(0) is a 𝒫-algebra. Let’s start by defining the zero-morphism of Free𝒫(0)𝑀.

Let’s recall that Free𝒫(0)𝑀 is the 𝒫-algebra generated by pairs (𝛼, 𝑥) ∈ 𝒫(0) × 𝑀,

satisfying the following relations:

(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0)) = (𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))
(4.3.1)

for every 𝜇 ∈ 𝒫(𝑛), 𝛼1, . . . , 𝛼𝑛 ∈ 𝒫(0), 𝑥 ∈ 𝑀, and any positive integer 𝑛. Let’s

consider the morphism:

𝜁 : S𝒫(𝒫(0) ×𝑀)
S𝒫(𝜋1)−−−−−→ S𝒫(𝒫(0))

𝜃−→ 𝒫(0)
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where 𝜃 is the structure map of the 𝒫-algebra 𝒫(0). This is a well-defined 𝒫-

algebra morphism since it is the composition of 𝒫-algebra morphisms. Let’s prove

that this morphism lifts to Free𝒫(0)𝑀 by showing that it is compatible with the

relations (4.3.1):

𝜁(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))

= 𝜃(𝑆(𝒫,𝜋1)(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0)))

= 𝜃(𝜇; 𝛼1, . . . , 𝛼𝑛)

= 𝜇(𝛼1, . . . , 𝛼𝑛)

= 𝜁(𝜇(𝛼1, . . . , 𝛼1), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))

This proves that 𝜁 lifts to the quotient and therefore it provides a well-defined 𝒫-

algebra morphism Free𝒫(0)𝑀 → 𝒫(0) that, abusing notation, will be also denoted

by 𝜁. The second step is to provide a vertical lift for Free𝒫(0)𝑀. To define this

morphism, note that the tangent bundle functor T preserves colimits since it is a

left-adjoint. This allows us to regard TFree𝒫(0)𝑀 as the 𝒫-algebra generated by

pairs (𝛼, 𝑥) ∈ 𝒫(0) ×𝑀 and symbols d(𝛼, 𝑥), for (𝛼, 𝑥) ∈ 𝒫(0) ×𝑀, satisfying the

relations (4.3.1) and the following:

d(𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛)) =

=
∑︂
𝑖≠𝑘

(𝜇; (𝛼1, 0), . . . , d(𝛼𝑖 , 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))+

+ (𝜇; (𝛼1, 0), . . . , d(𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))

(4.3.2)

Let’s consider the morphism:

𝜆 : TS𝒫(𝒫(0) ×𝑀) → Free𝒫(0)𝑀

𝜆(𝛼, 𝑥) := [(𝛼, 0)]

𝜆(d(𝛼, 𝑥)) := [(0, 𝑥)]

We used the square brackets to indicate the equivalence classes in the quotient

Free𝒫(0)𝑀. For Theorem 4.20, the free algebra S𝒫(𝒫(0) ×𝑀) is a differential object,

so we conclude that T(S𝒫(𝒫(0)×𝑀) ≅ S𝒫(𝒫(0)×𝑀)×S𝒫(𝒫(0)×𝑀) ≅ S𝒫(𝒫(0)×
𝑀 ×𝒫(0) ×𝑀). Therefore, TS𝒫(𝒫(0) ×𝑀) is a free 𝒫-algebra and then 𝜆 is a well-

defined 𝒫-algebra morphism. The next step is to show that 𝜆 lifts to TFree𝒫(0)𝑀
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by showing that it is compatible with the relations (4.3.1) and (4.3.2). Let’s start by

proving the compatibility with (4.3.1):

𝜆(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))

= [(𝜇; (𝛼1, 0), . . . , (𝛼𝑛 , 0)]

= [(𝜇(𝛼1, . . . , 𝛼𝑛), 0)]

= 𝜆(𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))

where in the second passage we used Equation (4.3.1). Let’s prove the compatibility

with the relations (4.3.2). First notice that:

𝜆(d(𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))) =

= [(0, 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛)]

On the other hand:

𝜆

(︄∑︂
𝑖≠𝑘

(𝜇; (𝛼1, 0), . . . , d(𝛼𝑖 , 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))+

+(𝜇; (𝛼1, 0), . . . , d(𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0)))

=
∑︂
𝑖≠𝑘

[(𝜇; (𝛼𝑖 , 0), . . . , (0, 0), . . . , (𝛼𝑘 , 0), . . . , (𝛼𝑛 , 0))] +

+[(𝜇; (𝛼1, 0), . . . , (0, 𝑥), . . . , (𝛼𝑛 , 0))]

= [(0, 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))]

This proves that 𝜆 is compatible with the relations of TFree𝒫(0)𝑀 and that it can

be lifted to a morphism of 𝒫-algebras TFree𝒫(0)𝑀 → Free𝒫(0)𝑀, that, abusing

notation, will be denoted by 𝜆. The next step is to show that (𝐴, 𝜁,𝜆) is a universal

pre-differential bundle over 𝒫(0). Notice first that in Geom(𝒫) every map is a

T(𝒫)-display map, so we do not need to prove the existence of the 𝑛-fold tangent

pushout (regarding the maps as morphisms in Alg𝒫) of the projection along itself.

Let’s start by showing the compatibility between the vertical lift 𝑙 and 𝜆, i.e.

𝜆 ◦ 𝑙 = 𝜆 ◦T𝜆. Using the presentation of T2Free𝒫(0)𝑀, we show the equivalence of

the two morphisms on generators as follows:

𝜆(𝑙(𝛼, 𝑥)) = 𝜆(𝛼, 𝑥) = (𝛼, 0)

𝜆(𝑙(d(𝛼, 𝑥))) = 𝜆(0, 0) = (0, 0)
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𝜆(𝑙(d′(𝛼, 𝑥))) = 𝜆(0, 0) = (0, 0)

𝜆(𝑙(d′d(𝛼, 𝑥))) = 𝜆(d(𝛼, 𝑥)) = (0, 𝑥)

𝜆(T𝜆(𝛼, 𝑥)) = 𝜆(𝛼, 𝑥) = (𝛼, 0)

𝜆(T𝜆(d(𝛼, 𝑥))) = 𝜆(0, 𝑥) = (0, 0)

𝜆(T𝜆(d′(𝛼, 𝑥))) = 𝜆(d(𝛼, 0)) = (0, 0)

𝜆(T𝜆(d′d(𝛼, 𝑥))) = 𝜆(d(0, 𝑥)) = (0, 𝑥)

The next step is to prove the compatibility between the projection and 𝜆, i.e. 𝜆◦ 𝑝 =

! ◦ 𝜁, where ! : : 𝒫(0) → Free𝒫(0)𝑀 is the unique 𝒫-algebra morphism defined by

!𝛼 := [(𝛼, 0)]. Thus, on generators:

𝜆(𝑝(𝛼, 𝑥)) = 𝜆(𝛼, 𝑥) = (𝛼, 0) =!(𝛼) =!(𝜁(𝛼, 𝑥))

Let’s show the compatibility between 𝜆 and the zero morphism, i.e. 𝜁 ◦ 𝜆 = 𝜁 ◦ 𝑧:

𝜁(𝜆(𝛼, 𝑥)) = 𝜁(𝛼, 0) = 𝛼

𝜁(𝜆(d(𝛼, 𝑥))) = 𝜁(0, 𝑥) = 0

𝜁(𝑧(𝛼, 𝑥)) = 𝜁(𝛼, 𝑥) = 𝛼

𝜁(𝑧(d(𝛼, 𝑥))) = 𝜁(0, 0) = 0

This proves that (Free𝒫(0)𝑀, 𝜁,𝜆) is a pre-differential bundle over 𝒫(0). Let’s prove

the universality of the vertical lift, which corresponds to stating that the diagram:

𝒫(0) ⊔ Free𝒫(0)𝑀 TFree𝒫(0)𝑀

𝒫(0) Free𝒫(0)𝑀

[𝑧,𝜁]

[T!,𝑝]

𝜆

!

is a pushout diagram. Since the tangent bundle functor is a left adjoint it follows

directly that this is also a tangent pushout. For this purpose, consider two morph-

isms 𝑓 : TFree𝒫(0)𝑀 → 𝑋 and 𝑔 : 𝑃(0) → 𝑋 of 𝒫-algebras, making the following
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diagram commutative:

𝒫(0) ⊔ Free𝒫(0)𝑀 TFree𝒫(0)𝑀

𝒫(0) Free𝒫(0)𝑀

𝑋

[𝑧,𝜁]

[T!,𝑝]

𝜆

!

𝑓

𝑔

We want to provide a morphism ℎ : Free𝒫(0)𝑀 ⤏ 𝑋 of 𝒫-algebras so that:

𝒫(0) ⊔ Free𝒫(0)𝑀 TFree𝒫(0)𝑀

𝒫(0) Free𝒫(0)𝑀

𝑋

[𝑧,𝜁]

[T!,𝑝]

𝜆

!

𝑓

𝑔

ℎ

commutes. First, note that, since 𝑓 ◦ [T!, 𝑝] = 𝑔 ◦ [𝑧, 𝜁]we have that:

𝑓 (𝛼, 𝑥) = 𝑔(𝛼) = 𝑓 (𝛼, 0)

𝑓 (d(𝛼, 0)) = 0

Thus, let’s define ℎ on generators as follows:

ℎ(𝛼, 𝑥) := 𝑔(𝛼) + 𝑓 (d(0, 𝑥))

Let’s first prove that ℎ is well-defined, i.e. that it is compatible with the rela-

tions (4.3.1):

ℎ(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))

= 𝜇(𝑔(𝛼1), . . . , 𝑔(𝛼𝑘) + 𝑓 (d(0, 𝑥)), . . . , 𝑔(𝛼𝑛))

= 𝜇(𝑔(𝛼1), . . . , 𝑔(𝛼𝑘), . . . , 𝑔(𝛼𝑛)) + 𝜇(𝑔(𝛼1), . . . , 𝑓 (d(0, 𝑥)), . . . , 𝑔(𝛼𝑛))
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= 𝜇( 𝑓 (𝛼1, 0), . . . , 𝑓 (𝛼𝑘 , 0), . . . , 𝑓 (𝛼𝑛 , 0)) + 𝜇( 𝑓 (𝛼1, 0), . . . , 𝑓 (d(0, 𝑥)), . . . , 𝑓 (𝛼𝑛 , 0))

= 𝑓 [(𝜇; (𝛼1, 0), . . . , (𝛼𝑛 , 0)] + 𝑓 [(𝜇; (𝛼1, 0), . . . , d(0, 𝑥), . . . , (𝛼𝑛 , 0))]

= 𝑓 [(𝜇(𝛼1, . . . , 𝛼𝑛), 0)] + 𝑓 [d(0, 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))]

= 𝑔(𝜇(𝛼1, . . . , 𝛼𝑛)) + 𝑓 (d(0, 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛)))

= ℎ(𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))

This shows that ℎ is a well-defined 𝒫-algebra morphism. Let’s now prove that

ℎ ◦ 𝜆 = 𝑓 :

ℎ(𝜆(𝛼, 𝑥)) = ℎ(𝛼, 0) = 𝑔(𝛼) = 𝑓 (𝛼, 𝑥)

ℎ(𝜆(d(𝛼, 𝑥))) = ℎ(0, 𝑥) = 𝑓 (d(0, 𝑥)) = 𝑓 (d(𝛼, 0)) + 𝑓 (d(0, 𝑥)) = 𝑓 (d(𝛼, 𝑥))

Let’s also prove the compatibility with !, i.e. that ℎ◦! = 𝑔:

ℎ(!(𝛼)) = ℎ(𝛼, 0) = 𝑔(𝛼)

The final step is to show that ℎ is the unique morphism so that ℎ ◦ 𝜆 = 𝑓 and

ℎ◦! = 𝑔. Let’s consider a second morphism ℎ′ satisfying these conditions, so that:

ℎ′(𝛼, 𝑥) = ℎ′(𝛼, 0) + ℎ′(0, 𝑥) = ℎ′(!(𝛼)) + ℎ′(𝜆(d(0, 𝑥))) = 𝑔(𝛼) + 𝑓 (d(0, 𝑥)) = ℎ(𝛼, 𝑥)

In conclusion, we constructed 𝜁 and 𝜆 so that (Free𝒫(0)𝑀, 𝜁,𝜆) is a universal pre-

differential bundle over the terminal object of Geom(𝒫). We conclude that Free𝒫(0)𝑀
is a differential object. □

Proposition 4.26. Let (𝐴, 𝜎, 𝜁,𝜆) be a differential object (regarded as a differential bundle
over the terminal object) in the geometric tangent category Geom(𝒫) of an algebraic operad
𝒫 and let 𝐷𝜆 be the morphism so defined:

𝐷𝜆(𝑎) := 𝜆(d𝑎)

Thus, 𝐷𝜆(𝐴) is a 𝒫(0)-module (in the operadic sense).

Proof. In order to prove that 𝐷𝜆(𝐴) is a 𝒫(0)-module we need to provide linear

morphisms 𝜓𝑛+1 : 𝒫(𝑛 + 1) ⊗𝒫(0)⊗𝑛 ⊗ 𝐷𝜆(𝐴) → 𝐷𝜆(𝐴):

𝜓𝑛+1(𝜇; 𝛼1, . . . , 𝛼𝑛 , 𝐷𝜆(𝑎)) := 𝐷𝜆(𝜇(!𝛼1, . . . , !𝛼𝑛 , 𝑎))
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where ! : 𝒫(0) → 𝐴 and show that 𝜓𝑛 are compatible with the operadic composi-

tion. First, let’s prove that 𝜓𝑛 is well-defined. Note that from the Leibniz rule we

have that:

𝐷𝜆(𝜇(!𝛼1, . . . , !𝛼𝑛 , 𝑎)) =
𝑛∑︂
𝑘=1

𝜇(!𝛼1, . . . , 𝐷𝜆(!𝛼1), . . . , !𝛼𝑛 , 𝑎) + 𝜇(!𝛼1, . . . , !𝛼𝑛 , 𝐷𝜆(𝑎))

However:

𝐷𝜆(!𝛼) = 𝜆(d(!𝛼)) = 𝜆(T!(d𝛼)) =!(𝑧(d𝛼)) =!0 = 0

where we used that 𝜆 ◦ T! =! ◦ 𝑧. Thus:

𝐷𝜆(𝜇(!𝛼1, . . . , !𝛼𝑛 , 𝑎)) = 𝜇(!𝛼1, . . . , !𝛼𝑛 , 𝐷𝜆(𝑎))

This proves that 𝜓𝑛 is well-defined. Let’s show the compatibility between 𝜓𝑛 and

the operadic composition:

𝜓𝑛+1(𝜇; 𝛼1, . . . , 𝜈(𝛼𝑘 , . . . , 𝛼𝑘+𝑚), . . . , 𝛼𝑛+𝑚 , 𝐷𝜆(𝑎))

= 𝜇(!𝛼1, . . . , !𝜈(𝛼𝑘 , . . . , 𝛼𝑘+𝑚), . . . , !𝛼𝑚+𝑛 , 𝐷𝜆(𝑎))

= 𝜇(!𝛼1, . . . , 𝜈(!𝛼𝑘 , . . . , !𝛼𝑘+𝑚), . . . , !𝛼𝑚+𝑛 , 𝐷𝜆(𝑎))(𝜇 ◦𝑘 𝜈)(!𝛼1, . . . , !𝛼𝑚+𝑛 , 𝐷𝜆(𝑎))

= 𝜓𝑛+𝑚+1(𝜇 ◦𝑘 𝜈; 𝛼1, . . . , 𝛼𝑛+𝑚 , 𝐷𝜆(𝑎))

𝜓𝑛+1(𝜇; 𝛼1, . . . , 𝛼𝑛 ,𝜓𝑚+1(𝜈; 𝛼𝑛+1, . . . , 𝛼𝑛+𝑚+1, 𝐷𝜆(𝑎)))

= 𝜓𝑛+1(𝜇; 𝛼1, . . . , 𝛼𝑛 , 𝜈(!𝛼𝑛+1, . . . , !𝛼𝑛+𝑚+1, 𝐷𝜆(𝑎)))

= 𝜇(!𝛼1, . . . , !𝛼𝑛 , 𝜈(!𝛼𝑛+1, . . . , !𝛼𝑛+𝑚+1, 𝐷𝜆(𝑎)))

= (𝜇 ◦𝑛+1 𝜈)(!𝛼1, . . . , !𝛼𝑛+𝑚+1, 𝐷𝜆(𝑎))

= 𝜓𝑛+𝑚+2(𝜇 ◦𝑛+1 𝜈; 𝛼1, . . . , 𝛼𝑛+𝑚+1, 𝐷𝜆(𝑎))

The compatibility with the symmetric action is left to the reader. This concludes

the proof. □

Proposition 4.27. Consider a 𝒫(0)-module 𝑀 ∈ Mod𝒫(0). Then there exists an iso-
morphism of 𝒫(0)-modules:

𝑀 → 𝐷𝜆(Free𝒫(0)𝑀)



195

Proof. Let’s start by proving the existence of a morphism 𝑀 → 𝐷𝜆(Free𝒫(0)𝑀). For

this purpose, note first that, by definition of 𝜆 over Free𝒫(0)𝑀 we have that:

𝐷𝜆(𝛼, 𝑥) = 𝜆(d(𝛼, 𝑥)) = (0, 𝑥)

Thus, on generators:

𝐷𝜆(𝜇; (𝛼1, 𝑥1), . . . , (𝛼𝑛 , 𝑥𝑛)) =
𝑛∑︂
𝑘=1
(𝜇;𝜆(𝛼1, 𝑥1), . . . ,𝜆(d(𝛼𝑘 , 𝑥𝑘)), . . . , (𝛼𝑛 , 𝑥𝑛)) =

=

𝑛∑︂
𝑘=1
(𝜇; (𝛼1, 0), . . . , (0, 𝑥𝑘), . . . , (𝛼𝑛 , 0))

Let’s define the following morphism:

𝜑 : 𝐷𝜆Free𝒫(0)𝑀 → 𝑀

defined by:

𝜑(𝐷𝜆(𝜇; (𝛼1, 𝑥1), . . . , (𝛼𝑛 , 𝑥𝑛))) :=
𝑛∑︂
𝑘=1

𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥𝑘 , 𝛼𝑘+1, . . . , 𝛼𝑛)

Note that:

𝜑(𝛼, 𝑥) = 𝑥

Let’s first prove that 𝜑 is well-defined. First, notice that 𝜑(𝐷𝜆(𝛼, 𝑥)) = 𝜑(0, 𝑥), thus

𝜑 does not depend on 𝛼. Moreover, it is compatible with the relations (4.3.1):

𝜑(𝐷𝜆(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝑥), . . . , (𝛼𝑛 , 0))) = 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛)

𝜑(𝐷𝜆(𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛))) =

= 𝜇(𝛼1, . . . , 𝛼𝑘−1, 𝑥, 𝛼𝑘+1, . . . , 𝛼𝑛)

Thus, 𝜑 is well-defined. Let’s prove that 𝜑 is a 𝒫(0)-module morphism:

𝜑([𝜓𝑛+1(𝜇; 𝛼1, . . . , 𝛼𝑛 , 𝐷𝜆(𝛼, 𝑥))]) = 𝜑(𝐷𝜆([(𝜇; (𝛼1, 0), . . . , (𝛼𝑛 , 0), (𝛼, 𝑥))])) =

= 𝜑(𝐷𝜆([(𝜇(𝛼1, . . . , 𝛼𝑛 , 𝛼), 𝜇(𝛼1, . . . , 𝛼𝑛 , 𝑥))])) = 𝜇(𝛼1, . . . , 𝛼𝑛 , 𝑥)

where we used the relations (4.3.1). The next step is to provide an inverse for 𝜑.

Consider the following morphism 𝜒 : 𝑀 → 𝐷𝜆(Free𝒫(0)𝑀) so defined:

𝜒(𝑥) := [(0, 𝑥)]



196

Thus:

𝜑(𝜒(𝑥)) = 𝜑([(0, 𝑥)]) = 𝑥

𝜒(𝜑(𝐷𝜆[(𝛼, 𝑥)])) = 𝜒(𝑥) = [(0, 𝑥)] = 𝐷𝜆[(𝛼, 𝑥)]

This proves that 𝜑 is a 𝒫(0)-module isomorphism, as expected. □

Proposition 4.28. Given a differential object (𝐴, 𝜎, 𝜁,𝜆) in the geometric tangent category
Geom(𝒫) of an algebraic operad 𝒫, there is an isomorphism of 𝒫-algebras:

Free𝒫(0)𝐷𝜆𝐴→ 𝐴

Proof. Consider the following morphism:

𝜓 : Free𝒫(0)𝐷𝜆(𝐴) → 𝐴

defined on generators by:

𝜓(𝛼, 𝐷𝜆(𝑎)) :=!𝛼 + 𝐷𝜆(𝑎)

The first step is to prove that 𝜓 is well-defined, i.e. it is compatible with the

relations (4.3.1):

𝜓(𝜇; (𝛼1, 0), . . . , (𝛼𝑘 , 𝐷𝜆(𝑎)), . . . , (𝛼𝑛 , 0)) =

= 𝜇(!𝛼1, . . . , !𝛼𝑘 + 𝐷𝜆(𝑎), . . . , !𝛼𝑛) =

= 𝜇(!𝛼1, . . . , !𝛼𝑘 , . . . , !𝛼𝑛) + 𝜇(!𝛼1, . . . , 𝐷𝜆(𝑎), . . . , !𝛼𝑛) =

=!𝜇(𝛼1, . . . , 𝛼𝑛) + 𝐷𝜆(𝜇(𝛼1, . . . , 𝑎, . . . , 𝛼𝑛)) =

= 𝜓(𝜇(𝛼1, . . . , 𝛼𝑛), 𝐷𝜆(𝜇(𝛼1, . . . , 𝑎, . . . , 𝛼𝑛))) =

= 𝜓(𝜇(𝛼1, . . . , 𝛼𝑛), 𝜇(𝛼1, . . . , 𝐷𝜆(𝑎), . . . , 𝛼𝑛))

This proves that 𝜓 is well-defined. The goal is to show that 𝜓 is an isomorphism.

In order to do that, consider a morphism 𝛿 : T𝐴 → Free𝒫(0)𝐷𝜆𝐴 so defined on

generators by:

𝛿(𝑎) := [(𝜁(𝑎), 0)]

𝛿(𝑑𝑎) := [(0, 𝐷𝜆(𝑎))]
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Note that, since𝐷𝜆 is a derivation of 𝐴, it follows that 𝛿 is a well-defined 𝒫-algebra

morphism. The next step is to consider the following diagram:

T𝒫(0) ⊔ 𝐴 T𝐴

𝒫(0) 𝐴

Free𝒫(0)𝐷𝜆𝐴

𝜆

!

[𝑧,𝜁]

[T!,𝑝]

⌟ 𝛿

!

Let’s prove that the diagram commutes, i.e. that 𝛿◦[T!, 𝑝] =!◦[𝑧, 𝜁]. On generators:

𝛿([𝑇!, 𝑝](𝛽; 𝑎)) = 𝛿(!𝛽 + 𝑎) = (𝜁(!𝛽) + 𝜁(𝑎), 0) = (𝛽 + 𝜁(𝑎), 0)

𝛿([𝑇!, 𝑝](𝑑𝛽; 𝑎)) = 𝛿(𝑑!𝛽 + 𝑎) = (0, 𝐷𝜆(!𝛽)) + (𝜁(𝑎), 0) = (𝜁(𝑎), 0)

!([𝑧, 𝜁](𝛽; 𝑎)) =!(𝛽 + 𝜁(𝑎)) = (𝛽 + 𝜁(𝑎), 0)

!([𝑧, 𝜁](𝑑𝛽; 𝑎)) =!(𝜁(𝑎)) = (𝜁(𝑎), 0)

Employing the universality of the vertical lift, we obtain a 𝒫-algebra morphism

𝜓−1 : 𝐴→ Free𝒫(0)𝐷𝜆𝐴. Let’s prove that𝜓−1
is an inverse for𝜓. To do that, consider

the diagram:

T𝒫(0) ⊔ 𝐴 T𝐴

𝒫(0) 𝐴

Free𝒫(0)𝐷𝜆𝐴

𝐴

𝜆

!

[𝑧,𝜁]

[T!,𝑝]

⌟

𝛿

!

𝜓−1

𝜓

𝜆

!

We want to prove that 𝜓 ◦ 𝛿 = 𝜆. Notice that 𝜓◦! =! comes for free from the
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universality of the initial algebra 𝒫(0). Thus, on generators:

𝜓(𝛿(𝑎)) = 𝜓(𝜁(𝑎), 0) =!𝜁(𝑎) = 𝜆(𝑎)

𝜓(𝛿(𝑑𝑎)) = 𝜓(0, 𝐷𝜆(𝑎)) = 𝐷𝜆(𝑎) = 𝜆(𝑑𝑎)

This proves that 𝜓 ◦𝜓−1
is the unique morphism making commuting the following

diagram:

T𝒫(0) ⊔ 𝐴 T𝐴

𝒫(0) 𝐴

𝐴

𝜆

!

[𝑧,𝜁]

[T!,𝑝]

⌟ 𝜆

!

