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1.1 Aging includes superlinear increases in risk of death (A.) and
average number of health deficits (frailty index; B.). The health
deficits include functional limitations, disability, signs and symp-
toms, and abnormal lab values (Tables B.1 and B.2). This
makes lifespan and declining health characteristic phenomena
of aging at sufficiently advanced ages. National Health and
Nutrition Examination Survey (NHANES) 2001-02; A. is a log-
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4.1 Illustration of missingness mechanisms using complete-case NHANES
blood pressure (BP) data. Black bars and points reflect the true
distribution, blue bars and points are simulated distributions
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nisms. A) In missing completely at random (MCAR) the shape
of the distribution is preserved but the total amount of data is
reduced. B) In missing at random (MAR) data are preferen-
tially excluded according to other related variables. In this case,
individuals with large values of systolic BP were preferentially
set to missing (points), causing a small bias in the mean arte-
rial pressure distribution (bars). C) In missing not at random
(MNAR) the value of missing variables affects the probability
they are missing. In this example, we preferentially excluded
high mean arterial pressure values. . . . . . . . . . . . . . . . 24
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4.2 Mutual missingness histogram. Missingness fraction of NHANES
variables for individuals: A) under age 60 and B) age 60+.
These 2D-histograms give the mutual missingness fraction for
(row, column) pairs of variables with the diagonal correspond-
ing to each variable’s overall missingness. We see a distinct
block structure indicating groups of variables that are (almost)
always missing together, for example the BPX (blood pressure)
5-variable group appears as a 5x5 block. The variables in each
block are provided in Appendix Table A.5. Observe that in
B) the LB and BPX blocks dominate whereas the PFQ block is
less often missing and contains unpatterned missingness (strong
diagonal terms), in contrast to A). Note the scale difference;
older individuals had much less missing data. See Appendix
Figure A.1 for the pooled young and old, and Figure A.4 for
the per-variable labeled result. . . . . . . . . . . . . . . . . . . 29

4.3 Survival and missingness. Survival curves conditioned on miss-
ingness show that the block patterns of missingness are strongly
related to survival. A) all variables, B) personal fitness (PFQ),
C) prescription drugs (RXD), D) vision (VIQ), E) blood pres-
sure (BPX), and F) lab variables (LB). In A) the black line
indicates the Kaplain-Meier survival curve for the subpopula-
tion of individuals missing less than the mean (9.8 variables),
the red line indicates individuals missing more than the mean.
In B)-F), black lines indicate subpopulations without any of
the variables in the block missing, red lines have at least one
variable in the block missing. Shaded regions indicate 95% con-
fidence intervals. Insets: hazard ratios (HRs) for Cox survival
model for individuals stratified by young (< 60) or old (≥ 60),
conditioned on age and sex. In A) the Cox model is HR per 10
deficits. In B)-F) each block Cox model was further conditioned
on all other blocks (PFQ, RXD, VIQ, BPX and LB). Note the
similarity of B) PFQ and A) all, reflecting that PFQ is a large
block of variables and is the most commonly missing block. See
Appendix Figure A.5 for age cut moved to 50, and Figure A.6
for additional variables. . . . . . . . . . . . . . . . . . . . . . . 31
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4.4 The distribution of block-specific FIs for different variable blocks
(labels and fill colours correspond to Figures 4.2 and 4.3). Plot-
ted values are the mean block FI across the population: bars
indicate the histogram, lines indicate the cumulative distribu-
tion and filled circles indicate the median. y-axis grid lines
indicate quartiles. The overall population mean FI, which is
implicitly imputed by Ignore, is indicated by the dashed verti-
cal grey line. Observe that the distributions vary considerably
between blocks and the distributions are strongly skewed so
that Ignore (dashed line) is typically well above the median.
Plot is truncated at FI = 0.5 for visualization. . . . . . . . . . 32

4.5 Missingness biases the FI. Using different percentages of simu-
lated missingness of type A) pMCAR or B) cMNAR, we show
the mean FI for different imputation strategies, as indicated by
the legend. The typical, Ignore method (orange squares) shows
the largest bias compared to the ground truth (black dashed),
and for pMCAR the bias is captured by our approximate (blue
line) and exact model (red diamonds), Eqs. 4.7 and 4.9, respec-
tively. The bias is approximately linear in missingness. Our
preferred imputation strategy, CART (green circles) eliminates
the bias for pMCAR and reduces it for cMNAR. With the ad-
dition of auxiliary variables (pink triangles) CART eliminates
the bias for both pMCAR and cMNAR. Error bars and intervals
are standard errors. Complete plots for all types of simulated
missingness and imputation are provided in Appendix Figure A.7. 33

4.6 FI distributions by imputation type for simulated 15% miss-
ingness. A) pMCAR, B) cMNAR. Colours: quartiles. Vertical
lines: GT quartiles. Stars: KS-test significance (vs GT). De-
fault was the least similar to the GT for pMCAR whereas Ignore
was the least similar for cMNAR. See Appendix Figure A.12 for
FI distributions of additional imputation methods. All values
from the m = 5 multiple imputations are included for Default,
CART and CART+Aux without aggregation. . . . . . . . . . 34

4.7 FI distributions by imputation type for Full dataset (real miss-
ingness). A) without rule-based imputation (RI), B) with RI.
Observe that RI shifts the FI distribution to lower values (bot-
tom row is duplicated from the other column for comparison).
Colours: quartiles. Vertical lines are quantiles of: CART+Aux
(A) or CART+Aux+RI (B). Stars: KS-test significance vs CART+Aux
(A) or CART+Aux+RI (B). All values from the m = 5 multiple
imputations are included for Default, CART and CART+Aux
(including + RI) without aggregation. . . . . . . . . . . . . . 41
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5.1 Study pipeline. We performed three parallel analyses: compres-
sion, feature associations, and outcome modelling. Data were
preprocessed, resulting in an input matrix of health deficit data,
X, and an outcome matrix of adverse outcomes, Y (rows: in-
dividuals, columns: variables). The input was transformed by
a dimensionality reduction algorithm, represented by Φ, which
was either: the FI (frailty index), PCA (principal component
analysis), LPCA (logistic PCA) or LSVD (logistic singular value
decomposition). Each algorithm, Φ, generated a matrix of la-
tent features with tunable dimension, Z (dimension: number of
columns/features; the FI was not tunable). We tuned the size of
this latent feature space, Z, to infer compression efficiency and
the maximum dimensions of Z before features became redun-
dant (binarizing with optimal threshold, η). The latent features
were then associated with input and outcomes to infer their in-
formation content and the flow of information from input to
output. The dimension of Z was then again tuned to predict
the adverse outcomes. Ŷ represents the outcome estimates by
the generalized linear model (GLM), which were compared to
ground truth, Y , to determine the minimum dimension of Z
needed to achieve optimal prediction performance for each out-
come. This procedure allowed us to characterize the flow of
information through each dimensionality reduction algorithm. 63

5.2 Principal component analysis (PCA) of binary data is equiva-
lent to eigen-decomposing the 2D joint deficit histogram. The
first column is the complete histogram, the remaining columns
sum to the first column (Eq. 5.7). The first PC is clearly dom-
inant and is dense, meaning it is nearly equal weights for each
variable (akin to the FI). The eigen-decomposition naturally
finds blocks of correlated variables. When it runs out of blocks
it looks for strong diagonal terms. This causes PCA to natu-
rally block out like-variables, e.g. lab vs clinical in PC2, similar
to an expert choosing to create an FI out of variables from the
same domain. Values have been transformed for visualization
using sign(x)|x|γ, γ = 2/3, see Figure B.16 for the figure with-
out scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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5.3 Cumulative compression. Tuning the size of the latent dimen-
sion bottleneck we inferred the maximum number of dimensions
required to efficiently represent the input data. The reader
should look for two things: (1) the number of components (di-
mensions) needed to achieve a relatively high score, and (2)
the slope of the curve — when it flattens we can expect the
features are noise, variable-specific or otherwise less important.
Logistic SVD compresses the input most efficiently, saturating
at around 30 features. Note the dramatic difference between
lab and clinical compression both for PCA and the FI; the first
PC of clinical data scores as well as 9 lab PCs. . . . . . . . . . 68

5.4 Spearman correlation of primary features across algorithms. Di-
agonal indicates the variable associated with each row and col-
umn. Above diagonal are the correlation coefficients between
the row and column variables with 95% confidence intervals.
Below diagonal are Gaussian contours with the corresponding
correlation coefficient [129]. The first latent dimension for ei-
ther PC, LPC or LSVD correlated strongly with the FI and
each other, and correlated more strongly with the FI CLINIC
than FI LAB. This implies a strong mutual signal very close to
the FI, especially the FI CLINIC. Upper triangle is correlation
coefficient with 95% confidence interval. . . . . . . . . . . . . 70

5.5 Feature associations with individual input variables, i.e. what
goes into each feature. Youden index (fill colour) quantifies
strength of associations between features (x-axis) and health
deficits (y-axis); 0: no association, 1: perfect. Note the similar-
ity of the FI, FI CLINIC, LPC1, LSV1 and PC1. Inner circle
fill colour is the lower limit of 95% CI (white is non-significant).
Higher PCs show no/low significance. . . . . . . . . . . . . . . 72

5.6 Feature associations with individual outcomes, i.e. what we get
out of each feature. Association strength (fill colour) between
features (x-axis) and adverse outcomes (y-axis); 0: no associ-
ation, 1: perfect. Note the similarity of the FI, FI CLINIC,
LPC1, LSV1 and PC1. Inner circle fill colour is lower limit
of 95% CI (white is non-significant). Higher PCs show no/low
significance. Text on right denotes accuracy metric used. . . . 73

5.7 Cumulative prediction plot for discrete outcomes (GLM). 0th
dimension is demographic information. Increasing the number
of features initially improves prediction but eventually it gets
worse due to overfitting. LSVD performs notably worse than
PCA and LPCA. Youden index: higher is better. . . . . . . . 74
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5.8 Cumulative prediction plot for continuous outcomes (GLM).
0th dimension is demographic information. Increasing the num-
ber of features improves prediction monotonically. LSVD per-
forms notably worse than PCA and LPCA. MSE is on stan-
darized scale, therefore R2 = 1−MSE. MSE: lower is better. 74

5.9 Improvement in predictive power as more PCs are included,
grouped by outcome type (GLM). Coloured lines indicate spe-
cific outcomes, black line indicates the mean for each group.
For most outcomes the performance stops improving after a
few PCs, hence why we’ve truncated at PC6. The exceptions
are explored in Figure 5.10. Note: legend is sorted from best
(top) to worse (bottom) performance of the PC6 model. See
Figure B.21 for the complete plots without truncation. . . . . 76

5.10 Improvement in predictive power as more PCs are included,
high-dimensional outcomes (GLM). Outcomes were hand-picked
variables based on requiring many PCs to achieve maximum
performance. The FP was included for comparison. We tend
to see continual improvement for the discrete and continuous
outcomes, excluding the FP (up to ∼10). Age appeared to be
the highest dimensional. . . . . . . . . . . . . . . . . . . . . . 77

5.11 PCA robustness. Robustness of the PCA rotation was assessed
by randomly sampling which individuals to include (i.e. boot-
strapping, N = 2000). Left side are lab variables, right are
clinical. Inner circle fill colour is 95% CI limit closest to 0.
Grayed out tiles were non-significant. The first three PCs were
quantitatively robust. We see the robustness drops with in-
creasing PC number. The global sign for each PC were mu-
tually aligned across replicates using the Pearson correlation
between individual feature scores. In Figure B.27 we assessed
robustness by randomly sub-sampling input variables and again
observed that PCs 1-3 were robust. . . . . . . . . . . . . . . . 78

5.12 PCA second moments (eigenvalues) with bootstrapped stan-
dard errors (N=2000). Log-log scales. Note the bilinear struc-
ture. Banded region is optimal performance region (±1 error
bar from best using Figures 5.7 and 5.8). In all three vari-
able sets, eigenvalues curved away from second line just before
overfitting started. . . . . . . . . . . . . . . . . . . . . . . . . 79
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5.13 Special joint histogram approximation, Eq. 5.20. Fill is the R2

fit quality for PC1 approximating the full histogram, given the
histogram has the special structure given in Eq. 5.10. p is the
number of features. a is the deficit frequency. b is the joint
deficit frequency. . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Simulation example of a stable system, with λ < 0. Initial
conditions can differ from µ(t). A stable system is attracted to
µ(t) (black line), but will be offset by −µage/|λ| in the steady-
state. ODE solutions are super imposed for mean and variance
(dotted lines are 95% interval). Fill density is proportional to
probability density. Observing an ensemble at any time will
yield Gaussian statistics. . . . . . . . . . . . . . . . . . . . . . 104

6.2 A. ELSA interaction network. Tile colour indicates interac-
tion strength (saturation) and direction (colour) of the interac-
tion from the y-axis variable to the x-axis variable. Inner dot
colour indicates the limit of the 95% confidence interval (CI)
closest to zero (more visible point indicates lower significance).
Non-significant interactions have been whited-out. Diagonal
has been suppressed for visualization (see dotted lines in B).
The matrix is real and symmetric because the data were diag-
onalized by an orthogonal matrix (PCA). Variables are sorted
by diagonal strength in both A. and B. (increasing rate). B.
Recovery rates in human-equivalent (h.e.) years i.e. negative
eigenvalues (−λ). The smallest recovery rates determine system
stability [106]. A recovery rate of 0.025 implies 1− e−1 = 63%
recovery after −λ−1 = 40 years (95% recovery after 120 years).
The survival data all have similar minimum rates near 0.025,
whereas the dementia data was faster (Paquid). The dotted
lines are network diagonals (−Wjj); the solid lines are rates
(−λj). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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6.3 A. Position relative to equilibrium vs recovery rate. Most nat-
ural variables were homeostatic (near equilibrium at 0). Some
(labeled) variables were observed to be far from equilibrium;
variables are labelled by rank e.g. 01 ≡ z01 has the fastest re-
covery (furthest left). B. Characterization of natural variable
deviations from equilibrium using equation (6.8). Observe that
ELSA is the only dataset where memory may dominate the sys-
tem behaviour (ratio ≲ 1 = 100), indicating that the followup
period may have been too short to reach a steady-state. In both
figures only mouse (SLAM) data points over age 80 weeks were
used since biomarkers had a u-shaped curve over the lifespan
[135]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Survival effects. A. Allostasis drifts towards the risk direction,
“mallostasis”. The relationship appears to be linear (lines),
with strong correlations: −0.96 (SLAM BL/6), −0.71 (SLAM
Het3), −0.99 (Paquid), and −0.53 (ELSA). The equilibrium
dispersion provides a native scale for each variable. High risk
natural variables for each dataset have been labelled by eigen-
value rank (e.g. z1 ≡ 01 has the smallest eigenvalue, z2 ≡ 02 the
second smallest, etc). B. Recovery rate (-eigenvalue), −λ, has
an ambiguous relationship with survival. Smaller eigenvalues
appear to be important survival dimensions (e.g. 01 for ELSA
and Paquid), but the overall correlation is weak (ρ = −0.254,
p = 0.1). The C-index measures the relative risk for pairs of
individuals based on the value of zj (C-index of 0.5 indicates no
risk; C-index larger than 0.5 means small values are bad). . . . 109
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6.5 A. Composite health measure of survival b ≡ (µ⃗T
agez⃗), strat-

ified by quartile (ELSA). Separation is excellent, indicating
a strong survival predictor. Fill is 95% confidence interval.
See Appendix Figure C.15 for the other datasets. B. Natu-
ral variables can drive changes in observable biomarkers. The
z1 mean is accumulating in the negative direction. This accu-
mulation is mapped into observable variables with ⟨Pj1z1⟩ for
indicated timepoints each separated by approximately 4 years.
The drift direction is overwhelmingly unhealthy: increased dis-
ability measures (srh, eye, hear, FI.ADL and FI.IADL — high
is bad), decreased physical ability scores (gait and grip), in-
creased inflammation (crp), increased glucose, etc. The effect
of the drift is concentrated in z1 but dilute across its covariates,
which could make the effect of unhealthy z1 subclinical in the
observed biomarkers. All variables are on standardized scale.
Similar effects were observed for the other datasets (Appendix
Figure C.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Estimated interaction network between biological ages (nodes)
using the SF model. Node colour reflects biological scale: blue
is genetic (telomere length), blue-gray are epigenetic, pink is
“system” level (cardiometabolic: PhysioAge, or cognitive: Cog-
nition), and red is the whole organism’s functional ability (e.g.
gait speed). For links, red links are positive associations, blue
links are negative associations. PhysioAge formed a central
node, with GrimAge forming an important secondary node.
We inferred that age-related changes originate close to Phys-
ioAge and/or GrimAge then propagated outwards, driving the
peripheral biological ages. In this manner one dysfunctional
sub-system (metabolism) can propagate dysfunction into other
sub-systems, driving them awry. Self-loops control stability;
large and negative (blue) indicates strong stability. See [148]
for full details. Note that the network is not symmetrical, it
was permitted full flexibility during the estimation process (in

contrast to Chapter 6). Node size is nk ≡
√︂∑︁

j ̸=k W
2
jk (outgo-

ing strength). . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
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7.2 Scatterplot of biological ages versus age. Horizontal lines are
equilibrium positions (µ). All of the biological ages are visibly
correlated with age, except Telomere. Furthermore, owing to
the gap between the equilibrium and the data, values increase
continuously over time in our dynamical model. Telomere and
Cognition were scaled to mean/sd of chronological age. For
PhysioAge, males had a different set of variables hence the dif-
ferent with females [110]. . . . . . . . . . . . . . . . . . . . . . 127

7.3 Scatterplot of natural variables versus age. Horizontal lines are
equilibrium positions (µ). In contrast to the input biological
ages (Figure 7.2) only the first three natural variables are visibly
moderate-to-strongly correlated with chronological age. z1 and
z2 were particularly strongly correlated with chronological age.
The gap (indicated) ensures that those natural variables will not
equilibrate, instead drifting up for the entire human lifespan.
Biological ages were transformed using the eigen-decomposition
transformation from the network (Figure 7.1). . . . . . . . . . 128

7.4 Estimated interaction network between biological ages (nodes)
using the SF model — expanded to include chronological age
and the FI. The network is surprisingly similar to Figure 7.1
despite adding two new nodes. In particular, PhysioAge and
GrimAge occupy central positions in both networks (lots of
outgoing links, proportional to node size). Note: the FI, f ,
was transformed by log (f + 0.065) to improve normality (then
scaled to the mean and standard deviation of chronological age).

Node size is nk ≡
√︂∑︁

j ̸=k W
2
jk (outoing strength). . . . . . . . 130

A.1 Mutual missingness histogram of Full dataset. In contrast to
Figure 4.2, young and old patients have not been separated.
Note: variables are in the same order as Figure A.4. . . . . . . 196

A.2 Mutual missingness histogram of pMCAR and pMAR simulated
data. A) pMCAR and B) pMAR. We see virtually identical
results to Figure A.1, confirming our amputation preserved the
patterns of missingness. Note: variables are in the same order
as Figure A.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
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A.3 Mutual missingness histogram of cMCAR and cMNAR simu-
lated data. A) cMCAR and B) cMNAR. We see no patterns of
missingness for cMCAR, as expected. For cMNAR we see some
patterns of low missingness have begun to emerge for variables
preferentially made not-missing. Note: variables are in the same
order as Figure A.4. . . . . . . . . . . . . . . . . . . . . . . . . 197

A.4 Mutual missingness histograms with full variable names. The
left-to-right x-axis is identical to the bottom-to-top y-axis. Left:
missingness fraction of NHANES variables for young individu-
als (under 60). This histogram gives the mutual missingness
fraction for (row, column) pairs of variables with the diago-
nal corresponding to each variables overall missingness. Right:
missingness fraction of NHANES variables for older individuals
(60+). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.5 Survival and missingness after moving cut to age 50 (instead of
60). A) all variables, B) personal fitness (PFQ), C) prescrip-
tion drugs (RXD), D) vision (VIQ), E) blood pressure (BPX),
and F) lab variables (LB). In A) the black line indicates the
Kaplain-Meier survival curve for the subpopulation of individ-
uals missing less than the mean (9.8 variables), the red line indi-
cates individuals missing more than the mean. In B)-F), black
lines indicate subpopulations without any of the variables in the
block missing, red lines have at least one variable in the block
missing. Shaded regions indicate 95% confidence intervals. In-
sets: hazard ratios (HRs) for Cox survival model for individuals
stratified by young (< 50) or old (≥ 50), conditioned on age and
sex. In A) the Cox model is HR per 10 deficits. In B)-F) each
block Cox model was further conditioned on all other blocks
(PFQ, RXD, VIQ, BPX and LB). p-values (log-rank test) are
given in the caption of Figure A.6, they do not depend on the
age cut because they consider all ages. . . . . . . . . . . . . . 199

xx



A.6 Survival and missingness (extended). A) all variables, B) per-
sonal fitness (PFQ), C) prescription drugs (RXD), D) vision
(VIQ), E) blood pressure (BPX), F) lab variables (LB), G)
RDQ031: cough regularly (RDQ), and H) KIQ046: lost control
of urine (KIQ). In A) the black line indicates the Kaplain-Meier
survival curve for the subpopulation of individuals missing less
than the mean (9.8 variables), the red line indicates individuals
missing more than the mean. In B)-H), black lines indicate sub-
populations without any of the variables in the block missing,
red lines have at least one variable in the block missing. Shaded
regions indicate 95% confidence intervals. Insets: hazard ratios
(HRs) for Cox survival model for individuals stratified by young
(< 60) or old (≥ 60), conditioned on age and sex. In A) the Cox
model is HR per 10 deficits. In B)-H) each block Cox model
was further conditioned on all other blocks (PFQ, RXD, VIQ,
BPX, LB, RDQ and KIQ). Log-rank test p-values (overall ef-
fect): 0.37 (All), 0.016 (PFQ), 6.3·10−6 (RXD), 3.3·10−8 (VIQ),
8.3 ·10−7 (BPX), 1.9 ·10−5 (LB), 0.26 (RDQ) and 1.4 ·10−6 (KIQ).200

A.7 Missingness biases the FI with most imputation strategies —
extended. Using different percentages of simulated missingness
and four mechanisms: A) pMCAR, B) cMNAR, C) pMAR, D)
cMCAR. We show the mean FI calculated using different im-
putation strategies, as indicated by the legend. cMCAR had
no bias for the ignore-based methods, whereas MICE RF and
Default did. Note the similarity of pMCAR and pMAR, where
only Ignore (> 20%) (i.e. Ignore20) performed differently. The
Default method (teal circles) showed the largest bias compared
to the ground truth (black dashed) for pMCAR/pMAR. Ob-
serve that the imputation strategies are all approximately lin-
ear, justifying the use of a linear bias rate. . . . . . . . . . . . 201

A.8 Forest plot for HRs calculated from data with simulated 15%
missingness. GT: ground truth. . . . . . . . . . . . . . . . . . 202

A.9 Forest plot for HRs calculated from data with simulated cM-
CAR. Note that for 50% and 75% missingness there were not
enough individuals to calculate a HR for Ignore20. GT: ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.10 Forest plot for HRs calculated from data with simulated cM-
NAR. Note that for 50% and 75% missingness there were not
enough individuals to calculate a HR for Ignore20. GT: ground
truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
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A.11 Forest plot for HRs calculated from Full dataset (real missing-
ness). RI: rule-based imputation. . . . . . . . . . . . . . . . . 205

A.12 FI distributions by imputation type for simulated 15% miss-
ingness. A: pMCAR, B: cMNAR. Colours: quartiles. Vertical
lines: GT quartiles. Stars: KS-test significance (vs GT). Dis-
tributions are sorted by KS-similarity to GT from most (top)
to least (bottom) similar. . . . . . . . . . . . . . . . . . . . . . 206

B.1 Missingness frequencies of predictor variables (rank ordered).
Note the clinical variables (red circles) have much lower miss-
ingness than lab variables (blue triangles). This is likely be-
cause clinical variables are self-reported. See also Figure B.4.
Missingness is after gated imputation (Section B.1.2). . . . . . 237

B.2 Missingness frequencies of binary outcome variables and demo-
graphic covariates. The missingness was low in the binary out-
comes and covariates likely because they are self-reported. We
saw much higher missingness in the measured outcomes, Fig-
ure B.3. Missingness is after gated imputation (Section B.1.2). 238

B.3 Missingness frequencies of continuous outcome variables and de-
mographic covariates. CRP, BMI, gait and telomere all had to
be measured, which explains why they had much higher miss-
ingness rate than the other outcomes (here and Fig. B.2). . . . 239

B.4 Missingness joint frequency histogram (predictors). Diagonal is
missingness frequency of each variable. Off-diagonal is mutual
missingness frequency of variable pairs. Observe that the lab
data tended to be mutually missing (top right), which can lead
to serious problems with common imputation algorithms [145].
Imputation quality was validated in Section B.1.2. . . . . . . . 240

B.5 Missingness survival effect. Individuals missing any predictor
variable (red line) showed worse survival than individuals with
all of their predictor variables reported (black line). This is
an indication of informative censoring, meaning that the com-
plete case analysis, Section B.4, could be biased [180]. Note:
ages were top-coded at 85 which could cause distortions of the
survival curves past age 85. . . . . . . . . . . . . . . . . . . . 241
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B.6 Deficit frequencies for imputed versus measured health vari-
ables. Measured deficit frequency (green triangles) and imputed
deficit frequency (red circles). The missingness frequency of
the variable is given in blue (squares). Imputed variables (red
circles) tended to be more frequently deficit. This is consis-
tent with our other observations that individuals missing val-
ues tended to have worse overall health (e.g. worse survival,
Figure B.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B.7 Deficit frequencies for imputed versus measured binary out-
comes. Measured frequency (green triangles) and imputed fre-
quency (red circles). The missingness frequency of the variable
is given in blue (squares). Imputed adverse outcomes tended to
be more frequently deficit (red circles, excluding: income, race,
survival, sex, education, smoker and partner). For the demo-
graphical covariates (income, race, sex, education, smoker and
partner) and survival outcomes (1, 5 and 10 year), frequency
indicates how often they were of value 1 (see Section B.1.1 for
encoding rules). Where no red point is visible it is because
there were no missing values and hence no imputed values (e.g.
FP and survival). Imputed frequencies are clearly higher than
measured frequencies, consistent with our other observations
that individuals with missing values tended to have worse over-
all health (e.g. worse survival, Figure B.5, and more health
deficits, Figure B.8). . . . . . . . . . . . . . . . . . . . . . . . 243

B.8 Joint 2D frequency histogram for predictors with and without
imputation. A: complete case data (individuals have no NA),
B: available case data (NAs skipped), C: imputed predictors
(imputed values only), and D: post-imputation predictors (all
values, including imputed). The imputed values clearly have
more deficits but the net effect on the post-imputation data
is negligible relative to the available case data. We expected
more deficits in the imputed values because individuals missing
data had worse survival (Figure B.5). Individuals with complete
data clearly had fewer deficits (A). Top values are lab variables,
bottom are clinical. Tiles are grayed out if there were no values
in respective variable pair. . . . . . . . . . . . . . . . . . . . . 244

B.9 Joint 2D frequency histogram for outcomes for available case or
imputed data (frequency each binary outcome was ‘1’). We see
no difference by eye. This could be because of the relatively low
missingness for outcomes (Figures B.2 and B.3) Available case
outcomes were included in the “complete case” dataset (only
predictors were required to be complete case). . . . . . . . . . 245
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B.10 Boxplot of individuals missing the lab block (right) versus those
with lab variables measured (left). y-axis indicates the FI LAB
value (after imputation). Solid black lines are the medians
for each group. White boxes delineate the interquartile ranges
(25% to 75% quantiles); the whiskers span the 95% confidence
intervals (assuming asymptotic-normality) [206]. Patients miss-
ing data had worse survival, Figure B.5, and therefore we expect
them to have a higher FI LAB. The expected shift, Eq B.1, of
the median is the dashed yellow line (median of left + ∆FI).
We expect this to be close to the median on the right side. The
estimate is in the correct direction, and the line is within the
interquartile range. This implies a good imputation. . . . . . . 245

B.11 Improvement in predictive power as more PCs are included,
with and without imputed outcomes. Highest missingness out-
comes. This figure allows us to surmise the effect that imput-
ing the outcomes has had on the accuracy metrics. Red band
(circles) is including imputed values, blue band (triangles) ex-
clude imputed values. Bands tend to overlap, indicating non-
significant differences. Band is the cross-validation error. In
particular, the outcomes with the 4th-6th most missing data
(bottom row) overlap heavily, implying that the remaining out-
comes — which had much lower missingness (< 3%) — would
have a negligible difference due to the imputed values. In the
outcomes with the 1st-3rd most missingness we see the same
pattern with a global shift in accuracy, this does not affect our
study conclusions which are based on the shape of the curves.
In Figure B.12 we observed that imputed gait values tended to
be slower than normal, which may explain why they were eas-
ier to predict. We do not think this is an indication of a poor
imputation, since we expect those individuals to have low gait
speeds (Section B.1.2). . . . . . . . . . . . . . . . . . . . . . . 246

B.12 Violin plot of imputed timed-gait values (log scale). Higher
is worse. Outlines represent the distributions of imputed (left)
and observed (right) values. Imputed values tended to be higher
implying slower gait speeds. This is consistent both with worse
mortality for those missing data, Figure B.5, and with the rea-
sons for missingness of this particular variable (when it was
reported). See Section B.1.2 for details. . . . . . . . . . . . . . 247
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B.13 GLM weight selection for binary outcomes on A: linear and B:
log-log scale. Weight, w is the optimized parameter (Eq. B.2).
Balance, b, is the ratio of minority over majority class frequen-
cies (Eq. B.3). Each point represents an optimized binary GLM
(logistic regression). There is clear power law behaviour — the
log-log plot shows a linear relationship — with w ∼ b−1 being a
good choice of the power (red dashed line, Eq. B.4). The solid
blue line indicates the least-squares fit. See Section B.2.1 for
complete discussion. . . . . . . . . . . . . . . . . . . . . . . . 247

B.14 Simulation study of cross-validated estimates. As described in
Section B.2.2, we generated a synthetic dataset based on our
study sample. Error bars were estimated directly from the syn-
thetic dataset via cross-validation (red points) and compared to
error bars generated by Monte Carlo sampling of the synthetic
dataset distribution (blue triangles). The simulated values pro-
vide a ground truth, the cross-validation estimates show error
bars of similar size, with roughly the correct coverage (point es-
timates are typically within one or two error bars of each other).
This demonstrates our cross-validation procedure is correctly
calibrated for our data. Note: missing data points are due to
failed fitting of the ROC curve (due to insufficient case data in
the cross-validation). . . . . . . . . . . . . . . . . . . . . . . . 248
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B.15 AUC is strongly correlated with Youden index, closely follow-
ing Eq. B.9 (red line). A. AUC vs Youden index for compres-
sion using PCA, each point is a unique input variable and
a unique number of PCs (1-55), with cross-validation error
(55 inputs × 55 PC options = 3025 points). Eq. B.9 fits ex-
cellently. The relationship is smooth, non-linear and saturat-
ing, with AUC reaching 1 before Youden index. The saturat-
ing of the AUC indicates that it is a less sensitive scale, and
explains why we observed compression reaching unity faster
on the AUC scale (Figure B.17) than the Youden scale (Fig-
ure 5.3). We considered also the scores from the binary GLMs
in B., one point per model with each model having covariate
information and between 0-55 PCs, with cross-validation error
(39 outcomes× 56 PC options = 2184 points). Eq. B.9 fit both
the GLM and compression well (red lines), although the com-
pression scores clearly fit better. The GLM outcomes which
fit poorly were: ever had a liver condition (liver con; green
triangles), still have a liver condition (have liver con; red cir-
cles), and significant difficulty using a knife/fork (adl knifeDIS;
blue squares). These happen to be the three rarest outcomes:
1.2%: have liver con, 1.9%: adl knifeDIS, and 3.0% liver con
(the least common input deficit was phosphorous at a rate of
2.2%). The weighting scheme (Section B.2.1) may affect the
relationship between AUC and Youden indexes when outcomes
are very rare (PCA was not weighted). Diagonal black line is
y = x/2 + 1/2, which illustrates that AUC > Youden/2 + 1/2.
The values in these figures are the same as used in Figure 5.3
(A) and Figures 5.7, 5.9 and 5.10 (B). . . . . . . . . . . . . . . 249

B.16 Eigen-decomposition of the joint histogram, without scaling.
The first column is the complete 2D joint deficit histogram,
the remaining columns sum to the first column (Eq. A6). The
first PC is clearly dominant and is dense, meaning it is nearly
equal weights for each variable (akin to the FI). The eigen-
decomposition naturally finds blocks of correlated variables.
When it runs out of blocks it looks for strong diagonal terms.
This causes PCA to naturally block out like-variables, e.g. lab
vs clinical in PC2, similar to an expert choosing to create an
FI out of variables from the same domain. Compared to the
transformed scale, Figure 5.2, we see that the higher PCs are
much dimmer, reflecting their minor contribution. . . . . . . . 250
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B.17 Cumulative compression with AUC. The reader should look for
two things: (1) the number of components (dimensions) needed
to achieve a relatively high score, and (2) the slope of the curve,
when it flattens we can expect the features are variable-specific
or otherwise less important. We see the same relative impor-
tance as with the Youden index, Figure 5.3, but the AUC sat-
urates much faster, with LSVD reaching perfect AUC near 20
features (vs 30 for Youden index). The faster saturation ap-
pears to be due to known differences between the AUC and
Youden index (Eq. B.9 and Figure B.15). The Youden index
is preferable since it provides a definite accuracy at a specific
threshold, such as we would see in medical diagnosis [214]. . . 251

B.18 Spearman correlation of features across algorithms, extended.
This is an extension of Figure 5.4 to include centered features.
Observe that the centered features show the same strong cor-
relations as the uncentered features, illustrating that lack of
centering is not the cause of the correlation. Upper triangle
is correlation coefficient with 95% confidence interval; ellipses
are equivalent Gaussian contours (for visualization) [129]. The
first latent dimension for either PC, LPC or LSVD correlates
strongly with the FI, even when centered. We also observe that
the first latent dimension correlates more strongly with clinical
than lab data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.19 Age and sex dependence of first latent feature (from PC1, LPC1,
LSV1 and FI). All features show similar age and sex depen-
dence. Females (solid, circles) increase approximately exponen-
tially with age, males increase more linearly (dotted, triangles).
Similar to the FI LAB in [21] we observed a strong sex-effect at
younger ages that is smaller at older ages. Scale only applies to
FI; PC1/LPC1/LSV1 have been globally scaled for visualiza-
tion (linear scaling). Individuals age 85+ were excluded from
this figure because age was top-coded at 85 (we don’t know their
true age). This is further evidence that all four algorithms are
sensitive to the same underlying signal, see discussion in “The
first latent dimension ‘is’ the frailty index”. . . . . . . . . . . . 253

B.20 Cumulative prediction plot for discrete outcomes, AUC (GLM).
0th dimension is demographic information. Prediction improved
quickly, reaching a maximum at 5-10 features. Increasing the
number of features initially improves prediction but eventually
it gets worse due to overfitting. Results are qualitatively iden-
tical to the Youden index, Figure 5.7. . . . . . . . . . . . . . . 253
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B.21 Improvement in predictive power as more PCs are included,
grouped by outcome type (GLM). This figure extends Figure 5.9
to include all PCs. X-axis labels indicate the cumulative num-
ber of PCs included, “C” means demographical covariates only.
Coloured lines indicate specific outcomes, black line indicates
the mean for each group. Scores saturate quickly, justifying
truncating the plots. Several of the ADL/IADL disability ap-
pear to improve with high PCs, e.g. iadl mealDIS from PC47-
PC49, we suspect this is consequence of our choice of input
variables (see Section B.3.3). Note: legends are sorted from top
(best) to bottom (worst) performance for the PC55 model. . . 254

B.22 Improvement in predictive power as more PCs are included,
grouped by outcome type (with non-linear terms). Models in-
cluded all cumulative linear, quadratic and interaction terms up
to the indicated PC, starting with the model using only covari-
ates. Coloured lines indicate specific outcomes, black line indi-
cates the mean. The last row contains hand-picked variables
based on their high-dimensional behaviour. Compare black
lines to Figures 5.9 and 5.10, which used only linear terms.
The linear models performed at least as well, e.g. ADL/IADL
disability saturates at 0.75 both here (non-linear) and in Fig-
ure 5.9 (linear). The last row show a clear tendency to overfit
(downward curving of performance with increasing number of
predictors; compare to Figure 5.10). . . . . . . . . . . . . . . . 255

B.23 Improvement in predictive power as more PCs are included,
grouped by outcome type (with AUC; linear terms only). Coloured
lines indicate specific outcomes, black line indicates the mean.
The last row contains hand-picked variables based on their high-
dimensional behaviour. We see little difference in the relative
performances using the AUC versus the Youden index, Fig-
ures 5.9 and 5.10. This is not surprising given the strength
of the correlation between AUC and Youden index, which is
approximately linear for AUC ≲ 0.9 (Figure B.15). . . . . . . 256

B.24 Improvement in predictive power as more features are included,
grouped by outcome type (using LPCA rather than PCA).
Coloured lines indicate specific outcomes, black line indicates
the mean. The last row contains hand-picked variables based on
their high-dimensional behaviour. Score was Youden index for
discrete outcomes and R2 for continuous outcomes. Compare to
Figures 5.9 and 5.10, which used PCA. Results are very similar
to PCA, further evidence of the similarities between PCA and
LPCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
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B.25 Improvement in predictive power as more features are included,
grouped by outcome type (using LSVD rather than PCA). Coloured
lines indicate specific outcomes, black line indicates the mean.
The last row contains hand-picked variables based on their high-
dimensional behaviour. Score was Youden index for discrete
outcomes and R2 for continuous outcomes. Compare to Fig-
ures 5.9 and 5.10, which used PCA (or Figure B.24 which was
very similar to PCA). Notice the overall scores are lower here
than for PCA (e.g. look at the last row). This is consistent with
our observations in Figures 5.7 and 5.8 which showed LSVD
generally resulted in worse prediction scores. . . . . . . . . . . 258

B.26 GLM feature selection frequencies. Left: linear scale, right:
log-log scale. GLM models were given all PCs and covariates
and then LASSO picked the optimal subset for prediction (see
Section B.3.3). We see a continuous drop in feature selection
frequency with increasing PC number, suggesting less informa-
tive features. This helps explain why the prediction scores sat-
urated at relative low PCs in Figure B.21. The linear behaviour
on the log-log plot motivates a power law fit. The nth PC was
selected with frequency y = 0.84n−0.24 (red line). Results are
pooled from 10-fold cross-validation of all outcomes, excluding
the FP and FI (to prevent trivial self-prediction). . . . . . . . 259

B.27 PCA rotation sensitivity analysis. We randomly sampled sub-
sets of 30 variables (out of 55), then performed PCA on the
subset, and then aggregated the rotation coefficients. Left side
are coefficients for the lab variables, right are clinical. The first
three PCs are quantitatively robust. The remaining PCs were
not robust (non-significant/grayed-out). It is worth comparing
to Figure 5.11 which used all 55 variables and randomly sam-
pled individuals (with replacement), and showed more robust
PCs up to PC5 or PC6. . . . . . . . . . . . . . . . . . . . . . 259

B.28 Feature associations with demographical variables. Age vs FP,
and sex, race, income, education, has partner, and smoker vs
all variables: Youden index (see the Section 5.2.2 for details).
Age vs remaining features (FI, FILAB, ..., PC10): correlation
coefficient (absolute value). The raw predictive power of each
feature should flag any demographical-specific effects. Note the
age effect for PC1, sex effect for PC3 and race effect for PC4.
The age effect supports our claim in the “Age stratification”
section of our results that PC1 becomes increasingly dominant
with age. Inner circle fill colour is lower limit of 95% CI (white
is non-significant). . . . . . . . . . . . . . . . . . . . . . . . . 260
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B.29 2D Histogram as a function of age, normalized. Top: lin-
ear fill scale, bottom: gamma transformed for visualization
(sign(x)|x|γ, γ = 2/3). We have normalized by the probability
of having a deficit at that age, i.e. the scale is in units of mean
FI for that age range, E(FI). We see the 2D histogram struc-
ture is relatively stable with age, showing only an increase in
saturation with age. See Section B.3.5 for context. . . . . . . . 260

B.30 PCA second moments (eigenvalues) with respect to age quar-
tile, bootstrapped CI (N=2000). The first eigenvalue and the
slope of the first line both increase with age. The increasing
first eigenvalue is consistent with the increasing FI with age,
a widely-reported phenomenon. The increasing slope is analo-
gous to a decrease in fractal dimension with age [61]. Log-log
scales. See Section B.3.5 for context. . . . . . . . . . . . . . . 261

B.31 Cumulative compression by age group using PCA. We see only
a minor difference between the cohorts, with the young cohort
compressing a little better. Note: age was top-coded at 85. For
comparison with Figure 5.3. . . . . . . . . . . . . . . . . . . . 261

B.32 Cumulative prediction plot stratified by age, but with no demo-
graphical variables (GLM). The older individuals (green trian-
gles) clearly had better model performance — similar Youden
index (A) and lower MSE (B) — than the younger individuals
(red circles). We have included the full population for compar-
ison (blue squares), which clearly performs the best (although
it also has twice as much training data as the other two sam-
ples). In contrast to Figures 5.7 and 5.8, we have not included
covariates as the 0th feature (see Section B.3.5). . . . . . . . . 262

B.33 GLM stepwise prediction of input variables, stratified by age.
GLMs were trained using PCs to predict the input predictor
variables. Age range is indicated in row name, top-coded at
85. The PC patterns are quite similar, indicating robustness
with respect to age. Where they differ is of interest. Of note:
BUN, creatinine, calcium, and iron (bolded). Youden index
(higher is better). Inner circle fill colour is 95% CI limit clos-
est to 0. GLMs were not conditioned on demographical vari-
ables (because we want to know everything that’s in the PCs
for comparison). Associated sections: Section B.3.5 and “Age
stratification” in the main text. . . . . . . . . . . . . . . . . . 263
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B.34 GLM stepwise prediction, stratified by age. GLMs were used
to predict outcomes and demographic covariates. Age range is
indicated in row name, top-coded at 85. The PCs are quite sim-
ilar, indicating robustness with respect to age. Where they dif-
fer is of interest. Of note: microalbuminuria and gait (bolded).
Continuous score is R2; demographic and discrete scores are
both Youden (higher is better). Inner circle fill colour is 95%
CI limit closest to 0. GLMs were not conditioned on demo-
graphical variables (because we want to know everything that’s
in the PCs for comparison). Associated sections: Section B.3.5
and “Age stratification” in the main text. . . . . . . . . . . . 264

B.35 Benchmarks for dimensionality reduction algorithms used. A.
using a sample of 100 individuals, B. 1000. LSVD, LPCA
and PCA all scaled similarly with increasing number of input
variables, with PCA being about 10x faster than LPCA and
LPCA being about 10x faster than LSVD. The FI, in compari-
son, scaled very well with increasing number of input variables,
but had a high fixed computational cost (unlike the other algo-
rithms, the FI code was not optimized). Increasing the number
of individuals in the sample caused a sublinear increase in com-
putation time (A vs B). See Section B.3.6 for details. . . . . . 265

B.36 Principal component analysis (PCA) of binary data is equiva-
lent to eigen-decomposing the 2D joint deficit histogram, com-
plete case data. The first column is the complete histogram,
the remaining columns sum to the first column (Eq. A6). The
first PC is clearly dominant and is dense, meaning it is nearly
equal weights for each variable (akin to the FI). The eigen-
decomposition naturally finds blocks of correlated variables.
When it runs out of blocks it looks for strong diagonal terms.
This causes PCA to naturally block out like-variables, e.g. lab
vs clinical in PC2, similar to an expert choosing to create an FI
out of variables from the same domain. Colour-scale has been
transformed for visualization using sign(x)|x|γ, γ = 2/3. Re-
sults are similar to imputed result, Figure 5.2, although the im-
puted histogram is clearly more saturated, reflecting the worse
overall health of individuals with missing data (see Section B.1.2).265
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B.37 Cumulative compression, complete case data. Tuning the size
of the latent dimension bottleneck we inferred the maximum
number of dimensions required to efficiently represent the input
data. The reader should look for two things: (1) the number
of components (dimensions) needed to achieve a relatively high
score, and (2) the slope of the curve – when it flattens we can
expect the features are noise, variable-specific or otherwise less
important. Logistic SVD compresses the input most efficiently,
saturating at around 30 features. Note the dramatic difference
between lab and clinical compression both for PCA and the FI;
the first PC of clinical data scores as well as 9 lab PCs. Results
are similar to the imputed result, Figure 5.3. . . . . . . . . . . 266

B.38 Spearman correlation of primary features across algorithms,
complete case data. The first latent dimension for either PC,
LPC or LSVD correlated strongly with the FI and each other,
and correlated more strongly with the FI CLINIC than FI LAB.
This implies a strong mutual signal very close to the FI, es-
pecially the FI CLINIC. Upper triangle is correlation coeffi-
cient with 95% confidence interval. Ellipses indicate equivalent
Gaussian contours [129]. Compared to the imputed result, Fig-
ure 5.4, we see somewhat smaller correlations between most
features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.39 Feature associations with individual input variables, i.e. what
goes into each feature, complete case data. Association strength
(fill colour) between features (x-axis) and adverse outcomes (y-
axis); 0: no association, 1: perfect. Youden index. Inner circle
fill colour is lower limit of 95% CI (white is non-significant).
Compared to the imputed data, Figure 5.5, the higher PCs seem
to have stronger signals/smaller confidence intervals, perhaps
because the complete case data is more homogeneous. . . . . . 267

B.40 Feature associations with individual outcomes, i.e. what we get
out of each feature, complete case data. Association strength
(fill colour) between features (x-axis) and adverse outcomes (y-
axis); 0: no association, 1: perfect. Inner circle fill colour
is lower limit of 95% CI (white is non-significant). Text on
right denotes metric used. Compared to the imputed data,
Figure 5.6, we see stronger signals in the higher PCs, perhaps
because the complete case data is more homogeneous. . . . . . 268
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B.41 Cumulative prediction plot for discrete outcomes (GLM), com-
plete case data. 0th dimension is demographic information. In-
creasing the number of features initially improves prediction but
quickly worsens, ostensibly due to overfitting. Youden index:
higher is better. Compared to the imputed data, Figure 5.7, we
see much stronger evidence of overfitting (decreasing score with
increasing number of features). We suspect this is due to a lack
of case data. For some outcomes, case data were rare enough
that the scores could be unreliable (see Section B.4.3). . . . . 269

B.42 Cumulative prediction plot for continuous outcomes (GLM),
complete case data. 0th dimension is demographic information.
Increasing the number of features improves prediction with a
tendency to overfit as the number of PCs approaches the max-
imum. LSVD performs notably worse than PCA and LPCA.
MSE is on standardized scale, therefore R2 = 1−MSE. MSE:
lower is better. Compared to the imputed data, Figure 5.8, we
see some evidence of overfitting (increasing error with increasing
number of features). . . . . . . . . . . . . . . . . . . . . . . . 270

B.43 Improvement in predictive power as more PCs are included,
grouped by outcome type (GLM), complete case data. Coloured
lines indicate specific outcomes, black line indicates the mean
for each group. For most outcomes the performance stops im-
proving after a few PCs, hence why we’ve truncated at PC6.
The exceptions are explored in Figure B.45. Note: legend is
sorted from best (top) to worse (bottom) performance of the
PC6 model. See Figure B.44 for the complete plots without
truncation. Compared to the imputed data, Figure 5.9, we see
much more volatile fits and lower overall accuracies, particu-
larly for ADL/IADL disability. Cases were rare for ADL/IADL
disability, which could make the Youden index estimates unre-
liable (see Section B.4.3). . . . . . . . . . . . . . . . . . . . . . 271

B.44 Improvement in predictive power as more PCs are included,
grouped by outcome type (GLM), complete case data, with-
out truncation (all PCs present). X-axis labels indicate the
cumulative number of PCs included, “C” means demographical
covariates only. Coloured lines indicate specific outcomes, black
line indicates the mean for each group. Note: legend is sorted
from best (top) to worse (bottom) performance of the PC55
model. Cases were rare for ADL/IADL disability, which could
make the Youden index estimates unreliable (see Section B.4.3).
This is the extended version of Figure B.43. . . . . . . . . . . 272
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B.45 Improvement in predictive power as more PCs are included,
high-dimensional outcomes (GLM), complete case data. High-
dimensional outcomes were identified by the imputed analysis
(compare to Figure 5.10). We tend to see continual improve-
ment for the discrete and continuous outcomes, excluding the
FP (up to ∼ 10). Age appeared to be the highest dimen-
sional. Compared to the imputed data, Figure 5.10, we see
more volatile curves, perhaps because of limited case data (see
Section B.4.3); note the different coloured labels (labels are
sorted by performance). . . . . . . . . . . . . . . . . . . . . . 273

B.46 PCA robustness, complete case data. Robustness of the PCA
rotation was assessed by randomly sampling which individuals
to include (i.e. bootstrapping, N = 2000). Left side are lab
variables, right are clinical. Inner circle fill colour is 95% CI
limit closest to 0. Grayed out tiles were non-significant. The
first three PCs were quantitatively robust. We see the robust-
ness drops with increasing PC number. The global sign for each
PC were mutually aligned across replicates using the Pearson
correlation between individual feature scores. Compared to the
imputed data, Figure 5.11, we see that the PCs were a little
less robust in the complete case data (lower significance), but
otherwise similar. . . . . . . . . . . . . . . . . . . . . . . . . . 274

B.47 PCA second moments (eigenvalues) with bootstrapped stan-
dard errors (N=2000), complete case data. Log-log scales. Note
the bilinear structure. Banded region is optimal performance
region (±1 error bar from best). Compared to the imputed
data, Figure 5.12, the points have curved further away from
the banded regions. . . . . . . . . . . . . . . . . . . . . . . . . 274

C.1 Study pipeline. We analysed four datasets using our proposed
model. We model the dynamics of biomarkers, y⃗n, over time
using equation (C.4). Our model extracts an interaction net-
work, W , and equilibrium positions µ⃗n, where the latter are
allowed to depend on covariates (e.g. age and sex). The esti-
mated network, W , captures arbitrary linear interactions be-
tween biomarkers which can be removed by working with the
natural variables, z⃗n. Natural variables are defined by a linear
mapping into the eigenspace of W . The natural variables al-
lowed us to analyse stability. We were also able to infer changes
to the mean and variance of the observed variables based on
changes in the natural variables. . . . . . . . . . . . . . . . . . 275
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C.2 Final imputation quality check, visualized using principal com-
ponent 1. A. C57BL/6 mice (SLAM). B. Het3 mice (SLAM).
C. Paquid (human, dementia). D. ELSA (human). Imputed
values appear to be reasonable for each dataset. Principal com-
ponent analysis (PCA) was applied to each dataset in the en-
tirety, flatted across timepoints. Good quality imputation (blue
triangles) should show the same trend and dispersion as the ob-
served data (red points). Censored individuals likely have worse
health, so imputed values may look a little ‘older’ than the ob-
served. Age-dependence is indicated by the solid lines with
confidence intervals (cubic spline; geom smooth with defaults
[206]). Outlying points are highlighted (l ± 3 where l is the
ordinary linear regression model). Data points were labelled as
imputed (blue triangles) if the preponderance of the rotation
weights were missing:

∑︁
i=missing |Ui1|/(

∑︁
j |Uj1|) > 0.5; where

U is the PCA rotation matrix. . . . . . . . . . . . . . . . . . . 283

C.3 Imputation of dropped individuals can reduce bias. We simu-
lated informative censorship and here compare estimates from
different missing data handling strategies. Observe that both
the diagonal elements of W (A.) and all elements of W (B.)
were biased high when data were not imputed. However, if we
imputed using the model mean, the bias was greatly reduced.
For µ0 (C.) we also reduced the bias with the combined impu-
tation strategy, which was the strategy employed on the real
data. Imputation did introduce a small bias in the noise es-
timate (D.). The bias was largest if we used only the carry
forward/back method. . . . . . . . . . . . . . . . . . . . . . . 285
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C.4 Model selection. A. C57BL/6 mice (SLAM). B. Het3 mice
(SLAM). C. Paquid (human, dementia). D. ELSA (human).
Lower error is better. y-axis is 632-RMSE on left and 632-MAE
on right. Horizontal lines indicate the best performing model.
We are looking for the simplest model that consistently hits
those lines across datasets. We considered models significantly
worse if they do not have an error interval overlapping this line;
prioritizing RMSE. Models: carry: equation (C.7); fast: equa-
tion (C.8); noallo: equation (C.9); quad: equation (C.10); full:
equation (C.4). Additional parameters: pca: equation (C.6)
with PCA preprocessing and diagonal noise; Q: the noise was
estimated; covs: prefix, after which included covariates are
listed; nocovs: no covariates were used. For example, sex pca Q
included sex as a covariate (sex), used PCA as a preprocessing
step and assumed diagonal W and Q, and fit equation (C.6)
(pca), and estimatedQ from the data (Q). The fast model, equa-
tion (C.8), performed much worse for all datasets (points above
plot region), 632-RMSE: 0.91(2) (Paquid), 0.92(1) (ELSA), 2.03(6)
(SLAM C57) and 2.21(7) (SLAM HET3); 632-MAE: 0.68(1)
(Paquid), 0.702(5) (ELSA), 1.32(3) (SLAM C57) and 1.47(3)
(SLAM HET3). . . . . . . . . . . . . . . . . . . . . . . . . . . 295

C.5 Algorithm C.1 validation. For the indicated parameters in each
measurement (A.-F.), the estimated value is plotted against the
ground truth value for a variety of sample sizes (indicated by
the legend). Points show mean; bands are the interquartile
range (25th to 75th percentile). Bias is indicated by position
of point relative to the red dashed line, y = x (perfect estima-
tor). Precision (and accuracy) are inferred by the dispersion
(bands). As the number of individuals, N , is increased from
50 to 1000 we see the estimator becomes increasingly accurate
and precise, with a small dispersion around the ground truth
values for each parameter. Points are staggered for visualiza-
tion. Note: N = 10 had large errors and hence was excluded
for better visualization. . . . . . . . . . . . . . . . . . . . . . . 296
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C.6 Parameter errorbar validation (coverage). Asymptotic error-
bars can be too small, whereas bootstrap errorbars appear to
be valid. A. Asymptotic error clearly has abnormally low cover-
age for µ0 and µage, perhaps due to strong correlations between
the two parameters. Asymptotic error estimates for the other
parameters look good. B. bootstrap error coverage looks good:
parameters are close to the nominal rate (dashed line) and are
(mostly) symmetrically distributed above and below. Note the
scale. Errorbars are standard error in the mean. x-axis not to
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

C.7 Bootstrap error calibration. 632 error is a satisfactory estimator
of the true error. A. Test error (out-of-sample) was biased
high, training error (in-sample) was biased low, whereas 632
error was nearly unbiased relative to the ground truth. B. The
coverage of the train and 632 error were close to the nominal
rate, 68.3% (dashed line). The test error clearly had abnormally
high coverage, indicating the errorbars on the test error are too
large. Note: the true (stochastic) error is difficult to precisely
estimate due to non-uniform sampling, so we used the average
ground truth to estimate the true error. Errorbars are standard
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

C.8 Covariate significance (z-scores). A. C57BL/6 mice (SLAM).
B. Het3 mice (SLAM). C. Paquid (human, dementia). D.
ELSA (human). The equilibrium term, µ, was a linear func-
tion of these covariates. Most covariates were significant (red
or white). Only the blue tiles were not significant at 95%
(z = 1.96). Tile number is z-score. Colour scale is truncated
at z = 5 (p = 6 · 10−7). See Figures C.11 and C.12 for the
directions of the covariate effects. . . . . . . . . . . . . . . . . 309

C.9 Interaction networks for all datasets. A. C57BL/6 mice (SLAM).
B. Het3 mice (SLAM). C. Paquid (human, dementia). D.
ELSA (human). Tile colour indicates interaction strength (sat-
uration) and direction (colour) of the interaction from the y-axis
variable to the x-axis variable. Inner colour indicates the limit
of 68% confidence interval (CI) closest to zero (i.e. standard
error). Non-significant interactions, at 68%, have been whited-
out. Variables are sorted by diagonal strength (increasing rate).
The matrices are real and symmetric because the data were di-
agonalized by an orthogonal matrix (PCA). . . . . . . . . . . 310
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C.10 Homeostasis of biomarkers vs natural variables. The dysruption
of homeostasis seems to be diffuse across biomarkers whereas
it is concentrated into a few natural variables. A. Observed
biomarkers were typically far from equilibrium (dotted line).
B. In contrast, most natural variables were close to equilib-
rium. We inferred that variables close to equilibrium were in
homeostasis whereas those far from equilibrium were allostatic.
Together these plots suggest that the natural variables were able
to condense the effects of allostasis into a few major variables. 311

C.11 Natural variable correlates — biomarkers (predictors). A. C57BL/6
mice (SLAM). B. Het3 mice (SLAM). C. Paquid (human, de-
mentia). D. ELSA (human). This helps to describe what infor-
mation is in each natural variable, z, and therefore what each
natural variable is capable of controlling. The sign of each z is
arbitrary due to idiosyncrasies of the eigendecomposition. . . . 312

C.12 Natural variable correlates — covariates. A. C57BL/6 mice
(SLAM).B. Het3 mice (SLAM).C. Paquid (human, dementia).
D. ELSA (human). This provides further information about
what information each natural variable, z, contains. We expect
the strongly drifting variables to exhibit correlations with age,
though the sign of each z is arbitrary. Male is a binary sex
indicator (1: male, 0: female); sex is the converse (0: male,
1: female). CEP is educational attainment level (1: attained
primary, 0: did not). . . . . . . . . . . . . . . . . . . . . . . . 313

C.13 Natural variable drift drives biomarker drift. A. C57BL/6 mice
(SLAM).B. Het3 mice (SLAM).C. Paquid (human, dementia).
D. ELSA (human). We consider the drift of the primary risk
natural variables: z1 for ELSA and Paquid and z2 for SLAM.
We observe a continuous drift in the natural variables. We
also plot the drift of the biomarkers which is directly caused by
each z via P . In this manner, a few natural variables can drive
drift across several biomarkers. Since P is orthogonal (length-
preserving) the drift of each natural variable must be diluted
across biomarkers (at most a single biomarker can drift at the
same rate). See also the correlation matrices, Figures C.11 and
C.12. For the SLAM datasets we’ve included only timepoints
where the average age was over 80 weeks. . . . . . . . . . . . . 314
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C.14 Allostasis drifts towards the risk direction. We fit a Cox model
for each natural variable including age and sex as covariates.
The Cox coefficient — i.e. log–hazard ratio (HR) per unit in-
crease — correlates with the steady-state drift rate, µage. The
dominant risk direction for each dataset has been labelled by
eigenvalue rank (e.g. z1 is 01). The equilibrium standard devi-
ation provides a native scale for each variable. . . . . . . . . 315

C.15 Composite health measure performance. A. C57BL/6 mice
(SLAM). B. Het3 mice (SLAM). C. Paquid (human, demen-
tia). D. ELSA (human). A simple estimator of health is µ⃗T

agez⃗.
This leverages mallostasis to infer individual health. Large sep-
aration between quartiles (colours) indicates a strong predictor
of adverse outcome. Fill is 95% confidence interval. . . . . . . 316

C.16 Equilibrium dispersion is primarily determined by eigenvalue
strength, |λ| equation (C.48). Smaller eigenvalues are predicted
to have larger equilibrium variances. The range of equilibrium
variances spans 3 orders of magnitude. The largest variance
will drive the observed variation in biomarkers in the steady-
state e.g. rank 1 will become principal component 1 (equa-
tion (C.49)). Dotted lines illustrate what the equilibrium vari-
ance would be if each dimension had the same noise strength,
σ2. The fitted solid lines indicate that the noise makes the
smaller eigenvalues even more dominant than expected. . . . . 317

C.17 Principal components are very similar to the natural variables.
A. C57BL/6 mice (SLAM). B. Het3 mice (SLAM). C. Paquid
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C.18 Survival summary. A. C57BL/6 mice (SLAM). B. Het3 mice
(SLAM). C. Paquid (human, dementia). D. ELSA (human).
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standardized by the equilibrium dispersion (ln (HR)/SD(z)e)
while the bottom is the C-index centered to 0 (C − 0.5). A
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versa (opposite of the Cox coefficient). The Cox model is con-
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Abstract

Geroscience seeks to clarify and explain the connection between chronological age and

declining organism health. The field is rich in complex phenomena and increasingly

rich in large, multivariate datasets as well, making it fertile ground for quantitative

modelling. This thesis outlines the steps needed to develop such models, from con-

tending with aging study data to validating a causal model of effective dynamics.

Ultimately, the goal of this thesis is make interpretable predictions for the causes and

effects of organism aging, with special attention paid to humans. This goal is met

by developing and applying the Stochastic Finite (SF) difference model which uses

an interaction network to predict multivariate, future values based on current values.

The process by which aging study data facilitates this type of model building involves

multiple pitfalls and key assumptions which are addressed in introductory chapters

on missing data and unsupervised learning of aging metrics. The SF model is then

validated on two mouse datasets and two human datasets, unveiling characteristic

dynamical behaviour of aging systems. In particular, we observe mallostasis: the

steady-state drift of biomarker values towards worse health. The approach is then

applied to specific age metrics, so called “biological ages”, to probe more directly the

sequence of events which occurs during natural aging. This provides insight into the

strengths and weaknesses of existing qualitative theories and provides a path towards

more quantitative theories of aging.

xli



List of Abbreviations and Symbols Used

In quasi-alphabetical order:

ADL Activity of Daily Living: essential and routine tasks of daily life [46]. For

example, being able to dress oneself. Typically reported on a graded scale

ranging from no difficulty to some difficulty to unable to do.

Adverse outcome Any unfavourable, definite change in health. For example, onset

of: disability, disease, and death.

Allostasis “Homeostasis through change” [118]: homeostasis but with a set point

that can change. This permits adaptive response to environmental demands,

but may eventually come at the cost of allostatic load [89].

Allostatic load The cost associated with long term wear-and-tear of the adaptive

stress response [89].

AUC Area Under the receiver operating characteristic Curve: a measure of binary

prediction performance ranging from 0 (perfectly-incorrect predictor) to 0.5

(guess) to 1 (perfectly-correct predictor). Equivalent to the probability of cor-

rectly ranking the afflicted individual ahead of the unaffected in any pair [69].

Biological age A metric sensitive to the effects of aging. I will further assume that

it is a measure of overall health. Often reported in units of years, representing

an individual’s effective age.

Biomarker of aging A metric sensitive to the effects of aging which also satisfies

specific criteria [90]. The American Federation for Aging Research suggest four

criteria: (i) it must predict exactly where a person is in their lifespan trajectory,

and it must predict better than chronological age, (ii) it must monitor the

aging process, rather than the effects of disease, (iii) testing must not harm the

individual, and (iv) it must works in humans and in laboratory animals, such

as mice (for testing). A recent high-profile paper from the Biomarkers of Aging

xlii



Consortium proposes to instead define a biomarker of aging as a metric that is

sensitive to biological age [128].

C57BL/6 C57, black-6 genetically identical mouse. A commonly-used lab mouse.

CART Classification and regression tree; a machine learning model.

Causal A causal prediction satisfies the Wiener-Granger causality condition. Specif-

ically, Y → X (Y causes X) if and only if prediction of future values of X is

significantly improved by inclusion of past information from Y , as opposed to

simply using past values of X [23].

C-index Concordance index: a measure of survival prediction performance, cousin

of the AUC. Ranges from 0 (perfectly-incorrect predictor) to 0.5 (guess) to 1

(perfectly-correct predictor) [72]. Equivalent to the probability that the model

will correctly predict which individual in any pair will die first.

Eigen-decomposition A =
∑︁n

i=1 λiP·i⊗P−1
i· whereA is the decomposed matrix, P

is the matrix who’s columns are the n eigenvectors and λi is the ith eigenvector

(⊗ is the outer product).

Eigenvalue The scale, λ, of a linear transformation, A, as defined by Ax⃗ = λx⃗.

Eigenvector The vector, x, of a linear transformation, A, as defined by Ax⃗ = λx⃗.

ELSA English Longitudinal Study of Aging. A large-scale British study of aging

including 1000s of variables across domains such as demographic, lifestyle, func-

tional state and lab tests.

FI Frailty Index: the average number of health deficits an individual has out of a set

of 30+ health variables subject to selection criteria. The criteria are: (i) must

be related to health, (ii) prevalence must increase with age, (iii) prevalence can’t

saturate at young ages, (iv) must cover a range of biological systems, and (v) if

used serially it should include the same specific variables [174]. Usually based on

self-reported health variables such as ADLs, IADLs, symptoms, functional lim-

itations, and chronic diseases. For example, “do you have difficulty dressing?”
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would be encoded as: 1 if yes (deficit) or 0 if no (healthy); 29 related variables

would then be included and the average value would be the individual’s FI.

FI CLINIC Frailty index constructed entirely from functional or self-reported health

deficit information. This is normal and represents the original FI formulation

[174].

FI LAB Frailty index constructed entirely from blood test (lab) values. Blood tests

are binarized based on diagnostic thresholds for abnormality, with abnormal

values being scored as 1 (deficit) and 0 (health) otherwise.

Gerontology The study of aging, typically from a social science perspective.

Geroscience The study of aging from the perspective of its effects on health [94].

The central geroscience hypothesis is that ameliorating the effects of aging in

an individual will prevent or slow the development of most chronic diseases.

GNM Generic Network Model of aging population health and survival [184]. A

phenomenon-driven model based on the accumulation and propagation of dam-

age within a binary network of abstract health attributes.

Health deficit An abnormal state of ill-health. Can be graded (ordinal) or binary.

For example, angina (chest pain), diabetes, and any difficulty in ADLs or IADLs

are all health deficits. In this thesis all deficits will be encoded as 0 if they are

perfectly healthy and 1 if they are maximally unhealthy.

Het3 Heterogenous-3 genetically non-identical mouse.

Homeostasis The tendency for biological systems to spontaneously recover from

perturbations to an equilibrium state. This means that biomarkers may be per-

turbed over short timescales, but will tend to return to a steady-state value.

For example, white blood cell count may go up during an infection then return

to a normal value after the infection is repelled. Self-regulating hormone sys-

tems such as the hypothalamic–pituitary–adrenal axis are another example of

homeostasis [6].
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IADL Instrumental Activity of Daily Living: complex tasks needed to live inde-

pendently. For example, being able to prepare one’s own meals [46]. Typically

reported on a graded scale ranging from no difficulty to some difficulty to unable

to do.

Imputation Insertion of an invented (instantiated) value to replace a missing value.

Latent variable An unobserved or unobservable variable which affects observed val-

ues.

Mallostasis The correlation between steady-state drift rate and survival risk. As

individuals age their (“natural”) health variables drift towards worse health in

the steady-state [147].

MAR Missing At Random: missingness depends on observed values. This means

that it is possible to infer the effects of a missing value using only observed

values.

MCAR Missing Completely At Random: missingness is independent of observed or

unobserved values. Do not incorrectly assume that this means the missing value

can be safely ignored, since higher-order patterns can still cause bias Chapter 4.

MNAR Missing Not At Random: missingness depends on unobserved values. For-

mal inference including the missing value will require more information than is

available from the dataset alone.

Measure See metric.

Metric A rule for measurement e.g. an aging metric quantifies the effects of age.

Provides a number.

MI Multiple Imputation. Estimates a missing value together with the uncertainty it

introduces in the analysis. The procedure is to: (i) generate a collection of new

datasets with randomly imputed missing values, (ii) analyse each new dataset,

and then (iii) pool the results at the end using Rubin’s rules [130].
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MSE Mean-Squared Error. Measure of prediction accuracy. MSE ≡ N−1
∑︁N

i=1 (yi−
ŷi)

2 for known values yi, predicted values ŷi, and N individuals.

Natural variable Individual scores associated with the eigenvector transformation

of a dynamical interaction network. The matrix of eigenvectors, P , is used

to transform a dataset of individuals × variables into the basis individuals ×
natural variables [147].

NHANES National Health and Nutrition Examination Survey. A large-scale Amer-

ican cross-sectional study that includes 1000s of variables across domains such

as diet, lifestyle, functional state and lab tests.

Parseval’s theorem Vector length is conserved by isometric transformations, such

as orthogonal matrices [26]. This means that the mean plus variance of a dataset

must be conserved by an isometric transformation [147].

PC Principal Component. One of the new variables once a dataset has been trans-

formed using principal component analysis.

PCA Principal Component Analysis. The canonical dimensionality reduction algo-

rithm. Equivalently: the independent directions of maximum variance (ranked),

the eigen-decomposition of the covariance matrix, and the hyperplane closest

to the dataset in terms of mean-squared error (considering all possible linear

transformation). Rotates (transforms) a dataset of individuals × variables into

the basis individuals × principal components.

R Statistical computing language.

Resilience The ability of a system to recover from a perturbation back to its previous

state.

Robustness When referring to a living organism: the ability to resist being per-

turbed by a stressor. When referring to a result: how dependent a result is on

the specific dataset under analysis (less dependent means more robust).
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RF Random Forest: a non-parametric machine learning model for regression and

classification.

RI Rule-based Imputation. A deterministic algorithm for imputing values. Used for

imputing gated variables. Gated variables are variables which are not asked

during an interview because they are gated by a previous response (e.g. “how

many cigarettes do you smoke each day?” is gated by “do you smoke?”; a rule-

based imputation would be to insert 0 everywhere the first question is missing

and the second question is “no”).

RMSE Root Mean-Squared Error. The square-root of the mean-squared error.

SF Model Stochastic Finite difference Model: a dynamical network introduced in

Chapter 6. This is the main model of this thesis.

SLAM Study of Longitudinal Aging in Mice. A large-scale American study of aging

in mice cared for under lab conditions [136].

x Typically used to indicate an observed auxiliary variable (“covariate”).

y Typically used to indicate an observed predictor or essential variable.

z Typically used to indicate a latent/unobserved variable.
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Chapter 1

Introduction

In humans and most other organisms, chronological age is associated with an over-

all decline in health. This includes an exponential increases in risk of death [99],

morbidity [217] and disability [68], Figure 1.1. The effects are nearly universal, af-

fecting almost all known organisms and all biological scales within aging organisms.

For example, telomere attrition, DNA damage, epigenetic alterations, mitochondrial

dysfunction, altered cellular communication, chronic disease, and ultimately func-

tional decline, disability, and mortality are all strongly affected by the aging process

[115, 94]. This makes aging a non-linear, (nearly) universal, multiscale, collective

phenomenon [31] of immense practical importance. This thesis seeks to identify and

explain essential aging phenomenon using quantitative models. The ultimate goal is

to incorporate causal predictions within these models.

There are three major barriers to quantitative model building, which are addressed

in this thesis. The first is a lack of good aging metrics which would provide a suitable

outcome and foundation for quantitative modelling. This thesis proposes to instead

root quantitative models in phenomena and then leverage these models to construct

aging metrics (or refine rough metrics). This reveals the second issue, which is that

few quantitative models are simultaneously rooted in phenomena and portable to

generate aging metrics — they are generally exclusively data or phenomenon-driven

and hence new, hybrid models are needed. The underlying reason for this dichotomy

appears to be the third major issue, which is that aging data introduce special data

handling problems, the foremost of which are survival/censorship and missing data.

Before discussing metrics of aging, it must first be emphasized that the aging

process is distinct from the passage of time. Being facile, in health terms a 10 year-

old dog is “older” than a 10 year-old human. Being exact, the number of health

deficits at a specific age varies dramatically across individual humans, as do health

trajectories (e.g. survival risk) [125, 30]. However there is no consensus definition of
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Figure 1.1: Aging includes superlinear increases in risk of death (A.) and average
number of health deficits (frailty index; B.). The health deficits include functional
limitations, disability, signs and symptoms, and abnormal lab values (Tables B.1
and B.2). This makes lifespan and declining health characteristic phenomena of
aging at sufficiently advanced ages. National Health and Nutrition Examination
Survey (NHANES) 2001-02; A. is a log-linear fit [53]; B. is a spline fit with default
parameters [209]; data processing is reported in Chapter 5.
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aging [32], and there is no consensus way to quantify the effects of aging. Instead,

aging is defined by its phenomena, the foremost of which is an overall decline in health

and physical functioning over time. It is this decline which is ultimately of interest

[95, 94] and we therefore can use an individual’s overall health state as a definition

of their biological age.

Biological age is usually reported in units of time, representing an individual’s

health-equivalent, effective age. The distinction between estimator and true value is

often neglected, and an algorithm which estimates biological age is also referred to as

a (specific) biological age. For historical reasons, a “biomarker of aging” is a biological

age, but a biological age is not necessarily a “biomarker of aging”. The American

Federation for Aging Research requires a “biomarker of aging” to satisfy four criteria:

(i) it must predict exactly where a person is in their lifespan trajectory, and it must

predict better than chronological age, (ii) it must monitor the aging process, rather

than the effects of disease, (iii) testing must not harm the individual, and (iv) it must

works in humans and in laboratory animals, such as mice (for testing). While criteria

(iii) and (iv) have been met by several candidates, (i) is complicated by evidence

indicating that aging is a multidimensional process (e.g. organs may age differentially

within a single body), and (ii) may be outright impossible since chronic disease is

strongly associated with the aging process [90].1 For this reason I will refer to a

quantitative measure of aging as a “measure”, “metric” or “biological age” rather

than a “biomarker”.

Biological ages address a need for health state variables able to quantify the effects

of aging, as well as possible anti-aging interventions [28, 218]. The pragmatic moti-

vation for geroscience is to extend the period of healthy living without disability or

affliction, and compress the period of age-related decline [95, 94]. A variety of medi-

cal and environmental interventions have been developed that do precisely this in lab

animals [143], such as caloric restriction [64] or alpha-ketoglutarate supplementation

[7] in mice. Human studies are however constrained by a lack of appropriate outcome.

The conventional outcome is lifespan, but there are ethical and practical limitations

1Upon revision it has come to my attention that a recent movement alternatively defines a
biomarker of aging as a quantitative measure that is sensitive to an individual’s level of age-dependent
biological changes [128]. While a less stringent definition than the American Federation for Aging
Research’s is appropriate, the new one seems conspicuously non-specific.
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to exposing a human cohort to an anti-aging treatment for the decades required to

gather sufficient lifespan statistics. A non-invasive metric sensitive to biological age

could provide a faster, potentially more specific outcome for anti-aging studies. Al-

ternatively, from a purely academic standpoint, such a metric is also needed to build

quantitative theories of aging, since they require a relevant quantity to model and

communicate. At the heart of both understanding aging and anti-aging interventions

are cause and effect, leading to overlapping data and theories between the two. Ac-

cordingly, I will generally not make a distinction between these objectives. Irrespec-

tive of objective there is widespread contemporary interest in prospective biological

ages, ranging from epigenetic “clocks” which estimate health from DNA methylation

scores at the epigenetic scale [163], to the frailty index (FI) which measures health at

the clinically-relevant scale [174]. While the American Federation for Aging Research

criteria for a “biomarker of aging” may be unrealistic, it is still true that the existing

biological ages have major drawbacks. Epigenetic clocks are noisy, and while they do

correctly capture transient changes in health due to random stressors [144], they’re

also sensitive to impertinent information such as the time of day [102]. Alternatively,

functional biological ages such as the FI can work well, but only after a substantial

decline in functional state, limiting their informativeness (e.g. for the FI see [122]). It

is also true that evidence suggests that health state is multivariate, though not nec-

essarily high-dimensional [141, 52, 66], indicating that there is more than one “true”

biological age [110, 87]. Together these conditions drive a high demand for new and

improved biological ages.

The FI is one of the few biological ages which is being actively used as a de

facto biomarker of aging, both as a study outcome and a clinical measure [42] (e.g.

[64, 7]). The FI is a number from 0 to 1 that is defined as the average number

of health “deficits” an individual has, including signs, symptoms, chronic diseases

and functional limitations across multiple domains, with 1 representing all deficit

(for a minimum 30 variables) [174]. The FI is a measure of overall health. It can

be considered a generalized, continuous measure of frailty: a phenomenon generally

described as a loss of physiological “reserves and resilience” [60] meaning that a frail

individual is more likely to suffer from a plethora of adverse outcomes [42]. The

FI can alternatively be grouped together with biological ages. The FI differs from
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typical biological ages in terms of its scale since the FI is in units of health deficiencies

whereas biological ages are typically in units of time; this can be ameliorated through

a dynamical model [125] (to handle young ages see supplemental of [148]). The FI

considers chronic disease to be a sign of aging and therefore cannot satisfy the criterion

that a biomarker of aging should differentiate the effects of aging from chronic disease.

The FI is safe to measure and easy to calculate across studies and has strong predictive

ability for adverse outcomes [101]. What’s more, the FI has been ported from humans

to lab organisms [80], and is now a popular health measure for aging mice (e.g. see

[173, 64, 7]). The FI phenomena have been systematically explored for over a decade

[123], providing a treasure trove of phenomena to use when fitting models. This

makes the FI popular both experimentally and theoretically (e.g. [108, 194, 184]).

The primary limitation of the FI is that it is poor at discriminating health in the

young [218, 122] since young people typically have an FI very close to 0 (≲ 40 years

old for humans). A prospective solution is to build an FI-like metric by binarizing

sub-clinical measures of health [160], such as the FI LAB which uses lab blood tests

[81]. However, while the FI LAB has been shown to improve survival prediction

[20], it has yet to be shown to be more sensitive to health in young individuals (e.g.

Figure 1b of [19] suggests that the FI LAB is actually less sensitive to changes in

young individuals than the conventional FI). The FI plays the role of health state

variable in many studies and models, generally complementing survival risk. The FI

has not, however, been generally accepted as a “biomarker of aging” [90], ostensibly

because it does not discriminate between the effects of chronic disease and those of

age, and lacks sensitivity to the sub-clinical drivers of aging.

Without a consensus biomarker of aging [90], data-driven models instead make

use of whatever relevant data are available. Survival risk, disability, chronic disease

burden and functional limitations (e.g. gait speed and grip strength) are all reason-

able proxies for health, particularly in older individuals. In addition, almost every

health biomarker measured shows a decline with age [176]. A model that includes

both survival prediction and longitudinal biomarker trajectories can then have a well-

defined loss function for fitting (e.g. [213, 52]). Alternatively, many models ‘fit’ instead

directly to the phenomenon: performing model selection based on population-level

statistics and qualitative behaviour (e.g. [62, 201, 184]). Regardless of the approach, a
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good model of aging should capture the salient features of aging, particularly a spon-

taneous decrease in health and increase in risk of adverse outcomes over time. While

metrics of aging are poorly defined, there are lots of metrics available and together

with a suite of distinct aging phenomena we can judge model quality and validity.

Quantitative models can be used to explore mechanisms of aging in a falsifiable way.

In addition, an auxiliary goal is to leverage such models to produce and refine salient

metrics of aging (biological ages).

There is a paucity of quantitative models within geroscience, despite an abundance

of data. Existing models can be broadly grouped as either phenomenon or data-

driven. Phenomenon-driven models seek to recapitulate characteristic population-

level aging phenomenon, eschewing specific predictions at the individual-level. A key

contribution came in 2001 when Gavrilov and Gavrilova proposed the reliability the-

ory of aging, which derives an exponentially increasing mortality rate (Gompertz’

law) with late-life plateau as a consequence of damaging an abstract, redundant

system [62]. This formed the foundation for abstract binary network models of dam-

aged/undamaged nodes for human health which recapitulates mortality curves at the

population level [201], then more recently both human mortality and the FI by the

Generic Network Model (GNM) [184]. While phenomenon-driven models provide im-

portant insights into what the important features of aging are and how/why they

might occur, their abstract nature makes it impractical to map them into specific bi-

ological targets e.g. the nodes of the GNM do not represent specific, observable health

variables. Yashin et al. proposed an alternative vision using data-driven modelling

based on generalized ideas of homeostasis [213]. This idea was eventually applied

to multivariate data using deep learning to automatically generate a network of in-

teractions between observable health variables [52]. Unfortunately, this approach is

cumbersome and data-hungry, making it inapplicable to small datasets and unlikely

to be adopted by (most) aging researchers whom prefer simple models. What’s more,

while data-driven models can generate precise predictions and mappings into observ-

able variables, their flexibility and agnosticism limits their insights into the aging

process i.e. they lack “interpretability”. Missing is a hybrid approach which can cap-

ture the salient phenomena needed to characterize the aging process but can still be

used to analyze specific, observable variables — ideally helping convert individualized
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data into biological age estimates.

This thesis proposes that data-driven techniques can be modified to incorporate

the missing elements provided by phenomenon-driven techniques. The foremost short-

coming of data-driven models is their connection to causality, which is often tenuous

or even explicitly agnostic. Incorporating causality presents the first of two major

hurdles, the second being data handling — which is a non-trivial issue for aging data,

particularly missing data in aging studies.