𝜓◦𝜓−1

However, so does the identity over 𝐴. Therefore, 𝜓 ◦ 𝜓−1 = id𝐴. Let’s finally show

the converse:

𝜓−1(𝜓(𝛼, 𝐷𝜆(𝑎)))

= 𝜓−1(!𝛼 + 𝐷𝜆(𝑎))

= 𝜓−1(!𝛼) + 𝜓−1(𝜆(𝑑𝑎))

= !𝛼 + 𝛿(𝑑𝑎)

= (𝛼, 0) + (0, 𝐷𝜆(𝑎))

= (𝛼, 𝐷𝜆(𝑎))

This concludes the proof. □

Theorem 4.29. There is an equivalence between the categories of differential objects and
linear morphisms in the geometric tangent category Geom(𝒫) of an algebraic operad 𝒫 and
the opposite of the category𝒫(0)-modules in the operadic sense and𝒫(0)-linear morphisms:

DObjlnrGeom(𝒫) ≅ Modop(𝒫;𝒫(0))

Proof. The existence of this correspondence between the objects of these two cat-

egories is a direct consequence of Propositions 4.27 and 4.28. Let’s prove that

this correspondence preserves linear morphisms. Consider a linear morphism
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𝑓 : 𝐴 → 𝐵 of differential objects of Geom(𝒫). The linearity of 𝑓 expresses the

commutativity of the diagram:

T𝐴 T𝐵

𝐴 𝐵

𝜆𝐴 𝜆𝐵

𝑓

T 𝑓

where 𝜆𝐴 and 𝜆𝐵 represent the lifts of 𝐴 and 𝐵 respectively. This implies that:

𝐷𝜆𝐵( 𝑓 (𝑎)) = 𝜆𝐵(d 𝑓 (𝑎)) = 𝜆𝐵(T 𝑓 (d𝑎)) = 𝑓 (𝜆𝐴(d𝑎)) = 𝑓 (𝐷𝜆𝐴(𝑎))

So, 𝑓 restricts to the image of 𝐷𝜆𝐴 . Conversely, if 𝑓 : 𝑀 → 𝑁 is a 𝒫(0)-module

morphism, then Free𝒫(0) 𝑓 is linear (in the sense of differential objects):

Free𝒫(0) 𝑓 (𝜆[(𝛼, 𝑥)]) = Free𝒫(0) 𝑓 [(𝛼, 0)] = [(𝛼, 0)]

Free𝒫(0) 𝑓 (𝜆(d[(𝛼, 𝑥)])) = Free𝒫(0) 𝑓 [(0, 𝑥)] = [(0, 𝑓 (𝑥))]

𝜆(T 𝑓 [(𝛼, 𝑥)]) = 𝜆[(𝛼, 𝑓 (𝑥))] = [(𝛼, 0)]

𝜆(T 𝑓 (d[(𝛼, 𝑥)])) = 𝜆(d[(𝛼, 𝑓 (𝑥))]) = [(0, 𝑓 (𝑥))]

This proves that Free𝒫(0) 𝑓 is linear. □

The enveloping algebra of a 𝒫-algebra 𝐴 is the associative and unital algebra

𝒫
(𝐴)(1), denoted by𝒫(𝐴). It is not hard to see that𝒫 itself is the enveloping operad

of the initial algebra 𝒫(0). Consequently, 𝒫(1) is the enveloping algebra of 𝒫(0).
One of the main striking features of the enveloping algebra of a 𝒫-algebra 𝐴 is that

modules over 𝐴 in the operadic sense are equivalent to left modules over 𝒫(𝐴).
We advise the reader to consult [6, Theorem 1.10] for a proof of this result.

Lemma★ 4.30. The category Mod(𝒫;𝐴) of modules over a 𝒫-algebra 𝐴 is equivalent to
the category Mod(𝒫(𝐴)) of left modules over the associative and unital algebra 𝒫(𝐴) :=
𝒫
(𝐴)(1), known as the enveloping algebra of 𝐴. Moreover, the enveloping algebra of the

initial 𝒫-algebra 𝒫(0) is 𝒫(1).
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Corollary 4.31. The category DObjlnrGeom(𝒫) of differential objects and linear morphisms
of the geometric tangent category Geom(𝒫) of an algebraic operad 𝒫 is equivalent to the
opposite of the category of left 𝒫(1)-modules:

DObjlnrGeom(𝒫) ≅ Modop(𝒫(1))

Example 4.32. For the operad 𝒞ℴ𝓂,𝓊𝒞ℴ𝓂,𝒜𝓈𝓈,𝓊𝒜𝓈𝓈, and ℒ𝒾ℯ, differential objects

in the corresponding geometric tangent categories are all equivalent to 𝑅-modules,

since 𝒞ℴ𝓂(1) = 𝓊𝒞ℴ𝓂(1) = 𝒜𝓈𝓈(1) = 𝓊𝒜𝓈𝓈(1) = ℒ𝒾ℯ(1) = 𝑅. In particular, in these

examples, differential objects coincide with the free algebras.

Example 4.33. Consider an associative and unital algebra 𝐴 and the operad 𝐴•

whose entries are all trivial but 𝐴•(1) = 𝐴. Multiplication and unit of 𝐴• are

multiplication and unit of 𝐴. The algebras of 𝐴• are precisely all left 𝐴-modules,

since to give an 𝐴•-algebra is to give an 𝑅-module 𝑀 with an action 𝐴 ⊗ 𝑀 → 𝑀.

Free 𝐴•-algebras are all 𝐴-modules of the form 𝐴⊗𝑀 for a given 𝑅-module 𝑀. The

geometric tangent category Geom(𝐴•) is the adjoint tangent category (Modop
𝐴
,T) of

the tangent category (Mod𝐴 ,
T) induced by biproducts. Consequently, Geom(𝐴•)

is a Cartesian differential category and all maps are linear, which means that the

category of differential objects and linear morphisms coincide with the whole

category. However, not every 𝐴-module is of the form 𝐴⊗𝑀 for a given 𝑅-module

𝑀. This provides an example of a coCartesian differential monad S𝐴• for which

the differential objects in the corresponding geometric tangent category do not

coincide with its free algebras.

Applying Example 4.33 to the associative and unital algebra 𝒫(1), we conclude

that Modop(𝒫(1)) carries a tangent structure for which every morphism is linear.

Since the correspondence between modules and differential objects preserves linear

morphisms we conclude that this extends to an equivalence of tangent categories.

In particular, this implies that DObjlnrGeom(𝒫) is the geometric tangent category of

the operad 𝒫(1)•.

Corollary 4.34. The tangent category DObjlnrGeom(𝒫) of differential objects and linear
morphisms of the geometric tangent category of an algebraic operad 𝒫, whose tangent
structure is the restriction of the tangent structure on differential objects, is equivalent to
the geometric tangent category of the operad 𝒫(1)•.
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4.3.2 Differential bundles are modules

We are finally in the position to prove the main result of this chapter: differential

bundles over an affine scheme 𝐴 in the geometric tangent category of an algebraic

operad 𝒫 are modules over 𝐴 in the operadic sense. Given a 𝒫-algebra 𝐴 we

denote by 𝒫(𝐴)• the operad associated to the enveloping algebra 𝒫(𝐴) of 𝐴.

Let’s also denote by DBndlnr(𝒫;𝐴) the tangent category of differential bundles

and linear morphisms over a 𝒫-affine scheme 𝐴 in the geometric tangent category

Geom(𝒫) of an operad 𝒫.

Theorem 4.35. Let 𝒫 be an operad and 𝐴 a 𝒫-affine scheme. Then the tangent category
DBndlnr(𝒫;𝐴) of differential bundles over𝐴 and linear morphisms in the geometric tangent
category of 𝒫 is equivalent to the geometric tangent category of the operad 𝒫(𝐴)•:

DBndlnr(𝒫;𝐴) ≅ Geom(𝒫(𝐴)•) ≅ (Modop
𝐴
,T𝐴)

In particular, differential bundles over 𝐴 are equivalent to 𝐴-modules in the operadic sense
and linear morphisms of differential bundles over 𝐴 are equivalent to 𝐴-linear morphisms
of 𝐴-modules (in the opposite of the category of 𝐴-modules).

Proof. Consider an operad 𝒫 and a 𝒫-algebra 𝐴. Then, the tangent category

DBndlnr(𝒫;𝐴) of differential bundles over 𝐴 and linear morphisms in the geometric

tangent category Geom(𝒫)of𝒫 is equivalent to the tangent category DObjlnr(Geom(𝒫)/𝐴)
of differential objects and linear morphisms of the slice tangent category Geom(𝒫)/𝐴.

Thanks to Theorem 4.17, Geom(𝒫)/𝐴 ≅ Geom(𝒫(𝐴)), where 𝒫
(𝐴)

is the envelop-

ing operad of 𝒫 over 𝐴. By Corollary 4.34, differential objects over Geom(𝒫(𝐴))
are 𝒫

(𝐴)(1)-left modules; in particular, DObjlnr(Geom(𝒫(𝐴))) ≅ Geom(𝒫(𝐴)(1)•), but

𝒫
(𝐴)(1) is the enveloping algebra of 𝐴 (see Lemma 4.30), thus Geom(𝒫(𝐴)(1)•) ≅

Geom(𝒫(𝐴)•):

DBndlnr(𝒫;𝐴)

= DBndlnr(Geom(𝒫);𝐴) Diff. bundles are diff. objects in the slice tangent cat.

≅ DObjlnr(Geom(𝒫)/𝐴)) Theorem 4.17

≅ DObjlnr(Geom(𝒫(𝐴))) Corollary 4.34

≅ Geom(𝒫(𝐴)(1)•) 𝒫
(𝐴)(1) = 𝒫(𝐴)
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≅ Geom(𝒫(𝐴)•)

This concludes the proof. □

Example 4.36. Consider the geometric tangent category Geom(𝓊𝒞ℴ𝓂) of the operad

𝓊𝒞ℴ𝓂. As pointed out in Example 3.69, this tangent category was originally intro-

duced by Cockett and Cruttwell in [12]. Recently Cruttwell and Lemay have pointed

out that this tangent category can be employed to study algebraic geometry of affine

schemes (cf. [18]). In particular, they classified differential bundles in this tangent

category over a given affine scheme and proved that DBndlnr(Geom(𝓊𝒞ℴ𝓂);𝐴) is

equivalent to the opposite of the category of modules over the commutative algebra

𝐴. Modules in the operadic sense over a𝓊𝒞ℴ𝓂-algebra𝐴 are precisely left modules

over 𝐴, in the usual sense. Therefore, Cruttwell and Lemay’s classification can be

regarded as a special application of Theorem 4.35.

Example 4.37. Consider the operad 𝓊𝒜𝓈𝓈. Modules over a 𝓊𝒜𝓈𝓈-algebra 𝐴, in the

operadic sense, correspond to bimodules over 𝐴 (cf. [27, Examples 1.6.2] and [46,

Section 12.3.1]). Therefore, differential bundles over a non-commutative affine

scheme 𝐴, i.e. an associative and unital algebra, in the geometric tangent category

Geom(𝓊𝒜𝓈𝓈) are equivalent to bimodules over 𝐴.

Example 4.38. Consider the operad ℒ𝒾ℯ. Modules over a ℒ𝒾ℯ-algebra 𝔤, in the

operadic sense, correspond to linear representations of 𝔤 (cf. [27, Examples 1.6.2]

and [46, Section 12.3.1]). Therefore, differential bundles over a ℒ𝒾ℯ-affine scheme

𝔤 in the geometric tangent category Geom(ℒ𝒾ℯ) are equivalent to linear representa-

tions of 𝔤.
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A tangent category approach to deformation theory

Algebraic deformation theory, first introduced by Gerstenhaber in [23], aims to

study extensions of algebraic structures of a certain type by “thickening” the ori-

ginal object. Intuitively speaking, a deformation of a mathematical object is a

perturbation, a slight modification, of this object. Geometrically, the deformation

of a space can be regarded as a new space obtained by deforming the initial space

by adding some noise. Algebraically this can be done by perturbing the relations

which present a given object. For instance, consider a polynomial 𝑝(𝑥, 𝑦) and its

locus 𝑆. A deformation of 𝑆 is then obtained by slightly changing the polynomial

𝑝(𝑥, 𝑦) by adding an extra polynomial term 𝑞(𝑥, 𝑦, 𝑡)which contains a new variable

𝑡. We then obtain the locus𝑆𝑡 of the polynomial 𝑝(𝑥, 𝑦)+𝑞𝑡(𝑥, 𝑦) = 𝑝(𝑥, 𝑦)+𝑞(𝑥, 𝑦, 𝑡).
By assuming that 𝑞(𝑥, 𝑦, 𝑡) = 0 when 𝑡 = 0, we can interpret 𝑆𝑡 as a family of geo-

metric spaces of the same type as 𝑆, e.g. polynomial loci, parametrized by 𝑡 and

for which 𝑆0 is the original space 𝑆.

Gerstenhaber’s work, developed in parallel with the work of Kodaira and Spen-

cer [38] on the deformation of complex analytic structures, found interesting ap-

plications in mathematical physics with the theory of deformation quantization [5,

4]. The main idea of deformation quantization is to regard quantum mechanics

as a non-commutative deformation of classical mechanics. In particular, in the

quantization process via deformation, the commutative algebra of observables of

a given classical system is deformed into a non-commutative associative algebra

which represents the corresponding quantized system.

Newman in [50] and Nĳenhuis together with Richardson in [51] extended Ger-

stenhaber’s ideas to Lie algebras and subsequently, Kontsevich and Soibelman

in [40] introduced a theory of deformation of operadic algebras for a given operad.

One can easily recognize geometric aspects underpinning deformation theory:

the deformation of a given object 𝑆 can be regarded as a family of similar objects 𝑆𝑡 ,
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Figure 5.1: The concept map of the chapter

parametrized by a parameter 𝑡, in which the original space 𝑆 corresponds to 𝑆𝑡=0.

In this sense, a deformation can be regarded as a “smooth” path in some geometric

space whose points are mathematical objects or mathematical structures. This

is precisely the point of contact between deformation theory and moduli spaces,

which are geometric spaces whose points are mathematical structures, like curves

of a certain type, or associative multiplications over a given vector space. The

intuition is to regard infinitesimal deformations of an object, which intuitively are

deformations parametrized by small values of the parameter 𝑡, as tangent vectors

of the moduli space. We advise the interested reader to consult [28].

From our perspective, it is natural to wonder if tangent category theory can

be employed to give a geometric intuition of these spaces of mathematical objects,

possibly interpreting infinitesimal deformations as legitimate vector fields over a

given object. The main purpose of this chapter is to introduce some ideas to answer

this question. The first main insight that drives this investigation is noticing that

the category Operad of algebraic operads is itself a tangent category. Moreover, the

vector fields of this tangent category are closely related to infinitesimal deforma-

tions. To put this in a slogan: the geometry of operadic affine schemes is captured by the
geometric tangent category of the given operad, while the deformation theory of operadic
affine schemes is captured by the tangent structure on the category of operads.
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(a) The “bow-tie” affine

scheme

(b) Deformation as an ex-

tension

(c) Deformation as a fam-

ily of affine schemes

Figure 5.2: Deformation of an affine scheme: the bow-tie example

We start in Section 5.1 with a brief introduction to algebraic deformation theory,

recalling the ideas of Gerstenhaber and then extending them to operadic algebras,

following [46, Section 12.2]. In Section 5.2 we prove that the category of operads is

a tangent category whose vector fields are closely related to infinitesimal deforma-

tions. We also discuss the relationship between this tangent category and the one

of tangent monads (Section 5.2.1). In Section 5.2.2 we show that the opposite of

the category of operads is also a tangent category and discuss its relationship with

deformation theory. In Section 5.3, we discuss how this approach does not cap-

ture relevant examples of deformations of algebras and we propose two solutions,

one that involves the construction of a differential bundle whose sections classify

all infinitesimal deformation of an algebra, and the other one which involves the

construction of a tangent comonad for which the sections of the counit classify

infinitesimal deformations.

Figure 5.1 displays the concept map of this chapter.

5.1 An introduction to algebraic deformation theory

Let us start with a basic example. Consider the polynomial:

𝑝(𝑥, 𝑦) = 𝑥3 − 𝑥2 − 𝑦2

Figure 5.2a represents the locus of this polynomial. This polynomial is also associ-

ated with the affine scheme 𝑅[𝑥, 𝑦]/(𝑝(𝑥, 𝑦)), which is the commutative and unital
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ring obtained by quotienting the free ring 𝑅[𝑥, 𝑦] generated by two generators 𝑥

and 𝑦 by the ideal generated by 𝑝(𝑥, 𝑦). From a geometric point of view, a deform-

ation of the locus of 𝑝(𝑥, 𝑦) is the locus of another polynomial, obtained by twisting

𝑝(𝑥, 𝑦) with some extra terms, parametrized by an extra variable. One of these

polynomials is the following polynomial in three variables:

𝑝̃(𝑥, 𝑦, 𝑡) = 𝑥3 − 𝑥2 − 𝑦2 + 𝑡𝑥2

There are two geometric approaches to interpreting the new space as a deformation

of the original one. The first approach considers the locus of 𝑝̃(𝑥, 𝑦, 𝑡), which is the

surface represented in Figure 5.2b. In this sense, the deformation is conceptualized

as an extension of the original object, e.g. the locus of 𝑝(𝑥, 𝑦), to a larger object of

the same type, i.e. still an affine scheme but in an extra dimension. In the second

approach, the new variable 𝑡 is conceptualized as a parameter, whose values define

different affine schemes associated with the polynomials 𝑝𝑡(𝑥, 𝑦) := 𝑝̃(𝑥, 𝑦, 𝑡). No-

tice that we reobtain the original object when 𝑡 is set to zero. This second approach

regards deformations as paths in the space of mathematical objects of a certain type.

Notice that this example captures the deformation of a commutative algebra into a

new commutative algebra. However, this does not represent the general case. For

example, in the context of deformation quantization, one deforms a commutative

algebra into an associative noncommutative algebra (see for instance [39]).

Gerstenhaber’s approach is closer to the first way of conceptualization; in the

following, we mostly adopt this point of view. However, we suggest the reader

keep the second approach in mind since it is closer to a geometric interpretation

of deformations. The intuition of Gerstenhaber was to regard the deformation of

an affine scheme from the point of view of the coordinate rings: perturbing the

affine scheme of the polynomial 𝑝(𝑥, 𝑦) by adding the extra term 𝑡𝑥2
is equivalent

to perturbing the multiplication of the associative algebra𝐴 = 𝑅[𝑥, 𝑦]/(𝑝(𝑥, 𝑦)) and

obtaining a new algebra 𝐴̃ = 𝑅[𝑥, 𝑦, 𝑡]/(𝑝̃(𝑥, 𝑦, 𝑡)).
Concretely, one starts with an associative 𝑅-algebra 𝐴 and extends the associat-

ive algebra structure of 𝐴 over the 𝑅[𝑡]-module 𝐴[𝑡] of polynomials in the variable

𝑡 with coefficients in 𝐴, obtaining an 𝑅[𝑡] algebra 𝐴̃. The multiplication map of 𝐴̃

is a map 𝜇̃ : 𝐴̃ ⊗𝑅[𝑡] 𝐴̃ → 𝐴̃ fully determined by a sequence {𝜇𝑛 : 𝐴 ⊗ 𝐴 → 𝐴} of
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binary operations:

𝜇̃(𝑎, 𝑏) =
∞∑︂
𝑛=0

𝜇𝑛(𝑎, 𝑏)𝑡𝑛

for every 𝑎, 𝑏 ∈ 𝐴. Notice that, since 𝜇̃ is𝑅[𝑡]-linear these maps are fully determined

by their restriction to the elements of𝐴. Then𝐴[𝑡] equipped with 𝜇̃ is a deformation

of 𝐴 if (1) the term 𝜇0 is precisely the multiplication map 𝜇 of 𝐴 and (2) 𝜇̃ is also

associative. Condition (2) is equivalent to the following relations on the binary

operations 𝜇𝑛 : ∑︂
𝑗+𝑘=𝑛

𝜇𝑗(𝜇𝑘(𝑎, 𝑏), 𝑐) − 𝜇𝑘(𝑎, 𝜇𝑗(𝑏, 𝑐)) = 0

which, in particular, for 𝑛 = 1, implies:

𝑎𝜈(𝑏, 𝑐) − 𝜈(𝑎𝑏, 𝑐) + 𝜈(𝑎, 𝑏𝑐) − 𝜈(𝑎, 𝑏)𝑐 = 0 (5.1.1)

for every 𝑎, 𝑏, 𝑐 ∈ 𝐴, where we denoted the multiplication of 𝐴 by juxtaposition

and by 𝜈 the binary operation 𝜇1, known as the infinitesimal deformation.

Gerstenhaber’s insight was to realize that the condition satisfied by 𝜈 is precisely

the condition that a binary operation 𝜈 : 𝐴 ⊗ 𝐴 → 𝐴 must satisfy in order to be

a 2-cocycle in the Hochschild cohomology of the algebra 𝐴. In particular, such

2-cocycles form the space of infinitesimal deformations of 𝐴.

More generally, deformations of associative algebras over a given ring 𝑅 are

associative algebras over an augmented 𝑅-ring 𝑆 which reduce to the original

algebras. To clarify this definition, let’s start by recalling the definition of an

augmented 𝑅-ring. We refer the reader to [20] for this approach.

Definition★ 5.1. Given a unital and commutative ring 𝑅, an augmented 𝑅-ring is a
commutative and unital algebra 𝑆 over the ring 𝑅 equipped with a morphism of rings
𝑒 : 𝑆→ 𝑅, called the augmentation map which preserves the unit, i.e. such that for every
𝑟 ∈ 𝑅, 𝑒(𝑟1𝑆) = 𝑟. In the following, we denote an augmented 𝑅-ring 𝑆 with augmentation
map 𝜀 by (𝑆, 𝑒).

Example 5.2. The ring 𝑅[𝜀] of dual numbers, obtained by quotienting 𝑅[𝑥] by the

ideal 𝑥2
, is an augmented 𝑅-ring with augmentation map 𝑒 : 𝑅[𝜀] → 𝑅which sends

the variable 𝜀 to 0.
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Example 5.3. The ring 𝑅[𝑡] of polynomials in the variable 𝑡 is an augmented 𝑅-ring

with augmentation map 𝑒 : 𝑅[𝑡] → 𝑅 which sends the variable 𝑡 to 0.

Example 5.4. The ring 𝑅[[𝑡]] of formal power series in the variable 𝑡 is an augmented

𝑅-ring with augmentation map 𝑒 : 𝑅[[𝑡]] which sends the variable 𝑡 to 0.

The augmentation map 𝑒 : 𝑆 → 𝑅 of an augmented ring 𝑆 over 𝑅 induces an

adjunction:

(−) : Alg(𝑆) ⇆ Alg(𝑅) : Restr

between the categories of associative algebras over 𝑆 and over 𝑅 in which the right

adjoint Restr is the functor which restricts the scalars of an 𝑅-algebra along 𝑒, and

the left adjoint (−) sends an 𝑆-algebra 𝐵 to the 𝑅-algebra 𝐵 ⊗𝑆 𝑅, where 𝑅 is a left

𝑆-module via the augmentation map. Equivalently, 𝐵 is the 𝑅-algebra:

𝐵 = 𝐵/(ker 𝑒 · 𝐵)

For an 𝑆-algebra 𝐵, the 𝑅-algebra 𝐵 is sometimes called the reduction of 𝐵. To

understand what the reduction does, let’s apply the functor (−) to the 𝑅[𝑡]-algebra

𝐵 := 𝑅[𝑥, 𝑦, 𝑡]/(𝑥3 − 𝑥2 − 𝑦2 + 𝑡𝑥2). Let’s start by noticing that the ideal ker 𝜀 · 𝐵 of 𝐵

contains all polynomials of the form

∑︁𝑁
𝑘=1 𝑝𝑘(𝑥, 𝑦)𝑡𝑘 , which are those polynomials

in the variable 𝑡 with coefficients 𝑝𝑘(𝑥, 𝑦) in the ring 𝐵, in which each term is

multiplied by a power 𝑡𝑘 of 𝑡 with 𝑘 > 0. In particular, this ideal of 𝐵 is generated

by the polynomial 𝑡, so:

𝐵 = 𝐵/(ker 𝑒 · 𝐵) = 𝐵/(𝑡) = 𝑅[𝑥, 𝑦, 𝑡]/(𝑥3 − 𝑥2 − 𝑦2 + 𝑡𝑥2, 𝑡) = 𝑅[𝑥, 𝑦]/(𝑥3 − 𝑥2 − 𝑦2)

So the reduction kills the variable 𝑡.

Definition★ 5.5. Given an augmented 𝑅-ring (𝑆, 𝑒), an 𝑆-deformation of an 𝑅-algebra
𝐴 is an 𝑆-algebra 𝐴̃ whose reduction 𝐵 is isomorphic to the original 𝑅-algebra 𝐴. In
particular, when 𝑆 = 𝑅[𝜀] we call an 𝑅[𝜀]-deformation an infinitesimal deformation.

In a nutshell, 𝑆-deformations of an 𝑅-algebra 𝐴 are the objects of the fibre

over 𝐴 of the functor (−). From the previous discussion, we conclude that 𝐵 =

𝑅[𝑥, 𝑦, 𝑡]/(𝑥3 − 𝑥2 − 𝑦2 + 𝑡𝑥2) is an 𝑅[𝑡]-deformation of 𝐴 = 𝑅[𝑥, 𝑦]/(𝑥3 − 𝑥2 − 𝑦2).
The next step is to generalize this definition to operadic algebras.
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The key to understanding how to extend the notion of deformation for operadic

algebras consists of changing both the base ring from𝑅 to the augmented ring 𝑆 and

changing the operad itself. To justify the necessity of changing the operad, recall

that for an associative algebra 𝐴, the multiplication map 𝜇̃ of an 𝑅[𝑡]-deformation

𝐴̃ of 𝐴 can be extended into a power series in the variable 𝑡 of binary operations

𝜇𝑛 : 𝐴 ⊗ 𝐴 → 𝐴. The intuition is to provide those binary operations 𝜇𝑛 as part of

the 𝑛-ary operations of the operad.

As discussed in [46, Section 12.2], every algebraic operad 𝒫 over the ring 𝑅 can

be extended to a new operad 𝒫 ⊗ 𝑆 over the augmented 𝑅-ring 𝑆. Concretely, the

𝑛-th entry of 𝒫 ⊗ 𝑆 is the 𝑆-module 𝒫(𝑛) ⊗ 𝑆 (notice that ⊗ is the tensor product

over the ring 𝑅). We denote the generators of 𝒫(𝑛)⊗𝑆 as 𝑠𝜇 for 𝑠 ∈ 𝑆 and 𝜇 ∈ 𝒫(𝑛).
With this notation, the multiplication is induced by the one of 𝒫 and the one of 𝑆

as follows:

(𝑠𝜇)(𝑠1𝜇1, . . . , 𝑠𝑛𝜇𝑛) := (𝑠 · 𝑠1 · . . . · 𝑠𝑛)(𝜇(𝜇1, . . . , 𝜇𝑛))

The unit of 𝒫 ⊗ 𝑆 is 1𝑆1𝒫, i.e. 1𝒫 ⊗ 1𝑆, where 1𝑆 denotes the unit of 𝑆. Finally, the

symmetric group acts as follows:

(𝑠𝜇) · 𝜎 = 𝑠(𝜇 · 𝜎)

for every 𝑠 ∈ 𝑆, 𝜇 ∈ 𝒫(𝑛), and 𝜎 ∈ S𝑛 . Let’s consider some relevant examples.

Example 5.6. Consider an algebraic operad 𝒫 over a ring 𝑅 and let 𝑆 be the

augmented ring 𝑅[𝜀] = 𝑅[𝑥]/(𝑥2) of dual numbers over 𝑅 with the augmentation

map which sends 𝜀 to 0. Let’s denote by 𝒫[𝜀] the operad 𝒫 ⊗ 𝑅[𝜀]. Concretely, the

𝑛-th entry of this operad consists of terms of the form 𝜇 + 𝜀𝜈 for 𝜇, 𝜈 ∈ 𝒫(𝑛) and

such that 𝜀2 = 0. This operad is equivalent to the operad 𝒫 ⋉𝒫 defined as follows.

The 𝑛-th entry of 𝒫 ⋉𝒫 is given by the 𝑅-module 𝒫(𝑛) ⊕ 𝒫(𝑛). Let’s denote by

(𝜇, 𝜈) the elements of this biproduct. Then, the multiplication map of 𝒫 ⋉ 𝒫 is

defined as follows:

(𝜇, 𝜈)((𝜇1, 𝜈1), . . . , (𝜇𝑛 , 𝜈𝑛)) =

=

(︄
𝜇(𝜇1, . . . , 𝜇𝑛), 𝜈(𝜇1, . . . , 𝜇𝑛) +

𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛)
)︄
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Moreover, the unit of 𝒫 ⋉𝒫 is given by (1𝒫 , 0) and the symmetric group acts on

each term of the pair, i.e. (𝜇, 𝜈) · 𝜎 = (𝜇 · 𝜎, 𝜈 · 𝜎). It is not hard to see that the

isomorphism between 𝒫[𝜀] and 𝒫 ⋉𝒫 sends 𝜇 + 𝜀𝜈 to (𝜇, 𝜈).

Example 5.7. Consider an algebraic operad 𝒫 over a ring 𝑅 and let 𝑆 be the

augmented ring 𝑅[𝑡] of polynomials over 𝑅 in the variable 𝑡, with the augmentation

map which sends 𝑡 to 0. Let’s denote by 𝒫[𝑡] the operad 𝒫 ⊗ 𝑅[𝑡]. Concretely,

the elements of the 𝑛-th entry of this operad are polynomial terms of the form∑︁𝑁
𝑘=0 𝜇𝑘𝑡

𝑘
for some positive integer 𝑁 and for which each 𝜇𝑘 belongs to 𝒫(𝑛). The

multiplication works as the multiplication of polynomials, i.e.:(︄
𝑁∑︂
𝑘=0

𝜇𝑘𝑡
𝑘

)︄ (︄
𝑁1∑︂
𝑘1=0

𝜇(1)
𝑘1
𝑡𝑘1 , . . . ,

𝑁𝑛∑︂
𝑘𝑛=0

𝜇(𝑛)
𝑘𝑛
𝑡𝑘𝑛

)︄
=

∑︂
𝑘,𝑘1 ,...,𝑘𝑛

𝜇𝑘(𝜇(1)𝑘1
, . . . , 𝜇(𝑛)

𝑘𝑛
)𝑡𝑘+𝑘1+...+𝑘𝑛

where the sum on the right-hand side is understood over all the indices within the

corresponding intervals, e.g. 𝑘 𝑗 runs from 0 to𝑁𝑗 . The unit is just the polynomial1𝒫

and finally, the symmetric group acts on each𝜇𝑘 , i.e.

(︂∑︁𝑁
𝑘=0 𝜇𝑘𝑡

𝑘
)︂
·𝜎 =

∑︁𝑁
𝑘=0(𝜇𝑘 ·𝜎)𝑡𝑘 .

Example 5.8. Consider an algebraic operad 𝒫 over a ring 𝑅 and let 𝑆 be the

augmented ring 𝑅[[𝑡]] of formal power series over 𝑅 in the variable 𝑡, with the

augmentation map which sends 𝑡 to 0. Let’s denote by 𝒫[[𝑡]] the operad 𝒫 ⊗ 𝑅[[𝑡]].
Concretely, the elements of the 𝑛-th entry of this operad are formal power series

terms of the form

∑︁∞
𝑘=0 𝜇𝑘𝑡

𝑘
, for which each 𝜇𝑘 belongs to 𝒫(𝑛). The multiplication

works as the multiplication of power series, i.e.:(︄ ∞∑︂
𝑘=0

𝜇𝑘𝑡
𝑘

)︄ (︄ ∞∑︂
𝑘1=0

𝜇(1)
𝑘1
𝑡𝑘1 , . . . ,

∞∑︂
𝑘𝑛=0

𝜇(𝑛)
𝑘𝑛
𝑡𝑘𝑛

)︄
=

∑︂
𝑘,𝑘1 ,...,𝑘𝑛

𝜇𝑘(𝜇(1)𝑘1
, . . . , 𝜇(𝑛)

𝑘𝑛
)𝑡𝑘+𝑘1+...+𝑘𝑛

where the sum on the right-hand side is understood over all the indices from 0 to

∞. The unit is just the polynomial 1𝒫 and finally, the symmetric group acts on

each 𝜇𝑘 , i.e.

(︁∑︁∞
𝑘=0 𝜇𝑘𝑡

𝑘
)︁
· 𝜎 =

∑︁∞
𝑘=0(𝜇𝑘 · 𝜎)𝑡𝑘 .

Notice that the functor which sends an operad 𝒫 over a ring 𝑅 to the operad

𝒫 ⊗ 𝑆 over 𝑆 forms an adjunction with the functor Restr which restricts scalars of

𝑆 to 𝑅 via the inclusion map 𝜄 : 𝑅→ 𝑆 which simply sends 1𝑅 to 1𝑆. In particular,

this adjunction is the one induced by 𝜄:

(−) ⊗ 𝑆 : Operad(𝑅) ⇆ Operad(𝑆) : Restr
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Notice in particular that the composition Restr ◦ ((−) ⊗ 𝑆) induces a monad on the

category of operads over the ring 𝑅. In the following, for the sake of simplicity,

we abuse notation and denote by 𝒫 ⊗ 𝑆 the 𝑅-operad image under this monad of

the 𝑅-operad 𝒫. In particular, we also adopt the notation 𝒫[𝜀] for the 𝑅-operad

𝒫 ⊗ 𝑅[𝜀] of Example 5.6. As mentioned before, the 𝑆-linearity implies that one can

simply work with 𝑅-operads and then extend each construction by construction

over the ring 𝑆. So, for example, the algebra structure of an algebra over the operad

𝒫[𝜀] over 𝑅 can be extended to an algebra structure over 𝑅[𝜀].
We can now introduce the main ingredient: the reduction functor. This is

precisely the left adjoint of the adjunction induced by 𝒫
𝒫⊗𝑒−−−→ 𝒫 ⊗ 𝑆, where 𝑒 is

the augmentation map:

(−) : Alg𝒫 ⇆ Alg𝒫⊗𝑆 : Restr

We refer to the (−) functor as the reduction functor.

Remark 5.9. In the initial approach to the deformation of associative algebras of

Definition 5.5 the reduction was the functor which kills the extra terms of the aug-

mented ring in the associative algebra, so a deformation is seen as an extension

of an associative algebra over the augmented ring 𝑆. Here, instead the reduction

(−) kills the extra terms of the augmented ring in the operad. The operation of

changing the operad instead of changing the ring is precisely aligned with Ger-

stenhaber’s insight into conceptualizing a deformation as a perturbation of the

original multiplication 𝜇 with extra terms 𝜇1𝑡 , 𝜇2𝑡
2, . . .. Changing the operad ex-

plicitly introduces these extra operations 𝜇1, 𝜇2, . . . directly into the operad. So, the

reduction is the operation which removes these extra operations from the operad.

Definition★ 5.10. Given an operadic algebra 𝐴 over a given operad 𝒫 and an augmented
ring (𝑆, 𝑒) over 𝑅, an 𝑆-deformation of 𝐴 is a (𝒫 ⊗ 𝑆)-algebra 𝐴̃ whose reduction 𝐴̃

is isomorphic to 𝐴. We adopt the convention of calling infinitesimal deformations the
𝑆-deformations for which 𝑆 is the augmented ring of dual numbers of Example 5.2.

When we consider the operad 𝒜𝓈𝓈, 𝑆-deformations of associative algebras ac-

cording to Definition 5.10 coincide with 𝑆-deformations according to Definition 5.5.

Moreover, when we consider the operad ℒ𝒾ℯ we precisely obtain deformations as

described in [23, Equation 2’].
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5.2 The category of operads is itself a tangent category

According to Definition 5.10, an infinitesimal deformation of an operadic algebra

𝐴 of an operad 𝒫 consists of a 𝒫[𝜀]-algebra 𝐴̃ whose reduction is isomorphic to

𝐴. The structure map of 𝐴̃ represents each 𝑛-ary operation 𝜇 + 𝜀𝜈 of 𝒫[𝜀] as a

concrete 𝑛-ary operation over 𝐴̃. Since the reduction of 𝐴̃ must be isomorphic to

𝐴, as a 𝒫-algebra, the underlying 𝑅-module of 𝐴̃ must be precisely the same one

as that of 𝐴. Furthermore, the 𝑛-ary operations of 𝒫[𝜀] of the form 𝜇, i.e. with no

𝜀 part, must agree with the structure map of 𝐴, so, once 𝐴 has been extended to 𝐴̃

by linearity over the augmented ring 𝑅[𝜀], one can characterize the structure map

of 𝐴̃ by:

(𝜇 + 𝜈𝜀)(𝑎1, . . . , 𝑎𝑛) = 𝜇𝐴(𝑎1, . . . , 𝑎𝑛) + 𝜈𝐴̃(𝑎1, . . . , 𝑎𝑛)𝜀

for every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴. Therefore, the infinitesimal deformations of 𝐴 are fully

captured by the terms 𝜈𝐴̃. One approach to classifying (some of the) infinitesimal

deformations is to define a morphism of operads which sends each 𝜇 ∈ 𝒫(𝑛) to

a new 𝑛-ary operation 𝛿(𝜇) which represents the infinitesimal deformation of the

𝑛-ary operation 𝜇, so that the term 𝜈𝐴̃(𝑎1, . . . , 𝑎𝑛) becomes 𝛿(𝜇)𝐴(𝑎1, . . . , 𝑎𝑛). Let’s

formalize this idea. Such a construction corresponds to choosing a morphism of

operads of the form 𝑣 : 𝒫 → 𝒫[𝜀] which sends 𝜇 ∈ 𝒫(𝑛) to 𝜇′ + 𝛿(𝜇)𝜀 and for

which 𝜇′ = 𝜇. This last condition is equivalent to asking such a morphism 𝑣 to

be a section of the projection 𝑝 : 𝒫[𝜀] → 𝒫, which sends 𝜀 to 0, i.e. the operad

morphism induced by the augmentation map.

Example 5.11. Let’s consider the operad 𝒜𝓈𝓈 and let’s consider a section 𝑣 : 𝒜𝓈𝓈→
𝒜𝓈𝓈[𝜀] of the projection 𝒜𝓈𝓈[𝜀] → 𝒜𝓈𝓈. Let’s employ the isomorphism 𝒜𝓈𝓈[𝜀] ≅
𝒜𝓈𝓈 ⋉ 𝒜𝓈𝓈 to characterize 𝒜𝓈𝓈[𝜀]. 𝑣 sends the generator 𝜇 ∈ 𝒜𝓈𝓈(2), which cor-

responds to the associative multiplication map of an associative algebra, to a pair

(𝜇′, 𝛿𝑣(𝜇)) ∈ 𝒜𝓈𝓈 ⋉ 𝒜𝓈𝓈 of binary operations. Since 𝑣 is a section of 𝑝, 𝜇′ = 𝜇, so

the only new data is 𝛿𝑣(𝜇). Let’s adopt the notation 𝜈 to denote 𝛿𝑣(𝜇). Recall that

𝜇 satisfies the relation 𝜇(𝜇, 1) = 𝜇(1, 𝜇). Then 𝑣 must send 𝜇(𝜇, 1) and 𝜇(1, 𝜇) to

the same ternary operation (𝜇(1, 𝜇), 𝛿𝑣(𝜇(1, 𝜇))). However, since 𝑣 is an operad

morphism, we also have:

(𝜇(𝜇, 1), 𝛿𝑣(𝜇(𝜇, 1)))
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= 𝑣(𝜇(𝜇, 1))

= (𝑣(𝜇))(𝑣(𝜇), 𝑣(1))

= (𝜇, 𝜈)((𝜇, 𝜈), (1, 𝛿𝑣(1)))

Notice that, since 𝑣 must preserve the unit of the operad, (1, 𝛿𝑣(1)) = 𝑣(1) = (1, 0),
so we have:

(𝜇(1, 𝜇), 𝛿𝑣(𝜇(1, 𝜇))

= (𝜇, 𝜈)((𝜇, 𝜈), (1, 0))

= (𝜇(𝜇, 1), 𝜈(𝜇, 1) + 𝜇(𝜈, 1) + 𝜇(𝜇, 0))

= (𝜇(𝜇, 1), 𝜈(𝜇, 1) + 𝜇(𝜈, 1))

On the other hand, 𝑣 sends 𝜇(1, 𝜇) to:

(𝜇(1, 𝜇), 𝛿𝑣(𝜇(1, 𝜇)))

= 𝑣(𝜇(1, 𝜇))

= (𝑣(𝜇))(𝑣(1), 𝑣(𝜇))

= (𝜇, 𝜈)((1, 0), (𝜇, 𝜈))

= (𝜇(1, 𝜇), 𝜈(1, 𝜇) + 𝜇(0, 𝜇) + 𝜇(1, 𝜈))

= (𝜇(1, 𝜇), 𝜈(1, 𝜇) + 𝜇(1, 𝜈))

Consequently, we obtain the equation:

𝜈(𝜇, 1) + 𝜇(𝜈, 1) = 𝜈(1, 𝜇) + 𝜇(1, 𝜈) (5.2.1)

Consider now an associative algebra 𝐴 and let’s denote by juxtaposition, i.e. 𝑎𝑏 the

multiplication map 𝜇(𝑎, 𝑏) of 𝐴. The operad morphism 𝑣 : 𝒜𝓈𝓈 → 𝒜𝓈𝓈[𝜀] induces

an adjunction:

𝑣! : Alg⇆ Alg𝒜𝓈𝓈[𝜀] : 𝑣∗

The free functor 𝑣! sends an associative algebra 𝐴 to the 𝒜𝓈𝓈[𝜀]-algebra obtained by

quotienting the free 𝒜𝓈𝓈[𝜀]-algebra by the two different algebra structures, the one

induced by the operad multiplication and the one induced by 𝑣. In particular, the

𝒫-algebra structure of 𝑣!𝐴 is determined by:

(𝜇 + 𝜀𝜈)(𝑎, 𝑏) = 𝑎𝑏 + 𝜈𝐴(𝑎, 𝑏)𝜀
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However, 𝜈 must satisfy Equation (5.2.1), therefore:

𝜈(𝑎𝑏, 𝑐) + 𝜈(𝑎, 𝑏)𝑐 = 𝜈(𝑎, 𝑏𝑐) + 𝑎𝜈(𝑏, 𝑐)

Rearranging we obtain:

𝑎𝜈(𝑏, 𝑐) − 𝜈(𝑎𝑏, 𝑐) + 𝜈(𝑎, 𝑏𝑐) − 𝜈(𝑎, 𝑏)𝑐 = 0

which is precisely Equation 5.1.1! So, 𝜈 must be a 2-cocycle in the Hochschild

cohomology of the algebra 𝐴.

Example 5.11 shows an important relationship between sections 𝑣 : 𝒫 → 𝒫[𝜀]
of the projection map 𝑝 : 𝒫[𝜀] → 𝒫 and infinitesimal deformations. This phe-

nomenon is similar to the equivalence proved in Proposition 3.36, between vector

fields of the algebraic tangent category of an algebraic operad, i.e. sections of the

projection 𝐴[𝜀] = 𝐴 ⋉ 𝐴 → 𝐴, and derivations of the algebra 𝐴. This analogy is

made precise by the next observation: sections 𝑣 of 𝑝 : 𝒫[𝜀] → 𝒫 are equivalent

to derivations of the operad 𝒫. First, let’s recall this definition (in [46, Section 6.3]

one can find a similar notion in the context of graded operads).

Definition★ 5.12. A derivation of an operad 𝒫 consists of a morphism of symmetric
sequences satisfying the Leibniz rule. Concretely, this is a family of 𝑅-linear morphisms
𝛿𝑛 : 𝒫(𝑛) → 𝒫(𝑛) satisfying the following condition:

𝛿(𝜇(𝜇1, . . . , 𝜇𝑛)) = (𝛿(𝜇))(𝜇1, . . . , 𝜇𝑛) +
𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝛿(𝜇𝑘), . . . , 𝜇𝑛)

and the equivariant condition, i.e.:

𝛿(𝜇 · 𝜎) = 𝛿(𝜇) · 𝜎

If 𝑣 : 𝒫 → 𝒫[𝜀] is a section of the projection 𝑝 : 𝒫[𝜀] → 𝒫, then 𝑣 composed

with the 𝑅-linear morphism 𝒫[𝜀] → 𝒫 which sends 𝜀 to 1 and 1 to 0 defines

a derivation 𝛿𝑣 : 𝒫 → 𝒫. More concretely, 𝑣 sends 𝜇 to 𝜇 + 𝜀𝛿𝑣(𝜇), where 𝛿𝑣

is a derivation of 𝒫. Conversely, a 𝒫-derivation 𝛿 : 𝒫 → 𝒫 defines a section

𝑣𝛿 : 𝒫 → 𝒫[𝜀] which sends 𝜇 to 𝜇 + 𝜀𝛿(𝜇). Let’s briefly recap this discussion in a

lemma.
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Lemma 5.13. There is a bĳection between derivations 𝛿 : 𝒫 → 𝒫 over an operad 𝒫 and
sections 𝑣 : 𝒫→ 𝒫[𝜀] of the projection map 𝑝 : 𝒫[𝜀] → 𝒫.

This relationship between sections of 𝑝 and derivations together with the explicit

use of the ring of dual numbers in the definition of 𝒫[𝜀] suggests the existence of

a tangent structure on the category Operad of algebraic operads. Moreover, the

similarity with the algebraic tangent structure of a given operad suggests that

this tangent structure could also be the algebraic tangent structure of a suitable

coCartesian differential monad.

To explore this idea, let’s start by recalling that operads over a given symmet-

ric monoidal category E are algebras of a particular monad on the category of

symmetric sequences of E. This construction can be found in [46, Section 5.6].

Recall first that a symmetric sequence over a symmetric monoidal category E

is a sequence {𝐸(𝑛)} of objects of E for which the symmetric groups S𝑛 act on

each entry 𝐸(𝑛) with right action. Morphisms of symmetric sequences are se-

quences {𝜑(𝑛)} : {𝐸(𝑛)} → {𝐸′(𝑛)} of E-morphisms 𝜑(𝑛) : 𝐸(𝑛) → 𝐸′(𝑛) satisfying

an equivariant condition. Let’s denote by SymSeq(E) the category of symmetric

sequences and corresponding morphisms over the symmetric monoidal category

E. If E has biproducts and the biproducts are compatible with the monoidal struc-

ture as in Convention 3.20, then also SymSeq(E) has biproducts, which are defined

pointwise, i.e. {𝐸(𝑛)} ⊕ {𝐸′(𝑛)} = {𝐸(𝑛) ⊕ 𝐸′(𝑛)}.
To see operads as algebras of a monad, the idea is to consider all possible tree

graphs whose vertices are represented by elements of 𝐸(𝑘). Let’s recall this notion

from graph theory.

Definition★ 5.14. An 𝑛-rooted tree is a tree graph, i.e. a connected graph with no cycles,
with a distinct leaf, called the root, and with 𝑛 other leaves labelled with 𝑛 distinct labels.
For an 𝑛-rooted tree 𝜏, a vertex of 𝜏 is a vertex of the underlying graph which is not a leaf.

Every 𝑛-rooted tree can be made into an oriented tree as follows: an edge 𝑒

between two distinct vertices 𝑢 and 𝑣 is oriented from 𝑢 to 𝑣 if 𝑣 is connected with

the root of 𝜏 via a path which does not include the edge 𝑒. We denote this as

𝑒 : 𝑢 → 𝑣. This is a well-defined orientation. Indeed, suppose that 𝑒 : 𝑢 → 𝑣 and

also 𝑒 : 𝑣 → 𝑢 for two distinct vertices 𝑢 and 𝑣, so both 𝑢 and 𝑣 are connected to
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the root ∗ of 𝜏 via two paths which do not pass from the edge 𝑒. This implies the

existence of a cycle in 𝜏, which is impossible since 𝜏 is a tree. In particular, this

orientation allows one to introduce the following notion: for a vertex 𝑣 of a rooted

tree 𝜏, we denote by in(𝑣) the number of inputs of 𝑣, i.e. edges with target 𝑣. Notice

also that every vertex has a unique output, since if there were two distinct outputs

𝑒 : 𝑣 → 𝑤 and 𝑒′ : 𝑣 → 𝑤′ this would imply that both 𝑤 and 𝑤′, which must be

distinct because 𝑒 and 𝑒′ are, are connected to the root ∗, implying the existence of

a cycle.

Let’s also denote by Tree(𝑛) the set of all 𝑛-rooted trees. For a given symmetric

sequence 𝐸 := {𝐸(𝑛)} and for an 𝑛-rooted tree 𝜏 ∈ Tree(𝑛), let’s introduce:

𝐸(𝜏) :=
⨂︂
𝑣∈𝜏

𝐸(in(𝑣))

where we write 𝑣 ∈ 𝜏 for a (internal) vertex 𝑣 of 𝜏 and where the tensor product

⊗𝑣∈𝜏 is made precise in [46, Section 5.1.20]. When E is the category of 𝑅-modules

one can interpret the generators of 𝐸(𝜏) as 𝑛-rooted trees in which each vertex 𝑣

with 𝑘 : = in(𝑣) inputs is replaced by an element of 𝐸(𝑘). The interpretation of the

elements of 𝐸(𝑘) is to think of them as 𝑘-rooted trees, so an element of 𝐸(𝜏) is a

rooted tree obtained by composing rooted trees of the symmetric sequence.

Example 5.15. Consider the following 𝑛-rooted tree:

4321

Consider now𝐸(𝑛) := 𝑅⟨𝑥1, . . . , 𝑥𝑛⟩ to be the ring of non-commutative polynomials

in 𝑛 variables, i.e. polynomials in which the variables do not commute with the
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other variables. Elements of 𝐸(𝜏) are finite sums of 4-rooted trees:

𝑝1(𝑥1 , 𝑥2 , 𝑥3)

𝑝3(𝑥1 , 𝑥2)𝑝2(𝑥1)

4321

obtained by varying the polynomials 𝑝1(𝑥1, 𝑥2, 𝑥3), 𝑝2(𝑥1), and 𝑝3(𝑥1, 𝑥2).

Consider now a morphism 𝜑 : 𝐸→ 𝐸′ of symmetric sequences and an 𝑛-rooted

tree 𝜏. Then, let:

𝜑(𝜏) : 𝐸(𝜏) =
⨂︂
𝑣∈𝜏

𝐸(in(𝑣))
⊗𝑣∈𝜏𝜑(in(𝑣))−−−−−−−−−→

⨂︂
𝑣∈𝜏

𝐸′(in(𝑣)) = 𝐸′(𝜏)

𝜑(𝜏) replaces the vertexes of each 𝑛-rooted tree decorated by elements of 𝐸 with

the corresponding one of 𝐸′ via 𝜑.

Let’s define the following endofunctor:

𝑊 : SymSeq→ SymSeq

𝑊𝐸(𝑛) :=
⨁︂

𝜏∈Tree(𝑛)
𝐸(𝜏)

𝑊(𝜑 : 𝐸→ 𝐸′) :=
⨁︂

𝜏∈Tree(𝑛)
𝜑(𝜏)

For a symmetric sequence 𝐸 over 𝑅-modules, 𝑊𝐸(𝑛) is generated by all 𝑛-rooted

trees decorated with the appropriate elements of 𝐸, in the right arity.

Example 5.16. A binary 𝑛-rooted tree is an 𝑛-rooted tree 𝜏 for which each vertex

𝑣 has precisely 2 inputs, i.e. in(𝑣) = 2. Let 𝐵 be the symmetric sequence whose

𝑛-entry is the free 𝑅-module generated by all binary 𝑛-rooted trees. In particular,

𝐵(2) only contains two generators:

𝜇 𝜇
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where the distinction is only on the labels, one white and the other one black. The

generators of 𝐵(3) are obtained by permuting the labels on the inputs of:

𝜇

𝜇

321

𝜇

𝜇

321

for a total of 12 generators. The symmetric group acts on the generators of 𝐵(𝑛) by

shuffling the 𝑛 inputs of each 𝑛-rooted tree. One can see that every binary 𝑛-rooted

tree is simply generated by composing an elementary binary tree that we denote

by 𝜇. This simple fact is fully captured by the following statement. Consider the

symmetric sequence 𝐸 defined by 𝐸(2) = 𝑅 and all other entries are the trivial

𝑅-module 0. Intuitively, we are saying that 𝐸 contains only a binary tree 𝜇. Then,

𝑊𝐸 is isomorphic to 𝐵. To see this, notice that for every 𝑛-rooted tree 𝜏 𝐵(𝜏) is zero

if 𝜏 is not binary, and for each binary 𝑛-rooted tree 𝜏 𝐵(𝜏) is generated by the tree

𝜏 decorated in each vertex by the binary operation 𝜇 of 𝐵. So, 𝑊𝐵(𝑛) is precisely

𝐸(𝑛).

To see how to characterize operads as algebras of a monad, let’s notice that

we can characterize the operad 𝒜𝓈𝓈 as the operad generated by a binary operad 𝜇

subject to the relation 𝜇(𝜇, 1) = 𝜇(1, 𝜇). This presentation can be made precise by

introducing a morphism of operads from the binary tree operad 𝐵 =𝑊𝐸 described

in Example 5.16 to 𝒜𝓈𝓈, which sends the generator 𝜇 ∈ 𝐸(2) to 𝜇 ∈ 𝒜𝓈𝓈(2) and which

sends both the generators 𝜇(𝜇, 1) and 𝜇(1, 𝜇) of 𝐵(3) to the same ternary operation

𝜇(𝜇, 1) = 𝜇(1, 𝜇) ∈ 𝒜𝓈𝓈(3). This morphism is a quotient map which identifies the

two ternary operations 𝜇(𝜇, 1) and 𝜇(1, 𝜇). This suggests seeing 𝐵 = 𝑊𝐸 as a free

operad and 𝑊 as the free functor which sends a symmetric sequence 𝐸 to the free

operad𝑊𝐸.

To see this, let’s show that 𝑊 comes equipped with a monad structure. Let’s

start by introducing the unit. Notice that, when 𝜏 is a corolla, i.e. an 𝑛-rooted tree
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with a unique vertex (remember that for vertices we always mean only the internal

ones; see Definition 5.14), then 𝐸(𝜏) = 𝐸(𝑛). Therefore, there is a morphism of

symmetric sequences 𝐸 → 𝑊𝐸 which sends each 𝜇 ∈ 𝐸(𝑛) to the corresponding

𝑛-corolla. The next step is to introduce the multiplication 𝑊2𝐸 → 𝑊𝐸. One can

see the elements of𝑊2𝐸(𝑛) as 𝑛-rooted trees whose vertices 𝑣 with in(𝑣)-inputs are

in(𝑣)-rooted trees. For example, consider the tree diagram:

The rooted trees in the boxes represent the vertices of this rooted tree in 𝑊2𝐸. So,
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from the perspective of𝑊2𝐸 this tree looks like:

1

4
2

3

where the vertices labelled by 1, 2, 3 and 4 (respectively, black, green, red, and blue)

are the trees:

respectively. So, the multiplication of𝑊 consists of “unboxing” the vertices of𝑊2𝐸

and connecting the edges. This operation is known in the literature as substitution
of trees (see for example [46, Section Section 5.6]). So, the graph of this example is
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sent to the graph:

Proposition★ 5.17. The endofunctor 𝑊 : SymSeq(E) → SymSeq(E) equipped with the
morphism 𝜂 : 𝐸→𝑊𝐸 which sends each 𝜇 ∈ 𝐸(𝑛) to the 𝑛-corolla and with the morphism
𝛾 : 𝑊2𝐸→𝑊𝐸 which substitutes the rooted trees of𝑊2𝐸, is a monad whose algebras are
all the operads. So, Alg𝑊 = Operad(E).