Quantitative, causal models are needed to make sense of interventional data [31].

An added benefit is that they can help discriminate between different theories of aging,

which have not only proliferated [97] but have become complex to the point where

they cannot be explained without employing multi-causal networks [98, 115, 94]. For

interventions, causal models are needed to make sense of pleiotropic2 interventional

study data [218, 134]. For example, the prospective anti-aging drug metformin has

shown promise, but it has also been shown to reduce visual acuity in mice [134].

Similarly, cellular reprogramming can rejuvenate aged mice but can also cause tumour

formation [218]. Ostensibly these treatments are perturbing an underlying biological

network resulting in a spectrum of unexpected consequences. Similarly, natural aging

is characterized by a spectrum of widespread and diverse symptoms due to dysfunction

of the underlying biological network. It is only with quantitative modelling that

we can make sense of the biological networks which regulate organism health and

across which the effects of aging manifest. The specific effects of either interventions

or biological aging processes requires these networks to incorporate causal, directed

associations.

I take the Wiener-Granger causality condition as a working definition for causal-

ity. For my purposes this means that a vector auto-regressive process3 is used to

show that Y → X (Y causes X) if and only if prediction of future values of X are

improved by inclusion of past values of Y (in addition to past values of X) [23]. The

causal connections between variables can then be represented as a directed network

of “causal” links. The correctness of such models is to be argued and experimentally

verified. By definition, a causal model predicts the behaviour of a system in response

2Pleiotropic: many ways.
3A vector auto-regressive process is of the form x⃗(t+ 1) = f(x⃗(t), x⃗(t− 1), ...) for some function

f .
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to an external intervention [45], and hence a grain of salt must accompany our re-

sults, which are based on observational data [39]. The conventional gold standard

for evidence is the randomized control trial. In Fisher’s conceptualization of causal-

ity, randomization and repeated measurement removes all confounding effects leaving

only causal connections [192]. This conceptualization is far from perfect, however,

in particular it has been criticized for relying too heavily on perfect randomization

of (repeated) trials without any artifact entering via study design or execution [192].

Wiener-Granger causality based on dynamical modelling provides a complementary

approach that emphasizes interpretability. These models are not necessarily correct,

but rather they are a reasonable estimate given the available data — in particular,

they are an improvement over correlation matrices, which are typically used within

geroscience and neglect to take advantage of any evidence of directed associations

present in the data.

Aging study data carries with it a number of subtle difficulties which forms a

barrier to entry for scientists interested in quantitative modelling. For example, cen-

sorship and survival adds a layer of complexity, and most statistical models cannot be

reliably used without taking into account these effects (e.g. the fact that an individual

survived long enough to reach the end of the study may be informative). In general,

missing data are an inevitable presence in any observational study, since individuals

may offer only limited time for an interview, or may be unable to complete some

tests owing to a state of poor health. This latter point means that missing data in

aging studies are often biased [71], such that the reason they were not measured is

due in part to the true, unobserved, value. Imputation is the standard statistical

approach to avoiding bias due to missing data [112, 180], wherein values are artifi-

cially inserted (imputed) into missing entries. Unfortunately, many aging researchers

completely ignore the issue of missing data or disclose insufficient detail to reproduce

their imputation methods. Needed is a clear example of how imputation biases study

conclusions and how to avoid it.

The scope of this thesis is to capture and explain distinct and important aging phe-

nomena. Foremost are describing increasing risk of adverse outcome and functional

limitations. Biochemical mechanisms are outside of my scope. All mechanisms are

based on effective dynamics and rooted in identifiable phenomena. While this limits
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their utility in identifying e.g. pharmacological targets, it increases generalizability

and makes use of the available data, which are overwhelmingly large-scale studies of

health biomarkers, anthropometric measures and functional limitations.

This thesis reproduces a series of self-contained manuscripts that collectively ad-

dress the problems endemic to aging data, notably missing data and a lack of met-

rics, then introduce and apply the causal Stochastic Finite (SF) difference model for

biomarker dynamics. The SF model provides both a lightweight tool for estimat-

ing networks and an analysis pipeline for producing salient metrics of that network.

When applied to aging data it recapitulates the key aging phenomenon of declining

health, and predicts an eventual decrease in complexity (dimensionality) of the aging

process at advances ages. The remainder of the thesis seeks to unify these results and

contextualize them into the broader research field.



Chapter 2

Outline

This manuscript-based thesis is based off of a series of papers designed to simultane-

ously build skills and convert them into publications, culminating in an interpretable

model of effective dynamics which can be used to make causal predictions regarding

aging (the SF model). Figure 2.1 illustrates. The pursuit of a causal model of or-

ganismal aging proceeds in three steps: (i) identify and resolve problems endemic to

aging data, (ii) identify prospective algorithms to quantify the effects of aging on the

data, and then (iii) construct a causal model to describe aging trajectories of mice

and humans. Each step has an overlying manuscript associated with it and an under-

lying foundational skill adding additional depth. These manuscripts are reproduced

as chapters in the present thesis. Where unclear, I have annotated these manuscripts

with footnotes. I conclude with a summary of the key results from an upcoming

publication which applies the causal model directly to a collection of biological ages.

I start by tackling missing data in Chapter 4. Missing data are a ubiquitous

problem in aging study data. I review the types of missingness using simulated and

real data based on National Health and Nutrition Examination Survey (NHANES)

study data. I demonstrate that the FI (frailty index), an example measure of interest,

is inevitably biased by missing data owing to subtle underlying effects. I show that

choice of missing data handling procedure can make the difference between eliminating

this bias or making it worse, and offer guidance. Missing data handling is centered

around imputation: the instantiation and insertion of values to replace missing data.

I compare a set of popular imputation techniques. I demonstrate that rule-based

imputation of gated variables is essential for reducing bias. Gated variables are study

variables which are not asked because their value can be inferred by other (gating)

variables, for example “how many cigarettes do you smoke in a day” is gated by “do

you smoke” since a person who does not smoke should therefore smoke 0 cigarettes

10
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Efficient representations of 
health data

Missing data

Homeostasis model

Causal models of aging

Dealing with aging data

Generating metrics of aging

Dynamical 
modelling

Manuscript Foundational skill

Staircase to causal modelling of aging.

Figure 2.1: Staircase of papers culminating in a causal model of aging. Each
publication represents only a portion of a learned fundamental skill.

each day1. For missing data which are not gated, choice of imputation algorithm can

affect the bias. I provide an exposition for the source of this bias and prospective

remedies which can greatly reduce its impact.

In Chapter 5, I investigate the use of unsupervised statistical algorithms to learn

biological ages directly from data. These algorithms, collectively known as dimen-

sionality reduction algorithms [86], form efficient representations of the input data,

each based on a different statistical criterion (objective function). The FI is used as

a target outcome to understand and recapitulate. The FI is compared to three di-

mensionality reduction algorithms for its ability to: compress input information, and

predict adverse outcomes including survival, disability, conditions and chronic dis-

eases. All three algorithms automatically generate a primary metric which is nearly

identical to the FI in correlation and performance. I use a simple model to explain

how the eigen-decomposition of the covariance matrix, i.e. principal component anal-

ysis (PCA), finds the FI as the dominant component. This suggests that pattern

1A related, but different, type of missingness is “conditionally relevant” missingness wherein a
question isn’t asked because it’s not relevant, e.g. single people are not asked about their partner’s
substance use, which can be encoded using dummy variables [44]. Here we refer to variables that
are relevant but not asked because the missing value can be safely assumed based on the value of
the gating variable — although we will return to this assumption in the Chapter 4 discussion.
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recognition algorithms such as the eigen-decomposition may be able to capture the

dominant sources of information in aging data. In doing so, they form efficient rep-

resentations of aging. These are precisely biological ages, and hence we have a path

forward to leveraging models to develop biological ages.

In Chapter 6, I develop a causal, dynamical model of aging based off of an opera-

tionalization of homeostasis applied to generic health biomarkers such as blood tests

and functional limitations. I name this model the Stochastic Finite (SF) difference

model, reflecting its relationship to the Stochastic Process Model, which is a continu-

ous version [213]. The SF model is of effective dynamics between health biomarkers.

The dynamical behaviour is used to estimate an interaction network which is then

eigen-decomposed to produce a new basis, formed out of prospective biological ages

which we call “natural variables”. The effects of aging can then be interrogated in

terms of these natural variables, which naturally compress and simplify the dynamical

behaviour of the system of biomarkers. This permits us to make sense of steady-state

behaviour as a linear decline towards worse health, a phenomenon we call “mallosta-

sis”. The model is lightweight and can be used to estimate a network from any set

of continuous, longitudinally-measured variables.

In Chapter 7, I summarize the key results from an application of the SF model and

analysis pipeline from Chapter 6. In Chapter 7, a collection of biological ages is used

as input to derive an interaction network and subsequent set of natural variables. The

interaction network makes definite predictions about how natural aging propagates

through the different biological scales in humans. What’s more, the natural variables

serve as highly efficient meta–biological ages which capture and describe the dominant

contribution to decline in health over time. I propose that this tool is a natural step

in building and testing theories for aging.

Finally, I summarized with a perspective discussion in Chapter 8 and conclude

with Chapter 9



Chapter 3

Dataset Summary

I made use of publicly available datasets. These are summarized in Table 3.1.

13
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Table 3.1: Dataset Summary

Dataset Ch.1 Population Outcome N2 p3 Timepoints (rate)4

NHANES5 2003-06 4 Human Survival 9307 68 cross-sectional
NHANES5 2001-02 5 Human Many (47) 1872 55 cross-sectional
ELSA6 6 Human Survival 9330 25 4 (4 years)
Paquid 6 Human Dementia 500 4 9 (3.2 years)
SLAM7 C57/BL6 6 Mice Survival 608 6 20 (6.2 weeks8)
SLAM7 Het3 6 Mice Survival 611 6 27 (4.2 weeks9)
SATSA10 7 Human FI11 845 8 9 (3 years)
1 Ch.: chapter.
2 N: number of individuals.
3 p: number of predictor variables.
4 Maximum number of timepoints and typical rate (mean or median). The SLAM
data were staggered by observation mode and hence the true number of timepoints
is less.

5 NHANES: National Health and Nutrition Examination Survey (biannual).
6 ELSA: English Longitudinal Study of Ageing.
7 SLAM: Study of Longitudinal Aging in Mice.
8 6.2 weeks ≈ 4.9 human-equivalent years (scaling by median lifespan).
9 4.2 weeks ≈ 3.6 human-equivalent years (scaling by median lifespan).
10 SATSA: Swedish Adoption/Twin Study of Aging.
11 Frailty index.
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Pridham, G., Rockwood, K. & Rutenberg, A. Strategies for handling missing data

that improve Frailty Index estimation and predictive power: lessons from the NHANES

dataset. GeroScience (2022) doi:10.1007/s11357-021-00489-w [145]

Missing data are ubiquitous in aging studies. Combining the National Health and

Nutrition Examination Survey (NHANES) 2003/2004 and 2005/2006 cross-sectional

aging studies (N = 9307), we investigated the effects of both real and simulated miss-

ing data on the Frailty Index (FI) and survival analysis, along with several mitigation

strategies. We observed distinct block patterns of missing variables in the dataset.

These blocks showed significant hazard rate (HR) differences when they were missing

versus present, indicating that missingness cannot be simply ignored. Simulations of

this patterned missingness produced a bias of 0.0112 ± 0.0008 to the mean FI when

missing values were ignored, representing a change in hazard of 1.09±0.01. A similar

bias of 0.0106 ± 0.0001 was estimated in the real missingness. Imputation was able

to correct the bias using the multivariate imputation by chained equations (MICE)

method via the classification and regression tree (CART) prediction model together

with rule-based imputation. Using auxiliary variables (CART+Aux) improved the

performance of CART. Well-performing imputation models, especially CART+Aux,

15
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were able to increase the FI predictive power and the reliability of the HR estimates.

In contrast, the default MICE models, predictive mean matching/logistic regression

(PMM/logreg), caused even stronger biases to the FI. Our results demonstrate that

calibration of the FI as a mortality predictor depends on how missing data are han-

dled. Ignoring missing values when calculating the FI may be an acceptable strategy

for clinical settings where the FI is used as a rough predictor of adverse outcomes.

Where the FI is to be compared across studies or populations, judicious imputation

— cognizant of the risks carried by poor imputation — should be used to ensure

reliability and precision of statistical estimates and conclusions.

Keywords: imputation, missing data, MICE, Frailty Index, survival, CART.

4.1 Introduction

Imputation uses statistical inference to estimate missing entries in recorded data.

Imputation fills gaps that may interfere with or otherwise complicate data analysis.

Often, analysis software silently excludes missing data, at times using only the com-

plete cases. This approach can greatly reduce the amount of available data, and can

bias statistical conclusions [112, 180]. Although imputation is not typically discussed

in the Frailty Index (FI) literature, the most common approach of ignoring missing

values is equivalent to individual (row)–mean imputation1.

For individuals admitted to hospital with an acute stroke, Deng et al showed that

complete-case analysis determined that none of the four individual history variables

— including history of stroke — were significant determiners of the time-to-diagnosis

proxy, whereas each of five imputation strategies showed that all variables were both

significant and major predictors [41]. However, the choice of imputation strategy can

be important. As discussed by Sterne et al, multiply-imputed data in a cardiovascular

risk study found that cholesterol was unrelated to risk when using initially imputed

data, but was a risk factor either when using the available data or when using an

improved imputation strategy [180].

1Suppose we measured N variables for an individual, x⃗, but M values are missing. The ignore
FI is the mean, fig =

∑︁N−M
i=n xn/(N − M). Imputing fig for missing values also gives fimpute =

(
∑︁N−M

n=1 xn +
∑︁M

m=1 fig)/N = fig.
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Imputation is a valid statistical technique [198]: ideal (proper) imputation would

introduce no bias and would not under-estimate uncertainties [197]. In contrast,

poorly implemented imputation can worsen results [5, 205, 41]. Judiciously imple-

mented imputation strategies, while typically not ideal, can often make significant

gains compared to excluding or ignoring.

There are three canonical types of missing data (Section 4.2): missing completely

at random (MCAR; independently missing), missing at random (MAR; due to co-

variates that are not missing), and missing not at random (MNAR; due to covariates

that are missing, including the missing value itself) [112]. Higher-order missingness

patterns may also be present [172].

Missing data in gerontology are distinctive for the high prevalence of MAR and

MNAR missingness. Cognitive and functional deficits that can prevent data collec-

tion are common amongst older adults [71], even those dwelling in communities. For

example, people living with frailty may be more likely to drop out of longitudinal

studies, causing MAR and MNAR missingness in later waves to be more common

among the frail [117]. Study designs may also neglect to ask young people about

potential deficits that are only prevalent in older adults, a form of MAR missing-

ness. Because of the prevalence of MAR and MNAR missingness, it is important to

investigate potential biases when imputing gerontological data.

The FI operationalizes frailty [174] and is associated with adverse outcomes [159].

The FI is a number between 0 and 1 that is the average number of deficit health

variables an individual has [159]. When calculating the FI, missing data treatment is

typically not disclosed [171], and explicit imputation is seldom performed. Instead,

the FI for each individual is typically computed by simply ignoring/dropping missing

values, effectively replacing them with the average of the available variables. This is

an implicit imputation strategy. A set of heuristics have built up around this ignoring

strategy, such as inclusion criteria based on missingness: variables with more than

5% of individuals missing values may be excluded [162], as well as individuals with

more than 20% of measurements missing [139, 19].

Per-individual and per-variable missingness can vary substantially between stud-

ies, as can the underlying missingness mechanism. As a result, heuristics that improve

predictive performance of the FI in one study may affect another study differently.
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This heterogeneity is an impediment to translating quantitative heuristics between

studies, and limits the development of the FI as a precision tool [82]. An attractive

potential alternative is to identify good imputation methods that work for a variety

of types and magnitudes of missingness. The Rotterdam study shows that explicit

imputation models can improve FI predictive power of mortality [171]. We ask, what

is the best available imputation model to use when calculating the FI? More generally,

how does the choice of missing data strategy affect the FI?

Multivariate imputation by chained equations (MICE) is a popular multiple im-

putation (MI) method freely-available in R [25]. The underlying engine of MICE is

fully conditional specification (FCS), i.e. sequential regression or chained equations

[130], which iteratively updates each missing variable or model parameter using the

conditional distribution given all other variables and parameter estimates (i.e. Gibbs

sampling) [198]. Multiple imputation generates a set of fully-sized, completed datasets

which allows estimation of both quantitative results of interest and the uncertainty

in those results caused by imputed values.

MICE has been shown to out-perform ignoring missing data [198], classical ap-

proaches including kNN (k-nearest neighbours) [12], and even deep learning methods

[85, 203]. MICE is popular due to its flexibility, and availability in most statistical

software (e.g. python [12, 138], R [25] and stata [205]).

Conversely, MICE can produce strong biases, putatively when too many vari-

ables/predictors are included [41, 70]. Since the underlying FCS approach is not

theoretically grounded [130], all MICE models must be validated empirically. This

may explain why the default MICE option in R for treating continuous-valued vari-

ables is predictive mean matching (PMM), an ad hoc model from the 1980s that has

significant limitations [197, 1], but has been widely validated [197] (e.g. [12]).

Here we compare three MICE algorithms for gerontological data: Default (PMM

for continuous variables and logistic regression for ordinal variables), CART (clas-

sification and regression tree) and RF (random forest) [25]. We also include two

single-imputation strategies in our comparison: a classical de facto strategy, kNN2

2Single imputation strategies are appealing since they only require an additional pre-processing
step wherein values are imputed, then analysis can continue as usual. kNN (k-nearest neighbours)
has become a popular approach since it frequently shows good performance (e.g. [85]). Unfortunately,
it has also shown bias in some tests (e.g. [41]).
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[103], and a modern machine learning approach, missForest [179]. kNN is a popu-

lar, conventional approach that has been shown to out-perform individual (row)–mean

imputation for gene expression data [195]. In contrast, RF approaches are contem-

porary machine learning models that have been shown to modestly out-perform kNN

in numerous datasets [185, 179]. missForest is a variant of FCS that includes an

automatic stopping strategy to prevent over-fitting and uses an RF prediction model.

The inclusion of a priori expert knowledge may enhance imputation, but presents

a barrier-to-entry for non-experts. In the present study we tested inclusion of rule-

based imputation (RI) for cases of study design–related missingness. Young, osten-

sibly healthy individuals were not asked questions specific to older and/or frailer

individuals. In RI we assumed these missing values were optimally healthy. Only a

subset of the missing values were missing due to study design, and therefore RI was

always paired with another missing data handling strategy.

We do not consider other imputation models, including joint modelling, which

conventionally requires the underlying distribution [25]. Other recent developments in

imputation include tensor factorization [199], and deep learning [85, 203, 65, 151, 52].

We analyzed the effects of missing data and imputation for the National Health

and Nutrition Examination Survey (NHANES) cross-sectional data [29]. Our ob-

jective was to investigate the effects of missing data and imputation on estimating

the FI values and subsequent survival prediction. First, we identified and grouped

individuals by their patterns of missingness. We then used these observed patterns

to artificially simulate missingness in order to test the performance of imputation

strategies when the true values were known. We compared the FI-typical ignoring

strategy to several versions of MICE and determined which strategy best reproduced

the true FI and which gave the best mortality prediction. Using what we learned, we

then applied the most promising imputation strategies to the naturally missing data.

4.2 Missingness Mechanisms

There are three canonical missingness mechanisms: missing completely at random

(MCAR), missing at random (MAR), and missing not at random (MNAR) [112].

These can be defined in terms of [197],

Yall = (Yobs, Ymis), (4.1)
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where Yall is the matrix of all potentially measured values of interest, including all

predictors and outcomes. Yobs are observed values and Ymis are missing. The miss-

ingness indicator is a matrix, M , with the same dimensions as Yall, where Mij = 1

indicates that variable j is missing for individual i.

By definition, values are MCAR if:

MCAR : Pr(M = 1|Yall) = Pr(M = 1) (4.2)

where Pr indicates the matrix of probabilities3. For example, if you are interrupted

while entering data and skip an arbitrary entry from an arbitrary individual, then

that entry is MCAR. We expect that ignoring MCAR data will produce unbiased

results [165].

MAR is defined by values for which:

MAR : Pr(M = 1|Yall) = Pr(M = 1|Yobs) (4.3)

For example, in the personal fitness questionnaire (PFQ) of NHANES 03/04 and

05/06 qualifying participants were asked PFQ061A: “how much difficulty {do you/does
SP} have managing {your/his/her} money?” These data are only present for partici-

pants whom were aged 60 or older, or answered “yes” to PFQ049, PFQ057 or PFQ059,

therefore PFQ is MAR, so long as we know these (auxiliary) variables. When the

data are MAR we may produce biases if we ignore the missingness, however, with a

sufficiently powerful imputation model we can use Yobs and covariates to estimate the

missing values.

Finally, MNAR is defined by:

MNAR : Pr(M = 1|Yall) = Pr(M = 1|Yobs, Ymis) (4.4)

For example, suppose an individual is left to fill out a survey on their own, they

read VIQ071: “{have you/Has SP} ever had a cataract operation?”, but because

they have never had problems with cataracts they skip the question entirely. If the

data are MNAR then a proper treatment will require knowledge of the missingness

mechanism since the dependence on Ymis could cause severe biases. Nevertheless, due

3Pr(M = 1|Yall) = Pr(M = 1) reads as: the probability of being missing, conditional on knowing
all observed values, is equal to the probability of being missing irrespective of the observed values.
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to correlations in the data we may be able to achieve satisfactory results using an

imputation model that assumes MAR, such as the imputation models we tested in

this study.

Missingness patterns in the missingness matrix, M , may also cause problems.

Missingness patterns are a higher-order statistic that represent whether variables

tend to go missing together. Such patterns can apply to each of MCAR, MAR, and

MNAR. For example, because of study design many of the variables in PFQ are often

mutually missing. Similarly, individual limitations may prevent data collection of

multiple related variables. In this paper we include a prefix ‘p’ to indicate the use of

patterns (e.g. pMCAR) or ‘c’ to indicated conventional or cellwise missingness (e.g.

cMCAR).

4.3 NHANES Data

We used the combined 2003/04 and 2005/06 NHANES (National Health and Nu-

trition Examination Survey) cross-sectional study with public-use, linked mortality

files from the National Death Index [19], with a total of N = 9307 individuals. In-

clusion criteria were: over age 20 (N = 9816), available survival data (N = 9310),

and survival at least one year post study date (N = 9307). We followed two anal-

ysis pipelines: first we investigated real missingness by analyzing the entire, “Full”,

dataset (N = 9307), and then we isolated the N = 1923 complete-case, “Complete”,

dataset (individuals who had all 68 Frailty Index variables reported). The Complete

dataset was used to test imputation strategies by simulated missingness together with

ground truth (GT) values.

We calculated the combined lab plus self-reported (SR) FI using the methodology

of Blodgett et al [19]. We included 32 lab variables and 36 SR health variables to

calculate the FIs (Appendix Tables A.23 and A.24, respectively). SR health variables

were linearly scaled to the range [0,1], while the lab variables were defined as 0

if they were within sex-specific healthy ranges or 1 if they were outside of those

ranges (Appendix Table A.23). Lab variables were converted to binary scale after

imputation to maximize the information available during imputation. SR variables

were converted before imputation for coding convenience, but maintained their ordinal

type. We used 100 additional variables to test the utility of auxiliary variables for
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Table 4.1: NHANES Dataset Summary

Full Complete1

N 9307 1923
Males 4465 (48.0%) 944 (49.1%)
Females 4842 (52.0%) 979 (50.9%)
Age [median (IQR)] 48 (33-66) 68 (62-76)∗∗∗

Age 60+ 3232 (34.7%) 1635 (85.0%)∗∗∗

Age under 60 6075 (65.3%) 288 (15.0%)∗∗∗

Frailty Index2[mean (sd)] 0.144 (0.078) 0.176 (0.073)∗∗∗

Deaths 1016 (10.9%) 379 (19.7%)∗∗∗

Death Age [median (IQR)]3 81.5 (80.7-82.7) 81.2 (78.3-83.9)∗∗∗

Missingness4 14.5% 0%∗∗∗

Aux5Missingness4 12.8% 5.7%∗∗∗

1 Comparisons are between individuals in the Complete subset versus
the remaining individuals.

2 Using Ignore.
3 Log-rank test.
4 Cellwise missingness rate.
5 Aux: auxiliary variables.

improving imputation performance (detailed in Appendix A).

Demographic information is summarized in Table 4.1. Individuals in the complete-

case dataset were older (p < 2.2 · 10−16), frailer (p < 2.2 · 10−16), died more often

(p < 2.2 · 10−16), and had a worse survival curve (p = 7.2 · 10−4), relative to the Full

dataset.

4.4 Methods

4.4.1 Real Missingness

We directly analyzed missingness of the 68 FI variables in the Full dataset, which we

refer to as ‘real’ missingness. We used the md.pattern function in R [25] to estimate

missingness patterns in the Full dataset.

4.4.2 Simulated Missingness

The process of generating synthetic data with missing values is called “amputation”

[172]. Amputation should respect the missingness mechanism (MCAR, MAR, or

MNAR) and any salient patterns. MICE incorporates a standardized amputation
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approach using missingness patterns [172], which we modified to handle larger quan-

tities of data (see Appendix A). These patterns ensure that amputated data pre-

serve missingness idiosyncrasies. For example, a pair of variables observed with 10%

mutual-missingness are amputated together 10% of the time.

To simulate missingness, we took the Complete dataset and amputated values

using the missingness patterns of the Full dataset. This generated a new dataset

of the same size but with empty cells representing missing data. In contrast to real

missingness, we retained the Complete dataset, providing us with a GT against which

we compared our imputed values. Figure 4.1 illustrates missingness mechanisms and

simulated missingness of mean arterial pressure when no higher-order missingness

patterns are present.

Amputation was performed using four missingness mechanisms: cellwise MCAR

and MNAR (cMCAR and cMNAR, respectively), and patterned MCAR and MAR

(pMCAR and pMAR, respectively). The patterns restricted our maximum simulated

missingness to the same level as the real missingness; we chose rates of 5%, 10% and

15% (max). We used the same rates for cellwise missingness, but we were also able

to simulate 25%, 50% and 75% missingness for both cMNAR and cMCAR. Selection

data were normalized to a [0, 1] deficit scale prior to amputation to prevent problems

with the two-sided deficit rule for the lab variables (see Appendix Table A.23). cM-

CAR randomly, and arbitrarily, selected data points to drop without any patterning.

pMCAR and pMAR used the NHANES patterns determined from the Full dataset

[172]. We confirmed the patterns were correctly reproduced in the simulated missing-

ness — compare Appendix Figures A.1 versus A.2. We used default settings for both

pMCAR and pMAR, with a probabilistic linear decile exclusion rule [172]. cMNAR

is a novel cellwise approach wherein we applied cuts directly to the pooled quantiles

using the linear decile exclusion rule. Given that the amputation process is stochastic,

we generated 10 datasets for each combination of missingness mechanism, patterns,

and rate.

4.4.3 Imputation Modelling

We performed imputation using the MICE package (version 3.10.0) [25] in R version

4.0.0 [152]. MICE uses FCS to iteratively impute missing data using a prediction
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Figure 4.1: Illustration of missingness mechanisms using complete-case NHANES
blood pressure (BP) data. Black bars and points reflect the true distribution, blue
bars and points are simulated distributions of observed values after applying
different missingness mechanisms. A) In missing completely at random (MCAR) the
shape of the distribution is preserved but the total amount of data is reduced. B) In
missing at random (MAR) data are preferentially excluded according to other
related variables. In this case, individuals with large values of systolic BP were
preferentially set to missing (points), causing a small bias in the mean arterial
pressure distribution (bars). C) In missing not at random (MNAR) the value of
missing variables affects the probability they are missing. In this example, we
preferentially excluded high mean arterial pressure values.

model. We compared a representative sample of prediction models within MICE:

logistic regression (logreg), predictive mean matching (PMM), classification and re-

gression trees (CART), and random forest (RF). Logistic regression is the default

for binary, ordinal and categorical data, whereas PMM is the default for continuous

variables. CART is the special case of a RF with 1 tree — both accept mixed data

types. We imputed the default number of times, m = 5, and combined results using

Rubin’s rules [205], except when estimating predictive power (we used the average)

and visualizing the FI distributions (we used all values).

Rubin’s rules describe how to properly aggregate multiple imputations to esti-

mate both the expected effect (the average), and the uncertainty due to missing

values, using an analysis of variance (ANOVA)–style decomposition of the between

and within–imputation variance. The recommended number of imputations is ap-

proximately equal to the percentage of missing data [205], but a smaller number has

conventionally been regarded as sufficient [197]. As a sanity check, we have also in-

cluded a CART m = 15 imputation for each of our ≤ 15% simulated missingness
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Table 4.2: Imputation Model Summary

Name Model(s) MI1 Note
RI2 – No Imputed gated as 0.3

Ignore Row-mean4 No Typical approach
Ignore (Weighted)5 Row-mean4 No Linear weights
Ignore20 Row-mean4 No 20% missingness cut
RF RF No 100 trees
kNN kNN Yes 10 trees
MICE Default PMM/logreg6 Yes –
MICE CART CART Yes 1 tree
MICE CART+Aux CART Yes 100 auxiliary variables
MICE RF RF Yes 10 trees

1 MI: Multiple imputations
2 RI: rule-based imputation.
3 Gated variables were PFQ, RXD and VIQ blocks (Appendix
Table A.5).
4 Mean value of the available deficit data for each individual.
5 Results in Appendix A.
6 PMM for continuous (lab) variables, logreg for ordinal/binary
(self-reported) variables.

tests.

We also tested two single imputation (non-MICE) algorithms: kNN [103] and RF

[179]. Our imputation models are summarized in Table 4.2.

A priori we know that the PFQ061 variables we used — the PFQ variable block

(Appendix Table A.5) — and the RXD variable block are all gated variables, meaning

data are missing purposely as part of the study design. Individuals under age 60

whom answered ‘no’ to PFQ049, PFQ057 and PFQ059 were not asked the PFQ

block questions. The RXD block was not asked for individuals whom answered ‘no’ to

RXDUSE. In addition, the VIQ variable block was not asked for individuals under age

50 [29]. We considered RI (rule-based imputation) wherein all of the aforementioned

types of missing values were assumed to be optimally healthy (0 deficit). We applied

RI to the real missingness, supplemented by a variable secondary imputation strategy

for the residual missingness. RI was not applied to the simulated missingness because

it was based on the Complete dataset which has no missing values and therefore the

conditions for RI are not satisfied by any individuals.
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We also considered inclusion of 100 auxiliary variables to enhance results. Prelim-

inary results indicated that CART was the best-performing, hence we tested auxiliary

variables with CART+Aux.

The FI is typically calculated using available-case analysis, which uses all available

data from included individuals [112]. We considered three versions of available-case

analysis. In the first, typical, approach missing values were simply ignored when

calculating the FI. Second, we considered Ignore20, which excluded individuals with

over 20%missingness from analysis and ignored missing values for included individuals

[19]. Finally, in Appendix A, we considered weighting individuals in any analysis by

the fraction of reported variables each individual has; statistics were only calculated

when weighted models were readily available — excluding the area under the receiver

operator characteristic curve (AUC) and the hazard rate/ratio (HR).

4.4.4 Statistical Analysis

Our focus was on how imputation strategies affected the FI — including the mean,

distribution and downstream measures calculated from it, such as the HR and AUC.

Simulated missingness was compared to the GT (ground truth). For real missingness

the GT was unknown and we had to infer imputation quality by comparing results

to the simulated missingness and assessing survival predictive power.

Survival prediction was based on 4-year-survival using the AUC [155]. 4-year-

survival was selected because almost all individuals (excluding 2 in the Full dataset: 1

in the Complete dataset) had survival followup for at least 4 years. Preliminary results

showed identical trends using 1, 2 or 4 year survival; final results were confirmed by

comparing AUC to the C-index (Appendix A).

We calculated the age/sex adjusted Cox proportional hazards model as was previ-

ously done after imputing the Rotterdam study [171]. Analysis of deviance was used

to assess predictive power [190]. The FI was scaled by 100 such that the HR was the

increase in hazard per 0.01 increase in FI, consistent with most FI survival studies

[101]. Differences in survival were tested for using the log-rank test.

To summarize the measures of survival predictive power, we used the AUC, the

HR, analysis of deviance and the C-index (Appendix A). The AUC [69] and the C-

index [24, 72] are close-relatives, both are descendants of the Wilcoxon non-parametric
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statistic. The AUC estimates the probability that a metric will correctly rank the

members of the affected group ahead of the members of the unaffected group [69] e.g.

the probability that individuals whom will die during the next 4 years currently have

higher FIs than non-terminal individuals. The C-index estimates the probability that,

for every possible pair of individuals, a metric will correctly rank which individual

will be affected first, e.g. die first [72]. Analysis of deviance is a generalization of the

residual sum of squares [86] and attributes dispersion (deviance) explained by each

variable. The HR is a regression parameter [127] and depends on the quality/validity

of the fit and the scale of the data; it is an estimate of the relative change in hazard

due to a per unit increment in the predictor variable.

Multiply imputed FIs were aggregated by the mean for each individual when

analyzing survival predictive power to allow fair comparison to single imputation

strategies, since the multiple imputations artificially increase variability in the FI,

and therefore would likely reduce predictive power

FI distributions were compared using the Kolmogorov-Smirnov (KS)–test. Bi-

nary group comparisons of continuous variables were made using Mann-Whitney

test, avoiding the complication of pre-testing [156]. Categorical vs categorical com-

parisons used Pearson’s χ2-test. Survival curves were estimated using the Kaplan-

Meier estimator with respect to age. AUCs were compared using the Delong-test

[40]. Note that the Delong-test includes an additional 1/N term in the test statis-

tic which allows significant p-values even when the standard errors overlap [40].

Generic tests for significance used the z-test. Statistical significance is indicated

with ∗ : p < 0.05, ∗∗ : p < 0.01, or ∗ ∗ ∗ : p < 0.001. All confidence intervals are

95%. Error bars are standard errors, error is reported in parenthesis from last digit

e.g. 0.0034(12) = 0.0034± 0.0012.

4.5 Results

4.5.1 Missingness Patterns

As illustrated by Figure 4.2, we observed substantial missingness. In the Full dataset

we observed an overall missingness of 14.5% (91585 entries), the mean missingness per

individual was 9.8 entries, with a median of 12 entries (17.6%) and an inter-quartile
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range (IQR) of 1 to 15 entries (1.5-22.1%). Individuals aged 60+ had significantly

less missing data than individuals under 60 (p < 2.2 · 10−16) and died more often

(p < 2.2 · 10−16). For individuals at least 60 years old, the mean missingness was

2.5 entries, with a median of 0 entries and an IQR of 0 to 1 entries (0-1.5%), with a

death rate during followup of 26.7% versus 2.5% for people under 60. Considering the

Full population, while 3606 (38.7%) of individuals were missing more than 20% of their

entries only 203/3606 (5.6%) were at least 60 years old. This means that 3403/6075

(56.0%) of individuals under 60 did not pass the Ignore20 cut versus 203/3232 (6.3%)

of individuals aged 60+, raising the prospect of age-related biases with Ignore20.

Missingness was not independent across variables, with distinct blocks of missing-

ness forming in the mutually-missing histogram, Figure 4.2, particularly for younger

individuals (under 60). Following the NHANES naming convention, these blocks were:

personal fitness questionnaire (PFQ), number of prescription drugs taken (RXD), vi-

sion questionnaire (VIQ), blood pressure measurement (BPX), lab measurements

(LB) and miscellaneous (Misc). As shown in Figure 4.2 the most commonly missing

variables overall were the PFQ block of data, with an average cellwise missingness

of 53.6% (80.7% for individuals under 60); at least one was missing 61.3% of the

time (83.5% for individuals under 60). (See Appendix Table A.6 for block variable

demographics.)

As shown in Figure 4.2B, the missingness of older individuals (age 60+) was

markedly different. We observed lower overall missingness, higher variance of cellwise

missingness within blocks, and no visible block missingness for PFQ or VIQ. These

are study-design effects: PFQ was not routinely collected for individuals under age

60, while VIQ was not routinely collected for individuals under age 50 [29].

4.5.2 Missingness-Survival Effects

Kaplan-Meier survival curves showed that the variable blocks had heterogeneous ef-

fects on survival, Figure 4.3. With some blocks of variables showing significantly

better survival for unmeasured individuals while others showed significantly worse

survival. The red curves represent individuals with any entry missing in that block

whereas the black curves had all variables observed. The overall missingness (Fig-

ure 4.3A) instead compared the individuals with above average missingness (red) vs
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Figure 4.2: Mutual missingness histogram. Missingness fraction of NHANES
variables for individuals: A) under age 60 and B) age 60+. These 2D-histograms
give the mutual missingness fraction for (row, column) pairs of variables with the
diagonal corresponding to each variable’s overall missingness. We see a distinct
block structure indicating groups of variables that are (almost) always missing
together, for example the BPX (blood pressure) 5-variable group appears as a 5x5
block. The variables in each block are provided in Appendix Table A.5. Observe
that in B) the LB and BPX blocks dominate whereas the PFQ block is less often
missing and contains unpatterned missingness (strong diagonal terms), in contrast
to A). Note the scale difference; older individuals had much less missing data. See
Appendix Figure A.1 for the pooled young and old, and Figure A.4 for the
per-variable labeled result.

below average missingness (black).

Missing LB block meant poorer survival, as did VIQ — for older individuals,

and BPX. Conversely, RXD indicated superior survival. The missing PFQ block

had crossing survival curves, and was an excellent proxy for the full missingness,

showing nearly identical trends for the survival curves. The overall missingness had

a complicated effect on survival where missingness was advantageous at young ages

but crossed to disadvantageous at older ages.

We also investigated hazard using a blockwise-missingness Cox model with impor-

tant covariates (sex and age), see the insets of Figure 4.3. The HRs with respect to

missingness qualitatively agree with the survival curves: PFQ missingness indicated

good survival for the young and poor survival for the old, RXD missingness always
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indicated poorer survival but was less severe for the old, and VIQ indicated no change

in survival for the young and poor survival for the old. BPX and LB missingness in-

dicated worse survival, with missingness of LB for the young being significantly worse

then the old. The overall missingness HR for the young, Figure 4.3A, was less sig-

nificant than the PFQ, demonstrating that although the PFQ is a good proxy there

is a reduction in the strength of the survival effect. In summary, the Cox models

confirmed that the HRs were typically significantly different from unity, and differed

between the young (< 60) versus old individuals (≥ 60).

4.5.3 Missingness Biases the FI

As shown in Figure 4.4, the blocks did not contribute equally to the FI — in particular

the distributions of FI contributions from the blocks are distinct. This suggests that

missing an entire block of variables, such as we observed with patterned missingness,

will lead to biases in the FI if we simply ignore the missing values (effectively imputing

the grey dashed line in Figure 4.4).

This bias could be exacerbated by the Ignore20 exclusion rule. The block sizes

were: 12 (PFQ), 1 (RXD), 3 (VIQ), 5 (BPX), and 27 (LB). For 68 variables, the

Ignore20 exclusion rule cuts at N = 13.6, thus any individual missing the complete

LB block would be excluded from analysis.

We can estimate potential bias by using simulated missingness. As shown in

Figure 4.5, we note significant and increasing biases of the FI (orange squares, with

the implicit ignore imputation strategy) as compared to the ground truth (black

dashed line) — for both pMCAR and cMNAR simulated missingness.

For the patterned missingness observed in the NHANES data, we developed a

quantitative model of how pMCAR missingness biases the FI. The model details

are presented in Appendix 4.8. We see in Figure 4.5A that the approximate model

solution (blue line) as well as the more complex exact model solution (red points)

agree with the observed FI bias with pMCAR.

4.5.4 Testing Imputation with Simulated Missingness

Using simulated missingness, we explored how common imputation strategies affected

the FI. Overall, we found that CART performed the best — and that using auxiliary
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Figure 4.3: Survival and missingness. Survival curves conditioned on missingness
show that the block patterns of missingness are strongly related to survival. A) all
variables, B) personal fitness (PFQ), C) prescription drugs (RXD), D) vision (VIQ),
E) blood pressure (BPX), and F) lab variables (LB). In A) the black line indicates
the Kaplain-Meier survival curve for the subpopulation of individuals missing less
than the mean (9.8 variables), the red line indicates individuals missing more than
the mean. In B)-F), black lines indicate subpopulations without any of the variables
in the block missing, red lines have at least one variable in the block missing.
Shaded regions indicate 95% confidence intervals. Insets: hazard ratios (HRs) for
Cox survival model for individuals stratified by young (< 60) or old (≥ 60),
conditioned on age and sex. In A) the Cox model is HR per 10 deficits. In B)-F)
each block Cox model was further conditioned on all other blocks (PFQ, RXD, VIQ,
BPX and LB). Note the similarity of B) PFQ and A) all, reflecting that PFQ is a
large block of variables and is the most commonly missing block. See Appendix
Figure A.5 for age cut moved to 50, and Figure A.6 for additional variables.
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PFQ

VIQ
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BPX

All

0 0.1 0.2 0.3 0.4 0.5
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Figure 4.4: The distribution of block-specific FIs for different variable blocks (labels
and fill colours correspond to Figures 4.2 and 4.3). Plotted values are the mean
block FI across the population: bars indicate the histogram, lines indicate the
cumulative distribution and filled circles indicate the median. y-axis grid lines
indicate quartiles. The overall population mean FI, which is implicitly imputed by
Ignore, is indicated by the dashed vertical grey line. Observe that the distributions
vary considerably between blocks and the distributions are strongly skewed so that
Ignore (dashed line) is typically well above the median. Plot is truncated at
FI = 0.5 for visualization.
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Figure 4.5: Missingness biases the FI. Using different percentages of simulated
missingness of type A) pMCAR or B) cMNAR, we show the mean FI for different
imputation strategies, as indicated by the legend. The typical, Ignore method
(orange squares) shows the largest bias compared to the ground truth (black
dashed), and for pMCAR the bias is captured by our approximate (blue line) and
exact model (red diamonds), Eqs. 4.7 and 4.9, respectively. The bias is
approximately linear in missingness. Our preferred imputation strategy, CART
(green circles) eliminates the bias for pMCAR and reduces it for cMNAR. With the
addition of auxiliary variables (pink triangles) CART eliminates the bias for both
pMCAR and cMNAR. Error bars and intervals are standard errors. Complete plots
for all types of simulated missingness and imputation are provided in Appendix
Figure A.7.
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Figure 4.6: FI distributions by imputation type for simulated 15% missingness. A)
pMCAR, B) cMNAR. Colours: quartiles. Vertical lines: GT quartiles. Stars:
KS-test significance (vs GT). Default was the least similar to the GT for pMCAR
whereas Ignore was the least similar for cMNAR. See Appendix Figure A.12 for FI
distributions of additional imputation methods. All values from the m = 5 multiple
imputations are included for Default, CART and CART+Aux without aggregation.

variables further improved CART performance with no apparent downside. Under-

performing imputation strategies, including Ignore, led to significant biases to both

the mean and standard deviation (SD) of the FI distributions.

Figure 4.6 shows the distributions of FIs for representative imputation methods

at 15% missingness. Imputation of pMCAR caused an increased skew of the FI

distributions for both Ignore and Default, but no significant changes when CART or

CART+Aux were used. The changes due to the Default (PMM/logreg) imputation

were very significant. cMNAR showed a similar pattern, although CART also skewed

significantly, and Default skewed less than Ignore. The FI distributions for other

imputation strategies are shown in Appendix Figure A.12.

We generally found that the bias in the estimated mean FI was linear for smaller

values of missingness (≤ 15%). This is illustrated in Figure 4.5 for CART and Ignore;

for other imputation methods see Appendix Figure A.7. Accordingly, we estimated

the bias per unit missingness, i.e. the bias rate, using a linear zero-intercept regression

model. We also calculated the HR and AUC for each imputed FI at 15% missingness.
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Table 4.3: Imputed FI Statistics — Cellwise Simulated Missingness

Imputation Type Mean1 Bias Rate2,3 SD1 SD Bias Rate2,3HR1 AUC1,4

GT – 0.176 0.000(0) 0.073 0.000(0) 1.075(7) 0.733(36)
Ignore cMCAR 0.176 0.000(1) 0.076 0.014(1)∗∗∗ 1.070(7) 0.728(37)
Ignore20 cMCAR 0.176 0.000(1) 0.075 0.013(1)∗∗∗ 1.071(9) 0.729(41)
Default (m=5) cMCAR 0.193 0.109(1)∗∗∗ 0.078 0.030(1)∗∗∗ 1.071(7) 0.734(37)
MICE RF (m=5) cMCAR 0.188 0.073(1)∗∗∗ 0.076 0.017(2)∗∗∗ 1.073(7) 0.734(37)
RF cMCAR 0.177 0.004(0)∗∗∗ 0.074 0.006(0)∗∗∗ 1.074(7) 0.732(37)
kNN cMCAR 0.179 0.012(1)∗∗∗ 0.072 −0.009(0)∗∗∗ 1.076(7) 0.730(37)
CART (m=5) cMCAR 0.177 0.002(1)∗∗ 0.073 0.002(1) 1.075(8) 0.732(37)
CART (m=15) cMCAR 0.177 0.002(0)∗∗∗ 0.074 0.004(1)∗∗∗ 1.077(7) 0.733(37)
CART+Aux (m=5) cMCAR 0.177 0.000(1) 0.074 0.004(1)∗ 1.076(8) 0.735(37)
Ignore cMNAR 0.198 0.142(1)∗∗∗ 0.080 0.046(0)∗∗∗ 1.069(7) 0.732(37)
Ignore20 cMNAR 0.202 0.137(0)∗∗∗ 0.081 0.050(1)∗∗∗ 1.069(7) 0.735(39)
Default (m=5) cMNAR 0.193 0.109(1)∗∗∗ 0.078 0.029(1)∗∗∗ 1.071(7) 0.733(37)
MICE RF (m=5) cMNAR 0.188 0.074(1)∗∗∗ 0.076 0.017(1)∗∗∗ 1.073(7) 0.734(37)
RF cMNAR 0.177 0.004(0)∗∗∗ 0.074 0.006(0)∗∗∗ 1.073(7) 0.733(37)
kNN cMNAR 0.179 0.012(1)∗∗∗ 0.072 −0.009(0)∗∗∗ 1.076(7) 0.730(37)
CART (m=5) cMNAR 0.190 0.092(1)∗∗∗ 0.077 0.025(1)∗∗∗ 1.072(7) 0.735(37)
CART (m=15) cMNAR 0.190 0.092(1)∗∗∗ 0.077 0.023(1)∗∗∗ 1.074(7) 0.735(37)
CART+Aux (m=5) cMNAR 0.176 0.000(1) 0.074 0.002(1) 1.075(7) 0.731(37)
1 At 15% missingness.
2 The bias rate is the theoretical bias at 100% missingness.
3 p-value for t-test vs 0.
4 p-value for vs Ignore; Ignore vs GT.
See Appendix Table A.3 for additional results. See Appendix Figure A.8 for forest plot of HRs.
Bold: noteworthy result.

The results are summarized in Tables 4.3, 4.4, 4.5, and 4.6. Blockwise summaries and

the C-index are provided in Appendix Tables A.7 to A.14 (bias) and Tables A.15 to

A.22 (predictive power).

As shown in Table 4.3, for the simplest missingness type, cMCAR, all of the

imputation strategies except for Ignore and CART+Aux had significant bias rates.

Default MICE (PMM) and Mice RF had large biases: > 0.01 for 15% missingness.

For cMNAR, all of the bias rates were significant except CART+Aux, although both

kNN and RF were small (compared to the SD).

When missingness patterns from NHANES were used to generate either pMCAR

or pMAR, they also caused a severe bias in the estimated Ignore FI and an even worse

bias in the MICE default, as shown in Table 4.4. The bias rate was significant for all

imputation methods including Ignore, but was relatively small for kNN, CART and

CART+Aux. CART+Aux achieved a bias of only 2.7% of the SD at the theoretical

limit of 100% missingness.
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Table 4.4: Imputed FI Statistics — Patterned Simulated Missingness

Imputation Type Mean1 Bias Rate2,3 SD1 SD Bias Rate2,3HR1 AUC1,4

GT – 0.176 0.000(0) 0.073 0.000(0) 1.075( 7) 0.733(36)
Ignore pMCAR 0.188 0.076(1)∗∗∗ 0.078 0.029( 1)∗∗∗ 1.064( 7) 0.729(37)
Ignore20 pMCAR 0.181 0.031(1)∗∗∗ 0.075 0.008( 2)∗∗∗ 1.073(12) 0.733(50)
Default (m=5) pMCAR 0.216 0.238(5)∗∗∗ 0.133 0.388(24)∗∗∗ 1.041( 7) 0.697(40)∗∗∗

MICE RF (m=5) pMCAR 0.168 −0.055(1)∗∗∗ 0.068 −0.032( 1)∗∗∗ 1.078( 8) 0.732(37)
RF pMCAR 0.161 −0.101(1)∗∗∗ 0.068 −0.035( 1)∗∗∗ 1.076( 8) 0.726(38)
kNN pMCAR 0.176 0.014(5)∗ 0.072 −0.002( 2) 1.071( 8) 0.722(38)
CART (m=5) pMCAR 0.177 0.002(1)∗ 0.073 −0.006( 2)∗∗ 1.075( 8) 0.733(37)
CART (m=15) pMCAR 0.177 0.003(1)∗∗ 0.072 −0.009( 1)∗∗∗ 1.080( 8) 0.733(37)
CART+Aux (m=5) pMCAR 0.177 0.002(0)∗∗∗ 0.073 −0.002( 1) 1.076( 8) 0.733(37)
Ignore pMAR 0.187 0.067(1)∗∗∗ 0.075 0.004( 1)∗∗ 1.070( 8) 0.732(37)
Ignore20 pMAR 0.191 0.029(1)∗∗∗ 0.077 0.020( 1)∗∗∗ 1.078(10) 0.742(47)
Default (m=5) pMAR 0.216 0.244(5)∗∗∗ 0.121 0.279(22)∗∗∗ 1.046( 7) 0.697(41)∗∗∗

MICE RF (m=5) pMAR 0.169 −0.044(1)∗∗∗ 0.071 −0.013( 2)∗∗∗ 1.074( 8) 0.732(37)
RF pMAR 0.162 −0.092(1)∗∗∗ 0.072 −0.004( 2) 1.070( 7) 0.728(38)
kNN pMAR 0.179 0.020(4)∗∗∗ 0.074 0.002( 1) 1.071( 7) 0.721(38)
CART (m=5) pMAR 0.178 0.013(1)∗∗∗ 0.073 −0.004( 2)∗∗ 1.075( 8) 0.733(37)
CART (m=15) pMAR 0.178 0.013(1)∗∗∗ 0.073 −0.002( 2) 1.078( 8) 0.735(37)
CART+Aux (m=5) pMAR 0.177 0.005(1)∗∗∗ 0.073 −0.002( 1)∗ 1.075( 7) 0.734(37)
1 At 15% missingness.
2 The bias rate is the theoretical bias at 100% missingness.
3 p-value for t-test vs 0.
4 p-values for vs Ignore; Ignore vs GT.
See Appendix Table A.4 for additional results. See Appendix Figure A.8 for forest plot of HRs.
Bold: noteworthy result.
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The SD of the FI was also significantly biased for most of the imputation strategies

— including Ignore. CART had small bias rates, though still statistically significant,

while kNN performed better than CART for cMNAR, pMCAR and pMAR, but worse

for cMCAR. Overall, CART+Aux performed the best, having a consistently small bias

rate.

Coverage is the probability that the true value of the mean FI was within the error

interval of the imputed mean FI. CART+Aux had 100% coverage for missingness

≤ 15%, whereas kNN and the other imputation methods did not (see Appendix

Table A.2). Excluding cMNAR, CART also had 100% coverage.

Increasing the number of imputations using CART from 5 to 15 made a trivial

difference, yielding nearly identical results, see Tables 4.3 and 4.4. The bias rate of

the mean did not change — nor did the coverage (Appendix Table A.2), while the

changes to the bias rate of the SD appeared to be random and small.

In Table 4.5 we extended cMCAR to higher rates of missingness. We again ob-

served that the ignore methods are unbiased estimators of the mean, as is CART+Aux.

In contrast, kNN showed a large and significant bias rate. Furthermore the SD es-

timates were biased for all imputation methods. The smallest SD bias rate was

observed for Ignore20 and CART+Aux — although Ignore20 excluded all of the data

for missingness ≥ 50% and therefore could not be calculated. Interestingly, we saw

significant reductions in HR and AUC at 50% and 75% missingness for the Ignore

methods. Note the increasing HR for kNN likely masked the apparent drop in pre-

dictive power observed in the AUC. When 75% of data were missing, the mean FI

decreased by 56% for kNN, the HR fit coefficient, β = log (HR), had to increase by

56% to compensate for the shrinking scale, resulting in an expected HR of 1.12 —

larger than the observed HR of 1.089±0.021. CART+Aux significantly outperformed

Ignore for 50% and 75% missingness (AUC).

Finally, we investigated cMNAR with higher missingness in Table 4.6. We ob-

served that all of the imputation strategies produced large biases in the mean FI,

including CART+Aux, illustrating the difficulty of imputing cMNAR.

We found that when a relatively small fraction of data was missing, the HR of the

FI did not substantially vary across most imputation methods — notably excluding

Default, as shown in Tables 4.3, 4.4, 4.5 and 4.6, and Figure A.8. As such, biases
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Table 4.5: Imputed FI Statistics for High Simulated cMCAR Missingness

Imputation Type Mean1 Bias Rate2,3 SD1 SD Bias Rate2,3HR1 AUC1,4

GT 0% 0.176 0.000(0) 0.073 0.000(0) 1.075( 7) 0.733( 36)
Ignore 25% 0.177 0.000(1) 0.077 0.035(2)∗∗∗ 1.068( 7) 0.723( 38)
Ignore20 25% 0.177 0.000(1) 0.077 0.013(4)∗ 1.079(27) 0.741(101)
kNN 25% 0.153 −0.086(1)∗∗∗ 0.061 −0.052(0)∗∗∗ 1.084( 9) 0.716( 38)
CART+Aux (m=5) 25% 0.177 0.001(0)∗ 0.073 0.013(4)∗∗∗ 1.076( 8) 0.733( 37)
Ignore 50% 0.177 0.000(1) 0.085 0.035(2)∗∗∗ 1.055( 7) 0.699( 40)∗∗

Ignore205 50% – – – – – –
kNN 50% 0.132 −0.086(1)∗∗∗ 0.048 −0.052(0)∗∗∗ 1.094(14) 0.685( 41)
CART+Aux (m=5) 50% 0.176 0.001(0)∗ 0.079 0.013(4)∗∗∗ 1.074( 9) 0.729( 37)∗∗∗

Ignore 75% 0.176 0.000(1) 0.106 0.035(2)∗∗∗ 1.035( 5) 0.673( 41)∗∗∗

Ignore205 75% – – – – – –
kNN 75% 0.113 −0.086(1)∗∗∗ 0.034 −0.052(0)∗∗∗ 1.089(21) 0.637( 43)∗

CART+Aux (m=5) 75% 0.177 0.001(0)∗ 0.085 0.013(4)∗∗∗ 1.076(11) 0.732( 38)∗∗∗

1 At 15% missingness.
2 The bias rate is the theoretical bias at 100% missingness.
3 p-value for t-test vs 0.
4 p-values for vs Ignore; Ignore vs GT.
5 Insufficient data due to Ignore20 cut-off rule.
See Appendix Figure A.9 for forest plot of HRs.
Bold: noteworthy result.

in the FI affect the absolute but not relative risk assessed — comparing absolute FI

between studies could cause discrepancies, but comparing relative FI within a study

appears valid for most imputation strategies. Reinforcing this, the AUC was similar

for most imputation strategies.

4.5.5 Imputation of Real Missingness

Given the success of CART when imputing against simulated missingness, we focused

on testing this strategy with the observed (real) missingness. Ignore served as the

de facto standard, and we included Default (PMM/logreg) and kNN for perspective.

We also assessed RI as a prospective initial imputation step, which was paired with

a subsequent model (Ignore, kNN, etc).

We observed a drop in FI with respect to Ignore for CART, CART+AUX and all

of the RI-initialized methods, Table 4.7. In contrast, the FI for Ignore20 and kNN was

greater than Ignore. We had no GT with which to directly observe whether the FI

was biased for any particular imputation method. Using our quantitative model and

assuming MCAR we estimated that the Ignore method should have a bias in the mean

FI of 0.0028 using Eq. 4.7 (approximate) or 0.0029 using Eq. 4.9 (exact), both agree
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Table 4.6: Imputed FI Statistics for High Simulated cMNAR Missingness

Imputation Type Mean1 Bias Rate2,3 SD1 SD Bias Rate2,3HR1 AUC1,4

GT 0% 0.176 0.000( 0) 0.073 0.000(0) 1.075( 7) 0.733(36)
Ignore 25% 0.217 0.309(14)∗∗∗ 0.086 0.078(2)∗∗∗ 1.062( 6) 0.728(37)
Ignore20 25% 0.252 0.127( 1)∗∗∗ 0.095 0.086(2)∗∗∗ 1.068(17) 0.762(72)
kNN 25% 0.183 0.141(12)∗∗∗ 0.071 −0.013(0)∗∗∗ 1.076( 7) 0.726(37)
CART+Aux (m=5) 25% 0.200 0.205(11)∗∗∗ 0.079 0.045(5)∗∗∗ 1.071( 7) 0.736(37)
Ignore 50% 0.287 0.309(14)∗∗∗ 0.106 0.078(2)∗∗∗ 1.048( 5) 0.715(37)∗

Ignore205 50% – – – – – –
kNN 50% 0.209 0.141(12)∗∗∗ 0.067 −0.013(0)∗∗∗ 1.078( 8) 0.713(38)
CART+Aux (m=5) 50% 0.244 0.205(11)∗∗∗ 0.088 0.045(5)∗∗∗ 1.067( 7) 0.734(37)∗∗

Ignore 75% 0.449 0.309(14)∗∗∗ 0.138 0.078(2)∗∗∗ 1.032( 5) 0.693(39)∗∗

Ignore205 75% – – – – – –
kNN 75% 0.317 0.141(12)∗∗∗ 0.064 −0.013(0)∗∗∗ 1.063(10) 0.668(44)
CART+Aux (m=5) 75% 0.363 0.205(11)∗∗∗ 0.115 0.045(5)∗∗∗ 1.062( 8) 0.730(37)∗∗

1 At 15% missingness.
2 The bias rate is the theoretical bias at 100% missingness.
3 p-value for t-test vs 0.
4 p-values for vs Ignore; Ignore vs GT.
5 Insufficient data due to Ignore20 cut-off rule.
See Appendix Figure A.10 for forest plot of HRs.
Bold: noteworthy result.

well with the difference between Ignore and CART or CART+Aux. Notably, this

estimate is far smaller than the difference between Ignore and RI-initialized methods,

which were all > 0.01.

Based on the observed missingness patterns, however, we suspected that the data

were primarily MAR, and hence we also estimated the bias after RI, which should have

removed the majority of MAR missingness. The bias in the mean FI for Ignore+RI

was −0.00059 (approximate) or −0.00060 (exact), which agrees excellently with the

differences between Ignore+RI and CART+RI (−0.006± 0.002), and Ignore+RI and

CART+Aux+RI (−0.005± 0.002).

In summary, CART (with or without Aux) appeared to consistently refine Ignore

or Ignore+RI, removing the residual pMCAR-related bias. Our best estimate for the

bias in the Ignore mean FI was 0.0106 ± 0.0001, which we calculated by adding the

estimated bias in Ignore+RI to the difference between Ignore and Ignore+RI. This

effectively assumed MAR missingness was corrected by Ignore+RI and the residual

missingness was MCAR and hence could be correctly calculated using our missingness

models, Eq. 4.7 and Eq. 4.9. The estimate agrees well with the difference between
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Table 4.7: Imputed FI Statistics for Real Missingness

Imputation Mean ‘Bias’1 SD SD ‘Bias’1 HR2 AUC3

Ignore 0.1442 0.0000( 0) 0.0782 0.0000 1.077(4) 0.832(17)
Ignore204 0.1611 −0.0170(13)∗∗∗ 0.0801 −0.0019 1.078(4) 0.792(21)∗∗

kNN 0.1601 −0.0160( 4)∗∗∗ 0.0710 0.0071 1.073(4) 0.773(21)∗∗∗

Default (m=5) 0.1466 −0.0024( 5)∗∗∗ 0.0877 −0.0095 1.077(4) 0.829(18)
CART (m=5) 0.1412 0.0029( 4)∗∗∗ 0.0816 −0.0034 1.079(4) 0.839(17)∗∗∗

CART+Aux (m=5) 0.1410 0.0031( 3)∗∗∗ 0.0784 −0.0003 1.079(4) 0.841(17)∗∗∗

Ignore + RI 0.1330 0.0112( 1)∗∗∗ 0.0803 −0.0021 1.077(3) 0.851(16)∗∗∗

Ignore20 + RI5 0.1327 0.0108( 1)∗∗∗ 0.0774 0.0008 1.079(4) 0.848(17)
kNN + RI 0.1302 0.0140( 2)∗∗∗ 0.0771 0.0011 1.076(4) 0.841(16)∗∗∗

Default+RI (m=5) 0.1338 0.0104( 2)∗∗∗ 0.0790 −0.0009 1.077(4) 0.850(16)∗∗∗

CART+RI (m=5) 0.1336 0.0106( 2)∗∗∗ 0.0789 −0.0007 1.079(4) 0.851(16)∗∗∗

CART+Aux+RI (m=5) 0.1334 0.0107( 2)∗∗∗ 0.0786 −0.0005 1.079(4) 0.852(16)∗∗∗

1 This is the bias proxy: Ignore − Value.
2 HR per 0.01 increment in FI, conditioned on age and sex.
3 p-value for vs ignore.
4 N = 5701 individuals.
5 N = 8728 individuals.
See Appendix Tables A.28, A.29 and A.30 for additional results.
Bold: noteworthy result.

the FI using Ignore versus either CART+RI or CART+Aux+RI.

In Table 4.10 we report the blockwise FIs for individuals under age 60, without

RI. This was used to assess imputation quality. We observed that the blockwise FIs

differed between imputation strategies. The qualitative survival effect of missing-

ness (“Survival Frailty” column) was always the same direction as the CART and

CART+Aux imputation strategies relative to Ignore, indicating good qualitative per-

formance. For example, BPX missingness has a HR>1 and CART imputations have

higher BPX block FI averages than Ignore. RI agreed with the qualitative Survival

Frailty for PFQ and RXD, but not VIQ. By design, RI imputed 0 for PFQ, VIQ and

RXD, but only PFQ and RXD had HR ≤ 1. Note that it is possible that the correct

(latent) values to impute were slightly larger than 0.

In Table 4.11 we report the blockwise FIs for individuals age 60+, without RI. In

contrast to Table 4.10, Ignore performed much better for the older individuals, with

the FI in the same direction as the survival frailty in 2/5 blocks and for the overall

FI, compared to CART and CART+Aux. Importantly, the Ignore strategy got the

correct direction of the overall effect.

The FI distributions are in Figure 4.7. In Figure 4.7A we observed that, excluding
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Figure 4.7: FI distributions by imputation type for Full dataset (real missingness).
A) without rule-based imputation (RI), B) with RI. Observe that RI shifts the FI
distribution to lower values (bottom row is duplicated from the other column for
comparison). Colours: quartiles. Vertical lines are quantiles of: CART+Aux (A) or
CART+Aux+RI (B). Stars: KS-test significance vs CART+Aux (A) or
CART+Aux+RI (B). All values from the m = 5 multiple imputations are included
for Default, CART and CART+Aux (including + RI) without aggregation.

RI, the MICE default was the least similar to the surrogate GT (CART+Aux), as

was the case with pMCAR simulation — though with less skew than in Figure 4.6.

The CART FI distribution was significantly different than CART+Aux, although

the difference is not discernible by eye. Taken together, this suggests that the true

missingness was somewhere between pMCAR and cMNAR, such as a combination of

the two. This is at least partially consistent with our a priori expectations that PFQ,

VIQ and RXD were pMAR, which was the foundation of our RI strategy.

There was a large shift visible between Figure 4.7A and 4.7B due to RI, as can be

seen in the last row. In Figure 4.7B we observed only small differences between the

distributions after RI was performed, with only Ignore+RI being significantly different

from CART+Aux+RI. It appears that the values imputed by RI were particularly

difficult for Ignore and Default to handle, in the latter case we infer that, consistent

with Figure 4.6, patterned missingness — which RI imputes — seems to be especially

difficult for Default to handle (see also Appendix Figure A.8).



42

The prediction accuracy for the real missingness is given in Table 4.7. We ob-

served that, relative to Ignore, there was a significant increase in AUC for both

CART (p = 1.7 · 10−6) and CART+Aux (p = 5.6 · 10−11) methods. The largest

changes were significant decreases in AUC for the Ignore20 method (p = 0.0046,

unpaired) and kNN (p < 2.2 · 10−16). All of the RI-enhanced imputation strategies

out-performed the Ignore method by AUC, except Ignore20+RI. The best AUC be-

longed to CART+Aux+RI, with an estimated bias of 0.0107 ± 0.0002 versus Ignore

— in agreement with our calculated bias, and an HR of 1.079± 0.004, implying that

the FI hazard would differ by 1.085 ± 0.005 between the two imputation strategies.

The HRs are plotted in Figure A.11.

Investigating the effects of missingness via the Cox model, we confirmed that

missingness is a significant predictor of mortality — with or without considering age

and sex, and had a strong interaction effect at age 60, Tables 4.8 and 4.9. The

interaction term causes the direction of the hazard to change from protective (age

< 60) to dangerous (age ≥ 60). We also considered changes due to the FI, and

considered several imputation strategies (MIs were aggregated as mean). We observed

similar results with and without RI.

We observed a large drop in the predictive power of missingness when conditioned

on the Ignore FI but not any other FI (Table 4.8), implying that the Ignore FI

captured the missingness survival effect. For the other imputation strategies, the FI

reduced the predictive power of missingness conditioned on being young. We saw no

significant differences in predictive power of the FI between the different imputation

methods. The deviance may be less sensitive to differences in predictive power than

the AUC, because the deviance carries the underlying assumptions of the Cox model.

Note that there was a clear FI position dependence in the predictive power of sex,

probably due to sex differences in the FI (e.g. [83]), which appears to have bolstered

the predictive power of the FI in Table 4.9, and which complicates direct comparison

of the FI deviance between Table 4.8 and Table 4.9.

4.6 Discussion

Deng et al [41] and Sterne et al [180] showed that either ignoring missing data or

carelessly imputing values can adversely affect results. We investigated missingness
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Table 4.8: Cox Hazard Analysis of Deviance — FI First

Model1 Miss Miss|Young2
Deviance

Age Sex FI
{1}. Miss 15(9)∗∗∗ – – – –
{2}. {1}+Miss|Young 15(9)∗∗∗ 26(13)∗∗∗ – – –
{3}. RIDAGEYR+{2} 15(9)∗∗∗ 24(13)∗∗∗ 7(6)∗∗ – –
{4}. RIDAGEYR+RIAGENDR+{2} 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ –
{5}. FI(Ignore)+{4} 3( 5) 7( 7)∗∗ 0(1) 84(19)∗∗∗ 406(43)∗∗∗

{6}. FI(Default)+{4} 18(10)∗∗∗ 12(9)∗∗∗ 0(1) 80(18)∗∗∗ 399(43)∗∗∗

{7}. FI(CART)+{4} 18(10)∗∗∗ 12(8)∗∗∗ 0(1) 80(19)∗∗∗ 405(43)∗∗∗

{8}. FI(CART+Aux)+{4} 17(9)∗∗∗ 12(8)∗∗∗ 0(1) 78(18)∗∗∗ 402(44)∗∗∗

{9}. FI(Ignore+RI)+{4} 5(6)∗ 3(5) 0(1) 84(19)∗∗∗ 416(42)∗∗∗

{10}. FI(Default+RI)+{4} 16(9)∗∗∗ 9(7)∗∗ 0(1) 79(18)∗∗∗ 404(42)∗∗∗

{11}. FI(CART+RI)+{4} 17(9)∗∗∗ 8(7)∗∗ 0(1) 80(19)∗∗∗ 409(44)∗∗∗

{12}. FI(CART+Aux+RI)+{4} 19(10)∗∗∗ 9(7)∗∗ 0(1) 78(18)∗∗∗ 409(45)∗∗∗

1 Deviance was calculated sequentially.
2 X|Y denotes an interaction between X and Y (“X given Y”).
The null model had deviance (−2·log-likelihood) 12480. Young (< age 60) was dropped (never
significant).
p-value is z-test versus 0.
Errors by bootstrapping N = 1000.
Bold: noteworthy result.

Table 4.9: Cox Hazard Analysis of Deviance — FI Last

Model1 Miss Miss|Young2
Deviance

Age Sex FI
{1}. Miss 15(9)∗∗∗ – – – –
{2}. {1}+Miss|Young 15(8)∗∗∗ 26(14)∗∗∗ – – –
{3}. RIDAGEYR+{2} 15(9)∗∗∗ 24(13)∗∗∗ 7(5)∗∗ – –
{4}. RIDAGEYR+RIAGENDR+{2} 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ –
{5}. {4}+FI(Ignore) 19(10)∗∗∗ 27(13)∗∗∗ 7(6)∗∗ 42(13)∗∗∗ 405(44)∗∗∗

{6}. {4}+FI(Default) 19(10)∗∗∗ 27(13)∗∗∗ 7(6)∗∗ 42(13)∗∗∗ 413(43)∗∗∗

{7}. {4}+FI(CART) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 419(42)∗∗∗

{8}. {4}+FI(CART+Aux) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 413(44)∗∗∗

{9}. {4}+FI(Ignore+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 412(44)∗∗∗

{10}. {4}+FI(Default+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(14)∗∗∗ 412(43)∗∗∗

{11}. {4}+FI(CART+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ 419(42)∗∗∗

{12}. {4}+FI(CART+Aux+RI) 19(10)∗∗∗ 27(13)∗∗∗ 7(5)∗∗ 42(13)∗∗∗ 420(43)∗∗∗

1 Deviance was calculated sequentially.
2 X|Y denotes an interaction between X and Y (“X given Y”).
The null model had deviance (−2·log-likelihood) 12480. Young (< age 60) was dropped (never
significant).
p-value is z-test versus 0.
Errors by bootstrapping N = 1000.
Bold: noteworthy result.
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with NHANES data to understand if and how the FI changes, and how well the

commonly available imputation models perform. We considered both standard Ignore

and Ignore20 approaches with the FI, together with a number of explicit imputation

strategies including multiple imputation.

The powerful and commonly used imputation strategy, MICE via FCS, is not for-

mally self-consistent. FCS builds predictive distributions for each variable conditioned

on the other variables, typically using a modified prediction model. This approach

does not represent a general factorization of the true joint distribution [198], and

hence a stationary distribution may not exist. As a result, FCS may impute unrealis-

tic values, which can become increasingly unrealistic as more variables are included.

Complicating this issue is the underlying prediction model(s) needed by FCS which

require separate validation for consistency across datasets. These concerns have been

mostly ignored due to its satisfactory empirical performance [198, 130]. By including

consistency checks on imputed FI distributions and by quantifying their predictive

power we assessed the validity of several common MICE and other imputation models

in our study.

Simulated missingness: We observed poor performance for both Default (PMM/logreg)

and MICE RF, which both produced biased FI estimates for the simplest simulated

missingness, cMCAR, even with≤ 15% missingness. PMM has previously been shown

to produce biased estimates when imputing MCAR data [70], reportedly because of

high missingness and too many variables, which were tested up to 64% and 82, respec-

tively. We observed a significant bias even with 15% missingness and 68 variables.

MICE RF has also been shown to struggle with large numbers of variables (≥ 200)

[41]. Our results indicate that 68 variables may still be too many for either Default

or MICE RF.

Increasing cMCAR to 25%, 50%, and ultimately 75% simulated missingness, we

also observed a breakdown of both Ignore and kNN. kNN produced a large, significant

bias in estimating the mean FI and a drop in the AUC. Ignore showed unbiased

estimates of the mean FI but showed a drop in the AUC and HR, with the HR

reaching 1.055 for 50% missingness — the same approximate missingness as the PFQ

block in the Full dataset, versus the GT value of 1.075 (Appendix Figure A.8). This

change is likely due to a noisier FI, as indicated by the significant increase in the SD.
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Fewer values available to compute the FI should increase the SD by the Central Limit

Theorem. Changes to the SD are important since they affect hypothesis testing, for

example the t-test statistic is directly proportional to the inverse of the SD: if the

SD is too large our p-values will also be too large (and vice versa). In contrast to

Ignore and kNN, imputing with CART+Aux was robust even up to 75% missingness,

showing no change in AUC or HR, a trivial change in estimated mean FI and the

smallest change in the SD.

There was a significant bias in the Complete-case FI estimates using the Ignore

method with NHANES missingness patterns (pMCAR). This bias was absent when

the patterns were not used (cMCAR), implying the patterns were the cause. pMAR

produced similar results. For 15% missingness, the pMCAR bias was small but visible

in the FI distribution, Figure 4.6. The bias was approximately 0.012, but represents a

change in HR of 1.09. This suggests that the real missingness data may also produce

biased FI estimates and risk assessment when using the Ignore method.

To confirm and better understand why the bias was present in pMCAR data,

we modelled it as a consequence of two observations: (1) variables had different

frequencies of missingness and (2) variable blocks had different distributions of deficit

values (see Appendix 4.8). For example, the PFQ block had the highest probability

of missingness (Figure 4.2) and the lowest median deficit/FI value (Figure 4.4). Our

calculation agreed perfectly with the observed bias. This confirmed that the pMCAR

bias is due to a combination of differences between variables in their likelihood of

being both deficit and missing; with a small additional bias due to mutual missingness

patterns.

Real missingness: CART and CART+Aux imputed simulated missingness the

best, and we have inferred that they also likely performed well with real missingness

— and better than either Ignore or Default. The distributions of imputed FIs were

very similar to simulated FIs (compare Figure 4.6 vs Figure 4.7) and showed a similar

ordering of increasingly skewed FIs from CART+Aux to Default. Further, changes by

variable block for younger individuals — representing 65% of our study population,

matched changes expected based on survival, where an increased HR due to miss-

ingness — and therefore higher frailty [42], correlated perfectly with higher imputed

FI values for CART and CART+Aux versus simply ignoring (see Tables 4.10 and
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4.11). There was also a small, significant increase in the AUC of the FI for predicting

4-year-survival using CART or CART+Aux versus Ignore, implying these imputed

FIs were better measures of frailty than the Ignore FI.

Notably, neither CART nor CART+Aux was able to fully compensate for missing

expert knowledge regarding study design, as inferred from RI. In RI we assumed

gated variables (PFQ, VIQ and RXD) were all optimally healthy, and in Table 4.7,

saw a substantial increase in AUC: confirming RI. Validation of RI can be seen in the

survival effects of PFQ and RXD for young people, which strongly imply the missing

gated variables were healthy, Table 4.10. VIQ did not follow this trend, however,

and therefore may have been better treated using a different imputation model such

as CART. After RI was performed, we did observe that CART and CART+Aux

appeared to correctly fine-tune the FI such that the residual bias, calculated using

Eq. 4.7 and Eq. 4.9 was perfectly cancelled. Based on our results, there appears

to be no downside to imputing using CART. The upsides include more accurate FI

estimation and improved mortality prediction, especially when auxiliary variables are

utilized. Imputing with CART is not a panacea: it did not obviate the need for RI,

but it did improve upon it.

Investigating the underlying missingness mechanism, we observe that the real

missingness is of mixed type. For example, for younger individuals PFQ was pMAR,

since study design skipped those values when specific covariates were not deficits [29].

For older individuals PFQ was cMAR or cMNAR given the lack of patterning and

strong relationship with survival (Figures 4.2 and 4.3, respectively). The FI distri-

butions, Figure 4.7A, showed increasing skewness in the same order as the simulated

pMCAR — from CART+Aux (least) to Default (most). But the Default distribution

was less skewed than pMCAR, and there was a significant change in the distribution

of CART vs CART+Aux. Given the similarities of pMCAR and pMAR in our simu-

lations, the real missingness is a combination of patterened pMAR or pMNAR, and

cellwise missingness cMAR or cMNAR.

Missingness and survival: What is the expected change in HR per 0.01 increase

in FI [101]? This question cannot be answered precisely without good imputation

practices since, as we have seen, both the FI and the HR depend on how missing data

are handled [171]. High levels of missingness, even in the simplest case: cMCAR,
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Table 4.10: FI of Real Missingness Imputation by Blocks, Under Age 60

Block Ignore Default CART CART+Aux Survival Frailty1

All2 0.1218( 8) 0.1261( 10) 0.1179( 8) 0.1176( 8) Low
PFQ 0.1151( 8) 0.1416( 46) 0.0876( 32) 0.0865( 23) Low
RXD 0.1078( 9) 0.0941( 18) 0.0962( 25) 0.0909( 14) Low
VIQ 0.1166(13) 0.0966( 34) 0.0947( 53) 0.0801( 33) No effect
BPX 0.1377(43) 0.2454(222) 0.2367(181) 0.2291(148) High
LB 0.1232(33) 0.1458( 43) 0.1449( 46) 0.1478( 40) High
3

1 Frailty inferred from Cox model and Kaplan-Meier curves.
2 All individuals under age 60.
3 Bold: noteworthy result.

Table 4.11: FI of Real Missingness Imputation by Blocks, Age 60+

Block Ignore Default CART CART+Aux Survival Frailty1

All2 0.1862(15) 0.1851( 15) 0.1850( 15) 0.1852( 15) High
PFQ 0.2343(39) 0.2072( 84) 0.2042( 83) 0.2060( 81) High
RXD 0.1335(28) 0.1123( 53) 0.1201( 61) 0.1302( 73) Low
VIQ 0.2740(73) 0.3580(181) 0.3557(193) 0.3732(214) High
BPX 0.2266(62) 0.3290(240) 0.3244(254) 0.3260(245) High
LB 0.2097(62) 0.1605( 69) 0.1610( 70) 0.1615( 67) High
3

1 Frailty inferred from Cox model and Kaplan-Meier curves.
2 All individuals age 60+.
3 Bold: noteworthy result.
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can cause significant changes to the estimated HR. We also observed that patterned

missingness can bias the FI on the scale of 0.01 in both our simulations and, ostensibly,

in the real data. Our simulated patterns were handled well by CART, whereas the

real patterns seemed to be better handled using RI then fine-tuning with CART;

perhaps due to the increased heterogeneity of the Full population. In general, correct

estimation of the HR and optimal reduction of FI bias require a robust imputation

strategy such as CART.

We observed large differences in survival based on the missingness of variable

blocks, Figure 4.3. For example, individuals under 60 with the personal fitness (PFQ)

block missing lived significantly longer than those with the variable reported — with

a maximum difference of 17.6 years between the survival curves. In contrast, individ-

uals missing the lab (LB) block tended to die younger than those with the variables

reported. We observed heterogeneity between the variable blocks, with some blocks

showing longer, shorter or equal survivals when absent, and often showing different

survival effects for old versus young individuals.

Very high levels of missingness occur naturally. For example the PFQ block was

missing at a rate of over 50% in the Full dataset, and over 80% for individuals under

age 60. In the simulated cMNAR, 50% missingness led to a bias in the FI of 0.1110±
0.0030 and an HR estimate of 1.048 using Ignore versus 1.074 using CART+Aux

(Appendix Figure A.9). Even the relatively benign cMCAR missingness caused the

HR to drop to 1.055 at 50% missingness when using Ignore. We observed a decrease

in the HR (per 0.01 increase in FI) estimate using Ignore, dropping continuously

from the GT value of 1.075 to 1.032 at 75% cMNAR. This suggests that with a high

missingness the Ignore method can cause large biases in the HR. No such bias was

observed using CART+Aux.

Although the FI was systematically biased when ignoring simulated missing data,

there was no significant change in either AUC or HR for ≤ 15% simulated missingness

with either Ignore or CART. Increasing the missingness to a very high, 75% cMNAR,

only reduced the AUC with Ignore by 1 error bar. Real missingness (at 14.5%)

also showed a small effect on survival, although there was a significant increase in

AUC when using CART versus Ignore, especially with inclusion of RI and auxiliary

variables. The insensitivity of the AUC may be because it describes the predictive
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power of all possible FI risk thresholds, and therefore is not sensitive to a systematic

bias, furthermore, the scale of the bias may have been too small to significantly change

the mortality-risk dichotomization: it was typically much less than the between-

individuals variability as measured by the SD. Instead, bias in the FI affects estimates

of relative risk.