Remark 5.18. Kontsevich and Soibelman in [40, Proposition 1] showed that operads

can be characterized as algebras of a coloured operad. For the sake of simplicity, we

decided to ignore this characterization of the monad𝑊 in our discussion and adopt

the approach of Loday and Vallette we explained. In future work, we are interested

in reviewing this construction from the point of view of coloured operads. On this

point, in an informal discussion, Sacha Ikonicoff suggested seeing whether or not

the monad of a coloured operad is also a coCartesian differential monad. Provided

Ikonicoff’s suggestion is correct, this can be employed to characterize the category

of operads as a tangent category. In future work, we are interested in comparing

these two approaches.

We want to prove that the monad𝑊 comes equipped with a differential combin-

ator so that 𝑊 becomes a coCartesian differential monad on the category of sym-

metric sequences. First, we need a preliminary observation: ifE has biproducts and

satisfies Convention 3.20, so does SymSeq(E). Even though this fact is immediate

to prove, it plays an important role in our story.
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Lemma 5.19. If E has biproducts and satisfies Convention 3.20, so does SymSeq(E). In
particular, biproducts in SymSeq are defined pointwise, i.e. (𝐸 ⊕ 𝐸′)(𝑛) := 𝐸(𝑛) ⊕ 𝐸′(𝑛).

To understand how to define a suitable differential combinator 𝜕 : 𝑊𝐸→𝑊(𝐸⊕
𝐸) for the monad 𝑊 , recall that the differential combinator of an algebraic operad

𝒫 is the natural transformation 𝜕𝒫 : S𝒫𝑉 → S𝒫(𝑉 ⊕ 𝑉) defined as follows:

𝜕𝒫(𝜇; 𝑥1, . . . , 𝑥𝑛) =
𝑛∑︂
𝑘=1
(𝜇; (𝑥1, 0), . . . , (0, 𝑥𝑘), . . . , (𝑥𝑛 , 0))

For simplicity, let’s denote the elements of S𝒫(𝑉 ⊕𝑉) of the form (𝑥, 0) simply as 𝑥

and the terms (0, 𝑥) as d𝑥. Under this convention, 𝜕𝒫 can be rewritten as follows:

𝜕𝒫(𝜇; 𝑥1, . . . , 𝑥𝑛) =
𝑛∑︂
𝑘=1
(𝜇; 𝑥1, . . . , d𝑥𝑘 , . . . , 𝑥𝑛)

To understand how to define 𝜕 : 𝑊𝐸 → 𝑊(𝐸 ⊕ 𝐸), let’s start by considering a

rooted tree of 𝑊𝐸 and suppose that E is the monoidal category of 𝑅-modules.

Let’s adopt the following notation: we denote the 𝑛-rooted tree 𝜏 of 𝑊𝐸 by

(𝜏;𝜇1(𝑣1), . . . , 𝜇𝑁 (𝑣𝑁 )), where 𝜇𝑘(𝑣𝑘) represents the element 𝜇𝑘 of 𝐸(in(𝑣𝑘)) used

to decorate the vertex 𝑣𝑘 of 𝜏. So, 𝜕 is defined as follows:

𝜕(𝜏;𝜇1(𝑣1), . . . , 𝜇𝑁 (𝑣𝑁 )) :=
𝑁∑︂
𝑘=1
(𝜏; (𝜇1(𝑣1), 0), . . . , (0, 𝜇𝑘(𝑣𝑘)), . . . , (𝜇𝑁 (𝑣𝑁 ), 0))

Employing the convention to denote by 𝜇𝑖 : = (𝜇𝑖 , 0) and d𝜇𝑖 : = (0, 𝜇𝑖) we can

rewrite:

𝜕(𝜏;𝜇1(𝑣1), . . . , 𝜇𝑁 (𝑣𝑁 )) :=
𝑁∑︂
𝑘=1
(𝜏;𝜇1(𝑣1), . . . , d𝜇𝑘(𝑣𝑘), . . . , 𝜇𝑁 (𝑣𝑁 ))

Example 5.20. Consider the rooted tree 𝜏:

𝑣4

𝑣3𝑣2

𝑣1
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where we labelled the vertices from 1 to 4. Let’s now consider the elements 𝜇1 ∈
𝐸(1), 𝜇2 ∈ 𝐸(3), 𝜇3 ∈ 𝐸(2), and 𝜇4 ∈ 𝐸(3). Then, the rooted tree of 𝑊𝐸 denoted by

(𝜏;𝜇1(𝑣1), . . . , 𝜇4(𝑣4)) is the tree:

𝜇4

𝜇3𝜇2

𝜇1

Then 𝜕(𝜏;𝜇1, . . . , 𝜇4) =
∑︁4
𝑘=1(𝜏;𝜇1(𝑣1), . . . , d𝜇𝑘(𝑣𝑘), . . . , 𝜇4(𝑣4)) corresponds to:

𝜇4

𝜇3𝜇2

d𝜇1

+

𝜇4

𝜇3d𝜇2

𝜇1

+

𝜇4

d𝜇3𝜇2

𝜇1

+

d𝜇4

𝜇3𝜇2

𝜇1

where on each term we coloured in red the vertex decorated with d for visual

purposes only.

In the following, we restrict our attention to the algebraic case, i.e. when E is

the monoidal category of 𝑅-modules. We leave the extension of this construction

to the general case for future work.

Proposition 5.21. The monad 𝑊 equipped with the natural transformation 𝜕 : 𝑊𝐸 →
𝑊(𝐸 ⊕ 𝐸) is a coCartesian differential monad.

Proof. In this proof, we simplify notation by removing the reference to the vertex

of the tree, so for example, we denote by (𝜏;𝜇1, . . . , 𝜇𝑁 ) the tree 𝜏 decorated with

the terms 𝜇1, . . . , 𝜇𝑁 on the vertices. This notation can be employed in this context

because all the morphisms involved in the proof do not change the vertices, but

only their decoration.
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Let’s start by proving the zero rule, that is 𝜕𝑊(𝜋1) = 0. This reduces to the

following equations:

(𝜋1(𝜏) ◦ 𝜕)(𝜏;𝜇1, . . . , 𝜇𝑁 )

= 𝜋1(𝜏)
(︄
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0), . . . , (0, 𝜇𝑘), . . . , (𝜇𝑁 , 0))

)︄
=

𝑁∑︂
𝑘=1
(𝜏;𝜇1, . . . , 0, . . . , 𝜇𝑁 )

= 0

To prove the additive rule is to show that 𝜕𝑊(id ⊕ Δ) = 𝜕⟨𝑊(id ⊕ 𝜄1),𝑊(id ⊕ 𝜄2)⟩+.

The left-hand side reads as:

((id ⊕ Δ)(𝜏) ◦ 𝜕)(𝜏;𝜇1, . . . , 𝜇𝑁 )

= (id ⊕ Δ)(𝜏)
(︄
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0), . . . , (0, 𝜇𝑘), . . . , (𝜇𝑁 , 0))

)︄
=

𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0), . . . , (0, 𝜇𝑘 , 𝜇𝑘), . . . , (𝜇𝑁 , 0, 0))

Conversely, the right-hand side reads as:

(+ ◦ ⟨(id ⊕ 𝜄1)(𝜏), (id ⊕ 𝜄2)(𝜏)⟩ ◦ 𝜕)(𝜏;𝜇1, . . . , 𝜇𝑁 )

= (+ ◦ ⟨(id ⊕ 𝜄1)(𝜏), (id ⊕ 𝜄2)(𝜏)⟩)
(︄
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0), . . . , (0, 𝜇𝑘), . . . , (𝜇𝑁 , 0))

)︄
= +

(︄
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0), . . . , (0, 𝜇𝑘 , 0), . . . , (𝜇𝑁 , 0, 0)),

=

𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0), . . . , (0, 0, 𝜇𝑘), . . . , (𝜇𝑁 , 0, 0))

)︄
=

𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0), . . . , (0, 𝜇𝑘 , 𝜇𝑘), . . . , (𝜇𝑁 , 0, 0))

Let’s now focus on the linear rule 𝜂𝜕 = 𝜄2𝜂. Recall that 𝜂 sends 𝜇 ∈ 𝐸(𝑛) to the 𝑛-

corolla, denoted (𝜅(𝑛);𝜇). However, by definition, a corolla has a unique (internal)

vertex ∗, so the sum and the tensor product over the vertices reduces to a unique

term:

𝜕(𝜂(𝜇)) = 𝜕(𝜅(𝑛);𝜇) = (𝜅(𝑛); (0, 𝜇)) = 𝜂((0, 𝜇)) = 𝜂(𝜄2(𝜇))
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The next step is to prove the chain rule 𝜕𝑊𝑊(⟨𝑊(𝜄1), 𝜕⟩)𝛾 = 𝛾𝜕. First, notice that

the elements of𝑊2𝐸 are of the form:(︂
𝜏; (𝜏1;𝜇(1)1 , . . . , 𝜇(1)

𝑘1
), . . . , (𝜏𝑁 ;𝜇(𝑁)1 , . . . , 𝜇(𝑁)

𝑘𝑁
)
)︂

Let’s simplify notation by denoting each

(︂
𝜏𝑖;𝜇(𝑖)1 , . . . , 𝜇

(𝑖)
𝑘𝑖

)︂
by 𝜏⃗𝑖 and by adopting the

convention of writing (𝜇𝑖), 0) as𝜇𝑖 and (0, 𝜇𝑖) as d𝜇𝑖 . We also introduce the following

shorthand 𝜏(𝜏1, . . . , 𝜏𝑁 ) for 𝛾(𝜏; 𝜏1, . . . , 𝜏𝑁 ), which is the rooted tree obtained by

sustituting the subtrees 𝜏1, . . . , 𝜏𝑁 . With this in mind, we can write:

(𝛾 ◦𝑊(⟨𝑊(𝜄1), 𝜕⟩) ◦ 𝜕𝑊 )(𝜏; 𝜏⃗1, . . . , 𝜏⃗𝑁 )

= (𝛾 ◦𝑊(⟨𝑊(𝜄1), 𝜕⟩))
(︄
𝑁∑︂
𝑘=1
(𝜏; 𝜏⃗1, . . . , d𝜏⃗𝑘 , . . . , 𝜏⃗𝑁 )

)︄
= 𝛾

⎛⎜⎝
𝑁∑︂
𝑖=1

(︂
𝜏1;𝜇(1)1 , . . . , 𝜇(1)

𝑘1

)︂
, . . . ,

𝑘𝑖∑︂
𝑗𝑖=1

(︂
𝜏𝑖;𝜇(𝑖)1 , . . . , d𝜇

(𝑖)
𝑗𝑖
, . . . , 𝜇(𝑖)

𝑘𝑖

)︂
, . . .

. . . ,
(︂
𝜏𝑁 ;𝜇(𝑁)1 , . . . , 𝜇(𝑁)

𝑘𝑁

)︂)︂
=

𝑁∑︂
𝑖=1

𝑘𝑖∑︂
𝑗𝑖=1

(︂
𝜏(𝜏1, . . . , 𝜏𝑁 );𝜇(1)1 , . . . , d𝜇(𝑖)

𝑗𝑖
, . . . , 𝜇(𝑁)

𝑘𝑁

)︂
=

𝑘1+...+𝑘𝑁∑︂
𝑙1

(︂
𝜏(𝜏1, . . . , 𝜏𝑁 );𝜇1, . . . , d𝜇𝑙 , . . . , 𝜇(𝑁)𝑘1+...+𝑘𝑁

)︂
where in the last step we simply reindexed the terms. However:

𝑘1+...+𝑘𝑁∑︂
𝑙1

(︂
𝜏(𝜏1, . . . , 𝜏𝑁 );𝜇1, . . . , d𝜇𝑙 , . . . , 𝜇(𝑁)𝑘1+...+𝑘𝑁

)︂
= 𝜕(𝜏(𝜏1, . . . , 𝜏𝑁 );𝜇1, . . . , 𝜇

(𝑁)
𝑘1+...+𝑘𝑁 )

= (𝜕 ◦ 𝛾(𝜏; 𝜏⃗1, . . . , 𝜏⃗𝑁 )

The next step is to prove the lift rule 𝜕𝜕𝑊(𝜋1 ⊕ 𝜋4) = 𝜕:

(𝑊(𝜋1 ⊕ 𝜋4) ◦ 𝜕 ◦ 𝜕)(𝜏;𝜇1, . . . , 𝜇𝑁 )

= (𝑊(𝜋1 ⊕ 𝜋4) ◦ 𝜕)
(︄
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0), . . . , (0, 𝜇𝑘), . . . , (𝜇𝑁 ), 0)

)︄
= 𝑊(𝜋1 ⊕ 𝜋4) ⎛⎜⎝

𝑁∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜏; (𝜇1, 0, 0, 0), . . . , (0, 0, 𝜇𝑗 , 0), . . . , (0, 𝜇𝑘 , 0, 0), . . .
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. . . , (𝜇𝑁 , 0, 0, 0)) +
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0, 0), . . . , (0, 0, 0, 𝜇𝑘), . . . , (𝜇𝑁 , 0, 0, 0)

)︄
=

𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0), . . . , (0, 𝜇𝑘), . . . , (𝜇𝑁 ), 0)

= 𝜕(𝜏;𝜇1, . . . , 𝜇𝑁 )

Finally, the symmetry rule 𝜕𝜕𝑊(id ⊕ 𝜏 ⊕ id) = 𝜕𝜕 reads as follows:

(𝑊(id ⊕ 𝜏 ⊕ id) ◦ 𝜕 ◦ 𝜕)(𝜏;𝜇1, . . . , 𝜇𝑁 )

= (𝑊(id ⊕ 𝜏 ⊕ id) ◦ 𝜕)
(︄
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0), . . . , (0, 𝜇𝑘), . . . , (𝜇𝑁 ), 0)

)︄
= 𝑊(id ⊕ 𝜏 ⊕ id) ⎛⎜⎝

𝑁∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜏; (𝜇1, 0, 0, 0), . . . , (0, 0, 𝜇𝑗 , 0), . . .

. . . , (0, 𝜇𝑘 , 0, 0), . . . , (𝜇𝑁 , 0, 0, 0))+
𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0, 0), . . . , (0, 0, 0𝜇𝑘), . . . , (𝜇𝑁 , 0, 0, 0)

)︄
=

𝑁∑︂
𝑘=1

∑︂
𝑗≠𝑘

(𝜏; (𝜇1, 0, 0, 0), . . . , (0, 𝜇𝑗 , 0, 0), . . . , (0, 0, 𝜇𝑘 , 0), . . . , (𝜇𝑁 , 0, 0, 0)) +

𝑁∑︂
𝑘=1
(𝜏; (𝜇1, 0, 0, 0), . . . , (0, 0, 0, 𝜇𝑘), . . . , (𝜇𝑁 , 0, 0, 0)

= (𝜕 ◦ 𝜕)(𝜏;𝜇1, . . . , 𝜇𝑁 )

This concludes the proof. □

Thanks to Proposition 5.21, the monad 𝑊 comes equipped with the structure

of a coCartesian differential monad. Thanks to Proposition 3.24, this implies that

𝑊 is a tangent monad over the tangent category of symmetric sequences equipped

with the tangent structure induced by biproducts. Consequently, the category of

algebras of𝑊 comes with a tangent structure.

Theorem 5.22. The category Operad of algebraic operads comes equipped with a tangent
structure denoted by

T

so defined:

tangent bundle functor The tangent bundle functor

T: Operad → Operad sends an
operad 𝒫 to the operad 𝒫[𝜀] ≅ 𝒫 ⋉𝒫 and a morphism 𝜑 : 𝒫 → 𝒫

′ of operads to
𝜑[𝜀], which sends (𝜇 + 𝜀𝜈) ∈ 𝒫[𝜀] to (𝜑(𝜇) + 𝜀𝜑(𝜈)) ∈ 𝒫′[𝜀];
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projection The projection 𝑝(

T) : T⇒ idOperad is the natural transformation so defined:

𝑝(

T) : 𝒫[𝜀] → 𝒫

𝑝(

T)(𝜇 + 𝜀𝜈) = 𝜇

zero morphism The zero morphism 𝑧(

T) : idOperad ⇒

T

is the natural transformation so
defined:

𝑧(

T) : 𝒫→ 𝒫[𝜀]

𝑧(

T)(𝜇) = 𝜇

𝑛-fold pullback The 𝑛-fold pullback of the projection along itself is the functor

T

𝑛 : Operad→
Operad which sends an operad 𝒫 to 𝒫[𝜀1, . . . , 𝜀𝑛], which is the operad 𝒫 ⊗
𝑅[𝜀1, . . . , 𝜀𝑛], where𝑅[𝜀1, . . . , 𝜀𝑛] := 𝑅[𝑥1, . . . , 𝑥𝑛]/(𝑥𝑖𝑥 𝑗 , 𝑖 , 𝑗 = 1, . . . , 𝑛). Moreover,

T

𝑛 sends a morphism 𝜑 : 𝒫→ 𝒫
′ to 𝜑[𝜀1, . . . , 𝜀𝑛] := 𝜑⊗𝑅[𝜀1, . . . , 𝜀𝑛]. The 𝑘-th

projection 𝜋𝑘 : T
𝑛 ⇒

T
is the natural transformation so defined:

𝜋𝑘 : 𝒫[𝜀1, . . . , 𝜀𝑛] ⇒ 𝒫[𝜀]

𝜋𝑘(𝜇 + 𝜀1𝜈1 + . . . + 𝜀𝑛𝜈𝑛) = 𝜇 + 𝜀𝑘𝜈𝑘

sum morphism The sum morphism 𝑠(

T) : T

2 ⇒

T

is the natural transformation so
defined:

𝑠(

T) : 𝒫[𝜀1, 𝜀2] → 𝒫[𝜀]

𝑠(

T)(𝜇 + 𝜀1𝜈1 + 𝜀2𝜈2) = 𝜇 + 𝜀(𝜈1 + 𝜈2)

vertical lift The vertical lift 𝑙(

T) : T⇒ T22 is the natural transformation so defined:

𝑙(

T) : 𝒫[𝜀] → 𝒫[𝜀][𝜀′]

𝑙(

T)(𝜇 + 𝜀𝜈) = 𝜇 + 𝜀′𝜀𝜈

canonical flip The canonical flip 𝑐(

T) : T2⇒ T22 is the natural transformation so defined:

𝑐(

T) : 𝒫[𝜀][𝜀′] → 𝒫[𝜀][𝜀′]

𝑐(

T)(𝜇 + 𝜀𝜈 + 𝜀′𝜇′ + 𝜀′𝜀𝜈′) = 𝜇 + 𝜀𝜇′ + 𝜀′𝜈 + 𝜀′𝜀𝜈′
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Moreover, (Operad, T) is Cartesian and it has negatives with negation so defined:

negation The negation 𝑛(

T) : T⇒ T

is the natural transformation so defined:

𝑛(

T) : 𝒫[𝜀] → 𝒫[𝜀]

𝑛(

T)(𝜇 + 𝜀𝜈) = 𝜇 − 𝜀𝜈

Proof. Thanks to Proposition 5.21, the monad𝑊 is a coCartesian differential monad,

so, by Proposition 3.24,𝑊 is also a tangent monad on the tangent category SymSeq
induced by biproducts. Therefore, the category of algebras Alg𝑊 ≅ Operad of 𝑊

is a tangent category with negatives (where negatives come from the additivity of

Mod𝑅). Finally, Operad has Cartesian products and it is not hard to see that the

tangent bundle functor preserves them, so the tangent category is Cartesian. □

From the description of

T

over the category of algebraic operads provided by

Theorem 5.22, one can notice that the action of the ring of dual numbers over the

category of operads determines the entire tangent structure. More precisely:

• the projection 𝑝(

T) : 𝒫[𝜀] → 𝒫 is determined by the augmentation map 𝑝 :=
𝑒 : 𝑅[𝜀] → 𝑅 so, 𝑝(

T) = id𝒫 ⊗ 𝑝;

• the zero morphism 𝑧(

T)
is determined by the inclusion 𝑧 : 𝑅 → 𝑅[𝜀] so,

𝑧(

T) = id𝒫 ⊗ 𝑧;

• the 𝑛-fold pullbacks are induced by the 𝑛-fold pullbacks 𝑅[𝜀1, . . . , 𝜀𝑛] of

𝑝 : 𝑅[𝜀] → 𝑅 along itself;

• the sum morphism 𝑠(

T) : 𝒫[𝜀1, 𝜀2] → 𝒫[𝜀] is induced by the sum morphism

𝑠 : 𝑅[𝜀1, 𝜀2] → 𝑅[𝜀]which sends 𝜀1 and 𝜀2 both to 𝜀, so 𝑠(

T) = id𝒫 ⊗ 𝑠;

• the vertical lift 𝑙(

T) : 𝒫[𝜀] → 𝒫[𝜀][𝜀′] is induced by the morphism 𝑙 : 𝑅[𝜀] →
𝑅[𝜀][𝜀′]which sends 𝜀 to 𝜀′𝜀,so 𝑙(

T) = id𝒫 ⊗ 𝑙;

• the canonical flip 𝑐(

T) : 𝒫[𝜀][𝜀′] → 𝒫[𝜀][𝜀′] is induced by 𝑐 : 𝑅[𝜀][𝜀′] →
𝑅[𝜀][𝜀′]which sends 𝜀 to 𝜀′ and viceversa, so 𝑐(

T) = id𝒫 ⊗ 𝑐;

• finally, the negation 𝑛(

T) : 𝒫[𝜀] → 𝒫[𝜀] is induced by 𝑛 : 𝑅[𝜀] → 𝑅[𝜀] which

sends 𝜀 to −𝜀, so 𝑛(

T) = id𝒫 ⊗ 𝑛.
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This is justified by the following observation. First, recall that an actegory, a.k.a. a

module category, over a monoidal categoryE, consists of a categoryX together with

a functor · : E ×X→ E and two natural isomorphisms 𝛼 : (𝑋 · 𝐴) · 𝐵→ 𝑋 · (𝐴 ⊗ 𝐵)
and 𝜂 : 𝑋 · 1→ 𝑋 satisfying some conditions (see [32]).

Lemma 5.23. The action that sends a Weil algebra 𝑊 ∈ Weil1 (see Section 2.3) over the
base ring 𝑅 and an operad 𝒫 to the operad 𝒫 ·𝑊 := 𝒫 ⊗𝑊 makes the category Operad
of algebraic operads into a Weil1-actegory. Moreover, the action preserves all pullbacks of
Weil1.

Proof. We leave it to the reader to check the details of this proof. □

In particular, if X is an E-actegory, one can define a strong monoidal functor

E→ End(X)where End(X) denotes the monoidal category of endofunctors over X.

When the base monoidal category E is the category Weil1 and the strong monoidal

functor Weil1 → End(X) preserves certain pullback diagrams, as discussed in 2.3,

this defines a tangent structure on the category X. This is precisely an equivalent

characterization of the tangent category (Operad, T) of Theorem 5.22.

Proposition 5.24. The tangent structure

T

over the category of algebraic operads described
in Theorem 5.22 is precisely the tangent structure corresponding to the strong monoidal
functor Weil1 → End(Operad) which sends a Weil algebra 𝑊 over the ring 𝑅 to the
endofunctor (−) ⊗𝑊 : Operad→ Operad.

5.2.1 The tangent category of tangent monads

Each algebraic operad 𝒫 is associated with a tangent monad (S𝒫 , 𝛼𝒫) and this

operation extends also to morphisms, functorially. In the previous section, we

showed that the category of operads comes equipped with a tangent structure. In

this section, we show that so does the category of tangent monads over a fixed tan-

gent category. We then show that the functor S : (Operad, T) → TngMnd(Mod𝑅 ,

T)
extends to a strong tangent morphism.

In this section, we fix a base tangent category (X,T) and we denote by TngMnd(X,T)
the category of tangent monads over this base tangent category. The main tool we

need to explore this construction is the concept of distributive law. We invite the
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reader to consult [54] (notice that triples is the dated name for monads). Let’s recall

this definition for formal monads.

Definition★ 5.25. A distributive law between two monads 𝑆 and 𝑆′ over an object X in
a strict 2-category C consists of a 2-morphism 𝜅 : 𝑆′ ◦ 𝑆⇒ 𝑆 ◦ 𝑆′ of C compatible with the
multiplication morphisms 𝛾 and 𝛾′ of 𝑆 and 𝑆′, respectively, as follows:

𝑆′2 ◦ 𝑆 𝑆′ ◦ 𝑆 ◦ 𝑆′ 𝑆 ◦ 𝑆′2

𝑆′ ◦ 𝑆 𝑆 ◦ 𝑆′

𝑆′𝜅 𝜅𝑆′

𝛾′𝑆 𝑆𝛾′

𝜅

𝑆′ ◦ 𝑆2 𝑆 ◦ 𝑆′ ◦ 𝑆 𝑆2 ◦ 𝑆′

𝑆′ ◦ 𝑆 𝑆 ◦ 𝑆′

𝜅𝑆

𝑆′𝛾

𝑆𝜅

𝛾𝑆′

𝜅

and compatible with the unit 𝜂 of 𝑆 and the unit 𝜂′ of 𝑆′, as follows:

𝑆′ ◦ 𝑆 𝑆 ◦ 𝑆′

𝑆 𝑆

𝜅

𝜂′𝑆 𝑆𝜂′

𝑆′ ◦ 𝑆 𝑆 ◦ 𝑆′

𝑆′ 𝑆′

𝜅

𝑆′𝜂 𝜂𝑆′

Distributive laws between two monads allow one to compose the underlying 1-

morphisms of the monads to obtain a new monad. Concretely, given a distributive

law 𝜅 : 𝑆′ ◦ 𝑆 ⇒ 𝑆 ◦ 𝑆′, we can define the monad 𝑆 ◦𝜅 𝑆′ over X whose underlying

1-morphism is given by the composition 𝑆 ◦ 𝑆′ : X→ X and whose multiplication

and unit are given by:

𝛾𝜅 : 𝑆 ◦ 𝑆′ ◦ 𝑆 ◦ 𝑆′ 𝑆𝜅𝑆
′

−−−→ 𝑆2 ◦ 𝑆′2
𝛾𝑆′2

−−−→ 𝑆 ◦ 𝑆′2
𝑆𝛾
−−→ 𝑆 ◦ 𝑆′

𝜂𝜅 : idX
𝜂
−→ 𝑆

𝑆𝜂′

−−→ 𝑆 ◦ 𝑆′

respectively.