A previous meta-analysis of adjusted FI-HRs across multiple studies yielded an

estimated HR of 1.04 (CI: 1.03-1.04) [101], while our age and sex adjusted FI-HR was

1.08 (Table 4.7). This unexpectedly high HR has previously been attributed to the

use of both lab and clinical variables in constructing the FI [19], and is consistent with

earlier work [20, 81]. We can speculate about the role of missingness in constructing

the FI. The opposing survival effects of missing LB versus PFQ may have helped

balance the adverse effects of Ignore. In general, selection bias due to missingness

could either enhance or deteriorate the FI. This may help explain the heuristic rules-

of-thumb to limit missing data of variables to < 5% and of individuals to < 20%. The

latter could improve prediction of the Ignore FI by preferentially excluding young

people, who tend to have bad imputations, Table 4.10. We observed in Table 4.8

that the Ignore FI usurped the predictive power of missingness, but this ability may

depend on the variables used to construct the FI. The Ignore method pushed FI

values higher for people with missing data, because values likely to be missing, e.g.

PFQ, were almost always less than the individual-mean, Figure 4.4. If the individual

missing data was older than 60, they were at higher risk of death, Figure 4.3, and

therefore the Ignore, and especially Ignore20, methods would have incorporated this

missingness-related-risk into the FI. This effect depends on the specific set of variables

selected for the FI, and so may limit the utility of quantitative FI comparisons within

and between studies.

Imputation strategies with the FI: We observed patterned missingness in the Full

dataset with a wide range of missingness from 0% to over 50%. Variables often went

missing together as nearly perfectly correlated blocks. We also observed unstructured

missingness, particularly for older individuals.

Although the missing gated variables were best handled with RI, they also demon-

strate clearly the utility of auxiliary variables. For example, the PFQ block was not

reported for individuals under age 60 whom reported “no” to auxiliary variables
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PFQ049, PFQ057 and PFQ059. In this case these auxiliary variables are able to

convert MNAR (for which there are no general imputation models) to MAR (which

many imputation models address). Even with MNAR data, auxiliary variables may

still be able to improve imputation by correlating with the latent cause(s) of miss-

ingness. With simulated missingness CART+Aux gave excellent performance for low

levels of cMNAR missingness. Nevertheless, improvement from auxiliary variables

was smaller with real missingness. This may be because simulated missingness was

not applied to the auxiliary variables, leading to much lower auxiliary variable miss-

ingness in the Complete dataset, Table 4.1. Our simulations should be considered a

best-case scenario for auxiliary variable performance.

We expected that RF models would perform well since they are powerful impu-

tation models capable of handling mixed data with non-linearities and interactions

between variables [185]. In the present study we compared 1 tree (CART) versus

10 trees (MICE RF) versus 100 trees (missForest). We found that using only one

tree (CART) consistently performed the best, implying more trees caused over-fitting.

Generally speaking, it is expected that more trees should reduce over-fitting [119],

though the opposite has been reported for imputation [177]. Similarly, too many pre-

dictors can also lead to a biased MICE RF imputation [41]. Often, RFs are built by

picking a random subset of input predictor variables for each node i.e. “input selec-

tion”, whereas CART does not [43]. Input selection could greatly reduce fit quality

if there are too many poor predictor variables i.e. spurious covariates [59], since they

dilute the pool of available features. This leads to poorly predicting trees and subse-

quently a poorly predicting forest. Input selection would then reduce accuracy, which

could explain the superior performance of CART. A less likely potential source of

over-fitting is tree depth [59].

Why do tree-based imputation methods perform better? Imputation strategies

typically impute values by randomly drawing or combining ‘nearby’ observed values.

For Ignore, nearby means other values of the same individual, while for other meth-

ods nearby is determined by a minimum distance. For PMM the distance is based

on linear regression [1], whereas the distance in tree-based methods (CART and RF)

is determined by iteratively partitioning the data. As a result, tree-based methods

can automatically account for non-linearities, such as interactions between variables.
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Previous studies have demonstrated that tree-based methods perform well when in-

teractions are present [43, 177, 79]. Non-linearities are expected in our data due to

known interactions, such as the sex-frailty paradox [83], as well as the arbitrary scales

used for questionnaire data and the presence of non-normally distributed lab data.

These may explain the relatively poor behaviour of the default MICE method versus

tree-based methods. Default struggled notably with patterned simulated missingness

(pMCAR and pMAR), perhaps because finding a suitable donor (PMM) or set of

predictors (logreg) was especially difficult due to the large blocks of mutually missing

covariates.

CART was systematically biased high with cMNAR, along with most other strate-

gies; although, CART was less biased than Ignore. kNN and missForest were both

unbiased for 15% cMNAR, although missForest was consistently biased low and

hence probably coincidentally biased in the correct direction for cMNAR. kNN per-

formed relatively well with cMNAR but still struggled with ≥ 25% missingness. Our

inability to successfully impute for cMNAR reflects the difficulty of the underlying

problem, which in general requires knowledge of the biasing mechanism [130]. This

may present an opportunity for imputation models designed specifically for aging

data (e.g. [52]).

General thoughts. In our study, the 20% exclusion rule preferentially excluded

young individuals (under age 60), removing 56% of young individuals versus 6% of

older individuals. This radically altered our study population. Since young people had

the least realistic blockwise imputation values using the Ignore method (Table 4.10)

and Ignore generally imputed higher than the true missing values (Figure 4.4), this

suggests that the 20% rule might improve prediction by simply removing individuals

for whom Ignore doesn’t work well. In our study the 20% exclusion rule also excluded

all individuals missing the lab block, which preferentially removed individuals with

poor survival prognosis from the analysis (Figure 4.3). The effect of 20% exclusion

depends on the specific set of variables used to calculate the FI. If we had used 10

lab variables instead of 27, then the 20% cut would be ≥ 10.2, and only the PFQ

block would be excluded, radically changing the survival effect of excluded individuals

(Figure 4.3). In the present study, survival prediction dropped significantly when the

Ignore20 rule was used versus Ignore, Table 4.7. Given the superior performance of
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CART imputation, we see no reason to rely on heuristic rules such as the 20% rule

— which biases the study population and could lead to unexpected effects.

Our primary source of error was differences between the Complete-case and Full

datasets. We consistently observed that survival, frailty and missingness are inter-

acting variables, and hence the Complete-case data had unavoidable differences in

the overall FI, AUC, and mortality rates. Nevertheless, the qualitative results were

similar between the simulated and real missingness. We consistently saw that the FI

calculated using Default MICE or by ignoring missingness gave higher values than

CART and CART+Aux. The latter two matched the GT distribution in the simulated

missingness data, were consistent with our bias calculations for real and simulated

missingness, and improved predictive power in the real missingness data.

We averaged together multiple imputations when estimating predictive power to

estimate the maximum achievable predictive power versus single imputation strate-

gies, but this neglected propagation of error due to imputation hence our confidence

intervals were likely too small for the AUC and HR of the real missingness. The

simulated missingness used Monte Carlo estimates for the error and therefore should

be reliable. Recent results have implied that m = 5 imputations may be far too

few for accurate estimation of statistical dispersion [22], however, when we used the

recommended m = 15 imputations [205] on the simulated data we saw only a small

change in the estimated standard deviation, implying for our low levels of missingness

m = 5 was sufficient.

In the future we would like to investigate missingness structures in other common

aging studies. It will also be interesting to investigate the 5% missingness-by-variable

cut-off that is commonly used in the literature [162]. Further investigation into MICE

may prove worthwhile, such as the convergence properties (stability) of FCS and

the effect of number of iterations. Tuning of MICE hyperparameters, notably of RF

including depth, input selection and number of trees could enhance results, but would

require a diverse set of gerontological studies to do reliably.

There is room for improvement from CART+Aux, which had poor performance

for high levels of cMNAR, and struggled with the imputation of real missingness

both for older individuals and for gated variables better handled using RI. This per-

formance might be improved upon with deep learning models (e.g. [65, 52]), although
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scepticism is warranted regarding generalizability across datasets, as lightweight im-

putation models — including MICE via CART — have been shown to out-perform

deep learning in third-party comparison studies [85, 203]. Quantitative, stochastic

modelling of aging naturally lends itself both to the development of new imputa-

tion strategies and to the ability to generate realistic datasets to validate imputation

strategies. This synergy presents an opportunity for quantitative researchers to ad-

dress a serious pragmatic issue endemic to aging studies: missing data.

4.7 Summary and Conclusions

We considered several types of simulated missingness together with naturally missing

data. Imputation of real missingness shared strong similarities with imputing the

simulated missingness. Our results indicate that most imputation strategies, including

Ignore and the MICE default, are weak against at least one type of missingness.

Fortunately, MICE using CART appeared to be robust, and consistently improved

estimation and predictive power over simply ignoring missing data.

We observed distinct missingness patterns that bias the standard Ignore (available-

case) FI methodology, even when missing completely at random (pMCAR). Impu-

tation with MICE using CART can remove this bias. We advise caution with other

MICE models, especially with the default method (PMM/logreg) which made the bias

even larger for our simulated missingness. The MICE RF model performed poorly

and was unreliable — with performance dependent on the missingness mechanism,

as were the popular single-imputation strategies of kNN and missForest. kNN did

perform well for ≤ 15% missingness, but failed even the simplest test case — cMCAR,

for ≥ 25% missingness, and had poor predictive power with the real missingness.

These same patterns of missing variable blocks have a significant effect in survival,

with the missingness of some variables being predictive of poor survival, whereas

others indicated better survival. These effects are evidence that missingness should

not be ignored. The FI tended to cancel out survival effects when using the typical

strategy of ignoring missing values, which may suggest an important cancellation

in the choice of FI variables. For example, the self-reported and lab variables in

this study tended to have opposing survival effects with missingness. What’s more,

we observed that the heuristic 20% cut-off rule for individuals missing entries can
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partially compensate for the limitations of ignoring missingness in certain types of

simulated missingness, but can also greatly bias the study population.

The FI prediction of mortality appeared to be robust to missingness, showing only

a minor reduction in AUC even when 75% of the data were made missing, however,

we observed large changes in the HR estimate for missingness ≥ 25% when missing

values were simply ignored. Good HR estimation requires imputation. With inclusion

of auxiliary variables, the CART+Aux imputation showed remarkable consistency in

both AUC and HR estimation in the simulated missingness, even at 75% missing-

ness. We also observed CART+Aux improved survival prediction (AUC) for the real

missingness over ignoring the missing data.

Our observed improvement in survival prediction appears to be consistent with

previous work using the Rotterdam study [171], although that study did not provide

a direct measure of predictive power such as the AUC or C-index. That study also

did not fully report their imputation model — only that they used MICE — but they

found a similar bias in the median FI of same scale, 0.01, and in the same direction as

the Default MICE imputation in our study. In our study this was the same scale and

opposite direction of CART and RI-based imputations, emphasizing the potential for

differences between cohorts and the need for full disclosure of imputation models.

Our study indicates a hierarchy of increasingly complex missing data handling for

increasingly precise estimation of the FI and subsequent HR. The simplest approach

is to use the typical Ignore strategy. The Ignore-FI appears to be a simple, composite

health measure of vulnerability to adverse outcomes, suitable for clinical situations.

Unfortunately, ignoring missing data makes the FI prone to bias and hence inhibits

quantitative FI comparisons across populations and studies. A large improvement in

FI precision and predictive power follows if we apply RI. A smaller improvement to

FI precision follows if CART is then used to impute remaining values. And finally,

inclusion of auxiliary variables with CART can safeguard against low-levels of MNAR

without serious risk of over-fitting. In situations where fewer rules are available for

RI, imputing with CART using auxiliary variables becomes increasingly important.

Missing data handling can have a significant effect on the precision of the quanti-

tative FI, HR estimate, and its mortality predictive power. A standardized approach

for handling missingness is needed to achieve the increasingly high levels of precision
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desired in contemporary FI studies, and to facilitate comparisons between studies

and translation across populations. Researchers should fully disclose their missing

data handling methodology, including imputation model and number of imputations.

Basic sanity checks on imputed values are advisable. It is still an open question what

effect missingness has across studies and across sets of variables used for the FI. In

the present NHANES-based study, imputation using the commonly available CART

MICE consistently gave superior FI precision, HR estimation and mortality predictive

power over simply ignoring missing values.
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4.8 Appendix: How Missingness Patterns Bias the FI

The complete data matrix B has true elements bij, where the rows i ∈ {1, 2, ..., N}
are over N individuals and the columns j ∈ {1, 2, ..., Nb} are over Nb variables. The

missingness matrix Mij = 1 if a given entry is missing, and 0 if it was observed. The

overall missingness fraction is π = Nm/(NNb) where Nm =
∑︁

ij Mij is the number of

missing values in the dataset.

We define f̄ as the true average FI (Frailty Index) over the population, so f̄ =∑︁
ij bij/(NNb). We define f̄obs as the average observed FI, so f̄obs =

∑︁
ij(1−Mij)bij/(NNb−

Nm). We define f̄miss as the average FI of the missing values, so f̄miss =
∑︁

ij Mijbij/Nm.

We then have

f̄ = (1− π)f̄obs + πf̄miss. (4.5)

The true population average, f̄ , only coincides with the observed estimate, f̄obs, when

f̄miss = f̄obs, otherwise there will be a bias (for π > 0).

To estimate the bias we assume that the distribution of missing data across indi-

viduals is Pi, across variables Pj, and across both Pi,j. We would have Pi,j = ⟨Mij⟩,
where the angle brackets indicates an average over many missingness matrices. If

we wanted the distribution of non-missing data P c
i , P

c
j , and P c

i,j it would be just be

P c = 1− P . Note that
∑︁

ij Pi,j = 1.
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The bias, f̄ − f̄obs can be calculated using Bayes’ theorem as:

f̄ − f̄obs = π

(︃∑︂
ij

bijPiPj|i −
∑︂
ij

bijP
c
i P

c
j|i

)︃
. (4.6)

We assume no individual-specific selection, i.e. Pi = 1/N . We can approximate the

bias by assuming independence, Pj|i ≈ Pj, then we have:

f̄ − f̄obs ≈ π

Nb∑︂
j=1

(︁ 1

N

∑︂
i

bij
)︁
(πj − πc

j) (4.7)

which is plotted as “Model (approx.)” in Figure 4.5. Note that 1/N
∑︁

i bij requires

knowledge of the grouth truth, unless the data are MCAR. Where π̂j = Pj =∑︁
i Mij/

∑︁
ij Mij and π̂c

j = P c
j is:

π̂c
j =

∑︁
i(1−Mij)∑︁
ij(1−Mij)

=
1− πNbπ̂j

Nb − πNb

(4.8)

We have Mij directly from the data matrix. Note that if Pi,j = const. (cMCAR)

then f̄obs = f̄miss = f̄ , in which case the Ignore method would be unbiased. The

independence approximation Pj|i ≈ Pj is, in light of the strong missingness patterns

(Section 4.5.1), unlikely to be exact. We can instead estimate Pj|i by assuming inde-

pendent, identically distributed individuals (pMCAR), as:

Pj|i =
1

N

∑︂
i

(1−Mij)∑︁
j(1−Mij)

(4.9)

which, after substitution into Eq. 4.6, is plotted as “Model (exact)” in Figure 4.5.

The key difference is that
∑︁

j(1−Mij) varies greatly for patterned missingness. The

approximate model posits that the difference between FI contributions between vari-

ables and blocks causes a bias, whereas the exact model additionally posits that the

specific patterns also contribute to the bias.
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We investigated efficient representations of binarized health deficit data using the

2001-2002 National Health and Nutrition Examination Survey (NHANES). We com-

pared the abilities of features to compress health deficit data and to predict adverse

outcomes. We used principal component analysis (PCA) and several other dimen-

sionality reduction techniques, together with several varieties of the frailty index (FI).

We observed that the FI approximates the first — primary — component obtained by

PCA and other compression techniques. Most adverse outcomes were well predicted

using only the FI. While the FI is therefore a useful technique for compressing bi-

nary deficits into a single variable, additional dimensions were needed for high-fidelity

compression of health deficit data. Moreover, some outcomes — including inflamma-

tion and metabolic dysfunction — showed high-dimensional behavior. We generally

found that clinical data were easier to compress than lab data. Our results help to

explain the success of the FI as a simple dimensionality reduction technique for bi-

nary health data. We demonstrate how PCA extends the FI, providing additional

health information, and allows us to explore system dimensionality and complexity.

57
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PCA is a promising tool for determining and exploring collective health features from

collections of binarized biomarkers.

Keywords: frailty index, principal component analysis, logistic principal compo-

nent analysis, dimensionality reduction, biological age, aging.

Table 5.1: Nomenclature

FI Frailty index
FP Frailty phenotype
(I)ADL (Instrumental) activities of daily living
PC(A) Principal component (analysis)
LPC(A) Logistic PC (analysis)1

LSV(D) Logistic singular value (decomposition)2

GLM Generalized linear model
1 Cousin of PCA.
2 Cousin of LPCA.

5.1 Introduction

Biological dysfunction arising from damage is central to aging [114]. Representing

dysfunction requires robust summary measures of aging data, which can then help us

to operationalize theories of causal mechanisms [114, 94, 168]. Is there a systematic

way to generate summary measures from observed health deficits? How well do they

predict a battery of adverse outcomes?

The frailty index (FI) is a simple, robust measure, that is strongly predictive of

general adverse outcomes [101, 42]. Dichotomizing data as healthy (0) or deficit (1)

probes dysfunction directly. The FI is defined as the average number of dysfunctional

(deficit) health variables an individual has [174]. Conventionally, the FI is constructed

from self-reported questionnaire — ‘clinical’ — data, such as (instrumental) activities

of daily living (I)ADLs and physical limitations. Recently, the FI has been extended

to include ‘lab’ biomarker data [81, 18].

Aging is widely considered to be multidimensional [97, 114, 56, 31, 168]. The

FI is just one of many univariate summary health measures. In particular, many
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“biological ages” have been proposed1. These measures overlap only moderately, im-

plying that a complete description of “biological age” would require several of them

[87, 110, 37]. Machine learning studies also suggest multiple dimensions of health

information, though survival information appears to compress into just one or two

dimensions [52]. Furthermore, interventional study reviews often report improvement

along one dimension at the expense of worsening along other dimensions: for example,

mice treated with metformin show improved treadmill performance but reduced visual

acuity [134]. For which outcomes is a univariate health measure sufficient? Do inte-

grative hallmarks of aging [114] or bow tie systems2 [38], which mediate interactions

between multiple systems, require multidimensional health measures?

The rapidly increasing dimensionality of ’omics aging data [219] makes these ques-

tions pressing. For example, Jansen et al. [87] studied over 20,000 gene expressions

from fewer than 3,000 individuals. Data with more variables than individuals carry

the “curse of dimensionality” which can lead to overfitting and loss of interpretability

with standard algorithms [86]. Condensing high-dimensional data into a few salient

features simplifies statistical modelling [86, 2]. To achieve this, we need scalable and

robust dimensionality reduction techniques.

While the FI is a simple and reproducible dimensionality reduction technique [158]

that compresses 30+ binary health variables [174] into a single, graded measure [82],

it has not been systematically extended to higher-dimensional health features. Ad

hoc multivariate extensions such as domain-specific FIs [20, 17] or multiple biological

ages [110] neglect the possibilities that these measures may have gaps or redundancies

in the information they contain.

The canonical dimensionality reduction technique in machine learning and statis-

tics is principal component analysis (PCA), which is robust, fast, and systematically

extensible [86]. PCA linearly combines (rotates) existing health variables into a com-

plete set of new ‘latent’ health variables — principal components (PCs) — ordered

from most to least variance. By construction, the PCs are mutually independent and

hence do not suffer the problem of redundant information faced by multiple ad hoc

1For example, Horvath’s biological age predicts chronological age based on individual epigenetic
methylation status across a battery of sites. Individuals that are predicted to be older than their
true age are inferred to be in worse health. Chapter 7 describes several common biological ages.

2Bow tie systems are characterized by many inputs and many outputs. Information fans in and
out of the central node, giving it the graphical appearance of a bow tie (the attire), hence the name.
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approaches.

PCA has been used to improve epigenetic clock reliability [78], and to analyse raw

biomarker data [33, 9] and dysfunction biomarkers [131]. PCA is robust to covariates,

including sex, race and study population [33]. When used correctly, PCA summarizes

the salient information in a dataset. For example, Entwistle et al. [49] applied PCA

to NHANES III dietary data and identified the first 4 PCs as being idealized dietary

patterns. Nevertheless, studies using PCA to generate new health measures (PCs)

from deficit data are rare. Few, if any, have leveraged the extensive literature on

health deficit data that surrounds the FI. Furthermore, none of the aforementioned

studies have systematically explored multiple dimensionality reduction algorithms nor

the effect of modifying the number of PCs on adverse outcome prediction. What are

the generic features of dimensionality reduction of health deficit data? How can this

help us to understand and build upon the success of the FI?

We should also explore what is the correct number of PCs to use for health deficit

data. Arbitrarily restricting which PCs to use has led to serious criticisms of its

reproducibility for low-rank projections (e.g. only using the first two PCs) [48]. Others

have noted that mortality information can be found in low-variance PCs, which are

often neglected [78].

While the FI and PCA are both linear transformations, the FI imposes equal

weightings of each variable whereas PCA does not. Accordingly, the FI and PCA

need not be related. Nevertheless, previous work has shown that the first PC of

biomarker dysfunction data from hemodialysis patients approximately reproduces

the two key phenomenon of the FI: approximately equal weightings across input

variables, and good prediction of adverse outcomes, including the frailty phenotype

(FP) [131]. Furthermore, the FI has been shown to efficiently compress clinical, deficit

questionnaire data, with little unexplained residual variance [207]. However, research

on biomarker lab deficit data implies the presence of additional dimensions [66]. How

many dimensions are relevant in lab biomarker data, and do they overlap with clinical

dimensions? Any such information that is shared between lab and clinical domains

will affect joint dimensionality reduction.

As with the FI, our primary interest is in damage arising from dysfunction, so

we binarize data as either normal (0) or dysfunctional/deficit (1). We expect that
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compression of health deficit data will find efficient representations of both dysfunc-

tion and adverse outcomes because health deficits are themselves adverse outcomes,

e.g. ADLs [104]. This improves interpretability — dysfunction is what we care about

— and saves us from issues endemic to continuous variables, such as scaling, healthy

variability, and non-normal behaviour. Recent advances in PCA specific to binary

data provide additional techniques that we also explore: “logistic” PCA [105] and

“logistic SVD” [105, 167] (SVD: singular value decomposition).

All of these PCA algorithms are lightweight with minimal assumptions. They

compress data into efficient rank-ordered representations, where the first dimension

contains the most information and the last contains the least. In contrast, latent

variable models such as grade of membership [116, 178, 50], while more directly

interpretable, have sub-optimal compression efficiency and do not rank-order their

latent space. Efficient, rank-ordered representations will effectively coarse grain the

data, allowing us to answer our questions about dimensionality and information flow.

Here, we restrict our attention to PCA and its variants.

The goal of this study is to systematically explore the use of PCA in compression

and prediction of multidimensional health deficit data, and to compare PCA with

the FI. We also examine PCA alternatives. Compression can tell us the maximum

number of dimensions required to efficiently represent input data, but can’t a priori

distinguish between useful information and noise. We compare compression of binary

deficit data and prediction of adverse outcomes using both outcome associations and

a generalized linear model (GLM). We include a battery of adverse outcomes to test

predictive power. Finally, we take a deeper look at PCA, fully exploring its utility, its

robustness, the patterns it extracts from the data i.e. PCs, and its systematic mode of

action. We demonstrate that PCA provides a multidimensional perspective of health

not available to univariate health measures.

5.2 Methods

Figure 5.1 outlines the study pipeline. We split the data into three parallel analyses:

compression, associations with input/outcome variables, and prediction using gener-

alized linear models (GLMs). We compared compression using the frailty index (FI),

principal component analysis (PCA), logistic PCA (LPCA) [105] and logistic singular
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value decomposition (LSVD) [105, 167].

5.2.1 Data and preprocessing

We used data from the 2001-2002 NHANES with linked public mortality records [29].

We included individuals over age 60 (N = 1872) to focus on older individuals and

to avoid problems with gated variables [145]. We used lab and clinical health deficit

data from multiple domains to predict multiscale, multidomain outcomes. In total, we

included 26 clinical predictors, 29 lab predictors, 47 outcomes, and 7 demographical

variables.

The complete list of predictors, outcomes and covariates is provided in Appendix B.

We binarized all predictors using standard rules [19] (Table B.1 and B.2). This sim-

plified analysis and forced our dimensionality reduction algorithms to find efficient

representations of dysfunction — as desired. Outcomes included health biomarkers,

disability, morbidity and mortality. All continuous outcomes were standardized to

zero mean and unit variance. We included 7 demographic covariates: age (top-coded

at 85), and (binarized) sex, race, family income, education level, smoker status and

partner status.

The FI was computed as the average of binarized predictor variables [174]. The

FP was included as an alternative frailty measure, defined as 3+ out of 5: low BMI,

bottom 20% for gait speed (sex-adjusted), and self-reported: weakness, exhaustion,

and low physical activity [208].

Imputation was performed using multivariate imputation by chained equations

(MICE) version 3.10.0 [196]. We used the classification and regression tree (CART)

method, which performs well with similar NHANES data [145]. We imputed all

data, including predictors, outcomes, covariates, survival information and auxiliary

variables. Imputing outcomes had no significant effect on prediction accuracies: ex-

cept for gait, which had a higher R2 by ∼ 0.05 (Appendix B). We imputed 15 times,

reflecting the ∼ 15% missingness3 [205]. We propagated the uncertainty in these im-

putations into our final results using Rubin’s rules [205]. We symmetrized and scaled

standard errors (assuming normality), applied Rubin’s rules, then rescaled to 95%

3The rule originates from the observation that the ratio of variance using infinitely-many impu-
tations versus m is 1 + f/m where f is the fraction of missingness. According to our rule we use
m = 100f giving a 1% ratio between finite versus infinite imputations, small enough to be ignored.
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Figure 5.1: Study pipeline. We performed three parallel analyses: compression,
feature associations, and outcome modelling. Data were preprocessed, resulting in
an input matrix of health deficit data, X, and an outcome matrix of adverse
outcomes, Y (rows: individuals, columns: variables). The input was transformed by
a dimensionality reduction algorithm, represented by Φ, which was either: the FI
(frailty index), PCA (principal component analysis), LPCA (logistic PCA) or LSVD
(logistic singular value decomposition). Each algorithm, Φ, generated a matrix of
latent features with tunable dimension, Z (dimension: number of columns/features;
the FI was not tunable). We tuned the size of this latent feature space, Z, to infer
compression efficiency and the maximum dimensions of Z before features became
redundant (binarizing with optimal threshold, η). The latent features were then
associated with input and outcomes to infer their information content and the flow
of information from input to output. The dimension of Z was then again tuned to
predict the adverse outcomes. Ŷ represents the outcome estimates by the
generalized linear model (GLM), which were compared to ground truth, Y , to
determine the minimum dimension of Z needed to achieve optimal prediction
performance for each outcome. This procedure allowed us to characterize the flow of
information through each dimensionality reduction algorithm.
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confidence intervals (CIs).

In Appendix B we provide consistency checks on the imputed values and char-

acterized the missing data. Individuals with missing data were older, with median

(IQR) age 71 (65-78) vs 76 (67-83) (Wilcox p = 2 ·10−16), and had significantly worse

survival, hazard ratio4: 1.6(1) (p: 7·10−13, log-rank test). This means that the missing

data were not missing completely at random and that failure to impute could lead to

biased results [180]. We performed our initial analysis using complete case predictor

and demographic data (no missingness for each individual), and available case out-

come data (individuals were included for any outcome they had reported). Complete

case analysis yielded similar results to our full, imputed analysis (Appendix B).

5.2.2 Performance Metrics

Most of the binary outcomes and predictors were rare, with many occurring in less

than 10% of study participants (Table B.4). Such unbalanced data poses a problem

when measuring binary performance [96]. An uninformative diagnostic test that

returns negative regardless of disease status would have 90% accuracy in diagnosing

a disease with 10% prevalence. Its Youden index [215], however, would be 0:

Youden index ≡ sensitivity + specificity− 1. (5.1)

A perfectly informative test would have a Youden index of 1. The Youden index

is strongly correlated with the AUC, which estimates the probability that a metric

will correctly rank the positive individuals as higher than negative individuals [145].

Assuming case and control are both normality distributed with the same variance,

the AUC and Youden index are redundant, for example Youden indexes of 0.2, 0.4,

0.6 and 0.8 correspond to AUCs of 0.64, 0.77, 0.88 and 0.97, respectively [214]; this

model fit our data very well (Figure B.15).

When comparing continuous-continuous variable pairs we used Spearman’s ρ, a

non-parametric measure of correlation [152]; we took the absolute value and estimated

the confidence interval using quantiles from bootstrapping (with 2000 resamples). For

models predicting continuous outcomes we used R2, the coefficient of determination,

which measures the explained variance as a proportion of the total variance with 1

4Note that in this chapter errors are reported in parentheses e.g. 1.234(56) ≡ 1.234± 0.056.



65

being perfect. The mean-squared error (MSE) is the average of the squared model

residual [86]. We standardized continuous outcomes to zero mean and unit variance,

hence useful models have MSE < 1 (assuming unit variance, R2 = 1−MSE). Time-

to-event outcomes, i.e. survival, were scored using the concordance-index (C-index), a

cousin of the AUC [145]. Generalized linear model (GLM) predictive power used R2,

MSE, AUC, Youden and/or the C-index. Outcome associations used Spearman’s ρ

(specifically |ρ|), AUC, Youden or the C-index (specifically |C − 0.5|). Feature im-

portance was first inferred from stepwise regression, then validated using selection

frequency (Appendix B).

5.2.3 Input Compression

We applied the FI, PCA, LPCA and LSVD to the predictor variables (binarized lab

and clinical data) — Figure 5.2 illustrates how PCA compressed the data by de-

composing the 2D joint deficit histogram. We treated the binary scale as an absolute

scale for dysfunction, akin to the FI, so we did not center variables by their respective

means. Lab and clinical data were compressed together and separately. Compression

performance was measured by reconstruction accuracy. Data were compressed into a

latent space using one of the four algorithms, then mapped back to the inputs using

the inverse transform [105] (excluding the FI, which is not invertible). An ROC curve

was then trained to map from the reconstruction (PCA, LPCA and LSVD) or latent

space (FI) to the inputs, providing an optimal cutting point to reconstruct the origi-

nal inputs; this step calibrates the reconstruction. Test inputs were then compared to

their reconstructions using the Youden index. Note that the Youden index is a (rel-

atively) neutral measure that does not favour PCA, which minimizes the MSE, nor

LPCA/LSVD, which minimize the Bernoulli deviance. We progressively increased

the size of the latent space to be able to infer the minimum number of dimensions

required for high-fidelity reconstruction. This yielded compression plots of increasing

fidelity with increasing latent space dimension.

5.2.4 Generalized Linear Models (GLMs)

The primary motivation for using a regression model is to capture conditional effects,

including demographical variables and the combined performance of multiple features.
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Figure 5.2: Principal component analysis (PCA) of binary data is equivalent to
eigen-decomposing the 2D joint deficit histogram. The first column is the complete
histogram, the remaining columns sum to the first column (Eq. 5.7). The first PC is
clearly dominant and is dense, meaning it is nearly equal weights for each variable
(akin to the FI). The eigen-decomposition naturally finds blocks of correlated
variables. When it runs out of blocks it looks for strong diagonal terms. This causes
PCA to naturally block out like-variables, e.g. lab vs clinical in PC2, similar to an
expert choosing to create an FI out of variables from the same domain. Values have
been transformed for visualization using sign(x)|x|γ, γ = 2/3, see Figure B.16 for
the figure without scaling.

We used generalized linear models (GLMs) [152]. GLMs include linear, logistic and

Cox proportional hazard regression [86], allowing us to model each outcome variable

with a homologous linear model.

We performed stepwise regression to analyse the effect of iteratively adding vari-

ables on the predictive performance, starting with the model that used only demo-

graphical information. Our motivation was to determine the optimal number of latent

features to include in our models, which are naturally ordered by the dimensionality

reduction algorithm, PC1 through to PC55. Stepwise models produced incremental

prediction plots for comparison to the compression plots.

We inferred feature importance by building complete models that potentially in-

cluded all predictors. Feature selection was performed using an L1-penalized GLM

(LASSO), with the penalty selected using 10-fold cross-validation to pick the mini-

mum mean-squared error (continuous outcomes) or deviance (binary outcomes) [58].

An L1-penalty penalizes regression coefficients that differ from 0, encouraging the

model to retain only the most important features. Selection frequency was used as a

measure of feature importance.

GLMs used to predict binary outcomes are known to underestimate the frequency

of rare events, even for datasets with 1000s of individuals (such as ours) [96]. In
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Appendix B, we studied the use of observation weights to improve the Youden index.

We found that the optimal weight of the ith individual was,

wi =

⎧⎨⎩
Frequency of majority class
Frequency of minority class

, if i is in minority.

1, if i is in the majority.

This choice of weights is equivalent to the “weighted exogenous sampling” method

[96], where we have weighted as if the population underlying the sample is perfectly

balanced.

All computations were performed using R version 4.0.1 [152]. Error bars are

standard errors unless specified otherwise. Errors are reported in parenthesis e.g.

12(3) ≡ 12± 3. Confidence intervals are 95%. We report out-of-sample performance

metrics using 10-fold cross-validation for all parametric models, including compression

and prediction. Out-of-sample means that the compression or prediction algorithm

is completely ignorant of the testing data5. This procedure estimates the expected

performance on new, unseen data, from the same population, independent of the

training set [11].

5.3 Results

5.3.1 Input Compression

We decomposed and then reconstructed input variables using various dimensionality

reduction techniques. In Figure 5.3 we show the out-of-sample Youden index for the

FI, PCA, LPCA and LSVD, as indicated. For all, the first dimension dominates

and represents ∼ 30% of the gain in predictive power over guessing (a guess has

Youden index = 0).

LSVD was the most efficient compression technique, having perfect reconstruction

after approximately 30 latent dimensions. However, this performance comes at a

large cost in terms of number of parameters [105], and with respect to computational

resources. Our benchmarks in Appendix B.3.6 indicate that PCA is about 10x faster

than LPCA which is itself 10x faster than LSVD.

5When data are resampled, such as here, the dataset is split into in and out-of-sample sub-
datasets. The in-sample is used to fit the model. The out-of-sample is used to test the model. This
means that the model never sees the out-of-sample data prior to testing.
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bottleneck we inferred the maximum number of dimensions required to efficiently
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components (dimensions) needed to achieve a relatively high score, and (2) the slope
of the curve — when it flattens we can expect the features are noise,
variable-specific or otherwise less important. Logistic SVD compresses the input
most efficiently, saturating at around 30 features. Note the dramatic difference
between lab and clinical compression both for PCA and the FI; the first PC of
clinical data scores as well as 9 lab PCs.
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The information in the input variables includes both important, latent, infor-

mation reflecting an individual’s health-state and variable-specific information which

could be considered noise (i.e. not useful for predicting relevant outcomes). Generally,

we see that the first dimension performs similarly for all methods. Additional dimen-

sions are needed for accurate compression. The number of dimensions needed ranges

from 30 (LSVD) to all 55 (PCA). This implies the dataset can be fully represented

by a manifold of new features with dimensionality at most 30. We also see that clin-

ical data compresses more efficiently than lab data, implying significant correlations

between clinical variables. All four dimensionality reduction techniques estimated a

very similar first dimension, as indicated by their strong mutual correlations, shown in

Figure 5.4. The correlation between the FI and PC1/LPC1/LSV1 is almost perfect,

ρ > 0.95, with nearly identical age and sex dependencies (Figure B.19). Centering

had a negligible affect on results, only reducing the correlation to ρ > 0.9. This

implies that a very strong signal is present in the data and that it is very close to the

FI, particularly the FI CLINIC.

In Appendix 5.6.2 we show how the equivalence between the FI and PC1 can

arise from the structure of the joint histogram and provide conditions under which

the FI/PC1 is the dominant dimension.

5.3.2 Feature Associations

While compression efficiency identifies the number of dimensions needed to recover

the input data, it does not tell us how the information is split across features, nor

how that information relates to adverse outcomes.

We explore the flow of information by investigating the associations between each

observed variable and each latent feature, e.g. the FI, each PC, etc. We used the

metrics describe in Section 5.2.2, which range from 0 (no association) to 1 (perfect

association). A score of 1 means that if we know the value of the feature then we can

perfectly predict the value of the associated variable. We automatically picked the

Youden index greater than 0, reflecting the arbitrary direction of the association.

In Figure 5.5 we present the Youden index for predicting the input variables i.e.

compression ability. We can infer the information content of each feature through the
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Figure 5.4: Spearman correlation of primary features across algorithms. Diagonal
indicates the variable associated with each row and column. Above diagonal are the
correlation coefficients between the row and column variables with 95% confidence
intervals. Below diagonal are Gaussian contours with the corresponding correlation
coefficient [129]. The first latent dimension for either PC, LPC or LSVD correlated
strongly with the FI and each other, and correlated more strongly with the FI
CLINIC than FI LAB. This implies a strong mutual signal very close to the FI,
especially the FI CLINIC. Upper triangle is correlation coefficient with 95%
confidence interval.
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scores — a higher score implies more information related to a particular input vari-

able. Similarly, in Figure 5.6 we score the association strength of each feature with

each outcome. In both figures the inner colour indicates the lower limit of the 95%

confidence interval (CI): lighter values are less significant (white is non-significant).

Consistent with the compression observations, we see nearly identical patterns be-

tween the FI and the first latent dimension: PC1, LPC1 and LSV1; note also the

similarity to the FI CLINIC. We have included PCs up to 10 as input variables. We

observe higher PCA dimensions tend to be weaker, but also more specific predictors.

5.3.3 Generalized Linear Models (GLMs)

The feature associations give an idea of what information is in each latent variable but

they don’t consider the contributions that multiple latent variables can make towards

prediction. Our GLMs do this, and so allows us to see how many latent dimensions

are needed to predict outcomes well.

The cumulative predictive power conditional on all available information up to the

Nth PC/LPC/LSV is given in Figures 5.7 and 5.8. We have included demographic

information as the 0th feature; and are again estimating out-of-sample performance.

We see that the discrete outcomes (Figure 5.7), require few dimensions to achieve

near-maximum performance. Conversely, continuous outcomes (Figure 5.8) require

many dimensions. Overfitting appeared to be present in the highest dimensions, as

demonstrated by a drop in performance as the cumulative number of features becomes

larger, Figure 5.7. Overfitting was much worse in the complete case data, ostensibly

due to outcome rarity (Figure B.41). When choosing the number of PCs to use, the

optimal balance between overfitting discrete outcomes and under-fitting continuous

outcomes seemed to be at approximately 20 latent dimensions for both PCA and

LPCA. It is interesting that LSVD, which was best at compression, required more

dimensions, approximately 40, to predict continuous outcomes well. This suggests

that LSVD could be susceptible to overfitting when case data are scarce.

We observed strong similarities between PCA and LPCA both in compression,

Figure 5.3, and prediction, Figures 5.7 and 5.8. In Appendix 5.6.4 we demonstrate

that, under reasonable asssumptions, PCA is the single-iteration approximation of

LPCA, which explains the similarities.
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For specific outcomes, the performance of the GLM using PCA is shown in Fig-

ure 5.9, grouped by type. Consistent with Figure 5.7, medical conditions, disability

and survival (all binary) tend to have low-dimensional representations and do not

benefit from more than a few PCs: typically PC1 is sufficient. Note the difference

between the FI CLINIC and FI LAB, with the former being perfectly reconstructed

by 2 PCs, whereas the later required many more.

In Figure 5.10 we highlight selected outcomes which showed high-dimensional be-

haviour. These were variables that we visually observed in Figure 5.9 to have positive

slopes up to several PCs (excluding the FI LAB because it shares input variables with

PCA). We include FP as a reference system that is theoretically high-dimensional [57].

Several of the high-dimensional outcomes are related to biological systems that inte-

grate information from many subsystems: inflammation and metabolism, as well as

age itself. Note that microalbuminuria is connected to many different systems as a

biomarker of microvasculature damage [208].

In Appendix B we repeated the stepwise GLM using either LPCA or LSVD.

We observed only minor differences between LPCA and PCA (Figure B.24). LSVD

showed much larger differences than PCA, in particular it achieved lower overall

accuracies (Figure B.25). In all cases our qualitative results remain unchanged. We

also considered non-linear behaviour by including quadratic and interaction terms

between the PCs but found no improvement and a tendency to overfit (Figure B.22),

suggesting that the linear model is optimal for the available data.

5.3.4 Robustness Analysis

PCA defines a particular linear transformation (rotation) between the original vari-

ables and a new ‘latent’ space. An important question is reproducibility of this latent

space: can it be robustly estimated from the data?

We bootstrapped the sample to estimate the robustness of the linear transforma-

tion that rotates the data into PCs. The resulting rotation matrix up to the 10th

PC is displayed in Figure 5.11. The exact values are in Table B.7. Note the overall

sign of each PC is arbitrary [86]. We observed that the first 4 PCs were reliably

estimated, 5 and 6 were marginally robust; the remaining PCs were too noisy to be

consistently estimated. The loss of robustness could be due to PC features swapping
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Figure 5.10: Improvement in predictive power as more PCs are included,
high-dimensional outcomes (GLM). Outcomes were hand-picked variables based on
requiring many PCs to achieve maximum performance. The FP was included for
comparison. We tend to see continual improvement for the discrete and continuous
outcomes, excluding the FP (up to ∼10). Age appeared to be the highest
dimensional.

order due to small changes in their associated eigenvalues (see Figure 5.12), which

could be addressed by a matching algorithm. On the other hand, the first 4-6 PCs

appear to be robust and generalizable across the sample population.

PC1 is very close to the full FI (lab + clinical), as shown in Section 5.3.1, and

we observe in Figure 5.11 that PC1 has nearly uniform weights for each variable,

explaining the underlying similarity. Both the FI and PC1 are (nearly) unweighted

averages of deficit variables. PC2 suggests that the next most important term to

the full FI is a contrast term splitting lab and clinical inputs into their respective

domains. PC3 has a similar structure of contrasting domains of blood pressure and

metabolism. In Appendix B, we confirmed the robustness of the first 3 PCs to choice

of variables by randomly selecting variable subsets of size 30, the remaining PCs did

not appear to be robust (Figure B.27).

The corresponding second moments — i.e. eigenvalues — of the PCs are given

in Figure 5.12. A bilinear structure was apparent in the log-log plot. In time series

analysis, others have attributed this PC structure to fractal dimension [61], indicating

a potential connection to complexity [111]. Values curved below the second line after

approximately 20 PCs for the complete data, around 15 for the clinical data, and

around 12 for the lab data. These values correspond to the end of the optimal-model
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Figure 5.11: PCA robustness. Robustness of the PCA rotation was assessed by
randomly sampling which individuals to include (i.e. bootstrapping, N = 2000).
Left side are lab variables, right are clinical. Inner circle fill colour is 95% CI limit
closest to 0. Grayed out tiles were non-significant. The first three PCs were
quantitatively robust. We see the robustness drops with increasing PC number. The
global sign for each PC were mutually aligned across replicates using the Pearson
correlation between individual feature scores. In Figure B.27 we assessed robustness
by randomly sub-sampling input variables and again observed that PCs 1-3 were
robust.

regions6 in Figures 5.7 and 5.8 (represented as bands in Figure 5.12); the curved

region may therefore provide a useful heuristic for identifying less relevant PCs that

exacerbate overfitting.

Note that the PC rotation does not have to be robust for it to be useful, for ex-

ample PCA can be trained on one sample and used on another. Differences between

the samples would then change the eigenvalues (via Eq 5.9) and PC ranks. Prac-

tically, this means performing feature selection after PCA, either by inspecting the

eigenspectrum (e.g. Figure 5.12) or by using an automated algorithm such as LASSO

[58].

5.3.5 Age Stratification

We investigated the effect of cohort age on our results. The joint 2D histogram tended

to saturate (increase in magnitude) with age, although the qualitative structure of the

histogram was stable (Appendix B). This implies that the PCA features — which are

derived from decomposing the 2D histogram — do not change much with age. The

increasing saturation does increase the relative contribution of the first PC with age,

6Models within this region were within 1 error bar of the best-performing model.
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however. The first eigenvalue increased with increasing age quartile from 0.352(3) for

ages 60-65 to 0.330(3) for ages 65-72 to 0.405(3) for ages 72-81 to 0.473(3) for ages

81+, as seen in Figure B.30.

To investigate a potential age effect further, we split the population at the median

age (72) then redid the analysis using a young cohort (age< 72) and an old cohort (age

72+). (Note that we excluded demographical variables in this comparison because

the baseline model, i.e. covariates as the only predictors, may not be equally powerful

for both cohorts, confounding direct comparison.) Compression was similar for both

cohorts (Figure B.31). Prediction using the GLM, however, was notably different

(Figure B.32). For discrete outcomes, the cohorts scored similarly, the young cohort

had a maximum Youden index of 0.333(15) compared to the older cohort which scored

0.326(13). For continuous outcomes, the young cohort performed much worse with a

minimum MSE of 0.134(20) compared to the older cohort with 0.055(19).

We summarize the variable-specific compression and prediction using GLMs in

Appendix B. The results were qualitatively similar, indicating robustness with respect

to age. The GLM Youden indexes for compressing each predictor showed a stronger

focus on predicting creatinine and BUN in the older cohort than in the younger
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cohort. The younger cohort tended to prioritize other predictor variables, e.g. glucose,

HDL and iron (Figure B.33). The GLM scores for predicting outcomes also showed

microalbuminuria, and to a lesser extend gait, were better predicted in the older

cohort (Figure B.34). Most of the differences we observed between the young and old

cohorts were strongest in the higher PCs, this reflects the lack of robustness of the

higher PCs that we observed in Figure 5.11.

5.4 Discussion

5.4.1 The first latent dimension “is” the frailty index

We performed dimensionality reduction on binarized health data encoded as nor-

mal (0) or dysfunctional (1). The first dimension of each algorithm, PCA, LPCA

and LSVD, indicated a strong signal with general predictive power both for deficit

compression and adverse outcome prediction. This first latent dimension correlated

almost perfectly with the FI (Spearman ρ > 0.95), reproduced the same gender and

age trajectories as the FI (Figure B.19), and had very similar associations (Figures 5.5

and 5.6).

What underlying phenomenon is this first latent dimension capturing? The FI is

a measure of frailty [82], making it the primary suspect. Indeed, frailty is strongly as-

sociated with adverse outcomes [42] and the first latent dimension strongly predicted

almost all outcomes. Specifically, the first latent variable predicted the five key frailty

outcomes: exhaustion, weakness, physical inactivity, gait and weight (BMI). Frailty

has been strongly associated with inflammation, total and HDL cholesterol, hyper-

glycemia and insulin resistance [60]. Consistent with this, we observed a (weak)

relation between the first latent variable and HDL/total cholesterol, a (weak) re-

lationship with the inflammation biomarker CRP, and a (moderate) relationship

with glucose and glycohemoglobin. We saw stronger relationships with clinical mea-

sures: IADL/ADL disability, exhaustion and gait, all three of which are important

signs/symptoms of frailty [60]. IADL/ADL disability is known to be strongly related

to frailty and specifically the FI [189].

What is behind the approximate equality of FI and PC1? We see in Figure 5.2
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that the 2D histogram for PC1 is approximately a large block of uniformly corre-

lated variables. In Appendix 5.6.2 we show how an exact block structure leads to

PC1 ≈ FI and that the FI becomes an increasingly good approximation for the infor-

mation in the entire 2D histogram as the number of variables increase — saturating

past approximately 30 variables. Indeed, others have reported moderate-to-strong

correlations between all variables and equal associations/weightings to the first PC

[131]7.

We hypothesize that the selection criteria for the FI [174] ensure that the joint

histogram has this universal correlation structure between many variables: all deficit

variables must (1) be related to health status, (2) increase in prevalence with age,

(3) cannot saturate in youth, and (4) should contain “at least 30-40” variables [174].

These conditions are likely to lead to moderate-to-strong correlation between deficits

due to their mutual age dependence through an individual’s biological age (overall

health state) [100]. These correlations then lead to PC1 ≃ FI.

To summarize, the FI is an excellent summary measure for a large collection

of moderate-to-highly correlated health deficit variables. That is, the FI acts as a

“state variable” which summarizes the health state of an individual [158]. Under such

conditions the FI approximately equals PC1 and can describe the collection of health

deficit variables with little residual information, as has been empirically observed

[207]. In turn, PC1 approximates the more appropriate loss function provided by

LPCA (Appendix 5.6.4). The ease with which the FI, PCA, and other methods

detect a very similar primary signal suggests that any good dimensionality reduction

algorithm would identify it as the dominant signal in health deficit data. This signal

predicts important outcomes and can be easily estimated via the FI or PC1.

5.4.2 PCs represent scales of dysfunction

PCs should be interpreted as building blocks consisting of coarse grained scales that

can be added together to efficiently represent common patterns of dysfunction —

adverse outcomes and health deficits. While others have discussed the biological

7Nakazato et al. (2020) [131] showed that the variability in a battery of blood tests has a
correlation structure similar to what we observed, specifically all of the blood test variabilities were
moderately or strongly correlated to each other. Their first principal component was roughly equally
correlated with each input variable. As we show in the supplemental, this is a natural consequence
of the correlation structure.
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significance of individual PCs, for example as dietary patterns [49] or up/down in-

flammation regulators [9], it is unlikely that the PCs in the present study represent

specific diseases or adverse conditions (excluding PC1). This is because the PCs must

be statistically independent, while the first PC already represents generic dysfunc-

tion akin to the FI [101, 42]. Hence, any biological pattern of dysfunction using PCA

should include a non-trivial contribution from PC1. Therefore PCs past PC1 are

unlikely to represent specific pathways of dysfunction.

Instead, we should look for the minimum number of PCs to combine to construct

a known pattern of dysfunction. For example, we can cross-reference Figure 5.11

against upticks in Figure 5.9 or 5.10. Low PC1 plus low PC2 gives global clinical

dysfunction with agnostic lab, which is tantamount to the FI CLINIC. This explains

why PC1 plus PC2 reconstructed the FI CLINIC. Low PC1 plus high PC2 gives

quasi-global lab dysfunction with agnostic clinic, with strong cardiovascular dysfunc-

tion, such as would be seen in metabolic syndrome [3]. Adding low PC3 would give

metabolic dysfunction alone, this explains why inclusion of PCs 1-3 gives a sudden

improvement in BMI, obesity and diabetes prediction. If we then add high PC4,

we could get dysfunctional glucose metabolism alone, which explains the uptick in

diabetes prediction with inclusion of PC4 [35, 208]. PCA provides an efficient coarse

graining procedure such that many common patterns of dysfunction are efficiently

represented as sums of PCs.

How does PCA achieve this? PCA identifies domains of variables likely to be mu-

tually deficient, i.e. strongly correlated. In this manner, PCA coarse grains by con-

catenating domains in a PC (e.g. PC 1 contained all domains), approximating them as

a block, and then in the next PC it can contrast those domains with opposing signs to

account for the stronger within-domain correlations than between-domains (e.g. PC

2 splitting lab and clinical). In this way the PCs encode domain-specific information,

similar to the way experts have manually created domain-specific FIs [17]. Under-

standing health using multiple domain-specific FIs may be helpful for interpretability

but could also make the analysis vulnerable to issues related to collinearity, such as

unreliable regression coefficients [86]. In contrast, PCA is high-throughput, and PCs

are uncorrelated, making PCA a better foundation for quantitative approaches —

including preprocessing [78] before mapping into domains.
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An alternative route to improving interpretability is through formal latent variable

modelling. For example, grade of membership simultaneously infers health “profiles”,

along with individual scores for each profile, which are similar to PC scores [116, 50,

178]. The primary advantage that we see in PCA is that it compresses information

into the lowest PCs by systematically estimating the direction of highest variance,

followed by second highest, etc. This yields a set of optimal representations [86],

and makes it particularly easy to quantify the information lost by picking a smaller

representation. For example, Figure 5.3 shows the efficiency of each representation

from 1 dimension up to the number of input dimensions. PCA also has several

practical advantages over formal latent variable models: it is simple, fast, convex,

easily tuned, reversible, and standard in statistical software packages, such as R [152].

Because of this, PCA can be easily integrated into an existing analysis pipeline as a

preprocessing step.

PCA appears to generalize the action of the FI. The FI treats all health deficits

as indistinguishable, such that you can pick any 30+ and expect to get the same

summary health measure (subject to selection criteria) [174]. PC1 ≃ FI adopts indis-

tinguishability of deficits from the FI. PC2 is able to ‘see’ (discriminate) the difference

between lab and clinical deficits, but can’t distinguish individual lab variables from

lab nor clinical from clinical. For example, we expect PC1 and PC2 will change little

if a new admixture of lab and clinical variables are used — while higher PCs will

change more. PC3 is able to ‘see’ the difference between metabolic, heart-related vs

other deficits, and so forth for higher PCs. Within each PC the exact variables used

should be unimportant, as long as they come from the same domains.

5.4.3 Domains in lab vs clinical data

We see that dimensionality reduction algorithms treat clinical and lab data domains

differently, and are sensitive to domain boundaries. Strongly mutually-dependent

variables form block-like domains in the joint histogram, which can be efficiently

represented by a single latent dimension, making them preferred targets of PCA (and

LPCA).

Clinical variables were strongly associated with a single latent variable whereas

lab variables spanned more dimensions. For example, comparing the FI CLINIC to FI
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LAB in Figure 5.9: the FI CLINIC was almost completely described by 1 PC whereas

the FI LAB required at least 5. Inspecting the 2D histogram, Figure 5.2, we can see

that the clinical data have stronger inter-dependencies than the lab. Previous research

has shown that clinical variables are sufficiently compressed by a single dimension

[207], whereas lab variables need at least two [66]. We did see an indication of

high dimensional clinical data in the pooled continuous outcome prediction of clinical

PCA, which improved up to 5-6 PCs, probably due to improvements in CRP, BMI,

gait and/or age (which were high-dimensional).

Clinical deficits tend to accumulate over time and are efficiently described by the

FI CLINIC. In contrast, the lab data are more complex, reflecting the diversity of

biological systems the lab data represent, for example: metabolic (e.g. cholesterol

and glucose [92]), immune (e.g. neutrophils [109] and CRP), renal (e.g. creatinine

and BUN [133]) and cardiovascular (e.g. blood pressure [133]). Ostensibly, there

are too many directions for dysfunction to proceed in to be completely captured by

a single summary measure such as the FI LAB alone. For example, an individual

may be prone to metabolic dysfunction, as indicated by dysfunctional glucose and

glycohemoglobin, whereas another may have a weak heart, as indicated by dysfunction

blood pressure, or weak kidneys. Why should these individuals accumulate (and

propagate) dysfunction, or damage, in the same way? Our results indicated that they

don’t; multiple dimensions of PCs are needed to represent the diverse phenotypes of

dysfunction captured by lab data. In contrast, the clinical data appears considerably

more homogeneous.

Clinical data therefore seem to contain more generic (albeit crucial) information

than lab data, with only a few dominant PCs in the former but more PCs needed

in the latter. This may reflect the improved resolution of biological dysfunction

in lab data. For example, lab data can resolve heart disease from hypertension vs

from chemotherapy toxicity, but the clinical consequences of heart disease are the

same either way. Inclusion of molecular data, such as metabolomics, proteomics

or genomics, in future studies would clarify whether this trend towards more PCs

continues as biological resolution is further increased.

The underlying univariate structure of the clinical data means that when we cal-

culate the FI with equal weightings we are favouring the strongly-correlated clinical
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deficit data over the weakly-correlated lab data. PCA targets large, dense blocks of

highly-correlated variables. In the present study, the clinical data formed a dense

block of the same size as the lab data and were therefore preferred targets. Con-

versely, we expect that a very large block of weakly-correlated variables would be a

preferable target over the relatively small number of clinical variables. Thus, if we had

included an exceptionally large domain, e.g. ’omics data with thousands of features,

then it could dominate any much smaller domain. How would we know if there is a

problem? We can look for blocks in the 2D joint histogram: a large block indicates

strong mutual dependence, which will drag most algorithms towards it. A two-stage,

hierarchical dimensionality reduction procedure, homologous to the “bifactor” model

of [66], would mediate such an effect, and would be a good starting point for ’omics

data. One could do PCA on each domain, take the most important PCs from each

domain, and then perform PCA on all of the top PCs.

5.4.4 The dimensionality of integrative systems

“High-dimensional” outcomes required many PCs to fully predict. If an outcome relies

on integrating information from many domains then we should see an incremental

improvement as we move from PC1 to higher PCs. For example, prediction of age

continually improved until about PC20. This is indicative of a high-dimensional,

integrative process that accumulates dysfunction over several domains/scales and we

therefore surmise, many different pathways of dysfunction. Stated equivalently, these

are systems that function in many different ways.

CRP and chronological age showed the highest dimensionality, ostensibly integrat-

ing information from many domains. CRP is an inflammation biomarker indicative of

altered cellular communication, the latter has been called an “integrative hallmark of

aging”, meaning that it indicates a phenotypic accumulation of damage [114]. These

outcomes may be indicators of accumulated damage across domains and, ostensibly,

scales. The approximately 20 PCs needed by age represents information integrated

over all domains, probably leaving only noise in the remaining PCs (Figure 5.12). In

regressing against age we are generating a biological age model [100]. Such a model

is effectively condensing 20 dimensions of age-related decline into a single measure.

This explains why there exists many partially-overlapping biological ages [87, 110]:
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each biological age represents a different one-dimensional projection from a high-

dimensional latent space. All of these ages contain overlapping contributions from

the first latent dimension due to its strong explanatory power.

In contrast, medical conditions, ADL/IADL disability, survival and FP all seem

to have one dominant dimension: PC1. For these outcomes, the first PC predicted

almost as well as including all 55. This means that the only dimension we know

is useful for predicting these outcomes is the dimension representing generic health

deficits. This implies that our knowledge of these outcomes lies on a line: things go

wrong in just one direction.

Money difficulty and difficulty preparing meals, both IADL, were notable excep-

tions that depended on higher PCs, notably PCs 6-8. These were the most cognitive-

intensive clinical outcomes, which suggests that cognitive decline has its own domains

of dysfunction captured by later PCs, and is consistent with what others have ob-

served via factor analysis [191]. This highlights the critical difference between out-

comes which appear to integrate information across multiple scales/domains, such as

chronological age, versus those that depend on specific domains beyond a low rank

PC representation, such as difficulty preparing meals. The former should show con-

tinual improvement as the number of PCs increases whereas the latter should show

sudden improvement when a specific PC is included (e.g. compare the curves for pre-

dicting age versus difficulty preparing meals, iadl mealDIS in Figure 5.10, the former

improves with each additional PC).

5.4.5 Practical considerations

The FI’s ability to effectively compress the salient information within a set of binary

health deficits appears to be due to a dominant underlying signal that is readily

identified by various dimensionality reduction techniques. PCA is the most common,

robust, simplest and fastest. LPCA is a more complex algorithm that can enhance

compression without loss of predictive power. LSVD is too focused on compression to

yield good predictive features; it is also much slower. However, any of these techniques

can be used to extend the dimensionality of the FI.

A critical aspect of our central hypothesis — that efficient representations of health

deficits are efficient representations of adverse outcomes — is that biomarkers must
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be converted to a standardized dysfunction scale. Sample-specific scales, such as the

standard deviation, run the risk of propagating sample population idiosyncrasies or

healthy variation. In contrast, deficit thresholds have been expertly tuned. Applying

PCA directly to continuous biomarker data without converting to a standardized dys-

function scale may result in features that primarily capture healthy variation and/or

have no clear connection to adverse outcomes.

We have focused on dimensionality reduction using compression algorithms, which

do not depend on any specific outcomes. Dimensionality reduction could also be used

with specific outcomes [2], or could simply be used with some of the adverse outcomes

as input variables — for example medical conditions like diabetes and heart disease

[19].

As we observed with LSVD, while compression seeks an efficient representation of

the input it may not also be efficient for prediction. We hypothesized that efficient

representations of health deficits would also be efficient representations of adverse

outcomes. It is thus a surprise that we observed LSVD compressing so well, given its

relatively poor predictive performance. Since LSVD has many more parameters than

either PCA or LPCA, this could be a manifestation of overfitting to the input data,

i.e. finding population-specific features rather than health-specific features.

Both PCA and LPCA are designed to handle cross-sectional data, although we

expect they will also be useful for longitudinal data. Both are based on reversible

linear transformations which preserve information, and hence they can be applied to

new populations or measurement waves without loss of information. If the PCs/LPCs

are expected to remain constant over time then we can simply pick a convenient wave

to compute the transformation, probably the first, then apply the transformation to

all other waves. This would be a viable approach in the present study population,

since we observed that the PC transformation did not depend on age (Appendix

Section B.3.5). If the transformation changes between waves, then we would suggest

to first combine the waves to learn a shared transformation, then apply it separately

to each wave.

What additional utility does PCA provide over the FI? Each of the multivariate

dimensionality reduction algorithms was at least as good at predicting any given

outcome as the FI was. It is also clear from stepwise regression that truncated PCA
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can help to avoid overfitting; we can surmise that it would be particularly useful

for avoiding the “curse of dimensionality” (when the number of predictors meets or

exceeds the number of individuals). The only downside to a multivariate approach is

the increased computational complexity, which is minor for PCA.

How do we know the right number of features (PCs) to use? Conventionally, one

looks for an ‘elbow’ in the eigenspectrum, indicating a sudden drop in PC informa-

tion content, or one picks the optimal number that maximizes prediction accuracy

for a desired outcome [86]. PCs with small eigenvalues are, by our choice of nor-

mal/dysfunctional scale, minor corrections to the 2D deficit histogram which we hy-

pothesize are unimportant for predicting adverse outcomes. In the present study, we

observed that the eigenspectrum had a distinct bilinear structure in the log-log plot,

and inferred that when eigenvalues drop below the second line, it is an indication of

a drop in PC importance. Others have noted small eigenvalue PCs were significant

predictors of mortality [78]; we hypothesize that these PC eigenvalues would lay on

the second line (but not below). Our proposed method of finding the ‘elbow’ can

be used to automatically identify the number of PCs to use without needing to refer

to any particular outcome. Other fields have shown that there is an unmet need for

unbiased PC selection criteria such as ours [48].

We observed little change in PCA performance with age. One minor change was

in the relative importance of certain biomarkers/outcomes, as indicated by the PC

order in which they appeared. The primary age-effect was a monotonic increase in

overall deficit frequency with age, a phenomenon that is well known from the FI [124].

Although the 2D histogram thus became increasingly saturated with age, normalizing

by the mean FI showed that the histogram structure was not changing, only the global

deficit frequency. This suggests that the canonical pathways of dysfunction do not

change with age, rather they saturate.

We note a few sources of error. Data imbalances can negatively affect perfor-

mance measures and model fits, hence we focused on the Youden index and used a

weighting scheme for the GLM. Most of the clinical variables used as inputs were

related to physical activity which may skew our interpretation, although other re-

searchers have used a similar set [19]. Our clinical variables were self-reported rather

than observer assessed, which may affect performance [187] although it is unclear how
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[17]. The main weakness of this study is our use of a single population. We used

cross-validation and performed a robustness analysis to estimate precisely the effects

for the sample population, but there may be study or population–specific effects in

our results. However, the complete case data provided a subpopulation of younger,

healthier individuals, and yielded similar conclusions (Appendix B).

We have also neglected to include social vulnerability deficits, which contain ad-

ditional predictive power over the FI alone [202], although we did include partner

status, education and income as covariates. It is curious to consider how PCA would

handle grouping domains of information such as social vulnerability and observer vs

self-reported health deficits — we expect it would modify the PCs to find these new

domain boundaries.

5.4.6 Future Directions

Our work has been motivated by the need for estimating summary measures of health

from new domains and with multiple dimensions. PCA may provide a useful extension

of the FI to higher dimensions. Other approaches are also worth exploring, such as

non-negative matrix decomposition [107], variational autoencoders [119] or kernel

PCA [170]. Nested approaches may be useful for dealing with domains with many

variables e.g. ’omics data. Our ability to robustly estimate latent dimensions also

provides an opportunity for more interpretable latent variable modelling, for example

structural equation modelling or factor analysis [66]. The stability of the PC rotation

with age may also make it a useful preprocessing step for longitudinal analysis, such

as for dynamical modelling. PCs can reduce dimensionality and likely have simplified

interactions.

PCA appears to have additional utility. If the ‘elbow’ we observed in the PC

spectrum is caused by a transition from signal to noise, it may be useful for denoising,

which has been identified as an important issue with epigenetic clocks [78].
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5.5 Conclusion

We compared several dimensionality reduction algorithms for their ability to com-

press health deficit data and predict adverse outcomes. The FI, PCA, LPCA and

LSVD all identified the same dominant signal. This demonstrates and explains the

FI’s uncanny ability to predict adverse outcomes. We found that the additional

dimensions estimated by PCA were helpful for better capturing health outcomes,

particularly integrative systems such as inflammation, metabolism, and chronological

age. Such systems were sensitive to many dysfunction pathways, domains or scales.

PCA is a simple tool that can help researchers to identify and efficiently represent

multidimensional biological systems in aging research.

5.6 Appendix: Binary PCA

We seek an efficient representation for binary health data: normal (0) or deficit

(1). Equivalently, we are seeking: (1) a basis set, (2) a set of features, or (3) a set

of composite health measures. Representation efficiency is commonly measured by

compression. Compression is the ability to take a set of p input variables, reduce

(“compress”) them into k < p latent variables, and be able to reconstruct the original

p input variables from these k latent variables. Compression fidelity is measured by a

loss function that compares the original input variables to the reconstructed inputs.

Each dimensionality reduction technique is the optimal solution to a particular

choice of loss function. If we require independent (orthogonal) features and minimize

the mean-squared error then the solution is given by PCA (see below). The mean-

squared error is not ideal for binary data, however, since we only need to know

whether a variable is larger or smaller than 0.5. More appropriate choices for binary

data lead to logistic PCA (LPCA) [105] and logistic SVD (LSVD) [105, 167]. The

performance gains of these methods over linear PCA have been modest [167, 105],

and may not justify the increased algorithmic complexity. When we refer to PCA we

mean conventional, linear PCA.

In finding the directions of maximum variance, PCA decomposes the covariance

matrix into its eigenvectors. For binary healthy/deficit data the covariance matrix

takes on a special meaning. The (uncentered) covariance matrix is equivalent to the
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2D pairwise joint deficit frequencies, with the diagonal corresponding to the individ-

ual variable’s marginal probability (i.e. deficit frequency). Binary PCA effectively

compresses all of the marginal and pairwise deficit probabilities into a set of features

of decreasing importance. We refer to each feature as a latent dimension.

5.6.1 Problem Formalization

We seek an orthogonal basis set of features to efficiently represent the data. Orthog-

onality ensures that features are independent (uncorrelated) and that each individual

has a unique representation in terms of the basis [26].

Let ϕ⃗i be the ith basis feature, we want to minimize the reconstruction error

between theN×p data matrix, X, in its original state and after bottlenecking through

the (latent) feature-space of size k ≤ p. The representation of the ith individual and

jth deficit from our data in the new space is given by:

X̂ij ≡
k∑︂

n=1

Zinϕnj, (5.2)

where Zin represents an individual’s feature score and X̂ij is our best estimate of the

reconstructed input data, Xij.

Using the orthogonality of the ϕ⃗i we estimate the feature scores using the inner

product,

Zin =

p∑︂
j=1

ϕnjXij (5.3)

thus,

X̂ij =

p∑︂
j=1

k∑︂
n=1

ϕnjXijϕnj

=

p∑︂
j=1

Xij

k∑︂
n=1

ϕnjϕnj

=

p∑︂
j=1

Xij

k∑︂
n=1

UjnU
t
nj

=⇒ X̂ = XUU t (5.4)



92

where U is the p× k matrix formed by having ith column equal to the ith basis, ϕ⃗i,

and U t is the transpose of U .

For simplicity, convexity and robustness, we assume the mean-squared error func-

tion, hence we have:

min
{ϕ⃗i}

N∑︂
i=1

p∑︂
j=1

(︁
Xij − [UU tX⃗i·]j

)︁2
with

p∑︂
j=1

UjiUjk = δik. (5.5)

This is the Pearson formalism of PCA (where the mean has not been subtracted)

[105]. Z ≡ XU t is the PC score matrix and U is the rotation matrix. This formalism

can be solved sequentially for each ϕ⃗i and is equivalent to picking the rotation of the

data such that the first direction, Zi1, has the maximum second moment (eigenvalue),

the second direction has the second largest, and so forth [86].

The solution to Eq. 5.5 is found by eigen-decomposition of X tX [86]. Each of the

columns of U , ϕ⃗i satisfy

1

N
X tXϕ⃗i = λiϕ⃗i where ϕ⃗i ≡ U·i (5.6)

where λi is the ith eigenvalue and X tX/N is the 2D histogram of joint frequencies

of the binary input variables, with the diagonal equal to the 1D frequencies. This

implies (using X tX ≈ X tX̂, Eq. 5.4 and Eq. 5.6),

1

N
X tX ≈

k∑︂
i=1

λi

(︁
ϕ⃗i ⊗ ϕ⃗i

)︁
(5.7)

with equality when k = p. ⊗ denotes the outer/tensor product and the terms are

sorted by decreasing strength. Intuitively, we are forming the 2D histogram, X tX/N ,

then decomposing it into a set of rank 1 matrices — i.e. square blocks — sorted by

relative contribution; Figure 5.2 illustrates the process for our dataset.

The principal components (PCs), P ≡ Z, are defined as the initial data trans-

formed (“rotated”) into the latent space,

Pij ≡
p∑︂

k=1

XikUkj (5.8)

using the eigen-decomposition, Eq. 5.6, we can show that the norm of each PC is
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determined by its eigenvalue (substituting U for ϕ),

1

N

∑︂
k

∑︂
j

X t
nkXkjUji = λiUni

=⇒ 1

N

∑︂
n

∑︂
k

∑︂
j

X t
nkXkjUjiUnm = λi

∑︂
n

UniUnm

=⇒ 1

N

∑︂
k

PkmPki = λiδim (5.9)

hence the second moment of each PC determines its eigenvalue, λ, and therefore its

order and relative importance. The sum of the second moments is conserved because

U is an isometry [26].

5.6.2 Block Histogram

There is a special 2D joint histogram pattern for which the first PC is equal to the

FI for both logistic [105] and linear PCA (scaled by an irrelevant constant). When a

uniform diagonal is on top of a dense, uniform, off-diagonal, the FI is the dominant

eigenvector and is therefore the first PC.

More precisely, suppose the 2D joint frequency histogram, X tX/N , is given by:

1

N
X tX =

⎡⎢⎢⎢⎢⎢⎣
a b . . . b

b a
...

...
. . . b

b . . . b a

⎤⎥⎥⎥⎥⎥⎦ (5.10)

that is, the diagonal is constant, a, and the off-diagonals are also constant, b. This

is a circulant matrix [4]. Note that a ≥ 0, b ≥ 0 and a ≥ b, because they’re deficit

frequencies ((X tX)ij = N⟨xixj⟩ for binary variables xi and xj, clearly ⟨x2
i ⟩ ≥ ⟨xixj⟩

so a ≥ b because a = ⟨x2
i ⟩ and b = ⟨xixj⟩, where ⟨xi⟩ is the mean of xi). The

eigenvalues of this circulant matrix are [4]:

λk = a− b+ b

p−1∑︂
j=0

(︁
exp (

2π

p
ki)

)︁j
(5.11)

where k ∈ [1, p] is an integer and p is the number of columns in X (i.e. the number of
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variables); i ≡
√
−1. If k ̸= p the sum is a geometric series which converges to [204],

λk = (a− b) + b

(︃
1− exp (2π

p
pki)

1− exp (2π
p
ki)

)︃
λk = a− b k ̸= p (5.12)

If k = p we instead have,

λp = a− b+ b

p−1∑︂
j=0

(︁
exp (2πi)

)︁j
λp = a+ (p− 1)b (5.13)

because a, b ≥ 0 and a ≥ b we have that λp must be the first (largest) eigenvalue

(assuming b > 0, otherwise it will be a tie).

The associated eigenvectors are given by [4],

Ukl =
1
√
p
e−

2π
p
ikl (5.14)

where k and l are integers. From Eq. 5.13 we know the first eigenvector is,

Upl =
1
√
p
. (5.15)

Using Eq. 5.8 we can calculate the first principal component,

P·1 =
∑︂
j

1
√
p
Xij

=
√
p
1

p

∑︂
j

Xij

=
√
p · fraily index, (5.16)

which is a constant times the FI. Hence if the joint histogram has the form of Eq. 5.10

the FI will coincide with the first PC. In the next section we show the conditions under

which the first PC is sufficient.

5.6.3 How well can we approximate the histogram?

The 2D histogram contains all pairwise frequencies (off-diagonals) and individual

frequencies, making it an important summary of the information we know about the
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deficit statistics. How well does the first eigenvalue/eigenvector pair approximate the

complete 2D histogram, given it has the special structure of Eq. 5.10?

From Eq. 5.7, we know that the eigenvalues/eigenvectors approximate the 2D

histogram as:

1

N
X tX ≈

k∑︂
i=1

λi

(︁
ϕ⃗i ⊗ ϕ⃗i

)︁
(5.17)

with equality when k is equal to the number of variables, p (equal to the number

of columns of X). Since the model is linear, we can summarize the mean-squared

error using the coefficient of determination, R2, and expect R2 = 0 for a useless

reconstruction and R2 = 1 for a perfect reconstruction. Specifically,

R2 = 1−
∑︁

i

∑︁
j

(︁
(X tX)ij/N −

∑︁k
l=1 λl

(︁
ϕ⃗l ⊗ ϕ⃗l

)︁
ij

)︁2∑︁
i

∑︁
j

(︁
(X tX)ij/N

)︁2 . (5.18)

Using this, we compute the accuracy of the first eigenvalue/eigenvector pair in ap-

proximating the full 2D histogram,

R2 = 1−
∑︁

i

∑︁
j

(︁
(X tX)ij/N −

∑︁1
l=1 λl

(︁
ϕ⃗l ⊗ ϕ⃗l

)︁
ij

)︁2∑︁
i

∑︁
j

(︁
(X tX)ij/N

)︁2
= 1−

∑︁
i

∑︁
j

(︁
(X tX)ij/N − (a+ (p− 1)b)(1/p)

)︁2∑︁
i

∑︁
j

(︁
(X tX)ij/N

)︁2 , (5.19)

and substitute in the special form for X tX/N ,

R2 = 1−
∑︁

i

∑︁
j ̸=i

(︁
b− (a+ (p− 1)b)(1/p)

)︁2∑︁
i a

2 +
∑︁

i

∑︁
j ̸=i b

2

+

∑︁
i

(︁
a− (a+ (p− 1)b)(1/p)

)︁2∑︁
i a

2 +
∑︁

i

∑︁
j ̸=i b

2

= 1− p− 1

p
(1− b/a)2

1

p(b2/a2) + (1− b2/a2)
(5.20)

where in the last line we emphasize there are only two tunable parameters: b/a is a

measure of correlation strength and p is the number of variables. Both 0 ≤ a ≤ 1

and 0 ≤ b ≤ a are constrained because X is composed of binary variables.

There are two limits of interest. First, for b > 0 if we take b → a,

lim
b→a

R2 = 1− p− 1

p2
(a− b)2

b2

= 1 (5.21)
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Figure 5.13: Special joint histogram approximation, Eq. 5.20. Fill is the R2 fit
quality for PC1 approximating the full histogram, given the histogram has the
special structure given in Eq. 5.10. p is the number of features. a is the deficit
frequency. b is the joint deficit frequency.

this corresponds to a 2D histogram of perfectly dependent variables (which would be

a rank 1 matrix). The other limit is taking a large number of variables with b > 0,

lim
p→∞

R2 = 1− 1

p

(a− b)2

b2

= 1 (5.22)

which corresponds to an infinitely large 2D histogram. In both cases R2 = 1 and the

first eigenvector — equal to the FI — is sufficient to perfectly estimate the 2D his-

togram and hence sufficient to completely describe the first and second order statistics.

It is interesting to note the compatibility of the two limits which imply that getting a

large, but finite, p and having b close to, but not equal to, a is likely to give R2 ≈ 1.

In Figure 5.13 we plot Eq. 5.20 for several values of the two free parameters,

b/a and p. Nearly perfect R2 is achieved for fairly modest values of b/a when p is

sufficiently large. Interestingly, there is an apparent diminishing return for increasing

p with an elbow at p ≈ 25, this is comparable to the 30+ deficits rule for the FI [174].

The 2D joint histogram in this study had a median diagonal value of a = 0.20 and

median off-diagonal value of b = 0.04, giving b/a = 0.22 (p = 55; Figure 5.2). We’d

then expect an ideal case to have R2 = 0.84, the fit for our data yielded R2 = 0.50

— large, but smaller than the ideal case.

This idealized, “toy”, model explains the approximate equivalence of the FI and

PC1. What’s more, it allows us to estimate how dominant the FI/PC1 is. In the
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limit of a large number of variables and/or b ≈ a we find that the FI/PC1 becomes

a better approximation for the information in the 2D histogram. This is consistent

with the observation that the FI is best used to describe a large number of correlated

variables.

5.6.4 PCA approximates logistic PCA

Logistic PCA [105] minimizes the Bernoulli deviance, in analogy to the Gaussian for-

mulation of linear (normal) PCA. The optimization problem is not convex but Land-

graf and Lee [105] derive an iterative majorization-minimization scheme for solving

the problem. We follow their approach and show that the first iteration of their loss

function reduces to the same loss function as linear PCA. As a result, the estimated

transformation, U , will be the same for either PCA or logistic PCA after the first

iteration.

There are four steps to our adaptation of their approach:

1. Initialize U (0) to be an orthogonal matrix. Pick k = p. Then U (0)(U (0))t = I.

2. Initialize the mean, µ = logit(ϵ) where ϵ → 0+ is a small, positive number. This

is akin to not subtracting the mean when we perform PCA.

3. Fix m ≡ −µ. This is the main assumption. m should be a large, positive

number [105]. Our definition of µ ensures that m is a large positive number.

4. Iterate the majorization-minimization algorithm [105] exactly once.

The initial θ
(1)
ij = θ̃ij, due to the orthogonality of the initial U (0). Note that θ̃ij ≡
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m(2Xij − 1) [105]. The loss function, Eq. (9) of [105], is then

min
U

∑︂
i

∑︂
j

(︁
[UU t(θ̃ij − µ⃗)]j − (θ̃ij − µ)− 4(Xij − σ(θ̃ij))

)︁2
= min

U

∑︂
i

∑︂
j

(︃
[UU t(2mX⃗i· −m1⃗− µ⃗)]j

− (2mXij −m− µ)− 4(Xij − σ(θ̃ij))

)︃2

= min
U

∑︂
i

∑︂
j

(︃
2m([UU tX⃗i·]j −Xij)

− ([UU t(m1⃗ + µ⃗)]j −m− µ)− 4(Xij − σ(θ̃ij))

)︃2

= 2mmin
U

∑︂
i

∑︂
j

(︃
[UU tX⃗i·]j −Xij

)︃2

, (5.23)

where we use m ≡ −µ and µ → −∞ in the last line, with m → ∞ ensuring σ(θ̃ij) →
Xij (σ is the inverse logit). The factor of 2m does not affect the position of the

minimum and hence Eq. 5.23 finds the same optimal U as the PCA loss function,

Eq. 5.5 (recall that U is constructed out of the set of ϕ⃗i).
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Using longitudinal study data, we dynamically model how aging affects home-

ostasis in both mice and humans. We operationalize homeostasis as a multivariate

mean-reverting stochastic process. We hypothesize that biomarkers have stable equi-

librium values, but that deviations from equilibrium of each biomarker affects other

biomarkers through an interaction network — this precludes univariate analysis. We

therefore looked for age-related changes to homeostasis using dynamic network sta-

bility analysis, which transforms observed biomarker data into independent “natural”

variables1 and determines their associated recovery rates. Most natural variables re-

mained near equilibrium and were essentially constant in time. A small number of

natural variables were unable to equilibrate due to a gradual drift with age in their

homeostatic equilibrium, i.e. allostasis. This drift caused them to accumulate over

the lifespan course and makes them natural aging variables. Their rate of accumu-

lation was correlated with risk of adverse outcomes: death or dementia onset. We

1The natural variables are closely related to principal components, and in this study the two typ-
ically coincided, as shown in the supplemental. The natural variables are defined by the eigenvectors
of the interaction network whereas the principal components are defined by the eigenvectors of the
covariance matrix; the two coincide in the steady-state for a symmetric interaction network.
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call this tendency for aging organisms to drift towards an equilibrium position of

ever-worsening health “mallostasis”. We demonstrate that the effects of mallostasis

on observed biomarkers are spread out through the interaction network. This could

provide a redundancy mechanism to preserve functioning until multi-system dysfunc-

tion emerges at advanced ages.

Keywords: dynamical, aging, homeostasis, allostasis, survival, dementia, mallosta-

sis, allostatic load.

6.1 Introduction

Homeostasis is the self-regulating process that maintains internal stability [15]. Yet

as individuals age, it is characteristic for biomarkers to drift away from healthy levels;

something about homeostasis is therefore “lost” during the aging process [168]. For

example, loss of protein homeostasis is believed to cause the hallmark accumulation of

unfolded, misfolded and aggregate proteins with age [114]. Accumulation is observed

at multiple biological scales, including oxidative damage [28], epigenetic age [110],

senescent cells [93], and regulatory T-cells [154] at the cellular scale, and extending

up to the whole organism scale where clinical deficits [123], including chronic diseases

[51], accumulate with age. Sehl and Yates performed univariate analysis of 445 health

biomarkers and found that almost all of them accumulate negatively with age —

typically showing linear decline [176]. Such accumulation of biomarker values in a

particular direction appears to be a generic feature of aging. When biomarkers reach

abnormal values, they are associated with dysfunction and poor health, independently

of age [19, 34]. A general mechanism of how accumulation and poor health emerge

from homeostasis has, nevertheless, been missing.

Prior work suggests that accumulation may be a consequence of a drifting equi-

librium position. Allostasis, literally “homeostasis through change” [118], describes a

version of homeostasis in which the equilibrium position is mutable, adapting as nec-

essary to environmental demands [89]. Over time, “wear-and-tear” of this adaptive

stress-response causes a subclinical accumulation of dysfunction known as “allostatic

load” [89]. We hypothesize that these allostatic changes may be asymmetric, caus-

ing a coherent, population-level drift in equilibrium biomarker values with age, and
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ultimately leading to accumulating biomarker values in particular directions.

Directly estimating an individual’s allostatic load remains an open challenge [89],

owing to the confounding effects of the underlying interaction networks [34]. Instead,

most algorithms infer allostatic load by outlier detection [89, 34] or other symmet-

ric indicators, agnostic to any preferred biomarker accumulation direction [113, 213].

These approaches have not been reconciled with generic, age-associated biomarker

accumulation, which proceeds in preferred directions [176]. It therefore remains un-

clear how allostatic load leads to worsening health. Other theories posit that outlying

biomarker values indicate damage, which promotes further damage e.g. as quantified

by the number of health deficits (“frailty index”, FI)[122, 19, 181]. Needed is direct

evidence of allostasis and how it is associated with worsening health.

Instability is another mechanism for accumulation. While linear accumulation is

the norm [176], some biomarkers accumulate exponentially with age e.g. senescent

cells [93] and the FI [123]. Exponential growth indicates an instability [8]. Neverthe-

less, a weak instability can appear linear until advanced ages. As a result, it remains

unclear whether age-related accumulation proceeds due to a shifting equilibrium, a

weak instability, or some hybrid of the two.

Operationalizing and quantifying homeostatic changes is challenging [89] because

homeostasis is a property of the whole system, not individual constituent parts [15,

34]. In the language of complexity science [36], homeostasis is an emergent property

of a network of interacting variables. Each variable measures a part of the system, but

changes to one part can be balanced by other parts. For example, heart rate declines

with age but can be compensated for by increased stroke volume [176] in order to

maintain arterial blood pressure [15]. The essential aspects of homeostasis are: (i) a

multivariate interacting dynamical system, (ii) an equilibrium state, which may vary

with age (allostasis), (iii) the system spontaneously returns to the equilibrium state

(dynamical stability), and (iv) stresses (and interventions) provide random shocks

to the system. Altogether, homeostasis can be operationalized as a multivariate,

mean-reverting stochastic process [213].

Dynamical stability analysis uses eigen-decomposition to probe the stability of

arbitrary systems [106, 84]. The system is first linearized around an equilibrium
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position [106]. Orthogonal eigenvectors are then identified that decouple the inter-

actions between variables. Eigenvectors are composite health measures that serve

as natural variables since they do not interact or compensate for each other, and so

can be analyzed individually. Each such natural variable has an associated eigen-

value that determines its stability via a characteristic recovery rate or timescale

(−eigenvalue = rate = timescale−1). A system is stable if and only if all recov-

ery rates are positive [106]. Conversely, dynamical instability arises only if at least

one recovery rate is negative.

We confront homeostasis with minimal assumptions. We seek generic changes to

biomarker equilibrium and stability within aging organisms. We investigate multi-

ple longitudinal datasets with multiple organisms (mice and humans) and multiple

outcomes (dementia and death). In contrast to earlier work by Sehl and Yates [176],

our model is multivariate and generic so that we can model homeostasis without

constraining its dynamical behaviour. We find that allostatic drift is consistent with

the observed data. Importantly, we find that a small set of natural variables drive

mortality and can be used to characterize an individual’s health state. We do not

observe any dynamical instabilities.

6.2 Model

To analyse stability for deterministic [106] or stochastic [84] dynamics, we use a linear

approximation near a stable point,

y⃗in+1 = y⃗in +W∆tin+1(y⃗in − µ⃗in) + ϵ⃗in+1,

ϵ⃗in+1 ∼ N (0,Σ|∆t|in+1)

µ⃗in ≡ µ⃗0 +Λx⃗in + µ⃗agetin (6.1)

where i indexes the individual, n indexes the timepoint, tn is the age, y⃗ is a vector of

observed biomarkers, and x⃗ is a vector of covariates that includes sex. W , Σ, and Λ

are constant matrices, independent of i and n. If we take the average over individuals

(indicated by angled brackets) then we can obtain rates of average change

⟨∆yijn+1⟩
⟨∆tin+1⟩

= Wjj⟨yijn − µijn⟩+
∑︂
k ̸=j

Wjk⟨yikn − µikn⟩. (6.2)
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We see that changes to the mean of a particular biomarker, yj, are due either to

recovery of yj towards the equilibrium position, µj, or because of interactions with

a compensating variable, yk ̸=j through off-diagonal elements of W . This provides

both a mechanism for biological redundancy — if the organism can actively influence

some of the yk then it can use them to steer others — and a mechanism for mutual

dysfunction — since W couples dysregulation of yk ̸=j to that of yj. In Appendix

Section C.8 we show that equation (6.1) approximates general nonlinear dynamics

[106]. We also specifically show that it approximates the stochastic process model

[213], a framework for aging biomarker dynamics. Note that the model permits

unequally-spaced sampling of individuals through ∆tin+1, which is the time between

measurements of individual i at time tn and tn+1.

The stability of the model depends on the eigenvalues of W . We can decouple

variable means with the eigenvector transformation matrix P . We obtain

zijn+1 = zijn + λj∆tin+1(zijn − µ̃ijn) + ϵ̃ij, (6.3)

where z⃗n ≡ P−1y⃗n, λj ≡ P−1
j· WP·j, ˜⃗µn ≡ P−1µn and ˜⃗ϵ ≡ P−1ϵ⃗. We refer to z⃗

as natural variables. The natural variables build correlations only through the noise

term, ϵ̃ — in addition to any correlated initial conditions. The system is mutually-

diagonal if ϵ̃ is uncorrelated. While our dynamics are discrete, it is also helpful to

consider continuous dynamics corresponding to the limit ∆t → 0; see Figure 6.1 and

Box 1, Chapter 6 (also Appendix Section C.8 for more details).

The parameters W , µ⃗0, µ⃗age and Λ are estimated from the data (Σ can also

be). The stochastic term, ϵ⃗, is assumed to be normally distributed and independent

across timepoints. See Appendix Section C.6 for details. (For the remainder of the

paper, we simplify notation by dropping the tilde and suppressing the individual i

and timepoint n indices.) Optimal parameter values are selected by maximizing the

likelihood. For uncorrelated noise this reduces to weighted linear regression.

If a mutually-diagonal system reaches steady-state — having run long enough to

forget initial conditions — then the natural variables, z⃗, are the principal compo-

nents, ranked by stability (Appendix equation (C.49)). We used principal component

analysis (PCA) as a preprocessing step. If P is orthogonal (which it is from PCA)

then Parseval’s theorem states that ⟨
∑︁

j y
2
jn⟩ = ⟨

∑︁
j z

2
jn⟩ =

∑︁
j(Var(zj) + ⟨zj⟩2): this

means that a single zk with large mean and variance can dominate that of the y⃗.
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Box 1. Ordinary differential equation (ODE) behaviour

µ(t)µ(t)µ(t)

µage

|λ|

0 20 40 60 80 100
t

z

Figure 6.1: Simulation example of a

stable system, with λ < 0. Initial

conditions can differ from µ(t). A

stable system is attracted to µ(t)

(black line), but will be offset by

−µage/|λ| in the steady-state. ODE

solutions are super imposed for

mean and variance (dotted lines are

95% interval). Fill density is

proportional to probability density.

Observing an ensemble at any time

will yield Gaussian statistics.

Consider a 1-dimensional space, z. If

we take the limit ∆t → 0 then equa-

tion (6.3) is a modified Ornstein-Uhlenbeck

process. The mean and variance are so-

lutions to ordinary differential equations.

The mean is described by

d

dt
⟨z⟩ = λ(⟨z⟩ − µ(t))

= λ⟨z⟩ − λµ0 − λµaget (6.4)

where µaget is the time-dependent part of

µn and µ0 is the remaining part. The gen-

eral solution of equation (6.4) is

⟨z⟩(t) =
(︁
⟨z0⟩ −

µage

λ
− µ0

)︁
eλt

+
µage

λ
+ µ0 + µaget (6.5)

where ⟨z0⟩ is the initially observed mean at

t = 0. The exponential factors dampen or

aggregate the mean depending on the sign

of λ. If λ < 0 the system is stable and once

|λ|t ≫ 1 a dynamical steady-state (ss) is

reached,

⟨z⟩ss(t) =
µage

λ
+ µ0 + µaget = µ(t)− µage

|λ|
. (6.6)

The steady-state is equivalent to the system forgetting its initial conditions. This

steady-state behaviour can explain the drift observed by Sehl and Yates [176]

(Appendix Section C.8.6). In the steady-state, the mean drifts at a constant

rate,

d

dt
⟨z⟩ss(t) = µage, (6.7)
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but there is a constant lag of ⟨z−µ⟩ss = µage/λ; Figure 6.1 illustrates. Only when

µage = 0 (no drift) is µ(t) the steady-state position. Outside of steady-state, the

mean is displaced by

⟨z − µ⟩(t) = ⟨z − µ⟩(t0)eλ(t−t0) +
µage

λ
(1− eλ(t−t0)) = Memory + Drift (6.8)

for reference time t0. The first term encodes the system’s initial conditions,

whereas the last term encodes long-time drifting behaviour. Systems near steady-

state exhibit Memory ≪ Drift.

If λ = 0 the system is marginally stable and preserves its initial conditions. If

λ > 0 the system is unstable and the initial conditions grow exponentially over

time. In either case the steady-state is never reached. In contrast to the mean,

for λ < 0 the variance eventually equilibrates, reaching a constant value. The

variance is described by

d

dt
Var(z) = 2λVar(z) + σ2 (6.9)

where σ2 is the noise strength. The general solution is given by

Var(z)(t) = Var(z0)e
2λt − σ2

2λ
(1− e2λt)

steady state−−−−−−→
λ<0, t→∞

σ2

2|λ|
. (6.10)

Approaching instability, with λ → 0, the system accumulates noise.

6.3 Results

We analysed four datasets originating from three studies: two human and two mouse.

Our analysis focused on the key properties of homeostasis: stability and equilibrium

position. We used model selection to compare our model to the null hypothesis and

to pick an optimal model form (Appendix Section C.5).

We observed that both an interaction network, W , and an equilibrium term, µ⃗,

were needed to optimally predict future biomarker values. We saw no evidence of

nonlinear terms in the dynamics. We found that fitting equation (6.3) using principal

components (PCs) yielded equivalent performance to the model with full flexibility,

equation (6.1), but was already in diagonal form. Hence for each dataset we analysed

a set of decoupled, one-dimensional equations in zj (with j sorted by stability, so that
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j = 1 is the least stable in each study).

For covariates, we generally found non-significant improvements in prediction —

though we kept them to improve interpretability (to reduce confounding). The ex-

ception was the age covariate, µage, which significantly improved the fit of the SLAM

Het3 mice (SLAM C57/BL6 were almost significant). The presence of µage indicates

allostasis in the form of a time-dependent homeostasis.

The interaction networks between variables can be represented by the respective

weight matrices, e.g. Figure 6.2A. For ELSA we see expected relationships, e.g. to-

tal/HDL/LDL cholesterol, and non-dominant/dominant grip strength. ELSA also

shows a block of like-variables including the FI-ADL, FI-IADL, self-reported health

(srh), and gait speed, which could relate to frailty [146]. See Appendix Figure C.9

for networks from the other datasets.

The interactions between observed biomarkers prevents us from assessing stabil-

ity directly. However, we can eigen-decompose the networks to yield an equivalent

non-interacting network of natural variables. Each natural variable has a character-

istic recovery rate, Figure 6.2B. All natural variables were stable, with λ < 0. Faster

recovery rates indicate higher stability (resilience) [84]. It takes 3 timescales for the

system mean to recover 95% of the way to equilibrium. For each mortality dataset the

recovery timescale of its slowest natural variable was comparable to the organism’s

lifespan, ≈ 40 human-equivalent years; only the mental acuity dataset (Paquid) was

faster (≈ 20 years). In all datasets the rates for the natural variables extended to

higher and lower values than the diagonal elements of the observed biomarkers (com-

pare solid to dotted lines) — indicating that network interactions play an important

role in recovery dynamics.

We summarize homeostasis in Figure 6.3A, using the population means. If vari-

ables are in homeostasis then the mean should be close to µn, where the scale is

determined by the native dispersion. Each dataset had most natural variables near 0

with a few outliers, such as z1 for all datasets. (In contrast, the majority of observed

biomarkers had large deviations from equilibrium — see Appendix Figure C.10). We

characterized the natural variable dynamics using equation (6.8) in Figure 6.3B. Ex-

cluding ELSA, most data points were in a steady-state, as indicated by their small

memory term (relative to drift). The steady-state mean includes a drift caused by
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Figure 6.2: A. ELSA interaction network. Tile colour indicates interaction strength
(saturation) and direction (colour) of the interaction from the y-axis variable to the
x-axis variable. Inner dot colour indicates the limit of the 95% confidence interval
(CI) closest to zero (more visible point indicates lower significance). Non-significant
interactions have been whited-out. Diagonal has been suppressed for visualization
(see dotted lines in B). The matrix is real and symmetric because the data were
diagonalized by an orthogonal matrix (PCA). Variables are sorted by diagonal
strength in both A. and B. (increasing rate). B. Recovery rates in human-equivalent
(h.e.) years i.e. negative eigenvalues (−λ). The smallest recovery rates determine
system stability [106]. A recovery rate of 0.025 implies 1− e−1 = 63% recovery after
−λ−1 = 40 years (95% recovery after 120 years). The survival data all have similar
minimum rates near 0.025, whereas the dementia data was faster (Paquid). The
dotted lines are network diagonals (−Wjj); the solid lines are rates (−λj).

µage. Across variables, the deviations from equilibrium observed in Figure 6.3A,

⟨zn−µn⟩, were very strongly correlated with µage, with correlation coefficients: −0.988

(p = 2 · 10−4, SLAM BL/6), −0.947 (p = 10−3, SLAM Het3), −0.989 (p = 0.01,

Paquid), and −0.302 (p = 0.14, ELSA). This is consistent with equation (6.6), and

supports our use of an allostatic model with equilibrium drifts given by µage. The

smaller correlations observed with the ELSA dataset are consistent with the strong

memory effect seen in Figure 6.3B — violating the steady-state assumption of equa-

tion (6.6). ELSA may have failed to reach steady-state due to the limited followup

period, which was the shortest of all datasets by a factor of 2, or could indicate

the confounding effects of medical interventions, which are not relevant for the other
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Figure 6.3: A. Position relative to equilibrium vs recovery rate. Most natural
variables were homeostatic (near equilibrium at 0). Some (labeled) variables were
observed to be far from equilibrium; variables are labelled by rank e.g. 01 ≡ z01 has
the fastest recovery (furthest left). B. Characterization of natural variable
deviations from equilibrium using equation (6.8). Observe that ELSA is the only
dataset where memory may dominate the system behaviour (ratio ≲ 1 = 100),
indicating that the followup period may have been too short to reach a steady-state.
In both figures only mouse (SLAM) data points over age 80 weeks were used since
biomarkers had a u-shaped curve over the lifespan [135].

datasets.

Most natural variables have small drift and are effectively homeostatic — with

only a few strongly drifting allostatic natural variables. The steady-state drift rate

of natural variables, µage, was correlated with the survival risk for each dimension:

Figure 6.4A. The correlations were typically strong: −0.958 (p = 0.002, SLAM BL/6),

−0.713 (p = 0.1 SLAM Het3), −0.987 (p = 0.01, Paquid), and −0.534 (p = 0.006

ELSA); overall: −0.742 (p = 3 · 10−8). The correlation was weakest for ELSA, which

had not reached steady-state. The Cox proportional hazards coefficients, conditioned

on age and sex, showed a similarly strong correlation with µage, 0.70 (p = 10−7,

all data) (Appendix Figure C.14). Furthermore, we see that the drift direction,

sign(µage), is the same as the risk direction (p = 0.0003, Fisher test). Hence, not only

does homeostasis drift with age, the direction of the drift is towards ill-health. The

primary risk directions were z1 for ELSA and Paquid and z2 for SLAM. Interestingly,

z2 of the Het3 mice is nearly identical to z1 of the C57BL/6 mice in terms of covariates
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Figure 6.4: Survival effects. A. Allostasis drifts towards the risk direction,
“mallostasis”. The relationship appears to be linear (lines), with strong correlations:
−0.96 (SLAM BL/6), −0.71 (SLAM Het3), −0.99 (Paquid), and −0.53 (ELSA).
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and survival effect — hence z1 of the C57BL/6 is also likely a key risk direction

(Appendix Figures C.11 and C.18). Regardless, z1 or z2 exhibited the strongest

survival effect for their each dataset (Figure 6.4A). These variables also both had

small eigenvalues (z1 is rank 1 and z2 is rank 2). However, this relationship between

survival and eigenvalue magnitude does not appear to generalize, see Figure 6.4B.

As an illustration of the utility of the correlation between survival and µage, we

consider a simple summary health measure. The Cox proportional hazards model

assumes the hazard scales as exp (β⃗T z⃗), where the jth coefficient, βj, is the log–hazard

ratio per unit increase of zj. As mentioned in the previous paragraph, β⃗ ∼ µ⃗age were

correlated; the relative hazard can therefore be approximated by exp (µ⃗T
agez⃗). Indeed,

we observed that b ≡ µ⃗T
agez⃗ is an excellent predictor of survival, see Figure 6.5A and

Appendix Figure C.15.

The natural variables with large |µage| will eventually experience the largest drift,
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Figure 6.5: A. Composite health measure of survival b ≡ (µ⃗T
agez⃗), stratified by

quartile (ELSA). Separation is excellent, indicating a strong survival predictor. Fill
is 95% confidence interval. See Appendix Figure C.15 for the other datasets. B.
Natural variables can drive changes in observable biomarkers. The z1 mean is
accumulating in the negative direction. This accumulation is mapped into
observable variables with ⟨Pj1z1⟩ for indicated timepoints each separated by
approximately 4 years. The drift direction is overwhelmingly unhealthy: increased
disability measures (srh, eye, hear, FI.ADL and FI.IADL — high is bad), decreased
physical ability scores (gait and grip), increased inflammation (crp), increased
glucose, etc. The effect of the drift is concentrated in z1 but dilute across its
covariates, which could make the effect of unhealthy z1 subclinical in the observed
biomarkers. All variables are on standardized scale. Similar effects were observed
for the other datasets (Appendix Figure C.13).

according to equation (6.7). z1 in Figure 6.5B is an example of such an accumulating

variable. The other variables with large |µage| experienced a similar accumulation

(Appendix Figure C.13). For an orthogonal transformation such as P−1, the sum of

the variance and squared mean is conserved (Parseval’s theorem). Natural variables

with large means and variances will therefore disproportionately affect the means and

variances of observed biomarkers. The effect is demonstrated for ELSA in Figure 6.5B.

As the dominant natural variable drifts it influences observable biomarkers to drift

as well.

Slower recovery rates (eigenvalues) take longer to forget perturbations, causing

the associated natural variables to accumulate variance due to noise. Recall that
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the slowest recovery rates were on the order of a lifespan (Figure 6.2B). The Pear-

son correlations between the estimated variance and rate (-eigenvalue) were strong:

−0.852 (p = 0.03, SLAM BL/6), −0.802 (p = 0.05 SLAM Het3), −0.998 (p = 0.002,

Paquid), and −0.764 (p = 9 · 10−6 ELSA) (log-log scale; see Appendix Figure C.16).

Hence the variances we observe at old ages will be dominated by the variables with

the smallest eigenvalues, λ (e.g. z1 and z2). As we have seen before, these variables

are often — but not always — strongly associated with adverse effects, depending

on the drift rate µage. This suggests that most of the age-related changes to health

were concentrated in a few zk which drive both biomarker drift (mean) and disper-

sion (variance). Growing variance along these dimensions may capture individual

accumulation of stochastic damage, such as genetic damage or disease.

6.4 Discussion

We fit a homeostasis model of equilibrium and stability to four longitudinal aging

datasets (two mouse and two human) using generic health biomarkers. Our model is

lightweight, can be estimated using standard statistical algorithms, and is sufficient

to capture essential information about the aging process. Health biomarkers have an

equilibrium position, µ⃗. Their corresponding stochastic term, which has covariance

Σ, represents random stresses that drive individuals away from equilibrium; as well

as residual effects such as individual variability and nonlinearities. An interaction

network, W , pulls individuals towards equilibrium either through recovery (diagonal

terms) or by one variable compensating for another (off-diagonal terms). By eigen-

decomposingW we transformed the dataset into non-interacting, natural variables —

which are linear combinations of the input biomarkers. This increases interpretability

and simplifies analysis. The stability of the system is described by the recovery rates

of the natural variables — which are the corresponding eigenvalues with flipped signs,

−λ.

We modelled homeostasis as stability around an equilibrium mean value. Stability

can only be assessed using the natural variables because the original biomarkers have

interactions between them. Homeostasis was violated by some natural variables (Fig-

ure 6.3A). Although most natural variables had average values near the homeostatic

equilibrium — indicative of homeostasis — several were far away. We determined that
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this latter group were out of homeostasis because they were chasing drifting equilib-

rium positions from behind. This equilibrium drift with age represents allostasis, i.e.

a changeable equilibrium position.

Allostatic variables accumulated over the course of the study period as they chased

after the drifting equilibrium, systematically increasing or decreasing. This was facil-

itated by an age-dependent equilibrium position, governed by µage, and was typically

accompanied by a small eigenvalue. The gap between the population and allostatic

equilibrium position is governed by µage/λ, so a small λ enables a large gap such that

the entire population drifts coherently towards the moving equilibrium — causing

population-level accumulation. This makes the linear drift term, µage, the primary

culprit for causing biomarkers to drift with age. Presumably µage arises from either

(a) the effects of unknown biomarkers/mechanisms not included in the model (i.e.

µaget ≈
∑︁

k ̸=j Wjk⟨yikn − µikn⟩ in equation (6.2) for a set of unknown yikn), or (b)

asymmetric stressors, which cannot be captured by our symmetric stochastic term

(e.g. there is no such thing as negative damage so health deficits skew positive [123]).

The transformation to natural variables effectively compressed the drifting (accu-

mulating) mean of many variables into a small number of natural variables. The natu-

ral variables can be thought of as the underlying cause of the observed biomarker drift

(Figure 6.5B). In this manner, the widely observed age-related decline in biomarkers

[176] are governed by a few natural variables — which are not directly observed. The

effect is spread out by the transformation, potentially hiding the observed biomarker

decline below diagnostic thresholds. This may be a redundancy mechanism: the

network permits the biological system to spread out the age-related decline to keep

biomarkers in healthy ranges for longer. The trade-off may be that many biomarkers

would reach unhealthy ranges concurrently, leading to multisystem dysfunction. For

example, the effects of chronic kidney disease are mild and non-specific until the pa-

tient nears kidney failure — at which point multisystem failure is imminent, typically

leading to death via cardiovascular disease [126]. This tradeoff assumes that diag-

nostic thresholds represent critical values beyond which deterioration of a biological

system accelerates. Univariate dynamical modelling of senescent cell count in mice

[93] and E. coli membrane integrity [212] supports the existence of such critical values,

where repair mechanisms saturate and decline accelerates. From this perspective, an
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individual’s robustness would depend on their buffer space available to absorb new

insults, which could be quantified by the natural variable scores together with the

stressor effect strength which should be proportional to the noise σ.

Consistent with this perspective [93], the allostatic drift rate, µage, strongly cor-

related with the mortality/dementia risk associated with each natural variable (Fig-

ure 6.4A and Appendix Figure C.14). Since µage is the steady-state drift rate of the

mean, the steady-state behaviour is continually worsening health due to the drifting

mean. Prior work on operationalizing allostasis has neglected the existence of a pre-

ferred risk direction, instead using the absolute distance from allostasis as a mortality

factor [213, 34, 113], irrespective of whether biomarkers are high or low. In contrast,

our results indicate that numerous natural variables do, in fact, have preferred risk

directions. Aging researchers should be aware of this symmetry breaking. This means

that the adaptive changes due to allostasis at best mitigate declining health and, at

worst, lead to a further decline in health. We refer to this phenomenon as “mallosta-

sis”: the tendency of an aging biological system towards an ever-worsening equilib-

rium position. We have used this phenomenon both to identify important survival

variables and to generate a novel composite health measure.

Our key quantitative results coincide with three key qualitative predictions made

by allostatic load theory: (i) a shifting equilibrium position for biomarkers indicative

of adaptive changes (allostasis, Figure 6.3A), (ii) the shift is associated with adverse

outcomes (mallostasis, Figure 6.4A), and (iii) the shift is subclinical due to compen-

sating mechanisms between biomarkers (transformation, Figure 6.5B) [89]. This is

compelling evidence that allostasis is a generic aging phenomenon, rather than being

specific to neuroendocrinology. Our proposed composite health measure is therefore

a novel estimator of allostatic load. In contrast to conventional estimators [89], we

were able to estimate allostatic drift directly as µage. Our results rely on using natural

variables, which are canonical coordinates that greatly simplify analysis.

Allostatic load is believed to arise from the long-term costs of short-term pro-

tection against stressors [118], making it an example of antagonistic pleiotropy [63].

Alternatively, long-term costs could reflect imperfect repair. Regardless, long-term

costs that accumulate in a given direction would lead to the allostatic drift which we

have observed and characterized. Furthermore, we observed slow dynamical rates for
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the dominant mortality-risk natural variables (Figure 6.2B). Accordingly, the dynam-

ical timescale of these effects are comparable to the organismal lifetime — consistent

with long-term costs.

Interestingly, we did not observe any instabilities or nonlinearities. We had ex-

pected that “allostatic overload” — the final state of allostatic load theory [89] —

would operationalize as an instability. However, instabilities, and their associated ex-

ponential growth, are rare among health biomarkers [176]; although they are observed

in summary measures of health such as the FI (frailty index) [123]. Other unstable,

FI-like variables can be extracted from generic biomarkers using nonlinear techniques

such as a deep neural network [8], diagnostic thresholds [19], or quantile-based prepro-

cessing [181, 182]. Since we did not see evidence of instabilities or other nonlinearities

in the natural variables, the nonlinear embedding or discretization should be consid-

ered as a possible cause for observed FI-like instabilities. It may be that biological

systems naturally suppress nonlinear effects of aging — obscuring the effects — or,

conversely, that aging is primarily a linear phenomenon that slowly pushes individ-

uals towards nonlinear tolerance thresholds for dysfunction/damage, e.g. saturation

of repair [93, 212] and/or emergence of chronic disease. A non-trivial issue is that

exponential growth often appears linear, for example the FI in mice and younger

humans (≲ 85 years old) [157]. Nonlinear effects in biomarker dynamics may require

special populations, such as the ill or exceptionally old, to be observed.

The key model variables, z1 and z2, dominate the aging process. These natural

variables with smaller λ carried the majority of the variance and become the dominant

principal components in the steady-state model (Appendix Figure C.16 and equa-

tion (C.49), respectively). Applying Parseval’s theorem, these variables will control

the variance of directly observed biomarkers. Since they also dominate the means via

allostatic drift, they will determine the aging phenotype that we observe. Both effects

get stronger with age. This means that the empirically observed age-related changes

in the mean and variance of biomarkers will be predominantly caused by only a few

key natural variables. Hence the nearly-universal linear decline in health biomarkers

observed by Sehl and Yates [176] may simply be a few declining natural variables

spread across the observed biomarkers (Appendix Section C.8.6). Furthermore, this

implies that a single dimensional decline can drive many observed biomarkers, which
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is the foundational assumption of “biological age” estimators [100, 90]. Our results

provide much needed support for such low dimensional representations of aging —

which should become increasingly accurate with advancing age since the means of the

key natural variables grow fastest, and their variances grow largest.

The natural variables, z, should be good choices for targeting and monitoring

interventions. They are prospective biomarkers with the convenient property that if

you can intervene on one it will not affect the others. In contrast, we know from the

network of interactions that intervening on any single biomarker is likely to affect

many other biomarkers. In the steady-state, the mallostatic drift rate, controlled by

µage, is a proxy for the hazard and therefore identifies the most important targets

of intervention. The coefficients of the transformation, P , provides both hints at

what mechanisms each zj is capturing as well as a map for which biomarkers will be

affected by interventions on zj. For example, z1 of ELSA shares many features with

frailty: strong age dependence, large effect in gait, weakness (grip strength), disability

and self-reported health, and large survival effect [146]. z1 is thus a prospective

biomarker of frailty and can be used both to monitor an individual’s frailty and

to engineer interventions2. The strong signals we see in Figure 6.5B for gait, grip

strength and activities of daily living are hints that loss of physical fitness is one

mechanism by which frailty proceeds and therefore one mechanism by which we can

intervene, consistent with a meta-analysis which has shown that physical activity can

reduce frailty in humans [132]. Remarkably, we observed other prospective targets

in addition to z1 of ELSA. Given an organism and set of biomarkers, each zj with

substantial drift should be considered a prospective intervention target, with the

faster drifting being the most important.

We note a few limitations of our study. We assumed linear, time-invariant in-

teractions through the network, W — following previous work that suggested that

interactions are linear and time-invariant [52] (as are the principal components [146]).

The networks we extracted were symmetric and hence acausal3 due to our use of PCA

2The key advantage of z1 over the frailty index is that z1 uses continuous input variables, giving it
a larger dynamic range. The frailty index is zero until the emergence of signs, symptoms, impairment
or morbidity, making it insensitive at young ages (≲ 40 years old). z1 is based on continuous lab
values and hence does not necessarily suffer from this limitation.

3Upon revision, this is inaccurate. Symmetric networks still satisfy Granger causality, but there
is an ambiguity as to whether the undirected links approximate directed ones.
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as a preprocessing step, although we did estimate more general networks and found

they performed no better. This could be a consequence of the data which were entirely

observational, obfuscating causality. Understanding interventions using our results is

similarly subject to the caveat that biomarkers behave the same whether they are

observed or intervened upon [39]. This seems plausible since observational studies

include everyday interventions such as disease, medicine, or lifestyle changes. Finally,

our model is at the population-level and hence we cannot resolve homeostatic changes

at the individual level.

We see exciting opportunities for future work. Our observation that principal

components could be effectively used as independent variables suggests that more

complex statistical models could also be applied. For example, individual-level model

parameter estimates via mixed-effects modelling would help to determine whether

individual health changes are gradual or sudden (or possibly critical [166]). Changes

in our model parameters due to age, chronic or acute illness, or medical interventions

is particularly interesting, but will require specialized datasets to assess. Fortunately,

small datasets are tractable with our linearized model. The generic nature of the

model and its ability to find accumulating natural variables could also be applied to

other biological or temporal scales. Others have postulated that damage aggregates

due to dysfunction in regulatory systems or other intermediate scales [114], which

could be tested. Composite health measures, including biological age [90], are also

interesting to explore using our approach. Applying our approach using multiple

biological ages as biomarkers [110] will naturally extract salient information regarding

stability and mallostasis, as well as a smaller set of essential natural variables. New

datasets will open up new opportunities for this analysis pipeline. It is interesting

to consider leveraging the effect of the natural variables to intervene and observe in

clever ways. For example, z1 appears to be a biomarker of frailty, which affects both

mental and physical health [132], hence we could potentially intervene based on a

physical mechanism but monitor using cognitive changes.

We have developed and applied a lightweight network model that includes the

salient features of homeostasis: equilibrium values and recovery rates. Equilibrium

values are allowed to drift, to accommodate allostatic changes. Across datasets and

species we consistently observed that the linear decline of biomarkers with age was
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governed by a small set of accumulating natural aging variables. This accumulation

can be described as mallostasis: homeostatic dysfunction and associated declining

health. These variables appear to be important measures of age-related decline, in-

cluding health and mortality. Their effects are spread out by a network of interactions,

driving drift in the observed biomarkers, and potentially diluting and obfuscating the

effects of age. We find that generic biomarkers spontaneously move towards an equi-

librium position which is itself continuously drifting towards ill-health. Mallostasis is

a generic feature of the aging process.

6.5 Methods

6.5.1 Materials

We used 4 longitudinal datasets originating from 3 studies (organism, primary out-

come): Paquid (human, dementia) [150], SLAM (mouse, death) [135, 136] and ELSA

(human, death) [10]. We directly modelled biomarkers, y⃗, and included covariates, x⃗,

in the homeostatic term, µ⃗, using equation (6.1).

The Paquid dataset is a random subset of 500 humans (212 males and 288 females)

from the Paquid prospective cohort study, enriched in dementia prevalence [150]. Age

range: 66-95 years-old. Individuals were measured on average every 3.2 years for

a maximum of 9 timepoints. We modelled four ordinal variables, including three

measures of mental acuity: mini-mental state examination (MMSE), Benton visual

retention test (BVRT) and Isaacs set test (IST), along with a self-reported depression

score (CESD). We considered for covariates: sex, age and education level (completed

primary vs not).

The Study of Longitudinal Aging in Mice (SLAM) includes two datasets, one for

each mouse strain. Both include body composition measures and glucose serum at

12 week intervals starting at 7 weeks of age and continuing for the lifespan of each

mouse [136]. Body composition and serum measurements were staggered and had

to be imputed. Covariates included age and sex. We dropped 538/66138 measure-

ments that were recorded after death, ostensibly these were coding errors. After

preprocessing, the first dataset included 608 C57BL/6 mice (303 male and 305 fe-

male) measured on average every 6.2 weeks for a maximum of 20 timepoints (every
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4.9 human-equivalent years). C57BL/6 mice are genetically similar (inbred) and

prone to lymphoma and metabolic dysfunction [121]. The second included 611 Het3

mice (304 male and 307 female) measured on average every 4.2 weeks for a maximum

of 27 timepoints (every 3.6 human-equivalent years). Het3 mice are a genetically

heterogeneous cross of four inbred mice (including C57BL/6) [121]. We converted

to human-equivalent years using the ratio of median survival times of each strain to

ELSA. Full details of the study are described elsewhere [136, 135].

The English Longitudinal Study of Ageing (ELSA) is a representative sample

of English people aged 50 and over (with some younger) [10]. We used physical

functioning questionnaire data and blood tests for 9330 humans (4063 males and

5267 females), reported at 4 timepoints, each separated by approximately 4 years.

Our choice of 25 variables includes frailty measures, cardiometabolic biomarkers, and

immune biomarkers (Appendix Table C.1). We considered waves 2, 4, 6 and 8, since

only these contained the full suite of biomarkers. Covariates included age and sex.

We considered only individuals whom were present both in wave 2 and in subsequent

waves, thus excluding new recruits. Despite the large number of individuals, ELSA

appeared to have the worst quality data due to high individual heterogeneity and low

number of timepoints.

6.5.2 Data handling

All missing data were imputed. Dead individuals were also imputed, as it reduced

bias due to mortality in simulated data (Appendix Section C.4). We compared several

imputation strategies, including carry forward/back, multivariate imputation using

chained equations (MICE) [196], and using our model to impute the model mean. Ul-

timately, we used carry forward/back followed by the model mean, except for ELSA

which used each individual’s mean biomarker value followed by the population mul-

tivariate normal mean then model mean. See Appendix Section C.4 for details.

Estimation of our model, equation (6.1), used Appendix Algorithm C.1, which

iteratively (×5) applied the maximum likelihood estimator:

Λ̂ = ⟨|∆tin+1|y⃗inx⃗T
in⟩i,n

(︁
⟨|∆tin+1|x⃗inx⃗

T
in⟩i,n

)︁−1

−W−1⟨sign(∆tin+1)(y⃗in+1 − y⃗in)x⃗
T
in⟩i,n

(︁
⟨|∆tin+1|x⃗inx⃗

T
in⟩i,n

)︁−1
(6.11)
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for Λ (which includes µ0 through x0 = 1), and

Ŵ = ⟨sign(∆tin+1)(y⃗in+1 − y⃗in)(y⃗in − µ⃗in)
T ⟩i,n

(︁
⟨|∆tin+1|(y⃗in − µ⃗in)(y⃗in − µ⃗in)

T ⟩i,n
)︁−1

(6.12)

for W , where the expectation values are to be taken over times, n, and individuals,

i. For the diagonal models we instead used weighted linear regression. Missing values

were imputed with the model prediction after each iteration (except ELSA). Estima-

tors are described and validated in Appendix Sections C.6 and C.7, respectively. We

used a time-dependent Cox model to assess survival. We assumed stepwise constant

covariates via start-stop formatting [127]. All correlations are Pearson. All errorbars

are standard errors unless stated otherwise.

6.5.3 Model assessment

We simultaneously estimated both parameter uncertainty and model performance

using the standard deviation from 100× repeat bootstrap resampling. We compared

model performance using the root-mean squared error (RMSE) and mean absolute

error (MAE). Both were estimated using out-of-sample bootstrap [74]. In validation

tests we found that a simple 632 estimator i.e., RMSE632 ≡ 0.632 ·RMSEtest +0.368 ·
RMSEtrain, provided a good estimate for the true values of both performance metrics

(Appendix Figure C.7). 0.632 is the expected fraction of unique individuals in each

bootstrap [74].
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Chapter 7

Application of the SF model to multiple biological ages

provides a framework for building and testing network

theories of aging

We named our model from Chapter 6 the Stochastic Finite (SF) difference model.

Using the SF model we can test causal theories of aging using collections of biological

ages. In this chapter I present some of the salient results from a publication to appear

in mid to late 2024 [148].

A collection of biological ages, one per biological system, could be used to under-

stand interacting systems (e.g. [175]). If we had a biological age for each theoretical

factor of aging, we could directly test the proposed interactions made in contempo-

rary network theories of aging (e.g. [115, 94]). In support of this proposal, biological

ages are becoming increasingly available, and are improving in their specificity and

sensitivity to the aging process [163]. Furthermore, multivariate analyses of multiple

biological ages suggest that they contain non-redundant aging information [110, 87].

Unfortunately, biological ages are unsatisfactory biomarkers of aging. For ex-

ample, a landmark 2023 paper by Gladyshev’s group confirmed that several DNA

methylation–based biological ages are sensitive to anti-aging intervention as well as

adverse stressor events — but the effects were small and not consistently discernible

from noise, even under lab conditions [144]. It is therefore prudent to consider two

possible futures for biological ages: a future wherein aging can be measured directly

using specific biomarkers, or a future wherein it is conclusively shown that aging

cannot be directly measured and an additional layer of inference is always necessary

between the raw data and its implications for underlying the state of aging. In a proof-

of-concept paper, I show that the SF model and analysis pipeline from Chapter 6 can

take advantage of either possible futures by generating an interaction network then

decomposing it into natural variables — which are meta–biological ages.

We modelled multivariate, longitudinal biological age data from the Swedish
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Adoption/Twins Study of Aging (SATSA) [110]. The dataset includes 8 biologi-

cal ages of varying biological scales together with the FI, which I used as an outcome

measure of health (I also considered including the FI in the network during sensi-

tivity analysis). This includes first generation DNA methylation ages: Horvath and

Hannum, as well as second generation: GrimAge and PhenoAge (first generation are

regression models that predict chronological age, second generation predict survival

risk converted to the scale of age [163, 148]). Telomere length is also included —

telomere erosion is associated with the aging process, primarily cellular senescence

(arrest of cellular division) [164]. At the systems-level, PhysioAge is included as a

generic biological age using the Klemera-Doubal method [100] and a set of biomarkers

primarily related to cardiometabolic health (which differed for males and females).

Also at the systems-level was the first principal component from a battery of cognitive

tests, which I call Cognition. Finally, the functional aging index (FAI) and frailty

index (FI) were included as functional-level biological ages. The FAI is based on sen-

sory, grip, pulmonary and gait metrics, averaged together, and is known to correlate

with the FI [54]. For most biological ages, higher values indicate worse health but for

Telomere and Cognition it is the opposite. Table 7.1 summarizes.

My approach mirrors that of Chapter 6, where I first estimate a network and then

decompose it into natural variables. The network here is of particular interest and I

will compare it to the well-known Hallmark [114, 115] and Pillar [94] theories of aging.

Then I will investigate each of the natural variables as a possible underlying driver

of the dynamical changes observed in the network. This will identify prospective

meta-biological ages.

In Figure 7.1 I present the interaction network derived from the SF model. Phys-

ioAge and GrimAge occupied central locations in the network with many outgoing

connections. The two have feedbacks between each other, suggesting that age-related

dysfunction enters near PhysioAge and GrimAge, then propagates outwards with re-

verberations between GrimAge and PhysioAge which persistently push dysfunction

into other biological systems. This can be seen in the correlation matrix: chrono-

logical age Spearman correlates the strongest with PhysioAge at 0.90, then GrimAge

at 0.79, and then Hannum at 0.73, ostensibly the correlation with age drops with

increasing proximity from the underlying cause.
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Table 7.1: Summary of biological ages used

Biological age Summary

Frailty index (FI)(1) average number of health deficits(2)

Functional aging index (FAI) sensory, pulmonary, grip and gait(3)

Cognition PC1 from cognitive tests (down is bad)
Physiological Age (PhysioAge) cardiometabolic Klemera-Doubal(4)

GrimAge epigenetic mortality risk(5)

PhenoAge epigenetic mortality risk(6)

Hannum epigenetic chronological age regression
Horvath epigenetic chronological age regression
Telomere telomere length(7)(down is bad)
(1) Held aside as outcome measure of health.
(2) Score from 0 (none) to 1 (full): disability, disease, and self-reported
health.

(3) Average score from: self-reported hearing/vision, grip strength, lung
strength and gait speed.

(4) Biomarkers: male: body mass index, waist-to-height ratio, weight, sys-
tolic blood pressure, diastolic blood pressure, hemoglobin, serum glu-
cose (log), cholesterol, and apolipoprotein B. Female: hip circumfer-
ence, waist circumference systolic blood pressure, serum glucose (log),
and triglycerides (log). Transformed by PCA then the Klemera-Doubal
method was used to estimate the latent biological age.

(5) Input is CpGs (epigenetic data) trained to emulate: adrenomedullin,
beta-2-microglobulim, cystatin C, GDF-15, leptin, PAI-1, and tissue
inhibitor metalloproteinases 1, and smoking pack-years. GrimAge is
mortality risk scaled to mean/sd of chronological age.

(6) Input is CpGs (epigenetic data) trained to predict time-to-death (Gom-
pertz) including a proportional hazard from: albumin, creatinine, serum
glucose, C-reactive protein, lymphocytes (%), mean red cell volume, red
cell distribution width, alkaline phosphatase, white blood cell count, and
age. PhenoAge is inverted 10-year multivariate mortality risk (solved for
age).

(7) Normalized by standard deviation.

The popular Hallmark theory of aging speculates that dysregulated nutrient sens-

ing may play an important role as an antagonist of primary damage [114], which

would be consistent with our results since PhysioAge has a strong cardiometabolic

component. Their theory speculates that epigenetic alterations, genomic instability

and loss of proteiostasis are all primary sources of damage, and hence a feedback

from GrimAge — which could capture any of these three — and PhysioAge would
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be consistent with accumulating damage (a theoretical driver of aging [184, 194]).

The Hallmark theory also considers telomere attrition to be a hallmark of aging and

a primary source of damage that drives aging. To the contrary, our results sug-

gest that Telomere was a spectator driven by changes to GrimAge and, surprisingly,

FAI (suggesting damage back-propagating from the functional scale, the exact oppo-

site of the Hallmark theory proposal for telomere length). Another popular theory,

the Pillar theory is agnostic to specific network connections only that 7 key pillars

are interconnected: metabolism, macromolecular damage, epigenetics, inflammation,

adaptation to stress, proteostasis, and stem cells. While this acknowledges the central

importance of PhysioAge (metabolism) and GrimAge (epigenetics), the Pillar theory

is non-specific regarding network topology. For true negatives, both theories are con-

sistent with loss of physiological function as being peripheral to the aging process, as

captured by FAI. Together our results support the notion that both the Hallmark and

Pillar theories of aging have identified important contributors to the aging process,

but their proposed connectivity between those contributors is lacking in accuracy and

specificity.

Decomposing the network, I observed that the first one or two natural variables

were able to capture the dominant effects of aging, particularly past age 80. This is

readily seen in the equilibrium behaviour of the natural variables. For both pragmatic

and conceptual reasons, we restricted µ to be a sex-dependent constant, meaning that

each natural variable will eventually reach an equilibrium mean (µage = 0 in Box 1).

For the raw biological ages, Figure 7.2, the equilibrium positions were well outside

of normal human lifespan ensuring that each biological age will increase continuously

over time (in the case of Telomere and Cognition they will (correctly) decrease over

time). In contrast, most of the natural variables, Figure 7.3, reached their equilibrium

before age 80, with only z1 and z2 continuing to increase beyond that age. This

indicates that the age-related changes become lower dimensional over time and z1

becomes increasingly dominant in terms of the mean, and likely also the variance,

which grows until the equilibrium position is reached (the variance doesn’t have to

grow with age, but we expect it to e.g. the FI increases in mean and variance with

age [161]). When we compared the z to the FI — a proxy for health — we found

that z1 contained most of the information and the strongest correlation, and that this
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Figure 7.1: Estimated interaction network between biological ages (nodes) using the
SF model. Node colour reflects biological scale: blue is genetic (telomere length),
blue-gray are epigenetic, pink is “system” level (cardiometabolic: PhysioAge, or
cognitive: Cognition), and red is the whole organism’s functional ability (e.g. gait
speed). For links, red links are positive associations, blue links are negative
associations. PhysioAge formed a central node, with GrimAge forming an important
secondary node. We inferred that age-related changes originate close to PhysioAge
and/or GrimAge then propagated outwards, driving the peripheral biological ages.
In this manner one dysfunctional sub-system (metabolism) can propagate
dysfunction into other sub-systems, driving them awry. Self-loops control stability;
large and negative (blue) indicates strong stability. See [148] for full details. Note
that the network is not symmetrical, it was permitted full flexibility during the

estimation process (in contrast to Chapter 6). Node size is nk ≡
√︂∑︁

j ̸=k W
2
jk

(outgoing strength).



126

dropped with increasing z.

These data were originally processed by Li et al [110], who performed a correlation

analysis on the biological ages and the residual (having independently adjusted each

biological age for chronological age). They found strong correlations across biological

ages and marginal correlations across residuals. (We know from Chapter 5 that this

is because the “true” biological age, which is close to chronological age, causes the

mutual correlation.) This would seem to indicate that each biological age contains

unique information, and while our network analysis confirms that this is true it is a

highly misleading result. Most of the multivariate information appears to be unrelated

to the aging process, and by age 80 there are really only 2 degrees-of-freedom of

interest, out of a possible 8. Something fundamentally changes about human aging

between ages 60-80, as observed in Figure 7.3, but the correlation analysis by Li et al

cannot see this effect since it flattened out age information rather than stratifying by

age. Older individuals become increasingly driven by z1, just as we saw for humans

in Chapters 5 and 6 (PC1).

The relationship between z1 and network topology indicates that GrimAge and

PhysioAge plays a central role in the dominance of z1. When we visualized z1 using

the outer product of eigenvector 1, we saw that it is based on a block of outgoing con-

nections from GrimAge and PhysioAge, with important contributions from Cognition.

We know from Chapter 5 that the eigen-decomposition seeks low-rank blocks, and we

can surmise that the feedback between GrimAge and PhysioAge helps attract the al-

gorithm and thus makes it the key feature picked up by eigenvector 1 (a bi-directional

feedback will create a block in the network). This comports with our human under-

standing of the dynamical behaviour of the system. Information enters via Σ and

bounces back and forth between GrimAge and PhysioAge and continuously outwards

into peripheral nodes, leading to a persistent signal with a long auto-correlation time

(hence small eigenvalue i.e. weak stability). This signal is aging, or perhaps more

specifically some form of advanced aging. In either case, the signal becomes z1 and

dominates the aging process at advanced ages and is able to drive an inevitable decline

in health. The network and natural variable–pictures are therefore self-consistent and

we can build an intuition both in terms of experimentally-meaningful biological ages,

and the dynamically-meaningful natural variables. The former are likely easier to
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Figure 7.2: Scatterplot of biological ages versus age. Horizontal lines are equilibrium
positions (µ). All of the biological ages are visibly correlated with age, except
Telomere. Furthermore, owing to the gap between the equilibrium and the data,
values increase continuously over time in our dynamical model. Telomere and
Cognition were scaled to mean/sd of chronological age. For PhysioAge, males had a
different set of variables hence the different with females [110].
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Figure 7.3: Scatterplot of natural variables versus age. Horizontal lines are
equilibrium positions (µ). In contrast to the input biological ages (Figure 7.2) only
the first three natural variables are visibly moderate-to-strongly correlated with
chronological age. z1 and z2 were particularly strongly correlated with chronological
age. The gap (indicated) ensures that those natural variables will not equilibrate,
instead drifting up for the entire human lifespan. Biological ages were transformed
using the eigen-decomposition transformation from the network (Figure 7.1).
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map into known biological processes, whereas the latter are likely better at captur-

ing the widespread, collective effects of the aging process (e.g. making them strong

independent predictors).

How do we know a network such as Figure 7.1 is correct? We can test the model

accuracy directly using a measure of accuracy such as the RMSE (root mean-squared

error) for trajectories, as we did in Chapter 6 (this yielded RMSE632 = 5.75± 0.09,

R2
train ≈ R2

test = 0.65 ± 0.01). Biological ages are used as health state variables,

however, and hence we are are concerned primarily when an individual gets worse

(goes up) or better (does down) between now and some followup time. Testing this

prognostic ability yielded AUC = 0.764 ± 0.005 for predicting worsening. This test

seems to be more sensitive to the use of directed links, and we found that we could

better predict worsening between time points if we used a network with fully flexible,

directed links [148] (asymmetrical).

I consider next a sensitivity analysis of the network to infer if any of the links are

a spurious consequence of the data — either the variable suite or individuals within

the sample. In Chapter 5 we were faced with this same problem applied to PCA,

where we resorted to bootstrapping both by individuals and by input variables to

test the robustness of the PCA mapping. The latter test proved to be particularly

conservative. A more interesting way to perform sensitivity analysis is to add inter-

esting additional variables and check whether they alter the meaning of the network.

In the case of the biological ages study, we considered adding chronological age and

the transformed FI, Figure 7.4. The similarity between Figures 7.1 and 7.4 provides

us some confidence that these structural elements are real, including the central roles

for PhysioAge and GrimAge, and many of the shared links. It also tells us that there

is likely missing information, picked up by Age, but it may not be essential (since

Age is not a central node). Furthermore it suggests that the FI (and related FAI)

have only weak feedbacks into the lower scales. This supports the interpretation that

functional decline is an effect of aging, rather than a significant cause. The lack of any

major change in network structure reassures us that the initial network, Figure 7.1,

is fairly robust given the data.

Networks have become the de facto tool for organising and communicating contem-

porary theories of aging [94, 115]. We propose a method to directly test these theories
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Figure 7.4: Estimated interaction network between biological ages (nodes) using the
SF model — expanded to include chronological age and the FI. The network is
surprisingly similar to Figure 7.1 despite adding two new nodes. In particular,
PhysioAge and GrimAge occupy central positions in both networks (lots of outgoing
links, proportional to node size). Note: the FI, f , was transformed by
log (f + 0.065) to improve normality (then scaled to the mean and standard

deviation of chronological age). Node size is nk ≡
√︂∑︁

j ̸=k W
2
jk (outoing strength).
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by constructing networks of biological ages directly from aging study data and then

comparing predicted interactions and essential behaviour to theory. What’s more,

as interventional data become available we propose this approach may be useful for

understanding the effects of anti-aging interventions, since it provides a system-level

(holistic) picture of health. By decomposing the network into its natural variables

we can understand widespread effects while simultaneously having simple dynamical

behaviour. We envision a future where natural variables, such as z1, are specifically

targeted by anti-aging interventions. More broadly, we may find that these natural

variables generalize across species and hence can be used to interrogate how evolu-

tion has tuned longevity across species. At its core the approach is a bare-bones,

essential model of aging that captures spontaneous aging decline as a consequence

of simple dynamical behaviour. This essential simplicity permits a deeper level of

understanding of the underlying causal mechanisms of aging.



Chapter 8

Discussion

The mainstream contemporary theories of aging are not accompanied by quantitative

models [115, 94]. In Chapter 7 I addressed this paucity with a prospective framework

for quantifying and testing contemporary theories using a dynamical network model

based on a multivariate biological age representation. Quantitative models have the

advantage of making exact predictions, which are better able to falsify theories, and

can appropriately weigh competing effects such as those seen in interventions. In-

clusion of dynamical behaviour enhances interpretability. For example, in Chapter 6

declining biomarker values with increasing age are interpreted as an inevitable con-

sequence of a drifting homeostatic set-point. What’s more, in Chapters 7, 6, and 5 I

showed that decomposing a model into its constituents can be an effective strategy

for quantifying an individual’s biological age, maximizing the utility of whatever data

are available. The search for biomarkers of aging and the search for quantitative

models of aging can be viewed as common goals since they share significant overlap.

Good models of aging naturally condense aging information, and salient biomarkers

are easier to model. Unfortunately, data wrangling serves as a major barrier. Lab

data are limited and large-scale studies are prone to bias, such as due to missing data

(Chapter 4). This is particularly important for humans, which do not have lab data.

This thesis delineates the steps needed to build quantitative models: from missing

data to decomposition methods, and ultimate modelling.

Missing data are ubiquitous in aging studies and must be dealt with. In its rawest

form, this problem appears in quantitative estimators since they need to be told how

to handle gaps in the data (some software doesn’t even have such options and will

only accept complete data). In Chapter 4 I showed a variety of missing data handling

strategies for aging study data, outlining the basic problem and prospective post hoc

solutions. Multiple imputation emerged as an important tool since it is agnostic to the

analysis being performed and is able to self-consistently estimate and propagate the

132
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uncertainty in imputed values. In Chapter 5 multiple imputation was used together

with standard algorithms, with the final results then pooled using Rubin’s rules. In

Chapter 6 I used both the iterative expectation-maximization procedure (impute, fit,

impute) and derived estimators based on covariance matrices which can be computed

using pairwise observations (excluding missing values). In all cases, sanity checks

were performed to ensure that the imputed values were reasonable. The most basic

check is to plot imputed values together with observed values to verify that they

look reasonable in terms of mean and dispersion (typically plotted versus age). In

many cases the individuals missing data are in particularly good or poor health, and

we’d expect to see a slight shift in the imputed values reflecting that. Missing data

handling is an important consideration in any analysis pipeline and one which has no

easy answer. The key considerations are: how could missing values potentially bias

study conclusions, can missing values be incorporated directly into the model, how

plausible do impute values look, and how do results change when missing values are

handled differently?

The next serious issue is estimating the signal associated with aging given a col-

lection of health biomarkers which may have varying specificity to the aging process.

It appears that automated methods do work but likely rely on a priori knowledge,

including data curation. In Chapter 5 we looked to the FI for inspiration, since it

is probably the most successful biological age to date. As demonstrated by Klemera

and Doubal [100], a biological age which independently affects multiple biomarker

trajectories will introduce a correlation between those variables, even if they would

otherwise be uncorrelated. In their model, biological age plays the role of a hidden

variable, inserting coherent information about the individual’s health state into the

observable variables causing an observable correlation. This means that biomarkers

connected via a biological age will form a large block in the correlation matrix, pos-

sibly in addition to smaller blocks due to local biological ages of sub-systems, just as

we saw in Figure 5.2 for binary health deficits. The eigen-decomposition, in this case

PCA, then naturally found this ‘global’ mutual correlation and subsequent sub-blocks

of increasingly-specific biological ages for sub-systems. The eigen-decomposition is

trying to find low rank representations by adding together blocks to approximate the

input matrix. The strategy in this paper was to rely on strong patterns present in
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the data caused by the effects of aging, such that the underlying biological age natu-

rally emerged. Critically, this approach depends on good data curation, which in the

case of Chapter 5 was borrowed from the wisdom of preprocessing for the purpose

of building an FI (see [188] for an expert summary of the procedure). The variables

included have been pre-screened to be relevant to health, to have a strong associa-

tion with chronological age, and to be not too correlated with each other such that

a sub-block of deficits would overwhelm the global block. In the case of the FI LAB,

deciding when continuous biomarker values are indicative of dysfunction rather than

simply individual variability is another critical step. Given this a priori wisdom,

the FI is an excellent compression and prediction algorithm for health deficit data.

Unsupervised dimensionality reduction algorithms can easily capture this effect and

offer a hands-off, automated approach to aging metrics — albeit one dependent on

prior data curation.

Data curation is challenging and potentially biased, however, since it depends on

the vagaries of the curation and the specific dataset(s) that motivated the curation.

Ideally we’d like to relax our dependency on data curation such that we can explore

a wider space of possibilities and reduce, or at least change, the risk of bias. In

Chapter 6 I observed the mallostasis phenomenon wherein steady-state drift rate

correlates with survival risk. This provides an alternative way to rank metrics rather

than looking, for example, at the variance as is done with PCA. While in Chapter 5

I brushed aside concerns that small variance PCs may contain important, but rare,

age-related health information (at least for health deficit data). In Chapter 6 I found

that PC rank was not a great indicator of relevance, as illustrated by z4 ≈ PC4 for

the Het3 strain of mice which was found to be an important survival predictor despite

its low PC rank (4th out of 6). By using steady-state drift rate we are leveraging

an aging phenomenon, in this case that the steady-state behaviour should be drift

towards worsening health, to automatically curate data in an unbiased manner. Our

pipeline permits us to automatically generate aggregate aging metrics, and then rank

them by relative importance.

We consistently observed that only a few, salient aging metrics are responsible

for controlling most of the observed decline in health with age. Popular qualitative

theories have proposed that aging emerges from a multi-causal network of influences
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— which are believed to be needed to explain the widespread, interacting phenomena

observed [94, 114, 115]. Flexible, quantitative studies indicate that there are at

least two dimensions of aging, but they are less clear past two [141, 52, 66]. In

Chapter 5 we found that a few special biological systems required many PCs (principal

components) for optimal prediction, whereas most outcomes only depended on PC1

(which was almost perfectly correlated with the FI). This approach didn’t account

for the PC basis being oblique to the outcome, though, and a dependency on many

PCs might simply indicate a non-canonical basis for that outcome of interest e.g.

diabetics can be predicted very well based on the presence of dysfunctional glucose

and glycohemoglobin. In Chapter 6 we observed that as age advances, Parseval’s

theorem ensures that a small set of mallostatic variables are able to drive age-related

decline (often just one variable). Consistent with this picture, in analyzing the eigen-

spectrum of Chapter 7 we found the first natural variable was dominant with a small

correction in the second natural variable and smaller in the third and so forth. At

advanced ages the mean and the variance of the first few natural variables can be

very large due to equilibration and/or mallostasis, whereas most of the higher natural

variables quickly reach a steady state. This permits the effects of aging to become

increasingly dominated by a single variable at advanced age. Fedichev’s group has

suggested that a single order parameter similar to the FI — the “dynamical” FI —

could be responsible for driving aging at advanced ages in mice [8]. Others have

suggested that aging may become ‘simpler’ over time, for example as indicated by

the decreasing coefficient of variation of the FI [161] and other aging metrics [93, 212],

or in the apparent loss of “complexity” (e.g. fractal dimension) in dendrites, heart

rate and other physiological functions [111]. PC1 in Chapter 5, z1 or z2 in Chapter 6

(depending on the dataset), and z1 from Chapter 7, all demonstrated that they were

well-connected variables carrying a great deal of information and driving widespread

increases in risk of many adverse outcomes. In summary, it seems that there is a

global “decline” variable which is associated with universal dysfunction across all

biological systems and which is at least partially, if not wholly, captured by the

FI at advanced ages. The FI is the average number of health deficits, and this

apparent univariate-simplicity of the aging process may reflect that irrespective of

how many causes there are, when health fails it always leads to the same generic loss
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of physiological functioning, and gain of chronic diseases.

While this thesis has used agnostic models, several theory-driven models produce

consistent or overlapping results. Probably the simplest theory is entropy-driven

decline. There are many ways for things to go awry, and this should lead to a

net preference for dysfunction to occur. This can be seen in DNA methylation and

health deficit data which shows a linear drift term with age, similar to mallostasis,

and can be argued to originate from entropy [186]. Biological systems are robust and

resilient, and it is also conceivable that dysfunction promotes dysfunction, particularly

when it occurs in special protective (robustness) or repair (resilience) mechanisms.

This would explain the apparent exponential growth of the FI [123], and is a central

assumption in the GNM (generic network model) of aging which recovers population-

level survival and FI statistics [184]. It also seems likely that biological systems

have finite resources and increasing demand with age, which is the foundation of

the saturation-repair model — which correctly predicted the existence of mallostasis

[93, 212, 6]. These theories are not entirely fleshed out, however, although there

is widespread recognition that resilience and robustness are affected by the aging

process [51, 31, 60]. This introduces an interesting question about the nature of

dynamical phase(s) related to loss of robustness and resilience. In Chapters 6 and

7, I assumed constant resilience (W ) and robustness/stress (noise, Σ) parameters —

which implies that dysfunction should accumulate at a constant rate. Alternatively,

robustness and/or resilience could change, for example there may be a critical value at

which dysfunction accumulates faster than it can be repaired or averted, and decline

becomes inevitable as suggested for the “dynamical” FI [8], and the saturating-repair

model [93, 212]. These are exciting questions for future research.

This thesis has left a number of open questions that might be answered by future

researchers. In Chapter 4 I noted that the ad hoc exclusion criteria used for variable

selection in creating an FI often includes a cap on maximum missingness at 5%. I

did not address this directly and it may be worth continuing the analysis down to the

individual variable level to determine if variables with high missingness can be high

leverage points in the analysis process i.e. that greatly affect results. Another issue

is the robustness of the underlying Gibbs’ sampler and its sensitivity to MNAR or

sampling-related biases, which are worth exploring.
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Moving on to Chapter 5, two tacit hypotheses were that (1) aging should be

a big effect and it should be universal and easy to pick up, and (2) there should

be biologically-meaningful signals in the data that we can estimate. The first we

demonstrated was correct, with the first principal component (PC1) picking up a

strong signal related to age-related decline. Conversely the second hypothesis appears

to be correct only for PC1, with the remaining PCs serving as an efficient basis

that is non-specific to biological processes (i.e. PC1 means something, it’s a measure

of overall functional state, but PC2 and onwards look non-specific). Major chronic

diseases might nevertheless affect the PCs, and it would be interesting to consider the

relationship between the two. Permitting different PCs for different individuals would

be useful here, as is done in biclustering [153]. My approach of stepwise regression

to test PC relevance is computationally intensive, and it should be made clear that

there are simpler methods [14]. What’s more, the dimensionality reduction can be

circumvented entirely when testing for associations with outcomes [216]. These are

useful considerations for followup work.

Chapter 6 provides a novel approach to dimensionality reduction, including feature

selection. Specifically, the eigen-decomposition appears to push homeostatic dysfunc-

tion into the smallest eigenvalues, and in the exceptional cases the relevant variables

with large eigenvalues can be identified by a strong drift rate, |µage|. We have re-

turned to modelling homeostasis with the SF model in a publication currently under

review [149]. In the article we make use of high quality data from dialysis patients

with standard blood tests measured every 6 weeks. This permit us to resolve a second

mechanism for natural variable relevance, small eigenvalues are more important λ (we

also recapitulated µage). What’s more the article highlights the utility of using the

natural variables over simply a multivariate analysis. In particular, nothing is lost by

using the natural variables since the mapping is invertible. This means we can simplify

the dynamical behaviour, or even make it specific to syndromes, and then map those

components individually or as a whole back into observable signs. This addresses the

problem of syndromes which are collections of medical signs without a clear cause

[27]. In practical terms this means that each syndrome is associated with multiple

disparate abnormal biomarker values, e.g. protein energy wasting syndrome is directly
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associated with: low serum albumin, low serum cholesterol, changes to serum crea-

tinine, and changes to a number of indirect biomarkers [55]. When we look directly

at how specific health biomarkers change with age, e.g. hemoglobin [200], we can tap

into existing literature on interpreting the associated biological significance but this

doesn’t help to understand syndromes. In contrast, the natural variables appear to

be naturally sensitive to syndromes, while preserving their mapping into observable

biomarkers. In the future, it would be interesting to see if the natural variables help

disambiguate confounding biological effects, for example creatinine drops due to loss

of lean mass and rises due to kidney disease [193]. These effects might appear as dif-

ferent natural variables permitting an individual to simultaneously suffer from both,

despite normal creatinine levels.

Finally Chapter 7 opens the door for a number of possibilities, the foremost being

direct quantitative analysis of networks theories of aging. First I offer some insight

into the SF model. The model parameters for the network (W ) tend to be robust

across stratifying variables, including: sex, frailty status and age, whereas the set

point positions (µ⃗) tend to change across stratifying variables. These latter effects

can be captured at least in part by including covariates in µ⃗ (using Λ, Eq. 6.1). This

may be because the model fits to differences, y⃗n+1 − y⃗n, thus stripping out much of

the individual effects (or perhaps only in the z with small eigenvalues, since there is a

λµ∆t term). Individualizing the models is thus better done through the set points, µ,

and can be done through including covariates either as linear terms or as generalized

additive terms [86]. The network typically doesn’t change enough to justify stratifying

before fitting, although this can be done as well.

We found that the natural variables z1 and z2 were driving the age-related changes

in the Chapter 7 dataset, but these data were only a small subset of the available

biomarkers of aging. In particular, despite having multiple epigenetic ages these

are not sensitive to either cellular senescence or genomic instability [91], both of

which could be sources of damage. Future research should considered all of the

possible sources of damage and their interactions, for example those outlined by the

Hallmarks [114, 115] or Pillar [94] theories. It is exciting to consider increasingly

specific molecular biological ages that may point to important underlying drivers

of aging. I picture these as being included in the network, but they may instead
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modulate the rate of aging as covariates in µ (from Eq. 6.1 we have a velocity term

W µ⃗∆t, hence µ controls the aging rate).



Chapter 9

Conclusion

Understanding geroscience at the systems level is an emerging field [98, 94, 115, 31, 6].

While several “biological ages” have shown they contain condensed aging informa-

tion and are sensitive to stressors and interventions, there is significant room for

improvement. Without reliable metrics of the effects of aging, an additional level

of analysis is needed to extract age-specific signals from more generic biomarkers of

health. This approach permits us to make progress with whatever data are avail-

able. The effective behaviour of those data, irrespective of the underlying biological

mechanisms, can be sufficiently robust in its phenomena to make rigorous interpre-

tations and predictions. I have demonstrated that important aspects of aging can

be understood through the dynamical behaviour of either generic health biomarkers

or specific biological ages. The underlying SF model permits two complementary

perspectives: a multidimensional network representation of the interactions between

observable biomarkers, together with a set of latent natural variables capturing the

effective dynamical behaviour.

The network encodes conditional dependencies as a highly interpretable graphical

model. This permit a holistic view that identifies the key observable variables and

interactions between them, while faithfully capturing the complexity. This approach

should prove useful in building and testing quantitative theories of aging. Networks

also serve as the simplest sufficient foundation for in silico experiments that incorpo-

rate known multivariate interactions.

The natural variables emerge from the underlying interactions between biological

systems, as identified by the network. The natural variables are efficient representa-

tions that address the need for quantitative measures of aging. They are ostensive,

and as such other approaches can identify similar patterns, e.g. labelling them as

syndromes. The weakness of the natural variables is that they need not be simple in

terms of modifiable or observable biology. As such, natural variables may represent

140
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combinations of fundamental mechanisms. For example, clever combinations of anti-

aging interventions may be necessary to target specific natural variables. This would

be challenging, but the expected payoff is broad downstream effects with simple dy-

namical trajectories. The natural variables should be viewed as a quantitative tool

that may be useful for efficiently characterizing and communicating the effects and

mechanisms involved in aging.

The natural variables appear to be a bottleneck of simple behaviour between the

multiple causes and multiple effects of aging — although the former is speculative.

I consistently observed that the aging process can be efficiently represented by well-

connected natural variables which drive coherent decline across multiple biological

systems. This means that aging may not be high dimensional and much of the

apparent dimensionality comes from our näıve perspective. When we look at the

dynamical behaviour in terms of natural variables we see a perturbative process, that

is: one which is increasingly dominated by a single underlying variable, particularly

past age 75 in humans. This gives hope for understanding aging through modelling

of this relatively small subset of natural variables.
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[17] Joanna M Blodgett, Mario U Pérez-Zepeda, Judith Godin, D Scott Kehler,
Melissa K Andrew, Susan Kirkland, Kenneth Rockwood, and Olga Theou.
Frailty indices based on self-report, blood-based biomarkers and examination-
based data in the canadian longitudinal study on aging. Age Ageing, 51(5),
2022.

[18] Joanna M Blodgett, Kenneth Rockwood, and Olga Theou. Changes in the
severity and lethality of age-related health deficit accumulation in the USA
between 1999 and 2018: A population-based cohort study. The Lancet Healthy
Longevity, 2(2):e96–e104, February 2021.

[19] Joanna M Blodgett, Olga Theou, Susan E Howlett, and Kenneth Rockwood. A
frailty index from common clinical and laboratory tests predicts increased risk
of death across the life course. Geroscience, 39(4):447–455, August 2017.

[20] Joanna M Blodgett, Olga Theou, Susan E Howlett, Frederick C W Wu, and
Kenneth Rockwood. A frailty index based on laboratory deficits in community-
dwelling men predicted their risk of adverse health outcomes. Age Ageing,
45(4):463–468, July 2016.

[21] Joanna M Blodgett, Olga Theou, Arnold Mitnitski, Susan E Howlett, and Ken-
neth Rockwood. Associations between a laboratory frailty index and adverse
health outcomes across age and sex. Aging Med (Milton), 2(1):11–17, 2019.



144

[22] Todd E Bodner. What improves with increased missing data imputations?
Struct. Equ. Modeling, 15(4):651–675, October 2008.

[23] Steven L Bressler and Anil K Seth. Wiener-Granger causality: a well established
methodology. Neuroimage, 58(2):323–329, September 2011.

[24] Byron W Brown, Jr, Myles Hollander, and Ramesh M Korwar. Nonparametric
tests of independence for censored data with application to heart transplant
studies. Technical report, Florida State University, September 1973.

[25] S van Buuren and Karin Groothuis-Oudshoorn. MICE: multivariate imputation
by chained equations in R. Journal of Statistical Software, pages 1–68, 2010.

[26] Frederick W Byron and Robert W Fuller. Mathematics of Classical and Quan-
tum Physics. Dover, 1992.

[27] Franz Calvo, Bryant T Karras, Richard Phillips, Ann Marie Kimball, and Fred
Wolf. Diagnoses, syndromes, and diseases: a knowledge representation problem.
AMIA Annu. Symp. Proc., 2003:802, 2003.

[28] Judith Campisi, Pankaj Kapahi, Gordon J Lithgow, Simon Melov, John C
Newman, and Eric Verdin. From discoveries in ageing research to therapeutics
for healthy ageing. Nature, 571(7764):183–192, July 2019.

[29] Centers for Disease Control and Prevention (CDC). National health and nutri-
tion examination survey data. https://www.cdc.gov/nchs/nhanes/index.htm.

[30] Andrew Clegg, Chris Bates, John Young, Ronan Ryan, Linda Nichols, Eliza-
beth Ann Teale, Mohammed A Mohammed, John Parry, and Tom Marshall.
Development and validation of an electronic frailty index using routine primary
care electronic health record data. Age Ageing, 45(3):353–360, May 2016.

[31] Alan A Cohen, Luigi Ferrucci, Tamàs Fülöp, Dominique Gravel, Nan Hao, An-
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Deelen, Frédérik Dufour, Gerardo Ferbeyre, Luigi Ferrucci, Claudio Franceschi,
Daniela Frasca, Bertrand Friguet, Pierrette Gaudreau, Vadim N Gladyshev, Ef-
stathios S Gonos, Vera Gorbunova, Philipp Gut, Mikhail Ivanchenko, Véronique
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Functional aging index complements frailty in prediction of entry into care and
mortality. J. Gerontol. A Biol. Sci. Med. Sci., 74(12):1980–1986, November
2019.

[55] D Fouque, K Kalantar-Zadeh, J Kopple, N Cano, P Chauveau, L Cuppari,
H Franch, G Guarnieri, T A Ikizler, G Kaysen, B Lindholm, Z Massy, W Mitch,
E Pineda, P Stenvinkel, A Trevinho-Becerra, and C Wanner. A proposed
nomenclature and diagnostic criteria for protein–energy wasting in acute and
chronic kidney disease. Kidney Int., 73(4):391–398, February 2008.

[56] Adam Freund. Untangling aging using dynamic, organism-level phenotypic
networks. Cell Systems, 8(3):172–181, Mar 2019.

[57] Linda P Fried, Alan A Cohen, Qian-Li Xue, Jeremy Walston, Karen Bandeen-
Roche, and Ravi Varadhan. The physical frailty syndrome as a transition from
homeostatic symphony to cacophony. Nature Aging, 1(1):36–46, 2021.

[58] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw., 33(1):1, 2010.

[59] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of
statistical learning, volume 1. Springer, New York, 2001.

[60] T Fulop, A Larbi, J M Witkowski, J McElhaney, M Loeb, A Mitnitski, and
G Pawelec. Aging, frailty and age-related diseases. Biogerontology, 11(5):547–
563, 2010.

[61] J B Gao, Yinhe Cao, and Jae-Min Lee. Principal component analysis of 1/fα

noise. Phys. Lett. A, 314(5):392–400, 2003.

[62] L A Gavrilov and N S Gavrilova. The reliability theory of aging and longevity.
J. Theor. Biol., 213(4):527–545, December 2001.

[63] Leonid A Gavrilov and Natalia S Gavrilova. Evolutionary theories of aging and
longevity. ScientificWorldJournal, 2:339–356, February 2002.

[64] Benedikt Gille, Annika Müller-Eigner, Shari Gottschalk, Erika Wytrwat, Mar-
tina Langhammer, and Shahaf Peleg. Titan mice as a model to test interventions
that attenuate frailty and increase longevity. Geroscience, January 2024.

[65] Lovedeep Gondara and Ke Wang. Mida: Multiple imputation using denoising
autoencoders. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 260–272. Springer, 2018.



148

[66] Alden L Gross, Michelle C Carlson, Nadia M Chu, Mara A McAdams-DeMarco,
Dan Mungas, Eleanor M Simonsick, Ravi Varadhan, Qian-Li Xue, Jeremy Wal-
ston, and Karen Bandeen-Roche. Derivation of a measure of physiological mul-
tisystem dysregulation: Results from WHAS and health ABC. Mech. Ageing
Dev., 188:111258, June 2020.

[67] Yian Gu, Jose A Luchsinger, Yaakov Stern, and Nikolaos Scarmeas. Mediter-
ranean diet, inflammatory and metabolic biomarkers, and risk of alzheimer’s
disease. J. Alzheimers. Dis., 22(2):483–492, 2010.

[68] Manon Guay, Marie-France Dubois, Maŕıa Corrada, Marie-Pierre Lapointe-
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EBioMedicine, 21:29–36, July 2017.

[91] Sylwia Kabacik, Donna Lowe, Leonie Fransen, Martin Leonard, Siew-Lan Ang,
Christopher Whiteman, Sarah Corsi, Howard Cohen, Sarah Felton, Radhika
Bali, Steve Horvath, and Ken Raj. The relationship between epigenetic age
and the hallmarks of ageing in human cells. Nature Aging, pages 1–10, May
2022.

[92] A K Kant, M I Whitley, and B I Graubard. Away from home meals: associa-
tions with biomarkers of chronic disease and dietary intake in american adults,
NHANES 2005–2010. Int. J. Obes., 39(5):820–827, October 2014.

[93] Omer Karin, Amit Agrawal, Ziv Porat, Valery Krizhanovsky, and Uri Alon.
Senescent cell turnover slows with age providing an explanation for the Gom-
pertz law. Nat. Commun., 10(1):5495, December 2019.

[94] Brian K Kennedy, Shelley L Berger, Anne Brunet, Judith Campisi, Ana Maria
Cuervo, Elissa S Epel, Claudio Franceschi, Gordon J Lithgow, Richard I Mo-
rimoto, Jeffrey E Pessin, Thomas A Rando, Arlan Richardson, Eric E Schadt,
Tony Wyss-Coray, and Felipe Sierra. Geroscience: linking aging to chronic
disease. Cell, 159(4):709–713, 2014.

[95] Donald Kennedy. Longevity, quality, and the one-hoss shay. Science,
305(5689):1369, September 2004.

[96] Gary King and Langche Zeng. Logistic regression in rare events data. Polit.
Anal., 9(2):137–163, 2001.

[97] Thomas B L Kirkwood. Understanding the odd science of aging. Cell,
120(4):437–447, February 2005.

[98] Thomas B L Kirkwood. Systems biology of ageing and longevity. Philos. Trans.
R. Soc. Lond. B Biol. Sci., 366(1561):64–70, January 2011.

[99] Thomas B L Kirkwood. Deciphering death: a commentary on gompertz (1825)
’on the nature of the function expressive of the law of human mortality, and on
a new mode of determining the value of life contingencies’. Philos. Trans. R.
Soc. Lond. B Biol. Sci., 370(1666):20140379, April 2015.

[100] Petr Klemera and Stanislav Doubal. A new approach to the concept and com-
putation of biological age. Mech. Ageing Dev., 127(3):240–248, March 2006.

[101] Gotaro Kojima, Steve Iliffe, and Kate Walters. Frailty index as a predictor of
mortality: a systematic review and meta-analysis. Age Ageing, 47(2):193–200,
March 2018.



151
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Appendix A

Supplemental Information for Strategies for handling missing

data that improve Frailty Index estimation and predictive

power: lessons from the NHANES dataset

A.1 ampute

The MICE package in R (version 3.10.0) [25] includes a function for generating missing

data: ampute. ampute preserves missingness patterns and allows the specification of

missingness proportion. We observed two primary limitations to the function: (1) the

cellwise missingness proportion option does not reliably generate the correct cellwise

missingness proportion — forcing us to use the patternwise missingness proportion

option instead, and (2) the quantile-based missingness rule does not work properly

when patterns have small frequencies.

A.1.1 Issue (1) Cellwise Missingness

Based on Schouten et al ’s approach [172], given a set of missingness patterns with

missingness, Mi (the number of values/cells missing for the ith pattern), and a set

of frequencies for each of the i patterns, fi, for a dataset with R rows (entries),

C columns (variables) and a total of Nmiss cells missing, the cellwise missingness

proportion, P , is:

P =
Nmiss

RC
.

(A.1)

Let Ni be the (stochastic) number of cells missing due to the ith pattern and let ⟨Ni⟩
be the average of Ni, then we have:

⟨Ni⟩ = RfiMiπ

Nmiss =
∑︂
i

Ni ≈
∑︂
i

⟨Ni⟩, (A.2)
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where Nmiss is the total number of missing values, and π is the casewise/patternwise

missingness proportion (prop) parameter of ampute. The parameters taken by ampute

are: fi, Mi (indirectly via patterns), and π. Given we want a particular P we can

solve for π as:

π =
PC∑︁
i fiMi

. (A.3)

Using Eq. A.3 we calculated the correct π ≡ prop parameter, to get the desired

cellwise missingness, P . When prop is significantly greater than the real missingness

used to estimate the patterns, π > 1 and there is no valid solution. Note that

0 ≤ fi ≤ 1 and
∑︁

i fi = 1.