Recall also that tangent monads are formal monads in the 2-category TngCat
of tangent categories. Therefore, we can define a distributive law between two
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tangent monads over the base tangent category (X,T) as a distributive law between

the two formal monads in TngCat.
Street in [56] showed that giving a distributive law 𝜅 : 𝑆′ ◦ 𝑆 ⇒ 𝑆′ ◦ 𝑆 between

two formal monads 𝑆 and 𝑆′ over the same object X of a strict 2-category C is

precisely the same as giving a monad (𝑆, 𝜅) : 𝑆 → 𝑆 in the 2-category Mnd(C) of

monads of C over 𝑆.

In Section 2.4 we proved that Tng(Mnd(C)) ≅ Mnd(Tng(C))which implies:

Mnd(Mnd(Tng(C))) ≅ Tng(Mnd(Mnd(C)))

So, distributive laws of tangent monads are distributive laws of the underlying mon-

ads which are also 2-morphisms between the underlying lax tangent morphisms.

Let’s make this definition precise.

Definition 5.26. A distributive law of tangent monads 𝜅 between two tangent monads
(𝑆′, 𝛼′) and (𝑆, 𝛼) over (X,T) consists of a distributive law 𝜅 : 𝑆′ ◦ 𝑆 ⇒ 𝑆 ◦ 𝑆′ between
the underlying monads which make the following diagram commutative:

𝑆′ ◦ 𝑆 ◦ T 𝑆′ ◦ T ◦ 𝑆 T ◦ 𝑆′ ◦ 𝑆

𝑆 ◦ 𝑆′ ◦ T 𝑆 ◦ T ◦ 𝑆′ T ◦ 𝑆 ◦ 𝑆′

𝜅T

𝑆𝛼′

𝑆′𝛼

𝛼𝑆′

𝛼′𝑆

T𝜅

In the following, to denote 𝜅 we adopt the notation : (𝑆′, 𝛼′) ◦ (𝑆, 𝛼) ⇒ (𝑆, 𝛼) ◦ (𝑆′, 𝛼′).

A consequence of the composability of formal monads in the presence of a

distributive law and of the fact that tangent monads are formal monads in the

2-category TngCat is that distributive laws of tangent monads 𝜅 : (𝑆′, 𝛼′) ◦ (𝑆, 𝛼) ⇒
(𝑆, 𝛼) ◦ (𝑆′, 𝛼′) allow one to compose the tangent monads to obtain a new tangent

monad (𝑆, 𝛼) ◦𝜅 (𝑆′, 𝛼′). Concretely, the underlying monad is precisely 𝑆 ◦𝜅 𝑆′ and

the distributive law between 𝑆 ◦𝜅 𝑆′ and the tangent bundle functor T is the natural

transformation:

𝛼 ◦𝜅 𝛼′ : 𝑆 ◦ 𝑆′ ◦ T 𝑆𝛼′−−→ 𝑆 ◦ T ◦ 𝑆′ 𝛼𝑆′−−→ T ◦ 𝑆 ◦ 𝑆′

Lemma 5.27. Given a distributive law 𝜅 : (𝑆′, 𝛼′) ◦ (𝑆, 𝛼) ⇒ (𝑆, 𝛼) ◦ (𝑆′, 𝛼′) of tangent
monads over (X,T), the monad 𝑆 ◦𝜅 𝑆′ equipped with the natural transformation 𝛼 ◦𝜅 𝛼′

is a tangent monad on (X,T), denoted by (𝑆, 𝛼) ◦𝜅 (𝑆′, 𝛼′).
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Cockett and Cruttwell in [12, Section 3.2] showed that the tangent bundle functor

T: X → X comes equipped with the structure of a monad. Moreover, they also

showed that the canonical flip 𝑐 : T ◦ T⇒ T ◦ T is a distributive law of the monad

T with itself, making T ◦𝑐 T into a new monad. However, since 𝑐 is a distributive

law between the monad T and the tangent bundle functor T which is compatible

with the tangent structure, (T, 𝑐) becomes a tangent monad on (X,T). We record

this observation in the following lemma.

Lemma 5.28. The tangent bundle functor T: X→ X of a tangent category (X,T) equipped
with the multiplication map defined by:

𝛾(T) : T2 ⟨T𝑝,𝑝T⟩
−−−−−−→ T2

𝑠−→ T

and with the unit map 𝜂(T) := 𝑧idX → T becomes a monad on X. Moreover, T equipped
with 𝑐 : T ◦ T→ T ◦ T becomes a tangent monad (T, 𝑐) : (X,T) → (X,T). Furthermore,
for every positive integer 𝑛, also T𝑛 is a tangent monad, whose multiplication and unit
maps are respectively defined by:

𝛾(T)𝑛 := ⟨T𝑛𝜋1𝜋1T𝛾
(T), . . . ,T𝑛𝜋𝑛𝜋𝑛T𝛾

(T)⟩ : T𝑛 ◦ T𝑛 ⇒ T𝑛

𝜂(T)𝑛 := ⟨𝑧, . . . , 𝑧⟩

and whose distributive law with T is defined by:

𝑐𝑛 := ⟨𝜋1T𝑐, . . . ,𝜋𝑛T𝑐⟩ : T𝑛 ◦ T⇒ T ◦ T𝑛

For a given tangent monad (𝑆, 𝛼) over (X,T), there always exists a distributive

law between (𝑆, 𝛼) and (T, 𝑐). To see this, notice that 𝜅 := 𝛼 : 𝑆 ◦T⇒ T ◦ 𝑆 satisfies

the axioms of a distributive law between a monad and an endofunctor. To conclude

that 𝜅 : = 𝛼 is a distributive law between tangent monads one needs to show that

the following diagrams commute:

𝑆 ◦ T2 T ◦ 𝑆 ◦ T T2 ◦ 𝑆

𝑆 ◦ T T ◦ 𝑆

𝜅T

𝑆𝛾(T)

T𝜅

𝛾(T)𝑆

𝜅

𝑆 ◦ T T ◦ 𝑆

𝑆 𝑆

𝜅

𝑆𝜂(T) 𝜂(T)𝑆
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𝑆 ◦ T ◦ T 𝑆 ◦ T ◦ T T ◦ 𝑆 ◦ T

T ◦ 𝑆 ◦ T T ◦ T ◦ 𝑆 T ◦ T ◦ 𝑆

𝑆𝑐

𝜅T

𝛼T

T𝜅

T𝛼 𝑐𝑆

However, the commutativity of the first diagram is a consequence of the compat-

ibility between 𝛼 and the projection and the sum morphism; the second diagram

establishes precisely the compatibility between 𝛼 and the zero morphism; finally,

the last diagram is the compatibility between 𝛼 and the canonical flip.

Lemma 5.29. Given a tangent monad (𝑆, 𝛼) over (X,T), the lax distributive law 𝛼 defines
a distributive law 𝛼 : (𝑆, 𝛼) ◦ (T, 𝑐) ⇒ (T, 𝑐) ◦ (𝑆, 𝛼) of tangent monads. In particular,
this defines a new tangent monad T(𝑆, 𝛼) := (T, 𝑐) ◦𝛼 (𝑆, 𝛼) = (T ◦𝛼 𝑆,T ◦ 𝑆 ◦ T T𝛼−−→
T ◦ T ◦ 𝑆 𝑐𝑆−→ T ◦ T ◦ 𝑆).

Similarly, for each positive integer 𝑛, 𝛼𝑛 := ⟨𝑆𝜋1𝛼, . . . , 𝑆𝜋𝑛𝛼𝑛⟩ : 𝑆 ◦ T𝑛 ⇒ T𝑛 ◦ 𝑆
constitutes a distributive law (T𝑛 , 𝑐𝑛) ◦ (𝑆, 𝛼) ⇒ (𝑆, 𝛼) ◦ (T𝑛 , 𝑐𝑛) of tangent monads. In
particular, this defines a new tangent monad T𝑛(𝑆, 𝛼) : = (T𝑛 , 𝑐𝑛) ◦𝛼𝑛 (𝑆, 𝛼) = (T𝑛 ◦𝛼𝑛
𝑆,T𝑛𝛼𝑐𝑛𝑆).

Theorem 5.30. The category TngMnd(X,T) of tangent monads over (X,T) is a tangent
category with the following tangent structure:

tangent bundle functor The tangent bundle functor T: TngMnd(X,T) → TngMnd(X,T)
sends a tangent monad (𝑆, 𝛼) to T(𝑆, 𝛼) := (T, 𝑐) ◦𝛼 (𝑆, 𝛼) and it sends a morphism
𝜑 : (𝑆, 𝛼) → (𝑆′, 𝛼′) of tangent monads to T𝜑 := T𝜑;

projection The projection 𝑝 : T⇒ idTngMnd(X,T) is the natural transformation so defined:

𝑝 : (T ◦𝛼 𝑆,T𝛼𝑐𝑆)
𝑝𝑆
−−→ (𝑆, 𝛼)

zero morphism The zero morphism 𝑧 : idTngMnd(X,T)⇒ T is so defined:

𝑧 : (𝑆, 𝛼) 𝑧𝑆−→ (T ◦𝛼 𝑆,T𝛼𝑐𝑆)

𝑛-fold pullback the 𝑛-fold pullback of the projection along itself is the functor T𝑛 which
sends a tangent monad (𝑆, 𝛼) to T𝑛(𝑆, 𝛼) : = (T𝑛 , 𝑐𝑛) ◦𝛼𝑛 (𝑆, 𝛼) and a morphism
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𝜑 : (𝑆, 𝛼) → (𝑆′, 𝛼′) of tangent monads to T𝑛𝜑 : = T𝑛𝜑. Moreover, the 𝑘-th
projection 𝜋𝑘 : T𝑛 ⇒ T is the natural transformation so defined:

𝜋𝑘 : (T𝑛 ◦𝛼𝑛 𝑆,T𝑛𝛼𝑐𝑛𝑆)
𝜋𝑘𝑆−−→ (T ◦𝛼 𝑆,T𝛼𝑐𝑆)

sum morphism The sum morphism 𝑠 : T2⇒ T is the natural transformation so defined:

𝑠 : (T2 ◦𝛼2 𝑆,T2𝛼𝑐2𝑆)
𝑠𝑆−→ (T ◦𝛼 𝑆,T𝛼𝑐𝑆)

The lift 𝑙 : T⇒ T
2

is the natural transformation so defined:

𝑙 : (T ◦𝛼 𝑆,T𝛼𝑐𝑆)
𝑙𝑆−→ (T2 ◦𝛼 𝑆,T2𝛼T𝑐𝑆𝑐T𝑆)

The canonical flip 𝑐 : T2⇒ T2 is the natural transformation so defined:

𝑐 : (T2 ◦𝛼 𝑆,T2𝛼T𝑐𝑆𝑐T𝑆)
𝑐𝑆−→ (T2 ◦𝛼 𝑆,T2𝛼T𝑐𝑆𝑐T𝑆)

Finally, if (X,T) has negatives with negation 𝑛 : T ⇒ T so does TngMnd(X,T) with
negation defined as follows:

negation The negation 𝑛 : T⇒ T is the natural transformation so defined:

𝑛 : (T ◦𝛼 𝑆,T𝛼𝑐𝑆)
𝑛𝑆−−→ (T ◦𝛼 𝑆,T𝛼𝑐𝑆)

Proof. Let’s give a sketch of the proof and leave it to the reader to complete all

the tedious details. First, as noticed in [11, Example 2.2(vii)], given any tangent

category (X,T) and any other categoryY, the category of functors Cat(Y,X) comes

equipped with a tangent structure with tangent bundle functor:

T(𝐹 : Y→ X) := T ◦ 𝐹 : Y→ X

and natural transformations are defined as in T. In particular, this implies that the

category End(X,T) of endofunctors of a tangent category (X,T) is also a tangent

category. Notice that TngMnd(X,T) is a subcategory of this tangent category and

that the tangent bundle functor T is a restriction of the tangent bundle functor of

Cat(X,X). Therefore, to prove that TngMnd(X,T) is a tangent category, it suffices

to show that (1) the natural transformations of the tangent structure on Cat(X,X)
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restrict to TngMnd(X,T) and (2) that the universality of the lift also holds in the

category of tangent monads. We leave it to the reader to check the numerous

diagrams required to prove (1) and instead, we focus on showing the universality

of the vertical lift.

First, notice that the morphism 𝜈 : = (𝑙 × 𝑧T)T𝑠 : T2 ⇒ T
2

is the natural trans-

formation so defined:

𝜈 : (T2 ◦𝛼2 𝑆,T2𝛼𝑐𝑆)
(𝑙𝑆×𝑧T𝑆)T𝑠𝑆
−−−−−−−−−→ (T2 ◦𝛼 𝑆,T2𝛼T𝑐𝑆𝑐T𝑆)

With this in mind, let’s consider a morphism 𝜑 : (𝑆′, 𝛼′) → T
2(𝑆, 𝛼) for which

𝜑T𝑝 = 𝜑T𝑝T𝑝𝑧. Concretely, 𝜑 is a natural transformation𝜑 : 𝑆′→ T2𝑆, compatible

with the monad structures and with the tangent structures, and for which:

𝑆′ T2 ◦ 𝑆

T2 ◦ 𝑆 T ◦ 𝑆 𝑆 T ◦ 𝑆

𝜑

𝜑 T𝑝𝑆

𝑝T𝑆 𝑝𝑆 𝑧𝑆

By the universality of the lift in End(X,T)we obtain a unique natural transformation

𝜓 : (𝑆′, 𝛼′) → T2(𝑆, 𝛼) such that 𝜓𝜈 = 𝜑. To prove that 𝜓 is indeed a morphism of

tangent monads one employs the universality of the equalizer morphism 𝜈. Here,

we only show how to prove the compatibility with the multiplication maps and we

leave it to the reader to check unitality and the compatibility with the distributive

laws of the tangent monads. We want to show the commutativity of the following

diagram:

𝑆′2 𝑆′T2𝑆 T2𝑆T2𝑆

T2
2𝑆

2

T2𝑆
2

𝑆′ T2𝑆

𝑆′𝜓

𝛾′

𝜓T2𝑆

T2𝛼2𝑆

𝛾(T)2 𝑆2

T2𝛾

𝜓
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In order to do so, we first post compose by 𝜈𝑆 as follows:

𝑆′2 𝑆′ ◦ T2 ◦ 𝑆 T2 ◦ 𝑆 ◦ T2 ◦ 𝑆

T2 ◦ 𝑆 ◦ T2 ◦ 𝑆

𝑆′2 𝑆′ ◦ T2 ◦ 𝑆 T2 ◦ 𝑆 ◦ T2 ◦ 𝑆 T3 ◦ 𝑆 ◦ T ◦ 𝑆

T2
2 ◦ 𝑆2 T2 ◦ T2 ◦ 𝑆2 T4 ◦ 𝑆2

T3𝑆 ◦ 𝑆2

T2 ◦ 𝑆2 T2 ◦ 𝑆2

𝑆′ T2 ◦ 𝑆

𝑆′ T2 ◦ 𝑆

𝑆′𝜑 𝜑T2𝑆

T2𝛼T2

𝜈𝑆T2𝑆

𝑆′𝜓

𝛾′

𝑆′𝜈𝑆

𝜓T2𝑆

T2𝑆𝜈𝑆

T2𝛼2𝑆 T4𝛼𝑆

T2𝜈𝑆2

𝛾(T)2 𝑆2

𝜈T2𝑆2

𝛾(T)T2𝑆2

T𝛾(T)𝑆2

𝜈𝑆2

T2𝛾

T2𝛾
𝜓

𝜈𝑆

𝜑

Thanks to this and the universality of 𝜈 we conclude that the previous diagram

commutes as well. □

An interesting corollary of Theorem 5.30 is that for every integer 𝑛, the functor

T𝑛
defines a tangent monad.

Corollary 5.31. For a given tangent category (X,T) and an integer 𝑛, the endofunctor T𝑛

defines a tangent monad (T𝑛 , 𝑐(𝑛)), where the tangent distributive law 𝑐(𝑛) is so defined:

𝑐(𝑛) := (T𝑛𝑐)(T𝑛−1𝑐T) . . . (T𝑛−𝑘𝑐T𝑘 ) . . . (T𝑐T𝑛−1)(𝑐T𝑛 )

Proof. Lemma 5.28 establishes that (T, 𝑐) is a tangent monad. By induction, let

(T𝑛−1, 𝑐(𝑛−1)) be a tangent monad and let’s prove that so does (T𝑛 , 𝑐(𝑛)). However,

this is immediate from (T𝑛 , 𝑐(𝑛)) = T(T𝑛−1, 𝑐(𝑛−1)). □
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The goal of this section is to show (1) that the category of tangent monads

over a fixed tangent category is itself a tangent category and (2) that the functor

S : Operad→ TngMnd(Mod𝑅 ,

T)which sends an operad to its corresponding tangent

monad on the tangent category of 𝑅-modules induced by biproducts preserves the

tangent structure described in 5.22.

Theorem 5.30 accomplishes the first goal. Let’s now focus on (2). First of all, let’s

unwrap the monad structure of the tangent monad

T

whose underlying functor is

the tangent bundle functor over Mod𝑅.

Lemma 5.32. In the tangent category (Mod𝑅 ,

T), the monad structure associated with the
tangent bundle functor given by Lemma 5.28 is defined as follows:

𝛾(

T) : T2𝑀 → T

𝑀

𝛾(

T)(𝑥, 𝑦, 𝑧, 𝑡) := (𝑥, 𝑧 + 𝑦)

𝜂(
T) : 𝑀 → T

𝑀

𝜂(

T)(𝑥) := (𝑥, 0)

Proof. By definition, the unit of

T

is the zero morphism so, let’s focus on the

multiplication morphism. 𝛾(

T)
is the morphism:

𝛾(

T) : T2𝑀
⟨

T

𝑝,𝑝

T

⟩
−−−−−−−→ T

2
𝑠−→ T

So:

𝛾(

T)(𝑥, 𝑦, 𝑧, 𝑡)

= (𝑠 ◦ ⟨ T

𝑝, 𝑝

T⟩)(𝑥, 𝑦, 𝑧, 𝑡)

= 𝑠(𝑥, 𝑧; 𝑥, 𝑦)

= (𝑥, 𝑧 + 𝑦)

This concludes the proof. □

For the next result, we employ the convention of regarding

T

𝒫 as 𝒫 ⋉𝒫, so

T

𝒫(𝑛) is the 𝑅-module 𝒫(𝑛) ⊕𝒫(𝑛) and the multiplication and the unit of 𝒫 ⋉𝒫

are defined as in Example 5.6.
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Theorem 5.33. The functor S : Operad→ TngMnd(Mod𝑅 ,

T) equipped with the natural
transformation 𝜒 : S T

𝒫 →

T

S𝒫 defined as follows:

𝜒 : S T

𝒫𝐴 =
⨁︂
𝑛

T

𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛 →

T

(︄⨁︂
𝑛

𝒫(𝑛) ⊗S𝑛 𝐴⊗𝑛
)︄
=

T

S𝒫𝐴

𝜒((𝜇, 𝜈); 𝑎1, . . . , 𝑎𝑛) := ((𝜇; 𝑎1, . . . , 𝑎𝑛), (𝜈; 𝑎1, . . . , 𝑎𝑛))

becomes a strong tangent morphism (S, 𝜒) : (Operad, T) → TngMnd(Mod𝑅 ,

T).

Proof. In order to prove that 𝜒 makes S into a strong tangent morphism, we need

to show that (1)𝜒 is compatible with the units of the two tangent monads S T

𝒫

and

T

S𝒫; (2) that 𝜒 is compatible with the multiplication morphisms of the tangent

monads; (3) that 𝜒 is compatible with the distributive laws between the two tangent

monads and the tangent bundle functor

T

; (4) that 𝜒 is invertible; finally, (5) we

leave to the reader to prove the compatibility between 𝜒 and the tangent structures.

Let’s start with (1). This amounts to prove the commutativity of the following

diagram:

S T

𝒫

T

S𝒫

id id

𝜒

𝜂

T T

𝜂(

T)

Let’s start by recalling that 𝜂𝒫 : 𝐴→ S𝒫𝐴 sends 𝑎 ∈ 𝐴 to (1𝒫; 𝑎) where 1𝒫 ∈ 𝒫(1)
is the unit of the operad 𝒫. so, we have:

(𝜒 ◦ 𝜂 T)(𝑎)

= 𝜒(1 T

𝒫; 𝑎)

= 𝜒((1𝒫 , 0); 𝑎)

= ((1𝒫; 𝑎), (0; 𝑎))

= ((1𝒫; 𝑎), 0)

= (𝜂𝒫(𝑎), 0)

= 𝑧(𝜂𝒫(𝑎))

= 𝜂(

T)(𝑎)
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Let’s now show (2) the compatibility with the multiplication maps, expressed by

the commutativity of the diagram:

S2 T

𝒫
S T

𝒫 ◦

T

S𝒫

T

S𝒫 ◦

T

S𝒫

T2S2
𝒫

T

S2
𝒫

S T

𝒫

T

S𝒫

S T

𝒫𝜒

𝛾 T

𝒫

𝜒

TS𝒫

T

𝛼S𝒫

𝛾(

T)S2
𝒫

T

𝛾𝒫

𝜒

First, notice that the generic element of S2 T

𝒫
𝐴 is of the form:(︂

(𝜇, 𝜈);
(︂
𝜇1, 𝜈1); 𝑎(1)1 , . . . , 𝑎

(1)
𝑘1

)︂
, . . . ,

(︂
(𝜇𝑛 , 𝜈𝑛); 𝑎(𝑛)1 , . . . , 𝑎

(𝑛)
𝑘𝑛

)︂)︂
For this proof, the elements of 𝐴 do not play any role, therefore, we simplify the

notation by denoting each tuple 𝑎
(𝑖)
1 , . . . , 𝑎

(𝑖)
𝑘𝑖

by 𝑎⃗ 𝑖 . Adopting this notation, the

generic element of S2 T

𝒫
is now denoted by:(︁
(𝜇, 𝜈);

(︁
𝜇1, 𝜈1); 𝑎⃗1

)︁
, . . . ,

(︁
(𝜇𝑛 , 𝜈𝑛); 𝑎⃗𝑛

)︁ )︁
We also write 𝑎⃗ for 𝑎⃗1, . . . , 𝑎⃗𝑛 . With this in mind, we can write:(︂

( T

𝛾𝒫) ◦ (𝛾(

T)
S2
𝒫

) ◦ ( T

𝛼S𝒫
) ◦ (𝜒 TS𝒫

)(S T

𝒫𝜒)
)︂(︁

(𝜇, 𝜈);
(︁
𝜇1, 𝜈1); 𝑎⃗1

)︁
, . . . ,

(︁
(𝜇𝑛 , 𝜈𝑛); 𝑎⃗𝑛

)︁ )︁
=

(︂
( T

𝛾𝒫) ◦ (𝛾(

T)
S2
𝒫

) ◦ ( T

𝛼S𝒫
) ◦ (𝜒 TS𝒫

)
)︂(︁

(𝜇, 𝜈);
(︁
(𝜇1; 𝑎⃗1), (𝜈1; 𝑎⃗1)

)︁
, . . . ,

(︁
(𝜇𝑛; 𝑎⃗𝑛), (𝜈𝑛; 𝑎⃗𝑛)

)︁ )︁
=

(︂
( T

𝛾𝒫) ◦ (𝛾(

T)
S2
𝒫

) ◦ ( T

𝛼S𝒫
)
)︂ (︁ (︁

𝜇;
(︁
(𝜇1; 𝑎⃗1), (𝜈1; 𝑎⃗1)

)︁
, . . . ,

(︁
(𝜇𝑛; 𝑎⃗𝑛), (𝜈𝑛; 𝑎⃗𝑛)

)︁ )︁
,(︁

𝜈;
(︁
(𝜇1; 𝑎⃗1), (𝜈1; 𝑎⃗1)

)︁
, . . . ,

(︁
(𝜇𝑛; 𝑎⃗𝑛), (𝜈𝑛; 𝑎⃗𝑛)

)︁ )︁ )︁
=

(︂
( T

𝛾𝒫) ◦ (𝛾(

T)
S2
𝒫

)
)︂ (︁ (︁

𝜇; (𝜇1; 𝑎⃗1), . . . , (𝜇𝑛; 𝑎⃗𝑛)
)︁
,

𝑛∑︂
𝑘1=1

(︁
𝜇; (𝜇1; 𝑎⃗1), . . . , (𝜈𝑘 , 𝑎⃗𝑘), . . . , (𝜇𝑛; 𝑎⃗𝑛)

)︁
,
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𝜈; (𝜇1; 𝑎⃗1), . . . , (𝜇𝑛; 𝑎⃗𝑛)

)︁
,

𝑛∑︂
𝑘1=1

(︁
𝜈; (𝜇1; 𝑎⃗1), . . . , (𝜈𝑘 , 𝑎⃗𝑘), . . . , (𝜇𝑛; 𝑎⃗𝑛)

)︁)︄
= ( T

𝛾𝒫)
(︃ (︁
𝜇; (𝜇1; 𝑎⃗1), . . . , (𝜇𝑛; 𝑎⃗𝑛)

)︁
,

(︁
𝜈; (𝜇1; 𝑎⃗1), . . . , (𝜇𝑛; 𝑎⃗𝑛)

)︁
+

𝑛∑︂
𝑘1=1

(︁
𝜇; (𝜇1; 𝑎⃗1), . . . , (𝜈𝑘 , 𝑎⃗𝑘), . . . , (𝜇𝑛; 𝑎⃗𝑛)

)︁)︄
=

(︄(︁
𝜇(𝜇1, . . . , 𝜇𝑛); 𝑎⃗

)︁
,
(︁
𝜈(𝜇1, . . . , 𝜇𝑛); 𝑎⃗

)︁
+

𝑛∑︂
𝑘1=1

(︁
𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛); 𝑎⃗

)︁)︄
= 𝜒

(︄(︄
𝜇(𝜇1, . . . , 𝜇𝑛), 𝜈(𝜇1, . . . , 𝜇𝑛) +

𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛)
)︄

; 𝑎⃗

)︄
= (𝜒 ◦ 𝛾 T

𝒫)
(︁
(𝜇, 𝜈);

(︁
𝜇1, 𝜈1); 𝑎⃗1

)︁
, . . . ,

(︁
(𝜇𝑛 , 𝜈𝑛); 𝑎⃗𝑛

)︁ )︁
Let’s now prove (3). This amounts to show the following:

S T

𝒫 ◦

T T

S𝒫 ◦

T T2
S𝒫

T

S T

𝒫

T2
S𝒫

𝜒

T

𝛼 T
𝒫

T

𝛼𝒫

𝑐S𝒫

T𝜒

((𝑐S𝒫) ◦ (

T

𝛼) ◦ (𝜒 T)) ((𝜇, 𝜈); (𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛))

= ((𝑐S𝒫)(

T

𝛼)) ((𝜇; (𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛)), (𝜈; (𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛)))

= 𝑐S𝒫

(︄
(𝜇; 𝑎1, . . . , 𝑎𝑛),

𝑛∑︂
𝑘=1
(𝜇; 𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛),

(𝜈; 𝑎1, . . . , 𝑎𝑛),
𝑛∑︂
𝑘=1
(𝜈; 𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)

)︄
= ((𝜇; 𝑎1, . . . , 𝑎𝑛), (𝜈; 𝑎1, . . . , 𝑎𝑛),

𝑛∑︂
𝑘=1
(𝜇; 𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛),

𝑛∑︂
𝑘=1
(𝜈; 𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)

)︄
=

T

𝜒(((𝜇, 𝜈); 𝑎1, . . . , 𝑎𝑛),
𝑛∑︂
𝑘=1
((𝜇, 𝜈); 𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛))

= ( T

𝜒 ◦ 𝛼 T

𝒫) ((𝜇, 𝜈); (𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛))

Finally, (4) notice that the natural transformation:

T

S𝒫 → S T

𝒫
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((𝜇; 𝑎1, . . . , 𝑎𝑛), (𝜈; 𝑏1, . . . , 𝑏𝑛)) ↦→ ((𝜇, 0); 𝑎1, . . . , 𝑎𝑛) + ((0, 𝜈); 𝑏1, . . . , 𝑏𝑛)

inverts 𝜒. □

5.2.2 The adjoint tangent category of operads

Theorem 5.22 proves that the category Operad of algebraic operads comes equipped

with a tangent structure, generated by a coCartesian differential monad (𝑊, 𝜕).
Furthermore, Theorem 5.33 shows that the functor S : Operad→ TngMnd(Mod𝑅 ,

T)
strongly preserves this tangent structure so,

T

on Operad is compatible with the

tangent structure

T

of tangent monads described by Theorem 5.30.