A.1.2 Issue (2) Insufficient Data

ampute is severely limited when dealing with small pattern frequencies, which is un-

avoidable when there is a large number of patterns and/or small amount of data.

Quantiles can be used to bias the data, however, this method is invalid for the afore-

mentioned case. Quantiles are calculated after data have been split into pattern-

specific subsets. For example, the 1923 individuals in our Complete dataset would

be split into the 751 observed missingness patterns, meaning that quantiles would be

calculated using data-subsets of average size 2.6: far too few to accurately estimate

quantiles. We adjusted the ampute code to calculate quantiles first, using the Com-

plete dataset of 1923 individuals, and then subset the dataset into patterns. This

allowed the quantiles to be accurately calculated.
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A.2 Extended Results

For simulated missingness, the ground truth values were known and we were able to

directly compare the accuracy of the imputed values. It is not clear how important it

is for the individual imputations to be close to the true values, as opposed to them be-

ing unbiased and accurately reproducing the dispersion of values. This is because we

are performing some post-imputation-processing to calculate the FI, and we are often

performing multiple imputations – for which the dispersion of values is important.

Regardless, for discrete-valued variables, i.e. the 36 self-reported/demographic health

variables, we calculated the accuracy of getting the exact value and calculated the

confidence interval assuming a binomial distribution. For continuous-valued variables,

i.e. the 32 lab variables, we calculated the unadjusted R2 value with the confidence

interval estimated via bootstrapping (N = 1000). Multiple imputations were aggre-

gated by majority vote for discrete variables and by mean for continuous variables

for fair comparison to the single imputation strategies. Table A.1 reports the im-

putation accuracy for each type of simulated missingness. The accuracy seems to

have little connection with the overall performance of the subsequent FI. In light of

our other results, it appears that being close to the true values doesn’t guarantee a

good imputation, perhaps due to bias or inaccurate dispersion — at least for values

subsequently processed into the FI. We conjecture that the FI procedure is insensitive

to some random error in imputed values as long as the underlying distributions are

captured.

The coverage probability for the true mean FI is given in Table A.2 (N = 10 for

each). CART with auxiliary variables (Aux) and 5 imputations had 100% coverage in

all cases. Ideally, the coverage should be 95%, however, our confidence interval (CI)

estimates did not include shared values between the true dataset and the dataset with

missing values, and hence our CIs are likely too large and the coverage should be used

as a relative, not absolute, measure of imputation accuracy (bigger implies better).

The extended results for bias and predictive power for the simulated missingness is

given for cMCAR and cMNAR in Table A.3, and for pMCAR and pMAR in Table A.4.

Note that the predictive power is missing for Ignore (weighted) because the packages

used did not allow for weights.
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In Figure A.5 we present the survival curves with the young/old cut moved from

age 60 to age 50. The VIQ block was collected at age 50, hence the VIQ results should

be more accurate in this figure than in Figure 4.3, note the significant difference in

HRs for young vs old.

In Figure A.6 we present extended survival curves from Figure 4.3, including the

Misc variables which were commonly missing: RDQ031 and KIQ046.

The FI bias for all imputation methods is illustrated in Figure A.7. Note the

strong linearity of results, supporting out use of linear bias rates.

Forest plots of the HR for simulated 15% missingness are given in Figure A.8.

Forest plots of the HR for simulated higher levels of cMCAR are given in Fig-

ure A.9. Ignore shows an underestimate of the HR, while kNN appears to frequently

overestimate the HR with huge variation between the N = 10 simulated datasets.

Forest plots for simulated higher levels of cMNAR are given in Figure A.10. Ignore

greatly underestimated the HR.

Forest plots for the real missingness are given in Figure A.11. kNN appeared to

underestimate the HR without rule-based imputation (RI).

Figure A.12 gives the ridge plot of the FIs calculating using all imputation strate-

gies considered.

A.3 FI Blocks

We illustrate the Full dataset missingness patterns, including young and old patients,

in Figure A.1. The exact variables in each block are described in Table A.5.

To confirm that the amputation of simulated missingness was successful, we com-

pared the 15% simulated missingness patterns to the real missingness. The simulated

patterned missingness are displayed in Figure A.2, and the cellwise unpatterned miss-

ingness are displayed in Figure A.3. Compared to the real missingness in Figure A.1

we see excellent agreement for pMCAR and pMAR, indicated successful amputation.

In Figure A.4 we give the missingness patterns with full variable names rather

than just blocks, the data are identical to Figure 4.2, only the plot aesthetics differ.

All missingness block pattern figures followed this variable order.
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The demographics of the missingness blocks are given in Table A.6. Individuals

with the PFQ, RXD or VIQ blocks missing were significantly younger and had lower

Ignore FIs (all p < 2.2 · 10−16) and individuals missing the BPX block were older

(p = 4.2 · 10−7) and had higher Ignore FIs (p = 1.2 · 10−14).

The complete blockwise summary of the FI bias to the mean and SD in the

simulated missingness are tabulated below from Table A.7 to Table A.14. The bias

rates were fit using 5%, 10% and 15% missingness. The missingness column quantifies

the exact rate of missingness in the simulation.

The complete blockwise predictive power for each type of simulated 15% missing-

ness are tabulated below from Table A.15 to Table A.22. The blockwise summary

gives some idea which component variables of the FI are most important for predic-

tion. No statistical testing was applied to either the C-index or HR.

The extended FI statistics for real missingness by block are given in Table A.28.

Tables A.29 and A.30 include RI (rule-based imputation).

A.4 FI Variables

The FI was calculated using 68 variables: 36 self-reported and 32 lab. The 32 lab

variables used are described in Table A.23. The low and high healthy ranges used for

binarization are included for males (M) and females (F). The 36 self-reported health

variables used to calculate the FI are described in Table A.24.

A.5 Auxiliary Variables

We tested the utility of 100 auxiliary variables: 73 self-reported health variables and

27 lab variables. These variables were not re-coded, representing ad hoc inclusions.

We selected as many variables as possible using the following selection criteria. These

criteria are not, in general, good selection criteria for imputing real missingness. They

include criteria for simplicity and ease of application, and criteria to explicitly forbid

trivially-easy imputations: to make the simulated missingness more realistic.

1. The variable belongs to either demographical data or one of the NHANES doc-

uments already being used to calculate the FI.

2. The variable exists in both NHANES 03/04 and 05/06.
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3. The variable measures something unique from the other variables.

4. The variable is not a follow-up question to another auxiliary variable. E.g.

MCQ0170L: “Do you/Does SP still ... have any kind of liver condition?”

5. The variable is not continuous-valued with missingness encoded as a number

greater than the maximum e.g. missing OSQ020c values were encoded as 9999.

These values would have to be manually converted to NA, we excluded these

variables for convenience.

6. The variable is relevant for the individuals used in our study, e.g. PFQ020: “{Do
you/Does SP} have an impairment or health problem that limits {your/his/her}
ability to {crawl, walk or play} {walk, run or play} {walk or run}?” was not

included because our population was over age 20.

7. The variable has unique values (at least 2) but not an excessive number of

categories, e.g. RXDDRUG had 287 unique drugs and was not included. A

variable with only 1 value has no utility. A categorical variable with many

values is inconvenient to work with.

8. The variable does not relate to a specific variant condition, e.g. type of cancer

and type of bone-break were excluded. This was primarily to reduce the number

of auxiliary variables for convenience.

Ordinal-type variables were converted to categorical variables. This was necessary be-

cause missingness was left numerically encoded. Many of the variables included are

unlikely to have any utility in imputation but that’s deliberate: we want our imputa-

tion strategy to be robust enough that we can mindlessly pick auxiliary variables to

improve results. The 27 auxiliary lab variables used are reported in Table A.25. The

73 auxiliary self-reported health variables are reported in Table A.26 and Table A.27.
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A.6 Tables

Table A.1: Imputation Accuracy — Simulated 15% Missingness

Imputation Missingness Accuracy (95% CI) R2 (95% CI)
Default (m=5) pMCAR 53.5% (53.4-53.7%) .41 (.28-.63)
MICE RF (m=5) pMCAR 75.7% (75.5-75.8%) .40 (.28-.64)
RF pMCAR 75.9% (75.8-76.1%) .47 (.32-.72)
kNN pMCAR 60.0% (59.9-60.2%) .46 (.31-.71)
CART (m=5) pMCAR 73.7% (73.5-73.8%) .40 (.27-.64)
CART+Aux (m=5) pMCAR 76.0% (75.9-76.2%) .41 (.28-.66)
Default (m=5) pMAR 54.7% (54.5-54.8%) .51 (.35-.75)
MICE RF (m=5) pMAR 77.9% (77.8-78.1%) .51 (.35-.75)
RF pMAR 78.1% (78.0-78.3%) .61 (.42-.85)
kNN pMAR 62.8% (62.7-63.0%) .59 (.40-.83)
CART (m=5) pMAR 75.6% (75.5-75.8%) .53 (.36-.75)
CART+Aux (m=5) pMAR 77.9% (77.8-78.1%) .47 (.32-.71)
Default (m=5) cMCAR 98.2% (98.2-98.3%) .95 (.88-.99)
MICE RF (m=5) cMCAR 98.7% (98.7-98.8%) .95 (.88-.99)
RF cMCAR 98.7% (98.7-98.8%) .96 (.89-.99)
kNN cMCAR 98.5% (98.4-98.5%) .96 (.89-.99)
CART (m=5) cMCAR 74.8% (74.6-75.0%) .39 (.27-.54)
CART+Aux (m=5) cMCAR 75.3% (75.1-75.5%) .45 (.34-.60)
Default (m=5) cMNAR 84.2% (84.0-84.4%) .69 (.60-.76)
MICE RF (m=5) cMNAR 88.4% (88.3-88.6%) .72 (.64-.79)
RF cMNAR 88.6% (88.5-88.7%) .82 (.74-.87)
kNN cMNAR 86.3% (86.1-86.4%) .80 (.73-.85)
CART (m=5) cMNAR 85.5% (85.4-85.7%) .47 (.30-.61)
CART+Aux (m=5) cMNAR 98.4% (98.3-98.4%) .98 (.97-.99)

= 1

1 Score was (unadjusted) R2 for continuous (lab) variables, accuracy for
discrete (SR) variables. m = 5 multiple imputations were used where
applicable, aggregated by majority vote (discrete) or mean (continu-
ous) for fair comparison to single imputation methods.
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Table A.2: Coverage probability for mean FI by missingness (10 repeats).

Imputation Missingness 5%
Coverage1

10%
15%

Ignore pMCAR 0.1 0 0
Ignore20 pMCAR 0.1 0 0
Ignore (weighted) pMCAR 0.8 0 0
Default (m=5) pMCAR 0 0 0
kNN pMCAR 0.7 0.4 0.9
RF pMCAR 0 0 0
MICE RF (m=5) pMCAR 0.8 0 0
CART (m=5) pMCAR 1 1 1
CART (m=15) pMCAR 1 1 1
CART+Aux (m=5) pMCAR 1 1 1
Ignore pMAR 1 0 0
Ignore20 pMAR 1 0 0
Ignore (weighted) pMAR 0 0 0
Default (m=5) pMAR 0 0 0
kNN pMAR 0.9 0.5 0.7
RF pMAR 0 0 0
MICE RF (m=5) pMAR 1 0 0
CART (m=5) pMAR 1 1 1
CART (m=15) pMAR 1 1 0.992

CART+Aux (m=5) pMAR 1 1 1
Ignore cMNAR 0 0 0
Ignore20 cMNAR 0 0 0
Ignore (weighted) cMNAR 0 0 0
Default (m=5) cMNAR 0 0 0
kNN cMNAR 1 1 1
RF cMNAR 1 1 1
MICE RF (m=5) cMNAR 0.222 0 0
CART (m=5) cMNAR 0 0 0
CART (m=15) cMNAR 0 0 0
CART+Aux (m=5) cMNAR 1 1 1
Ignore cMNAR 1 1 1
Ignore20 cMCAR 1 1 1
Ignore (weighted) cMCAR 1 1 1
Default (m=5) cMCAR 0 0 0
kNN cMCAR 1 1 1
RF cMCAR 1 1 1
MICE RF (m=5) cMCAR 0.142 0 0
CART (m=5) cMCAR 1 1 1
CART (m=15) cMCAR 1 1 1
CART+Aux (m=5) cMCAR 1 1 1
1 Coverage is the probability that the true value was
found within the 95% CI. Higher is better. CIs may
have been overestimated, see text.

2 MI can be fractional e.g. 10 repeats of m = 15 gives
150 possible values.



170

Table A.3: Imputed FI Summary — Cellwise Simulated Missingness (Supplemental)

Imputation Type N Missingness Mean FI Bias FI SD SD Bias C-index HR AUC
GT cMNAR 1923 0.150± 0.000 0.176 0.000± 0.000 0.073 0.000± 0.000 0.654± 0.016 1.075± 0.007 0.733± 0.036
Ignore cMNAR 1923 0.150± 0.000 0.198 0.022± 0.000∗∗∗ 0.080 0.007± 0.000∗∗∗ 0.653± 0.016 1.069± 0.007 0.732± 0.037
Ignore (weighted) cMNAR 1923 0.150± 0.000 0.199 0.023± 0.002∗∗∗ 0.081 0.007± 0.000∗∗∗ – – –
Ignore20 cMNAR 1658.6 0.150± 0.000 0.202 0.020± 0.000∗∗∗ 0.081 0.008± 0.000∗∗∗ 0.654± 0.017 1.069± 0.007 0.735± 0.039
kNN cMNAR 1923 0.150± 0.000 0.179 0.002± 0.000∗∗∗ 0.072 −0.001± 0.000∗∗∗ 0.652± 0.016 1.076± 0.007 0.730± 0.037
RF cMNAR 1923 0.150± 0.000 0.177 0.001± 0.000∗ 0.074 0.001± 0.000∗∗ 0.653± 0.016 1.073± 0.007 0.733± 0.037
Default (m=1) cMNAR 1923 0.150± 0.000 0.188 0.011± 0.000∗∗∗ 0.076 0.002± 0.000∗∗∗ 0.653± 0.016 1.073± 0.007 0.733± 0.037
Default (m=5) cMNAR 1923 0.150± 0.000 0.193 0.017± 0.001∗∗∗ 0.078 0.004± 0.001∗∗∗ 0.654± 0.016 1.071± 0.007 0.733± 0.037
MICE RF (m=1) cMNAR 1923 0.150± 0.000 0.181 0.005± 0.000∗∗∗ 0.074 0.000± 0.000 0.653± 0.016 1.074± 0.007 0.733± 0.037
MICE RF (m=5) cMNAR 1923 0.150± 0.000 0.188 0.011± 0.001∗∗∗ 0.076 0.002± 0.001∗∗ 0.654± 0.016 1.073± 0.007 0.734± 0.037
CART (m=1) cMNAR 1923 0.150± 0.000 0.185 0.008± 0.000∗∗∗ 0.075 0.001± 0.000∗∗∗ 0.654± 0.016 1.073± 0.007 0.734± 0.037
CART (m=5) cMNAR 1923 0.150± 0.000 0.190 0.014± 0.001∗∗∗ 0.077 0.004± 0.001∗∗∗ 0.655± 0.016 1.072± 0.007 0.735± 0.037
CART+Aux (m=1) cMNAR 1923 0.150± 0.000 0.173 −0.003± 0.001∗∗∗ 0.072 −0.002± 0.000∗∗∗ 0.651± 0.016 1.076± 0.007 0.730± 0.037
CART+Aux (m=5) cMNAR 1923 0.150± 0.000 0.176 0.000± 0.001 0.074 0.000± 0.001 0.652± 0.016 1.075± 0.007 0.731± 0.037
GT cMCAR 1923 0.150± 0.000 0.176 0.000± 0.000 0.073 0.000± 0.000 0.654± 0.016 1.075± 0.007 0.733± 0.036
Ignore cMCAR 1923 0.150± 0.000 0.176 0.000± 0.000 0.076 0.002± 0.000∗∗∗ 0.648± 0.016 1.070± 0.007 0.728± 0.037
Ignore (weighted) cMCAR 1923 0.150± 0.000 0.176 0.000± 0.002 0.075 0.002± 0.000∗∗∗ – – –
Ignore20 cMCAR 1670.3 0.150± 0.000 0.176 0.000± 0.000 0.075 0.002± 0.001∗∗ 0.648± 0.020 1.071± 0.009 0.729± 0.041
kNN cMCAR 1923 0.150± 0.000 0.179 0.002± 0.000∗∗∗ 0.072 −0.001± 0.000∗∗∗ 0.652± 0.016 1.076± 0.007 0.730± 0.037
RF cMCAR 1923 0.150± 0.000 0.177 0.001± 0.000∗ 0.074 0.001± 0.000∗∗ 0.653± 0.016 1.074± 0.007 0.732± 0.037
Default (m=1) cMCAR 1923 0.150± 0.000 0.188 0.011± 0.000∗∗∗ 0.076 0.002± 0.000∗∗∗ 0.654± 0.016 1.073± 0.007 0.734± 0.037
Default (m=5) cMCAR 1923 0.150± 0.000 0.193 0.017± 0.001∗∗∗ 0.078 0.005± 0.001∗∗∗ 0.654± 0.016 1.071± 0.007 0.734± 0.037
MICE RF (m=1) cMCAR 1923 0.150± 0.000 0.181 0.004± 0.000∗∗∗ 0.074 0.000± 0.000 0.653± 0.016 1.074± 0.007 0.733± 0.037
MICE RF (m=5) cMCAR 1923 0.150± 0.000 0.188 0.011± 0.001∗∗∗ 0.076 0.002± 0.001∗ 0.654± 0.016 1.073± 0.007 0.734± 0.037
CART (m=1) cMCAR 1923 0.150± 0.000 0.172 −0.004± 0.000∗∗∗ 0.072 −0.002± 0.000∗∗∗ 0.651± 0.016 1.076± 0.007 0.730± 0.037
CART (m=5) cMCAR 1923 0.150± 0.000 0.177 0.000± 0.001 0.073 −0.000± 0.001 0.652± 0.016 1.075± 0.008 0.732± 0.037
CART+Aux (m=1) cMCAR 1923 0.150± 0.000 0.173 −0.003± 0.001∗∗∗ 0.072 −0.002± 0.000∗∗∗ 0.653± 0.016 1.076± 0.007 0.733± 0.037
CART+Aux (m=5) cMCAR 1923 0.150± 0.000 0.177 0.000± 0.001 0.074 0.000± 0.001 0.654± 0.016 1.076± 0.008 0.735± 0.037

Table A.4: Imputed FI Summary — Patterned Simulated Missingness
(Supplemental)

Imputation Type N Missingness Mean FI Bias FI SD SD Bias C-index HR AUC
GT pMCAR 1923 0.157± 0.002 0.176 0.000± 0.000 0.073 0.000± 0.000 0.654± 0.016 1.075± 0.007 0.733± 0.036
Ignore pMCAR 1923 0.157± 0.002 0.188 0.012± 0.001∗∗∗ 0.078 0.004± 0.001∗∗∗ 0.648± 0.016 1.064± 0.007 0.729± 0.037
Ignore (weighted) pMCAR 1923 0.157± 0.002 0.186 0.010± 0.002∗∗∗ 0.077 0.003± 0.000∗∗∗ – – –
Ignore20 pMCAR 1117 0.157± 0.002 0.181 0.005± 0.001∗∗∗ 0.075 0.001± 0.001 0.655± 0.025 1.073± 0.012 0.733± 0.050
kNN pMCAR 1923 0.157± 0.002 0.176 −0.000± 0.003 0.072 −0.001± 0.002 0.644± 0.016 1.071± 0.008 0.722± 0.038
RF pMCAR 1923 0.157± 0.002 0.161 −0.016± 0.001∗∗∗ 0.068 −0.006± 0.001∗∗∗ 0.647± 0.016 1.076± 0.008 0.726± 0.038
Default (m=1) pMCAR 1923 0.157± 0.002 0.213 0.037± 0.002∗∗∗ 0.087 0.013± 0.002∗∗∗ 0.630± 0.019 1.053± 0.007 0.695± 0.041∗∗∗

Default (m=5) pMCAR 1923 0.157± 0.002 0.216 0.040± 0.003∗∗∗ 0.133 0.060± 0.020∗∗ 0.631± 0.019 1.041± 0.007 0.697± 0.040∗∗∗

MICE RF (m=1) pMCAR 1923 0.157± 0.002 0.165 −0.011± 0.001∗∗∗ 0.067 −0.006± 0.000∗∗∗ 0.648± 0.016 1.078± 0.008 0.728± 0.037
MICE RF (m=5) pMCAR 1923 0.157± 0.002 0.168 −0.008± 0.001∗∗∗ 0.068 −0.005± 0.001∗∗∗ 0.651± 0.016 1.078± 0.008 0.732± 0.037
CART (m=1) pMCAR 1923 0.157± 0.002 0.174 −0.002± 0.001∗ 0.069 −0.005± 0.000∗∗∗ 0.649± 0.016 1.077± 0.008 0.730± 0.038
CART (m=5) pMCAR 1923 0.157± 0.002 0.177 0.000± 0.001 0.073 −0.001± 0.002 0.652± 0.016 1.075± 0.008 0.733± 0.037
CART+Aux (m=1) pMCAR 1923 0.157± 0.002 0.175 −0.002± 0.000∗∗∗ 0.071 −0.002± 0.000∗∗∗ 0.655± 0.016 1.078± 0.007 0.732± 0.037
CART+Aux (m=5) pMCAR 1923 0.157± 0.002 0.177 0.000± 0.001 0.073 −0.000± 0.001 0.655± 0.016 1.076± 0.008 0.733± 0.037
GT pMAR 1923 0.157± 0.003 0.176 0.000± 0.000 0.073 0.000± 0.000 0.654± 0.016 1.075± 0.007 0.733± 0.036
Ignore pMAR 1923 0.157± 0.003 0.187 0.011± 0.001∗∗∗ 0.075 0.001± 0.001 0.649± 0.016 1.070± 0.008 0.732± 0.037
Ignore (weighted) pMAR 1923 0.157± 0.003 0.188 0.012± 0.002∗∗∗ 0.075 0.001± 0.001∗ – – –
Ignore20 pMAR 1117.4 0.157± 0.003 0.191 0.005± 0.001∗∗∗ 0.077 0.003± 0.001∗∗∗ 0.666± 0.023 1.078± 0.010 0.742± 0.047
kNN pMAR 1923 0.157± 0.003 0.179 0.002± 0.003 0.074 0.000± 0.001 0.645± 0.016 1.071± 0.007 0.721± 0.038
RF pMAR 1923 0.157± 0.003 0.162 −0.015± 0.001∗∗∗ 0.072 −0.002± 0.000∗∗∗ 0.645± 0.017 1.070± 0.007 0.728± 0.038
Default (m=1) pMAR 1923 0.157± 0.003 0.214 0.037± 0.004∗∗∗ 0.076 0.002± 0.002 0.633± 0.019 1.065± 0.009 0.695± 0.042∗∗∗

Default (m=5) pMAR 1923 0.157± 0.003 0.216 0.040± 0.004∗∗∗ 0.121 0.048± 0.018∗∗ 0.634± 0.018 1.046± 0.007 0.697± 0.041∗∗∗

MICE RF (m=1) pMAR 1923 0.157± 0.003 0.166 −0.010± 0.001∗∗∗ 0.070 −0.003± 0.000∗∗∗ 0.646± 0.017 1.073± 0.008 0.728± 0.037
MICE RF (m=5) pMAR 1923 0.157± 0.003 0.169 −0.007± 0.001∗∗∗ 0.071 −0.003± 0.001∗∗∗ 0.649± 0.016 1.074± 0.008 0.732± 0.037
CART (m=1) pMAR 1923 0.157± 0.003 0.176 −0.001± 0.001 0.070 −0.004± 0.000∗∗∗ 0.650± 0.017 1.076± 0.008 0.730± 0.037
CART (m=5) pMAR 1923 0.157± 0.003 0.178 0.002± 0.001∗ 0.073 −0.001± 0.001 0.652± 0.016 1.075± 0.008 0.733± 0.037
CART+Aux (m=1) pMAR 1923 0.157± 0.003 0.175 −0.001± 0.000∗∗ 0.072 −0.002± 0.000∗∗∗ 0.654± 0.016 1.076± 0.007 0.732± 0.037
CART+Aux (m=5) pMAR 1923 0.157± 0.003 0.177 0.001± 0.001 0.073 −0.000± 0.001 0.655± 0.016 1.075± 0.007 0.734± 0.037
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Table A.5: Missingness Block Variables

Block Variables
PFQ PFQ061A,PFQ061D,PFQ061E,PFQ061G,PFQ061H,PFQ061I,PFQ061J,PFQ061K,PFQ061L,PFQ061P,

PFQ061R,PFQ061T
RXD RXDCOUNT
VIQ VIQ071,VIQ051C,VIQ031
BPX BPXMeanArterialPressure,BPXPulsePressure,BPXSY,BPXDI,BPXPLS
LB LBXCRP,LBDVIDMS,LBDRBFSI,LBXNEPCT,LBXGH,LBXHGB,LBXMCVSI,LBXPLTSI,LBXRDW,LBXSNASI,

LBDSALSI,LBDSBUSI,LBDSCASI,LBDSCRSI,LBDSGLSI,LBXSAPSI,LBDB12SI,LBDHDDSI,LBXSLDSI,
LBXSC3SI,LBDSTPSI,LBDSIRSI,LBDSTBSI,LBDSTRSI,LBDSUASI,LBDSPHSI,LBDSCHSI

Misc AUQ,BPQ020,DIQ010,HUQ010,HUQ020,HUQ050,HUQ071,KIQ022,KIQ046,MCQ160A,MCQ160C,
MCQ160D,MCQ160E,MCQ160F,MCQ160M,MCQ220,OSQ010A,OSQ060,PFQ057,RDQ031

Table A.6: Demographics of Missingness Blocks

Block N1 Size Mean FI (SD)2 Mean Age (SD) Males (%) Deaths (%)
PFQ 5703 12 0.128 (0.073)∗∗∗ 41.5 (15.9)∗∗∗ 2722 (47.7)∗∗∗ 350 (6.1)∗

RXD 4038 1 0.111 (0.054)∗∗∗ 39.8 (15.2)∗∗∗ 2133 (52.8)∗∗∗ 137 (3.4)∗∗∗

VIQ 2540 3 0.129 (0.078)∗∗∗ 37.9 (14.2)∗∗∗ 1194 (47.0)∗∗∗ 162 (6.4)∗∗∗

BPX 643 5 0.176 (0.102)∗∗∗ 54.0 (21.3)∗∗∗ 266 (41.4)∗∗∗ 143 (22.2)∗∗∗

LB 916 27 0.154 (0.101) 49.9 (20.0) 420 (45.9) 135 (14.7)∗∗∗

All 9307 68 0.144 (0.078) 49.9 (19.0) 4465 (48.0) 1016 (10.9)
3

1 Number of individuals with this block missing.
2 FI calculated using Ignore.
3 p-values compare individuals missing the block versus not missing the block.
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Table A.7: Imputed FI Bias Summary by Block - 15% pMCAR (1/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT All 1923 0.157± 0.002 0.176 0.000± 0.000 0.000± 0.000 0.073 0.000± 0.000 0.000± 0.000
Ignore All 1923 0.157± 0.002 0.188 0.012± 0.001∗∗∗ 0.076± 0.001∗∗∗ 0.078 0.004± 0.001∗∗∗ 0.029± 0.001∗∗∗

Ignore (weighted) All 1923 0.157± 0.002 0.186 0.010± 0.002∗∗∗ 0.062± 0.001∗∗∗ 0.077 0.003± 0.000∗∗∗ 0.021± 0.000∗∗∗

Ignore20 All 1117 0.157± 0.002 0.181 0.005± 0.001∗∗∗ 0.031± 0.001∗∗∗ 0.075 0.001± 0.001 0.008± 0.002∗∗∗

kNN All 1923 0.157± 0.002 0.176 −0.000± 0.003 0.014± 0.005∗ 0.072 −0.001± 0.002 −0.002± 0.002
RF All 1923 0.157± 0.002 0.161 −0.016± 0.001∗∗∗ −0.101± 0.001∗∗∗ 0.068 −0.006± 0.001∗∗∗ −0.035± 0.001∗∗∗

Default (m=1) All 1923 0.157± 0.002 0.213 0.037± 0.002∗∗∗ 0.219± 0.005∗∗∗ 0.087 0.013± 0.002∗∗∗ 0.081± 0.002∗∗∗

Default (m=5) All 1923 0.157± 0.002 0.216 0.040± 0.003∗∗∗ 0.238± 0.005∗∗∗ 0.133 0.060± 0.020∗∗ 0.388± 0.024∗∗∗

MICE RF (m=1) All 1923 0.157± 0.002 0.165 −0.011± 0.001∗∗∗ −0.073± 0.001∗∗∗ 0.067 −0.006± 0.000∗∗∗ −0.039± 0.001∗∗∗

MICE RF (m=5) All 1923 0.157± 0.002 0.168 −0.008± 0.001∗∗∗ −0.055± 0.001∗∗∗ 0.068 −0.005± 0.001∗∗∗ −0.032± 0.001∗∗∗

CART (m=1) All 1923 0.157± 0.002 0.174 −0.002± 0.001∗ −0.015± 0.001∗∗∗ 0.069 −0.005± 0.000∗∗∗ −0.031± 0.001∗∗∗

CART (m=5) All 1923 0.157± 0.002 0.177 0.000± 0.001 0.002± 0.001∗ 0.073 −0.001± 0.002 −0.006± 0.002∗∗

CART+Aux (m=1) All 1923 0.157± 0.002 0.175 −0.002± 0.000∗∗∗ −0.011± 0.001∗∗∗ 0.071 −0.002± 0.000∗∗∗ −0.014± 0.000∗∗∗

CART+Aux (m=5) All 1923 0.157± 0.002 0.177 0.000± 0.001 0.002± 0.000∗∗∗ 0.073 −0.000± 0.001 −0.002± 0.001
GT BPX 1923 0.064± 0.003 0.289 0.000± 0.000 0.000± 0.000 0.263 0.000± 0.000 0.000± 0.000
Ignore BPX 1832.4 0.064± 0.003 0.287 −0.002± 0.002 −0.033± 0.004∗∗∗ 0.266 0.004± 0.001∗∗∗ 0.056± 0.003∗∗∗

Ignore (weighted) BPX 1832.4 0.064± 0.003 0.287 −0.002± 0.009 −0.027± 0.007∗∗∗ 0.267 0.004± 0.001∗∗∗ 0.055± 0.005∗∗∗

Ignore20 BPX 1082.4 0.064± 0.003 0.286 −0.002± 0.002 −0.031± 0.005∗∗∗ 0.268 0.006± 0.003∗ 0.076± 0.008∗∗∗

kNN BPX 1923 0.064± 0.003 0.284 −0.004± 0.003 −0.069± 0.006∗∗∗ 0.259 −0.003± 0.001∗∗∗ −0.053± 0.002∗∗∗

RF BPX 1923 0.064± 0.003 0.272 −0.016± 0.003∗∗∗ −0.260± 0.005∗∗∗ 0.263 0.000± 0.001 0.003± 0.002
Default (m=1) BPX 1923 0.064± 0.003 0.283 −0.005± 0.002∗ −0.080± 0.005∗∗∗ 0.260 −0.003± 0.001∗∗∗ −0.048± 0.002∗∗∗

Default (m=5) BPX 1923 0.064± 0.003 0.290 0.002± 0.003 0.027± 0.005∗∗∗ 0.272 0.009± 0.008 0.171± 0.028∗∗∗

MICE RF (m=1) BPX 1923 0.064± 0.003 0.283 −0.005± 0.003∗ −0.086± 0.005∗∗∗ 0.259 −0.003± 0.001∗∗∗ −0.052± 0.002∗∗∗

MICE RF (m=5) BPX 1923 0.064± 0.003 0.289 0.001± 0.003 0.005± 0.005 0.270 0.008± 0.008 0.124± 0.019∗∗∗

CART (m=1) BPX 1923 0.064± 0.003 0.284 −0.004± 0.003 −0.071± 0.007∗∗∗ 0.259 −0.003± 0.001∗∗∗ −0.049± 0.002∗∗∗

CART (m=5) BPX 1923 0.064± 0.003 0.290 0.001± 0.003 0.015± 0.004∗∗ 0.273 0.010± 0.006 0.154± 0.018∗∗∗

CART+Aux (m=1) BPX 1923 0.064± 0.003 0.283 −0.005± 0.003 −0.088± 0.007∗∗∗ 0.259 −0.003± 0.001∗∗∗ −0.049± 0.002∗∗∗

CART+Aux (m=5) BPX 1923 0.064± 0.003 0.290 0.002± 0.003 0.017± 0.006∗∗ 0.275 0.012± 0.007 0.176± 0.019∗∗∗

GT LB 1923 0.065± 0.003 0.147 0.000± 0.000 0.000± 0.000 0.087 0.000± 0.000 0.000± 0.000
Ignore LB 1821.8 0.065± 0.003 0.147 0.000± 0.000 0.001± 0.001 0.089 0.002± 0.001∗∗ 0.022± 0.002∗∗∗

Ignore (weighted) LB 1821.8 0.065± 0.003 0.147 −0.000± 0.003 0.001± 0.002 0.089 0.001± 0.001 0.017± 0.003∗∗∗

Ignore20 LB 1117 0.065± 0.003 0.146 0.000± 0.000 0.001± 0.000∗∗ 0.086 −0.001± 0.001 −0.008± 0.004
kNN LB 1923 0.065± 0.003 0.140 −0.007± 0.002∗∗∗ −0.107± 0.003∗∗∗ 0.088 0.001± 0.001 0.022± 0.004∗∗∗

RF LB 1923 0.065± 0.003 0.139 −0.008± 0.001∗∗∗ −0.117± 0.002∗∗∗ 0.090 0.002± 0.000∗∗∗ 0.037± 0.001∗∗∗

Default (m=1) LB 1923 0.065± 0.003 0.142 −0.005± 0.001∗∗∗ −0.077± 0.001∗∗∗ 0.088 0.001± 0.000∗∗ 0.011± 0.001∗∗∗

Default (m=5) LB 1923 0.065± 0.003 0.148 0.001± 0.001 0.015± 0.002∗∗∗ 0.089 0.002± 0.001∗∗ 0.031± 0.003∗∗∗

MICE RF (m=1) LB 1923 0.065± 0.003 0.141 −0.006± 0.001∗∗∗ −0.093± 0.001∗∗∗ 0.088 0.001± 0.000∗∗∗ 0.015± 0.001∗∗∗

MICE RF (m=5) LB 1923 0.065± 0.003 0.147 −0.000± 0.001 0.001± 0.001 0.089 0.002± 0.002 0.027± 0.005∗∗∗

CART (m=1) LB 1923 0.065± 0.003 0.142 −0.005± 0.001∗∗∗ −0.080± 0.002∗∗∗ 0.088 0.000± 0.000 0.006± 0.002∗∗∗

CART (m=5) LB 1923 0.065± 0.003 0.148 0.001± 0.001 0.010± 0.002∗∗∗ 0.090 0.003± 0.003 0.039± 0.007∗∗∗

CART+Aux (m=1) LB 1923 0.065± 0.003 0.143 −0.004± 0.001∗∗∗ −0.057± 0.001∗∗∗ 0.088 0.000± 0.000 0.004± 0.001∗∗∗

CART+Aux (m=5) LB 1923 0.065± 0.003 0.147 0.000± 0.001 0.004± 0.001∗∗ 0.089 0.002± 0.002 0.027± 0.005∗∗∗
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Table A.8: Imputed FI Bias Summary by Block - 15% pMCAR (2/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT PFQ 1923 0.577± 0.010 0.095 0.000± 0.000 0.000± 0.000 0.125 0.000± 0.000 0.000± 0.000
Ignore PFQ 837.1 0.577± 0.010 0.095 −0.000± 0.000 −0.000± 0.000∗∗∗ 0.127 0.002± 0.003 0.002± 0.001
Ignore (weighted) PFQ 837.1 0.577± 0.010 0.095 0.000± 0.005 0.000± 0.001 0.128 0.002± 0.003 0.003± 0.001∗

Ignore20 PFQ 777.8 0.577± 0.010 0.095 −0.000± 0.000 −0.000± 0.000∗ 0.127 0.002± 0.004 0.003± 0.001
kNN PFQ 1923 0.577± 0.010 0.120 0.025± 0.014 0.067± 0.007∗∗∗ 0.123 −0.003± 0.014 0.014± 0.006∗

RF PFQ 1923 0.577± 0.010 0.042 −0.053± 0.003∗∗∗ −0.092± 0.001∗∗∗ 0.095 −0.031± 0.002∗∗∗ −0.049± 0.001∗∗∗

Default (m=1) PFQ 1923 0.577± 0.010 0.310 0.215± 0.014∗∗∗ 0.349± 0.007∗∗∗ 0.271 0.145± 0.008∗∗∗ 0.257± 0.004∗∗∗

Default (m=5) PFQ 1923 0.577± 0.010 0.310 0.215± 0.019∗∗∗ 0.349± 0.007∗∗∗ 0.647 0.522± 0.138∗∗∗ 0.949± 0.046∗∗∗

MICE RF (m=1) PFQ 1923 0.577± 0.010 0.053 −0.041± 0.002∗∗∗ −0.072± 0.001∗∗∗ 0.091 −0.034± 0.002∗∗∗ −0.056± 0.001∗∗∗

MICE RF (m=5) PFQ 1923 0.577± 0.010 0.053 −0.041± 0.003∗∗∗ −0.072± 0.001∗∗∗ 0.099 −0.026± 0.005∗∗∗ −0.043± 0.002∗∗∗

CART (m=1) PFQ 1923 0.577± 0.010 0.095 0.001± 0.004 0.001± 0.001 0.091 −0.034± 0.002∗∗∗ −0.057± 0.001∗∗∗

CART (m=5) PFQ 1923 0.577± 0.010 0.095 0.001± 0.005 0.001± 0.001 0.140 0.014± 0.014 0.026± 0.004∗∗∗

CART+Aux (m=1) PFQ 1923 0.577± 0.010 0.096 0.001± 0.002 0.001± 0.001 0.108 −0.018± 0.003∗∗∗ −0.030± 0.001∗∗∗

CART+Aux (m=5) PFQ 1923 0.577± 0.010 0.096 0.001± 0.002 0.001± 0.001 0.125 −0.001± 0.009 −0.002± 0.003
GT RXD 1923 0.469± 0.006 0.207 0.000± 0.000 0.000± 0.000 0.140 0.000± 0.000 0.000± 0.000
Ignore RXD 1021.6 0.469± 0.006 0.209 0.000± 0.000 0.000± 0.000 0.141 0.000± 0.001 0.001± 0.001
Ignore (weighted) RXD 1021.6 0.469± 0.006 0.209 0.002± 0.006 0.003± 0.001 0.141 0.001± 0.002 −0.000± 0.001
Ignore20 RXD 801.6 0.469± 0.006 0.208 0.000± 0.000 0.000± 0.000 0.140 −0.001± 0.003 −0.000± 0.001
kNN RXD 1923 0.469± 0.006 0.188 −0.019± 0.003∗∗∗ −0.041± 0.001∗∗∗ 0.118 −0.022± 0.002∗∗∗ −0.045± 0.001∗∗∗

RF RXD 1923 0.469± 0.006 0.192 −0.015± 0.004∗∗∗ −0.034± 0.001∗∗∗ 0.133 −0.007± 0.002∗∗∗ −0.016± 0.001∗∗∗

Default (m=1) RXD 1923 0.469± 0.006 0.219 0.012± 0.003∗∗∗ 0.024± 0.001∗∗∗ 0.132 −0.008± 0.002∗∗ −0.018± 0.001∗∗∗

Default (m=5) RXD 1923 0.469± 0.006 0.219 0.012± 0.005∗∗ 0.024± 0.001∗∗∗ 0.197 0.057± 0.025∗ 0.128± 0.010∗∗∗

MICE RF (m=1) RXD 1923 0.469± 0.006 0.199 −0.008± 0.004∗ −0.019± 0.001∗∗∗ 0.113 −0.027± 0.001∗∗∗ −0.056± 0.001∗∗∗

MICE RF (m=5) RXD 1923 0.469± 0.006 0.199 −0.008± 0.004 −0.019± 0.001∗∗∗ 0.157 0.016± 0.012 0.041± 0.005∗∗∗

CART (m=1) RXD 1923 0.469± 0.006 0.207 −0.000± 0.003 −0.001± 0.001 0.119 −0.021± 0.001∗∗∗ −0.044± 0.001∗∗∗

CART (m=5) RXD 1923 0.469± 0.006 0.207 −0.000± 0.004 −0.001± 0.001 0.172 0.032± 0.025 0.060± 0.009∗∗∗

CART+Aux (m=1) RXD 1923 0.469± 0.006 0.207 −0.000± 0.004 −0.001± 0.001 0.119 −0.022± 0.002∗∗∗ −0.045± 0.001∗∗∗

CART+Aux (m=5) RXD 1923 0.469± 0.006 0.207 −0.000± 0.005 −0.001± 0.001 0.183 0.042± 0.026 0.074± 0.009∗∗∗

GT VIQ 1923 0.278± 0.011 0.193 0.000± 0.000 0.000± 0.000 0.189 0.000± 0.000 0.000± 0.000
Ignore VIQ 1406.1 0.278± 0.011 0.194 0.001± 0.001 0.004± 0.000∗∗∗ 0.191 0.002± 0.002 0.009± 0.001∗∗∗

Ignore (weighted) VIQ 1406.1 0.278± 0.011 0.194 0.001± 0.006 0.004± 0.002∗ 0.192 0.003± 0.002 0.010± 0.002∗∗∗

Ignore20 VIQ 1026.3 0.278± 0.011 0.193 0.001± 0.001 0.005± 0.000∗∗∗ 0.192 0.003± 0.003 0.011± 0.003∗∗∗

kNN VIQ 1923 0.278± 0.011 0.172 −0.020± 0.004∗∗∗ −0.072± 0.002∗∗∗ 0.173 −0.016± 0.002∗∗∗ −0.056± 0.002∗∗∗

RF VIQ 1923 0.278± 0.011 0.162 −0.030± 0.003∗∗∗ −0.110± 0.002∗∗∗ 0.170 −0.019± 0.002∗∗∗ −0.065± 0.002∗∗∗

Default (m=1) VIQ 1923 0.278± 0.011 0.207 0.014± 0.004∗∗∗ 0.051± 0.002∗∗∗ 0.176 −0.013± 0.003∗∗∗ −0.045± 0.002∗∗∗

Default (m=5) VIQ 1923 0.278± 0.011 0.207 0.014± 0.005∗∗ 0.051± 0.002∗∗∗ 0.226 0.037± 0.016∗ 0.150± 0.013∗∗∗

MICE RF (m=1) VIQ 1923 0.278± 0.011 0.176 −0.017± 0.003∗∗∗ −0.063± 0.002∗∗∗ 0.166 −0.022± 0.002∗∗∗ −0.078± 0.002∗∗∗

MICE RF (m=5) VIQ 1923 0.278± 0.011 0.176 −0.017± 0.004∗∗∗ −0.063± 0.002∗∗∗ 0.200 0.011± 0.017 0.031± 0.010∗∗

CART (m=1) VIQ 1923 0.278± 0.011 0.192 −0.000± 0.003 −0.000± 0.002 0.168 −0.020± 0.002∗∗∗ −0.072± 0.002∗∗∗

CART (m=5) VIQ 1923 0.278± 0.011 0.192 −0.000± 0.004 −0.000± 0.002 0.214 0.026± 0.018 0.087± 0.011∗∗∗

CART+Aux (m=1) VIQ 1923 0.278± 0.011 0.192 −0.000± 0.002 0.000± 0.001 0.174 −0.014± 0.002∗∗∗ −0.049± 0.002∗∗∗

CART+Aux (m=5) VIQ 1923 0.278± 0.011 0.192 −0.000± 0.003 0.000± 0.001 0.201 0.013± 0.008 0.051± 0.006∗∗∗
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Table A.9: Imputed FI Bias Summary by Block - 15% pMAR (1/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT All 1923 0.157± 0.003 0.176 0.000± 0.000 0.000± 0.000 0.073 0.000± 0.000 0.000± 0.000
Ignore All 1923 0.157± 0.003 0.187 0.011± 0.001∗∗∗ 0.067± 0.001∗∗∗ 0.075 0.001± 0.001 0.004± 0.001∗∗

Ignore (weighted) All 1923 0.157± 0.003 0.188 0.012± 0.002∗∗∗ 0.076± 0.001∗∗∗ 0.075 0.001± 0.001∗ 0.007± 0.001∗∗∗

Ignore20 All 1117.4 0.157± 0.003 0.191 0.005± 0.001∗∗∗ 0.029± 0.001∗∗∗ 0.077 0.003± 0.001∗∗∗ 0.020± 0.001∗∗∗

kNN All 1923 0.157± 0.003 0.179 0.002± 0.003 0.020± 0.004∗∗∗ 0.074 0.000± 0.001 0.002± 0.001
RF All 1923 0.157± 0.003 0.162 −0.015± 0.001∗∗∗ −0.092± 0.001∗∗∗ 0.072 −0.002± 0.000∗∗∗ −0.004± 0.002
Default (m=1) All 1923 0.157± 0.003 0.214 0.037± 0.004∗∗∗ 0.225± 0.005∗∗∗ 0.076 0.002± 0.002 0.006± 0.003
Default (m=5) All 1923 0.157± 0.003 0.216 0.040± 0.004∗∗∗ 0.244± 0.005∗∗∗ 0.121 0.048± 0.018∗∗ 0.279± 0.022∗∗∗

MICE RF (m=1) All 1923 0.157± 0.003 0.166 −0.010± 0.001∗∗∗ −0.063± 0.001∗∗∗ 0.070 −0.003± 0.000∗∗∗ −0.014± 0.002∗∗∗

MICE RF (m=5) All 1923 0.157± 0.003 0.169 −0.007± 0.001∗∗∗ −0.044± 0.001∗∗∗ 0.071 −0.003± 0.001∗∗∗ −0.013± 0.002∗∗∗

CART (m=1) All 1923 0.157± 0.003 0.176 −0.001± 0.001 −0.004± 0.001∗∗∗ 0.070 −0.004± 0.000∗∗∗ −0.021± 0.001∗∗∗

CART (m=5) All 1923 0.157± 0.003 0.178 0.002± 0.001∗ 0.013± 0.001∗∗∗ 0.073 −0.001± 0.001 −0.004± 0.002∗∗

CART+Aux (m=1) All 1923 0.157± 0.003 0.175 −0.001± 0.000∗∗ −0.008± 0.000∗∗∗ 0.072 −0.002± 0.000∗∗∗ −0.010± 0.001∗∗∗

CART+Aux (m=5) All 1923 0.157± 0.003 0.177 0.001± 0.001 0.005± 0.001∗∗∗ 0.073 −0.000± 0.001 −0.002± 0.001∗

GT BPX 1923 0.063± 0.006 0.289 0.000± 0.000 0.000± 0.000 0.263 0.000± 0.000 0.000± 0.000
Ignore BPX 1832.7 0.063± 0.006 0.287 −0.001± 0.002 −0.023± 0.004∗∗∗ 0.267 0.004± 0.002∗ 0.063± 0.005∗∗∗

Ignore (weighted) BPX 1832.7 0.063± 0.006 0.291 0.002± 0.009 0.057± 0.008∗∗∗ 0.267 0.004± 0.002 0.064± 0.006∗∗∗

Ignore20 BPX 1085.6 0.063± 0.006 0.300 −0.002± 0.003 −0.023± 0.006∗∗∗ 0.269 0.006± 0.003∗ 0.097± 0.007∗∗∗

kNN BPX 1923 0.063± 0.006 0.285 −0.004± 0.003 −0.066± 0.006∗∗∗ 0.259 −0.003± 0.001∗∗ −0.049± 0.003∗∗∗

RF BPX 1923 0.063± 0.006 0.272 −0.017± 0.003∗∗∗ −0.270± 0.004∗∗∗ 0.263 0.000± 0.001 0.005± 0.003
Default (m=1) BPX 1923 0.063± 0.006 0.283 −0.006± 0.003∗ −0.085± 0.006∗∗∗ 0.260 −0.003± 0.001∗∗ −0.046± 0.003∗∗∗

Default (m=5) BPX 1923 0.063± 0.006 0.290 0.001± 0.003 0.026± 0.005∗∗∗ 0.269 0.006± 0.004 0.177± 0.039∗∗∗

MICE RF (m=1) BPX 1923 0.063± 0.006 0.283 −0.006± 0.002∗ −0.088± 0.006∗∗∗ 0.259 −0.003± 0.001∗∗∗ −0.050± 0.003∗∗∗

MICE RF (m=5) BPX 1923 0.063± 0.006 0.289 0.000± 0.003 0.009± 0.005 0.272 0.009± 0.007 0.159± 0.017∗∗∗

CART (m=1) BPX 1923 0.063± 0.006 0.284 −0.004± 0.003 −0.065± 0.006∗∗∗ 0.259 −0.003± 0.001∗∗∗ −0.050± 0.003∗∗∗

CART (m=5) BPX 1923 0.063± 0.006 0.290 0.001± 0.003 0.021± 0.005∗∗∗ 0.270 0.007± 0.004 0.134± 0.015∗∗∗

CART+Aux (m=1) BPX 1923 0.063± 0.006 0.283 −0.005± 0.002∗ −0.080± 0.006∗∗∗ 0.259 −0.003± 0.001∗∗ −0.050± 0.003∗∗∗

CART+Aux (m=5) BPX 1923 0.063± 0.006 0.289 0.001± 0.003 0.016± 0.005∗∗ 0.276 0.014± 0.012 0.193± 0.028∗∗∗

GT LB 1923 0.065± 0.005 0.147 0.000± 0.000 0.000± 0.000 0.087 0.000± 0.000 0.000± 0.000
Ignore LB 1823 0.065± 0.005 0.148 0.000± 0.000 0.000± 0.001 0.089 0.002± 0.001 0.021± 0.002∗∗∗

Ignore (weighted) LB 1823 0.065± 0.005 0.150 0.003± 0.003 0.050± 0.003∗∗∗ 0.088 0.001± 0.001 0.016± 0.002∗∗∗

Ignore20 LB 1117.4 0.065± 0.005 0.156 0.000± 0.000 0.001± 0.000∗∗ 0.091 0.004± 0.001∗∗∗ 0.063± 0.003∗∗∗

kNN LB 1923 0.065± 0.005 0.141 −0.006± 0.001∗∗∗ −0.096± 0.004∗∗∗ 0.089 0.001± 0.001 0.023± 0.004∗∗∗

RF LB 1923 0.065± 0.005 0.140 −0.007± 0.001∗∗∗ −0.110± 0.001∗∗∗ 0.090 0.003± 0.000∗∗∗ 0.044± 0.001∗∗∗

Default (m=1) LB 1923 0.065± 0.005 0.142 −0.005± 0.001∗∗∗ −0.074± 0.001∗∗∗ 0.088 0.001± 0.000 0.014± 0.002∗∗∗

Default (m=5) LB 1923 0.065± 0.005 0.148 0.001± 0.001 0.018± 0.001∗∗∗ 0.090 0.002± 0.002 0.039± 0.005∗∗∗

MICE RF (m=1) LB 1923 0.065± 0.005 0.141 −0.006± 0.001∗∗∗ −0.086± 0.001∗∗∗ 0.088 0.001± 0.000∗∗ 0.020± 0.002∗∗∗

MICE RF (m=5) LB 1923 0.065± 0.005 0.148 0.001± 0.001 0.009± 0.001∗∗∗ 0.088 0.001± 0.002 0.023± 0.006∗∗∗

CART (m=1) LB 1923 0.065± 0.005 0.142 −0.005± 0.001∗∗∗ −0.074± 0.001∗∗∗ 0.088 0.001± 0.001 0.011± 0.002∗∗∗

CART (m=5) LB 1923 0.065± 0.005 0.148 0.001± 0.001 0.014± 0.001∗∗∗ 0.089 0.001± 0.001 0.025± 0.004∗∗∗

CART+Aux (m=1) LB 1923 0.065± 0.005 0.144 −0.003± 0.001∗∗∗ −0.053± 0.001∗∗∗ 0.088 0.000± 0.000 0.007± 0.002∗∗∗

CART+Aux (m=5) LB 1923 0.065± 0.005 0.148 0.001± 0.001 0.009± 0.002∗∗∗ 0.089 0.001± 0.001 0.021± 0.003∗∗∗
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Table A.10: Imputed FI Bias Summary by Block - 15% pMAR (2/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT PFQ 1923 0.583± 0.012 0.095 0.000± 0.000 0.000± 0.000 0.125 0.000± 0.000 0.000± 0.000
Ignore PFQ 824.5 0.583± 0.012 0.107 −0.000± 0.001 −0.001± 0.000∗∗∗ 0.134 0.009± 0.005 0.016± 0.001∗∗∗

Ignore (weighted) PFQ 824.5 0.583± 0.012 0.109 0.014± 0.006∗ 0.025± 0.001∗∗∗ 0.134 0.009± 0.005 0.017± 0.001∗∗∗

Ignore20 PFQ 763.5 0.583± 0.012 0.109 −0.000± 0.001 −0.001± 0.000∗∗∗ 0.136 0.010± 0.005∗ 0.019± 0.001∗∗∗

kNN PFQ 1923 0.583± 0.012 0.132 0.037± 0.018∗ 0.073± 0.006∗∗∗ 0.133 0.007± 0.011 0.024± 0.004∗∗∗

RF PFQ 1923 0.583± 0.012 0.046 −0.049± 0.003∗∗∗ −0.081± 0.001∗∗∗ 0.102 −0.024± 0.004∗∗∗ −0.034± 0.002∗∗∗

Default (m=1) PFQ 1923 0.583± 0.012 0.313 0.218± 0.020∗∗∗ 0.357± 0.007∗∗∗ 0.257 0.132± 0.011∗∗∗ 0.237± 0.005∗∗∗

Default (m=5) PFQ 1923 0.583± 0.012 0.313 0.218± 0.023∗∗∗ 0.357± 0.007∗∗∗ 0.591 0.465± 0.112∗∗∗ 0.817± 0.044∗∗∗

MICE RF (m=1) PFQ 1923 0.583± 0.012 0.059 −0.036± 0.003∗∗∗ −0.060± 0.001∗∗∗ 0.098 −0.028± 0.004∗∗∗ −0.042± 0.002∗∗∗

MICE RF (m=5) PFQ 1923 0.583± 0.012 0.059 −0.036± 0.003∗∗∗ −0.060± 0.001∗∗∗ 0.107 −0.018± 0.003∗∗∗ −0.027± 0.002∗∗∗

CART (m=1) PFQ 1923 0.583± 0.012 0.103 0.008± 0.003∗ 0.014± 0.001∗∗∗ 0.096 −0.029± 0.004∗∗∗ −0.046± 0.001∗∗∗

CART (m=5) PFQ 1923 0.583± 0.012 0.103 0.008± 0.004 0.014± 0.001∗∗∗ 0.145 0.019± 0.019 0.031± 0.005∗∗∗

CART+Aux (m=1) PFQ 1923 0.583± 0.012 0.097 0.002± 0.002 0.004± 0.001∗∗∗ 0.110 −0.016± 0.004∗∗∗ −0.025± 0.001∗∗∗

CART+Aux (m=5) PFQ 1923 0.583± 0.012 0.097 0.002± 0.003 0.004± 0.001∗∗∗ 0.129 0.004± 0.010 0.005± 0.003
GT RXD 1923 0.472± 0.011 0.207 0.000± 0.000 0.000± 0.000 0.140 0.000± 0.000 0.000± 0.000
Ignore RXD 1014.7 0.472± 0.011 0.218 0.000± 0.000 0.000± 0.000 0.146 0.006± 0.003 0.013± 0.001∗∗∗

Ignore (weighted) RXD 1014.7 0.472± 0.011 0.222 0.015± 0.006∗ 0.036± 0.002∗∗∗ 0.146 0.006± 0.003∗ 0.012± 0.001∗∗∗

Ignore20 RXD 800.9 0.472± 0.011 0.226 0.000± 0.000 0.000± 0.000 0.149 0.009± 0.002∗∗∗ 0.020± 0.001∗∗∗

kNN RXD 1923 0.472± 0.011 0.189 −0.018± 0.003∗∗∗ −0.037± 0.001∗∗∗ 0.122 −0.018± 0.003∗∗∗ −0.035± 0.001∗∗∗

RF RXD 1923 0.472± 0.011 0.190 −0.017± 0.003∗∗∗ −0.038± 0.001∗∗∗ 0.133 −0.007± 0.004 −0.013± 0.001∗∗∗

Default (m=1) RXD 1923 0.472± 0.011 0.217 0.010± 0.003∗∗∗ 0.020± 0.001∗∗∗ 0.130 −0.010± 0.002∗∗∗ −0.023± 0.001∗∗∗

Default (m=5) RXD 1923 0.472± 0.011 0.217 0.010± 0.004∗ 0.020± 0.001∗∗∗ 0.190 0.050± 0.025∗ 0.098± 0.008∗∗∗

MICE RF (m=1) RXD 1923 0.472± 0.011 0.202 −0.005± 0.004 −0.008± 0.001∗∗∗ 0.117 −0.023± 0.003∗∗∗ −0.046± 0.001∗∗∗

MICE RF (m=5) RXD 1923 0.472± 0.011 0.202 −0.005± 0.005 −0.008± 0.001∗∗∗ 0.163 0.023± 0.011∗ 0.051± 0.005∗∗∗

CART (m=1) RXD 1923 0.472± 0.011 0.210 0.003± 0.003 0.009± 0.001∗∗∗ 0.122 −0.018± 0.003∗∗∗ −0.037± 0.001∗∗∗

CART (m=5) RXD 1923 0.472± 0.011 0.210 0.003± 0.004 0.009± 0.001∗∗∗ 0.170 0.030± 0.016 0.058± 0.006∗∗∗

CART+Aux (m=1) RXD 1923 0.472± 0.011 0.210 0.003± 0.003 0.009± 0.001∗∗∗ 0.122 −0.018± 0.003∗∗∗ −0.037± 0.001∗∗∗

CART+Aux (m=5) RXD 1923 0.472± 0.011 0.210 0.003± 0.004 0.009± 0.001∗∗∗ 0.166 0.026± 0.010∗ 0.064± 0.006∗∗∗

GT VIQ 1923 0.274± 0.013 0.193 0.000± 0.000 0.000± 0.000 0.189 0.000± 0.000 0.000± 0.000
Ignore VIQ 1415.1 0.274± 0.013 0.196 0.001± 0.001 0.004± 0.000∗∗∗ 0.193 0.004± 0.002∗∗ 0.019± 0.001∗∗∗

Ignore (weighted) VIQ 1415.1 0.274± 0.013 0.199 0.006± 0.007 0.032± 0.003∗∗∗ 0.194 0.005± 0.002∗ 0.020± 0.002∗∗∗

Ignore20 VIQ 1034 0.274± 0.013 0.204 0.001± 0.001 0.005± 0.000∗∗∗ 0.198 0.009± 0.004∗ 0.034± 0.002∗∗∗

kNN VIQ 1923 0.274± 0.013 0.172 −0.021± 0.004∗∗∗ −0.071± 0.002∗∗∗ 0.173 −0.016± 0.001∗∗∗ −0.052± 0.002∗∗∗

RF VIQ 1923 0.274± 0.013 0.163 −0.029± 0.003∗∗∗ −0.102± 0.002∗∗∗ 0.172 −0.016± 0.001∗∗∗ −0.055± 0.002∗∗∗

Default (m=1) VIQ 1923 0.274± 0.013 0.205 0.012± 0.004∗∗ 0.047± 0.002∗∗∗ 0.176 −0.013± 0.002∗∗∗ −0.046± 0.001∗∗∗

Default (m=5) VIQ 1923 0.274± 0.013 0.205 0.012± 0.005∗ 0.047± 0.002∗∗∗ 0.228 0.039± 0.016∗ 0.141± 0.012∗∗∗

MICE RF (m=1) VIQ 1923 0.274± 0.013 0.176 −0.016± 0.003∗∗∗ −0.055± 0.002∗∗∗ 0.169 −0.020± 0.001∗∗∗ −0.068± 0.002∗∗∗

MICE RF (m=5) VIQ 1923 0.274± 0.013 0.176 −0.016± 0.004∗∗∗ −0.055± 0.002∗∗∗ 0.203 0.014± 0.020 0.046± 0.012∗∗∗

CART (m=1) VIQ 1923 0.274± 0.013 0.192 −0.001± 0.004 0.002± 0.002 0.170 −0.019± 0.001∗∗∗ −0.065± 0.001∗∗∗

CART (m=5) VIQ 1923 0.274± 0.013 0.192 −0.001± 0.004 0.002± 0.002 0.205 0.016± 0.011 0.077± 0.009∗∗∗

CART+Aux (m=1) VIQ 1923 0.274± 0.013 0.192 −0.000± 0.003 0.001± 0.002 0.176 −0.013± 0.002∗∗∗ −0.046± 0.001∗∗∗

CART+Aux (m=5) VIQ 1923 0.274± 0.013 0.192 −0.000± 0.004 0.001± 0.002 0.206 0.017± 0.012 0.056± 0.007∗∗∗
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Table A.11: Imputed FI Bias Summary by Block - 15% cMNAR (1/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT All 1923 0.150± 0.000 0.176 0.000± 0.000 0.000± 0.000 0.073 0.000± 0.000 0.000± 0.000
Ignore All 1923 0.150± 0.000 0.198 0.022± 0.000∗∗∗ 0.142± 0.001∗∗∗ 0.080 0.007± 0.000∗∗∗ 0.046± 0.000∗∗∗

Ignore (weighted) All 1923 0.150± 0.000 0.199 0.023± 0.002∗∗∗ 0.147± 0.001∗∗∗ 0.081 0.007± 0.000∗∗∗ 0.048± 0.000∗∗∗

Ignore20 All 1658.6 0.150± 0.000 0.202 0.020± 0.000∗∗∗ 0.137± 0.000∗∗∗ 0.081 0.008± 0.000∗∗∗ 0.050± 0.001∗∗∗

kNN All 1923 0.150± 0.000 0.179 0.002± 0.000∗∗∗ 0.012± 0.001∗∗∗ 0.072 −0.001± 0.000∗∗∗ −0.009± 0.000∗∗∗

RF All 1923 0.150± 0.000 0.177 0.001± 0.000∗ 0.004± 0.000∗∗∗ 0.074 0.001± 0.000∗∗ 0.006± 0.000∗∗∗

Default (m=1) All 1923 0.150± 0.000 0.188 0.011± 0.000∗∗∗ 0.072± 0.001∗∗∗ 0.076 0.002± 0.000∗∗∗ 0.015± 0.001∗∗∗

Default (m=5) All 1923 0.150± 0.000 0.193 0.017± 0.001∗∗∗ 0.109± 0.001∗∗∗ 0.078 0.004± 0.001∗∗∗ 0.029± 0.001∗∗∗

MICE RF (m=1) All 1923 0.150± 0.000 0.181 0.005± 0.000∗∗∗ 0.030± 0.000∗∗∗ 0.074 0.000± 0.000 0.003± 0.000∗∗∗

MICE RF (m=5) All 1923 0.150± 0.000 0.188 0.011± 0.001∗∗∗ 0.074± 0.001∗∗∗ 0.076 0.002± 0.001∗∗ 0.017± 0.001∗∗∗

CART (m=1) All 1923 0.150± 0.000 0.185 0.008± 0.000∗∗∗ 0.055± 0.000∗∗∗ 0.075 0.001± 0.000∗∗∗ 0.009± 0.001∗∗∗

CART (m=5) All 1923 0.150± 0.000 0.190 0.014± 0.001∗∗∗ 0.092± 0.001∗∗∗ 0.077 0.004± 0.001∗∗∗ 0.025± 0.001∗∗∗

CART+Aux (m=1) All 1923 0.150± 0.000 0.173 −0.003± 0.001∗∗∗ −0.021± 0.001∗∗∗ 0.072 −0.002± 0.000∗∗∗ −0.010± 0.001∗∗∗

CART+Aux (m=5) All 1923 0.150± 0.000 0.176 0.000± 0.001 0.000± 0.001 0.074 0.000± 0.001 0.002± 0.001
GT BPX 1923 0.140± 0.003 0.289 0.000± 0.000 0.000± 0.000 0.263 0.000± 0.000 0.000± 0.000
Ignore BPX 1923 0.140± 0.003 0.316 0.027± 0.002∗∗∗ 0.194± 0.002∗∗∗ 0.289 0.026± 0.002∗∗∗ 0.187± 0.003∗∗∗

Ignore (weighted) BPX 1923 0.140± 0.003 0.317 0.028± 0.009∗∗ 0.199± 0.002∗∗∗ 0.289 0.026± 0.002∗∗∗ 0.186± 0.003∗∗∗

Ignore20 BPX 1658.6 0.140± 0.003 0.321 0.025± 0.002∗∗∗ 0.185± 0.002∗∗∗ 0.288 0.025± 0.002∗∗∗ 0.181± 0.003∗∗∗

kNN BPX 1923 0.140± 0.003 0.299 0.010± 0.003∗∗∗ 0.067± 0.004∗∗∗ 0.256 −0.007± 0.001∗∗∗ −0.044± 0.002∗∗∗

RF BPX 1923 0.140± 0.003 0.288 −0.000± 0.001 −0.002± 0.001 0.263 0.000± 0.001 0.003± 0.001∗

Default (m=1) BPX 1923 0.140± 0.003 0.290 0.002± 0.001 0.013± 0.001∗∗∗ 0.263 0.001± 0.001 0.005± 0.001∗∗∗

Default (m=5) BPX 1923 0.140± 0.003 0.295 0.007± 0.002∗∗∗ 0.048± 0.001∗∗∗ 0.269 0.006± 0.003 0.040± 0.004∗∗∗

MICE RF (m=1) BPX 1923 0.140± 0.003 0.292 0.004± 0.001∗ 0.025± 0.002∗∗∗ 0.264 0.001± 0.001 0.009± 0.002∗∗∗

MICE RF (m=5) BPX 1923 0.140± 0.003 0.303 0.015± 0.002∗∗∗ 0.101± 0.002∗∗∗ 0.273 0.010± 0.005∗ 0.072± 0.007∗∗∗

CART (m=1) BPX 1923 0.140± 0.003 0.292 0.003± 0.001∗∗ 0.022± 0.001∗∗∗ 0.264 0.002± 0.001 0.011± 0.001∗∗∗

CART (m=5) BPX 1923 0.140± 0.003 0.298 0.009± 0.002∗∗∗ 0.066± 0.001∗∗∗ 0.269 0.006± 0.002∗∗ 0.047± 0.003∗∗∗

CART+Aux (m=1) BPX 1923 0.140± 0.003 0.284 −0.005± 0.002∗∗ −0.034± 0.002∗∗∗ 0.261 −0.002± 0.001∗ −0.011± 0.001∗∗∗

CART+Aux (m=5) BPX 1923 0.140± 0.003 0.288 −0.000± 0.002 −0.003± 0.001∗ 0.267 0.004± 0.003 0.030± 0.004∗∗∗

GT LB 1923 0.162± 0.001 0.147 0.000± 0.000 0.000± 0.000 0.087 0.000± 0.000 0.000± 0.000
Ignore LB 1923 0.162± 0.001 0.168 0.021± 0.001∗∗∗ 0.125± 0.001∗∗∗ 0.099 0.012± 0.000∗∗∗ 0.070± 0.001∗∗∗

Ignore (weighted) LB 1923 0.162± 0.001 0.168 0.021± 0.003∗∗∗ 0.129± 0.001∗∗∗ 0.099 0.012± 0.000∗∗∗ 0.072± 0.001∗∗∗

Ignore20 LB 1658.6 0.162± 0.001 0.171 0.020± 0.001∗∗∗ 0.121± 0.001∗∗∗ 0.100 0.012± 0.001∗∗∗ 0.073± 0.001∗∗∗

kNN LB 1923 0.162± 0.001 0.147 0.000± 0.001 0.001± 0.001 0.086 −0.001± 0.000∗∗∗ −0.008± 0.001∗∗∗

RF LB 1923 0.162± 0.001 0.147 0.000± 0.001 0.001± 0.001 0.089 0.002± 0.000∗∗∗ 0.011± 0.001∗∗∗

Default (m=1) LB 1923 0.162± 0.001 0.152 0.005± 0.001∗∗∗ 0.031± 0.001∗∗∗ 0.090 0.002± 0.001∗∗∗ 0.014± 0.001∗∗∗

Default (m=5) LB 1923 0.162± 0.001 0.166 0.019± 0.001∗∗∗ 0.112± 0.001∗∗∗ 0.095 0.007± 0.002∗∗∗ 0.045± 0.002∗∗∗

MICE RF (m=1) LB 1923 0.162± 0.001 0.149 0.002± 0.001∗∗∗ 0.013± 0.001∗∗∗ 0.088 0.001± 0.001∗ 0.007± 0.001∗∗∗

MICE RF (m=5) LB 1923 0.162± 0.001 0.164 0.017± 0.001∗∗∗ 0.105± 0.001∗∗∗ 0.094 0.007± 0.002∗∗∗ 0.045± 0.003∗∗∗

CART (m=1) LB 1923 0.162± 0.001 0.151 0.004± 0.001∗∗∗ 0.025± 0.001∗∗∗ 0.089 0.002± 0.001∗∗∗ 0.011± 0.001∗∗∗

CART (m=5) LB 1923 0.162± 0.001 0.164 0.017± 0.001∗∗∗ 0.105± 0.001∗∗∗ 0.095 0.008± 0.002∗∗∗ 0.049± 0.002∗∗∗

CART+Aux (m=1) LB 1923 0.162± 0.001 0.140 −0.007± 0.001∗∗∗ −0.045± 0.001∗∗∗ 0.086 −0.001± 0.001 −0.008± 0.001∗∗∗

CART+Aux (m=5) LB 1923 0.162± 0.001 0.147 −0.000± 0.001 −0.000± 0.001 0.092 0.005± 0.002∗ 0.024± 0.002∗∗∗
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Table A.12: Imputed FI Bias Summary by Block - 15% cMNAR (2/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT PFQ 1923 0.158± 0.002 0.095 0.000± 0.000 0.000± 0.000 0.125 0.000± 0.000 0.000± 0.000
Ignore PFQ 1923 0.158± 0.002 0.103 0.008± 0.001∗∗∗ 0.052± 0.001∗∗∗ 0.133 0.007± 0.001∗∗∗ 0.046± 0.001∗∗∗

Ignore (weighted) PFQ 1923 0.158± 0.002 0.104 0.009± 0.004∗ 0.059± 0.001∗∗∗ 0.134 0.008± 0.001∗∗∗ 0.052± 0.001∗∗∗

Ignore20 PFQ 1658.6 0.158± 0.002 0.109 0.008± 0.001∗∗∗ 0.051± 0.001∗∗∗ 0.136 0.011± 0.001∗∗∗ 0.061± 0.002∗∗∗

kNN PFQ 1923 0.158± 0.002 0.093 −0.002± 0.001∗∗∗ −0.012± 0.000∗∗∗ 0.122 −0.003± 0.001∗∗∗ −0.019± 0.001∗∗∗

RF PFQ 1923 0.158± 0.002 0.094 −0.001± 0.001 −0.005± 0.000∗∗∗ 0.125 −0.000± 0.000 −0.001± 0.001
Default (m=1) PFQ 1923 0.158± 0.002 0.105 0.010± 0.001∗∗∗ 0.062± 0.001∗∗∗ 0.127 0.002± 0.001∗∗∗ 0.014± 0.001∗∗∗

Default (m=5) PFQ 1923 0.158± 0.002 0.105 0.010± 0.001∗∗∗ 0.062± 0.001∗∗∗ 0.130 0.005± 0.001∗∗∗ 0.031± 0.001∗∗∗

MICE RF (m=1) PFQ 1923 0.158± 0.002 0.097 0.002± 0.000∗∗∗ 0.014± 0.000∗∗∗ 0.125 −0.000± 0.000 −0.002± 0.001∗

MICE RF (m=5) PFQ 1923 0.158± 0.002 0.097 0.002± 0.001∗∗∗ 0.014± 0.000∗∗∗ 0.127 0.001± 0.001 0.009± 0.001∗∗∗

CART (m=1) PFQ 1923 0.158± 0.002 0.101 0.006± 0.000∗∗∗ 0.039± 0.001∗∗∗ 0.126 0.001± 0.000∗ 0.007± 0.001∗∗∗

CART (m=5) PFQ 1923 0.158± 0.002 0.101 0.006± 0.001∗∗∗ 0.039± 0.001∗∗∗ 0.129 0.004± 0.002∗ 0.022± 0.002∗∗∗

CART+Aux (m=1) PFQ 1923 0.158± 0.002 0.095 −0.000± 0.001 −0.001± 0.001 0.123 −0.003± 0.001∗∗∗ −0.019± 0.001∗∗∗

CART+Aux (m=5) PFQ 1923 0.158± 0.002 0.095 −0.000± 0.001 −0.001± 0.001 0.125 −0.001± 0.000 −0.005± 0.001∗∗∗

GT RXD 1923 0.055± 0.005 0.207 0.000± 0.000 0.000± 0.000 0.140 0.000± 0.000 0.000± 0.000
Ignore RXD 1816.4 0.055± 0.005 0.208 0.000± 0.000 0.000± 0.000 0.141 0.001± 0.001 0.008± 0.002∗∗

Ignore (weighted) RXD 1816.4 0.055± 0.005 0.209 0.002± 0.005 0.037± 0.003∗∗∗ 0.141 0.000± 0.001 0.006± 0.003∗

Ignore20 RXD 1576.6 0.055± 0.005 0.213 0.000± 0.000 0.000± 0.000 0.143 0.003± 0.001∗∗ 0.036± 0.005∗∗∗

kNN RXD 1923 0.055± 0.005 0.205 −0.002± 0.001 −0.035± 0.003∗∗∗ 0.138 −0.002± 0.001∗ −0.037± 0.002∗∗∗

RF RXD 1923 0.055± 0.005 0.206 −0.001± 0.001 −0.018± 0.003∗∗∗ 0.140 −0.000± 0.001 −0.009± 0.003∗∗

Default (m=1) RXD 1923 0.055± 0.005 0.208 0.001± 0.001 0.022± 0.002∗∗∗ 0.139 −0.001± 0.001 −0.020± 0.002∗∗∗

Default (m=5) RXD 1923 0.055± 0.005 0.208 0.001± 0.001 0.022± 0.002∗∗∗ 0.146 0.005± 0.003 0.089± 0.010∗∗∗

MICE RF (m=1) RXD 1923 0.055± 0.005 0.207 0.000± 0.001 −0.002± 0.003 0.138 −0.002± 0.001∗∗ −0.042± 0.002∗∗∗

MICE RF (m=5) RXD 1923 0.055± 0.005 0.207 0.000± 0.001 −0.002± 0.003 0.144 0.004± 0.003 0.071± 0.010∗∗∗

CART (m=1) RXD 1923 0.055± 0.005 0.208 0.001± 0.001 0.010± 0.003∗∗∗ 0.138 −0.002± 0.001∗ −0.037± 0.002∗∗∗

CART (m=5) RXD 1923 0.055± 0.005 0.208 0.001± 0.001 0.010± 0.003∗∗∗ 0.143 0.003± 0.002 0.063± 0.010∗∗∗

CART+Aux (m=1) RXD 1923 0.055± 0.005 0.207 0.000± 0.002 0.003± 0.005 0.133 −0.007± 0.002∗∗∗ −0.125± 0.006∗∗∗

CART+Aux (m=5) RXD 1923 0.055± 0.005 0.207 0.000± 0.002 0.003± 0.005 0.150 0.010± 0.007 0.181± 0.020∗∗∗

GT VIQ 1923 0.130± 0.005 0.193 0.000± 0.000 0.000± 0.000 0.189 0.000± 0.000 0.000± 0.000
Ignore VIQ 1918.7 0.130± 0.005 0.209 0.016± 0.002∗∗∗ 0.124± 0.003∗∗∗ 0.207 0.018± 0.002∗∗∗ 0.134± 0.004∗∗∗

Ignore (weighted) VIQ 1918.7 0.130± 0.005 0.210 0.018± 0.007∗∗ 0.134± 0.003∗∗∗ 0.207 0.018± 0.002∗∗∗ 0.136± 0.003∗∗∗

Ignore20 VIQ 1656.9 0.130± 0.005 0.214 0.015± 0.002∗∗∗ 0.119± 0.003∗∗∗ 0.208 0.019± 0.002∗∗∗ 0.141± 0.004∗∗∗

kNN VIQ 1923 0.130± 0.005 0.195 0.002± 0.002 0.020± 0.002∗∗∗ 0.186 −0.003± 0.002 −0.023± 0.002∗∗∗

RF VIQ 1923 0.130± 0.005 0.193 0.001± 0.002 0.005± 0.002∗∗ 0.185 −0.003± 0.002∗ −0.025± 0.002∗∗∗

Default (m=1) VIQ 1923 0.130± 0.005 0.211 0.019± 0.002∗∗∗ 0.141± 0.002∗∗∗ 0.187 −0.001± 0.001 −0.013± 0.002∗∗∗

Default (m=5) VIQ 1923 0.130± 0.005 0.211 0.019± 0.003∗∗∗ 0.141± 0.002∗∗∗ 0.208 0.019± 0.008∗ 0.156± 0.012∗∗∗

MICE RF (m=1) VIQ 1923 0.130± 0.005 0.201 0.008± 0.001∗∗∗ 0.065± 0.002∗∗∗ 0.184 −0.005± 0.001∗∗∗ −0.037± 0.001∗∗∗

MICE RF (m=5) VIQ 1923 0.130± 0.005 0.201 0.008± 0.002∗∗∗ 0.065± 0.002∗∗∗ 0.199 0.010± 0.004∗∗ 0.075± 0.007∗∗∗

CART (m=1) VIQ 1923 0.130± 0.005 0.208 0.016± 0.002∗∗∗ 0.121± 0.002∗∗∗ 0.185 −0.003± 0.001∗∗ −0.025± 0.002∗∗∗

CART (m=5) VIQ 1923 0.130± 0.005 0.208 0.016± 0.002∗∗∗ 0.121± 0.002∗∗∗ 0.203 0.014± 0.005∗∗ 0.112± 0.008∗∗∗

CART+Aux (m=1) VIQ 1923 0.130± 0.005 0.193 −0.000± 0.002 0.000± 0.002 0.181 −0.007± 0.001∗∗∗ −0.057± 0.003∗∗∗

CART+Aux (m=5) VIQ 1923 0.130± 0.005 0.193 −0.000± 0.003 0.000± 0.002 0.195 0.007± 0.005 0.057± 0.009∗∗∗
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Table A.13: Imputed FI Bias Summary by Block - 15% cMCAR (1/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT All 1923 0.150± 0.000 0.176 0.000± 0.000 0.000± 0.000 0.073 0.000± 0.000 0.000± 0.000
Ignore All 1923 0.150± 0.000 0.176 0.000± 0.000 −0.000± 0.001 0.076 0.002± 0.000∗∗∗ 0.014± 0.001∗∗∗

Ignore (weighted) All 1923 0.150± 0.000 0.176 0.000± 0.002 −0.000± 0.001 0.075 0.002± 0.000∗∗∗ 0.013± 0.001∗∗∗

Ignore20 All 1670.3 0.150± 0.000 0.176 0.000± 0.000 −0.000± 0.001 0.075 0.002± 0.001∗∗ 0.013± 0.001∗∗∗

kNN All 1923 0.150± 0.000 0.179 0.002± 0.000∗∗∗ 0.012± 0.001∗∗∗ 0.072 −0.001± 0.000∗∗∗ −0.009± 0.000∗∗∗

RF All 1923 0.150± 0.000 0.177 0.001± 0.000∗ 0.004± 0.000∗∗∗ 0.074 0.001± 0.000∗∗ 0.006± 0.000∗∗∗

Default (m=1) All 1923 0.150± 0.000 0.188 0.011± 0.000∗∗∗ 0.072± 0.001∗∗∗ 0.076 0.002± 0.000∗∗∗ 0.015± 0.000∗∗∗

Default (m=5) All 1923 0.150± 0.000 0.193 0.017± 0.001∗∗∗ 0.109± 0.001∗∗∗ 0.078 0.005± 0.001∗∗∗ 0.030± 0.001∗∗∗

MICE RF (m=1) All 1923 0.150± 0.000 0.181 0.004± 0.000∗∗∗ 0.029± 0.000∗∗∗ 0.074 0.000± 0.000 0.003± 0.000∗∗∗

MICE RF (m=5) All 1923 0.150± 0.000 0.188 0.011± 0.001∗∗∗ 0.073± 0.001∗∗∗ 0.076 0.002± 0.001∗ 0.017± 0.002∗∗∗

CART (m=1) All 1923 0.150± 0.000 0.172 −0.004± 0.000∗∗∗ −0.029± 0.000∗∗∗ 0.072 −0.002± 0.000∗∗∗ −0.012± 0.000∗∗∗

CART (m=5) All 1923 0.150± 0.000 0.177 0.000± 0.001 0.002± 0.001∗∗ 0.073 −0.000± 0.001 0.002± 0.001
CART+Aux (m=1) All 1923 0.150± 0.000 0.173 −0.003± 0.001∗∗∗ −0.022± 0.000∗∗∗ 0.072 −0.002± 0.000∗∗∗ −0.010± 0.000∗∗∗

CART+Aux (m=5) All 1923 0.150± 0.000 0.177 0.000± 0.001 −0.000± 0.001 0.074 0.000± 0.001 0.004± 0.001∗

GT BPX 1923 0.150± 0.003 0.289 0.000± 0.000 0.000± 0.000 0.263 0.000± 0.000 0.000± 0.000
Ignore BPX 1923 0.150± 0.003 0.287 −0.001± 0.003 −0.007± 0.002∗∗ 0.277 0.014± 0.002∗∗∗ 0.090± 0.003∗∗∗

Ignore (weighted) BPX 1923 0.150± 0.003 0.287 −0.001± 0.009 −0.007± 0.003∗∗ 0.276 0.014± 0.002∗∗∗ 0.088± 0.003∗∗∗

Ignore20 BPX 1670.3 0.150± 0.003 0.286 −0.001± 0.003 −0.007± 0.002∗∗ 0.275 0.012± 0.003∗∗∗ 0.083± 0.003∗∗∗

kNN BPX 1923 0.150± 0.003 0.299 0.010± 0.003∗∗∗ 0.063± 0.003∗∗∗ 0.256 −0.007± 0.001∗∗∗ −0.041± 0.002∗∗∗

RF BPX 1923 0.150± 0.003 0.288 −0.001± 0.001 −0.003± 0.001∗ 0.263 0.000± 0.001 0.002± 0.001
Default (m=1) BPX 1923 0.150± 0.003 0.291 0.002± 0.001 0.015± 0.001∗∗∗ 0.263 0.001± 0.001 0.005± 0.001∗∗∗

Default (m=5) BPX 1923 0.150± 0.003 0.295 0.007± 0.002∗∗∗ 0.045± 0.001∗∗∗ 0.268 0.005± 0.002∗ 0.035± 0.003∗∗∗

MICE RF (m=1) BPX 1923 0.150± 0.003 0.291 0.003± 0.001∗ 0.020± 0.001∗∗∗ 0.263 0.001± 0.001 0.005± 0.002∗∗

MICE RF (m=5) BPX 1923 0.150± 0.003 0.303 0.014± 0.002∗∗∗ 0.094± 0.001∗∗∗ 0.274 0.011± 0.007 0.079± 0.007∗∗∗

CART (m=1) BPX 1923 0.150± 0.003 0.282 −0.006± 0.002∗∗∗ −0.038± 0.002∗∗∗ 0.260 −0.003± 0.000∗∗∗ −0.015± 0.001∗∗∗

CART (m=5) BPX 1923 0.150± 0.003 0.287 −0.001± 0.002 −0.008± 0.002∗∗∗ 0.267 0.004± 0.004 0.025± 0.004∗∗∗

CART+Aux (m=1) BPX 1923 0.150± 0.003 0.283 −0.006± 0.002∗∗ −0.038± 0.002∗∗∗ 0.260 −0.002± 0.001∗∗ −0.013± 0.001∗∗∗

CART+Aux (m=5) BPX 1923 0.150± 0.003 0.287 −0.001± 0.002 −0.009± 0.002∗∗∗ 0.266 0.004± 0.003 0.025± 0.004∗∗∗

GT LB 1923 0.150± 0.001 0.147 0.000± 0.000 0.000± 0.000 0.087 0.000± 0.000 0.000± 0.000
Ignore LB 1923 0.150± 0.001 0.147 −0.000± 0.001 −0.001± 0.001 0.092 0.004± 0.001∗∗∗ 0.029± 0.001∗∗∗

Ignore (weighted) LB 1923 0.150± 0.001 0.147 −0.000± 0.003 −0.000± 0.001 0.091 0.004± 0.001∗∗∗ 0.028± 0.001∗∗∗

Ignore20 LB 1670.3 0.150± 0.001 0.147 0.000± 0.001 0.000± 0.001 0.091 0.004± 0.001∗∗∗ 0.027± 0.001∗∗∗

kNN LB 1923 0.150± 0.001 0.147 0.000± 0.001 0.001± 0.001 0.086 −0.001± 0.000∗∗∗ −0.008± 0.001∗∗∗

RF LB 1923 0.150± 0.001 0.147 0.000± 0.001 0.001± 0.001 0.089 0.002± 0.000∗∗∗ 0.012± 0.001∗∗∗

Default (m=1) LB 1923 0.150± 0.001 0.152 0.005± 0.001∗∗∗ 0.033± 0.001∗∗∗ 0.089 0.002± 0.000∗∗∗ 0.015± 0.001∗∗∗

Default (m=5) LB 1923 0.150± 0.001 0.166 0.019± 0.001∗∗∗ 0.121± 0.001∗∗∗ 0.095 0.008± 0.003∗∗ 0.050± 0.004∗∗∗

MICE RF (m=1) LB 1923 0.150± 0.001 0.149 0.002± 0.001∗∗ 0.014± 0.001∗∗∗ 0.089 0.001± 0.001∗ 0.008± 0.001∗∗∗

MICE RF (m=5) LB 1923 0.150± 0.001 0.164 0.017± 0.001∗∗∗ 0.112± 0.001∗∗∗ 0.095 0.008± 0.003∗∗ 0.053± 0.004∗∗∗

CART (m=1) LB 1923 0.150± 0.001 0.137 −0.010± 0.001∗∗∗ −0.067± 0.001∗∗∗ 0.085 −0.002± 0.001∗∗ −0.014± 0.001∗∗∗

CART (m=5) LB 1923 0.150± 0.001 0.148 0.001± 0.001 0.006± 0.001∗∗∗ 0.091 0.004± 0.005 0.027± 0.005∗∗∗

CART+Aux (m=1) LB 1923 0.150± 0.001 0.140 −0.007± 0.001∗∗∗ −0.048± 0.001∗∗∗ 0.086 −0.001± 0.000∗∗ −0.008± 0.001∗∗∗

CART+Aux (m=5) LB 1923 0.150± 0.001 0.147 0.000± 0.001 0.001± 0.001 0.090 0.003± 0.002 0.023± 0.003∗∗∗
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Table A.14: Imputed FI Bias Summary by Block - 15% cMCAR (2/2)

Imputation Block N Missingness Mean FI Bias Bias Rate FI SD SD Bias SD Bias Rate
GT PFQ 1923 0.151± 0.002 0.095 0.000± 0.000 0.000± 0.000 0.125 0.000± 0.000 0.000± 0.000
Ignore PFQ 1923 0.151± 0.002 0.095 0.000± 0.001 0.002± 0.001∗ 0.128 0.003± 0.001∗∗∗ 0.016± 0.001∗∗∗

Ignore (weighted) PFQ 1923 0.151± 0.002 0.095 0.000± 0.004 0.001± 0.001∗ 0.128 0.003± 0.001∗∗∗ 0.016± 0.001∗∗∗

Ignore20 PFQ 1670.3 0.151± 0.002 0.095 0.000± 0.001 0.002± 0.001∗ 0.127 0.002± 0.002 0.014± 0.002∗∗∗

kNN PFQ 1923 0.151± 0.002 0.093 −0.002± 0.001∗∗∗ −0.012± 0.000∗∗∗ 0.122 −0.003± 0.001∗∗∗ −0.020± 0.001∗∗∗

RF PFQ 1923 0.151± 0.002 0.094 −0.001± 0.000 −0.005± 0.000∗∗∗ 0.125 −0.000± 0.000 −0.001± 0.001
Default (m=1) PFQ 1923 0.151± 0.002 0.105 0.010± 0.001∗∗∗ 0.065± 0.001∗∗∗ 0.127 0.002± 0.001∗∗∗ 0.015± 0.001∗∗∗

Default (m=5) PFQ 1923 0.151± 0.002 0.105 0.010± 0.001∗∗∗ 0.065± 0.001∗∗∗ 0.131 0.005± 0.001∗∗∗ 0.035± 0.002∗∗∗

MICE RF (m=1) PFQ 1923 0.151± 0.002 0.097 0.002± 0.000∗∗∗ 0.014± 0.000∗∗∗ 0.125 −0.000± 0.000 −0.002± 0.001∗

MICE RF (m=5) PFQ 1923 0.151± 0.002 0.097 0.002± 0.001∗∗∗ 0.014± 0.000∗∗∗ 0.126 0.001± 0.001 0.007± 0.001∗∗∗

CART (m=1) PFQ 1923 0.151± 0.002 0.095 0.000± 0.001 0.000± 0.001 0.122 −0.003± 0.001∗∗∗ −0.022± 0.001∗∗∗

CART (m=5) PFQ 1923 0.151± 0.002 0.095 0.000± 0.001 0.000± 0.001 0.125 −0.000± 0.003 −0.002± 0.003
CART+Aux (m=1) PFQ 1923 0.151± 0.002 0.095 0.000± 0.001 −0.000± 0.001 0.122 −0.003± 0.001∗∗∗ −0.021± 0.001∗∗∗

CART+Aux (m=5) PFQ 1923 0.151± 0.002 0.095 0.000± 0.001 −0.000± 0.001 0.125 −0.000± 0.002 −0.004± 0.002
GT RXD 1923 0.147± 0.006 0.207 0.000± 0.000 0.000± 0.000 0.140 0.000± 0.000 0.000± 0.000
Ignore RXD 1639.9 0.147± 0.006 0.207 0.000± 0.000 0.000± 0.000 0.140 −0.000± 0.001 0.000± 0.002
Ignore (weighted) RXD 1639.9 0.147± 0.006 0.207 −0.001± 0.005 −0.002± 0.002 0.139 −0.001± 0.001 −0.004± 0.002∗

Ignore20 RXD 1442.7 0.147± 0.006 0.206 0.000± 0.000 0.000± 0.000 0.140 −0.001± 0.002 −0.002± 0.002
kNN RXD 1923 0.147± 0.006 0.205 −0.002± 0.001 −0.013± 0.001∗∗∗ 0.138 −0.002± 0.001∗ −0.013± 0.001∗∗∗

RF RXD 1923 0.147± 0.006 0.206 −0.001± 0.001 −0.008± 0.001∗∗∗ 0.140 −0.000± 0.001 −0.003± 0.001∗∗∗

Default (m=1) RXD 1923 0.147± 0.006 0.208 0.001± 0.001 0.008± 0.001∗∗∗ 0.139 −0.001± 0.001 −0.008± 0.001∗∗∗

Default (m=5) RXD 1923 0.147± 0.006 0.208 0.001± 0.001 0.008± 0.001∗∗∗ 0.145 0.005± 0.001∗∗∗ 0.034± 0.002∗∗∗

MICE RF (m=1) RXD 1923 0.147± 0.006 0.207 −0.000± 0.001 −0.001± 0.001 0.138 −0.002± 0.001∗∗ −0.016± 0.001∗∗∗

MICE RF (m=5) RXD 1923 0.147± 0.006 0.207 −0.000± 0.001 −0.001± 0.001 0.142 0.002± 0.001 0.015± 0.002∗∗∗

CART (m=1) RXD 1923 0.147± 0.006 0.207 −0.000± 0.002 −0.002± 0.002 0.133 −0.007± 0.001∗∗∗ −0.044± 0.001∗∗∗

CART (m=5) RXD 1923 0.147± 0.006 0.207 −0.000± 0.002 −0.002± 0.002 0.150 0.010± 0.007 0.074± 0.009∗∗∗

CART+Aux (m=1) RXD 1923 0.147± 0.006 0.207 −0.000± 0.002 −0.003± 0.002 0.133 −0.007± 0.002∗∗∗ −0.045± 0.002∗∗∗

CART+Aux (m=5) RXD 1923 0.147± 0.006 0.207 −0.000± 0.002 −0.003± 0.002 0.149 0.009± 0.006 0.074± 0.009∗∗∗

GT VIQ 1923 0.150± 0.005 0.193 0.000± 0.000 0.000± 0.000 0.189 0.000± 0.000 0.000± 0.000
Ignore VIQ 1916.8 0.150± 0.005 0.193 0.000± 0.003 −0.002± 0.003 0.207 0.018± 0.004∗∗∗ 0.120± 0.005∗∗∗

Ignore (weighted) VIQ 1916.8 0.150± 0.005 0.193 0.000± 0.007 −0.002± 0.002 0.207 0.019± 0.005∗∗∗ 0.121± 0.005∗∗∗

Ignore20 VIQ 1666.8 0.150± 0.005 0.193 0.000± 0.003 −0.000± 0.003 0.205 0.016± 0.004∗∗∗ 0.112± 0.004∗∗∗

kNN VIQ 1923 0.150± 0.005 0.195 0.002± 0.002 0.017± 0.002∗∗∗ 0.186 −0.003± 0.002 −0.019± 0.002∗∗∗

RF VIQ 1923 0.150± 0.005 0.193 0.001± 0.001 0.004± 0.001∗∗ 0.185 −0.003± 0.001∗ −0.022± 0.002∗∗∗

Default (m=1) VIQ 1923 0.150± 0.005 0.211 0.019± 0.002∗∗∗ 0.123± 0.002∗∗∗ 0.187 −0.002± 0.001 −0.011± 0.002∗∗∗

Default (m=5) VIQ 1923 0.150± 0.005 0.211 0.019± 0.003∗∗∗ 0.123± 0.002∗∗∗ 0.208 0.019± 0.006∗∗∗ 0.124± 0.008∗∗∗

MICE RF (m=1) VIQ 1923 0.150± 0.005 0.201 0.008± 0.001∗∗∗ 0.056± 0.001∗∗∗ 0.184 −0.005± 0.001∗∗∗ −0.033± 0.001∗∗∗

MICE RF (m=5) VIQ 1923 0.150± 0.005 0.201 0.008± 0.002∗∗∗ 0.056± 0.001∗∗∗ 0.201 0.012± 0.008 0.071± 0.009∗∗∗

CART (m=1) VIQ 1923 0.150± 0.005 0.193 0.001± 0.002 0.003± 0.002 0.179 −0.010± 0.002∗∗∗ −0.065± 0.003∗∗∗

CART (m=5) VIQ 1923 0.150± 0.005 0.193 0.001± 0.003 0.003± 0.002 0.201 0.012± 0.010 0.075± 0.011∗∗∗

CART+Aux (m=1) VIQ 1923 0.150± 0.005 0.193 0.001± 0.002 0.002± 0.002 0.182 −0.007± 0.002∗∗∗ −0.046± 0.002∗∗∗

CART+Aux (m=5) VIQ 1923 0.150± 0.005 0.193 0.001± 0.003 0.002± 0.002 0.197 0.009± 0.007 0.058± 0.008∗∗∗
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Table A.15: Imputed FI Prediction Summary by Block - 15% pMCAR (1/2)

Imputation Block N Missingness AUC C-index HR
GT All 1923 0.157± 0.002 0.733± 0.036 0.654± 0.016 1.075± 0.007
Ignore All 1923 0.157± 0.002 0.729± 0.037 0.648± 0.016 1.064± 0.007
Ignore (weighted) All 1923 0.157± 0.002 – – –
Ignore20 All 1117 0.157± 0.002 0.733± 0.050 0.655± 0.025 1.073± 0.012
kNN All 1923 0.157± 0.002 0.722± 0.038 0.644± 0.016 1.071± 0.008
RF All 1923 0.157± 0.002 0.726± 0.038 0.647± 0.016 1.076± 0.008
Default (m=1) All 1923 0.157± 0.002 0.695± 0.041∗∗∗ 0.630± 0.019 1.053± 0.007
Default (m=5) All 1923 0.157± 0.002 0.697± 0.040∗∗∗ 0.631± 0.019 1.041± 0.007
MICE RF (m=1) All 1923 0.157± 0.002 0.728± 0.037 0.648± 0.016 1.078± 0.008
MICE RF (m=5) All 1923 0.157± 0.002 0.732± 0.037 0.651± 0.016 1.078± 0.008
CART (m=1) All 1923 0.157± 0.002 0.730± 0.038 0.649± 0.016 1.077± 0.008
CART (m=5) All 1923 0.157± 0.002 0.733± 0.037 0.652± 0.016 1.075± 0.008
CART+Aux (m=1) All 1923 0.157± 0.002 0.732± 0.037 0.655± 0.016 1.078± 0.007
CART+Aux (m=5) All 1923 0.157± 0.002 0.733± 0.037 0.655± 0.016 1.076± 0.008
GT BPX 1923 0.064± 0.003 0.619± 0.040 0.544± 0.016 1.006± 0.002
Ignore BPX 1832.4 0.064± 0.003 0.613± 0.042 0.540± 0.017 1.005± 0.002
Ignore (weighted) BPX 1832.4 0.064± 0.003 – – –
Ignore20 BPX 1082.4 0.064± 0.003 0.617± 0.057 0.538± 0.025 1.005± 0.003
kNN BPX 1923 0.064± 0.003 0.611± 0.041 0.540± 0.017 1.006± 0.002
RF BPX 1923 0.064± 0.003 0.610± 0.041 0.542± 0.017 1.006± 0.002
Default (m=1) BPX 1923 0.064± 0.003 0.609± 0.042 0.540± 0.017 1.006± 0.002
Default (m=5) BPX 1923 0.064± 0.003 0.613± 0.041 0.541± 0.017 1.006± 0.002
MICE RF (m=1) BPX 1923 0.064± 0.003 0.613± 0.041 0.541± 0.017 1.006± 0.002
MICE RF (m=5) BPX 1923 0.064± 0.003 0.613± 0.041 0.541± 0.017 1.006± 0.002
CART (m=1) BPX 1923 0.064± 0.003 0.611± 0.041 0.541± 0.018 1.006± 0.002
CART (m=5) BPX 1923 0.064± 0.003 0.614± 0.041 0.541± 0.017 1.006± 0.002
CART+Aux (m=1) BPX 1923 0.064± 0.003 0.612± 0.041 0.540± 0.018 1.006± 0.002
CART+Aux (m=5) BPX 1923 0.064± 0.003 0.613± 0.041 0.540± 0.017 1.006± 0.002
GT LB 1923 0.065± 0.003 0.689± 0.041 0.634± 0.016 1.046± 0.006
Ignore LB 1821.8 0.065± 0.003 0.688± 0.043 0.635± 0.017 1.044± 0.006
Ignore (weighted) LB 1821.8 0.065± 0.003 – – –
Ignore20 LB 1117 0.065± 0.003 0.680± 0.057 0.637± 0.025 1.047± 0.010
kNN LB 1923 0.065± 0.003 0.674± 0.045 0.623± 0.018 1.043± 0.006
RF LB 1923 0.065± 0.003 0.672± 0.045 0.623± 0.018 1.042± 0.006
Default (m=1) LB 1923 0.065± 0.003 0.678± 0.044 0.629± 0.018 1.045± 0.006
Default (m=5) LB 1923 0.065± 0.003 0.685± 0.042 0.634± 0.016 1.046± 0.006
MICE RF (m=1) LB 1923 0.065± 0.003 0.674± 0.044 0.625± 0.017 1.043± 0.006
MICE RF (m=5) LB 1923 0.065± 0.003 0.684± 0.042 0.633± 0.016 1.046± 0.006
CART (m=1) LB 1923 0.065± 0.003 0.676± 0.044 0.625± 0.017 1.044± 0.006
CART (m=5) LB 1923 0.065± 0.003 0.685± 0.041 0.632± 0.016 1.046± 0.006
CART+Aux (m=1) LB 1923 0.065± 0.003 0.684± 0.042 0.632± 0.016 1.045± 0.006
CART+Aux (m=5) LB 1923 0.065± 0.003 0.688± 0.041 0.636± 0.016 1.046± 0.006

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages do
not allow weights.
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Table A.16: Imputed FI Prediction Summary by Block - 15% pMCAR (2/2)

Imputation Block N Missingness AUC C-index HR
GT PFQ 1923 0.577± 0.010 0.607± 0.043 0.581± 0.016 1.027± 0.004
Ignore PFQ 837.1 0.577± 0.010 0.609± 0.069 0.584± 0.030 1.029± 0.007
Ignore (weighted) PFQ 837.1 0.577± 0.010 – – –
Ignore20 PFQ 777.8 0.577± 0.010 0.616± 0.073 0.589± 0.033 1.030± 0.008
kNN PFQ 1923 0.577± 0.010 0.598± 0.045 0.573± 0.019 1.024± 0.006
RF PFQ 1923 0.577± 0.010 0.453± 0.039 0.538± 0.017 1.023± 0.006
Default (m=1) PFQ 1923 0.577± 0.010 0.560± 0.047 0.549± 0.024 1.007± 0.003
Default (m=5) PFQ 1923 0.577± 0.010 0.560± 0.047 0.549± 0.024 1.007± 0.003
MICE RF (m=1) PFQ 1923 0.577± 0.010 0.577± 0.045 0.558± 0.020 1.026± 0.006
MICE RF (m=5) PFQ 1923 0.577± 0.010 0.577± 0.045 0.558± 0.020 1.026± 0.006
CART (m=1) PFQ 1923 0.577± 0.010 0.608± 0.045 0.579± 0.020 1.032± 0.006
CART (m=5) PFQ 1923 0.577± 0.010 0.608± 0.045 0.579± 0.020 1.032± 0.006
CART+Aux (m=1) PFQ 1923 0.577± 0.010 0.619± 0.043 0.591± 0.018 1.034± 0.005
CART+Aux (m=5) PFQ 1923 0.577± 0.010 0.619± 0.043 0.591± 0.018 1.034± 0.005
GT RXD 1923 0.469± 0.006 0.630± 0.042 0.590± 0.017 1.021± 0.003
Ignore RXD 1021.6 0.469± 0.006 0.624± 0.065 0.589± 0.029 1.022± 0.006
Ignore (weighted) RXD 1021.6 0.469± 0.006 – – –
Ignore20 RXD 801.6 0.469± 0.006 0.635± 0.076 0.598± 0.036 1.025± 0.007
kNN RXD 1923 0.469± 0.006 0.608± 0.044 0.579± 0.018 1.023± 0.004
RF RXD 1923 0.469± 0.006 0.635± 0.044 0.595± 0.021 1.023± 0.004
Default (m=1) RXD 1923 0.469± 0.006 0.629± 0.046 0.588± 0.021 1.023± 0.005
Default (m=5) RXD 1923 0.469± 0.006 0.629± 0.046 0.588± 0.021 1.023± 0.005
MICE RF (m=1) RXD 1923 0.469± 0.006 0.617± 0.045 0.584± 0.021 1.024± 0.005
MICE RF (m=5) RXD 1923 0.469± 0.006 0.617± 0.045 0.584± 0.021 1.024± 0.005
CART (m=1) RXD 1923 0.469± 0.006 0.615± 0.045 0.580± 0.020 1.022± 0.005
CART (m=5) RXD 1923 0.469± 0.006 0.614± 0.045 0.580± 0.020 1.022± 0.005
CART+Aux (m=1) RXD 1923 0.469± 0.006 0.622± 0.046 0.587± 0.019 1.024± 0.005
CART+Aux (m=5) RXD 1923 0.469± 0.006 0.622± 0.046 0.587± 0.019 1.024± 0.005
GT VIQ 1923 0.278± 0.011 0.642± 0.041 0.560± 0.016 1.011± 0.003
Ignore VIQ 1406.1 0.278± 0.011 0.643± 0.049 0.566± 0.021 1.011± 0.003
Ignore (weighted) VIQ 1406.1 0.278± 0.011 – – –
Ignore20 VIQ 1026.3 0.278± 0.011 0.649± 0.058 0.565± 0.026 1.011± 0.004
kNN VIQ 1923 0.278± 0.011 0.619± 0.044 0.555± 0.019 1.010± 0.003
RF VIQ 1923 0.278± 0.011 0.556± 0.115 0.556± 0.019 1.010± 0.004
Default (m=1) VIQ 1923 0.278± 0.011 0.636± 0.045 0.565± 0.020 1.013± 0.003
Default (m=5) VIQ 1923 0.278± 0.011 0.636± 0.045 0.565± 0.020 1.013± 0.003
MICE RF (m=1) VIQ 1923 0.278± 0.011 0.630± 0.044 0.561± 0.019 1.011± 0.004
MICE RF (m=5) VIQ 1923 0.278± 0.011 0.630± 0.044 0.561± 0.019 1.011± 0.004
CART (m=1) VIQ 1923 0.278± 0.011 0.639± 0.043 0.567± 0.019 1.012± 0.003
CART (m=5) VIQ 1923 0.278± 0.011 0.639± 0.044 0.567± 0.019 1.012± 0.003
CART+Aux (m=1) VIQ 1923 0.278± 0.011 0.645± 0.043 0.565± 0.019 1.012± 0.003
CART+Aux (m=5) VIQ 1923 0.278± 0.011 0.646± 0.043 0.565± 0.019 1.012± 0.003

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages
do not allow weights.
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Table A.17: Imputed FI Prediction Summary by Block - 15% pMAR (1/2)

Imputation Block N Missingness AUC C-index HR
GT All 1923 0.157± 0.003 0.733± 0.036 0.654± 0.016 1.075± 0.007
Ignore All 1923 0.157± 0.003 0.732± 0.037 0.649± 0.016 1.070± 0.008
Ignore (weighted) All 1923 0.157± 0.003 – – –
Ignore20 All 1117.4 0.157± 0.003 0.742± 0.047 0.666± 0.023 1.078± 0.010
kNN All 1923 0.157± 0.003 0.721± 0.038 0.645± 0.016 1.071± 0.007
RF All 1923 0.157± 0.003 0.728± 0.038 0.645± 0.017 1.070± 0.007
Default (m=1) All 1923 0.157± 0.003 0.695± 0.042∗∗∗ 0.633± 0.019 1.065± 0.009
Default (m=5) All 1923 0.157± 0.003 0.697± 0.041∗∗∗ 0.634± 0.018 1.046± 0.007
MICE RF (m=1) All 1923 0.157± 0.003 0.728± 0.037 0.646± 0.017 1.073± 0.008
MICE RF (m=5) All 1923 0.157± 0.003 0.732± 0.037 0.649± 0.016 1.074± 0.008
CART (m=1) All 1923 0.157± 0.003 0.730± 0.037 0.650± 0.017 1.076± 0.008
CART (m=5) All 1923 0.157± 0.003 0.733± 0.037 0.652± 0.016 1.075± 0.008
CART+Aux (m=1) All 1923 0.157± 0.003 0.732± 0.037 0.654± 0.016 1.076± 0.007
CART+Aux (m=5) All 1923 0.157± 0.003 0.734± 0.037 0.655± 0.016 1.075± 0.007
GT BPX 1923 0.063± 0.006 0.619± 0.040 0.544± 0.016 1.006± 0.002
Ignore BPX 1832.7 0.063± 0.006 0.618± 0.041 0.543± 0.017 1.005± 0.002
Ignore (weighted) BPX 1832.7 0.063± 0.006 – – –
Ignore20 BPX 1085.6 0.063± 0.006 0.622± 0.055 0.553± 0.023 1.007± 0.003
kNN BPX 1923 0.063± 0.006 0.613± 0.040 0.542± 0.016 1.006± 0.002
RF BPX 1923 0.063± 0.006 0.613± 0.041 0.542± 0.016 1.005± 0.002
Default (m=1) BPX 1923 0.063± 0.006 0.613± 0.041 0.543± 0.016 1.006± 0.002
Default (m=5) BPX 1923 0.063± 0.006 0.616± 0.040 0.544± 0.016 1.006± 0.002
MICE RF (m=1) BPX 1923 0.063± 0.006 0.613± 0.040 0.541± 0.016 1.006± 0.002
MICE RF (m=5) BPX 1923 0.063± 0.006 0.615± 0.040 0.542± 0.016 1.006± 0.002
CART (m=1) BPX 1923 0.063± 0.006 0.614± 0.041 0.543± 0.017 1.006± 0.002
CART (m=5) BPX 1923 0.063± 0.006 0.616± 0.040 0.543± 0.016 1.006± 0.002
CART+Aux (m=1) BPX 1923 0.063± 0.006 0.614± 0.040 0.542± 0.016 1.005± 0.002
CART+Aux (m=5) BPX 1923 0.063± 0.006 0.615± 0.040 0.542± 0.016 1.006± 0.002
GT LB 1923 0.065± 0.005 0.689± 0.041 0.634± 0.016 1.046± 0.006
Ignore LB 1823 0.065± 0.005 0.690± 0.042 0.634± 0.017 1.043± 0.007
Ignore (weighted) LB 1823 0.065± 0.005 – – –
Ignore20 LB 1117.4 0.065± 0.005 0.700± 0.052 0.643± 0.022 1.048± 0.008
kNN LB 1923 0.065± 0.005 0.676± 0.043 0.624± 0.017 1.043± 0.006
RF LB 1923 0.065± 0.005 0.678± 0.043 0.626± 0.018 1.043± 0.006
Default (m=1) LB 1923 0.065± 0.005 0.681± 0.043 0.629± 0.017 1.044± 0.006
Default (m=5) LB 1923 0.065± 0.005 0.688± 0.041 0.633± 0.016 1.046± 0.006
MICE RF (m=1) LB 1923 0.065± 0.005 0.678± 0.043 0.627± 0.017 1.044± 0.006
MICE RF (m=5) LB 1923 0.065± 0.005 0.686± 0.041 0.632± 0.016 1.046± 0.006
CART (m=1) LB 1923 0.065± 0.005 0.680± 0.043 0.628± 0.017 1.044± 0.006
CART (m=5) LB 1923 0.065± 0.005 0.687± 0.041 0.632± 0.016 1.046± 0.006
CART+Aux (m=1) LB 1923 0.065± 0.005 0.685± 0.041 0.633± 0.016 1.045± 0.006
CART+Aux (m=5) LB 1923 0.065± 0.005 0.689± 0.041 0.635± 0.016 1.046± 0.006

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages do
not allow weights.
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Table A.18: Imputed FI Prediction Summary by Block - 15% pMAR (2/2)

Imputation Block N Missingness AUC C-index HR
GT PFQ 1923 0.583± 0.012 0.607± 0.043 0.581± 0.016 1.027± 0.004
Ignore PFQ 824.5 0.583± 0.012 0.629± 0.062 0.594± 0.030 1.031± 0.006
Ignore (weighted) PFQ 824.5 0.583± 0.012 – – –
Ignore20 PFQ 763.5 0.583± 0.012 0.628± 0.064 0.593± 0.031 1.030± 0.007
kNN PFQ 1923 0.583± 0.012 0.593± 0.046 0.568± 0.019 1.022± 0.006
RF PFQ 1923 0.583± 0.012 0.411± 0.041 0.554± 0.018 1.027± 0.006
Default (m=1) PFQ 1923 0.583± 0.012 0.516± 0.045 0.523± 0.021 1.003± 0.003
Default (m=5) PFQ 1923 0.583± 0.012 0.516± 0.045 0.523± 0.021 1.003± 0.003
MICE RF (m=1) PFQ 1923 0.583± 0.012 0.595± 0.048 0.566± 0.021 1.030± 0.006
MICE RF (m=5) PFQ 1923 0.583± 0.012 0.595± 0.048 0.566± 0.021 1.030± 0.006
CART (m=1) PFQ 1923 0.583± 0.012 0.603± 0.047 0.576± 0.022 1.034± 0.006
CART (m=5) PFQ 1923 0.583± 0.012 0.603± 0.047 0.576± 0.022 1.034± 0.006
CART+Aux (m=1) PFQ 1923 0.583± 0.012 0.612± 0.045 0.589± 0.019 1.034± 0.005
CART+Aux (m=5) PFQ 1923 0.583± 0.012 0.612± 0.045 0.589± 0.019 1.034± 0.005
GT RXD 1923 0.472± 0.011 0.630± 0.042 0.590± 0.017 1.021± 0.003
Ignore RXD 1014.7 0.472± 0.011 0.614± 0.056 0.590± 0.025 1.020± 0.005
Ignore (weighted) RXD 1014.7 0.472± 0.011 – – –
Ignore20 RXD 800.9 0.472± 0.011 0.622± 0.060 0.600± 0.026 1.021± 0.005
kNN RXD 1923 0.472± 0.011 0.611± 0.044 0.581± 0.019 1.022± 0.004
RF RXD 1923 0.472± 0.011 0.631± 0.043 0.591± 0.019 1.022± 0.004
Default (m=1) RXD 1923 0.472± 0.011 0.616± 0.044 0.584± 0.019 1.022± 0.004
Default (m=5) RXD 1923 0.472± 0.011 0.616± 0.044 0.583± 0.019 1.022± 0.004
MICE RF (m=1) RXD 1923 0.472± 0.011 0.615± 0.045 0.589± 0.019 1.023± 0.005
MICE RF (m=5) RXD 1923 0.472± 0.011 0.615± 0.045 0.589± 0.019 1.023± 0.005
CART (m=1) RXD 1923 0.472± 0.011 0.614± 0.044 0.587± 0.019 1.022± 0.005
CART (m=5) RXD 1923 0.472± 0.011 0.614± 0.044 0.587± 0.019 1.022± 0.005
CART+Aux (m=1) RXD 1923 0.472± 0.011 0.609± 0.045 0.581± 0.019 1.021± 0.005
CART+Aux (m=5) RXD 1923 0.472± 0.011 0.609± 0.045 0.581± 0.019 1.021± 0.005
GT VIQ 1923 0.274± 0.013 0.642± 0.041 0.560± 0.016 1.011± 0.003
Ignore VIQ 1415.1 0.274± 0.013 0.653± 0.048 0.565± 0.020 1.011± 0.003
Ignore (weighted) VIQ 1415.1 0.274± 0.013 – – –
Ignore20 VIQ 1034 0.274± 0.013 0.653± 0.055 0.567± 0.024 1.012± 0.004
kNN VIQ 1923 0.274± 0.013 0.631± 0.042 0.561± 0.017 1.011± 0.003
RF VIQ 1923 0.274± 0.013 0.633± 0.041 0.560± 0.017 1.011± 0.003
Default (m=1) VIQ 1923 0.274± 0.013 0.637± 0.044 0.559± 0.019 1.012± 0.003
Default (m=5) VIQ 1923 0.274± 0.013 0.637± 0.044 0.559± 0.019 1.012± 0.003
MICE RF (m=1) VIQ 1923 0.274± 0.013 0.639± 0.042 0.564± 0.018 1.012± 0.003
MICE RF (m=5) VIQ 1923 0.274± 0.013 0.639± 0.042 0.564± 0.018 1.012± 0.003
CART (m=1) VIQ 1923 0.274± 0.013 0.641± 0.043 0.565± 0.019 1.012± 0.003
CART (m=5) VIQ 1923 0.274± 0.013 0.641± 0.043 0.565± 0.019 1.012± 0.003
CART+Aux (m=1) VIQ 1923 0.274± 0.013 0.653± 0.043 0.562± 0.018 1.013± 0.003
CART+Aux (m=5) VIQ 1923 0.274± 0.013 0.654± 0.043 0.562± 0.018 1.013± 0.003

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages
do not allow weights.
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Table A.19: Imputed FI Prediction Summary by Block - 15% cMCAR (1/2)

Imputation Block N Missingness AUC C-index HR
GT All 1923 0.150± 0.000 0.733± 0.036 0.654± 0.016 1.075± 0.007
Ignore All 1923 0.150± 0.000 0.728± 0.037 0.648± 0.016 1.070± 0.007
Ignore (weighted) All 1923 0.150± 0.000 – – –
Ignore20 All 1670.3 0.150± 0.000 0.729± 0.041 0.648± 0.020 1.071± 0.009
kNN All 1923 0.150± 0.000 0.730± 0.037 0.652± 0.016 1.076± 0.007
RF All 1923 0.150± 0.000 0.732± 0.037 0.653± 0.016 1.074± 0.007
Default (m=1) All 1923 0.150± 0.000 0.734± 0.037 0.654± 0.016 1.073± 0.007
Default (m=5) All 1923 0.150± 0.000 0.734± 0.037 0.654± 0.016 1.071± 0.007
MICE RF (m=1) All 1923 0.150± 0.000 0.733± 0.037 0.653± 0.016 1.074± 0.007
MICE RF (m=5) All 1923 0.150± 0.000 0.734± 0.037 0.654± 0.016 1.073± 0.007
CART (m=1) All 1923 0.150± 0.000 0.730± 0.037 0.651± 0.016 1.076± 0.007
CART (m=5) All 1923 0.150± 0.000 0.732± 0.037 0.652± 0.016 1.075± 0.008
CART+Aux (m=1) All 1923 0.150± 0.000 0.733± 0.037 0.653± 0.016 1.076± 0.007
CART+Aux (m=5) All 1923 0.150± 0.000 0.735± 0.037 0.654± 0.016 1.076± 0.008
GT BPX 1923 0.150± 0.003 0.619± 0.040 0.544± 0.016 1.006± 0.002
Ignore BPX 1923 0.150± 0.003 0.614± 0.040 0.542± 0.016 1.005± 0.002
Ignore (weighted) BPX 1923 0.150± 0.003 – – –
Ignore20 BPX 1670.3 0.150± 0.003 0.618± 0.046 0.542± 0.019 1.005± 0.002
kNN BPX 1923 0.150± 0.003 0.616± 0.040 0.543± 0.017 1.006± 0.002
RF BPX 1923 0.150± 0.003 0.619± 0.040 0.545± 0.016 1.006± 0.002
Default (m=1) BPX 1923 0.150± 0.003 0.620± 0.040 0.544± 0.016 1.006± 0.002
Default (m=5) BPX 1923 0.150± 0.003 0.621± 0.041 0.545± 0.016 1.006± 0.002
MICE RF (m=1) BPX 1923 0.150± 0.003 0.620± 0.040 0.545± 0.016 1.006± 0.002
MICE RF (m=5) BPX 1923 0.150± 0.003 0.624± 0.040 0.546± 0.016 1.006± 0.002
CART (m=1) BPX 1923 0.150± 0.003 0.619± 0.040 0.544± 0.016 1.006± 0.002
CART (m=5) BPX 1923 0.150± 0.003 0.623± 0.040 0.547± 0.016 1.006± 0.002
CART+Aux (m=1) BPX 1923 0.150± 0.003 0.619± 0.040 0.543± 0.016 1.006± 0.002
CART+Aux (m=5) BPX 1923 0.150± 0.003 0.622± 0.041 0.544± 0.017 1.006± 0.002
GT LB 1923 0.150± 0.001 0.689± 0.041 0.634± 0.016 1.046± 0.006
Ignore LB 1923 0.150± 0.001 0.683± 0.042 0.628± 0.017 1.041± 0.006
Ignore (weighted) LB 1923 0.150± 0.001 – – –
Ignore20 LB 1670.3 0.150± 0.001 0.685± 0.045 0.632± 0.019 1.042± 0.007
kNN LB 1923 0.150± 0.001 0.685± 0.041 0.630± 0.016 1.046± 0.006
RF LB 1923 0.150± 0.001 0.688± 0.041 0.633± 0.016 1.045± 0.006
Default (m=1) LB 1923 0.150± 0.001 0.688± 0.041 0.632± 0.016 1.045± 0.006
Default (m=5) LB 1923 0.150± 0.001 0.691± 0.041 0.635± 0.017 1.046± 0.006
MICE RF (m=1) LB 1923 0.150± 0.001 0.687± 0.041 0.631± 0.016 1.044± 0.006
MICE RF (m=5) LB 1923 0.150± 0.001 0.690± 0.041 0.635± 0.016 1.046± 0.006
CART (m=1) LB 1923 0.150± 0.001 0.682± 0.041 0.629± 0.016 1.045± 0.006
CART (m=5) LB 1923 0.150± 0.001 0.687± 0.042 0.633± 0.016 1.047± 0.006
CART+Aux (m=1) LB 1923 0.150± 0.001 0.684± 0.041 0.631± 0.017 1.045± 0.006
CART+Aux (m=5) LB 1923 0.150± 0.001 0.691± 0.041 0.636± 0.016 1.047± 0.006

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages
do not allow weights.
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Table A.20: Imputed FI Prediction Summary by Block - 15% cMCAR (2/2)

Imputation Block N Missingness AUC C-index HR
GT PFQ 1923 0.151± 0.002 0.607± 0.043 0.581± 0.016 1.027± 0.004
Ignore PFQ 1923 0.151± 0.002 0.606± 0.043 0.579± 0.017 1.025± 0.004
Ignore (weighted) PFQ 1923 0.151± 0.002 – – –
Ignore20 PFQ 1670.3 0.151± 0.002 0.605± 0.047 0.578± 0.021 1.026± 0.004
kNN PFQ 1923 0.151± 0.002 0.607± 0.043 0.580± 0.017 1.028± 0.004
RF PFQ 1923 0.151± 0.002 0.609± 0.043 0.582± 0.017 1.027± 0.004
Default (m=1) PFQ 1923 0.151± 0.002 0.608± 0.044 0.584± 0.017 1.027± 0.004
Default (m=5) PFQ 1923 0.151± 0.002 0.608± 0.044 0.584± 0.017 1.027± 0.004
MICE RF (m=1) PFQ 1923 0.151± 0.002 0.609± 0.043 0.584± 0.017 1.027± 0.004
MICE RF (m=5) PFQ 1923 0.151± 0.002 0.609± 0.043 0.584± 0.017 1.027± 0.004
CART (m=1) PFQ 1923 0.151± 0.002 0.611± 0.043 0.582± 0.017 1.028± 0.004
CART (m=5) PFQ 1923 0.151± 0.002 0.611± 0.043 0.582± 0.017 1.028± 0.004
CART+Aux (m=1) PFQ 1923 0.151± 0.002 0.613± 0.043 0.585± 0.017 1.028± 0.004
CART+Aux (m=5) PFQ 1923 0.151± 0.002 0.613± 0.043 0.586± 0.017 1.028± 0.004
GT RXD 1923 0.147± 0.006 0.630± 0.042 0.590± 0.017 1.021± 0.003
Ignore RXD 1639.9 0.147± 0.006 0.623± 0.047 0.587± 0.019 1.020± 0.004
Ignore (weighted) RXD 1639.9 0.147± 0.006 – – –
Ignore20 RXD 1442.7 0.147± 0.006 0.622± 0.050 0.588± 0.021 1.020± 0.004
kNN RXD 1923 0.147± 0.006 0.628± 0.043 0.589± 0.018 1.022± 0.004
RF RXD 1923 0.147± 0.006 0.633± 0.042 0.592± 0.018 1.022± 0.004
Default (m=1) RXD 1923 0.147± 0.006 0.630± 0.042 0.589± 0.017 1.022± 0.004
Default (m=5) RXD 1923 0.147± 0.006 0.630± 0.042 0.589± 0.017 1.022± 0.004
MICE RF (m=1) RXD 1923 0.147± 0.006 0.630± 0.043 0.590± 0.018 1.022± 0.004
MICE RF (m=5) RXD 1923 0.147± 0.006 0.630± 0.043 0.590± 0.018 1.022± 0.004
CART (m=1) RXD 1923 0.147± 0.006 0.625± 0.042 0.588± 0.017 1.021± 0.004
CART (m=5) RXD 1923 0.147± 0.006 0.624± 0.043 0.588± 0.017 1.021± 0.004
CART+Aux (m=1) RXD 1923 0.147± 0.006 0.624± 0.042 0.586± 0.017 1.021± 0.004
CART+Aux (m=5) RXD 1923 0.147± 0.006 0.624± 0.042 0.586± 0.017 1.021± 0.004
GT VIQ 1923 0.150± 0.005 0.642± 0.041 0.560± 0.016 1.011± 0.003
Ignore VIQ 1916.8 0.150± 0.005 0.627± 0.043 0.553± 0.018 1.009± 0.003
Ignore (weighted) VIQ 1916.8 0.150± 0.005 – – –
Ignore20 VIQ 1666.8 0.150± 0.005 0.627± 0.047 0.552± 0.022 1.008± 0.003
kNN VIQ 1923 0.150± 0.005 0.638± 0.041 0.559± 0.016 1.011± 0.003
RF VIQ 1923 0.150± 0.005 0.640± 0.041 0.558± 0.016 1.011± 0.003
Default (m=1) VIQ 1923 0.150± 0.005 0.642± 0.042 0.559± 0.017 1.011± 0.003
Default (m=5) VIQ 1923 0.150± 0.005 0.642± 0.042 0.559± 0.017 1.011± 0.003
MICE RF (m=1) VIQ 1923 0.150± 0.005 0.645± 0.042 0.562± 0.017 1.011± 0.003
MICE RF (m=5) VIQ 1923 0.150± 0.005 0.645± 0.042 0.562± 0.017 1.011± 0.003
CART (m=1) VIQ 1923 0.150± 0.005 0.637± 0.042 0.560± 0.018 1.012± 0.003
CART (m=5) VIQ 1923 0.150± 0.005 0.637± 0.042 0.560± 0.018 1.012± 0.003
CART+Aux (m=1) VIQ 1923 0.150± 0.005 0.649± 0.042∗∗ 0.564± 0.017 1.012± 0.003
CART+Aux (m=5) VIQ 1923 0.150± 0.005 0.649± 0.042∗∗ 0.564± 0.017 1.012± 0.003

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages do
not allow weights.
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Table A.21: Imputed FI Prediction Summary by Block - 15% cMNAR (1/2)

Imputation Block N Missingness AUC C-index HR
GT All 1923 0.150± 0.000 0.733± 0.036 0.654± 0.016 1.075± 0.007
Ignore All 1923 0.150± 0.000 0.732± 0.037 0.653± 0.016 1.069± 0.007
Ignore (weighted) All 1923 0.150± 0.000 – – –
Ignore20 All 1658.6 0.150± 0.000 0.735± 0.039 0.654± 0.017 1.069± 0.007
kNN All 1923 0.150± 0.000 0.730± 0.037 0.652± 0.016 1.076± 0.007
RF All 1923 0.150± 0.000 0.733± 0.037 0.653± 0.016 1.073± 0.007
Default (m=1) All 1923 0.150± 0.000 0.733± 0.037 0.653± 0.016 1.073± 0.007
Default (m=5) All 1923 0.150± 0.000 0.733± 0.037 0.654± 0.016 1.071± 0.007
MICE RF (m=1) All 1923 0.150± 0.000 0.733± 0.037 0.653± 0.016 1.074± 0.007
MICE RF (m=5) All 1923 0.150± 0.000 0.734± 0.037 0.654± 0.016 1.073± 0.007
CART (m=1) All 1923 0.150± 0.000 0.734± 0.037 0.654± 0.016 1.073± 0.007
CART (m=5) All 1923 0.150± 0.000 0.735± 0.037 0.655± 0.016 1.072± 0.007
CART+Aux (m=1) All 1923 0.150± 0.000 0.730± 0.037 0.651± 0.016 1.076± 0.007
CART+Aux (m=5) All 1923 0.150± 0.000 0.731± 0.037 0.652± 0.016 1.075± 0.007
GT BPX 1923 0.140± 0.003 0.619± 0.040 0.544± 0.016 1.006± 0.002
Ignore BPX 1923 0.140± 0.003 0.617± 0.040 0.543± 0.017 1.005± 0.002
Ignore (weighted) BPX 1923 0.140± 0.003 – – –
Ignore20 BPX 1658.6 0.140± 0.003 0.614± 0.044 0.543± 0.019 1.005± 0.002
kNN BPX 1923 0.140± 0.003 0.616± 0.040 0.543± 0.017 1.006± 0.002
RF BPX 1923 0.140± 0.003 0.620± 0.040 0.546± 0.016 1.006± 0.002
Default (m=1) BPX 1923 0.140± 0.003 0.620± 0.040 0.544± 0.016 1.006± 0.002
Default (m=5) BPX 1923 0.140± 0.003 0.621± 0.040 0.546± 0.016 1.006± 0.002
MICE RF (m=1) BPX 1923 0.140± 0.003 0.618± 0.040 0.543± 0.016 1.006± 0.002
MICE RF (m=5) BPX 1923 0.140± 0.003 0.622± 0.040 0.546± 0.016 1.006± 0.002
CART (m=1) BPX 1923 0.140± 0.003 0.619± 0.040 0.544± 0.016 1.006± 0.002
CART (m=5) BPX 1923 0.140± 0.003 0.621± 0.040 0.544± 0.016 1.006± 0.002
CART+Aux (m=1) BPX 1923 0.140± 0.003 0.618± 0.040 0.544± 0.016 1.006± 0.002
CART+Aux (m=5) BPX 1923 0.140± 0.003 0.621± 0.041 0.545± 0.017 1.006± 0.002
GT LB 1923 0.162± 0.001 0.689± 0.041 0.634± 0.016 1.046± 0.006
Ignore LB 1923 0.162± 0.001 0.688± 0.041 0.633± 0.016 1.040± 0.005
Ignore (weighted) LB 1923 0.162± 0.001 – – –
Ignore20 LB 1658.6 0.162± 0.001 0.693± 0.044 0.634± 0.018 1.040± 0.006
kNN LB 1923 0.162± 0.001 0.685± 0.041 0.630± 0.016 1.046± 0.006
RF LB 1923 0.162± 0.001 0.689± 0.041 0.633± 0.016 1.045± 0.006
Default (m=1) LB 1923 0.162± 0.001 0.686± 0.041 0.632± 0.017 1.045± 0.006
Default (m=5) LB 1923 0.162± 0.001 0.689± 0.042 0.635± 0.017 1.046± 0.006
MICE RF (m=1) LB 1923 0.162± 0.001 0.686± 0.041 0.630± 0.016 1.044± 0.006
MICE RF (m=5) LB 1923 0.162± 0.001 0.692± 0.041 0.634± 0.016 1.046± 0.006
CART (m=1) LB 1923 0.162± 0.001 0.686± 0.041 0.631± 0.016 1.044± 0.006
CART (m=5) LB 1923 0.162± 0.001 0.691± 0.041 0.634± 0.016 1.046± 0.006
CART+Aux (m=1) LB 1923 0.162± 0.001 0.683± 0.042 0.630± 0.017 1.045± 0.006
CART+Aux (m=5) LB 1923 0.162± 0.001 0.686± 0.042 0.633± 0.017 1.047± 0.006

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages
do not allow weights.
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Table A.22: Imputed FI Prediction Summary by Block - 15% cMNAR (2/2)

Imputation Block N Missingness AUC C-index HR
GT PFQ 1923 0.158± 0.002 0.607± 0.043 0.581± 0.016 1.027± 0.004
Ignore PFQ 1923 0.158± 0.002 0.608± 0.043 0.581± 0.017 1.026± 0.003
Ignore (weighted) PFQ 1923 0.158± 0.002 – – –
Ignore20 PFQ 1658.6 0.158± 0.002 0.611± 0.046 0.583± 0.018 1.026± 0.004
kNN PFQ 1923 0.158± 0.002 0.607± 0.043 0.580± 0.017 1.028± 0.004
RF PFQ 1923 0.158± 0.002 0.609± 0.043 0.582± 0.017 1.027± 0.004
Default (m=1) PFQ 1923 0.158± 0.002 0.610± 0.044 0.586± 0.017 1.027± 0.004
Default (m=5) PFQ 1923 0.158± 0.002 0.610± 0.044 0.586± 0.017 1.027± 0.004
MICE RF (m=1) PFQ 1923 0.158± 0.002 0.608± 0.044 0.583± 0.017 1.028± 0.004
MICE RF (m=5) PFQ 1923 0.158± 0.002 0.608± 0.044 0.583± 0.017 1.028± 0.004
CART (m=1) PFQ 1923 0.158± 0.002 0.611± 0.044 0.585± 0.018 1.028± 0.004
CART (m=5) PFQ 1923 0.158± 0.002 0.611± 0.044 0.585± 0.018 1.028± 0.004
CART+Aux (m=1) PFQ 1923 0.158± 0.002 0.610± 0.043 0.586± 0.017 1.028± 0.004
CART+Aux (m=5) PFQ 1923 0.158± 0.002 0.610± 0.043 0.586± 0.017 1.028± 0.004
GT RXD 1923 0.055± 0.005 0.630± 0.042 0.590± 0.017 1.021± 0.003
Ignore RXD 1816.4 0.055± 0.005 0.630± 0.043 0.590± 0.018 1.021± 0.004
Ignore (weighted) RXD 1816.4 0.055± 0.005 – – –
Ignore20 RXD 1576.6 0.055± 0.005 0.633± 0.046 0.593± 0.021 1.021± 0.004
kNN RXD 1923 0.055± 0.005 0.628± 0.043 0.589± 0.018 1.022± 0.004
RF RXD 1923 0.055± 0.005 0.632± 0.042 0.591± 0.017 1.022± 0.004
Default (m=1) RXD 1923 0.055± 0.005 0.630± 0.043 0.589± 0.017 1.021± 0.004
Default (m=5) RXD 1923 0.055± 0.005 0.630± 0.043 0.589± 0.017 1.021± 0.004
MICE RF (m=1) RXD 1923 0.055± 0.005 0.631± 0.042 0.590± 0.017 1.022± 0.004
MICE RF (m=5) RXD 1923 0.055± 0.005 0.631± 0.042 0.590± 0.017 1.022± 0.004
CART (m=1) RXD 1923 0.055± 0.005 0.630± 0.043 0.590± 0.018 1.022± 0.004
CART (m=5) RXD 1923 0.055± 0.005 0.630± 0.043 0.590± 0.018 1.022± 0.004
CART+Aux (m=1) RXD 1923 0.055± 0.005 0.630± 0.043 0.588± 0.018 1.022± 0.004
CART+Aux (m=5) RXD 1923 0.055± 0.005 0.630± 0.043 0.588± 0.018 1.022± 0.004
GT VIQ 1923 0.130± 0.005 0.642± 0.041 0.560± 0.016 1.011± 0.003
Ignore VIQ 1918.7 0.130± 0.005 0.635± 0.042 0.555± 0.017 1.009± 0.003
Ignore (weighted) VIQ 1918.7 0.130± 0.005 – – –
Ignore20 VIQ 1656.9 0.130± 0.005 0.635± 0.046 0.554± 0.020 1.009± 0.003
kNN VIQ 1923 0.130± 0.005 0.638± 0.041 0.559± 0.016 1.011± 0.003
RF VIQ 1923 0.130± 0.005 0.640± 0.041 0.559± 0.016 1.011± 0.003
Default (m=1) VIQ 1923 0.130± 0.005 0.645± 0.042 0.561± 0.017 1.011± 0.003
Default (m=5) VIQ 1923 0.130± 0.005 0.645± 0.042 0.561± 0.017 1.011± 0.003
MICE RF (m=1) VIQ 1923 0.130± 0.005 0.643± 0.042 0.561± 0.017 1.011± 0.003
MICE RF (m=5) VIQ 1923 0.130± 0.005 0.642± 0.042 0.561± 0.017 1.011± 0.003
CART (m=1) VIQ 1923 0.130± 0.005 0.647± 0.042 0.562± 0.017 1.012± 0.003
CART (m=5) VIQ 1923 0.130± 0.005 0.647± 0.042 0.562± 0.017 1.012± 0.003
CART+Aux (m=1) VIQ 1923 0.130± 0.005 0.646± 0.042 0.561± 0.017 1.012± 0.003
CART+Aux (m=5) VIQ 1923 0.130± 0.005 0.646± 0.042 0.561± 0.017 1.012± 0.003

AUC, C-index and HR were not calculated for Ignore (weighted) because the standard packages
do not allow weights.
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Table A.23: Lab FI variables.

Quantity Units Low (M)1 High (M)1 Low (F)2 High (F)2 Name File (2003/2005)
Albumin g/L 32 45 32 45 LBDSALSI L40/BIOPRO
Alkaline phosphotase U/L 20 130 20 130 LBXSAPSI L40/BIOPRO
Bicarbonate mmol/L 21 28 21 28 LBXSC3SI L40/BIOPRO
Bilirubin, total umol/L 2 21 2 21 LBDSTBSI L40/BIOPRO
Blood pressure- diastolic mmHG 60 90 60 90 BPXDI BPX/BPX
Blood pressure- systolic mmHG 90 140 90 140 BPXSY BPX/BPX
Blood urea nitrogen mmol/L 2.9 8.2 2.9 8.2 LBDSBUSI L40/BIOPRO
C-reactive protein mg/dL 0 1 0 1 LBXCRP L11/CRP
Creatinine umol/L 60 110 45 90 LBDSCRSI L40/BIOPRO
Direct HDL-Cholesterol mmol/L 1.3 ∞ 1.3 ∞ LBDHDDSI L13/HDL
Folate, RBC nmol/L 376 1450 376 1450 LBDRBFSI L06NB/FOLATE
Glucose, serum mmol/L 3.9 6.1 3.9 6.1 LBDSGLSI L40/BIOPRO
Glycohemoglobin levels % 0 5.7 0 5.7 LBXGH L10/GHB
Hemoglobin g/dL 13.5 18 12 16 LBXHGB L25/CBC
Iron, refigerated umol/L 10.7 26.9 10.7 26.9 LBDSIRSI L40/BIOPRO
Lactate dehydrogenase LDH U/L 100 190 100 190 LBXSLDSI L40/BIOPRO
Mean arterial pressure mmHg 70 105 70 105 BPXMAP3 BPX/BPX
Mean cell volume fL 80 96 80 96 LBXMCVSI L25/CBC
Phosphorus mmol/L 0.74 1.52 0.74 1.52 LBDSPHSI L40/BIOPRO
Platelet count SI 1000 cells/uL 150 450 150 450 LBXPLTSI L25/CBC
Protein, total g/L 60 78 60 78 LBDSTPSI L40/BIOPRO
Pulse bpm 60 99 60 99 BPXPLS BPX/BPX
Pulse pressure mmHg 30 65 30 65 BPXPP4 BPX/BPX
Red cell distribution width % 11.6 14.6 11.6 14.6 LBXRDW L25/CBC
Segmented neutrophils percent (40-80%) % 40 80 40 80 LBXNEPCT L25/CBC
Sodium mmol/L 136 142 136 142 LBXSNASI L40/BIOPRO
Total calcium mmol/L 2.3 2.74 2.3 2.74 LBDSCASI L40/BIOPRO
Total Cholesterol mmol/L 3.88 6.47 3.88 6.47 LBDSCHSI L40/BIOPRO
Triglyceride mmol/L 0.11 2.74 0.11 2.74 LBDSTRSI L40/BIOPRO
Uric acid umol/L 240 510 160 430 LBDSUASI L40/BIOPRO
Vitamin B12, serum pmol/L 118 701 118 701 LBDB12SI L06NB/B12
Vitamin D nmol/L 12 50 12 50 LBDVIDMS VID/VID
1 M: male.
2 F: female.
3 BPXMAP: BPXMeanArterialPressure.
4 BPXPP: BPXPulsePressure.
Dichotomization converted lab values within the sex-specific ranges to 0, or 1 if out of range.
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Table A.24: Self-reported Health FI variables.

Measurement Description Name File
Angina/angina pectoris Ever told you had angina/angina pectoris MCQ160D MCQ
Broken hip Doctor told you hip broke/fracture OSQ010A OSQ
Cancer Ever told you had cancer or malignancy MCQ220 MCQ
Cataract operation Ever had a cataract operation VIQ071 VIQ
Confusion or inability to remember things Experience confusion/memory problems PFQ057 PFQ
Cough regularly Do you cough most days for 3 months+? RDQ031 RDQ
Difficulty attending social events Difficulty attending social events PFQ061R PFQ
Difficulty dressing yourself Difficulty dressing yourself PFQ061L PFQ
Difficulty getting in and out of bed Difficulty getting in and out of bed PFQ061J PFQ
Difficulty grasping/holding small objects Difficulty grasping/holding small objects PFQ061P PFQ
Difficulty lifting or carrying Difficulty lifting or carrying PFQ061E PFQ
Difficulty managing money Difficulty managing money PFQ061A PFQ
Difficulty preparing meals Difficulty preparing meals PFQ061G PFQ
Difficulty pushing or pulling large objects Push or pull large objects difficulty PFQ061T PFQ
Difficulty seeing in dim light Difficulty seeing steps/curbs in dim light VIQ051C VIQ
Difficulty standing up from armless chair Difficulty standing up from armless chair PFQ061I PFQ
Difficulty stooping, crouching, kneeling Difficulty stooping, crouching, kneeling PFQ061D PFQ
Difficulty using fork and knife Using fork, knife, drinking from cup PFQ061K PFQ
Difficulty walking between rooms Difficulty walking between rooms on same floor PFQ061H PFQ
Arthritis Doctor ever said you had arthritis MCQ160A MCQ
Diabetes Doctor told you have diabetes DIQ010 DIQ
High blood pressure Ever told you had high blood pressure BPQ020 BPQ
Frequency of healthcare use #Times receive healthcare over past year HUQ050 HUQ
General hearing General condition of hearing AUQ130/1311 AUQ
General vision General condition of eyesight VIQ031 VIQ
Health compared to 1 year ago Health compared to 1 year ago HUQ020 HUQ
Heart attack Ever told you had heart attack MCQ160E MCQ
Heart disease Ever told you had coronary heart disease MCQ160C MCQ
Leaked/lost control of urine Leak urine during nonphysical activities KIQ046 KIQ U
Medications Number of prescription medicines taken RXDCOUNT RXQ RX
Osteoporosis Ever told had osteoporosis/brittle bones OSQ060 OSQ
Overnight hospital stays Overnight hospital patient in last year HUQ071 HUQ
Self-reported health Would you say your health in general is... HUQ010 HUQ
Stroke Ever told you had a stroke MCQ160F MCQ
Thyroid condition Ever told you had a thyroid problem MCQ160M MCQ
Weak/failing kidneys Ever told you had weak/failing kidneys KIQ022 KIQ U
1 2003-04: AUQ130, 2004-05: AUQ131.
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Table A.25: Auxiliary Lab Variables

Quantity Description Type Name File (2003/2005)
LBXPT21 Parathyroid Hormone continuous LBXPT21 L11/PTH
LBXWBCSI White blood cell count continuous LBXWBCSI L25/CBC
LBDLYMNO Lymphocyte number continuous LBDLYMNO L25/CBC
LBDMONO Monocyte number continuous LBDMONO L25/CBC
LBDEONO Eosinophils number continuous LBDEONO L25/CBC
LBDBANO Basophils number continuous LBDBANO L25/CBC
LBXRBCSI Red blood cell count (million cells/uL) continuous LBXRBCSI L25/CBC
LBXHCT Hematocrit (%) continuous LBXHCT L25/CBC
LBXMCHSI Mean cell hemoglobin (pg) continuous LBXMCHSI L25/CBC
LBXMC Mean cell hemoglobin concentration (g/dL) continuous LBXMC L25/CBC
LBXMPSI Mean platelet volume (fL) continuous LBXMPSI L25/CBC
LBXSATSI Alanine aminotransferase ALT (U/L) continuous LBXSATSI L40/BIOPRO
LBXSASSI Aspartate aminotransferase AST (U/L) continuous LBXSASSI L40/BIOPRO
LBXSGTSI Gamma glutamyl transferase (U/L) continuous LBXSGTSI L40/BIOPRO
LBXSKSI Potassium (mmol/L) continuous LBXSKSI L40/BIOPRO
LBXSCLSI Chloride (mmol/L) continuous LBXSCLSI L40/BIOPRO
LBXSOSSI Osmolality (mmol/Kg) continuous LBXSOSSI L40/BIOPRO
LBXSGB Globulin (g/dL) continuous LBXSGB L40/BIOPRO
PEASCST1 Blood pressure status ordinal PEASCST1 BPX/BPX
PEASCTM1 Blood pressure time in seconds continuous PEASCTM1 BPX/BPX
BPQ150A Had food in the past 30 minutes? categorical BPQ150A BPX/BPX
BPQ150C Had coffee in the past 30 minutes? categorical BPQ150C BPX/BPX
BPQ150D Had cigarettes in the past 30 minutes? categorical BPQ150D BPX/BPX
BPAARM Arm selected categorical BPAARM BPX/BPX
BPACSZ Coded cuff size ordinal BPACSZ BPX/BPX
BPXPULS Pulse regular or irregular? categorical BPXPULS BPX/BPX
BPXPTY Pulse type categorical BPXPTY BPX/BPX
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Table A.26: Auxiliary Self-reported Health Variables (1/2)

Measurement Description Type Name File
AUQ150 Ever worn a hearing aid categorical AUQ150 AUQ
BPQ060 Ever had blood cholesterol checked categorical BPQ060 BPQ
DIQ050 Taking insulin now categorical DIQ050 DIQ
HUQ030 Routine place to go for healthcare categorical HUQ030 HUQ
HUQ060 How long since last healthcare visit ordinal HUQ060 HUQ
HUQ090 Seen mental health professional - past yr1 categorical HUQ090 HUQ
KIQ042 Leak urine during physical activities categorical KIQ042 KIQ U
KIQ044 Urinated before reaching the toilet categorical KIQ044 KIQ U
MCQ010 Ever been told you have asthma categorical MCQ010 MCQ
MCQ053 Taking treatment for anemia - past 3 mos2 categorical MCQ053 MCQ
MCQ080 Doctor ever said you were overweight categorical MCQ080 MCQ
MCQ092 Ever receive blood transfusion categorical MCQ092 MCQ
MCQ140 Trouble seeing even with glass/contacts categorical MCQ140 MCQ
MCQ160B Ever told had congestive heart failure categorical MCQ160B MCQ
MCQ160G Ever told you had emphysema categorical MCQ160G MCQ
MCQ160K Ever told you had chronic bronchitis categorical MCQ160K MCQ
MCQ160L Ever told you had any liver condition categorical MCQ160L MCQ
MCQ245A Work days missed for illness/maternity categorical MCQ245A MCQ
MCQ265 Blood relative have/had prostate cancer categorical MCQ265 MCQ
OSQ010B Broken or fractured a wrist categorical OSQ010B OSQ
OSQ010C Broken or fractured spine categorical OSQ010C OSQ
PFQ049 Limitations keeping you from working categorical PFQ049 PFQ
PFQ051 Limited in amount of work you can do categorical PFQ051 PFQ
PFQ054 Need special equipment to walk categorical PFQ054 PFQ
PFQ059 Physical, mental, emotional limitations categorical PFQ059 PFQ
PFQ061B Walking for a quarter mile difficulty categorical PFQ061B PFQ
PFQ061C Walking up ten steps difficulty categorical PFQ061C PFQ
PFQ061F House chore difficulty categorical PFQ061F PFQ
PFQ061M Standing for long periods difficulty categorical PFQ061M PFQ
PFQ061N Sitting for long periods difficulty categorical PFQ061N PFQ
PFQ061O Reaching up over head difficulty categorical PFQ061O PFQ
PFQ061Q Going out to movies, events difficulty categorical PFQ061Q PFQ
PFQ061S Leisure activity at home difficulty categorical PFQ061S PFQ
PFQ090 Require special healthcare equipment categorical PFQ090 PFQ
RDQ050 Bring up phlegm most days - 3 mo period categorical RDQ050 RDQ
RDQ070 Wheezing or whistling in chest - past yr categorical RDQ070 RDQ
RDQ140 Had dry cough at night in past year categorical RDQ140 RDQ
VIQ041 Time worrying about eyesight ordinal VIQ041 VIQ
VIQ051A Difficulty reading ordinary newsprint ordinal VIQ051A VIQ
VIQ051B Difficulty with up close work or chores ordinal VIQ051B VIQ
VIQ051D Difficulty noticing objects to side ordinal VIQ051D VIQ
VIQ051E Difficulty finding object on crowded shelf ordinal VIQ051E VIQ
VIQ056 Difficulty driving daytime-familiar place ordinal VIQ056 VIQ
VIQ061 Vision limits how long can do activities ordinal VIQ061 VIQ
1 yr: year.
2 mos: months.
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Table A.27: Auxiliary Self-reported Health Variables (2/2)

Measurement Description Type Name File
RIDEXMON Six month time period of exam categorical RIDEXMON DEMO
RIAGENDR Gender categorical RIAGENDR DEMO
RIDAGEYR Age at screeening adjudicated continuous RIDAGEYR DEMO
RIDRETH1 Race/Ethnicity - recode categorical RIDRETH1 DEMO
DMQMILIT Veteran/Military status categorical DMQMILIT DEMO
DMDBORN Country of birth - recode categorical DMDBORN DEMO
DMDCITZN Citizenship status categorical DMDCITZN DEMO
DMDYRSUS Length of time in US continuous DMDYRSUS DEMO
DMDMARTL Marital status categorical DMDMARTL DEMO
DMDHHSIZ Total number of people in the household continuous DMDHHSIZ DEMO
INDHHINC Income but with inconvenient coding categorical INDHHINC DEMO
INDFMPIR PIR truncated at 5 continuous INDFMPIR DEMO
RIDEXPRG Pregnancy Status at Exam - recode categorical RIDEXPRG DEMO
DMDHRGND HH ref person gender categorical DMDHRGND DEMO
DMDHRAGE Age of reference person continuous DMDHRAGE DEMO
DMDHRBRN HH ref person country of birth categorical DMDHRBRN DEMO
DMDHREDU HH ref person education level ordinal DMDHREDU DEMO
DMDHRMAR HH ref person marital status categorical DMDHRMAR DEMO
DMDHSEDU HH ref person’s spouse education level ordinal DMDHSEDU DEMO
SIALANG Language of SP interview categorical SIALANG DEMO
SIAPROXY Proxy used in SP interview? categorical SIAPROXY DEMO
SIAINTRP Interpreter used in SP interview? categorical SIAINTRP DEMO
FIALANG Language of family interview categorical FIALANG DEMO
FIAPROXY Proxy used in family interview? categorical FIAPROXY DEMO
FIAINTRP Interpreter used in family interview? categorical FIAINTRP DEMO
MIALANG Language of MEC interview categorical MIALANG DEMO
MIAPROXY Proxy used in MEC interview? categorical MIAPROXY DEMO
MIAINTRP Interpreter used in MEC interview? categorical MIAINTRP DEMO
AIALANG Language of ACASI interview categorical AIALANG DEMO
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Table A.28: Imputed FI Statistics for Real Missingness - Summary by Block

Imputation Block N Mean FI ‘Bias’1,2 FI SD SD ‘Bias’1 C-index HR AUC
Ignore All 9307 0.1442 0.0000± 0.0000 0.0782 0.0000 0.683± 0.009 1.077± 0.004 0.832± 0.017
Ignore (weighted) All 9307 0.1477 −0.0036± 0.0011∗∗ 0.0785 −0.0004 – – –
Ignore20 All 5701 0.1611 0.0000± 0.0000 0.0801 −0.0019 0.677± 0.010 1.078± 0.004 0.792± 0.021∗∗

kNN All 9307 0.1601 −0.0160± 0.0004∗∗∗ 0.0710 0.0071 0.664± 0.009 1.073± 0.004 0.773± 0.021∗∗∗

Default (m=1) All 9307 0.1437 0.0005± 0.0002∗ 0.0739 0.0042 0.678± 0.009 1.076± 0.004 0.819± 0.018∗∗∗

Default (m=5) All 9307 0.1466 −0.0024± 0.0005∗∗∗ 0.0877 −0.0095 0.684± 0.009 1.077± 0.004 0.829± 0.018
CART (m=1) All 9307 0.1382 0.0059± 0.0002∗∗∗ 0.0751 0.0031 0.675± 0.009 1.077± 0.004 0.826± 0.018∗

CART (m=5) All 9307 0.1412 0.0029± 0.0004∗∗∗ 0.0816 −0.0034 0.684± 0.009 1.079± 0.004 0.839± 0.017∗∗∗

CART+Aux (m=1) All 9307 0.1381 0.0061± 0.0002∗∗∗ 0.0745 0.0037 0.679± 0.009 1.077± 0.004 0.832± 0.017
CART+Aux (m=5) All 9307 0.1410 0.0031± 0.0003∗∗∗ 0.0784 −0.0003 0.686± 0.009 1.079± 0.004 0.841± 0.017∗∗∗

Ignore BPX 8889 0.2046 0.0000± 0.0000 0.2465 0.0000 0.524± 0.010 1.003± 0.001 0.667± 0.024
Ignore (weighted) BPX 8889 0.2123 −0.0078± 0.0037∗ 0.2477 −0.0012 – – –
Ignore20 BPX 5544 0.2380 0.0000± 0.0000 0.2613 −0.0148 0.515± 0.011 1.003± 0.001 0.637± 0.026
kNN BPX 9307 0.1983 0.0012± 0.0005∗ 0.2389 0.0077 0.522± 0.010 1.003± 0.001 0.666± 0.023∗

Default (m=1) BPX 9307 0.1978 0.0010± 0.0005∗ 0.2407 0.0058 0.513± 0.010 1.002± 0.001 0.647± 0.024
Default (m=5) BPX 9307 0.2064 −0.0011± 0.0007 0.2572 −0.0107 0.522± 0.010 1.003± 0.001 0.670± 0.022∗∗

CART (m=1) BPX 9307 0.1969 0.0013± 0.0005∗ 0.2405 0.0060 0.513± 0.010 1.002± 0.001 0.650± 0.024
CART (m=5) BPX 9307 0.2059 −0.0008± 0.0007 0.2571 −0.0106 0.523± 0.009 1.003± 0.001 0.673± 0.022∗∗∗

CART+Aux (m=1) BPX 9307 0.1964 0.0014± 0.0005∗∗ 0.2407 0.0058 0.512± 0.010 1.001± 0.001 0.645± 0.024
CART+Aux (m=5) BPX 9307 0.2056 −0.0008± 0.0007 0.2514 −0.0049 0.523± 0.010 1.003± 0.001 0.668± 0.022∗∗

Ignore LB 8862 0.1379 0.0000± 0.0000 0.0869 0.0000 0.654± 0.010 1.054± 0.003 0.720± 0.024
Ignore (weighted) LB 8862 0.1391 −0.0011± 0.0013 0.0863 0.0005 – – –
Ignore20 LB 5701 0.1425 0.0000± 0.0000 0.0889 −0.0021 0.655± 0.010 1.056± 0.003 0.716± 0.025
kNN LB 9307 0.1322 0.0013± 0.0002∗∗∗ 0.0861 0.0008 0.627± 0.010 1.048± 0.003 0.677± 0.025∗∗

Default (m=1) LB 9307 0.1327 0.0011± 0.0001∗∗∗ 0.0865 0.0003 0.642± 0.010 1.052± 0.003 0.697± 0.024
Default (m=5) LB 9307 0.1383 0.0000± 0.0002 0.0888 −0.0019 0.658± 0.009 1.057± 0.003 0.721± 0.023
CART (m=1) LB 9307 0.1324 0.0011± 0.0001∗∗∗ 0.0864 0.0005 0.633± 0.010 1.049± 0.003 0.683± 0.025∗

CART (m=5) LB 9307 0.1383 0.0000± 0.0002 0.0912 −0.0043 0.657± 0.009 1.056± 0.003 0.721± 0.022
CART+Aux (m=1) LB 9307 0.1328 0.0012± 0.0001∗∗∗ 0.0861 0.0007 0.634± 0.010 1.049± 0.003 0.685± 0.024∗

CART+Aux (m=5) LB 9307 0.1385 0.0001± 0.0002 0.0882 −0.0013 0.654± 0.009 1.055± 0.003 0.716± 0.023
Ignore PFQ 4425 0.1199 0.0000± 0.0000 0.1599 0.0000 0.613± 0.010 1.023± 0.002 0.649± 0.026
Ignore (weighted) PFQ 4425 0.1180 0.0019± 0.0030 0.1599 0.0001 – – –
Ignore20 PFQ 4156 0.1173 0.0000± 0.0000 0.1566 0.0033 0.611± 0.011 1.023± 0.002 0.647± 0.028
kNN PFQ 9307 0.2276 0.0012± 0.0002∗∗∗ 0.1982 −0.0382 0.573± 0.010 1.018± 0.002 0.541± 0.025∗

Default (m=1) PFQ 9307 0.1304 −0.0016± 0.0002∗∗∗ 0.1375 0.0224 0.610± 0.010 1.023± 0.002 0.594± 0.028∗∗

Default (m=5) PFQ 9307 0.1304 −0.0016± 0.0003∗∗∗ 0.2649 −0.1049 0.610± 0.010 1.023± 0.002 0.593± 0.028∗∗

CART (m=1) PFQ 9307 0.1008 −0.0008± 0.0002∗∗∗ 0.1183 0.0416 0.619± 0.010 1.025± 0.002 0.643± 0.029∗

CART (m=5) PFQ 9307 0.1008 −0.0008± 0.0003∗∗ 0.2022 −0.0423 0.619± 0.010 1.025± 0.002 0.643± 0.029∗

CART+Aux (m=1) PFQ 9307 0.1003 −0.0012± 0.0002∗∗∗ 0.1161 0.0439 0.629± 0.010 1.025± 0.002 0.651± 0.029∗∗

CART+Aux (m=5) PFQ 9307 0.1003 −0.0012± 0.0003∗∗∗ 0.1584 0.0015 0.629± 0.010 1.025± 0.002 0.651± 0.029∗∗

Ignore RXD 5269 0.1796 0.0000± 0.00003 0.1379 0.0000 0.608± 0.010 1.026± 0.002 0.688± 0.025
Ignore (weighted) RXD 5269 0.1838 −0.0042± 0.0024 0.1370 0.0009 – – –
Ignore20 RXD 4282 0.1910 0.0000± 0.0000 0.1402 −0.0023 0.601± 0.011 1.024± 0.002 0.663± 0.027
kNN RXD 9307 0.1351 0.0000± 0.0000 0.1185 0.0194 0.607± 0.010 1.027± 0.002 0.743± 0.021
Default (m=1) RXD 9307 0.1435 0.0000± 0.0000 0.1154 0.0225 0.604± 0.010 1.026± 0.002 0.725± 0.024
Default (m=5) RXD 9307 0.1435 0.0000± 0.0000 0.1340 0.0038 0.604± 0.010 1.026± 0.002 0.725± 0.024
CART (m=1) RXD 9307 0.1448 0.0000± 0.0000 0.1149 0.0229 0.609± 0.010 1.027± 0.002 0.728± 0.023
CART (m=5) RXD 9307 0.1448 0.0000± 0.0000 0.1454 −0.0075 0.609± 0.010 1.027± 0.002 0.728± 0.023
CART+Aux (m=1) RXD 9307 0.1433 0.0000± 0.0000 0.1157 0.0222 0.601± 0.010 1.026± 0.002 0.729± 0.023
CART+Aux (m=5) RXD 9307 0.1433 0.0000± 0.0000 0.1248 0.0130 0.601± 0.010 1.026± 0.002 0.729± 0.023
Ignore VIQ 6993 0.1517 0.0000± 0.0000 0.1788 0.0000 0.562± 0.010 1.011± 0.001 0.717± 0.024
Ignore (weighted) VIQ 6993 0.1579 −0.0061± 0.0029∗ 0.1868 −0.0080 – – –
Ignore20 VIQ 5303 0.1706 0.0000± 0.0000 0.1879 −0.0091 0.558± 0.011 1.010± 0.002 0.696± 0.026
kNN VIQ 9307 0.1334 0.0025± 0.0003∗∗∗ 0.1540 0.0248 0.560± 0.010 1.011± 0.002 0.728± 0.024
Default (m=1) VIQ 9307 0.1372 0.0010± 0.0003∗∗∗ 0.1566 0.0222 0.569± 0.010 1.012± 0.002 0.729± 0.024
Default (m=5) VIQ 9307 0.1372 0.0010± 0.0004∗∗ 0.1725 0.0063 0.569± 0.010 1.012± 0.002 0.730± 0.024
CART (m=1) VIQ 9307 0.1366 0.0010± 0.0003∗∗∗ 0.1568 0.0220 0.571± 0.010 1.012± 0.002 0.734± 0.024
CART (m=5) VIQ 9307 0.1366 0.0010± 0.0004∗ 0.1998 −0.0210 0.571± 0.010 1.012± 0.002 0.735± 0.023
CART+Aux (m=1) VIQ 9307 0.1333 0.0005± 0.0003 0.1574 0.0214 0.565± 0.010 1.012± 0.002 0.737± 0.023
CART+Aux (m=5) VIQ 9307 0.1333 0.0005± 0.0006 0.1674 0.0114 0.565± 0.010 1.012± 0.002 0.738± 0.023
1 This is the bias proxy: Ignore − Value. NAs were excluded.
2 NA exclusions may cause the average of the bias (this column) to differ from the bias of the averages.
3 RXD has only 1 variable and hence the bias must be 0.
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Table A.29: Imputed FI Statistics for Real Missingness, RI-based imputations -
Summary by Block (1/2)