Before going back to the relationship between (Operad, T) and deformation the-

ory introduced in Example 5.11, we dedicate this section to investigate the following

question: is this tangent category adjunctable (Definition 2.46)? In particular, is

Operadop
also a tangent category? To answer this question, notice that the category

Operad is cocomplete (cf. [24, Theorem 1.13]), thus, by Lemma 2.49, (Operad, T) is

adjunctable if the tangent bundle functor admits a left adjoint. In this section, we

prove a stronger result: we show that

T

is corepresentable, which implies the exist-

ence of a left adjoint T ⊣ T

. To prove this, we show that the operad 𝑅•[𝜀] := 𝑅[𝜀]•

(see Example 3.6) is an infinitesimal object of Operadop
.

Infinitesimal objects are discussed in [12, Section 5.2]. In particular, Cockett and

Cruttwell showed that a Cartesian category has a representable tangent structureT,

i.e. a tangent structure whose tangent bundle functor is representable, if and only

if it has an infinitesimal object 𝐷; in that case, T = (−)𝐷 . Showing that Operadop

has a representable tangent structure is the same as establishing that Operad has a

corepresentable tangent structure. Let’s unwrap this definition.

Recall that a coexponential object in a coCartesian category X, i.e. an expo-

nential object in the opposite category, is an object 𝐷 for which the functor (−) +𝐷
admits a left adjoint (−)𝐷 .

Definition 5.34. A tangent structure

T

over a coCartesian category (i.e. a category which
admits all finite coproducts, denoted by +) X is corepresentable whenever there is an
object 𝐷 of X, which is coinfinitesimal, i.e. the following conditions hold:

1. The tangent bundle functor

T

is isomorphic to the functor (−) + 𝐷;
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2. For every positive integer 𝑛, 𝐷𝑛 := 𝐷 + . . . + 𝐷 is a coexponential object;

3. For every positive integer 𝑛,𝐷𝑛 which is the object which corepresents

T

𝑛 ≅ (−)+𝐷𝑛

is a coexponential object.

When the categoryX has enough colimits, one can apply Lemma 2.49 and prove

that a tangent structure

T

is corepresentable if

T

≅ (−) + 𝐷 for some object 𝐷 and

that 𝐷 is a coexponential object. Indeed, if this is the case, then

T

admits a left

adjoint T = (−)𝐷 , which in the opposite category is, by construction representable.

Lemma 5.35. If the category X is cocomplete then, a tangent structure

T

over X is
corepresentable if and only if the tangent bundle functor

T

is isomorphic to (−) + 𝐷 for a
coexponential object 𝐷.

The goal is to show that the tangent structure

T

of Theorem 5.22 is corepres-

entable. We divide this problem into two steps. First, we show that the tangent

bundle functor

T
is precisely the functor (−) + 𝐷, where 𝐷 : = 𝑅•[𝜀] : = 𝑅[𝜀]• (see

Example 3.6). Second, we show that the functor

T
admits a left adjoint, which

implies that 𝐷 is a coexponential object and therefore a coinfinitesimal object.

Lemma 5.36. For an operad𝒫, the operad𝒫[𝜀] = 𝒫⊗𝑅[𝜀] is isomorphic to the coproduct
between 𝒫 and the operad 𝑅•[𝜀]. In particular, the tangent bundle functor

T

is isomorphic
to (−) + 𝐷 with 𝐷 := 𝑅•[𝜀].

Proof. In order to show that𝒫[𝜀] is the coproduct between𝒫 and 𝑅•[𝜀], we need to

show that, for any pair of morphisms 𝜑 : 𝒫→ 𝒫
′
and 𝜓 : 𝑅•[𝜀] → 𝒫

′
of operads,

there is a unique morphism 𝜉 : 𝒫[𝜀] → 𝒫
′
of operads for which the diagram:

𝒫 𝑃[𝜀] 𝑅•[𝜀]

𝒫
′

𝜄1

𝜑 𝜉

𝜄2

𝜓

commutes; where 𝜄1 and 𝜄2 are defined as follows:

𝜄1 : 𝒫→ 𝒫[𝜀]

𝜄1(𝜇) := 𝜇
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𝜄2 : 𝑅•[𝜀] → 𝒫[𝜀]

𝜄2(𝑎 + 𝑏𝜀) := 𝑎1𝒫 + 𝑏𝜀1𝒫

Let’s define 𝜉 as follows:

𝜉 : 𝒫[𝜀] → 𝒫
′

𝜉(𝜇 + 𝜀𝜈) := 𝜑(𝜇) + 𝜓(𝜀)𝜑(𝜈)

Let’s show that 𝜉 is a well-defined morphism of operads:

𝜉(𝜇 + 𝜀𝜈) (𝜉(𝜇1 + 𝜀𝜈1), . . . , 𝜉(𝜇𝑛 + 𝜀𝜈𝑛))

= (𝜑(𝜇) + 𝜓(𝜀)𝜑(𝜈))(𝜑(𝜇1) + 𝜓(𝜀)𝜑(𝜈1), . . . , 𝜑(𝜇𝑛) + 𝜓(𝜀)𝜑(𝜈𝑛))

= 𝜑(𝜇)(𝜑(𝜇1), . . . , 𝜑(𝜇𝑛)) + 𝜓(𝜀) (𝜑(𝜈)(𝜑(𝜇1), . . . , 𝜑(𝜇𝑛))+

+
𝑛∑︂
𝑘=1

𝜑(𝜇)(𝜑(𝜇1), . . . , 𝜑(𝜈𝑘), . . . , 𝜑(𝜇𝑛))
)︄

= 𝜑(𝜇(𝜇1, . . . , 𝜇𝑛) + 𝜓(𝜀)
(︄
𝜑(𝜈(𝜇1, . . . , 𝜇𝑛) +

𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛)
)︄

= 𝜉((𝜇 + 𝜀𝜈) (𝜇1 + 𝜀𝜈1, . . . , 𝜇𝑛 + 𝜀𝜈𝑛)

where we used that 𝜓(𝜀)𝜓(𝜀) = 𝜓(𝜀2) = 0. Moreover:

𝜉(1 +𝒫[𝜀])

= 𝜉(1𝒫)

= 𝜑(1𝒫)

= 1𝒫′

So, 𝜉 is an operad morphism. Finally, suppose that 𝜉′ : 𝒫[𝜀] → 𝒫
′

is another

morphism of operads for which 𝜄1𝜉′ = 𝜑 and 𝜄2𝜉′ = 𝜓. Then:

𝜉′(𝜇 + 𝜀𝜈)

= 𝜉′(𝜇) + 𝜉′(𝜀1𝒫)𝜉′(𝜈)

= 𝜉′(𝜄1(𝜇)) + 𝜉′(𝜄2(𝜀))𝜉′(𝜄1(𝜈))

= 𝜑(𝜇) + 𝜓(𝜀)𝜑(𝜈)

= 𝜉(𝜇 + 𝜀𝜈)
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This proves that 𝜉 is the unique morphism which makes the above diagram com-

muting. Thus, 𝒫[𝜀] ≅ 𝒫 + 𝑅•[𝜀]. Extending the same argument to morphisms,

one can easily see that

T

≅ (−) + 𝑅•[𝜀]. □

The next step is to show that the functor

T

admits a left adjoint T.

Lemma 5.37. The functor

T: Operad → Operad admits a left adjoint T: Operad →
Operad which sends an operad 𝒫 to the operad T𝒫 generated by all 𝜇 ∈ 𝒫(𝑛), for every
positive integer 𝑛 and by symbols d𝜇, for each 𝜇 ∈ 𝒫(𝑛), such that the following relations
hold:

𝜇T𝒫(𝜇1, . . . , 𝜇𝑛) = 𝜇𝒫(𝜇1, . . . , 𝜇𝑛)

d(𝑟𝜇 + 𝑠𝜈) = 𝑟d𝜇 + 𝑠d𝜈

d(𝜇(𝜇1, . . . , 𝜇𝑛)) = (d𝜇)(𝜇1, . . . , 𝜇𝑛) +
𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , d𝜇𝑘 , . . . , 𝜇𝑛)

Moreover, T sends a morphism 𝜑 : 𝒫→ 𝒫
′ of operads to the morphism which sends each

𝜇 ∈ T𝒫 to 𝜑(𝜇) ∈ T𝒫
′ and each d𝜇 ∈ T𝒫 to d𝜑(𝜇) ∈ T𝒫

′. In particular, the unit 𝜂 and
the counit 𝜀 of the adjunction T ⊣ T

are defined as follows:

𝜂 : 𝒫→ TT𝒫

𝜂(𝜇) := (𝜇, d𝜇)

𝜀T T

𝒫→ 𝒫

𝜀(𝜇, 𝜈) := 𝜇

𝜀(d(𝜇, 𝜈)) := 𝜈

Proof. Let’s start by showing that 𝜂 is a morphism of operads:

𝜂(𝜇(𝜇1, . . . , 𝜇𝑛))

= (𝜇(𝜇1, . . . , 𝜇𝑛), d(𝜇(𝜇1, . . . , 𝜇𝑛)))

=

(︄
𝜇(𝜇1, . . . , 𝜇𝑛), (d𝜇)(𝜇1, . . . , 𝜇𝑛) +

𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , d𝜇𝑘 , . . . , 𝜇𝑛)
)︄

= (𝜇, d𝜇)((𝜇1, d𝜇1), . . . , (𝜇𝑛 , d𝜇𝑛))

= (𝜂(𝜇))(𝜂(𝜇1), . . . , 𝜂(𝜇𝑛))
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Moreover, 𝜂(1𝒫) = (1𝒫 , d1𝒫). However, since:

d1𝒫 = d(1𝒫(1𝒫)) = (d(1𝒫)(1𝒫) + 1𝒫(d1𝒫) = d1𝒫 + d1𝒫

we obtain d1𝒫 = 0, thus 𝜂(1𝒫) = (1𝒫 , 0) = 1 T

𝒫. Let’s now show that also 𝜀 is

well-defined. To do so, we need to show that 𝜀 is compatible with the relations

which define T T

𝒫:

𝜀((𝜇, 𝜈)((𝜇1, 𝜈1), . . . , (𝜇𝑛 , 𝜈𝑛))

= 𝜀

(︄
𝜇(𝜇1, . . . , 𝜇𝑛), 𝜈(𝜇1, . . . , 𝜇𝑛) +

𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛)
)︄

= 𝜇(𝜇1, . . . , 𝜇𝑛)

= (𝜀(𝜇, 𝜈))(𝜀(𝜇1, 𝜈1), . . . , 𝜀(𝜇𝑛 , 𝜈𝑛))

𝜀(d(𝑟(𝜇1, 𝜈1) + 𝑠(𝜇2, 𝜈2)))

= 𝑟𝜈1 + 𝑠𝜈2

= 𝜀(𝑟d(𝜇1, 𝜈1) + 𝑠d(𝜇2, 𝜈2))

𝜀(d((𝜇, 𝜈)((𝜇1, 𝜈1), . . . , (𝜇𝑛 , 𝜈𝑛))))

= 𝜀

(︄
d

(︄
𝜇(𝜇1, . . . , 𝜇𝑛), 𝜈(𝜇1, . . . , 𝜇𝑛) +

𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛)
)︄)︄

= 𝜈(𝜇1, . . . , 𝜇𝑛) +
𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , 𝜈𝑘 , . . . , 𝜇𝑛)

= (𝜀(d(𝜇, 𝜈)))(𝜀(𝜇1, 𝜈1), . . . , 𝜀(𝜇𝑛 , 𝜈𝑛)) +

+
𝑛∑︂
𝑘=1
(𝜀(𝜇, 𝜈))(𝜀(𝜇1, 𝜈1), . . . , 𝜀(d(𝜇𝑘 , 𝜈𝑘)), . . . , 𝜀(𝜇𝑛 , 𝜈𝑛))

= 𝜀

(︄
(d(𝜇, 𝜈))((𝜇1, 𝜈1), . . . , (𝜇𝑛 , 𝜈𝑛)) +

𝑛∑︂
𝑘=1
(𝜇, 𝜈)((𝜇1, 𝜈1), . . . , d(𝜇𝑘 , 𝜈𝑘), . . . , (𝜇𝑛 , 𝜈𝑛))

)︄
Let’s now prove the triangle identities. Let’s start by showing that T𝜂𝜀T = idT. To

do so, let’s evaluate T𝜂𝜀T on the generators:

𝜀T(T𝜂(𝜇))

= 𝜀T(𝜂(𝜇))
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= 𝜀T(𝜇, d𝜇)

= 𝜇

𝜀T(T𝜂(d𝜇))

= 𝜀T(d𝜂(𝜇))

= 𝜀T(d(𝜇, d𝜇))

= d𝜇

Let’s now show the second triangle identity 𝜂

TT

𝜀 = id T

:

T

𝜀(𝜂 T(𝜇, 𝜈))

=

T

𝜀((𝜇, 𝜈), d(𝜇, 𝜈))

= (𝜀(𝜇, 𝜈), 𝜀(d(𝜇, 𝜈)))

= (𝜇, 𝜈)

This proves that (𝜂, 𝜀) : T ⊣ T
forms an adjunction. □

Theorem 5.38. The tangent category (Operad, T) is corepresentable and 𝑅•[𝜀] is a coin-
finitesimal object of Operad.

Corollary 5.39. The tangent category (Operad, T) is adjunctable; in particular, the adjoint
tangent structureT over the opposite category is defined as follows. For the sake of simplicity,
all morphisms are regarded as morphisms of operads:

tangent bundle functor The tangent bundle functor T: Operad → Operad, regarded
as an endofunctor of Operad, is the left adjoint of

T

described by Lemma 5.37. In
particular, T𝒫 is the operad generated by all 𝜇 ∈ 𝒫(𝑛), for every positive integer 𝑛
and by symbols d𝜇, for each 𝜇 ∈ 𝒫(𝑛), such that the following relations hold:

𝜇T𝒫(𝜇1, . . . , 𝜇𝑛) = 𝜇𝒫(𝜇1, . . . , 𝜇𝑛)

d(𝑟𝜇 + 𝑠𝜈) = 𝑟d𝜇 + 𝑠d𝜈

d(𝜇(𝜇1, . . . , 𝜇𝑛)) = (d𝜇)(𝜇1, . . . , 𝜇𝑛) +
𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , d𝜇𝑘 , . . . , 𝜇𝑛)

Moreover, T sends a morphism 𝜑 : 𝒫→ 𝒫
′ of operads to the morphism which sends

each 𝜇 ∈ T𝒫 to 𝜑(𝜇) ∈ T𝒫
′ and each d𝜇 ∈ T𝒫 to d𝜑(𝜇) ∈ T𝒫

′;
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projection The projection 𝑝(T) : idOperad ⇒ T is the natural transformation defined as
follows:

𝑝(T) : 𝒫→ T𝒫

𝑝(T)(𝜇) := 𝜇

zero morphism The zero morphism 𝑧(T) : T ⇒ idOperad is the natural transformation
defined on generators as follows:

𝑧(T) : T𝒫→ 𝒫

𝑧(T)(𝜇) := 𝜇

𝑧(T)(d𝜇) := 0

𝑛-fold pullback The 𝑛-fold pushot (in the category Operad) of the projection along itself
is the functor T𝑛 : Operad→ Operad which sends an operad 𝒫 to the operad T𝑛𝒫

generated by all 𝜇 ∈ 𝒫(𝑛) and by symbols d1𝜇, . . . , d𝑛𝜇, for each 𝜇 ∈ 𝒫(𝑛), for
every positive integer 𝑛, satisfying the follwing relations:

𝜇T𝑛𝒫(𝜇1, . . . , 𝜇𝑛) = 𝜇𝒫(𝜇1, . . . , 𝜇𝑛)

d𝑖(𝑟𝜇 + 𝑠𝜈) = 𝑟d𝑖𝜇 + 𝑠d𝑖𝜈

d𝑖(𝜇(𝜇1, . . . , 𝜇𝑛)) = (d𝑖𝜇)(𝜇1, . . . , 𝜇𝑛) +
𝑛∑︂
𝑘=1

𝜇(𝜇1, . . . , d𝑖𝜇𝑘 , . . . , 𝜇𝑛)

for every 𝑖 = 1, . . . , 𝑛. Moreover, T𝑛 sends a morphism 𝜑 : 𝒫 → 𝒫
′ of operads

to the morphism T𝑛𝜑 which sends the generator 𝜇 ∈ T𝑛𝒫 to 𝜑(𝜇) ∈ T𝑛𝒫
′ and

d𝑘𝜇 ∈ T𝑛𝒫 to d𝑘𝜑(𝜇) ∈ T𝒫
′. Finally, the 𝑘-th injection 𝜄𝑘 : T𝒫 → T𝑛𝒫 is the

natural transformation which sends each 𝜇 ∈ T𝒫 to itself and each d𝜇 ∈ T𝒫 to
d𝑘𝜇 ∈ T𝑛𝒫;

sum morphism The sum morphism 𝑠(T) : T⇒ T2 is the natural transformation defined
on generators as follows:

𝑠(T) : T𝒫→ T2𝒫

𝑠(T)(𝜇) := 𝜇

𝑠(T)(d𝜇) := d1𝜇 + d2𝜇
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vertical lift The vertical lift 𝑙(T) : T2 ⇒ T is the natural transformation defined on
generators as follows:

𝑙(T) : T2
𝒫→ T𝒫

𝑙(T)(𝜇) := 𝜇

𝑙(T)(d𝜇) := 0

𝑙(T)(d′𝜇) := 0

𝑙(T)(d′d𝜇) := d𝜇

canonical flip The canonical flip 𝑐(T) : T2⇒ T2 is the natural transformation defined on
generators as follows:

𝑐(T) : T2
𝒫→ T2

𝒫

𝑐(T)(𝜇) := 𝜇

𝑐(T)(d𝜇) := d′𝜇

𝑐(T)(d′𝜇) := d𝜇

𝑐(T)(d′d𝜇) := d𝜇

Moreover, (Operadop,T) has negatives with negation:

negation The negation 𝑛(T) : T⇒ T is the natural transformation defined on generators
as follows:

𝑛(T) : T𝒫→ T𝒫

𝑛(T)(𝜇) := 𝜇

𝑛(T)(d𝜇) := −d𝜇

Finally, (Operadop,T) is representable and Cartesian.

Remark 5.40. In analogy with the description of the geometric tangent functor T(𝒫)

of Theorem 3.68, one would expect the operad T𝒫 to be described as the free 𝒫-

operad of the module of Kähler differentials over 𝒫. In our knowledge, a definition

for the module of Kähler differentials of an operad is missing from the literature.

We expect this module to represent the functor of derivations of a given operad.

We believe such a description is possible. However, we leave this as a future work.
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Example 5.41. Let’s consider the operad 𝒜𝓈𝓈 described in Example 3.7. Recall that

𝒜𝓈𝓈 is generated by a binary tree 𝜇 which satisfies 𝜇(𝜇, 1) = 𝜇(1, 𝜇). Then, the

operad T𝒜𝓈𝓈 is generated by two binary trees 𝜇 and 𝜈 : = d𝜇. 𝜇 satisfies the usual

relation 𝜇(𝜇, 1) = 𝜇(1, 𝜇). Thanks to the relations which define d we obtain the

following:

d(𝜇(𝜇, 1))

= (d𝜇)(𝜇, 1) + 𝜇(d𝜇, 1) + 𝜇(𝜇, d1)

= (d𝜇)(𝜇, 1) + 𝜇(d𝜇, 1)

= 𝜈(𝜇, 1) + 𝜇(𝜈, 1)

where we used that d1 = 0. Similarly:

d(𝜇(1, 𝜇))

= (d𝜇)(1, 𝜇) + 𝜇(d1, 𝜇) + 𝜇(1, d𝜇)

= (d𝜇)(1, 𝜇) + 𝜇(1, d𝜇)

= 𝜈(1, 𝜇) + 𝜇(1, 𝜈)

So, we obtain:

𝜈(1, 𝜇) + 𝜇(1, 𝜈) = d(𝜇(1, 𝜇)) = d(𝜇(𝜇, 1)) = 𝜈(𝜇, 1) + 𝜇(𝜈, 1)

Rearranging:

𝜇(1, 𝜈) − 𝜈(𝜇, 1) + 𝜈(1, 𝜇) − 𝜇(𝜈, 1) = 0

which is precisely the 2-cocycle condition of Equation (5.1.1). So, an algebra of

T𝒜𝓈𝓈 is an associative algebra 𝐴 with associative multiplication 𝜇𝐴 : 𝐴 ⊗ 𝐴 → 𝐴

together with a binary operation 𝜈𝐴 : 𝐴 ⊗ 𝐴 → 𝐴. In particular, extending 𝜈𝐴 by

𝑅[𝜀]-linearity over the 𝑅[𝜀]-module 𝐴[𝜀] = 𝐴 ⊗ 𝑅[𝜀], we obtain a new associative

algebra 𝐴[𝜀] with associative multiplication defined by 𝜇𝐴 + 𝜀𝜈𝐴. In particular,

𝐴[𝜀] is an infinitesimal deformation of 𝐴.

Conversely, if 𝐵 is an infinitesimal deformation of an associative algebra 𝐴, then

the associative multiplication of 𝐵 is of the form 𝜇𝐴 + 𝜀𝜈𝐴 for a binary operation

𝜈𝐴 : 𝐴 ⊗ 𝐴 → 𝐴 which satisfies precisely the relation of the generator 𝜈 of T𝒜𝓈𝓈.

So, 𝐵, regarded as an 𝑅-module, is a T𝒜𝓈𝓈-algebra.
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Let’s now consider the unital associative operad 𝓊𝒜𝓈𝓈, also described in Ex-

ample 3.7. 𝓊𝒜𝓈𝓈 is generated by a binary operation 𝜇 satisfying the same as-

sociative relation of 𝜇 ∈ 𝒜𝓈𝓈, and by a 0-ary operation 𝜂 ∈ 𝓊𝒜𝓈𝓈(0) satisfying

𝜇(𝜂, 1) = 1 = 𝜇(1, 𝜂). Applying d on both sides of this equation we get:

𝜈(𝜂, 1) + 𝜇(d𝜂, 1) = d1 = 0 = 𝜈(1, 𝜂) + 𝜇(1, d𝜂)

where we used 𝜈 : = d𝜇. So,T𝓊𝒜𝓈𝓈 is generated by two binary operations 𝜇 and 𝜈

satisfying:

𝜇(𝜇, 1) = 𝜇(1, 𝜇)

𝜇(1, 𝜈) − 𝜈(𝜇, 1) + 𝜈(1, 𝜇) − 𝜇(𝜈, 1) = 0

and by two 0-ary operations 𝜂 and 𝜃 := d𝜂 satisfying:

𝜇(𝜂, 1) = 1

𝜇(1, 𝜂) = 1

𝜈(𝜂, 1) = −𝜇(𝜃, 1)

𝜈(1, 𝜂) = −𝜇(1, 𝜃)

However, we also have:

𝜃

= (1)𝜃

= 𝜇(𝜂, 1)(𝜃)

= 𝜇(𝜂, 𝜃)

= 𝜇(1, 𝜃)(𝜂)

= −𝜈(1, 𝜂)(𝜂)

= −𝜈(𝜂, 𝜂)

Moreover, 𝜃 = −𝜈(𝜂, 𝜂) implies 𝜈(𝜂, 1) = −𝜇(𝜃, 1). To see this, consider the follow-

ing:

−𝜇(𝜃, 1)

= −𝜇(−𝜈(𝜂, 𝜂), 1)
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= 𝜇(𝜈(𝜂, 𝜂), 1)

= 𝜇(𝜈, 1)(𝜂, 𝜂, 1)

= (𝜇(1, 𝜈) − 𝜈(𝜇, 1) + 𝜈(1, 𝜇))(𝜂, 𝜂, 1)

= 𝜇(𝜂, 𝜈(𝜂, 1)) − 𝜈(𝜇(𝜂, 𝜂), 1) + 𝜈(𝜂, 𝜇(𝜂, 1))

= 𝜇(𝜂, 1)𝜈(𝜂, 1) − 𝜈(𝜇(𝜂, 1)(𝜂), 1) + 𝜈(𝜂, 𝜇(𝜂, 1))

= 𝜈(𝜂, 1) − 𝜈(𝜂, 1) + 𝜈(𝜂, 1)

= 𝜈(𝜂, 1)

Similarly, one can also show that 𝜃 = −𝜈(𝜂, 𝜂) implies 𝜈(1, 𝜂) = −𝜇(1, 𝜃). Therefore,

the presentation of T𝓊𝒜𝓈𝓈 can be simplified as follows: T𝓊𝒜𝓈𝓈 is generated by 0-

ary operation 𝜂 and by two binary operations 𝜇 and 𝜈, satisfying the following

relations:

𝜇(𝜇, 1) = 𝜇(1, 𝜇)

𝜇(1, 𝜈) − 𝜈(𝜇, 1) + 𝜈(1, 𝜇) − 𝜇(𝜈, 1) = 0

𝜇(𝜂, 1) = 1

𝜇(1, 𝜂) = 1

Example 5.42. Consider the operad 𝒞ℴ𝓂 described in Example 3.8. Recall that

𝒞ℴ𝓂 is generated by a binary operation 𝜇 ∈ 𝒞ℴ𝓂(2)which satisfies:

𝜇(𝜇, 1) = 𝜇(1, 𝜇)

𝜇 · 𝜏 = 𝜇

𝜏 being the permutation (1 2). Then, T𝒞ℴ𝓂 is generated by two binary operations

𝜇 and 𝜈 := d𝜇 satisfying:

𝜇(𝜇, 1) = 𝜇(1, 𝜇)

𝜇 · 𝜏 = 𝜇

𝜇(1, 𝜈) − 𝜈(𝜇, 1) + 𝜈(1, 𝜇) − 𝜇(𝜈, 1) = 0

𝜈 · 𝜏 = 𝜈

Similarly, 𝓊𝒞ℴ𝓂, also described in Example 3.8, is generated by 𝜇 and by a 0-ary

operation 𝜂 for which 𝜇(𝜂, 1) = 1. Thus, T𝓊𝒞ℴ𝓂 is generated by two binary
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operations 𝜇 and 𝜈 and by a 0-ary operation 𝜂 for which:

𝜇(𝜇, 1) = 𝜇(1, 𝜇)

𝜇 · 𝜏 = 𝜇

𝜇(1, 𝜈) − 𝜈(𝜇, 1) + 𝜈(1, 𝜇) − 𝜇(𝜈, 1) = 0

𝜈 · 𝜏 = 𝜈

𝜇(𝜂, 1) = 1

Example 5.43. Consider the operad ℒ𝒾ℯ described in Example 3.9. Recall that ℒ𝒾ℯ

is generated by a binary operation 𝜇 satisfying the following relations:

𝜇 + 𝜇 · 𝜏 = 0

𝜇(𝜇, 1) + 𝜇(𝜇, 1) · 𝜎 + 𝜇(𝜇, 1) · 𝜎2 = 0

where 𝜎 denotes the permutation (1 2 3) and 𝜏 = (1 2). Then, Tℒ𝒾ℯ is gener-

ated by two binary operations 𝜇 and 𝜈 := d𝜇 satisfying the following conditions:

𝜈 + 𝜈 · 𝜏 = 0

𝜈(𝜇, 1) + 𝜇(𝜈, 1) + 𝜈(𝜇, 1) · 𝜎 + 𝜇(𝜈, 1) · 𝜎 + 𝜈(𝜇, 1) · 𝜎2 + 𝜇(𝜈, 1) · 𝜎2 = 0

or equivalently:

𝜈 + 𝜈 · 𝜏 = 0

𝜈(𝜇, 1) + 𝜈(𝜇, 1) · 𝜎 + 𝜈(𝜇, 1) · 𝜎2 = 𝜇(1, 𝜈) + 𝜇(1, 𝜈) · 𝜎 + 𝜇(1, 𝜈) · 𝜎2

Example 5.44. Consider a unital associative algebra𝐴 over𝑅 and the corresponding

operad 𝐴•, described in Example 3.6. Then the operad T𝐴• is generated by all

𝑎 ∈ 𝐴•(1) = 𝐴 and by symbols d𝑎, for each 𝑎 ∈ 𝐴. Moreover:

d(𝑎𝑏) = d(𝑎(𝑏)) = (d𝑎)𝑏 + 𝑎(d𝑏)

for every 𝑎, 𝑏 ∈ 𝐴; where we denoted the associative multiplication of 𝐴 by jux-

taposition. So, T𝐴• is precisely (T𝐴)•, where T𝐴 denotes the geometric tangent

bundle over the associative affine scheme 𝐴.

Example 5.44 suggests an interesting relationship between operads and algebras.
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Proposition 5.45. The functor (−)• : Alg→ Operad which sends an associative and unital
algebra𝐴 to the operad𝐴• described in Example 3.6 and which sends a morphism 𝑓 : 𝐴→ 𝐵

of algebras to the corresponding morphism 𝑓 • such that 𝑓 •(1) = 𝑓 , extends to a strict tangent
morphism (−)• : Alg(𝓊𝒜𝓈𝓈) → (Operad, T). Moreover, (the opposite of) the same functor
extends also to a strong tangent morphism (−)• : Geom(𝓊𝒜𝓈𝓈) → (Operadop,T).

Proof. Since the proof is straightforward, we leave it to the reader to complete the

details of this proof. □

It is also possible to send an operad𝒫 to the associative and unital algebra𝒫(1).
It is straightforward to see that this extends to a functor (−)(1) : Operad→ Alg. The

next proposition shows that (−)(1) is compatible with the tangent structures

T

and

T.

Proposition 5.46. The functor (−)(1) : Operad→ Alg extends to a strict tangent morph-
ism (−)(1) : (Operad, T) → Alg(𝓊𝒜𝓈𝓈). Moreover, (the opposite of) the same functor
extends also to a strong tangent morphism (−)(1) : (Operadop,T) → Geom(𝓊𝒜𝓈𝓈).

Proof. Since the proof is straightforward, we leave it to the reader to complete the

details of this proof. □

In the exploration of the possible relationships between the tangent categories

of operads and the ones of operadic algebras, the functor which sends a 𝒫-algebra

𝐴 to the corresponding enveloping operad 𝒫
(𝐴)

is one of the most interesting. So,

it is natural to wonder if this functor is compatible with the tangent structures.

Recall (see Section 4.2.1), that the enveloping operad 𝒫
(𝐴)

is the operad gen-

erated by tuples (𝜇; 𝑎1, . . . , 𝑎𝑘 | formed by 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴 and by 𝜇 ∈ 𝒫(𝑛 + 𝑘), for

every positive integers 𝑛 and 𝑘, which are 𝑅-linear in each entry, and that satisfy

the following relations:

(𝜇; 𝑎1, . . . , 𝜈(𝑎𝑘 , . . . , 𝑎𝑖+𝑛), . . . , 𝑎𝑘 | = (𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑎𝑘 |

where 𝜇 ◦𝑘 𝜈 denotes 𝜇(1, . . . , 𝜈, . . . , 1).

Proposition 5.47. The functor 𝒫(−) : Alg𝒫 → Operad which sends a 𝒫-algebra 𝐴 to the
corresponding enveloping operad 𝒫

(𝐴) and a morphism 𝑓 : 𝐴 → 𝐵 to the morphism of
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operads 𝑓 (𝐴) : 𝒫(𝐴)→ 𝒫
(𝐵) defined on generators as follows:

𝑓 (𝐴)(𝜇; 𝑎1, . . . , 𝑎𝑘 | := (𝜇; 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑘)|

equipped with the distributive law 𝜉𝒫 : 𝒫(

T

𝐴)→ T

𝒫
(𝐴) defined on generators as follows:

𝜉𝒫(𝜇; (𝑎1, 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘)| :=
(︄
(𝜇; 𝑎1, . . . , 𝑎𝑘 |,

𝑘∑︂
𝑖=1
(𝜇; 𝑎1, . . . , 𝑏𝑖 , . . . , 𝑎𝑘 |

)︄
becomes a lax tangent morphism (𝒫(−), 𝜉𝒫) : Alg(𝒫) → (Operad, T). Moreover, by
mating, (the opposite of) the functor 𝒫(−) also extends to a lax tangent morphism:

(𝒫(−), 𝜔𝒫) : Geom(𝒫) → (Operadop,T)

Proof. The first step is to show that 𝜉𝒫 is well-defined by proving that is compatible

with the relations of the enveloping operad:

𝜉𝒫(𝜇; (𝑎1, 𝑏1), . . . , 𝜈((𝑎𝑖 , 𝑏𝑖), . . . , (𝑎𝑖 + 𝑛, 𝑏𝑖+𝑛)), . . . , (𝑎𝑘 , 𝑏𝑘)|

= 𝜉𝒫
⎛⎜⎝𝜇; (𝑎1, 𝑏1), . . . , ⎛⎜⎝𝜈(𝑎𝑖 , . . . , 𝑎𝑖 + 𝑛),

𝑖+𝑛∑︂
𝑗=𝑖

𝜈(𝑎𝑖 , . . . , 𝑏 𝑗 , . . . , 𝑎𝑖+𝑛⎞⎟⎠ , . . . , (𝑎𝑘 , 𝑏𝑘)
|︁|︁|︁|︁|︁|︁

= ((𝜇; 𝑎1, . . . , 𝜈(𝑎𝑖 , . . . , 𝑎𝑖+𝑛), . . . , 𝑎𝑘 |,∑︂
𝑙≠𝑖 ,...,𝑖+𝑛

(𝜇; 𝑎1, . . . , 𝑏𝑙 , . . . , 𝜈(𝑎𝑖 , . . . , 𝑎𝑖+𝑛), . . . , 𝑎𝑘 | +

+
𝑖+𝑛∑︂
𝑗=𝑖

(𝜇; 𝑎1, . . . , 𝜈(𝑎𝑖 , . . . , 𝑏 𝑗 , . . . , 𝑎𝑖+𝑛), . . . , 𝑎𝑘 |⎞⎟⎠
= ((𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑎𝑘 |,∑︂

𝑙≠𝑖 ,...,𝑖+𝑛
(𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑏𝑙 , . . . , 𝑎𝑘 | +

+
𝑖+𝑛∑︂
𝑗=𝑖

(𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑏 𝑗 , . . . , 𝑎𝑘 |⎞⎟⎠
=

⎛⎜⎝(𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑎𝑘 |,
𝑘∑︂
𝑗−1
(𝜇 ◦𝑖 𝜈; 𝑎1, . . . , 𝑏 𝑗 , . . . , 𝑎𝑘 |⎞⎟⎠

= 𝜉𝒫(𝜇 ◦𝑖 𝜈; (𝑎1, 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘)|

This shows that 𝜉𝒫 is well-defined. To check the compatibility with the tangent

structures, recall first that the distributive law 𝛼𝒫 : S𝒫 ◦

T⇒ T◦ S𝒫 between the
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monad associated with the operad 𝒫 and the tangent bundle functor

T: Mod𝑅 →
Mod𝑅 induced by biproducts is defined as follows:

𝛼𝒫(𝜇; (𝑎1, 𝑏1), . . . , (𝑎𝑛 , 𝑏𝑛)) =
(︄
(𝜇; 𝑎1, . . . , 𝑎𝑛),

𝑛∑︂
𝑘=1
(𝜇; 𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)

)︄
𝜉𝒫 is defined on generators in a similar fashion. From this observation, one imme-

diately concludes that (𝒫(−), 𝜉𝒫) is a lax tangent morphism. Finally, by employing

Proposition 3.75, we conclude that (𝒫(−), 𝜉𝒫)op : Geom(𝒫) → (Operadop,T) is also a

lax tangent moprhism. □

By definition, the enveloping algebra Env𝒫(𝐴) of a 𝒫-algebra 𝐴 is the unital and

associative algebra𝒫
(𝐴)(1) (see for example [6, Definition 1.11]). Thus, from Propos-

itions 5.46 and 5.47 we conclude that the functor Env𝒫 : Alg𝒫 → Alg which sends a

𝒫-algebra 𝐴 to its enveloping algebra Env𝒫(𝐴) is compatible with the algebraic and

geometric tangent structures. Moreover, so does the functor Env•
𝒫

: Alg𝒫 → Operad
which sends a 𝒫-algebra to the operad Env•

𝒫
(𝐴) := (Env𝒫(𝐴))•.

Corollary 5.48. The functors Env𝒫 : Alg𝒫 → Alg and Env•
𝒫

: Alg𝒫 → Operad ex-
tend to lax tangent morphisms Env𝒫 : Alg(𝒫) → Alg(𝓊𝒜𝓈𝓈) and Env•

𝒫
: Alg(𝒫) →

(Operad, T). Moreover, (the opposite of) the same functors extend to the lax tangent
morphisms Env𝒫 : Geom(𝒫) → Geom(𝓊𝒜𝓈𝓈) and Env•

𝒫
: Geom(𝒫) → (Operadop,T).

Remark 5.49. In Examples 3.51 and 3.82 we claimed that the functor which sends

a Lie algebra 𝔤 to its universal enveloping algebra Envℒ𝒾ℯ(𝔤) extends to two tangent

morphisms Envℒ𝒾ℯ : Alg(ℒ𝒾ℯ) → Alg(𝓊𝒜𝓈𝓈) and Envℒ𝒾ℯ : Geom(ℒ𝒾ℯ) → Geom(𝓊𝒜𝓈𝓈).
This was shown as a consequence of Envℒ𝒾ℯ being induced by a morphism of op-

erads 𝓊𝒜𝓈𝓈→ℒ𝒾ℯ. This result can also be seen as a special case of Corollary 5.48.

We conclude this section with two important consequences of (Operadop,T)
being the geometric tangent category of the coCartesian differential monad (𝑊, 𝜕).
Applying Proposition 3.73 we classify vector fields and applying Theorem 4.20, we

prove that every free operad is a differential object in (Operadop,T).

Theorem 5.50. Vector fields 𝑣 : T𝒫 → 𝒫 over an operad 𝒫 (regarded as operad morph-
isms) in the tangent category (Operadop,T) are in bĳective correspondence with vector
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fields 𝒫 → T

𝒫 over 𝒫 in the tangent category (Operad, T), which are in bĳective cor-
respondence with derivations over 𝒫. Moreover, these bĳections preserve the Lie brackets,
defined by the two tangent structures (see Section 2.2.1) and by the commutator between
derivations, respectively.

Concretely, the equivalence between vector fields 𝑣 : 𝒫 → T

𝒫 and 𝑣♯ : T𝒫 →
𝒫 is defined as follows. Every 𝑣 : 𝒫 T

𝒫 sends 𝜇𝒫(𝑛) to (𝜇, 𝛿𝑣(𝜇)) ∈

T

𝒫. Then

𝑣♯ : T𝒫→ 𝒫 sends 𝜇 to itself and d𝜇 to 𝛿𝑣𝜇. Conversely, a vector field 𝑢 : T𝒫→ 𝒫

sends each 𝜇 to 𝜇 and d𝜇 to 𝛿𝑢(𝜇) ∈ 𝒫, so 𝑢♭ : 𝒫→ T

𝒫 sends 𝜇 to (𝜇, 𝛿𝑢(𝜇)).

Theorem 5.51. Free operads are differential objects in (Operadop,T).

We leave it to future work to classify all differential objects and differential

bundles of (Operadop,T). However, we conjecture that differential bundles in this

tangent category could be operad bimodules in which the left action is linearized

(see [46, Section 5.2.2]).

5.3 Towards a local approach to deformations

In Example 5.11 we showed that vector fields 𝑣 : 𝒜𝓈𝓈→ T

𝒜𝓈𝓈over𝒜𝓈𝓈of (Operad, T),
or equivalently, vector fields 𝑣♯ : T𝒜𝓈𝓈 → 𝒜𝓈𝓈 of the adjoint tangent category

(Operadop,T), define for every associative algebra 𝐴 an infinitesimal deformation

of 𝐴. More generally, given a derivation 𝛿 : 𝒫→ 𝒫 of an operad 𝒫, we can define

a functor 𝛿! : Alg𝒫 → Alg T

𝒫 which sends every 𝒫-algebra 𝐴 to an infinitesimal

deformation 𝛿!𝐴 of 𝐴.

However, this does not guarantee that every infinitesimal deformation of a 𝒫-

algebra 𝐴 can be defined via this construction. Let’s consider again the case with

𝒫 = 𝒜𝓈𝓈. Every derivation 𝛿 of 𝒜𝓈𝓈 is fully determined by 𝛿(𝜇) ∈ 𝒜𝓈𝓈(2), where 𝜇

denotes the usual generator of 𝒜𝓈𝓈 (see Example 3.7). However, 𝒜𝓈𝓈(2) = 𝑅2
, thus

𝛿(𝜇) = 𝑟𝜇 + 𝑠𝜇op
for some 𝑟, 𝑠 ∈ 𝑅. However, from the 2-cocyle condition and the

associativity of 𝜇 we conclude that 𝑠 must be zero. Therefore, all derivations 𝛿 of

𝒜𝓈𝓈 are specified by 𝛿(𝜇) = 𝑟𝜇. Unfortunately, this only accounts for the trivial

infinitesimal deformations, since, for an associative algebra 𝐴, 𝑟𝜇𝐴 is precisely

the 2-coboundary in the Hochschild cohomology of 𝐴 associated to the 1-cocycle

𝑟id𝐴 : 𝐴→ 𝐴.
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In this section, we would like to investigate some ideas to employ the tangent

categories (Operad, T) and (Operadop,T) to capture all infinitesimal deformations

of 𝒫-algebras. We develop two main approaches: the first focuses on defining a

module which classifies all infinitesimal deformations of a given algebra via a uni-

versal property, in a similar fashion as the module of Kähler differentials classifies

all derivations of an algebra. With the second approach, we try to take advant-

age of the tangent category (Operadop,T) to construct a functor which associates

each 𝒫-algebra 𝐴 with a bundle 𝐴→ Λ𝐴 whose sections in the category of affine

schemes are in bĳection with infinitesimal deformations. Finally, we compare these

two approaches.

The main intuition underpinning our efforts in this subject is the idea of in-

troducing on the category of 𝒫-affine schemes a “quasi-tangent structure” which

captures all infinitesimal deformations of a 𝒫-algebra 𝐴 as sections of the “quasi-

tangent bundle” of 𝐴 in a similar way as derivations of a 𝒫-algebra 𝐴 are sections

of the geometric tangent bundle over 𝐴. To make sense of this idea, first, recall why

the tangent bundle 𝑝 : 𝐴→ T𝐴 classifies derivations of 𝐴. Recall that T𝐴 is the free

𝐴-algebra of the 𝐴-bimodule of Kähler differentials of 𝐴. The important ingredient

is the module of Kähler differentials Ω𝐴 of 𝐴. In particular, Ω𝐴 is precisely the

𝐴-bimodule representing the functor Der𝐴 : Mod𝐴 → Mod𝑅 of derivations over 𝐴.

So, for any 𝐴-bimodule 𝑀 a derivation 𝛿 : 𝐴→ 𝑀 splits along the universal deriv-

ation d : 𝐴 → Ω𝐴, i.e. there is a unique morphism of 𝐴-bimodules 𝛿 : Ω𝐴 → 𝑀

such that:

𝐴 Ω𝐴

𝑀

d

𝛿
𝛿

Can we classify infinitesimal deformations of a 𝒫-algebra similarly? First, let’s

focus on the associative case, i.e. with 𝒫 = 𝒜𝓈𝓈 and let’s recall that, given an associ-

ative algebra 𝐴, and an 𝐴-bimodule 𝑀, a 2-cocycle of the Hochschild cohomology

of 𝐴 with coefficients in 𝑀 is an 𝑅-linear morphism:

𝜉 : 𝐴 ⊗ 𝐴→ 𝑀
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which satisfies the following condition:

𝑎𝜉(𝑏, 𝑐) − 𝜉(𝑎𝑏, 𝑐) + 𝜉(𝑎, 𝑏𝑐) − 𝜉(𝑎, 𝑏)𝑐 = 0

for every 𝑎, 𝑏, 𝑐 ∈ 𝐴, where the juxtaposition indicates the left and the right action of

𝐴 on𝑀. In the following, we simply refer to such a 𝜉 as a 2-cocycle. Notice also that,

given a morphism 𝑓 : 𝑀 → 𝑁 of 𝐴-bimodules and a 2-cocycle 𝜉 : 𝐴 ⊗ 𝐴→ 𝑀, the

morphism 𝑓∗𝜉 : 𝐴 ⊗ 𝐴 𝜉−→ 𝑀
𝑓
−→ 𝑁 is also a 2-cocycle. So, the operation which sends

an 𝐴-bimodule to the 𝑅-module Def𝐴(𝑀)which contains all 2-cocycles 𝐴⊗𝐴→ 𝑀

extends to a functor:

Def𝐴 : BiMod𝐴 → Mod𝑅

We want to prove that Def𝐴 is a representable functor. Let’s define the following

𝐴-bimodules.

Definition 5.52. For an associative algebra 𝐴, the bimodule of infinitesimal deform-
ators of 𝐴 is the free 𝐴-bimodule Ξ𝐴 generated by all symbols 𝜈(𝑎, 𝑏), called infinitesimal
deformators, for each 𝑎, 𝑏 ∈ 𝐴, subject to the relations:

𝜈(𝑟𝑎 + 𝑠𝑏, 𝑐) = 𝑟𝜈(𝑎, 𝑐) + 𝑠𝜈(𝑏, 𝑐)

𝜈(𝑐, 𝑟𝑎 + 𝑠𝑏) = 𝑟𝜈(𝑐, 𝑎) + 𝑠𝜈(𝑐, 𝑏)

𝑎𝜈(𝑏, 𝑐) − 𝜈(𝑎𝑏, 𝑐) + 𝜈(𝑎, 𝑏𝑐) + 𝜈(𝑎, 𝑏)𝑐 = 0

Proposition 5.53. The bimodule of infinitesimal deformators Ξ𝐴 of an associative algebra
𝐴 represents the functor Def𝐴 : BiMod𝐴 → Mod𝑅. Concretely, this means that for any
𝐴-bimodule 𝑀 a 2-cocycle 𝜉 : 𝐴 ⊗ 𝐴 → 𝑀 splits in a unique way along the universal
2-cocycle 𝜈 : 𝐴 ⊗ 𝐴 → Ξ𝐴, which sends 𝑎 ⊗ 𝑏 to 𝜈(𝑎, 𝑏) ∈ Ξ𝐴. In particular, there is a
unique morphism of 𝐴-bimodules 𝜉 : Ξ𝐴→ 𝑀 such that:

𝐴 ⊗ 𝐴 Ξ𝐴

𝑀

𝜈

𝜉
𝜉

Proof. First, thanks to the relations which define Ξ𝐴, 𝜈 is indeed a 2-cocycle. The

second step is to show the universal property. Consider a 2-cocycle 𝜉 : 𝐴 ⊗ 𝐴→ 𝑀
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and let’s define 𝜉 as the morphism which sends 𝜈(𝑎, 𝑏) in 𝜉(𝑎, 𝑏). Since 𝜉 is a 2-

cocycle, 𝜉 is compatible with the relations ofΞ𝐴, so 𝜉 is a well-defined morphism of

𝐴-bimodules for which, by construction, 𝜉 = 𝜈𝜉. Let’s now take a second morphism

𝜉
′
: Ξ𝐴 → 𝑀 of 𝐴-bimodules for which 𝜉 = 𝜈𝜉

′
. Then, 𝜉

′
𝜈(𝑎, 𝑏) = 𝜉. However,

since 𝜉
′

and 𝜉 agree on the generators of Ξ𝐴, we conclude that they must be the

same morphism. □

Let L: Alg → Alg be the functor which sends an associative algebra 𝐴 to the

𝐴-tensor algebra of the bimodule of infinitesimal deformators of 𝐴, i.e.:

L𝐴 := Tens𝐴Ξ𝐴

Moreover, L sends a morphism 𝑓 : 𝐴→ 𝐵 of algebras to the morphism L 𝑓 : L𝐴→
L𝐵 which sends each generator 𝜈(𝑎, 𝑏) ∈ L𝐴 to 𝜈( 𝑓 (𝑎), 𝑓 (𝑏)) ∈ L𝐵. Concretely, L𝐴
is the associative algebra generated by all 𝑎 ∈ 𝐴 and by symbols 𝜈(𝑎, 𝑏) for each

𝑎, 𝑏 ∈ 𝐴 such that the multiplication between the elements of 𝐴 behaves like the

multiplication in 𝐴 and 𝜈(𝑎, 𝑏) satisfy the same relations which define Ξ𝐴.

Proposition 5.54. Consider the following morphisms:

projection 𝑞 : 𝐴→ L𝐴 which sends 𝑎 to itself;

zero morphism 𝑧𝑞 : L𝐴→ 𝐴 which sends 𝑎 to itself and 𝜈(𝑎, 𝑏) to 0;

𝑛-fold pullbacks the 𝑛-pushout of 𝑞 along itself are the associative algebras L𝑛𝐴 gener-
ated by all elements 𝑎 of𝐴 for which the multiplication is defined as in𝐴, and symbols
𝜈𝑘(𝑎, 𝑏) each bilinear and satisfying the 2-cocycle relation, for each 𝑘 = 1, . . . , 𝑛;

sum morphism 𝑠𝑞 : L𝐴→ L2𝐴 which sends 𝑎 to itself and 𝜈(𝑎, 𝑏) to 𝜈1(𝑎, 𝑏)+ 𝜈2(𝑎, 𝑏);

vertical lift 𝑙𝑞 : TL𝐴 → L𝐴, where T denotes the geometric tangent bundle functor in
the tangent category Geom(𝒜𝓈𝓈), which sends 𝑎 to itself, d𝑎 and 𝜈(𝑎, 𝑏) to 0, and
d𝜈(𝑎, 𝑏) to 𝜈(𝑎, 𝑏).

For each associative algebra 𝐴, L𝐴 := (L𝐴, 𝑞, 𝑧𝑞 , 𝑠𝑞 , 𝑙𝑞) is a differential bundle over 𝐴 in
the geometric tangent category Geom(𝒜𝓈𝓈). Moreover, L extends to a functor:

L: Geom(𝒜𝓈𝓈) → DBndlnr(Geom(𝒜𝓈𝓈))
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Proof. This proof is a direct consequence of the classification of differential bundles

in the geometric tangent category of an operad expressed by Theorem 4.35, which

establishes that modules in the operadic sense over an operadic algebra are equi-

valent to differential bundles over the corresponding operadic affine scheme in

the geometric tangent category of the operad. Moreover, linear morphisms cor-

respond to linear morphisms between the corresponding differential bundles, in a

contravariant way.

In particular, for 𝒫 = 𝒜𝓈𝓈, L𝐴 equals Free𝐴Ξ𝐴 where Ξ𝐴 is an 𝐴-bimodule in

the operadic sense, so for the equivalence between modules and differential objects,

L𝐴 becomes a differential bundle. □

The next proposition proves that the differential bundle 𝐴 → L𝐴 classifies

infinitesimal deformations of 𝐴.

Proposition 5.55. 2-cocycles 𝜉 : 𝐴 ⊗ 𝐴 → 𝐴 of 𝐴 are in bĳective correspondence with
sections of the differential bundle 𝑞 : 𝐴→ L𝐴. In particular, each 𝜉 : 𝐴⊗𝐴→ 𝐴 defines a
morphism of 𝒫-algebras 𝑢𝜉 : L𝐴→ 𝐴 which sends each generator 𝑎 ∈ 𝐴 to itself and each
infnitesimal deformator 𝜈(𝑎, 𝑏) to 𝜉(𝑎, 𝑏). Conversely, each section 𝑢 : L𝐴→ 𝐴 defines a
2-cocycle 𝜉𝑢 : 𝐴 ⊗ 𝐴→ 𝐴 defined by 𝜉𝑢(𝑎, 𝑏) := 𝑢(𝜈(𝑎, 𝑏)).