Imputation Block N Mean FI ‘Bias’1,2 FI SD SD ‘Bias’1 C-index HR AUC
Ignore All 9307 0.1442 0.0000± 0.0000 0.0782 0.0000 0.683± 0.009 1.077± 0.004 0.832± 0.017
Ignore+RI All 9307 0.1330 0.0112± 0.0001∗∗∗ 0.0803 −0.0021 0.686± 0.009 1.077± 0.003 0.851± 0.016∗∗∗

Ignore (weighted) + RI All 9307 0.1330 0.0112± 0.0001∗∗∗ 0.0803 −0.0021 0.686± 0.009 1.078± 0.004 0.851± 0.016∗∗∗

Ignore20 + RI All 8728 0.1327 0.0108± 0.0001∗∗∗ 0.0774 0.0008 0.680± 0.010 1.079± 0.004 0.848± 0.017
kNN + RI All 9307 0.1302 0.0140± 0.0002∗∗∗ 0.0771 0.0011 0.677± 0.009 1.076± 0.004 0.841± 0.016∗∗∗

Default+RI (m=1) All 9307 0.1309 0.0133± 0.0002∗∗∗ 0.0781 0.0001 0.678± 0.009 1.076± 0.004 0.842± 0.016∗∗∗

Default+RI (m=5) All 9307 0.1338 0.0104± 0.0002∗∗∗ 0.0790 −0.0009 0.684± 0.009 1.077± 0.004 0.850± 0.016∗∗∗

CART+RI (m=1) All 9307 0.1307 0.0135± 0.0002∗∗∗ 0.0776 0.0005 0.678± 0.009 1.077± 0.004 0.841± 0.016∗∗∗

CART+RI (m=5) All 9307 0.1336 0.0106± 0.0002∗∗∗ 0.0789 −0.0007 0.685± 0.009 1.079± 0.004 0.851± 0.016∗∗∗

CART+Aux+RI (m=1) All 9307 0.1305 0.0137± 0.0002∗∗∗ 0.0777 0.0005 0.679± 0.009 1.077± 0.004 0.843± 0.016∗∗∗

CART+Aux+RI (m=5) All 9307 0.1334 0.0107± 0.0002∗∗∗ 0.0786 −0.0005 0.686± 0.009 1.079± 0.004 0.852± 0.016∗∗∗

Ignore BPX 8889 0.2046 0.0000± 0.0000 0.2465 0.0000 0.524± 0.010 1.003± 0.001 0.667± 0.024
Ignore+RI BPX 8889 0.2046 0.0000± 0.0000 0.2465 0.0000 0.524± 0.010 1.003± 0.001 0.667± 0.024
Ignore (weighted) + RI BPX 8889 0.2046 0.0000± 0.0000 0.2465 0.0000 0.524± 0.010 1.003± 0.001 0.667± 0.024
Ignore20 + RI BPX 8410 0.2033 0.0000± 0.0000 0.2458 0.0007 0.520± 0.010 1.003± 0.001 0.665± 0.026
kNN + RI BPX 9307 0.2003 0.0011± 0.0005∗ 0.2397 0.0068 0.521± 0.009 1.003± 0.001 0.661± 0.023
Default+RI (m=1) BPX 9307 0.1980 0.0012± 0.0005∗ 0.2408 0.0057 0.515± 0.010 1.001± 0.001 0.652± 0.024
Default+RI (m=5) BPX 9307 0.2069 −0.0011± 0.0007 0.2558 −0.0093 0.523± 0.010 1.003± 0.001 0.674± 0.022∗∗

CART+RI (m=1) BPX 9307 0.1974 0.0013± 0.0005∗ 0.2405 0.0060 0.510± 0.010 1.001± 0.001 0.647± 0.024
CART+RI (m=5) BPX 9307 0.2059 −0.0009± 0.0006 0.2539 −0.0073 0.523± 0.009 1.003± 0.001 0.672± 0.022∗∗∗

CART+Aux+RI (m=1) BPX 9307 0.1971 0.0011± 0.0005∗ 0.2407 0.0058 0.512± 0.009 1.001± 0.001 0.655± 0.023
CART+Aux+RI (m=5) BPX 9307 0.2059 −0.0010± 0.0008 0.2644 −0.0179 0.522± 0.009 1.003± 0.001 0.675± 0.022∗∗

1 This is the bias proxy: Ignore − Value. NAs were excluded.
2 NA exclusions may cause the average of the bias (this column) to differ from the bias of the averages.
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Table A.30: Imputed FI Statistics for Real Missingness, RI-based imputations -
Summary by Block (2/2)

Imputation Block N Mean FI ‘Bias’1,2 FI SD SD ‘Bias’1 C-index HR AUC
Ignore LB 8862 0.1379 0.0000± 0.0000 0.0869 0.0000 0.654± 0.010 1.054± 0.003 0.720± 0.024
Ignore+RI LB 8862 0.1379 0.0000± 0.0000 0.0869 0.0000 0.654± 0.010 1.054± 0.003 0.720± 0.024
Ignore (weighted) + RI LB 8862 0.1379 0.0000± 0.0000 0.0869 0.0000 0.654± 0.010 1.054± 0.003 0.720± 0.024
Ignore20 + RI LB 8728 0.1377 0.0000± 0.0000 0.0858 0.0010 0.655± 0.010 1.056± 0.003 0.720± 0.024
kNN + RI LB 9307 0.1327 0.0011± 0.0001∗∗∗ 0.0858 0.0010 0.629± 0.010 1.048± 0.003 0.680± 0.025∗

Default+RI (m=1) LB 9307 0.1328 0.0010± 0.0001∗∗∗ 0.0866 0.0002 0.640± 0.010 1.052± 0.003 0.695± 0.024∗

Default+RI (m=5) LB 9307 0.1384 0.0000± 0.0002 0.0885 −0.0016 0.655± 0.009 1.056± 0.003 0.718± 0.023
CART+RI (m=1) LB 9307 0.1327 0.0011± 0.0001∗∗∗ 0.0864 0.0005 0.635± 0.010 1.050± 0.003 0.688± 0.025∗

CART+RI (m=5) LB 9307 0.1385 0.0000± 0.0002 0.0914 −0.0046 0.655± 0.009 1.056± 0.003 0.720± 0.023
CART+Aux+RI (m=1) LB 9307 0.1325 0.0012± 0.0001∗∗∗ 0.0864 0.0005 0.636± 0.010 1.050± 0.003 0.689± 0.024∗

CART+Aux+RI (m=5) LB 9307 0.1383 0.0001± 0.0002 0.0915 −0.0046 0.654± 0.009 1.055± 0.003 0.716± 0.023
Ignore PFQ 4425 0.1199 0.0000± 0.0000 0.1599 0.0000 0.613± 0.010 1.023± 0.002 0.649± 0.026
Ignore+RI PFQ 9306 0.0570 0.0000± 0.0000 0.1255 0.0344 0.627± 0.010 1.025± 0.002 0.770± 0.021
Ignore (weighted) + RI PFQ 9306 0.0570 0.0000± 0.0000 0.1255 0.0344 0.627± 0.010 1.025± 0.002 0.770± 0.021
Ignore20 + RI PFQ 8728 0.0559 0.0000± 0.0000 0.1229 0.0370 0.622± 0.010 1.025± 0.002 0.769± 0.022∗∗∗

kNN + RI PFQ 9307 0.0565 0.0014± 0.0002∗∗∗ 0.1245 0.0354 0.627± 0.010 1.025± 0.002 0.769± 0.021∗

Default+RI (m=1) PFQ 9307 0.0577 −0.0014± 0.0002∗∗∗ 0.1269 0.0330 0.628± 0.010 1.025± 0.002 0.773± 0.020∗∗

Default+RI (m=5) PFQ 9307 0.0577 −0.0014± 0.0003∗∗∗ 0.1273 0.0326 0.628± 0.010 1.025± 0.002 0.773± 0.020∗∗

CART+RI (m=1) PFQ 9307 0.0574 −0.0008± 0.0002∗∗∗ 0.1256 0.0343 0.628± 0.010 1.025± 0.002 0.771± 0.020∗

CART+RI (m=5) PFQ 9307 0.0574 −0.0008± 0.0003∗∗ 0.1262 0.0337 0.628± 0.010 1.025± 0.002 0.771± 0.020∗

CART+Aux+RI (m=1) PFQ 9307 0.0576 −0.0011± 0.0002∗∗∗ 0.1253 0.0347 0.631± 0.010 1.025± 0.002 0.776± 0.020∗∗

CART+Aux+RI (m=5) PFQ 9307 0.0576 −0.0011± 0.0004∗∗ 0.1261 0.0339 0.631± 0.010 1.025± 0.002 0.776± 0.020∗∗

Ignore RXD 5269 0.1796 0.0000± 0.00003 0.1379 0.0000 0.608± 0.010 1.026± 0.002 0.688± 0.025
Ignore+RI RXD 5269 0.1796 0.0000± 0.0000 0.1379 0.0000 0.608± 0.010 1.026± 0.002 0.688± 0.025
Ignore (weighted) + RI RXD 5269 0.1796 0.0000± 0.0000 0.1379 0.0000 0.608± 0.010 1.026± 0.002 0.688± 0.025
Ignore20 + RI RXD 4967 0.1783 0.0000± 0.0000 0.1366 0.0013 0.602± 0.011 1.024± 0.002 0.686± 0.027
kNN + RI RXD 9307 0.1330 0.0000± 0.0000 0.1192 0.0187 0.607± 0.010 1.026± 0.002 0.743± 0.021
Default+RI (m=1) RXD 9307 0.1439 0.0000± 0.0000 0.1154 0.0225 0.606± 0.010 1.026± 0.002 0.730± 0.023
Default+RI (m=5) RXD 9307 0.1439 0.0000± 0.0000 0.1411 −0.0032 0.606± 0.010 1.026± 0.002 0.730± 0.023
CART+RI (m=1) RXD 9307 0.1446 0.0000± 0.0000 0.1154 0.0225 0.605± 0.010 1.027± 0.002 0.730± 0.023
CART+RI (m=5) RXD 9307 0.1446 0.0000± 0.0000 0.1652 −0.0273 0.605± 0.010 1.027± 0.002 0.731± 0.023
CART+Aux+RI (m=1) RXD 9307 0.1435 0.0000± 0.0000 0.1161 0.0218 0.607± 0.010 1.027± 0.002 0.737± 0.023
CART+Aux+RI (m=5) RXD 9307 0.1435 0.0000± 0.0000 0.1323 0.0056 0.607± 0.010 1.027± 0.002 0.737± 0.023
Ignore VIQ 6993 0.1517 0.0000± 0.0000 0.1788 0.0000 0.562± 0.010 1.011± 0.001 0.717± 0.024
Ignore+RI VIQ 6993 0.1517 0.0000± 0.0000 0.1788 0.0000 0.562± 0.010 1.011± 0.001 0.717± 0.024
Ignore (weighted) + RI VIQ 6993 0.1517 0.0000± 0.0000 0.1788 0.0000 0.562± 0.010 1.011± 0.001 0.717± 0.024
Ignore20 + RI VIQ 6549 0.1508 0.0000± 0.0000 0.1772 0.0016 0.557± 0.010 1.010± 0.002 0.718± 0.025
kNN + RI VIQ 9307 0.1336 0.0014± 0.0003∗∗∗ 0.1556 0.0232 0.561± 0.010 1.012± 0.002 0.733± 0.023
Default+RI (m=1) VIQ 9307 0.1373 0.0005± 0.0003 0.1574 0.0214 0.568± 0.010 1.012± 0.002 0.731± 0.024
Default+RI (m=5) VIQ 9307 0.1373 0.0005± 0.0003 0.1745 0.0043 0.568± 0.010 1.012± 0.002 0.732± 0.024
CART+RI (m=1) VIQ 9307 0.1353 0.0009± 0.0003∗∗∗ 0.1575 0.0213 0.571± 0.010 1.012± 0.002 0.734± 0.024
CART+RI (m=5) VIQ 9307 0.1353 0.0009± 0.0004∗ 0.1855 −0.0067 0.571± 0.010 1.012± 0.002 0.735± 0.023
CART+Aux+RI (m=1) VIQ 9307 0.1328 0.0003± 0.0003 0.1578 0.0210 0.571± 0.010 1.012± 0.002 0.741± 0.023
CART+Aux+RI (m=5) VIQ 9307 0.1328 0.0003± 0.0004 0.1756 0.0032 0.571± 0.010 1.012± 0.002 0.742± 0.023
1 This is the bias proxy: Ignore − Value. NAs were excluded.
2 NA exclusions may cause the average of the bias (this column) to differ from the bias of the averages.
3 RXD has only 1 variable and hence the bias must be 0.
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A.7 Figures
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Figure A.1: Mutual missingness histogram of Full dataset. In contrast to Figure 4.2,
young and old patients have not been separated. Note: variables are in the same order
as Figure A.4.
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Figure A.2: Mutual missingness histogram of pMCAR and pMAR simulated data.
A) pMCAR and B) pMAR. We see virtually identical results to Figure A.1,
confirming our amputation preserved the patterns of missingness. Note: variables
are in the same order as Figure A.4.
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Figure A.3: Mutual missingness histogram of cMCAR and cMNAR simulated data.
A) cMCAR and B) cMNAR. We see no patterns of missingness for cMCAR, as
expected. For cMNAR we see some patterns of low missingness have begun to
emerge for variables preferentially made not-missing. Note: variables are in the
same order as Figure A.4.
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Figure A.4: Mutual missingness histograms with full variable names. The
left-to-right x-axis is identical to the bottom-to-top y-axis. Left: missingness
fraction of NHANES variables for young individuals (under 60). This histogram
gives the mutual missingness fraction for (row, column) pairs of variables with the
diagonal corresponding to each variables overall missingness. Right: missingness
fraction of NHANES variables for older individuals (60+).
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Figure A.5: Survival and missingness after moving cut to age 50 (instead of 60). A)
all variables, B) personal fitness (PFQ), C) prescription drugs (RXD), D) vision
(VIQ), E) blood pressure (BPX), and F) lab variables (LB). In A) the black line
indicates the Kaplain-Meier survival curve for the subpopulation of individuals
missing less than the mean (9.8 variables), the red line indicates individuals missing
more than the mean. In B)-F), black lines indicate subpopulations without any of
the variables in the block missing, red lines have at least one variable in the block
missing. Shaded regions indicate 95% confidence intervals. Insets: hazard ratios
(HRs) for Cox survival model for individuals stratified by young (< 50) or old
(≥ 50), conditioned on age and sex. In A) the Cox model is HR per 10 deficits. In
B)-F) each block Cox model was further conditioned on all other blocks (PFQ,
RXD, VIQ, BPX and LB). p-values (log-rank test) are given in the caption of
Figure A.6, they do not depend on the age cut because they consider all ages.
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Figure A.6: Survival and missingness (extended). A) all variables, B) personal
fitness (PFQ), C) prescription drugs (RXD), D) vision (VIQ), E) blood pressure
(BPX), F) lab variables (LB), G) RDQ031: cough regularly (RDQ), and H)
KIQ046: lost control of urine (KIQ). In A) the black line indicates the
Kaplain-Meier survival curve for the subpopulation of individuals missing less than
the mean (9.8 variables), the red line indicates individuals missing more than the
mean. In B)-H), black lines indicate subpopulations without any of the variables in
the block missing, red lines have at least one variable in the block missing. Shaded
regions indicate 95% confidence intervals. Insets: hazard ratios (HRs) for Cox
survival model for individuals stratified by young (< 60) or old (≥ 60), conditioned
on age and sex. In A) the Cox model is HR per 10 deficits. In B)-H) each block Cox
model was further conditioned on all other blocks (PFQ, RXD, VIQ, BPX, LB,
RDQ and KIQ). Log-rank test p-values (overall effect): 0.37 (All), 0.016 (PFQ),
6.3 · 10−6 (RXD), 3.3 · 10−8 (VIQ), 8.3 · 10−7 (BPX), 1.9 · 10−5 (LB), 0.26 (RDQ)
and 1.4 · 10−6 (KIQ).
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Figure A.7: Missingness biases the FI with most imputation strategies — extended.
Using different percentages of simulated missingness and four mechanisms: A)
pMCAR, B) cMNAR, C) pMAR, D) cMCAR. We show the mean FI calculated
using different imputation strategies, as indicated by the legend. cMCAR had no
bias for the ignore-based methods, whereas MICE RF and Default did. Note the
similarity of pMCAR and pMAR, where only Ignore (> 20%) (i.e. Ignore20)
performed differently. The Default method (teal circles) showed the largest bias
compared to the ground truth (black dashed) for pMCAR/pMAR. Observe that the
imputation strategies are all approximately linear, justifying the use of a linear bias
rate.
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Figure A.8: Forest plot for HRs calculated from data with simulated 15%
missingness. GT: ground truth.
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Figure A.9: Forest plot for HRs calculated from data with simulated cMCAR. Note
that for 50% and 75% missingness there were not enough individuals to calculate a
HR for Ignore20. GT: ground truth.
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Figure A.10: Forest plot for HRs calculated from data with simulated cMNAR.
Note that for 50% and 75% missingness there were not enough individuals to
calculate a HR for Ignore20. GT: ground truth.
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KS-test significance (vs GT). Distributions are sorted by KS-similarity to GT from
most (top) to least (bottom) similar.



Appendix B

Supplemental Information for Efficient representations of

binarized health deficit data: the frailty index and beyond

This supplemental includes additional details for methods including imputation (Sec-

tion B.1), validation and consistency checks that support our analysis (Section B.2),

along with additional results for the imputed data that were not included in the paper

for want of space (Section B.3). Finally, we have included the complete case results

from a parallel analysis of the data (Section B.4).

B.1 Methods

B.1.1 Variables Used

Our choice of predictors, i.e. health deficit variables, was based on another NHANES

study comparing the lab and clinical frailty index (FI) [19]. We have made appro-

priate modifications for our current study. We excluded alkaline phosphatase (ALP)

and lactate dehydrogenase as they were rarely measured (only 84 individuals). We

moved c-reactive protein (CRP) into outcomes as a biomarker of inflammation [60].

We moved all questionnaire health condition variables into outcomes. The clinical

predictors used are listed in Table B.1. All predictors were binarized using the rules

in the summary tables (Tables B.1 and B.2). Binarizing ordinal deficit data appears

to have little impact on the FI [139], and we therefore expect it to have little impact

on other summary health measures, such as principal components. Lab variables,

Table B.2, were binarized according to normal ranges (sex-dependent).
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Outcomes included IADL/ADL disability, morbidity, health care utilization, sur-

vival, and several specific outcomes of interest. In the latter case, we included mean

telomere length, body mass index (BMI), CRP, chronological age, FI, frailty phe-

notype (FP), gait speed (time to walk 20 feet in seconds) and microalbuminuria

(albumin/creatinine ratio [208]; a biomarker of kidney disease). The IADL/ADL

variables were split into disability outcomes (high ordinal scales) or dysfunction in-

put (low ordinal scales; see Tables B.1 and B.3 for exact cuts). Individuals with

disabled IADL/ADL also had dysfunctional IADL/ADL. Similarly, albumin and cre-

atinine were used both to calculate microalbuminuria (an outcome), then they were

binarized and used as input variables, meaning that we expected albumin and cre-

atinine deficits to be good predictors of microalbuminuria. Table B.3 summarizes

the outcomes used. The demographics for the population, including statistics for the

outcomes used are summarized in Table B.4.

We used the NHANES-adapted frailty phenotype (FP) [208, 47, 183]. FP was

defined as 3 or more out of 5: low BMI, bottom 20% for gait speed (sex-adjusted), and

self-reported: weakness, exhaustion, and low physical activity [208]. Consistent with

other researchers [88], we defined common morbidities by responses to the medical

condition questionnaire, e.g. “has a doctor or other health professional ever told (you

that you have) arthritis?”

We inspected the distribution of each continuous-valued variable. To reduce the

skewness, we log transformed: BMI, gait speed, CRP concentration (as others have

done [142, 67]) and mean telomere length (done previously [75]). All continuous

outcomes were scaled to zero mean and unit variance.

When pooling to calculate aggregate performance measures (e.g. overall Youden

index), we reduced the outcomes to a non-redundant subset to prevent strongly re-

lated outcomes from dominating the pooled measures. In particular, non-specific

ADL and IADL disability were included rather than the specific disabilities. The

complete FI was included, not the FI CLINIC nor FI LAB. Only 10 year survival was

included since all survival outcomes had similar patterns (Figure 5.6) and 10 years

was the most balanced outcome (58% survived, 42% died). More balanced outcomes

required less dramatic weighting for the GLM, and should therefore provide more

reliable fits.
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We used 7 demographical variables based on other researcher’s work [73, 137],

including: age (top-coded at 85), sex (female: 1, male: 0), race (white: 1, non: 0),

family income (above poverty level: 1, below: 0) education level (greater than high

school: 1, not: 0), smoker status (smoker: 1, non: 0) and partner status (married or

living with partner: 1, not: 0). The demographic covariates we used are summarized

in Table B.5.

All variables were imputed according to the procedure delineated in the next

section.

B.1.2 Imputation

This section delineates our imputation procedure and characterises the missing data,

and the individuals with missing data.

Imputation Details

Imputation was performed using MICE (multivariate imputation by chained equa-

tions) version 3.10.0 [196] via the CART (classification and regression tree) method.

Imputation was performed 15 times reflecting the 15% overall missingness in the

dataset [205]. We treated all variables encoded as “refused”, “don’t know”, “miss-

ing”, or “does not do this for other reasons” as NA (“not available” i.e. missing

[152]).

Some variables were gated, meaning that the missing values can be inferred based

on the response to a previous question (“gated imputation”). For example, SMQ040

(do you now smoke) was gated by SMQ020 (have you smoked at least 100 cigarettes

in your life); we assumed SMQ040 was “no” if SMQ020 was “no”. We assumed the

“currently have” medical conditions (MCQ170K: chronic bronchitis, MCQ170L: liver

condition and MCQ170M: thyroid disease) were “no” if the individual reported having

never had the associated condition. Individuals whom had not taken a prescription

medicine in the past month (RXD030) were assumed to be taking 0 prescription

medications and therefore did not have polypharmacy.
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Mean arterial pressure (MAP) and pulse pressure (PP) were computed using the

systolic and diastolic blood pressure measurements (Table B.2), and were thus pas-

sively imputed, meaning that they were computed using imputed systolic and diastolic

values [196].

We included all convenient auxiliary variables from the loaded files (mostly blood

pressure related), the full list is given in Table B.6. Using auxiliary variables, without

recoding, with the present method can improve imputation without risk of overfitting

[145].

Missingness Statistics

We characterized the missingness in terms of the magnitude of the effect, the presence

of “patterned missingness” [145] and looked for evidence of informative missingness.

If data are not missing completely at random then imputation is needed to avoid

biased conclusions [180].

Missingness frequency is one minus the frequency with which any particular vari-

able was measured. In Figure B.1 we observed that lab variables tended to have much

higher missingness than clinical variables.

The missingness frequency of binary outcomes and demographic covariates are

given in Figure B.2. The missingness was very low except for family income, which

was missing almost 10% of the time.

The missingness frequency of continuous outcomes and demographic covariates

are given in Figure B.3.

Looking closer at the predictors, we see the joint missingness histogram has a large

block of mutually-missing lab variables, Figure B.4. It is clear that some predictor

variables tended to be reported together, especially lab variables. For lab variables,

we can see that large blocks of variables were taken together and hence were either

all reported or all missing. Blocks of missing variables, “patterned missingness”, can

cause problems with some common imputation algorithms, but not the one used here

[145].
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Individuals missing data had significantly worse survival (Hazard ratio = 1.6(1),

p = 7 · 10−13, log-rank test), as shown in Figure B.5. This means that the data

were not missing complete at random, which means we cannot simply ignore the

missingness [180].

Sanity Checks

We performed sanity checks on the imputed values to ensure that they are reason-

able and logically consistent. Logical inconsistencies would indicate a poor choice of

imputation algorithm. In short, we found the imputed values to be consistent and we

conclude that the imputation was sound.

We expect that the frequency of deficits should be higher in the imputed data

because of the worse survival of individuals missing data. In Figure B.6 we observed

that this was the case, imputed values were almost always more likely to be deficit

than the measured values. We have superimposed the missingness frequencies for each

variable since it indicates the relative importance of having a good imputation (if the

missingness frequency is very low then the imputed values are unlikely to affect our

final results). Similarly, we investigated the imputation of outcomes in Figure B.7.

We’ve included demographical covariates as outcomes, although clearly some of them

are not “deficit” (e.g. sex).

Next we looked for significant differences in the distribution of data after imputing

values. Grossly, the joint 2D frequency histograms showed no change for predictors

(Figure B.8) or outcomes (Figure B.9). Comparing the available case predictors to

post-imputation predictors we see that the major change in lab variables — due to

block missingness — seems to have not affected the histogram structure. It does

look, however, that correlations between predictors were stronger in the imputed

values which could indicate individuals with many deficits. This is expected since

they had higher risk of mortality.



212

Many (39%) of individuals missing any data were missing all lab variables (see

Figure B.4 for visualization). We propose a novel validation for the imputed lab

variables. We compare the FI LAB of individuals with their lab variables imputed

vs those without imputation. We know that the FI LAB should be higher in the

imputed individuals because they had worse survival, and we can quantify the effect.

Given the hazard ratio (HR) of missing the lab data, l, and the HR of the FI LAB,

f , we expect,

∆FI =
ln l

ln f
(B.1)

where ∆FI is the change in FI between the imputed and complete individuals. We

conditioned on the FI CLINIC. The HR of missing the lab data was l = 1.266±0.081

and the HR of the FI LAB using the complete data was f = 1.0299±0.0032, yielding

an estimated shift of ∆FI = 0.083. The actual shift in the median FI LAB was 0.034,

as shown in Figure B.10. The results are consistent: imputed patients had higher FI

LAB and the estimate is within the interquartile range of the distribution.

Imputed Outcomes

We imputed all outcomes and included them in our prediction models. This was a

convenience justified by the relative low missingness and the use of multiple impu-

tations, which propagates uncertainty. In this section we verify that our conclusions

are unaffected by this choice.

In summary, most outcomes had too few missing values to make a difference in

their performance metrics. Of the few with non-trivial missingness, only gait speed

prediction was significantly different when imputed (R2 increased by about 0.05 when

imputed values were included). We suspect that imputed individuals were missing

not at random, that is, had they been measured they would have had very low gait

speeds, which explains why they were easy to predict. Regardless, the shapes of the

curves are unchanged and therefore so too are the study conclusion, which are based

on relative performance.
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Only 6 outcomes had enough missing values to meaningfully affect the final per-

formance metrics, the remaining outcomes had missingness below 3% (Figures B.2

and B.3). We compared the prediction of our generalized linear models (GLMs) with

and without including the imputed values, Figure B.11. Clearly the overall patterns

are unaffected by the inclusion of imputed values: the same number of principal com-

ponents are needed regardless of imputation status. The absolute differences were

small and in all cases — except for gait — the performance measures overlapped

within error. Also, sometimes imputed values were easier to predict and sometimes

they were harder to predict, depending on the variable, indicating no global bias to

imputed values.

Only gait showed a change in performance when imputed values were included.

Gait was better predicted when imputed values were included. This likely reflects

the underlying missingness mechanism, as discussed above we observed that the in-

dividuals missing data tended to be older and have higher risk of mortality. This

suggests that individuals missing gait may have had very slow gait speeds, perhaps

being completely unable to perform the task, hence their exclusion. We confirmed

this by reading the study documentation, for the 236 (out of 444) individuals with a

reason for missingness reported, they all indicated conditions that would likely slow

gait speed. Of the 236 individuals with a reason for missing gait speed reported: 10

(4%) recently had chest/abdomen surgery, 7 (3%) recently had a heart attack, 87

(37%) had an aneurysm or stroke, 19 (8%) had severe neck or back pain on the day

of the test, 55 (23%) had difficulty moving their knee, and 58 (25%) had a knee or

hip replacement. These are all reasons that would slow gait speed, and are mostly

related to poor health.

It should be no surprise that the imputed gait speeds were significantly slower,

with the time to walk 20 feet (in loge-seconds): 2.22±0.03 for imputed vs 1.94±0.01

(p = 2 · 10−15), Figure B.12. These individuals may have simply been easier to

predict because other biomarkers captured their relatively poor health. Regardless

of whether or not these individuals should or shouldn’t be easy to predict our key

results are unaffected by their inclusion since we focus on relative performance. The

absolute performance of our gait models would have been a little lower, ∆R2 ∼ 0.05,

if imputed values were excluded.
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B.2 Analysis Validation

We performed a number of internal studies to confirm the validity of our analysis

methodology. In particular, we show that the generalized linear models (GLMs) for

binary outcomes, i.e. logistic regression, were optimized when we including a simple

set of weights. This has a satisfying interpretation within the context of the logistic

regression literature.

We have also provided a simulation study that validated our error estimates using

cross-validation.

B.2.1 Unbalanced Data

Many of the binary outcomes of interest are uncommon or rare, e.g. only 3.3% died

within the first year of followup. This poses a challenge when modelling, since high

accuracies can be achieved by models with no real predictive power: they simply

return the most common class, e.g. ‘everybody survives the first year’ is 96.7% ac-

curate. Among other problems, this invalidates any measure of feature importance

since the model isn’t actually doing any discriminating. We found that this problem

was ameliorated by weighting the individuals in the minority group more heavily.

We tested a simple weighting scheme where individuals in the majority group were

given weight 1 whereas individuals in the minority group were given weight w, where

w was selected through hyperparameter optimization. Each outcome was optimized

for w using

wi =

⎧⎨⎩w, if i is in minority.

1, if i is in the majority.
(B.2)
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We used Bayesian optimization [211] as it is well-suited for optimizing models

that are slow to train. Bayesian optimization uses statistical inference to predict the

best set of parameters to try at each iteration. We used Youden’s index [215] as the

objective function (Youden index ≡ sensitivity + specificity− 1). We initialized with

an 11-point, log10, grid search from log10w ∈ [0, 2], then 10 iterations of Bayesian

optimization. Finally, we selected the weight, w, with the highest Youden index.

For predictors we used the 7 covariates: age, sex, ethnicity, family income, education

level, marital status, smoker status and the FI. We used the GLM logistic regression

model to predict 36 of the binary outcomes (everything except survival) and the 6

binary demographical variables for a total of 42 data points.

We investigated the 42 optimized prediction models to see if the degree of balance,

b, was a strong predictor of the optimal w where,

b ≡ Frequency of minority class

Frequency of majority class
(B.3)

We observed power law behaviour in the optimal weights as a function of balance,

b, Figure B.13. The best fit line yielded the relationship w ∼ b−1.12, with the simpler

model w ∼ b−1 also fitting well. Note: no correlation between Youden index and

either balance or weight was observed (not shown), demonstrating the power law

relationship was real and not an artifact of the optimization algorithm.

We observed that the intuitive model fits well,

w =
Frequency of majority class

Frequency of minority class
=

1

b
. (B.4)

Hence the optimal weights for each individual were:

wi =

⎧⎨⎩
Frequency of majority class
Frequency of minority class

, if i is in minority.

1, if i is in the majority.
(B.5)

We implemented Eq. B.5 when fitting the GLMs in the present study.

Assuming a balanced prior, we can show that Eq. B.5 is equivalent to the weighted

exogenous sampling method [96]. The exogenous method weights are defined by [96]

w1 =
p1
s1

(B.6a)

w0 =
p0
s0

=
1− p1
1− s1

, (B.6b)
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where p1/p0 is the population frequency of class 1/0 and s1/s0 is the sample frequency

of class 1/0. Choosing which class is 1 is arbitrary, so we pick class 1 to be the

majority class, without loss of generality. The weighted likelihood [96] is insensitive

to an overall scale—i.e. the minimum doesn’t change—so we are free to divide both

weights by w1, yielding

w0

w1

=
s1/p1 − s1
1− s1

=
s1
s0

(︃
1

p1
− 1

)︃
= w̃0 (B.7a)

w̃1 = 1, (B.7b)

where w̃0 and w̃1 are the rescaled weights. If we further set p1 = 1/2, that is the

population frequency of the event is exactly 50%, then we have

w̃0 =
s1
s0

≡ Frequency of majority class

Frequency of minority class
(B.8a)

w̃1 = 1, (B.8b)

which is identical to our heuristic scheme, Eq. B.5. Hence our empirical weights are

optimal if we assume that the ‘true’ underlying population has as many cases as

controls (p1 = 1/2, i.e. a balanced study design).

The Cox proportional hazards model was not weighted since the survival data

were already nearly balanced (43% survived to censorship, 57% died). We compared

C-indexes for the Cox model with and without weights, 0.6638± 0.0010 vs 0.6644±
0.0012, confirming weights were unnecessary.

B.2.2 Out-of-sample Errors

Prior research has shown that under extreme conditions näıve cross-validation errors

may be too narrow [11]. Nevertheless, we use näıve cross-validation because it is sim-

ple and easy. Here we use a simulation study to validate that the out-of-sample error

estimates were reasonable proxies for the true errors. Note that these are standard

errors, not confidence intervals.

Using a simulation study allows us to have a ground truth for the exact error

intervals which we compared to those estimated via näıve cross-validation. To produce

realistic data, we trained a model to generate predictors and outcomes that were

similar to the complete case data. This generative model was subsequently used for

the simulation study.
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We trained the generative model as follows:

1. Combine predictors and outcomes, keeping only complete case data (no miss-

ingness, even in outcomes).

2. Compute complete PCA of the concatenated dataset of predictors and out-

comes.

3. Generate random sample in the latent space i.e. generate a Gaussian random

variable with covariance equal to the covariance of the PCA scores (diagonal

covariance).

4. Use the PCA rotation to map the latent space into an observed space.

5. Binarize any binary-type data using a hard-cut at 0.5.

6. Split predictors and outcomes.

7. Drop outcomes with no case data.

8. (This is the ground truth data.)

9. Compute the cross-validation error estimate for the ground truth data using

10-fold cross-validation.

10. Iteratively generate N = 100 samples from this model and compute accuracy

metrics.

11. Compare the simulated accuracy metrics to the cross-validation metric esti-

mates. We know both the ground truth accuracy and error bars, so we can test

the validity of the cross-validation estimate.

Figure B.14 compares the measures from the simulated data to the cross-validation

estimate of the synthetic ground truth. We see good agreement in error bar magni-

tudes and reasonable agreement in point estimates of each accuracy metric for each

variable.
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B.3 Additional Results

This section contains additional results to the main text. Data have been pre-

processed and imputed according to the rules outlined therein.

B.3.1 Youden Index vs AUC

The Youden index [215] is a relatively uncommon metric, so we compared it to a more

common metric: the AUC (area-under-the-ROC-curve), in this section. We hope that

this will help to develop our reader’s intuition about the scale of the Youden index.

Recall from the Section 5.2.2 of the main text that a Youden index (AUC) of 0 (0.5)

indicates a useless test, i.e. no better than a guess, and 1 (1) indicates a perfect

test, i.e. always correct. The Youden index is preferable since it provides a definite

accuracy at a specific threshold, such as we would see in medical diagnosis [214]. In

contrast, the AUC considers all possible thresholds.

We pooled the GLM predictions for all binary outcomes and number of PCs and

plotted the Youden index vs AUC in Figure B.15. The two were strongly correlated

and were well fit by the relationship [214]:

AUC = Φ

[︃√
2Φ−1

(︃
Youden + 1

2

)︃]︃
(B.9)

where Φ is the normal cumulative distribution function. This model is derived by

assuming the two classes have normal statistics and the same variance, but different

means. In general, the AUC is sensitive only to location parameter, e.g. mean, whereas

the Youden index is sensitive to location and shape parameters, e.g. mean and variance

[214]. Using Eq. B.9, we see that Youden indexes of 0.2, 0.4, 0.6 and 0.8 indicate

similar performance to AUCs of 0.64, 0.77, 0.88 and 0.97, respectively.
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By inspection of Figure B.15B, it is clear that only three outcomes deviated from

Eq. B.9: ever had a liver condition (liver con; green triangles), still have a liver

condition (have liver con; red circles), and significant difficulty using a knife/fork

(adl knifeDIS; blue squares). These are the three rarest outcomes: 1.2%: have liver con,

1.9%: adl knifeDIS, and 3.0% liver con. These were similarly rare to the rarest input

deficits, the rarest being phosphorous at a rate of 2.2%. The outcomes were predicted

using weighted GLMs whereas the compression measures used unweighted PCA. This

implicates the weighting scheme as the primary culprit in causing the deviation of

these three (rarest) outcomes from Eq. B.9 (Section B.2.1).

We see that for the present study, the AUC saturates at 1 much faster than the

Youden index, suggesting the Youden index is a more conservative metric.

B.3.2 Input Compression

We illustrated the action of PCA on the 2D joint deficit histogram in Figure 5.2. The

raw, unscaled version of Figure 5.2 is shown in Figure B.16.

Our main compression result was comparing data reconstruction accuracy as a

function of latent dimension size. In Figure 5.3 we plotted the Youden index as the

measure of accuracy. In Figure B.17 we reproduce the plot using the AUC instead of

the Youden index. The AUC shows the same trend and relative performance for each

algorithm, however, the algorithms reach approximately perfect reconstruction faster

with the AUC than the Youden index. For example, LSVD reaches perfect AUC near

20 features versus 30 for the Youden index. This reflects the Youden index being a

more sensitive measure (Figure B.15).

We observed strong correlations between the first feature of each algorithm in

Figure 5.4. The extended Spearman correlations including centered PCA, LPCA and

LSVD are given in Figure B.18. Centering means that the mean has been subtracted,

which should reduce the correlation with the FI. With or without centering, the

correlations between the FI and PC1/LPC1/LSV1 are very strong.

We also compared the sex and age dependence of the 1D features in Figure B.19.

The overall age and sex dependencies were markedly similar: further evidence that

they describe the same underlying phenomenon.
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B.3.3 Generalized Linear Models (GLMs)

We explored which PCs were needed to optimally predict the pooled outcomes by

stepwise adding another PC: starting with covariate demographical information, then

PC1 and so forth. Figure B.20 gives the pooled predictive power for the GLM using

the AUC instead of Youden index for comparison to Figure 5.7. The scale is different

(AUC vs Youden) but the results are nearly identical.

We then explored specific outcomes, plotted up to PC6 in Figure 5.9; the complete

results are plotted in Figure B.21. Limiting up to PC6 did not exclude any meaning-

ful improvements in performance for most outcomes – though the ‘high-dimensional

outcomes’ in Figure 5.10 continue to improve to a high number of PCs. Figure 5.10

is also truncated, which misses the improvement in prediction for some ADL/IADL

disabilities, e.g. “difficulty managing money” (iadl moneyDIS) from PC21-PC25 and

“difficulty preparing meals” (iadl mealDIS) from PC47-PC49 (Figure B.21). These

improvements could have been caused by our choice to include ADL/IADL dysfunc-

tion/difficulties as input variables (see Section B.1.1). Higher PCs tend to become

increasingly specific towards the input variables (e.g. Figures 5.5 and 5.11), so each

ADL/IADL dysfuction may have a specific PC associated with it, as those associated

PCs are included the ADL/IADL disability prediction could improve without risk of

overfitting (because everybody with disability had dysfunction).

We next consider variations of Figures 5.9 and 5.10 to explore robustness of those

results.

We first consider the possibility of quadratic behaviour and interactions within

the GLM in Figure B.22. We included a linear and quadratic term for each PC as

well as all possible interactions between the PCs. We observe that the maximum

predictive performance was the same or lower than the linear model, Figures 5.9 and

5.10, in all cases. We also observe severe overfitting, presumably due to the greatly

increased number of parameters due to interactions.

We next use the AUC instead of Youden index in Figure B.23 for comparison to

Figures 5.9 and 5.10. The results look nearly identical.
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Finally, instead of using PCA, we used LPCA in Figure B.24 and LSVD in Fig-

ure B.25, where we have grouped by outcome type. These are for comparison with

PCA (Figures 5.9 and 5.10). We can summarize all three feature sets — PCA, LPCA

and LSVD — similarly: most outcomes required 1 or 2 features (“low-dimensional”)

with a few requiring many more (“high-dimensional”), with agreement on which out-

comes are low vs high–dimensional. It is, however, clear by inspection that the LSVD

accuracy metrics tend to be lower than either PCA or LPCA (the latter two are

roughly the same). This is consistent with our observations in Figures 5.7 and 5.8

that LSVD features were typically worse predictors.

Now we move on to feature importance. We estimated feature importance by using

a feature selection algorithm, LASSO, then computed the selection frequency for each

feature. LASSO picked the optimal performing model, minimum mean-squared error

(continuous outcomes) or deviance (binary outcomes) [58]. All 55 PCs and 7 demo-

graphical covariates were available for the selection algorithm. Features selected more

often are, ostensibly, more important. We cross-validated each outcome and pooled

the selection frequencies together. In Figure B.26, left, we present the aggregated

feature selection probabilities for the GLMs. Selection probability decreased with

increasing PC number. We observe an elbow past 7 PCs in the selection probability,

implying that the first 7 PCs were consistently better predictors whereas the higher

PCs were less useful and could therefore be vulnerable to overfitting. Similarly, in-

come, education, partner status and smoker status seem to be relatively unimportant

variables for prediction; conversely: sex, race, and age seem important. PC feature

importance appeared to satisfy a power law, as displayed in Figure B.26, right (lin-

earity on a log-log scale confirms a power law). The best fit was generated using

weighted linear regression, where each weight was 1/σ2 (σ= standard error).

The observation that feature importance drops with increasing PC number justifies

truncating at a particular PC. Together with our observations from Figure 5.12,

that implied features below the bilinear trend cause overfitting, this suggests a good

strategy for feature selection is to use a hard cut as PCs start to drop below the

bilinear trend.
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B.3.4 Robustness Analysis

Here we further examine how robust our results were to changes in the dataset.

The exact values for the PCA rotation coefficients (the matrix U in Appendix 5.6)

from our full dataset are reported in Table B.7 up to PC7. They can be used directly

to generate features for new datasets: each PC is simply a linear transformation using

the coefficients in the respective column.

We tested the robustness of the PCA rotation to choice of variables. We randomly

sampled a subset of 30 variables then computed the PC rotation coefficients and re-

peated the process 2000 times. Figure B.27 illustrates the result. The first 3 PCs were

robust to choice of variables, beyond which were not statistically significant. These

PCs all have strong ‘domain’ signals: clinic, lab, blood pressure and metabolism, each

domain being composed of several associated variables. We infer that the first 3 PCs

were robust to choice of variables and that this robustness comes from having distinct

domains of like-variables.

We expect that the rotation is robust to choice of similar variables, for example,

if we replaced the clinical variables with a different set of clinical variables we expect

that the rotation wouldn’t change very much. This relates to the coarse graining

action of PCA, which relies on domains. Substituting a variable within a particular

domain for another variable in the same domain is unlikely to affect the resulting

PCs.

B.3.5 Age Stratification

Recall from the main text that we stratified by age to further test the stability of our

results (in the Section 5.3.5). In this section we include additional results related to

age stratification and to other demographic variables.

The feature associations between primary features and demographical variables

are given in Figure B.28, analogous to Figure 5.6. We observed strong associations

between age and the first latent features (FI, PC1, LPC1 and LSV1).
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The deficit frequency increased with age, Figure B.19, but did the frequency of

joint deficits change? We stratified by age quartile and then normalized the joint

histogram by the mean deficit frequency, effectively conditioning on the probability

of a deficit occurring in that quartile. The resulting histogram appears to become

slightly more saturated with increasing age, Figure B.29. The increase in saturation

implies that PC1, which tends to be a large block, is likely to be more important with

increasing age (confirmed in the main text, Section 5.3.5). The histogram is relatively

stable with age, however, suggesting that the PCs past PC1 change only slightly with

age. Looking at Figure B.28 we can confirm that PC1 is strongly correlated with age

whereas the remaining PCs are not.

We can show that the eigenvectors do not change when the histogram is simply

scaled.

Proof: Consider two joint histograms of different ages, H(y) and H(o), say young and

old,

H
(y)
ij ≡ 1

Nyoung

∑︂
young

xixj (B.10a)

H
(o)
ij ≡ 1

Nold

∑︂
old

xixj. (B.10b)

Suppose that the two histograms are identical except for an overall scale, i.e. H(o) =

αH(y). In our case α would be the ratio of mean FIs for the age groups. The

eigenvalues of H(y) are, by definition,

H(y) =
∑︂
i

λi

(︁
ϕ⃗i ⊗ ϕ⃗i

)︁
(B.11)

where λi and ϕ⃗i are the ith eigenvalue and eigenvector pair, respectively. By assump-

tion H(o) is just scaled so,

H(o) = aH(y) =
∑︂
i

(aλi)
(︁
ϕ⃗i ⊗ ϕ⃗i

)︁
(B.12)
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thus the eigenvectors are the same but the overall eigenvalues are different. If we nor-

malize the eigenvalues by their sum then they are also the same, (aλj)/
∑︁

i(aλi) =

λj/
∑︁

i λi. QED

Hence, our observation in Figure B.29 that the main age-related change to the his-

togram is a change in scale should neither affect the eigenvectors nor the PC rotation.

The overall scale does, however, affect the spacing between eigenvalues, which could

be important for PC ranks. For example, if spacing between eigenvalues is small then

PCs are more likely to swap order, making it harder to robustly estimate them across

samples.

We compared the PC second moment (eigenvalue) spectrum (“eigenspectrum”)

as a function of age, Figure B.30. The first eigenvalue clearly increases with age,

consistent with PC1 ∼ FI (the FI is known to increase exponentially with age [124]).

There may also be a bilinear structure in the spectrum on a log-log scale, although

the first line only has three data points. This PCA structure has been observed

previously for fractal time series data [61], where the slope is proportional to the

fractal dimension – which is a measure of complexity [111].

We split at the median age, and saw little difference in compression between the

young and old cohorts (Figure B.31). We then compared prediction of outcomes.

We excluded demographical variables to better facilitate comparison, because the

baseline model that used only demographical variables did not perform equally well

for each cohort. In Figure B.32 we observed that older cohorts tended to have better

predictions than younger cohorts. Performance was nevertheless better with the full

population, possibly because it contained more individuals for training.

We then used GLM modelling to summarize the differences between the young

and old cohorts. In Figure B.33 we performed a compression test: using the GLM —

with PCs as features — to predict the baseline predictor variables. In Figure B.34

we performed a prediction test using the GLM to predict outcomes as normal. Of

note, there was a much stronger focus on predicting/compressing creatinine, BUN,

microalbuminuria, and to a lesser extend gait, in the older cohort than in the younger

cohort. The younger cohort tended to prioritize other input variables e.g. calcium,

HDL and iron. The difference in higher PCs between young and old cohorts reflects

the lack or robustness of the higher PCs that we observed in Figure 5.11.
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B.3.6 Benchmarks

We benchmarked each of the dimensionality reduction techniques using a personal

computer (i7-10750H CPU @ 2.60 GHz (typical clock: 4.4 GHz), 16 GB of RAM).

Computations were performed using RStudio with R version 4.0.1 [152]. Sample data

were generated from the complete case predictors. We shuffled the individuals once

then selected incrementally larger sets of individuals and predictor.

Benchmarks were computed using the median of 100 repeats via the microbenchmark

package [120]. The resulting benchmarks are reported in Figure B.35. Grossly, PCA

was 10x faster than LPCA which was 10x faster than LSVD. PCA, LPCA and LSVD

all scaled similarly. The scaling with respect to number of individuals was sublinear.

For the 100-individual sample, the scaling was exponentially with increasing num-

ber of predictors; the 1000-individual sample was slower than exponential. FI scaled

much slower, showing essentially no change with increasing dimension. It is surprising

that PCA was faster than the FI, but this could reflect the FI having a large fixed

computational cost due to its implementation, consistent with the trivial scaling with

increasing dimension.
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B.4 Complete Case Results

Before imputation, we performed an initial analysis on the complete case predictor

data. That is, individuals were required to have all 55 predictors and 7 covariates

reported, although missing values were allowed in the outcomes (which were then

dropped one at a time when assessing accuracy). We used complete case (no missing

values allow) instead of available case (missing values ignored) because PCA, LPCA

and LSVD are impractical (PCA) or impossible (LPCA and LSVD) when an individ-

ual has missing values. For example, if a PC has a non-zero contribution from each

input variable then that PC will be NA for all individuals except for those with com-

plete data. Demanding complete case reduced our dataset from N = 1872 individuals

to Ncc = 1123 individuals. As described in the main text and Section B.1.2, there

were significant differences between the two datasets with the complete case data

being younger: median (IQR) 71 (65-78) vs 76 (67-83) and had significantly better

survival, implying they were also healthier (hazard ratio for individuals missing data:

1.6(1)). Some differences between the datasets are thus expected. The purpose of

this section is to point out any salient differences between the complete case results

and the imputed results reported in the main paper.

Mostly we observed the same salient results in both the complete case and im-

puted datasets. The major differences appear to be due to poor data quantity for

the complete case data which had far fewer adverse outcome cases, particularly in

ADL/IADL disability, e.g. “difficulty using knife” (adl knifeDIS) had only 4 cases.

Ostensibly individuals with disabilities were more likely to have missing data, perhaps

due to physical limitations affecting data collection. This is consistent with our other

observations that the complete case individuals were in better overall health. Minor

differences between the imputed results and complete case could be attributed to the

relatively poor health of the individuals with missing data. When using only com-

plete case data our study population is biased towards a subpopulation with healthier,

younger individuals.
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We start with the eigen-decomposition of the joint 2D histogram, Figure B.36.

Visually, Figure B.36 is similar to Figure 5.2, reaffirming the two major results: the

first PC has nearly uniform weights, akin to the FI, and the subsequent PCs tend

to block out like domains. The primary difference is the increased saturation of

Figure 5.2 which shows that the complete case had lower deficit rates, consistent with

those individuals being healthier.

B.4.1 Complete Case: Input Compression

Investigating the compression ability of each algorithm, we observed nearly identical

results to the imputed data (Figure B.37). We also see the same order for relative

performance of the algorithms (FI ≲ PCA < LPCA < LSVD), the same difference

between clinical and lab data, and the same scale of overall performance. As with

the imputed data, LSVD was the most efficient and saturated at approximately 30

dimensions, implying that the dataset can be fully represented by a smaller set of

≤ 30 features.

We again computed the correlation matrix between the first features from each

algorithm, Figure B.38. The correlations were weaker but showed the same trends:

the first feature from PCA, LPCA and LSVD all correlated strongly with each other

and the FI. They also correlated more strongly with the FI CLINIC than the FI LAB.

B.4.2 Complete Case: Feature Associations

Compression generated new features in a latent space of reduced dimension that we

then interpreted. We associated the features with both input predictors and outcomes

to infer how information was aggregated by the compression algorithms.

In Figure B.39 we see a nearly identical pattern to the imputed data, Figure 5.5.

Notably, the associations seem to be stronger in the complete case data (with smaller

CIs), e.g. the association between PC8 and iron. This could be because the complete

case data is a more homogeneous population with lower deficit frequencies. It could

also be that imputation over-estimated the endemic stochasticity.

Our major observations are unchanged. PC1, LPC1, LSV1 and the FI all have

nearly identical prediction patterns. The higher PCs tend to be of weaker significance

and more specific to a particular variable or domain of variables.
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We can infer the information content of each feature through the association scores

— a higher score implies more information related to a particular input variable. Sim-

ilarly, in Figure B.40 we score the predictive power of each feature for each outcome.

In both figures the inner colour indicates the lower limit of the 95% confidence inter-

val (CI): lighter values are less significant (white is non-significant). Consistent with

the compression observations, we see nearly identical patterns between the FI and

the first latent dimension: PC1, LPC1 and LSV1; note also the similarity to the FI

CLINIC. As with the imputed data, we observe higher PCA dimensions tend to be

weaker, but also more specific predictors.

B.4.3 Complete Case: Generalized Linear Models (GLMs)

By using a GLM we were able to infer conditional associations with outcomes given

other features and demographical covariates. In Figure B.41 we plot the pooled out-

come accuracies — Youden indexes — for predicting binary outcomes using each

algorithm as a dimensionality reduction step. In contrast to the imputed data, Fig-

ure 5.7, we see that the complete case data, Figure B.41, is much more sensitive to

overfitting. We see a rapid drop in predictive power for all algorithms past about 10

PCs. This may be because binary outcomes were much less common in the complete

case data. The three least common outcomes for the complete case dataset were

“difficulty using knife” (adl knifeDIS): 4 cases, “difficulty walking between rooms”

(exhaustionDIS): 7 cases, and “have a liver condition” (have liver con): 11 cases. We

suspect the associated Youden indexes are unreliable. Modelling outcomes with such

low case rates required very large weights which would make the fits very sensitive

to a small number of data points (causing a leverage problem [86]). What’s more,

cross-validation estimates may be unreliable, e.g. for adl knifeDIS there would be,

on average, less than one case in each test set. In contrast, the full dataset had 36,

123 and 21 cases, respectively (before imputing the outcomes). The least common

outcome in the full dataset had 21 cases vs 4 for the complete case data. Looking at

Figure B.43, we confirm that adl knifeDIS and exhaustionDIS have volatile accuracies

and are very sensitive to the number of features and, presumably, overfitting (other

cases were also rare, e.g. FP: 17 cases and survival 1year: 11 cases). This supports

our hypothesis that overfitting of the complete case data was caused by case rarity.



229

Comparatively, the continuous outcomes showed much lower sensitivity to over-

fitting, Figure B.42. This is further evidence that the rare case data is the culprit in

the overfitting sensitivity observed in Figure B.41. The continuous outcomes showed

a slight tendency to overfit, having worse performance as the number of PCs be-

comes large. In contrast, we saw no evidence of overfitting in the imputed dataset,

Figure 5.8.

We break down the predictions by specific outcomes in Figure B.43. The key ob-

servations from the imputed data, Figure 5.9, hold: most outcomes are near-optimally

predicted using just PC1, with a few specific outcomes taking far more. The complete

plots without truncation are given in Figure B.44. In contrast to the imputed data,

we observe that the fits are more volatile and the ADL/IADL performance is notably

lower, ostensibly due to the poor performance when predicting “difficulty using knife”

(adl knifeDIS) and “difficulty walking between rooms” (exhaustionDIS). As discussed

above, this is likely a manifestation of the rarity of those outcomes, having just 4 and

7 cases, respectively.

Focusing on the outcomes that appeared to respond to more than 2 PCs, we replot-

ted these outcomes in Figure B.45. These are the “high-dimensional” outcomes that

we visually observed to improve with increasing number of PCs (using Figure 5.9),

as well as the frailty phenotype (FP), which is theoretically high dimensional, hav-

ing been proposed to emerge from a complex interplay of several biological systems

[57]. In contrast to the imputed data, Figure 5.10, the discrete outcomes are quite

noisy — probably due to lack of case data. Interestingly, PCA using only the clinical

variables (PCACLINIC) yielded a prediction of age that appears to be much lower

dimensional. This may relate the lower deficit frequencies in the complete case pop-

ulation (compare Figure B.36 to Figure 5.2). We preserve strong similarities with

the imputed data, however, with similar curves for the continuous outcomes and age.

Both imputed and complete case analyses indicate that there is something unique

about these outcomes in requiring far more dimensions (PCs) to optimally predict

than most other outcomes.
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B.4.4 Complete Case: Robustness Analysis

We tested the robustness of PCA by bootstrapping the sample population. The PCA

rotation for the first 10 PCs is given in Figure B.46 for the complete case data. The

results are very similar to the imputed data, Figure 5.11, with PC1 being nearly

uniform weights across variables, PC2 was a contrast term between clinical and lab

variables (i.e. lab had opposing signs to clinical, weights were roughly equal), PC3

was a contrast term between heart and metabolism, and PC4 was primarily metabolic

(glucose and glycohemoglobin with hearing). The significance appeared to be lower

in the complete case data, with PC5 being almost entirely non-significant.

Finally, looking at the eigenvalues (second moments) for each PC we observed

Figure B.47. We observe the same bilinear structure spanning the same PCs as we

did with the imputed data, Figure 5.12.

B.5 Tables

Table B.1: Predictors Used — Clinical Variables

Variable Encoding Description NHANES Code
adl bed 0: no difficulty, 1: otherwise Difficulty getting in/out of bed PFQ060J
adl dress 0: no difficulty, 1: otherwise Difficulty dressing self PFQ060L
adl knife 0: no difficulty, 1: otherwise Difficulty using fork, knife, cup PFQ060K
broken hip 0: no, 1: yes Broken or fractured a hip OSQ010A
confusion 0: no, 1: yes Experience confusion/memory problems PFQ056
cough 0: no, 1: yes Coughing most days - over 3 mo period RDD030
gpa crouch 0: no difficulty, 1: otherwise Difficulty kneeling/crouching PFQ060D
gpa grasp 0: no difficulty, 1: otherwise Difficulty grasping/holding small objects PFQ060P
gpa overhead 0: no difficulty, 1: otherwise Difficulty reaching over head PFQ060O
gpa sit 0: no difficulty, 1: otherwise Difficulty sitting for long periods PFQ060N
gpa stand 0: no difficulty, 1: otherwise Difficulty standing for long periods PFQ060M
gpa standup 0: no difficulty, 1: otherwise Difficulty standing from armless chair PFQ060I
hear 0: good, 1: otherwise General condition of hearing AUQ130
iadl chores 0: no difficulty, 1: otherwise Household chore difficulty PFQ060F
iadl meals 0: no difficulty, 1: otherwise Difficulty preparing meals PFQ060G
iadl money 0: no difficulty, 1: otherwise Difficulty managing money PFQ060A
leaked 0: no, 1: yes Leak urine during nonphysical activities KIQ046
lem 10steps 0: no difficulty, 1: otherwise Difficulty walking 10 steps PFQ060C
lem qmile 0: no difficulty, 1: otherwise Difficulty walking a quarter mile PFQ060B
lsa homeleis 0: no difficulty, 1: otherwise Difficulty leisuring at home PFQ060S
lsa movies 0: no difficulty, 1: otherwise Difficulty going to movies, events PFQ060Q
lsa socials 0: no difficulty, 1: otherwise Difficulty attending social events PFQ060R
sight dim 0: no difficulty, 1: any difficulty Difficulty seeing steps/curbs-dim light VIQ050C
sight gen 0: excellent or good, 1: fair, poor or very poor General condition of eyesight VIQ030
srh 0: excellent, very good or good, 1: fair or poor General health condition HUQ010
srh change 0: better or same, 1: worse Health now compared with 1 year ago HUQ020
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Table B.2: Predictors Used — Lab Variables

Variable Normal Range
1

Description Units NHANES Code
albumin M: [32,45]; F: [32,45] Albumin g/L LBDSALSI
B12 M: [118,701]; F: [118,701] Vitamin B12, serum pmol/L LBDB12SI
bicarb M: [21,28]; F: [21,28] Bicarbonate mmol/L LBXSC3SI
bilirubin M: [2,21]; F: [2,21] Bilirubin, total umol/L LBDSTBSI
BPdi M: [60,90]; F: [60,90] Blood pressure, diastolic mmHG BPXDI
BPsy M: [90,140]; F: [90,140] Blood pressure, systolic mmHG BPXSY
BUN M: [2.9,8.2]; F: [2.9,8.2] Blood urea nitrogen mmol/L LBDSBUSI
calcium M: [2.3,2.74]; F: [2.3,2.74] Total calcium mmol/L LBDSCASI
chol M: [3.88,6.47]; F: [3.88,6.47] Total cholesterol mmol/L LBDSCHSI
creatinine M: [60,110]; F: [45,90] Creatinine umol/L LBDSCRSI
folate M: [376,1450]; F: [376,1450] Folate, RBC nmol/L LBDRBFSI
glucose M: [3.9,6.1]; F: [3.9,6.1] Glucose, serum mmol/L LBDSGLSI
glycohemo M: [0,5.7]; F: [0,5.7] Glycohemoglobin % LBXGH
HDL M: [1.3,∞); F: [1.3,∞) Direct HDL-Cholesterol mmol/L LBDHDLSI
hemo M: [13.5,18]; F: [12,16] Hemoglobin g/dL LBXHGB
iron M: [10.7,26.9]; F: [10.7,26.9] Iron, refrigerated umol/L LBDSIRSI
MAP M: [70,105]; F: [70,105] Mean arterial pressure ≡ Bpsy/3 + 2 · BPdi/3 mmHg –
MCV M: [80,96]; F: [80,96] Mean cell volume fL LBXMCVSI
neutrophils M: [40,80]; F: [40,80] Segmented neutrophils percent (40-80%) % LBXNEPCT
phosophorus M: [0.74,1.52]; F: [0.74,1.52] Phosphorus mmol/L LBDSPHSI
platelet M: [150,450]; F: [150,450] Platelet count SI 1000 cells/uL LBXPLTSI
PP M: [30,65]; F: [30,65] Pulse pressure ≡ BPsy− BPdi mmHg –
protein M: [60,78]; F: [60,78] Protein, total g/L LBDSTPSI
pulse M: [60,99]; F: [60,99] Pulse bpm BPXPLS
RCBW M: [11.6,14.6]; F: [11.6,14.6] Red cell distribution width % LBXRDW
sodium M: [136,142]; F: [136,142] Sodium mmol/L LBXSNASI
trigly M: [0.11,2.74]; F: [0.11,2.74] Triglyceride mmol/L LBDSTRSI
uric M: [240,510]; F: [160,430] Uric acid umol/L LBDSUASI
vitd M: [12,50]; F: [12,50] Vitamin D ng/mL LBDVIDMS
1 0: normal; 1: abnormal, outside range (M: male, F: female).
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Table B.3: Outcomes Used

Variable Encoding Description NHANES Code
ADLDIS 0: healthy, 1: disabled Had any ADL disability ADLDIS
Age Continuous Age in years, top-coded at 85 RIDAGEYR
arthritis 0: no, 1: yes Told had arthritis MCQ160A

BMI
1

Continuous Body mass index BMXBMI
bronchitis 0: no, 1: yes Told had chronic bronchitis MCQ160K
cancer 0: no, 1: yes Told had cancer or malignancy MCQ220
cataracts 0: no, 1: yes Had a cataract operation VIQ070
CRP1 Continuous Inflammation biomarker LBXCRP
diabetes 0: no, 1: yes Told you have diabetes DIQ010
emphysema 0: no, 1: yes Told had emphysema MCQ160G
exhaustion 0: no difficulty, 1: otherwise Difficulty walking between rooms PFQ060H
FI Continuous Frailty index –
FP 0: < 3 diagnostics, 1: ≥ 3 [208] Frailty phenotype –
gait1 Continuous Time to walk 20 feet MSXW20TM
h angina 0: no, 1: yes Told had angina MCQ160D
h attack 0: no, 1: yes Told had heart attack MCQ160E
h disease 0: no, 1: yes Told had coronary heart disease MCQ160C
h failure 0: no, 1: yes Told had congestive heart failure MCQ160B
have bronchitis 0: no, 1: yes Still have chronic bronchitis MCQ170K
have liver con 0: no, 1: yes Still have a liver condition MCQ170L
have thyroid dis 0: no, 1: yes Still have a thyroid problem MCD170M
hu hosp 0: no, 1: yes Overnight hospital patient, past year HUD070
hu times 0: ≤ 3, 1: ≥ 4[16] #Times receive healthcare, past year HUQ050
hypertension 0: no, 1: yes Told had high blood pressure BPQ020
IADLDIS 0: healthy, 1: disabled Had any IADL disability IADLDIS
liver con 0: no, 1: yes Told had any liver condition MCQ160L
microalb. Continuous microalbuminuria = albumin/creatinine –
osteoporosis 0: no, 1: yes Told had osteoporosis/brittle bones OSQ060
overweight 0: no, 1: yes Told you were overweight MCQ160J
physical activity 0: more active/same, 1: less active Compare activity w/others same age PAQ520
polypharmacy 0: < 4, 1: ≥ 4 [169] Number of prescription medicines RXD295
stroke 0: no, 1: yes Told you had a stroke MCQ160F
survival 10year 0: died, 1: survived Survived 10+ years post-study survival 10year
telomere1 Continuous Mean telomere length TELOMEAN
thyroid 0: no, 1: yes Told had a thyroid problem MCD160M
weak kidneys 0: no, 1: yes Told had weak/failing kidneys KIQ022
weakness 0: no difficulty, 1: otherwise Difficulty lifting or carrying PFQ060E
adl bedDIS2 0: no/some difficulty, 1: much/unable Difficulty getting in/out of bed PFQ060JDIS
adl dressDIS2 0: no/some difficulty, 1: much/unable Difficulty dressing self PFQ060LDIS
adl knifeDIS2 0: no/some difficulty, 1: much/unable Difficulty using fork, knife, cup PFQ060KDIS
exhaustionDIS2 0: no/some difficulty, 1: much/unable Difficulty walking between rooms PFQ060HDIS
FICLINIC2 Continuous Frailty index, clinical data only –
FILAB2 Continuous Frailty index, lab data only –
iadl choresDIS2 0: no/some difficulty, 1: much/unable Household chore difficulty PFQ060FDIS
iadl mealsDIS2 0: no/some difficulty, 1: much/unable Difficulty preparing meals PFQ060GDIS
iadl moneyDIS2 0: no/some difficulty, 1: much/unable Difficulty managing money PFQ060ADIS
survival 1year2 0: died, 1: survived Survived 1+ year post-study survival 1year
survival 5year2 0: died, 1: survived Survived 5+ years post-study survival 5year
1 Log-scaled.
2 Excluded during pooling.
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Table B.4: Demographics / Outcome Statistics

Outcome Mean or Prevalence
1

age 72.8 (sd=8.2,N=1872)
FI 0.216 (sd=0.135,N=1872)
FP 6.8% (127/1872)
TELOMEAN 0.916 (sd=0.216,N=1382)
BMI 28.175 (sd=5.478,N=1434)
CRP 0.551 (sd=1.044,N=1532)
gait 7.480 (sd=3.561,N=1428)
microalbuminuria 0.509 (sd=0.144,N=1518)
hu times 52.3% (978/1869)
hu hosp 18.1% (338/1872)
survival 1year 96.7% (1811/1872)
survival 5year 79.4% (1486/1872)
survival 10year 57.5% (1077/1872)
ADL Disability 10.9% (203/1870)
adl dressDIS 5.7% (107/1870)
adl bedDIS 5.8% (108/1870)
adl knifeDIS 1.9% (36/1870)
exhaustionDIS 6.6% (123/1870)
IADL Disability 19.0% (355/1864)
iadl moneyDIS 7.3% (137/1868)
iadl choresDIS 15.6% (291/1865)
iadl mealsDIS 10.3% (192/1868)
arthritis 46.8% (874/1868)
h failure 7.9% (146/1851)
h disease 10.3% (190/1836)
h angina 7.9% (145/1846)
h attack 11.3% (210/1861)
stroke 8.9% (165/1864)
emphysema 4.0% (74/1864)
overweight 32.9% (614/1869)
bronchitis 6.5% (122/1866)
liver con 3.0% (56/1864)
thyroid 14.2% (265/1864)
cancer 20.8% (389/1868)
have bronchitis 3.5% (66/1862)
have liver con 1.1% (21/1861)
have thyroid dis 9.4% (174/1856)
diabetes 20.0% (374/1871)
weak kidneys 5.0% (93/1859)
osteoporosis 14.1% (262/1853)
cataracts 26.2% (486/1858)
hypertension 52.5% (978/1863)
polypharmacy 45.2% (688/1521)
1 Before any imputation (prevalence/number
non-missing).
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Table B.5: Covariates Used

Variable Encoding Description NHANES Code
age Continuous, top-coded at 85 Age in years, top-coded at 85 RIDAGEYR
education 0: no post-secondary, 1: post-secondary Education level DMDEDUC2
has partner 0: no partner, 1: cohabitating or married Partner status DMDMARTL
income 0: below poverty line, 1: above Family poverty income ratio INDFMPIR
race 0: non-white, 1: white Race RIDRETH1
sex 0: male, 1: female Sex RIAGENDR
smoker 0: non-smoker, 1: smoker Smoker status SMQ040



235

Table B.6: Auxiliary Variables Used For Imputation

Description NHANES Code
MSDEXCLU Exclusion criteria for muscle strength
TELOSTD Standard deviation of TELOMEAN
PEASCST1 Blood Pressure Status
PEASCTM1 Blood Pressure Time in Seconds
PEASCCT1 Blood Pressure Comment
BPXCHR Heart rate (2x30 second)
BPQ150A Had food in the past 30 minutes?
BPQ150B Had alcohol in the past 30 minutes?
BPQ150C Had coffee in the past 30 minutes?
BPQ150D Had cigarettes in the past 30 minutes?
BPAARM Arm selected
BPACSZ Coded cuff size
BPXDB # of dropped beats in 30 seconds
BPXPULS Pulse regular or irregular?
BPXPTY Pulse type
BPXML1 MIL: maximum inflation levels (mm Hg)
BPAEN1 Enhancement used first reading
BPAEN2 Enhancement used second reading
BPAEN3 Enhancement used third reading
BPAEN4 Enhancement used fourth reading
BPXSAR BPsy average reported to examinee
BPXDAR BPdi average reported to examinee
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Table B.7: PCA Rotation Coefficients, Bootstrapped (N=2000)

Input PC1 PC2 PC3 PC4 PC5 PC6 PC7
BPdi -0.120(6) 0.153(16) 0.064(34) -0.021(71) -0.245(88) 0.059(152) -0.057(169)
BPsy -0.204(7) 0.377(15) 0.430(25) 0.184(50) 0.121(62) -0.042(88) 0.057(87)
pulse -0.078(6) 0.111(15) 0.017(27) -0.073(41) 0.008(72) -0.077(99) 0.074(113)
PP -0.255(7) 0.389(15) 0.398(21) 0.116(37) 0.049(45) 0.021(56) 0.034(49)
MAP -0.101(5) 0.193(15) 0.239(24) 0.084(39) -0.056(53) -0.003(68) -0.005(79)
albumin -0.027(3) 0.023(8) -0.011(13) -0.025(17) -0.009(22) 0.003(23) -0.004(25)
bicarb -0.037(4) 0.029(9) -0.022(14) -0.027(20) -0.041(24) 0.001(29) -0.004(28)
bilirubin -0.017(3) 0.020(7) -0.015(10) -0.033(13) -0.020(21) -0.028(21) 0.003(27)
BUN -0.102(6) 0.043(15) -0.068(31) -0.108(67) -0.256(73) 0.027(126) -0.022(126)
creatinine -0.121(6) 0.073(16) -0.080(35) -0.120(84) -0.337(86) 0.000(158) -0.039(148)
HDL -0.213(7) 0.265(19) -0.466(30) -0.138(72) 0.056(153) -0.131(308) 0.338(223)
folate -0.053(5) 0.045(11) 0.018(18) -0.012(29) -0.072(33) -0.015(46) 0.014(45)
glucose -0.124(6) 0.128(18) -0.323(32) 0.321(45) 0.036(89) 0.074(122) -0.104(127)
glycohemo -0.183(7) 0.205(20) -0.388(38) 0.436(57) 0.136(110) 0.084(139) -0.121(124)
hemo -0.075(5) 0.052(13) -0.041(25) -0.047(56) -0.234(52) -0.023(94) -0.004(69)
iron -0.120(6) 0.072(16) -0.061(35) -0.078(77) -0.269(92) 0.009(157) 0.005(172)
MCV -0.081(6) 0.067(14) 0.017(28) -0.147(50) -0.144(68) -0.041(98) -0.042(90)
phosophorus -0.011(2) 0.004(4) -0.006(7) -0.009(10) -0.021(12) 0.005(14) -0.007(13)
platelet -0.025(3) 0.018(7) -0.017(12) -0.030(19) -0.050(20) -0.007(26) 0.000(23)
protein -0.064(5) 0.069(12) -0.029(22) 0.053(35) -0.042(45) -0.017(60) -0.032(63)
RDW -0.046(4) 0.034(10) -0.018(18) -0.005(38) -0.146(36) 0.006(61) -0.005(48)
neutrophils -0.016(2) 0.016(7) -0.012(8) -0.001(12) -0.018(13) -0.001(16) -0.006(16)
sodium -0.095(6) 0.079(16) -0.006(27) -0.000(45) -0.037(62) 0.002(91) -0.047(95)
calcium -0.094(6) 0.104(17) -0.041(32) -0.087(56) -0.124(91) -0.079(135) 0.082(162)
chol -0.096(6) 0.099(15) -0.043(29) -0.024(48) 0.019(70) -0.045(82) 0.005(97)
trigly -0.065(5) 0.078(13) -0.168(21) 0.095(34) 0.063(50) -0.007(88) 0.088(59)
uric -0.057(4) 0.034(11) -0.040(19) -0.059(35) -0.118(40) -0.003(61) -0.019(56)
B12 -0.038(4) 0.027(9) 0.004(16) -0.032(20) -0.019(24) -0.013(30) -0.018(29)
vitd -0.032(4) 0.021(8) 0.002(13) 0.037(19) -0.051(22) -0.003(30) 0.001(27)
adl dress -0.120(5) -0.157(8) 0.057(19) 0.076(27) 0.013(61) -0.096(71) 0.060(95)
adl bed -0.134(5) -0.174(7) 0.023(19) 0.088(25) 0.038(45) -0.042(68) 0.065(60)
adl knife -0.051(4) -0.075(8) 0.032(14) 0.038(21) 0.018(40) -0.062(43) 0.027(62)
iadl money -0.095(5) -0.103(9) 0.044(19) 0.024(34) -0.038(78) -0.144(72) 0.002(127)
iadl chores -0.203(4) -0.215(7) 0.038(16) 0.045(21) -0.028(32) 0.022(44) 0.033(42)
iadl meals -0.120(5) -0.172(7) 0.044(19) 0.083(33) -0.030(80) -0.149(80) 0.045(138)
lsa movies -0.176(5) -0.216(6) 0.056(18) 0.087(29) -0.045(55) -0.076(74) 0.064(89)
lsa homeleis -0.066(5) -0.106(8) 0.009(15) 0.080(22) 0.022(49) -0.090(45) 0.002(79)
lsa socials -0.158(5) -0.208(6) 0.036(19) 0.104(30) -0.051(65) -0.107(74) 0.054(106)
lem qmile -0.237(4) -0.159(10) 0.011(22) -0.026(39) -0.089(81) 0.150(82) 0.005(130)
lem 10steps -0.204(5) -0.170(9) 0.050(24) 0.012(38) -0.051(83) 0.155(81) 0.032(127)
gpa grasp -0.112(5) -0.117(9) 0.038(21) 0.047(31) 0.067(46) -0.037(60) 0.033(66)
gpa overhead -0.129(5) -0.122(9) 0.001(23) 0.111(28) 0.032(46) -0.024(51) 0.018(57)
gpa sit -0.132(5) -0.106(11) 0.011(26) -0.014(47) 0.133(69) 0.088(97) 0.052(106)
gpa stand -0.266(4) -0.133(11) 0.023(25) -0.085(40) 0.022(96) 0.190(87) -0.009(164)
gpa standup -0.195(4) -0.187(8) 0.049(18) 0.058(25) 0.013(42) 0.027(68) 0.067(48)
gpa crouch -0.291(4) -0.071(13) -0.013(29) -0.125(52) 0.096(127) 0.254(116) -0.006(221)
srh -0.181(5) -0.026(14) -0.105(30) 0.095(53) -0.046(106) -0.129(178) -0.178(159)
srh change -0.087(5) -0.057(10) -0.018(20) -0.003(29) -0.036(44) -0.049(58) -0.042(60)
hear -0.214(6) 0.127(18) -0.062(56) -0.563(82) 0.356(145) 0.010(181) -0.071(176)
sight gen -0.156(5) 0.017(15) -0.026(36) -0.088(71) 0.042(166) -0.232(295) -0.317(227)
sight dim -0.191(5) -0.082(13) -0.002(33) -0.112(61) 0.178(96) -0.101(165) -0.148(123)
broken hip -0.022(3) -0.017(6) 0.013(9) -0.004(9) -0.007(12) -0.005(13) -0.001(15)
confusion -0.097(5) -0.069(10) 0.010(21) -0.039(37) 0.026(80) -0.152(77) -0.022(129)
cough -0.052(4) 0.012(9) -0.002(17) -0.051(22) 0.017(29) 0.005(36) -0.026(31)
leaked -0.097(5) -0.020(11) 0.010(22) -0.015(32) -0.028(42) 0.001(51) 0.019(54)



237

B.6 Figures

Figure B.1: Missingness frequencies of predictor variables (rank ordered). Note the
clinical variables (red circles) have much lower missingness than lab variables (blue
triangles). This is likely because clinical variables are self-reported. See also
Figure B.4. Missingness is after gated imputation (Section B.1.2).
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Figure B.2: Missingness frequencies of binary outcome variables and demographic
covariates. The missingness was low in the binary outcomes and covariates likely
because they are self-reported. We saw much higher missingness in the measured
outcomes, Figure B.3. Missingness is after gated imputation (Section B.1.2).
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Figure B.3: Missingness frequencies of continuous outcome variables and
demographic covariates. CRP, BMI, gait and telomere all had to be measured,
which explains why they had much higher missingness rate than the other outcomes
(here and Fig. B.2).
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Figure B.4: Missingness joint frequency histogram (predictors). Diagonal is
missingness frequency of each variable. Off-diagonal is mutual missingness
frequency of variable pairs. Observe that the lab data tended to be mutually
missing (top right), which can lead to serious problems with common imputation
algorithms [145]. Imputation quality was validated in Section B.1.2.
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Figure B.5: Missingness survival effect. Individuals missing any predictor variable
(red line) showed worse survival than individuals with all of their predictor variables
reported (black line). This is an indication of informative censoring, meaning that
the complete case analysis, Section B.4, could be biased [180]. Note: ages were
top-coded at 85 which could cause distortions of the survival curves past age 85.
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Figure B.6: Deficit frequencies for imputed versus measured health variables.
Measured deficit frequency (green triangles) and imputed deficit frequency (red
circles). The missingness frequency of the variable is given in blue (squares).
Imputed variables (red circles) tended to be more frequently deficit. This is
consistent with our other observations that individuals missing values tended to
have worse overall health (e.g. worse survival, Figure B.5).
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Figure B.7: Deficit frequencies for imputed versus measured binary outcomes.
Measured frequency (green triangles) and imputed frequency (red circles). The
missingness frequency of the variable is given in blue (squares). Imputed adverse
outcomes tended to be more frequently deficit (red circles, excluding: income, race,
survival, sex, education, smoker and partner). For the demographical covariates
(income, race, sex, education, smoker and partner) and survival outcomes (1, 5 and
10 year), frequency indicates how often they were of value 1 (see Section B.1.1 for
encoding rules). Where no red point is visible it is because there were no missing
values and hence no imputed values (e.g. FP and survival). Imputed frequencies are
clearly higher than measured frequencies, consistent with our other observations
that individuals with missing values tended to have worse overall health (e.g. worse
survival, Figure B.5, and more health deficits, Figure B.8).
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Figure B.8: Joint 2D frequency histogram for predictors with and without
imputation. A: complete case data (individuals have no NA), B: available case data
(NAs skipped), C: imputed predictors (imputed values only), and D:
post-imputation predictors (all values, including imputed). The imputed values
clearly have more deficits but the net effect on the post-imputation data is negligible
relative to the available case data. We expected more deficits in the imputed values
because individuals missing data had worse survival (Figure B.5). Individuals with
complete data clearly had fewer deficits (A). Top values are lab variables, bottom
are clinical. Tiles are grayed out if there were no values in respective variable pair.
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Figure B.9: Joint 2D frequency histogram for outcomes for available case or
imputed data (frequency each binary outcome was ‘1’). We see no difference by eye.
This could be because of the relatively low missingness for outcomes (Figures B.2
and B.3) Available case outcomes were included in the “complete case” dataset
(only predictors were required to be complete case).

Figure B.10: Boxplot of individuals missing the lab block (right) versus those with
lab variables measured (left). y-axis indicates the FI LAB value (after imputation).
Solid black lines are the medians for each group. White boxes delineate the
interquartile ranges (25% to 75% quantiles); the whiskers span the 95% confidence
intervals (assuming asymptotic-normality) [206]. Patients missing data had worse
survival, Figure B.5, and therefore we expect them to have a higher FI LAB. The
expected shift, Eq B.1, of the median is the dashed yellow line
(median of left + ∆FI). We expect this to be close to the median on the right side.
The estimate is in the correct direction, and the line is within the interquartile
range. This implies a good imputation.
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Figure B.11: Improvement in predictive power as more PCs are included, with and
without imputed outcomes. Highest missingness outcomes. This figure allows us to
surmise the effect that imputing the outcomes has had on the accuracy metrics. Red
band (circles) is including imputed values, blue band (triangles) exclude imputed
values. Bands tend to overlap, indicating non-significant differences. Band is the
cross-validation error. In particular, the outcomes with the 4th-6th most missing
data (bottom row) overlap heavily, implying that the remaining outcomes — which
had much lower missingness (< 3%) — would have a negligible difference due to the
imputed values. In the outcomes with the 1st-3rd most missingness we see the same
pattern with a global shift in accuracy, this does not affect our study conclusions
which are based on the shape of the curves. In Figure B.12 we observed that
imputed gait values tended to be slower than normal, which may explain why they
were easier to predict. We do not think this is an indication of a poor imputation,
since we expect those individuals to have low gait speeds (Section B.1.2).
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Figure B.12: Violin plot of imputed timed-gait values (log scale). Higher is worse.
Outlines represent the distributions of imputed (left) and observed (right) values.
Imputed values tended to be higher implying slower gait speeds. This is consistent
both with worse mortality for those missing data, Figure B.5, and with the reasons
for missingness of this particular variable (when it was reported). See Section B.1.2
for details.