Proof. The proof follows directly from the adjunction Free𝐴 ⊣ Restr𝐴 of Lemma 3.61

and by the universality of the bimodule of infinitesimal deformators established by

Proposition 5.53. □

The next step is to extend this construction for any operadic algebra for a given

algebraic operad. Let 𝒫 be an algebraic operad. In Examples 5.41, 5.42, 5.43,

and 5.44 we showed the relationship between the algebras of T𝒫 and corresponding

infinitesimal deformations. In particular, these examples suggest that given an 𝑛-

ary operation 𝜇 of an operad 𝒫, the corresponding 𝑛-ary operation d𝜇 ∈ T𝒫(𝑛)
represents an infinitesimal deformation of 𝜇.

This insight suggests defining the module Ξ𝐴 of infinitesimal deformators for

a 𝒫-algebra 𝐴 as the 𝐴-module (in the operadic sense) generated by symbols

d𝜇(𝑎1, . . . , 𝑎𝑛) for every 𝜇 ∈ 𝒫(𝑛) and every 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴. Indeed, when 𝒫 = 𝒜𝓈𝓈

and 𝜇 ∈ 𝒜𝓈𝓈(2) is the usual generator of 𝒜𝓈𝓈, d𝜇 = 𝜈 is precisely the infinitesimal

deformation of 𝜇. In the following, we adopt the following notation: we denote by
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𝑎⃗ a tuple 𝑎1, . . . , 𝑎𝑛 of elements of a 𝒫-algebra 𝐴. So, for instance, we write d𝜇(𝑎⃗)
for d𝜇(𝑎1, . . . , 𝑎𝑛). We also write 𝑎⃗1, . . . , 𝑎⃗𝑛 for 𝑎

(1)
1 , . . . , 𝑎

(1)
𝑘1
, . . . , 𝑎

(𝑛)
1 , . . . , 𝑎

(𝑛)
𝑘𝑛

.

Definition 5.56. The module of infinitesimal deformators of a 𝒫-algebra 𝐴 is the
𝐴-module Ξ𝐴 freely generated by symbols d𝜇(𝑎1, . . . , 𝑎𝑛) = d𝜇(𝑎⃗), called infinitesimal
deformators, for each𝜇 ∈ 𝒫(𝑛) and 𝑎⃗ := 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 subject to the following relations:

d𝜇(𝑎1, . . . , 𝑟𝑎𝑘 + 𝑠𝑏𝑘 , . . . , 𝑎𝑛) = 𝑟d𝜇(𝑎1, . . . , 𝑎𝑛) + 𝑠d𝜇(𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)

d(𝑟𝜇 + 𝑠𝜈)(𝑎⃗) = 𝑟d𝜇(𝑎⃗) + 𝑠d𝜈(𝑎⃗)

d(𝜇(𝜇1, . . . , 𝜇𝑛))(𝑎⃗1, . . . , 𝑎⃗𝑛) = d𝜇(𝜇1(𝑎⃗1), . . . , 𝜇𝑛(𝑎⃗𝑛))+

+
𝑛∑︂
𝑘=1

𝜇(𝜇1(𝑎⃗1), . . . , d𝜇𝑘(𝑎⃗𝑘), . . . , 𝜇𝑛(𝑎⃗𝑛))

The first equation of Definition 5.56 establishes that the infinitesimal deformat-

ors are 𝑅-linear in each 𝐴-entry; the second equation establishes that deformators

are also 𝑅-linear in the 𝜇-entry; finally, the third equation establishes that d𝜇 is an

infinitesimal deformation of the 𝑛-ary operation 𝜇. In particular, when 𝒫 = 𝒜𝓈𝓈,

the third equation, following a similar argument as in Example 5.41, implies:

d𝜇(𝑎, 𝜇(𝑏, 𝑐)) + 𝜇(𝑎, d𝜇(𝑏, 𝑐)) = d(𝜇(1, 𝜇))(𝑎, 𝑏, 𝑐) =

= d(𝜇(𝜇, 1))(𝑎, 𝑏, 𝑐) = d𝜇(𝜇(𝑎, 𝑏), 𝑐) + 𝜇(𝑎, d𝜇(𝑏, 𝑐))

Denoting the multiplication of 𝐴 and the left and the right actions of 𝐴 on Ξ𝐴 by

juxtaposition and d𝜇(𝑎, 𝑏) by 𝜈(𝑎, 𝑏)we rewrite:

𝑎𝜈(𝑏, 𝑐) − 𝜈(𝑎𝑏, 𝑐) + 𝜈(𝑎, 𝑏𝑐) − 𝜈(𝑎, 𝑏)𝑐 = 0

In particular, for 𝒫 = 𝒜𝓈𝓈, Definition 5.56 agrees with Definition 5.52.

Proposition 5.57. When 𝒫 = 𝒜𝓈𝓈, the module Ξ𝐴 of Definition 5.56 is precisely the
bimodule of Definition 5.52.

Since, by construction, Ξ𝐴 is an 𝐴-module, thanks to Theorem 4.35, L𝐴 : =
Free𝐴Ξ𝐴 becomes a differential bundle in the geometric tangent category of 𝒫.

Moreover, 𝑞 : L𝐴→ 𝐴 classifies infinitesimal deformations of 𝐴. To see this, recall

that the 𝒫-algebra structure of an infinitesimal deformation 𝐴̃ of a 𝒫-algebra 𝐴 is

fully specified by:

𝜇𝐴̃(𝑎1, . . . , 𝑎𝑛) = 𝜇𝐴(𝑎1, . . . , 𝑎𝑛) + 𝜀𝜇′𝐴(𝑎1, . . . , 𝑎𝑛)
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for each 𝜇 ∈ 𝒫(𝑛) and 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴. So, the 𝒫-algebra structure of 𝐴̃ is specified

by the 𝒫-algebra structure of 𝐴 together with a morphism Ξ𝐴 → 𝐴 which sends

each infinitesimal deformator d𝜇(𝑎1, . . . , 𝑎𝑛) to 𝜇′
𝐴
(𝑎1, . . . , 𝑎𝑛).

Theorem 5.58. Let L be the functor which sends each 𝒫-algebra 𝐴 to the free 𝐴-algebra
over the module of infinitesimal deformators of 𝐴, i.e. L𝐴 : = Free𝐴Ξ𝐴. Consider the
following morphisms:

projection 𝑞 : 𝐴→ L𝐴 which sends 𝑎 to itself;

zero morphism 𝑧𝑞 : L𝐴→ 𝐴 which sends 𝑎 to itself and each deformator d𝜇(𝑎⃗) to 0;

𝑛-fold pullbacks the 𝑛-pushouts of 𝑞 along itself are the associative algebras L𝑛𝐴 gen-
erated by all elements 𝑎 of 𝐴 for which the algebra structure is defined as in 𝐴, and
infinitesimal deformators d𝑘𝜇(𝑎⃗), for each 𝑘 = 1, . . . , 𝑛;

sum morphism 𝑠𝑞 : L𝐴→ L2𝐴 which sends 𝑎 to itself and d𝜇(𝑎⃗) to d1𝜇(𝑎⃗) + d2𝜇(𝑎⃗);

vertical lift 𝑙𝑞 : TL𝐴 → L𝐴, where T denotes the geometric tangent bundle functor in
the tangent category Geom(𝒫), which sends 𝑎 to itself, d𝑎 and d𝜇(𝑎⃗) to 0, and d𝜇(𝑎⃗)
to d𝜇(𝑎⃗).

For each associative algebra 𝐴, L𝐴 := (L𝐴, 𝑞, 𝑧𝑞 , 𝑠𝑞 , 𝑙𝑞) is a differential bundle over 𝐴 in
the geometric tangent category Geom(𝒫). Moreover, L extends to a functor:

L: Geom(𝒫) → DBndlnr(Geom(𝒫))

Finally, 𝑞 : 𝐴→ L𝐴 classifies infinitesimal deformations of𝐴, i.e. there is a bĳective corres-
pondence between sections 𝑢 : L𝐴→ 𝐴 of 𝑞 (in Geom(𝒫)) and infinitesimal deformations
of 𝐴. In particular, for each section 𝑢 : L𝐴→ 𝐴 of 𝑞, the 𝑛-ary operation d𝜇𝐴 : 𝐴⊗𝑛 → 𝐴

defined by:

d𝜇𝐴(𝑎1, . . . , 𝑎𝑛) := 𝑢(d𝜇(𝑎1, . . . , 𝑎𝑛))

defines an infinitesimal deformation of the 𝑛-ary operation 𝜇𝐴.

The symbol d in the definition of the differential bundle 𝑞 : 𝐴 → L𝐴 of The-

orem 5.58 is reminiscent of the analogous symbol d employed in the definition of
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the tangent bundle functor T on Operadop
. The rest of this section is dedicated

to exploring this relationship. The main intuition consists of noticing that the

free T𝒫-algebra over a 𝒫-algebra contains elements of the form (d𝜇; 𝑎1, . . . , 𝑎𝑛),
however, it also contains terms of the form (𝜇; 𝑎1, . . . , 𝑎𝑛), for 𝜇 ∈ 𝒫(𝑛). Given a

𝒫-algebra 𝐴, to remove these terms, we can make the algebra structure of the free

T𝒫-algebra ST𝒫𝐴 over 𝐴 to agree with the 𝒫-algebra structure of 𝐴. Now, recall

that a morphism of operads 𝜑 : 𝒫→ 𝒫
′
induces an adjunction:

𝜑! : Alg𝒫 ⇆ Alg𝒫′ : 𝜑∗

In particular, the projection 𝑝 : 𝒫→ T𝒫 of (Operadop,T) induces an adjunction:

𝑝! : Alg𝒫 ⇆ AlgT𝒫 : 𝑝∗

By direct inspection and recalling the definition of the left adjoint 𝜑! (see Sec-

tion 3.5.2), the T𝒫-algebra 𝑝!𝐴, for a 𝒫-algebra 𝐴, is the free T𝒫-algebra ST𝒫𝐴

quotiented by the ideal generated by terms (𝜇; 𝑎1, . . . , 𝑎𝑛) − 𝜇𝐴(𝑎1, . . . , 𝑎𝑛).

Lemma 5.59. The T𝒫-algebra 𝑝!𝐴 is the free T𝒫-algebra generated by all 𝑎 ∈ 𝐴 and by
symbols d𝜇(𝑎⃗) = d𝜇(𝑎1, . . . , 𝑎𝑛) subject to the following relations:

𝜇𝑝!𝐴(𝑎1, . . . , 𝑎𝑛) = 𝜇𝐴(𝑎1, . . . , 𝑎𝑛)

d𝜇(𝑎1, . . . , 𝑟𝑎𝑘 + 𝑠𝑏𝑘 , . . . , 𝑎𝑛) = 𝑟d𝜇(𝑎1, . . . , 𝑎𝑛) + 𝑠d𝜇(𝑎1, . . . , 𝑏𝑘 , . . . , 𝑎𝑛)

d(𝑟𝜇 + 𝑠𝜈)(𝑎⃗) = 𝑟d𝜇(𝑎⃗) + 𝑠d𝜈(𝑎⃗)

d(𝜇(𝜇1, . . . , 𝜇𝑛))(𝑎⃗1, . . . , 𝑎⃗𝑛) = d𝜇(𝜇1(𝑎⃗1), . . . , 𝜇𝑛(𝑎⃗𝑛))+

+
𝑛∑︂
𝑘=1

𝜇(𝜇1(𝑎⃗1), . . . , d𝜇𝑘(𝑎⃗𝑘), . . . , 𝜇𝑛(𝑎⃗𝑛))

Notice that Lemma 5.59 establishes that 𝑝!𝐴 is generated by terms d𝜇(𝑎⃗) as
a T𝒫-algebra not as an 𝐴-module, like in Definition 5.56. This implies that 𝑝!𝐴

also contains terms of the form d𝜇(d𝜇1, . . . , d𝜇𝑛)(𝑎⃗1, . . . , 𝑎⃗𝑛). These terms are not

present in L𝐴, since L𝐴 does not contain terms in which d appears twice. Notice

also, that in 𝑝!𝐴 terms of the form d𝜇(𝜇1, . . . , d𝜇𝑘 , . . . , 𝜇𝑛)(𝑎⃗1, . . . , 𝑎⃗𝑛) are identified

with terms of the form d𝜇((𝜇1)𝐴(𝑎⃗1), . . . , d𝜇𝑘(𝑎⃗𝑘), . . . , (𝜇𝑛)𝐴(𝑎⃗𝑛)). Consequently,

the 𝒫-algebra Λ𝐴 : = 𝑝∗𝑝!𝐴 is the 𝒫-algebra generated by all 𝑎 ∈ 𝐴 and by terms
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(𝜏; d𝜇1, . . . , d𝜇𝑛)(𝑎1, . . . , 𝑎𝑛) where (𝜏; d𝜇1, . . . , d𝜇𝑛) is an 𝑛-rooted tree whose ver-

tices are decorated by terms d𝜇𝑘 , each satisfying the relations of an infinitesimal

deformator.

Since 𝑝! ⊣ 𝑝∗ form an adjunction, Λ : = 𝑝∗𝑝! is a monad on Alg𝒫, thus a

comonad on Algop
𝒫

. Moreover, both 𝑝! and 𝑝∗ are lax tangent morphisms so

𝑝! : Geom(𝒫) ⇆ Geom(T𝒫) : 𝑝∗ form an adjunction in the 2-category of tangent

categories. In particular, Λ becomes a tangent comonad, i.e. a comonad which is

also a lax tangent morphism, over Geom(𝒫). The sections of the counit 𝐴→ Λ𝐴 of

Λ are morphisms 𝑢 : Λ𝐴 → 𝐴 of 𝒫-algebras which send each 𝑎 to itself and each

d𝜇(𝑎⃗) to 𝜇′
𝐴
(𝑎1, . . . , 𝑎𝑛) := 𝑢(d𝜇(𝑎⃗)). So, it is not hard to see that the sections of the

counit of Λ classify infinitesimal deformations.

Theorem 5.60. The tangent comonad Λ : Geom(𝒫) → Geom(𝒫) classifies infinitesimal
deformations of 𝒫-algebras. In particular, sections of the counit 𝐴→ Λ𝐴 are in bĳective
correspondence with the infinitesimal deformations of 𝐴.

It is important to realize that Λ𝐴 is not a differential bundle. To understand

why this is not the case, suppose, by contradiction that Λ𝐴 is indeed a differential

bundle. According to Theorem 4.35, Λ𝐴 is then isomorphic to the free algebra

under 𝐴 of an 𝐴-module 𝑀, i.e. Λ𝐴 ≅ Free𝐴𝑀. By looking at Λ𝐴 as an 𝑅-module,

one concludes that𝑀 should be the𝐴-module generated by all trees whose internal

vertices are operations d𝜇, for some 𝜇 of 𝒫 and whose leaves are elements of 𝐴.

However, since 𝑀 is an 𝐴-module and not a 𝒫-algebra, any two of such trees will

be independent generators. Take, for example, the two elements of 𝑀:

d𝜇(𝑏, 𝑐)

d𝜇(𝑎, d𝜇(𝑏, 𝑐))

and consider a section 𝑣 : Free𝐴𝑀 → 𝐴 of the inclusion morphism 𝐴 → Free𝐴𝑀
(regarded as morphisms in the opposite category). 𝑣 sends the first tree, d𝜇(𝑏, 𝑐)
to an element 𝑥 of 𝐴 and the second tree d𝜇(𝑎, d𝜇(𝑏, 𝑐)) to another element 𝑦 of

𝐴. However, 𝑣(d𝜇(𝑎, d𝜇(𝑏, 𝑐)) does not have to agree with 𝑣(d𝜇(𝑎, 𝑥)), since these

two trees are independent in 𝑀. Conversely, in Λ𝐴, these two trees are related,

since the former is used in the definition of the latter. This implies that, given a
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section 𝑢 : Λ𝐴→ 𝐴 of the counit 𝐴→ Λ𝐴 (regarded as morphisms in the opposite

category):

𝑢(d𝜇(𝑎, d𝜇(𝑏, 𝑐)) = 𝑢(d𝜇(𝑎, 𝑢(d𝜇(𝑏, 𝑐))))

In particular, this implies that Λ𝐴 and L𝐴 are not isomorphic algebras. However,

there is a close relationship between these two bundles, since their sections are in

bĳection. In future work, we aim to further investigate their connection.



Chapter 6

Conclusions

This final chapter is dedicated to recalling this thesis’s story, highlighting the main

results, and exploring some ideas for future work.

6.1 What this thesis is about

In this thesis, we explored the interaction between the theory of operads and the

one of tangent categories. The initial motivation for this work was to test whether

or not tangent category theory was capable of capturing some important geometric

aspects of noncommutative geometry. We showed that the opposite of the cat-

egory of algebras of an operad carries a tangent structure which captures some key

geometric features of operadic affine schemes. In particular, this applies to associ-

ative algebras, providing the first model of a tangent category for noncommutative

geometry.

Ginzburg’s work was a crucial inspiration for this work. In particular, Gin-

zburg’s idea of a theory of operadic geometry inspired the research that led to this

thesis. In some sense, our work formalizes Ginzburg’s intuition for a common lan-

guage of operadic geometry. On the other hand, this thesis was also fundamentally

inspired by Cruttwell and Lemay’s idea of employing tangent category theory to

study algebraic geometry. In some sense, our work is a generalization of Cruttwell

and Lemay’s paper [18]. In particular, in Chapter 4 we extended their classification

of differential bundles for affine schemes, to the operadic setting.

In the last chapter, we also explored some ideas to study deformation theory by

employing tangent category theory. In particular, we showed how the category of

operads and its opposite comes equipped with a tangent structure closely related

to the infinitesimal deformations of operadic algebras. This connection between

operad theory, tangent category, and deformation theory shows a deep relationship

between these three distinct worlds and suggests a geometric interpretation for

266
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deformations.

The main results of this thesis can be listed as follows:

Definition 2.24 We introduced tangent display maps to avoid the use of display

systems;

Theorem 2.73 We proved that the tangent category of algebras of a tangent monad

represents indeed the Eilenberg-Moore object of the given tangent monad, in

the sense of Street [56];

Theorem 3.26 We proved that the monad associated with an algebraic operad

is a coCartesian differential monad, and therefore a tangent monad. Con-

sequently, the category of algebras of a given operad is a tangent category,

that we call, the algebraic tangent category of the operad;

Theorem 3.36 We classified vector fields of the algebraic tangent category of an

operad as derivations;

Propositions 3.42 and 3.48 We showed that the operation which associates an op-

erad to its algebraic tangent category extends to a contravariant and a covari-

ant functor;

Theorem 3.68 We showed that the algebraic tangent category of an operad is ad-

junctable and consequently, the opposite of the category of algebras of an

operad comes with a tangent structure to form the geometric tangent cat-

egory of the given operad;

Theorem 3.74 We classified vector fields of the geometric tangent category of an

operad as derivations;

Proposition 3.80 We showed that the operation which associates an operad to its

geometric tangent category extends to a contravariant and a covariant functor;

Theorem 4.12 We gave a new characterization of the functor Slice which sends a

pair formed by a tangent category (X,T) and one of its objects 𝐴 to the slice

tangent category (X,T)/𝐴. In particular, we showed that Slice is a right adjoint

of Term;
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Theorem 4.17 We showed that the geometric tangent category of the enveloping

operad of a 𝒫-algebra 𝐴 is equivalent to the slice tangent category of the

geometric tangent category of 𝒫 over 𝐴;

Theorem 4.35 We classified differential bundles in the geometric tangent category

of an operad as modules over the operadic algebras;

Theorem 5.22 We showed that the category of algebraic operads itself is a tangent

category;

Theorem 5.38 We showed that the tangent category of operads is corepresentable

and that consequently, the opposite of the category of operads also comes

with a tangent structure;

Theorems 5.58 and 5.60 We proposed two alternative approaches to classifying all

infinitesimal deformations of a given operadic algebra, one that involves a

differential bundle L𝐴 and the second one which involves a tangent comonad

Λ.

6.2 Future work

In this section, we explore some of the directions that this work could lead to. These

are organized into four categories.

6.2.1 Operadic constructions for tangent categories

We believe we have just started to explore the relationship between tangent category

theory and operad theory. In particular, we are interested in employing operad

theory to explore new constructions of tangent categories. Many questions should

be addressed, among which we list the following ones:

1. Koszul duality is an important operation in operad theory [46, Chapter 7].

What does Koszul duality represent for tangent category theory? Is there

a similar notion of duality for tangent categories? What are the algebraic

and geometric tangent categories of the Koszul dual of an operad? Can we
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classify the algebraic and geometric tangent categories of Koszul operads, i.e.

operads whose Koszul complex is acyclic?

2. The Hadamard product between two operads is a well-defined operation of

operads [46, Section 5.3.2]. Can we define a Hadamard product for tangent

categories? What are the algebraic and the geometric tangent categories of

the Hadamard product of two operads?

3. A Hopf operad is a comonoid in the category of operads with respect to the

Hadamard product [46, Section 5.3.3]. In particular, the tensor product of

two algebras of a Hopf operad is again an algebra of the same operad. Can

we classify the tangent categories associated with Hopf operads? What kind

of structure does the comonoid structure add to the corresponding tangent

categories?

4. A symmetric operad is associated with a Lie algebra [46, Section 5.4.3]. Could

the Lie algebra of an operad 𝒫 be related to the Lie algebra of vector fields of

𝒫 in the tangent category (Operad, T) or equivalently, (Operadop,T)?

5. Are cooperads also associated with tangent categories?

6. Given an operad and a cooperad one can define the convolution operad of

this pair [46, Section 6.4.1]. What are the corresponding tangent categories?

7. Given two operads, one can define a new operad provided there is a dis-

tributive law between the former two operads [46, Section 8.6]. What are

the corresponding tangent categories? In particular, the operad 𝒫ℴ𝒾𝓈 which

generates Poisson algebras is obtained from a distributive law between the

operadsℒ𝒾ℯ of Lie algebras and𝒜𝓈𝓈 of associative algebras. We are interested

to see what relationship exists between the tangent categories of these three

operads.

8. Ikonicoff in [31] showed that differential algebras, i.e. algebras equipped with

a derivation, of a given operad 𝒫 can be seen as algebras of another operad

𝒫
′

obtained from a distributive law between 𝒫 and an operad 𝐷. Our

classification of vector fields in the algebraic and in the geometric tangent
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categories of an operad implies that the category of differential algebras of

𝒫 is also equivalent to the category of vector fields of these two tangent

categories. So, it is natural to wonder if the algebraic and the geometric

tangent categories of 𝒫
′

are equivalent to the tangent categories of vector

fields of the algebraic and geometric tangent categories of 𝒫, respectively.

6.2.2 Tangent constructions for operads

We are not just interested in applications of operad theory in the context of tangent

categories. In future work, we are also interested in exploring applications of

tangent category theory for operads. Here, we list some of these ideas:

1. In [10], Cockett and Cruttwell introduced connections over differential bundles

in the context of tangent categories. Given an operadic affine scheme, can we

classify its affine connections in the geometric tangent category of the operad?

What do connections tell us about a module over an operadic algebra?

2. In this thesis we classified differential bundles and vector fields in the geo-

metric tangent category of an operad. One can also define two cohomology

theories, the cohomology of differential forms and the cohomology of sector

forms, for objects in a tangent category (see [17]). On the other hand, operadic

algebras also admit a cohomology theory (see [46, Section 12.3.11]). Does the

latter correspond to either of the former two?

3. In [14], Cockett and Cruttwell introduced a notion of ordinary differential

equations in the context of tangent categories (cf. [14]). An important in-

gredient required to define the solutions of a differential equation is repres-

ented by a curve object. It is not clear whether or not the geometric tangent

category, or more realistically a suitable tangent subcategory, admits a curve

object. In an informal discussion, Cruttwell pointed out that there might be a

curve object which is “infinitesimal”, in the sense that it captures infinitesimal

paths. Can we distinguish between “infinitesimal curve objects” and “real

curve objects”?

4. In this thesis, we also show that the category of operads itself and its opposite

come equipped with tangent structures. We already noticed that vector fields
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in these two tangent categories are equivalent to derivations of operads. In

future work, we are interested in classifying differential bundles of these two

tangent categories. We conjecture they could be related to a suitable notion

of bimodules over operads. A similar question regards the classification of

connections, the cohomology, and the differential equations.

6.2.3 Towards a formal theory of tangent objects

In Section 2.3 we introduced the notion of tangent objects in a strict 2-category.

This approach was partially inspired by the formal approach to monad theory

presented by Street in [56]. In future work, we plan to investigate some ideas that

could lead to a formal approach to tangent category theory. Here is a list of some

of the directions of research we would like to pursue:

1. The arrow category of a tangent category comes equipped with a tangent

structure. In the 2-category of categories, the arrow category is a comma

object (see [55]). Is the arrow tangent category a comma object in the 2-

category of tangent categories? When does the 2-category of tangent objects

admit comma objects?

2. We introduced tangent objects in the context of a strict 2-category. Can we

extend this notion to a bicategory or a double category?

3. The category of differential bundles of a tangent category form another tan-

gent category (see [11]). Can we define the tangent object of differential

bundles of a given tangent object? What are differential bundles of tangent

monads, regarded as tangent objects? What about this notion applied to other

classes of tangent objects, like tangent fibrations?

4. The category of vector fields and the one of affine connections also form

tangent categories (see [14] and [8]). Can we extend these constructions for

tangent objects?

5. There is a canonical inclusion 2-functor which sends an object X of a 2-

category C to the trivial tangent object (X, 1), i.e. the tangent object with the
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trivial tangent structure. Does this 2-functor admit a right adjoint? What is

the meaning of such a right adjoint?

6. In [22], tangent categories are interpreted as suitable enriched categories.

What is the relationship between the enrichment point of view and the tangent

object approach?

6.2.4 Deformation theory

In Chapter 5 we explored some ideas to employ tangent category theory to study

deformation theory. In future work, we would like to explore this intuition further.

Formal deformations are deformations of algebras over the 𝑅-augmented ring 𝑆 =

𝑅[[𝑥]] of formal power series. In particular, for associative algebras, the deformed

associative multiplication can be expanded into a power series like:

𝑎 ★ 𝑏 =
∞∑︂
𝑛=0

𝜇𝑛(𝑎, 𝑏)𝑡𝑛

Obstruction theory explored by Gerstenhaber in [23] establishes conditions for

whether or not an infinitesimal deformation can be expanded into a formal de-

formation. Our intuition suggests an analogy with geodesic completeness in dif-

ferential geometry. Our approach to deformation theory would like to interpret

infinitesimal deformations of an algebra as vector field-like objects. So, the process

of finding a formal deformation could be regarded as solving a differential equation

whose initial values are established by the given infinitesimal deformation. This

could be related to the problem of finding global solutions for geodesics.
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