Figure B.13: GLM weight selection for binary outcomes on A: linear and B: log-log
scale. Weight, w is the optimized parameter (Eq. B.2). Balance, b, is the ratio of
minority over majority class frequencies (Eq. B.3). Each point represents an
optimized binary GLM (logistic regression). There is clear power law behaviour —
the log-log plot shows a linear relationship — with w ∼ b−1 being a good choice of
the power (red dashed line, Eq. B.4). The solid blue line indicates the least-squares
fit. See Section B.2.1 for complete discussion.
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Figure B.14: Simulation study of cross-validated estimates. As described in
Section B.2.2, we generated a synthetic dataset based on our study sample. Error
bars were estimated directly from the synthetic dataset via cross-validation (red
points) and compared to error bars generated by Monte Carlo sampling of the
synthetic dataset distribution (blue triangles). The simulated values provide a
ground truth, the cross-validation estimates show error bars of similar size, with
roughly the correct coverage (point estimates are typically within one or two error
bars of each other). This demonstrates our cross-validation procedure is correctly
calibrated for our data. Note: missing data points are due to failed fitting of the
ROC curve (due to insufficient case data in the cross-validation).
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Figure B.15: AUC is strongly correlated with Youden index, closely following
Eq. B.9 (red line). A. AUC vs Youden index for compression using PCA, each point
is a unique input variable and a unique number of PCs (1-55), with cross-validation
error (55 inputs× 55 PC options = 3025 points). Eq. B.9 fits excellently. The
relationship is smooth, non-linear and saturating, with AUC reaching 1 before
Youden index. The saturating of the AUC indicates that it is a less sensitive scale,
and explains why we observed compression reaching unity faster on the AUC scale
(Figure B.17) than the Youden scale (Figure 5.3). We considered also the scores
from the binary GLMs in B., one point per model with each model having covariate
information and between 0-55 PCs, with cross-validation error
(39 outcomes× 56 PC options = 2184 points). Eq. B.9 fit both the GLM and
compression well (red lines), although the compression scores clearly fit better. The
GLM outcomes which fit poorly were: ever had a liver condition (liver con; green
triangles), still have a liver condition (have liver con; red circles), and significant
difficulty using a knife/fork (adl knifeDIS; blue squares). These happen to be the
three rarest outcomes: 1.2%: have liver con, 1.9%: adl knifeDIS, and 3.0% liver con
(the least common input deficit was phosphorous at a rate of 2.2%). The weighting
scheme (Section B.2.1) may affect the relationship between AUC and Youden
indexes when outcomes are very rare (PCA was not weighted). Diagonal black line
is y = x/2 + 1/2, which illustrates that AUC > Youden/2 + 1/2. The values in these
figures are the same as used in Figure 5.3 (A) and Figures 5.7, 5.9 and 5.10 (B).
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Figure B.16: Eigen-decomposition of the joint histogram, without scaling. The first
column is the complete 2D joint deficit histogram, the remaining columns sum to
the first column (Eq. A6). The first PC is clearly dominant and is dense, meaning it
is nearly equal weights for each variable (akin to the FI). The eigen-decomposition
naturally finds blocks of correlated variables. When it runs out of blocks it looks for
strong diagonal terms. This causes PCA to naturally block out like-variables, e.g.
lab vs clinical in PC2, similar to an expert choosing to create an FI out of variables
from the same domain. Compared to the transformed scale, Figure 5.2, we see that
the higher PCs are much dimmer, reflecting their minor contribution.
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Figure B.17: Cumulative compression with AUC. The reader should look for two
things: (1) the number of components (dimensions) needed to achieve a relatively
high score, and (2) the slope of the curve, when it flattens we can expect the
features are variable-specific or otherwise less important. We see the same relative
importance as with the Youden index, Figure 5.3, but the AUC saturates much
faster, with LSVD reaching perfect AUC near 20 features (vs 30 for Youden index).
The faster saturation appears to be due to known differences between the AUC and
Youden index (Eq. B.9 and Figure B.15). The Youden index is preferable since it
provides a definite accuracy at a specific threshold, such as we would see in medical
diagnosis [214].



252

Figure B.18: Spearman correlation of features across algorithms, extended. This is
an extension of Figure 5.4 to include centered features. Observe that the centered
features show the same strong correlations as the uncentered features, illustrating
that lack of centering is not the cause of the correlation. Upper triangle is
correlation coefficient with 95% confidence interval; ellipses are equivalent Gaussian
contours (for visualization) [129]. The first latent dimension for either PC, LPC or
LSVD correlates strongly with the FI, even when centered. We also observe that the
first latent dimension correlates more strongly with clinical than lab data.
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Figure B.19: Age and sex dependence of first latent feature (from PC1, LPC1, LSV1
and FI). All features show similar age and sex dependence. Females (solid, circles)
increase approximately exponentially with age, males increase more linearly (dotted,
triangles). Similar to the FI LAB in [21] we observed a strong sex-effect at younger
ages that is smaller at older ages. Scale only applies to FI; PC1/LPC1/LSV1 have
been globally scaled for visualization (linear scaling). Individuals age 85+ were
excluded from this figure because age was top-coded at 85 (we don’t know their true
age). This is further evidence that all four algorithms are sensitive to the same
underlying signal, see discussion in “The first latent dimension ‘is’ the frailty index”.

Figure B.20: Cumulative prediction plot for discrete outcomes, AUC (GLM). 0th
dimension is demographic information. Prediction improved quickly, reaching a
maximum at 5-10 features. Increasing the number of features initially improves
prediction but eventually it gets worse due to overfitting. Results are qualitatively
identical to the Youden index, Figure 5.7.
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Figure B.21: Improvement in predictive power as more PCs are included, grouped
by outcome type (GLM). This figure extends Figure 5.9 to include all PCs. X-axis
labels indicate the cumulative number of PCs included, “C” means demographical
covariates only. Coloured lines indicate specific outcomes, black line indicates the
mean for each group. Scores saturate quickly, justifying truncating the plots.
Several of the ADL/IADL disability appear to improve with high PCs, e.g.
iadl mealDIS from PC47-PC49, we suspect this is consequence of our choice of input
variables (see Section B.3.3). Note: legends are sorted from top (best) to bottom
(worst) performance for the PC55 model.
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Figure B.22: Improvement in predictive power as more PCs are included, grouped
by outcome type (with non-linear terms). Models included all cumulative linear,
quadratic and interaction terms up to the indicated PC, starting with the model
using only covariates. Coloured lines indicate specific outcomes, black line indicates
the mean. The last row contains hand-picked variables based on their
high-dimensional behaviour. Compare black lines to Figures 5.9 and 5.10, which
used only linear terms. The linear models performed at least as well, e.g.
ADL/IADL disability saturates at 0.75 both here (non-linear) and in Figure 5.9
(linear). The last row show a clear tendency to overfit (downward curving of
performance with increasing number of predictors; compare to Figure 5.10).
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Figure B.23: Improvement in predictive power as more PCs are included, grouped
by outcome type (with AUC; linear terms only). Coloured lines indicate specific
outcomes, black line indicates the mean. The last row contains hand-picked
variables based on their high-dimensional behaviour. We see little difference in the
relative performances using the AUC versus the Youden index, Figures 5.9 and 5.10.
This is not surprising given the strength of the correlation between AUC and
Youden index, which is approximately linear for AUC ≲ 0.9 (Figure B.15).
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Figure B.24: Improvement in predictive power as more features are included,
grouped by outcome type (using LPCA rather than PCA). Coloured lines indicate
specific outcomes, black line indicates the mean. The last row contains hand-picked
variables based on their high-dimensional behaviour. Score was Youden index for
discrete outcomes and R2 for continuous outcomes. Compare to Figures 5.9 and
5.10, which used PCA. Results are very similar to PCA, further evidence of the
similarities between PCA and LPCA.
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Figure B.25: Improvement in predictive power as more features are included,
grouped by outcome type (using LSVD rather than PCA). Coloured lines indicate
specific outcomes, black line indicates the mean. The last row contains hand-picked
variables based on their high-dimensional behaviour. Score was Youden index for
discrete outcomes and R2 for continuous outcomes. Compare to Figures 5.9 and
5.10, which used PCA (or Figure B.24 which was very similar to PCA). Notice the
overall scores are lower here than for PCA (e.g. look at the last row). This is
consistent with our observations in Figures 5.7 and 5.8 which showed LSVD
generally resulted in worse prediction scores.
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Figure B.26: GLM feature selection frequencies. Left: linear scale, right: log-log
scale. GLM models were given all PCs and covariates and then LASSO picked the
optimal subset for prediction (see Section B.3.3). We see a continuous drop in
feature selection frequency with increasing PC number, suggesting less informative
features. This helps explain why the prediction scores saturated at relative low PCs
in Figure B.21. The linear behaviour on the log-log plot motivates a power law fit.
The nth PC was selected with frequency y = 0.84n−0.24 (red line). Results are
pooled from 10-fold cross-validation of all outcomes, excluding the FP and FI (to
prevent trivial self-prediction).

Figure B.27: PCA rotation sensitivity analysis. We randomly sampled subsets of 30
variables (out of 55), then performed PCA on the subset, and then aggregated the
rotation coefficients. Left side are coefficients for the lab variables, right are clinical.
The first three PCs are quantitatively robust. The remaining PCs were not robust
(non-significant/grayed-out). It is worth comparing to Figure 5.11 which used all 55
variables and randomly sampled individuals (with replacement), and showed more
robust PCs up to PC5 or PC6.
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Figure B.28: Feature associations with demographical variables. Age vs FP, and
sex, race, income, education, has partner, and smoker vs all variables: Youden index
(see the Section 5.2.2 for details). Age vs remaining features (FI, FILAB, ..., PC10):
correlation coefficient (absolute value). The raw predictive power of each feature
should flag any demographical-specific effects. Note the age effect for PC1, sex
effect for PC3 and race effect for PC4. The age effect supports our claim in the
“Age stratification” section of our results that PC1 becomes increasingly dominant
with age. Inner circle fill colour is lower limit of 95% CI (white is non-significant).

Figure B.29: 2D Histogram as a function of age, normalized. Top: linear fill scale,
bottom: gamma transformed for visualization (sign(x)|x|γ, γ = 2/3). We have
normalized by the probability of having a deficit at that age, i.e. the scale is in units
of mean FI for that age range, E(FI). We see the 2D histogram structure is
relatively stable with age, showing only an increase in saturation with age. See
Section B.3.5 for context.
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Figure B.30: PCA second moments (eigenvalues) with respect to age quartile,
bootstrapped CI (N=2000). The first eigenvalue and the slope of the first line both
increase with age. The increasing first eigenvalue is consistent with the increasing
FI with age, a widely-reported phenomenon. The increasing slope is analogous to a
decrease in fractal dimension with age [61]. Log-log scales. See Section B.3.5 for
context.

Figure B.31: Cumulative compression by age group using PCA. We see only a
minor difference between the cohorts, with the young cohort compressing a little
better. Note: age was top-coded at 85. For comparison with Figure 5.3.
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Figure B.32: Cumulative prediction plot stratified by age, but with no
demographical variables (GLM). The older individuals (green triangles) clearly had
better model performance — similar Youden index (A) and lower MSE (B) — than
the younger individuals (red circles). We have included the full population for
comparison (blue squares), which clearly performs the best (although it also has
twice as much training data as the other two samples). In contrast to Figures 5.7
and 5.8, we have not included covariates as the 0th feature (see Section B.3.5).
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Figure B.33: GLM stepwise prediction of input variables, stratified by age. GLMs
were trained using PCs to predict the input predictor variables. Age range is
indicated in row name, top-coded at 85. The PC patterns are quite similar,
indicating robustness with respect to age. Where they differ is of interest. Of note:
BUN, creatinine, calcium, and iron (bolded). Youden index (higher is better). Inner
circle fill colour is 95% CI limit closest to 0. GLMs were not conditioned on
demographical variables (because we want to know everything that’s in the PCs for
comparison). Associated sections: Section B.3.5 and “Age stratification” in the
main text.
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Figure B.34: GLM stepwise prediction, stratified by age. GLMs were used to
predict outcomes and demographic covariates. Age range is indicated in row name,
top-coded at 85. The PCs are quite similar, indicating robustness with respect to
age. Where they differ is of interest. Of note: microalbuminuria and gait (bolded).
Continuous score is R2; demographic and discrete scores are both Youden (higher is
better). Inner circle fill colour is 95% CI limit closest to 0. GLMs were not
conditioned on demographical variables (because we want to know everything that’s
in the PCs for comparison). Associated sections: Section B.3.5 and “Age
stratification” in the main text.
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Figure B.35: Benchmarks for dimensionality reduction algorithms used. A. using a
sample of 100 individuals, B. 1000. LSVD, LPCA and PCA all scaled similarly with
increasing number of input variables, with PCA being about 10x faster than LPCA
and LPCA being about 10x faster than LSVD. The FI, in comparison, scaled very
well with increasing number of input variables, but had a high fixed computational
cost (unlike the other algorithms, the FI code was not optimized). Increasing the
number of individuals in the sample caused a sublinear increase in computation
time (A vs B). See Section B.3.6 for details.

Figure B.36: Principal component analysis (PCA) of binary data is equivalent to
eigen-decomposing the 2D joint deficit histogram, complete case data. The first
column is the complete histogram, the remaining columns sum to the first column
(Eq. A6). The first PC is clearly dominant and is dense, meaning it is nearly equal
weights for each variable (akin to the FI). The eigen-decomposition naturally finds
blocks of correlated variables. When it runs out of blocks it looks for strong
diagonal terms. This causes PCA to naturally block out like-variables, e.g. lab vs
clinical in PC2, similar to an expert choosing to create an FI out of variables from
the same domain. Colour-scale has been transformed for visualization using
sign(x)|x|γ, γ = 2/3. Results are similar to imputed result, Figure 5.2, although the
imputed histogram is clearly more saturated, reflecting the worse overall health of
individuals with missing data (see Section B.1.2).
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Figure B.37: Cumulative compression, complete case data. Tuning the size of the
latent dimension bottleneck we inferred the maximum number of dimensions
required to efficiently represent the input data. The reader should look for two
things: (1) the number of components (dimensions) needed to achieve a relatively
high score, and (2) the slope of the curve – when it flattens we can expect the
features are noise, variable-specific or otherwise less important. Logistic SVD
compresses the input most efficiently, saturating at around 30 features. Note the
dramatic difference between lab and clinical compression both for PCA and the FI;
the first PC of clinical data scores as well as 9 lab PCs. Results are similar to the
imputed result, Figure 5.3.

Figure B.38: Spearman correlation of primary features across algorithms, complete
case data. The first latent dimension for either PC, LPC or LSVD correlated
strongly with the FI and each other, and correlated more strongly with the FI
CLINIC than FI LAB. This implies a strong mutual signal very close to the FI,
especially the FI CLINIC. Upper triangle is correlation coefficient with 95%
confidence interval. Ellipses indicate equivalent Gaussian contours [129]. Compared
to the imputed result, Figure 5.4, we see somewhat smaller correlations between
most features.
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Figure B.39: Feature associations with individual input variables, i.e. what goes into
each feature, complete case data. Association strength (fill colour) between features
(x-axis) and adverse outcomes (y-axis); 0: no association, 1: perfect. Youden index.
Inner circle fill colour is lower limit of 95% CI (white is non-significant). Compared
to the imputed data, Figure 5.5, the higher PCs seem to have stronger
signals/smaller confidence intervals, perhaps because the complete case data is more
homogeneous.
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Figure B.40: Feature associations with individual outcomes, i.e. what we get out of
each feature, complete case data. Association strength (fill colour) between features
(x-axis) and adverse outcomes (y-axis); 0: no association, 1: perfect. Inner circle fill
colour is lower limit of 95% CI (white is non-significant). Text on right denotes
metric used. Compared to the imputed data, Figure 5.6, we see stronger signals in
the higher PCs, perhaps because the complete case data is more homogeneous.
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Figure B.41: Cumulative prediction plot for discrete outcomes (GLM), complete
case data. 0th dimension is demographic information. Increasing the number of
features initially improves prediction but quickly worsens, ostensibly due to
overfitting. Youden index: higher is better. Compared to the imputed data,
Figure 5.7, we see much stronger evidence of overfitting (decreasing score with
increasing number of features). We suspect this is due to a lack of case data. For
some outcomes, case data were rare enough that the scores could be unreliable (see
Section B.4.3).
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Figure B.42: Cumulative prediction plot for continuous outcomes (GLM), complete
case data. 0th dimension is demographic information. Increasing the number of
features improves prediction with a tendency to overfit as the number of PCs
approaches the maximum. LSVD performs notably worse than PCA and LPCA.
MSE is on standardized scale, therefore R2 = 1−MSE. MSE: lower is better.
Compared to the imputed data, Figure 5.8, we see some evidence of overfitting
(increasing error with increasing number of features).
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Figure B.43: Improvement in predictive power as more PCs are included, grouped
by outcome type (GLM), complete case data. Coloured lines indicate specific
outcomes, black line indicates the mean for each group. For most outcomes the
performance stops improving after a few PCs, hence why we’ve truncated at PC6.
The exceptions are explored in Figure B.45. Note: legend is sorted from best (top)
to worse (bottom) performance of the PC6 model. See Figure B.44 for the complete
plots without truncation. Compared to the imputed data, Figure 5.9, we see much
more volatile fits and lower overall accuracies, particularly for ADL/IADL disability.
Cases were rare for ADL/IADL disability, which could make the Youden index
estimates unreliable (see Section B.4.3).
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Figure B.44: Improvement in predictive power as more PCs are included, grouped
by outcome type (GLM), complete case data, without truncation (all PCs present).
X-axis labels indicate the cumulative number of PCs included, “C” means
demographical covariates only. Coloured lines indicate specific outcomes, black line
indicates the mean for each group. Note: legend is sorted from best (top) to worse
(bottom) performance of the PC55 model. Cases were rare for ADL/IADL
disability, which could make the Youden index estimates unreliable (see
Section B.4.3). This is the extended version of Figure B.43.
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Figure B.45: Improvement in predictive power as more PCs are included,
high-dimensional outcomes (GLM), complete case data. High-dimensional outcomes
were identified by the imputed analysis (compare to Figure 5.10). We tend to see
continual improvement for the discrete and continuous outcomes, excluding the FP
(up to ∼ 10). Age appeared to be the highest dimensional. Compared to the
imputed data, Figure 5.10, we see more volatile curves, perhaps because of limited
case data (see Section B.4.3); note the different coloured labels (labels are sorted by
performance).



274

Figure B.46: PCA robustness, complete case data. Robustness of the PCA rotation
was assessed by randomly sampling which individuals to include (i.e. bootstrapping,
N = 2000). Left side are lab variables, right are clinical. Inner circle fill colour is
95% CI limit closest to 0. Grayed out tiles were non-significant. The first three PCs
were quantitatively robust. We see the robustness drops with increasing PC
number. The global sign for each PC were mutually aligned across replicates using
the Pearson correlation between individual feature scores. Compared to the
imputed data, Figure 5.11, we see that the PCs were a little less robust in the
complete case data (lower significance), but otherwise similar.

Figure B.47: PCA second moments (eigenvalues) with bootstrapped standard errors
(N=2000), complete case data. Log-log scales. Note the bilinear structure. Banded
region is optimal performance region (±1 error bar from best). Compared to the
imputed data, Figure 5.12, the points have curved further away from the banded
regions.
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Figure C.1: Study pipeline. We analysed four datasets using our proposed model.
We model the dynamics of biomarkers, y⃗n, over time using equation (C.4). Our
model extracts an interaction network, W , and equilibrium positions µ⃗n, where the
latter are allowed to depend on covariates (e.g. age and sex). The estimated
network, W , captures arbitrary linear interactions between biomarkers which can
be removed by working with the natural variables, z⃗n. Natural variables are defined
by a linear mapping into the eigenspace of W . The natural variables allowed us to
analyse stability. We were also able to infer changes to the mean and variance of the
observed variables based on changes in the natural variables.
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C.1 Introduction

We modelled generic health biomarker data as a mean-reverting stochastic process.

Our study pipeline is summarized in Figure C.1. Our model describes generic dy-

namics near an equilibrium solution (Section C.8.4). In this supplemental we provide

additional information to support and validate both our methods and our conclu-

sions. We provide a complete description of the data in Section C.2 and how we

preprocessed it in Section C.3. We performed a number of consistency checks on

missing data which were imputed according to Section C.4. We consider variations of

our model in Section C.5 which demonstrates that our final model best describes the

data. We provide the mathematics necessary to estimate model parameters, along

with an iterative estimation algorithm in Section C.6. We then validate our algorithm

using synthetic data in Section C.7. Additional mathematics useful for understanding

our model and its connection to the literature are described in Section C.8. Finally,

we include additional results in Section C.9 which support our conclusions.
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Table C.1: Dataset Summary — Biomarkers

Dataset Species Primary Outcome Variable Description
SLAM (C57BL/6) Mouse, C57BL/6 Death bw Body weight
SLAM (C57BL/6) Mouse, C57BL/6 Death fat Total fat mass
SLAM (C57BL/6) Mouse, C57BL/6 Death lean Total lean mass
SLAM (C57BL/6) Mouse, C57BL/6 Death fluid Total fluid mass
SLAM (C57BL/6) Mouse, C57BL/6 Death glucose Blood glucose (fasting)
SLAM (C57BL/6) Mouse, C57BL/6 Death lactate
SLAM (Het3) Mouse, Het 3 Death bw Body weight
SLAM (Het3) Mouse, Het 3 Death fat Total fat mass
SLAM (Het3) Mouse, Het 3 Death lean Total lean mass
SLAM (Het3) Mouse, Het 3 Death fluid Total fluid mass
SLAM (Het3) Mouse, Het 3 Death glucose Blood glucose (fasting)
SLAM (Het3) Mouse, Het 3 Death lactate
Paquid Human Dementia MMSE Mini-mental state exam†

Paquid Human Dementia BVRT Benton visual retention test
Paquid Human Dementia IST Isaacs set test
Paquid Human Dementia CESD⋄ depression scale‡

ELSA Human Death vitd Vitamin d
ELSA Human Death srh Self-reported health (higher: worse)
ELSA Human Death eye Self-reported (corrected) eyesight (higher: worse)
ELSA Human Death hear Self-reported (corrected) hearing (higher: worse)
ELSA Human Death FI.ADL Activities of Daily Living (ADL[46]) FI*

ELSA Human Death FI.IADL Instrumental ADL FI*

ELSA Human Death gait.speed Time to walk 8 feet (2.44 m)
ELSA Human Death grip.ndom Grip strength, non-dominant hand
ELSA Human Death grip.dom Grip strength, dominant hand
ELSA Human Death crp C-reactive protein⋆

ELSA Human Death hba1c Glycohaemoglobin
ELSA Human Death glucose Glucose
ELSA Human Death hgb Haemoglobin
ELSA Human Death mch Mean corpuscular haemoglobin
ELSA Human Death fer Ferritin⋆

ELSA Human Death chol Cholesterol
ELSA Human Death ldl Low density lipoprotein
ELSA Human Death hdl High density lipoprotein
ELSA Human Death trig Triglycerides⋆

ELSA Human Death sys Systolic blood pressure
ELSA Human Death dias Diastolic blood pressure
ELSA Human Death pulse Pulse
ELSA Human Death fib Fibrogen
ELSA Human Death igf1 Insulin-like growth factor-1
ELSA Human Death wbc White blood cell count⋆

* FI: frailty index; defined as average number of health deficits[174].
† Transformed as −

√︁
max(MMSE)−MMSE.

‡ Square root transformed for normality.
⋄ Center for Epidemiological Studies depression scale
⋆ Log transformed for normality.
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Table C.2: Covariate Summary

Dataset Covariate Description
SLAM (C57BL/6) Age Chronological age in weeks
SLAM (C57BL/6) Sex 0: male, 1: female
SLAM (Het3) Age Chronological age in weeks
SLAM (Het3) Sex 0: male, 1: female
Paquid Age Chronological age in years
Paquid Sex 0: male, 1: female
Paquid Education 0: did not complete primary school, 1: did
ELSA Age Chronological age in years
ELSA Sex 0: male, 1: female

C.2 Materials

We analysed 4 datasets derived from 3 longitudinal studies. The datasets and predic-

tors (“biomarkers”) used are summarized in Table C.1. All predictor variables were

continuous or, in the case of Paquid, ordinal with many scales (> 15).

We included covariates to reduce confounding effects and to look for allostasis,

which depends on age. We included age (continuous) and binary variables. The

covariates used are summarized in Table C.2.

C.3 Preprocessing

The data we analyzed were longitudinal with regular sampling rates. For this rea-

son, data were conveniently stored as 3-dimensional arrays (individuals, biomarkers,

time points), meaning that each individual had the same number of variables and

measurements (although many of them missing). This means that some timepoints

for some individuals had to be ‘invented’ (instantiated as NA) based on the sampling

rate of the study in question.
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The Study of Longitudinal Aging in Mice (SLAM) datasets were both processed

using the same criteria. The initial data were downloaded and processed using the

analysis script of another publication [135]. We then applied additional preprocess-

ing as follows. Biomarkers were visually investigated for normality and deemed ad-

equate. The sex-specific mean and standard deviation of the first measurement of

each biomarker was used to center and scale all timepoints. Mice with less than 2

timepoints were excluded from analysis (about 1% of mice). Any observations made

past the reported death age of each mouse were excluded from analysis (about 1%

of observations). We excluded the first two timepoints from analysis because af-

ter encoding we found that approximately half of individuals had not yet had a body

composition measurement (imputed values looked unrealistic). Missing timepoints —

which occurred due to staggered data collection — were instantiated using a piecewise

linear model between known observations. Data from SLAM and the other datasets

were stored in 3-dimensional arrays, with missing values imputed according to Sec-

tion C.4. The final arrays were size: (608, 6, 22) for SLAM C57/BL6, and (611, 6,

29) for SLAM Het3 (individuals, biomarkers, time points).

The Paquid dataset we used is available as part of a software package [150].

Biomarkers were visually investigated for normality. To improve normality we trans-

formed CESD by the square-root and MMSE by −
√
30−MMSE where 30 is the

maximum allowed score for the MMSE. All biomarkers were centered and scaled by

their respective mean and standard deviation from the first timepoint. Missing time-

points were instantiated using a piecewise linear model between known observations.

The final array was size (500, 4, 9); (individuals, biomarkers, time points).
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The English Longitudinal Study of Ageing (ELSA) dataset is available from the

UK data service (https://ukdataservice.ac.uk/). We analysed all of the waves

which included lab work: 2, 4, 6 and 8 (i.e. the “nurse” waves). We included only

individuals present in wave 2, thus excluding later recruits. Biomarkers were visually

investigated for normality. We found that the log transformation improved normality

for C-reactive protein, ferritin, triglycerides, and white blood-cell count. All biomark-

ers were centered and scaled by their respective mean and standard deviation from

the first timepoint. Skipped timepoints were instantiated using linear interpolation

of the available timepoints. Censored (or died) timepoints were instantiated using

the mean followup time (which was uniform due to the study design). The final array

was size (9330, 23, 4); (individuals, biomarkers, time points).

C.4 Missing data

We were presented with two forms of missing data for an individual at a particular

timepoint. The entire timepoint could be missing or some subset of values could be

missing. In either case the missingness could be informative; for example an individual

may have temporarily left the study due to poor health and their biomarkers could

have had abnormal values reflecting their poor health. In this way the population may

appear abnormally healthy as it ages. Under such circumstances, failure to impute can

lead to biased study conclusions [180], such as parameter estimates (Section C.4.1).

https://ukdataservice.ac.uk/
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We considered three imputation approaches and selected the approach which gave

the most reasonable values. First (“simplest”), we imputed a single value using

either the individual’s mean biomarker value, carry forward the previous value (and

then carry back any skipped values), the conditional population mean (assuming

multivariate Gaussian statistics), or the individual mean followed by the conditional

mean for individuals whom did not have that variable reported. Second (“model

mean”), we considered an iterative approach after applying one of the first methods

wherein values were imputed according to the model mean (i.e. model prediction),

equation (C.1) and equation (C.3). Third (“MICE”), we considered multivariate

imputation using chained equations (MICE) [196]. MICE is a multiple imputation

technique that uses a Gibbs’ sampler along with a predictive model. We considered

MICE using both classification and regression trees (CART) and 2-level modelling

(normal for continuous variables and logistic for binary).

When imputing the model mean, at each iteration we estimated the model pa-

rameters then imputed the conditional mean for each missing value (Algorithm C.1).

Let y⃗ denote the biomarker, u⃗ denote all unobserved y and o⃗ denote all observed y.

The statistics are Gaussian (equation (C.4)), so we can use the factorization theorem

[140] to compute the expectation value.

If y⃗n+1 is known but a set of y⃗n are unknown then

E(u⃗n|o⃗n, y⃗n+1) = ⟨y⃗un⟩+ΣuoΣ
−1
oo (o⃗n − ⟨y⃗on⟩) where,

⟨y⃗un⟩ = (I +∆tn+1W )−1
u·
(︁
y⃗n+1 +W∆tn+1µ⃗n

)︁
,

⟨y⃗on⟩ = (I +∆tn+1W )−1
o·
(︁
y⃗n+1 +W∆tn+1µ⃗n

)︁
,

Σuo = ((I +∆tn+1W )TQ(I +∆tn+1W ))−1
uo ,

Σ−1
oo =

(︃
((I +∆tn+1W )TQ(I +∆tn+1W ))−1

oo

)︃−1

, (C.1)

where E(x|y) denotes expectation value of x conditional on y, Q is the precision

matrix defined below, and I is the identity matrix. Note that

Σ ≡ Q−1 =

[︄
Σoo Σou

Σuo Σuu

]︄
(C.2)
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is the block-decomposition of the noise covariance rearranged for observed (o) and

unobserved (u) variables. If instead y⃗n is known but a set of y⃗n+1 are unknown then

E(u⃗n+1|o⃗n+1, y⃗n) = y⃗un +Wu·∆tn+1(y⃗n − µ⃗n) +ΣuoΣ
−1
oo (o⃗n+1 − y⃗on −Wo·∆tn+1(y⃗n − µ⃗n)).

(C.3)

We used the simplest approach as an initial imputation (e.g. carry forward/back).

We then imputed y⃗1 first using equation (C.1) then each subsequent timepoint using

equation (C.3).

We compared the imputation quality and found that the model mean was both

straightforward and effective, and therefore elected to use it for both SLAM datasets

and Paquid. We initialized imputation with carry forward/back: that is, forward

carrying previous values until the last timepoint was reached then backwards carrying

to fill any values still missing. In rare cases a few data points were missing after

imputation, these were simply ignored (we used all available case data). The ELSA

dataset was sensitive to the model mean — perhaps due to the limited number of

data points — hence we used a single imputation which combined first imputing

the individual-specific variable mean followed by the conditional mean, assuming

multivariate Gaussian statistics at each timepoint. Note that since we elected to

use bootstrapping, we imputed each bootstrap replicate and then averaged to get an

estimate for each missing value along with a standard error.

The final imputation was assessed for quality, Figure C.2 — and looked reason-

able. When inspecting imputation quality we are looking for the same age-dependent

pattern for both the imputed and observed values, both in terms of mean and disper-

sion. Informative censorship is possible, so for variables with survival effects we can

expect that missing values should be at higher risk because they include individuals

whom were censored due to poor health (or death). Risk can be inferred by the

direction of drift with respect to age: data points which look ‘older’ are likely higher

risk. Hence imputed values may look a little ‘older’ than observed values.
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Figure C.2: Final imputation quality check, visualized using principal component 1.
A. C57BL/6 mice (SLAM). B. Het3 mice (SLAM). C. Paquid (human, dementia).
D. ELSA (human). Imputed values appear to be reasonable for each dataset.
Principal component analysis (PCA) was applied to each dataset in the entirety,
flatted across timepoints. Good quality imputation (blue triangles) should show the
same trend and dispersion as the observed data (red points). Censored individuals
likely have worse health, so imputed values may look a little ‘older’ than the
observed. Age-dependence is indicated by the solid lines with confidence intervals
(cubic spline; geom smooth with defaults [206]). Outlying points are highlighted
(l ± 3 where l is the ordinary linear regression model). Data points were labelled as
imputed (blue triangles) if the preponderance of the rotation weights were missing:∑︁

i=missing |Ui1|/(
∑︁

j |Uj1|) > 0.5; where U is the PCA rotation matrix.

C.4.1 Informative censorship

Is it better to impute dropped individuals (dead, censored) or not? Dropped individ-

uals may have abnormal biomarker values leading to their exclusion, i.e. informative

censorship. There is “substantial” evidence that dropped individuals in longitudinal

studies have worse health [71] and their health biomarkers will reflect this, leading to

a potential survivorship bias. We used simulated data to test for potential bias and

observed that — if done well — imputing values for dropped individuals can reduce

this bias.
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We simulated data from our model equation (C.4) using randomly generated pa-

rameters then imposed informative censorship. We simulated 100 times with 100

individuals in each simulation. Each simulation included 2 biomarkers. Parameters

and biomarkers were draw from normal random variables. The diagonal of W was

mean −1/4, the off-diagonals were mean 0 and the overall standard deviation was 0.1.

The mean µ0 was 0 and standard deviation was 0.1. No covariates were simulated.

The noise was diagonal, Σ = 0.5I (also used for instantiating the population). We

censored using Gompertz statistics with proportional hazards for biomarker values

[13] (shape: α = 0.1, scale: λ = 10−5). The proportional hazards coefficients were

randomly sampled from a normal distribution with mean 1 and standard deviation

0.1, this ensured that large values of the biomarkers were preferentially censored.

The results of the simulation are shown in Figure C.3 for various imputation

strategies, with the horizontal dashed line indicating unbiased results. We observed

that a significant bias existed in both the diagonal and off-diagonal elements of W ,

which were systematically over-estimated if the data were not imputed. Conversely, if

we used only the simple carry forward/back imputation, an even worse bias ensued in

the opposing direction. If we used the model mean imputation, however, we reduced

the bias inW to nearly 0 without significantly increasing bias in the other parameters.

For this reason, we imputed all dropped individuals: censored and dead.

C.5 Model selection

Our goal with model selection was two fold: (i) to find the optimal model(s) that

best fit the data, and (ii) to test which model parameters were essential for fitting

the data. This allows us to infer the existence of which model parameters are ro-

bustly supported by the data. Fit quality was measured using the root-mean squared

error (RMSE) and mean absolute error (MAE). We used the 632 estimator for er-

rors, which is a linear combination of 63.2% test error and 36.8% training error [74].

Test error was estimated via out-of-sample bootstrap replication, with 100 resamples.

Each bootstrap selected a new dataset of the same size as the original by resampling

individuals with replacement. The out-of-sample individuals are those whom were

not selected. Estimation algorithms are reported in Section C.6.
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Figure C.3: Imputation of dropped individuals can reduce bias. We simulated
informative censorship and here compare estimates from different missing data
handling strategies. Observe that both the diagonal elements of W (A.) and all
elements of W (B.) were biased high when data were not imputed. However, if we
imputed using the model mean, the bias was greatly reduced. For µ0 (C.) we also
reduced the bias with the combined imputation strategy, which was the strategy
employed on the real data. Imputation did introduce a small bias in the noise
estimate (D.). The bias was largest if we used only the carry forward/back method.

We compare model performance in Figure C.4; we explain the model labels here.

The general form of our model is (‘full’)

y⃗n+1 = y⃗n +W∆tn+1(y⃗n − µ⃗n) + ϵ⃗,

ϵ⃗ ∼ N (0,Σ|∆t|)

µ⃗n ≡ µ⃗0 +Λx⃗n + µ⃗agetn, (C.4)

where t is the age. The error can be expressed in terms of the precision matrix,

Q ≡ Σ−1. (C.5)
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We considered both using Q = I, the identity matrix (default), and estimating

Q from the data using the log-likelihood (‘Q’). Transforming into natural variables

— wherein W is diagonal — we have

zjn+1 = zjn + λj∆tn+1(zjn − µ̃jn) + ϵ̃, (C.6)

where z⃗n ≡ P−1y⃗n, λi ≡ P−1
i· WP·i, ˜⃗µn ≡ P−1µn and ˜⃗ϵ ≡ P−1ϵ⃗.

We considered (‘pca’) the possibility that principal component analysis (PCA)

could be used as a preprocessing step to decouple the biomarkers such that we could

fit equation (C.6), assuming independent noise between the zj. Equation (C.49) states

that in the steady-state the principal components are equivalent to the eigenvectors

of W , this self-consistency motivates using PCA. Prior work has also suggested that

principal components don’t change much during the aging process [146].

We considered that µn may be time-dependent and may also depend on other

covariates (‘covs’), which is discussed in Section C.2.

We considered simpler, nested forms of equation (C.4). Recall that the data were

standard-deviation-scaled and mean-centered by the baseline value, which justifies

some of the simplifications. Simplified forms allowed us to test whether W and µ⃗

were necessary to fit the data. Removing these parameters leads to special cases of

the model. The simplest model for the data is to simply carry forward the previous

value. If recovery is small, W∆t → 0 then we have (‘carry’),

y⃗n+1 = y⃗n + ϵ̃ (C.7)

which corresponds to carrying the previous value forward (⟨y⃗n+1⟩ = ⟨y⃗n⟩). This

model does not require any parameters to make predictions; it was used for the

initial imputation of the Paquid and SLAM datasets (Section C.4).

If recovery is complete between each timepoint then W∆t → −I and we instead

have the second simplest model (‘fast’),

y⃗n+1 = µ⃗n + ϵ⃗ (C.8)

which corresponds to biomarkers being randomly distributed about some mean value

which depends on covariates (⟨y⃗n+1⟩ = ⟨µ⃗n⟩). Alternatively, we could have µ⃗n ≡ 0 in

which case we have (‘noallo’),

y⃗n+1 = y⃗n +W∆tn+1y⃗n + ϵ⃗ (C.9)
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which we refer to as the no allostasis model (it also implicitly sets homeostatic equi-

librium to 0). In 1-dimension, equation (C.9) is simple exponential growth/decay in

the mean (for small ∆t).

While nonlinear behaviour can be captured by our model (Section C.8), we also

directly investigated nonlinear behaviour by including a quadratic term (‘quad’),

zjn+1 = zjn + λj∆tn+1(zjn − µ̃jn) + γ∆t2n+1z
2
jn + ϵ̃. (C.10)

We only considered a quadratic term for the diagonal model, equation (C.6) with

PCA preprocessing.

We compare model performance in Figure C.4. We found that the fast model,

equation (C.8), fit very poorly, having error so large that it did not fit in the plot

region. Within the plot region, the carry-forward model performed the worst, equa-

tion (C.7) (‘carry’). Note the implication: biomarker recovery towards equilibrium

is much closer to none (‘carry’) than complete (‘fast’). Next worse was excluding µ,

equation (C.9) (‘noallo’). The remaining models typically performed similarly-well.

The SLAM datasets both saw a noteworthy improvement in fit when age was included

as a covariate (in µn). We observed no improvement with inclusion of a quadratic

term, equation (C.10) (‘quad’). Finally, and importantly, we found that a diagonal

fit on principal components (PCs) yielded equivalent performance to the full model.

This permitted a greatly simplified methodology since we were able estimate using

weighted linear regression (Section C.6.1).

C.6 Estimation

We provide useful results for fitting equation (C.4) and its simplified form, equa-

tion (C.6). The latter can be solved using weighted linear regression.
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C.6.1 (Weighted) Linear Regression

If the noise term is diagonal then the equations decouple and we have a set of linear

equations which can be independently solved using linear regression. In the present

study we used PCA (principal component analysis) as a preprocessing step prior to

fitting a diagonal model. That is, we assumed the PCs do not interact with each

other. We can rewrite equation (C.6) as

zijn+1 − zijn = λj(∆tin+1zijn) + β⃗j

T
(∆tin+1x⃗in) + ϵij, where

βj0 = λjµ0,

βjage = λjµjage,

βjk = λjΛk·, and

ϵij ∼ N (0, σ2
j |∆tin+1|). (C.11)

This is a weighted linear regression problem [210] where the predictors are ∆tin+1zijn,

and ∆tin+1xijn; the weights are |∆tin+1|−1. During model selection, Section C.5, we

found that equation (C.11) fit the data as well as the full model, equation (C.4).

C.6.2 Maximum likelihood estimators (MLEs)

We derive the MLEs for equation (C.4) in full generality. For convenience define

ŷibn+1 ≡ yibn +∆tin+1

∑︂
k

Wbk(yikn − µikn) = yibn +∆tin+1

∑︂
k

Wbk(yikn −
∑︂
j

Λkjxijn)

(C.12)

where we have p variables, N individuals and T + 1 timepoints. We index the N

individuals with i and the T timepoint-pairs with n. For convenience we drop µ0 and

define the equivalent µ⃗in ≡ Λx⃗in; where we use xi0n ≡ 1 to recover µ0. Estimators

are denoted with a hat e.g. Ŵ estimates W .

The log-likelihood is,

l = −1

2

∑︂
i,n

ln (det
⃓⃓
2πQ−1|∆tin+1|

⃓⃓
)− 1

2

∑︂
i,n

(y⃗in+1 − ˆ⃗yin+1)
T Q

|∆tin+1|
(y⃗in+1 − ˆ⃗yin+1)

=
1

2
NT ln (det

⃓⃓
Q
⃓⃓
)− p

2

∑︂
i,n

ln (2π|∆tin+1|)−
1

2

∑︂
i,n

(y⃗in+1 − ˆ⃗yin+1)
T Q

|∆tin+1|
(y⃗in+1 − ˆ⃗yin+1).

(C.13)
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We derive analytical forms for the MLEs as well as providing derivatives for

gradient-based optimization algorithms. We also report the curvature since this is

used to estimate the asymptotic error via the inverse Fisher matrix [76]. We found

that the asymptotic errors are well-calibrated for W , but tend to be too small for µ⃗n

(Section C.7). In the present study, we report bootstrap errors.

Note that we find it useful to express the estimators in terms of the uncentered

(cross)covariance,

Cov2(x⃗in) ≡ ⟨x⃗x⃗T ⟩i,n, and

Cov2(x⃗in, y⃗in) ≡ ⟨x⃗y⃗T ⟩i,n (C.14)

where the expectation value is taken over individuals, i, and timepoints, n. In general,

⟨f(xin)⟩i,n denotes the average of f(xin) over individuals, i, and timepoints n.

We start by considering W . The derivatives are

∂l

∂Wαβ

=
∑︂
i,n,a

sign(∆tin+1)Qaα(yian+1 − yian −∆tin+1

∑︂
k

Wak(yikn − µikn))(yiβn − µiβn)

∇W l =
∑︂
i,n

sign(∆tin+1)Q(y⃗in+1 − y⃗in −∆tin+1W (y⃗in − µ⃗in))(y⃗in − µ⃗in)
T (C.15)

where ∇W denotes the gradient with respect to (vectorized) vec(W ). The MLE is

thus

Ŵ ⟨|∆tin+1|(y⃗in − µ⃗in)(y⃗in − µ⃗in)
T ⟩i,n = ⟨sign(∆tin+1)(y⃗in+1 − y⃗in)(y⃗in − µ⃗in)

T ⟩i,n

Cov2(
√︁

|∆tin+1|(y⃗in − µ⃗in))Ŵ
T
= Cov2(sign(∆tin+1)(y⃗in − µ⃗in), y⃗in+1 − y⃗in).

(C.16)

The latter equation is useful for linear algebra software packages. Alternatively, we

can invert the uncentered covariance ⟨|∆tin+1|(y⃗in − µ⃗in)(y⃗in − µ⃗in)
T ⟩i,n which yields

equation (12).

The curvature of W is

∂2l

∂WγδWαβ

= −NTQγα⟨|∆tin+1|(yiβn − µiβn)(yiδn − µiδn)⟩i,n (C.17)

the Fisher information is the negative of this. The covariance of the MLE is given by

the inverse Fisher information,

I−1
αβγδ =

1

NT
Q−1

αγ ⟨|∆tin+1|(y⃗in − µ⃗in)(y⃗in − µ⃗in)⟩−1
βδ (C.18)
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the standard errors are the square-roots of the diagonal elements,

δW 2
αβ =

Q−1
αα

NT
⟨|∆tin+1|(y⃗in − µ⃗in)(y⃗in − µ⃗in)⟩−1

ββ . (C.19)

Next we consider µ⃗n. We condense all relevant parameters into Λ which has MLE,

∂l

∂Λαβ

= −
∑︂
i,n,a,b

Qab

|∆tin+1|
(yian+1 − ŷian+1)(∆tin+1Wbαxiβn)

= −NTW T
α·Q⟨(y⃗in+1 − y⃗n)xiβnsign(∆tin+1)⟩+NTW T

α·QW ⟨|∆tin+1|y⃗inxiβn⟩

−W T
α·QWΛ⟨|∆tin+1|x⃗inxiβn⟩

=⇒ 1

NT
∇Λl = −W TQ⟨(y⃗in+1 − y⃗n)x⃗

T
insign(∆tin+1)⟩+W TQW ⟨|∆tin+1|y⃗inx⃗T

in⟩

−W TQWΛ⟨|∆tin+1|x⃗inx⃗
T
in⟩ (C.20)

This implies

W TQW Λ̂⟨|∆tin+1|x⃗inx⃗
T
in⟩ = W TQW ⟨|∆tin+1|y⃗inx⃗T

in⟩ −W TQ⟨sign(∆tin+1)(y⃗in+1 − y⃗in)x⃗
T
in⟩

(C.21)

which we can write

W TQW Λ̂ = W TQWCov2(|∆tin+1|y⃗in, x⃗in)
(︁
Cov2(

√︁
|∆tin+1|x⃗in)

−1
)︁

−W TQCov2(sign(∆tin+1)(y⃗in+1 − y⃗in), x⃗in)
(︁
Cov2(

√︁
|∆tin+1|x⃗in)

−1
)︁
.

(C.22)

We estimate from the general form, but note that equation (C.22) can be greatly

simplified when W is invertible, which is expected because it empirically has strong

diagonal elements. For invertible W we get equation (11).

The curvature is

∂2l

∂Λγδ∂Λαβ

= −(W TQW )αγTN⟨|∆tin+1|x⃗inx⃗
T
in⟩βδ (C.23)

where the expectation is over times and individuals. The Fisher information is used

to estimate the asymptotic error,

I−1
αβγδ =

1

NT
(W TQW )−1

αγ ⟨|∆tin+1|x⃗inx⃗
T
in⟩−1

βδ (C.24)

the fit error is the square-root of the diagonal,(︁
δΛαβ

)︁2
=

1

NT
(W TQW )−1

αα⟨|∆tin+1|x⃗inx⃗
T
in⟩−1

ββ . (C.25)
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Finally, observe the equilibrium case where ⟨y⃗n+1⟩ = ⟨y⃗n⟩ = µ⃗n and Cor(y⃗n+1 −
y⃗n, x⃗) = Cor(y⃗n − µ⃗n, x⃗) = 0 (i.e. the fluctuations are random) then equation (C.20)

becomes

1

NT
∇Λeq l = W TQW ⟨|∆tin+1|y⃗inx⃗T

in⟩ −W TQWΛ⟨|∆tin+1|x⃗inx⃗
T
in⟩ (C.26)

and we have

Λ̂eq =

⟨︃
|∆tin+1|y⃗in+1x⃗

T
in

⟩︃(︃⟨︃
|∆tin+1|x⃗inx⃗

T
in

⟩︃)︃−1

,

= Cov2(|∆tin+1|y⃗in+1, x⃗in)
(︁
Cov2(

√︁
|∆tin+1|x⃗in)

−1
)︁
. (C.27)

equation (C.27) is useful for an initial Λ estimate as it does not depend on W .

C.6.3 Noise estimator

We used a simple estimator for the noise, Σ. For our model, equation (C.4), a simple

estimator is derived by observing

y⃗n+1 − ⟨y⃗n+1⟩ = ϵ⃗ (C.28)

which implies that

⟨(y⃗n+1 − ⟨y⃗n+1⟩)(y⃗n+1 − ⟨y⃗n+1⟩)T ⟩ = ⟨⃗ϵ⃗ϵT ⟩ = Σ|∆t| (C.29)

we conclude that

Σ̂ =

⟨︃
1

|∆tin+1|
(y⃗in+1 − ⟨y⃗in+1⟩)(y⃗in+1 − ⟨y⃗in+1⟩)T

⟩︃
i,n

. (C.30)

Where the expectation must be taken over individuals, i, and timepoints, n. Note

that y⃗n+1 − ⟨y⃗n+1⟩ is the model residual, which is easily computed after the model

has been fit.

C.6.4 Iterative estimation

We found that a simple iterative scheme of alternating estimators from Section C.6.2

was able to correctly recovery true parameter values in a simulation study, Sec-

tion C.7. The scheme proceeds according to Algorithm C.1 (see below). We defaulted

to numIter = 5 iterations. Note that in the special, diagonal case, of equation (C.6)

we simultaneously estimated Λ andW using weighted linear regression, Section C.6.1

(“PCA” case).
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While we did estimate the asymptotic error, we found that the bootstrapped error

had lower bias and hence we only report the latter (see Section C.7). To estimate

the errors in parameters and prediction we bootstrapped Algorithm C.1 and took the

standard deviation as the error estimate (100 resamples).

C.7 Validation

We used synthetic (simulated) data to validate: (i) Algorithm C.1, (ii) the parameter

errorbars, and (iii) the prediction error estimator (RMSE). We used synthetic data

based on the SLAM C57/BL6 dataset for validation. We fit the full model equa-

tion (C.4) to the dataset: all 6 predictors and 2 covariates (sex and age), as well as

estimating the noise. We used the fit parameters to generate new data then tested

to see if Algorithm C.1 recovered the true parameters and errors. Algorithm C.1

was bootstrapped 100 times, the prediction error was estimated using both in-sample

(train) and out-of-sample (test). We simulated 1000 times for each synthetic dataset

size: 10, 50, 100, 500 and 1000 individuals. Each dataset had 22 timepoints.

We confirmed that Algorithm C.1 is able to accurately reproduce true model

parameters. In Figure C.5 we plot the parameter estimates versus the ground truth

values. We see that the algorithm is accurate for N ≥ 50. We see a bias-low for the

diagonal elements of W .

C.7.1 Parameter error

Here we test the calibration of our parameter errorbars. We compare both the boot-

strap and asymptotic error estimates to the ground truth. Bootstrap errors were

estimated using the standard deviation of bootstrap replicates. Asymptotic errors

were estimated using the estimators in Section C.6.2. As we will demonstrate in

this section, the asymptotic errorbars can be too small, whereas the bootstrap errors

appeared to be correctly calibrated. For this reason, we always used the bootstrap es-

timates in the main text. The asymptotic error estimates are much faster to compute

and are presented for posterity.
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Algorithm C.1 Iterative estimator

if imputeFirst then

Impute missing y⃗ using simple algorithm (e.g. carry forward/back).

end if

if doPCA then

Estimate PCA rotation, U , on first timepoint, y⃗1, then apply to all timepoints.

end if

Estimate Λ using equation (C.27) which assumes ⟨y⃗n+1⟩ = ⟨y⃗n⟩ = µ⃗n and Cor(y⃗n−
µ⃗n, x⃗) = 0.

Estimate W using equation (C.16).

for i in 1 to numIter do

if estimateNoise then

Estimate Σ using equation (C.30) and Q = Σ−1.

end if

if imputeMean then

if doPCA then

Transform model parameters into observed space using U−1 = UT .

end if

Impute y⃗1 with the model mean using equation (C.1).

for n in 2 to numTimes do

Impute y⃗n with the model mean using equation (C.3).

end for

end if

Estimate Λ using equation (C.22).

Estimate W using equation (C.16).

end for

if doPCA then

Transform imputed values and parameters into observed space usingU−1 = UT .

end if

Estimate asymptotic errors.

Return W , Λ, Σ and imputed values, y⃗imp.

Where imputeFirst, doPCA, estimateNoise and imputeMean are Boolean user set-

tings. numTimes is the number of observation timepoints in the dataset, T + 1.
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In Figure C.6 we present the coverage of both error estimators. The coverage is

the fraction of times that the true parameter value fell within the estimated error in-

terval. The nominal coverage is 68.3% for a normal random variable. In Figure C.6A

we present the coverage of the asymptotic error estimates and find that they are

unsatisfactory for µage and µ0 (errorbars were too small). These may be due to

strong correlations between the two parameters, for example the parameters for body

weight correlated across simulations at cor(µage, µ0) = −0.886, which could make the

asymptotic errors inaccurate. In Figure C.6B we observe that all of the bootstrap

error parameter coverages were close to the nominal rate (dashed line), and were sym-

metrically distributed above and below. This indicates that our bootstrap parameter

errorbars were properly calibrated.

C.7.2 Prediction error

Our primary measure of prediction error was the root-mean-squared error (RMSE).

It is important that our measure is properly calibrated such that it estimates the

correct RMSE, i.e. in a simulation study where the true error is known. We compare

three RMSE estimators to the ground truth: (i) the testing error, which is the out-

of-sample bootstrap error, (ii) the training error, which is the in-sample bootstrap

error, and (iii) the 632 error which is a linear combination of 63.2% testing error and

36.8% training error [74]. The ground truth error is the error of the sample given

the correct parameter values: this is the error of a single sample, not the distribution

of possible values. The average ground truth error should be an unbiased estimate

of the true, distribution error. In Figure C.7A we demonstrate that the 632 error

is close to the ground truth error. In Figure C.7B we present the coverage of each

estimator and find they are all close to the nominal rate. We conclude that the 632

error is a satisfactory estimator of the true model error.
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Figure C.4: Model selection. A. C57BL/6 mice (SLAM). B. Het3 mice (SLAM). C.
Paquid (human, dementia). D. ELSA (human). Lower error is better. y-axis is
632-RMSE on left and 632-MAE on right. Horizontal lines indicate the best
performing model. We are looking for the simplest model that consistently hits
those lines across datasets. We considered models significantly worse if they do not
have an error interval overlapping this line; prioritizing RMSE. Models: carry:
equation (C.7); fast: equation (C.8); noallo: equation (C.9); quad: equation (C.10);
full: equation (C.4). Additional parameters: pca: equation (C.6) with PCA
preprocessing and diagonal noise; Q: the noise was estimated; covs: prefix, after
which included covariates are listed; nocovs: no covariates were used. For example,
sex pca Q included sex as a covariate (sex), used PCA as a preprocessing step and
assumed diagonal W and Q, and fit equation (C.6) (pca), and estimated Q from
the data (Q). The fast model, equation (C.8), performed much worse for all datasets
(points above plot region), 632-RMSE: 0.91(2) (Paquid), 0.92(1) (ELSA), 2.03(6)
(SLAM C57) and 2.21(7) (SLAM HET3); 632-MAE: 0.68(1) (Paquid), 0.702(5)
(ELSA), 1.32(3) (SLAM C57) and 1.47(3) (SLAM HET3).
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Figure C.5: Algorithm C.1 validation. For the indicated parameters in each
measurement (A.-F.), the estimated value is plotted against the ground truth value
for a variety of sample sizes (indicated by the legend). Points show mean; bands are
the interquartile range (25th to 75th percentile). Bias is indicated by position of
point relative to the red dashed line, y = x (perfect estimator). Precision (and
accuracy) are inferred by the dispersion (bands). As the number of individuals, N ,
is increased from 50 to 1000 we see the estimator becomes increasingly accurate and
precise, with a small dispersion around the ground truth values for each parameter.
Points are staggered for visualization. Note: N = 10 had large errors and hence was
excluded for better visualization.
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clearly has abnormally low coverage for µ0 and µage, perhaps due to strong
correlations between the two parameters. Asymptotic error estimates for the other
parameters look good. B. bootstrap error coverage looks good: parameters are close
to the nominal rate (dashed line) and are (mostly) symmetrically distributed above
and below. Note the scale. Errorbars are standard error in the mean. x-axis not to
scale.
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Figure C.7: Bootstrap error calibration. 632 error is a satisfactory estimator of the
true error. A. Test error (out-of-sample) was biased high, training error (in-sample)
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B. The coverage of the train and 632 error were close to the nominal rate, 68.3%
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to precisely estimate due to non-uniform sampling, so we used the average ground
truth to estimate the true error. Errorbars are standard error.
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C.8 Math

In this section we include supporting information for the model moments along with

mappings to related approaches, i.e. other researcher’s models.

C.8.1 Ordinary differential equation

We consider only 1-dimension since we found that we could transform our multi-

variate biomarkers into a set of decoupled, 1-dimensional equations using the W -

diagonalizing matrix, P . That is,

z⃗ ≡ P−1y⃗ (C.31)

decouples the zj into a set of independent 1-dimensional equations. As needed, we

can map back into y⃗ — which we do in Section C.8.5.

In the limit of small ∆t our 1-dimensional model equation (C.6) becomes a mod-

ified Ornstein-Uhlenbeck process as follows,

lim
∆t→0

zjn+1 = zjn + λj(zjn − µ̃jn)dt+ lim
∆t→0

ϵ̃, (C.32)

with

ϵ̃ ∼ N (0, σ̃2
j |∆t|). (C.33)

AWiener process, dξ, has three criteria [77]: (i) independence, (ii) stationarity (statis-

tics doesn’t change over time), and (iii) N (0, |∆t|)–distributed. These criteria are

satisfied by ϵ̃ once we scale out σ̃j. Substituting t for timepoint n and t + dt for

timepoint n+ 1 we have

zj(t+ dt) = zj(t) + λj(zj(t)− µ̃j(t))dt+ σ̃jdξ(t), (C.34)

which can be rewritten as

dzj(t) = λj(zj(t)− µ̃j(t))dt+ σ̃jdξ(t), (C.35)

which is an Ornstein-Uhlenbeck process with a non-constant equilibrium, µ̃j(t), which

depends on time through µ̃j,aget [77]. Note that equation (C.35) holds for all µ̃j(t)

that can be Taylor expanded, since the nonlinear corrections go as O(∆t2).
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We rewrite equation (C.35) in a stripped down form as

dz = λ(z − µ(t))dt+ σdξ. (C.36)

The solution is then

z(t) = z0e
λt − λeλt

∫︂ t

0

µ(s)e−λsds+ σeλt
∫︂ t

0

e−λsdξ(s). (C.37)

The integral is stochastic (Ito) and cannot be solved analytically, however its moments

can be computed using two standard results [77]. The mean is

⟨
∫︂ t

0

f(s, ξ)dξ⟩ = 0, (C.38)

and the two-point correlations are

⟨
∫︂ t

0

f(s, ξ)dξ(s)

∫︂ t′

0

g(u, ξ)dξ(u)⟩ =
∫︂ min(t,t′)

0

⟨f(s, ξ)g(s, ξ)⟩ds. (C.39)

The statistics are Gaussian so all moments can be rewritten in terms of the mean and

two-point correlations.

Moments

Here we provide additional details supporting the math in Box 1.

Let

µ(t) = µ0 + µaget, (C.40)

that is, the only time-dependence is through the linear term µaget (µ0 can still depend

on covariates, but they can’t vary in time).

Starting from equation (C.37)

z(t) = z0e
λt − λeλt

∫︂ t

0

µ(s)e−λsds+ σeλt
∫︂ t

0

e−λsdξ(s)

= z0e
λt − λeλt

(︃
− µ0

λ

(︁
e−λt − 1

)︁
+

µage

λ2

(︁
e−λt(−λt− 1) + 1

)︁)︃
+ σeλt

∫︂ t

0

e−λsdξ(s).

(C.41)

The mean is easily computed as

⟨z(t)⟩ = ⟨z(0)⟩eλt − λeλt
(︃
− µ0

λ

(︁
e−λt − 1

)︁
+

µage

λ2

(︁
e−λt(−λt− 1) + 1

)︁)︃
= ⟨z(0)⟩eλt + (µ0 +

µage

λ
)(1− eλt) + µaget. (C.42)
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The auto-covariance doesn’t depend on µ(t), it is simply,⟨︃
(z(t+ τ)− ⟨z(t+ τ)⟩)(z(t)− ⟨z(t)⟩)

⟩︃
= σ2e2λteλτ

⟨︃∫︂ t+τ

0

e−λsdξ(s)

∫︂ t

0

e−λsdξ(s)

⟩︃
= −σ2

2λ

(︃
eλ|τ | − e2λteλτ

)︃
. (C.43)

The variance is the special case τ = 0,

Var(z(t)) = −σ2

2λ

(︃
1− e2λt

)︃
. (C.44)

The mean and auto-covariance completely characterize Gaussian statistics, all other

statistics can be calculated from them.

The above moments neglect the possibility that we may be unable to measure the

system at t = 0. It is therefore useful to define the moments relative to a reference

time, tr. Doing some algebra we have

⟨z(t)⟩ = ⟨z(tr)⟩eλ(t−tr) + (µ0 +
µage

λ
+ µagetr)(1− eλ(t−tr)) + µage(t− tr)

= ⟨z(tr)⟩eλ(t−tr) + (µ(tr) +
µage

λ
)(1− eλ(t−tr)) + µage(t− tr) (C.45)

for the mean, where µ(tr) ≡ µ0 + µagetr. Note that it is convenient to write

⟨z(t)⟩ − µ(t) = (⟨z(tr)⟩ − µ(tr))e
λ(t−tr) +

µage

λ
(1− eλ(t−tr)). (C.46)

For the variance we have

Var(z(t)) = Var(z(tr))e
2λ(t−tr) − σ2

2λ

(︃
1− e2λ(t−tr)

)︃
. (C.47)

Note that if we wait a long time, t− tr ≫ 1/λ, we reach steady-state values (so long

as λ < 0). For example, the steady-state variance is

Var(z)ss = −σ2

2λ
. (C.48)

C.8.2 Biomarker Principal Components

The biomarkers, y⃗, are connected to the natural variables, z⃗, by the transformation,

P−1, equation (C.31). P−1 is the (linear) diagonalizing transformation of W . We

can use this to calculate the steady-state principal components of y⃗,

Cov(y⃗ss, y⃗ss) = ⟨(y⃗ss − ⟨y⃗ss⟩)(y⃗ss − ⟨y⃗ss⟩)T ⟩

= P ⟨(z⃗eq − ⟨z⃗ss⟩)(z⃗eq − ⟨z⃗ss⟩)T ⟩P T

= PCov(z⃗ss, z⃗ss)P
T . (C.49)
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If P is a rotation/orthogonal (P−1 = P T ) then, by definition [26], P is the diag-

onalizing transformation of Cov(y⃗ss, y⃗ss), with eigenvalues equal to the steady-state

variance of the zj. Note: P is orthogonal if W is real and symmetric [26]. If we rank-

order the Var(zj) then we have exactly the principal components of y⃗ [146]. Hence,

in the steady-state the principal components are exactly the same as the natural

variables, z⃗, sorted in order of decreasing variance, equation (C.48).

C.8.3 Small Timesteps, ∆t

Our model, equation (C.4), approximates an ordinary differential equation in the

limit |λ∆t| ≪ 1 (Sections C.8.1 and C.8.5). Sehl and Yates [176] found that most

biomarkers decay linearly at a rate of λ < 0.01 year−1 with the fastest being about

0.03 year−1. The frailty index — the average number of health deficits an individual

has — accumulates at a similarly small rate of 0.025−0.04 year−1 [123]. We observed

typical rates in the range 0.025 − 0.05 human-equivalent year−1 (Figure 6.2B), with

sampling times ∆t of 4 years for ELSA, 3 years for Paquid, 4.9 human-equivalent

years for SLAM C57/BL6 and 3.6 human-equivalent years for SLAM Het3. This

implies that we can expect |λ∆t| ≪ 1 and therefore the small ∆t approximation of

equation (C.4) is likely fine. This means our model should behave similarly to an

ordinary differential equation.

C.8.4 General dynamics

Linear and nonlinear dynamical models alike can be analysed for stability near an

equilibrium position using the eigenvalues [106]. The system is linearized as

d

dt
y⃗ = W y⃗ + b⃗. (C.50)

The system is stable if and only if the real parts of the eigenvalues are always negative

(positive recovery). Observe that the mean of our model equation (C.4) can be written

as

⟨y⃗n+1 − y⃗n⟩
⟨∆tn+1⟩

= W ⟨y⃗n⟩ −W µ⃗n

= W ⟨y⃗n⟩+ b⃗ (C.51)
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for b⃗ ≡ −W µ⃗n. Hence for small ∆t we have (approximately)

d

dt
⟨y⃗(t)⟩ = W ⟨y⃗(t)⟩+ b⃗ (C.52)

hence our approach probes the mean-stability of arbitrary linear or nonlinear dynam-

ics.

C.8.5 Stochastic process model (SPM) approximation

Our model can be used to analyse arbitrary dynamical systems near equilibrium, as

discussed in Section C.8.4. Here we show how a specific dynamical model — the

stochastic process model (SPM) — is approximated by our model. Our model was

motivated in part by earlier works which have shown that biomarker data can be

modelled as a stochastic differential equation [213, 52]. The earlier work by Yashin et

al. proposed the SPM as a generic framework for longitudinal aging biomarker data

[213] where an individual’s collection of biomarkers, y⃗, evolves over time as

dy⃗ = A(t)(y⃗ − µ⃗(t))dt+B(t)dξt (C.53)

where µ⃗ is the unknown equilibrium term (“functional state” of the organism), A

is the interaction network and dξt is a Wiener noise term modified by the matrix

B. Subsequent work by Farrell et al. demonstrated that a deep neural network

could be used to fit SPM and further that a time-independent linear interaction

model was sufficient to describe the interaction network, A, for ELSA data [52]. Our

model, equation (C.4), is the appropriate approximation for equation (C.53) for small

timesteps.

Proof: In Section C.8.1 we showed that our 1-dimensional model is equivalent to

a Wiener process in the limit of ∆t → 0. Consider the SPM with constant regulation

matrix, A, and linear functional state, µ,

dy⃗ = A(y⃗ − µ⃗(t))dt+Bdξ (C.54)

Suppose A is diagonalizable then,

dy⃗ = PDP−1(y⃗ − µ⃗)dt+Bdξ,

=⇒ d(P−1y⃗) = D(P−1(y⃗ − µ⃗))dt+ P−1Bdξ,

=⇒ dz⃗ = D(z⃗ − ˜⃗µ)dt+ B̃dξ (C.55)
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for the latent space, z⃗ ≡ P−1y⃗. By inspection, the latent space obeys Ornstein-

Uhlenbeck dynamics with Djj = λj and hence we can approximate each zj,

zj(t+∆t) ≈ zj(t) +Djj(zj(t)− µ̃j)∆t+ ϵ̃j, where

˜⃗ϵ ∼ N (0, B̃B̃
T |∆t|) (C.56)

which we can map into the observed space using P to get,

y⃗(t+∆t) ≈ y⃗(t) +A(y⃗(t)− µ⃗)∆t+ ϵ⃗ (C.57)

which is equation (C.4) with A ≡ W . The transformed variance of ϵ̃i is,

⟨(P ˜⃗ϵ)(P ˜⃗ϵ)T ⟩ = P ⟨˜⃗ϵ˜⃗ϵT ⟩P T

= P ⟨B̃B̃
T ⟩P T |∆t|

= ⟨BBT ⟩|∆t|

≡ Σ|∆t| (C.58)

QED.

C.8.6 Mapping to Sehl and Yates

Sehl and Yates performed a meta-analysis of 469 biomarkers across cross-sectional and

longitudinal aging studies and observed that the vast majority of biomarkers decay

linearly with age [176]. In the present section we demonstrate that their linear model

describes the steady-state dynamics of our model. In other words, the long-time

(old-age) behaviour of our model is consistent with their observations.

In the steady-state our model equation (7) becomes linear in time,

⟨zjn⟩ss = µ0j(x⃗) + µage,jtn −
µage,j

|λj|
(C.59)

where we have included all time-independent covariates in µ0(x⃗) for convenience.

The biomarkers have a one-to-one relationship with the natural variables through the

orthogonal transformation P and thus evolve according to

⟨yln⟩ss =
∑︂
j

Pljµage,jtn +
∑︂
j

Plj

(︃
µ0j(x⃗)−

µage,j

|λj|

)︃
. (C.60)
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The Sehl and Yates model [176] is

yln
yl,30

= 1− kl(tn − 30) (C.61)

for biomarker yl with baseline value of yl,30 at age 30; the age is in years and kl is the

rate in %-change per year. We can rewrite their model as

yln = −klyl,30tn + (30kl + 1)yl,30, (C.62)

which is exactly equation (C.60) with the substitutions

∑︂
j

Pljµage,j ≡ −klyl,30, and

∑︂
j

Plj

(︃
µ0j −

µage,j

|λj|

)︃
≡ (30kl + 1)yl,30, (C.63)

which can be mapped into z⃗ using P−1:

µage,j ≡ −
∑︂
l

P−1
jl klyl,30, and

µ0j −
µage,j

|λj|
≡

∑︂
l

P−1
jl (30kl + 1)yl,30. (C.64)

Observe that P permits the drift of only a few z⃗ to map into many observed biomark-

ers, y⃗. Together with our observation that many more biomarkers drift than do nat-

ural variables, Figure C.10, this implies that Sehl and Yates’ observation that most

biomarkers drift with age may be due to a only few underlying (allostatic) natural

variables that are declining with age.

C.9 Additional Results

We restricted the main text to only our key results. Here we provide additional

information to support our conclusions.
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We included covariates, x⃗, in the equilibrium position, µ(x⃗), to reduce confounding

effects and to test for the presence of allostasis (which depends on age). Here we tested

each parameter for significance using the bootstrap parameter error estimates. The z-

score for each covariate is reported in Figure C.8; blue tiles are not significant, white

and red are significant at p ≤ 0.05. Most covariates were significant, particularly

age for the human studies. In Section C.5 we found that the effect of covariates on

prediction was typically small. This means that the effects of covariates were reliably

estimated (small p) but did not explain much variation (minor effect on RMSE).

Our model estimates an interaction network, W , together with equilibrium po-

sitions. In the main text we presented the ELSA network with suppressed diagonal

(Figure 6.2). The complete networks for each dataset are provided in Figure C.9.

The networks are all symmetrical because we used PCA as a preprocessing step. Re-

lationships indicate how the y-axis variable will affect the x-axis variable during the

next timestep.

Our model also estimates an equilibrium homeostatic position for each variable,

µ. An important question is how strongly do variables adhere to homeostasis in

the biomarkers, y⃗ versus the natural variables, z⃗? In the main text we presented

the difference between the natural variable mean and the equilibrium position for

each variable, ⟨zj − µj⟩. We reproduce that figure beside the observed biomarkers

in Figure C.10. In Figure C.10B (and Figure 6.4A) we observed that the natural

variables appear to be split into two groups: the majority group was close to µ,

indicative of homeostasis, whereas the minority group was far from homeostasis. This

latter group had a strong drift term, µage, which indicated that homeostasis was a

moving target i.e. allostasis. In Figure C.10A we show that the observed biomarkers

were much more likely to be far from homeostasis than the natural variables (B),

implying that the natural variables are able to condense the effects of age-related

drift (allostasis) into a few variables (see also Section C.8.6).
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The natural variables appear to be efficient for representing age-related changes.

What do the natural variables mean in terms of observable outcomes? In Figure C.11

we report the correlations between the accumulating/drifting natural variables and

biomarkers. In Figure C.12 we report correlations with covariates. Together these

give us an idea of what each natural variable represents and, by model implication, is

controlling. For example, z1 of Paquid is strongly correlated with the mental acuity

scores: MMSE, BVRT and IST, implying it represents overall mental acuity. This

may explain why z1 was such a strong predictor of dementia (Figure C.14). In this

way the age-related decline of mental acuity can be represented by changes to just

one variable, z1, but also observed across several biomarkers, MMSE, BVRT and IST.

The linear map, P , allows a few natural variables to cause several biomarkers to

drift. The effects of allostasis on observed biomarkers via the primary risk natural

variables are illustrated in Figure C.13. The sign of each natural variable is arbitrary,

due to idiosyncrasies in eigendecompositions [146]. The dominant survival dimension

for the Het3 mouse data was z2, which appears to capture a loss of body fat and

muscle, and relative gain of fluid. The dominant z2 dimension for the C57BL/6 was

more specific to loss of fat (the z1 signal for C57BL/6 was very similar to the z2

signal for Het3, Figure C.11). z1 was the dominant dementia-free-survival dimension

for Paquid, and captured a system-wide drop in mental acuity scores (MMSE, BVRT

and IST), which likely captures cognitive decline associated with dementia. z1 for

ELSA appears to be related to frailty [146], having its effects spread across many

variables, especially those related to disability (eye, hear, FI ADL and FI IADL),

physical condition (grip strength and gait speed), and self-reported health (SRH);

note that higher is better for physical condition variables and worse for the other

variables (eye, hear, SRH, FI, etc). In all cases the effects are strongest in the natural

variables, which is ensured by the orthogonality of P . This means that the effects

of the natural variable drift must be diluted across the observed biomarkers (e.g.

Figure C.10), potentially hiding them within healthy variation.
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The drift rate of the natural variables, µage, was correlated with the risk of adverse

outcome (Figure 6.4A). We named this phenomenon “mallostasis”: the tendency of

an aging system towards an ever-worsening equilibrium. Here we consider the role

of confounding variables by constructing complete survival models for each natural

variable and adverse outcome (mortality or dementia onset). We constructed a (time-

dependent) survival model for each natural variable, with age, sex and the natural

variable as predictors. We then recorded the Cox proportional hazards coefficients,

which represent the (conditional) log–hazard ratios per unit increase for each natural

variable. We observed that the Cox coefficients correlated with the drift rate, µage:

Figure C.14. This provides more robust support for mallostasis: that the steady-state

behaviour of aging mice and humans is declining natural variables and commensu-

rately declining health.

As an illustration of mallostasis, we consider a simple composite health measure,

b ≡ µ⃗T
agez⃗. Figure C.14 demonstrates that Cox coefficient is proportional to µage

therefore b is proportional to the hazard. This is confirmed in Figure C.15 which

demonstrates that b for each dataset is a good predictor of survival (or dementia

onset).
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The natural variables are connected to survival via mallostasis, but how do they

relate to the observed phenotype? That is, how do the changes in the natural variables

with age affect the observed biomarkers? The total mean and variance are conserved

between the biomarkers and the natural variables by Parseval’s theorem. This means

that natural variables with large means and variances will dominate the means and

variances of the observed biomarkers, thus controlling the major changes we see. The

steady-state mean grows indefinitely proportional to µage, what about the variance?

The equilibrium (steady-state) dispersion, equation (C.48), for the natural variables

are plotted in Figure C.16. Smaller eigenvalues are associated with higher variance.

Some dimensions (e.g. z1 for the C57BL/6) can contain as much as 10x more variance

than the next highest dimension. These dimensions will dominate the observed vari-

ance in the steady-state. The model predicts that these dimensions will eventually

become the dominant principal components (PCs), equation (C.49), implying they

would dominate the observed phenotype in the steady-state. Hence what we observe

will be dominated by natural variables with small λ and large µage, such as z1 of

ELSA, which appears to be closely related to frailty.

We used PCA (principal component analysis) as a preprocessing step, which al-

lowed us to fit a diagonal model, equation C.6. This simplified analysis and yielded

equivalent performance to the full model (Section C.5). Here we test the self-consistency

of the approach. By using PCA, at each bootstrap the eigenvectors ofW are principal

components, possibly reordered (because we fit a diagonal model for W ). Averaging

over multiple bootstrap replicates removes this equivalence — although in the steady-

state the model predicts that the principal components and eigenvectors of W will

coincide, equation (C.49). Here we test the similarity of the PCA rotation and the

eigenvector rotation: if they coincide then the principal components are eigenvectors.

In Figure C.17 we present the inner product between these matrices, which varies

from −1 to 1, with ±1 representing perfect similarity. We observed strong simi-

larities between the transformations, indicating that the principal components and

natural variables will be strongly correlated. This suggests that PCA may be a useful

shortcut for approximating the eigenvectors of W .
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Finally, we include a survival summary for each dimension in terms of conditional

Cox regression and the C-index in Figure C.18. The values are identical to those

used in Figures C.14 (Cox coefficient) and 6.4 (C-index). This permits the reader to

investigate the relative importance of each dimension. Comparing to the correlates of

each dimension, Figure C.11, one can infer potential mechanisms. For example, z2 of

C57BL/6 has a strong survival effect (low is bad) and shows increasing glucose and

fat, which could indicate metabolic dysfunction, which C57BL/6 are prone to [121].
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Figure C.8: Covariate significance (z-scores). A. C57BL/6 mice (SLAM). B. Het3
mice (SLAM). C. Paquid (human, dementia). D. ELSA (human). The equilibrium
term, µ, was a linear function of these covariates. Most covariates were significant
(red or white). Only the blue tiles were not significant at 95% (z = 1.96). Tile
number is z-score. Colour scale is truncated at z = 5 (p = 6 · 10−7). See
Figures C.11 and C.12 for the directions of the covariate effects.
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Figure C.9: Interaction networks for all datasets. A. C57BL/6 mice (SLAM). B.
Het3 mice (SLAM). C. Paquid (human, dementia). D. ELSA (human). Tile colour
indicates interaction strength (saturation) and direction (colour) of the interaction
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Figure C.11: Natural variable correlates — biomarkers (predictors). A. C57BL/6
mice (SLAM). B. Het3 mice (SLAM). C. Paquid (human, dementia). D. ELSA
(human). This helps to describe what information is in each natural variable, z, and
therefore what each natural variable is capable of controlling. The sign of each z is
arbitrary due to idiosyncrasies of the eigendecomposition.
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Figure C.12: Natural variable correlates — covariates. A. C57BL/6 mice (SLAM).
B. Het3 mice (SLAM). C. Paquid (human, dementia). D. ELSA (human). This
provides further information about what information each natural variable, z,
contains. We expect the strongly drifting variables to exhibit correlations with age,
though the sign of each z is arbitrary. Male is a binary sex indicator (1: male, 0:
female); sex is the converse (0: male, 1: female). CEP is educational attainment
level (1: attained primary, 0: did not).
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Figure C.13: Natural variable drift drives biomarker drift. A. C57BL/6 mice
(SLAM). B. Het3 mice (SLAM). C. Paquid (human, dementia). D. ELSA (human).
We consider the drift of the primary risk natural variables: z1 for ELSA and Paquid
and z2 for SLAM. We observe a continuous drift in the natural variables. We also
plot the drift of the biomarkers which is directly caused by each z via P . In this
manner, a few natural variables can drive drift across several biomarkers. Since P is
orthogonal (length-preserving) the drift of each natural variable must be diluted
across biomarkers (at most a single biomarker can drift at the same rate). See also
the correlation matrices, Figures C.11 and C.12. For the SLAM datasets we’ve
included only timepoints where the average age was over 80 weeks.
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Figure C.15: Composite health measure performance. A. C57BL/6 mice (SLAM).
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Figure C.17: Principal components are very similar to the natural variables. A.
C57BL/6 mice (SLAM). B. Het3 mice (SLAM). C. Paquid (human, dementia). D.
ELSA (human). Shown are the dot products between the principal component
rotation and P . The dot product assesses similarity between the transformations
ranging from 1: identical, 0: orthogonal, and −1: identical with opposing sign.
Identical transformations will generate identical natural variables. If the
transformations are identical then all values on the diagonal should be ±1 (sign is
arbitrary[146]). We see that the dot products are often close to ±1, indicating that
the transformations are very close, although they do not perfectly coincide.
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Figure C.18: Survival summary. A. C57BL/6 mice (SLAM). B. Het3 mice (SLAM).
C. Paquid (human, dementia). D. ELSA (human). For each dataset, the top row
corresponds to the Cox coefficient standardized by the equilibrium dispersion
(ln (HR)/SD(z)e) while the bottom is the C-index centered to 0 (C − 0.5). A Cox
coefficient greater than 0 indicates that higher values are at increase risk and vice
versa. A centered C-index greater than 0 indicates that higher values are at reduced
risk and vice versa (opposite of the Cox coefficient). The Cox model is conditioned
on age and sex (the same as Figure C.14); the C-index is unconditioned. We see
that in humans, the first dimension is the dominant determinant in risk of death
(ELSA) or dementia (Paquid). It is less clear in mice, where allostatic drift is a
better way to identify important survival dimensions (Figure C.14 or Figure 6.4A).
Inner colour indicates the limit of 95% confidence interval (CI) closest to zero
(non-significant are red on blue or blue on red).
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