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ABSTRACT 

Wearable vital signs monitoring devices, while widely adopted, face challenges in clinical 

diagnosis due to artifact noises. This thesis introduces a novel application of machine 

learning—specifically, the K-Nearest Neighbor (KNN) model—to recognize artifacts in 

ECG signals using 3-axis accelerometer data. 

The proposed fine KNN model, leveraging wavelet scattering coefficients, effectively 

classifies accelerometer samples likely to contain artifact noises in ECG signals, achieving 

a remarkable positive predictive value of 94.7%. To enhance accuracy and reliability, a 

robust technique is proposed, recognizing artifacts using wavelet scattering coefficients 

from both accelerometer and ECG signals. The KNN model achieves a test accuracy of 

98.8%, making it suitable for integration into wearable ECG monitoring devices. 

Following artifact noise identification, a two-stage technique reduces noise levels and 

reconstructs the signal. Wavelet denoising preserves crucial signal information, and a 

denoising autoencoder enhances Signal-to-Noise Ratio (SNR) and reduces Root Mean 

Square Error (RMSE). 

Importantly, the proposed models can be implemented in wearable ECG monitoring 

devices without additional sensors. This opens possibilities for applications in various vital 

signs monitoring scenarios, such as photoplethysmography (PPG), electroencephalography 

(EEG), or other monitoring devices. The research significantly contributes to advancing 

noise reduction techniques in wearable health monitoring, ensuring accurate vital sign 

measurements for improved clinical applications. 
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CHAPTER 1 INTRODUCTION 

An Electrocardiogram (ECG) serves as a crucial record, depicting the electrical potentials 

generated by the heart during its depolarization and repolarization phases, primarily driven 

by the movement of Na+ and K+ ions in the blood. Typically, the ECG signal exhibits 

amplitudes in the range of 2 mV and necessitates a recording bandwidth spanning from 0.1 

to 120 Hz [2]. Utilizing a non-invasive technique, electrodes are strategically placed on the 

patient's skin to acquire the ECG, offering valuable insights into the cardiac health of the 

individual [1] . 

The ECG signal, along with heart rate monitoring, plays a pivotal role in assessing cardiac 

well-being. Variations in heart rate, rhythm, or alterations in the morphological pattern of 

the ECG signal can be indicative of cardiac arrhythmias. The detection and diagnosis of 

such conditions hinge upon the careful analysis of recorded ECG waveforms. Critical 

information about the nature of heart-related diseases can be gleaned from the amplitude 

and duration of the P-QRS-T-U waves. 

However, the clinical acquisition of ECG signals is not without challenges, as various types 

of artifacts can infiltrate the recording process. Among these, power line interference, 

external electromagnetic field interference, noise stemming from random body movements 

and respirational activities, electrode contact noise, electromyography (EMG) noise, and 

instrumentation noise are of primary concern. These artifacts pose a threat to signal quality, 

compromise frequency resolution, and significantly impact the morphology of ECG 

signals, thereby distorting crucial information. 

To ensure the accuracy and reliability of diagnostic information, it becomes imperative to 

address and minimize these disturbances in the ECG signal. Strategies for noise reduction 

and signal enhancement are essential for preserving the integrity of the recorded data, 

facilitating more accurate diagnoses, and ultimately improving patient outcomes. As 

advancements in signal processing techniques continue, the field of ECG analysis is poised 

to benefit from enhanced methodologies that mitigate the impact of artifacts, providing 

healthcare professionals with clearer insights into cardiac health. 
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ECG Morphology 

The ECG waveform of a healthy individual exhibits distinct components, each representing 

specific electrical events in the cardiac cycle. In Fig. 1.1, common labels are employed, 

aligning with established medical ECG terminology to describe these components. Here is 

the details of each component: 

P Wave: 

The P wave in the ECG corresponds to the electrical impulse's conduction from the 

sinoatrial (SA) node towards the atrioventricular (AV) node. As this electrical activity 

propagates from the right to the left atrium, the atria undergo depolarization, signifying 

their contraction. The result is the characteristic P wave in the ECG [2] . 

 

 
Figure 2-1. Normal ECG QRS Complex  (Wikipedia). 
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QRS Complex: 

The QRS complex is a prominent feature in the ECG waveform, consisting of three 

sequential waves denoted as Q, R, and S. This complex is a direct outcome of the rapid 

depolarization of both ventricles. Notably, the ventricular muscles possess a larger mass 

compared to the atrial muscles, leading to a substantially larger amplitude in the QRS 

complex compared to the P wave. 

ST Segment and T Wave: 

Beyond the P wave and QRS complex, the ECG waveform further encompasses the ST 

segment and T wave. The ST segment represents the interval between ventricular 

depolarization and repolarization. The T wave, on the other hand, signifies the 

repolarization of the ventricles. Together, these components provide crucial insights into 

the electrical activity of the heart, aiding in the diagnosis of various cardiac conditions. 

U Wave: 

In some cases, an additional component known as the U wave may be observed, although 

it is less conspicuous. The U wave is believed to represent the delayed repolarization of the 

Purkinje fibers in the heart, contributing additional information to the comprehensive 

assessment of cardiac function. 

The systematic understanding of these ECG components is essential for medical 

professionals in diagnosing cardiac abnormalities. By recognizing the distinctive patterns 

associated with each wave and segment, clinicians can gain valuable insights into the health 

and functioning of the heart, facilitating timely interventions and patient care. 

 

Artifacts in ECG 

Removing motion artifacts from ECG signals poses a significant challenge due to several 

inherent complexities. These artifacts, characterized by a broad frequency spectrum, often 

overlap with the frequency components of the ECG signal itself. Consequently, devising 

effective filtering methods becomes challenging, as any attempt to eliminate motion 

artifacts risks inadvertently removing vital ECG signal information. 
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A notable difficulty arises from the transient nature of motion artifacts—they manifest for 

brief durations, making their identification and isolation a formidable task. The transient 

nature implies that conventional filtering techniques may struggle to distinguish between 

the motion artifacts and the ECG signal, leading to potential loss of relevant data. 

Complicating matters further is the diverse range of movements that can induce motion 

artifacts. Since different types of motion generate distinct artifacts, devising a universal 

noise removal method applicable to all scenarios becomes a formidable task. The challenge 

lies in accommodating the variability in motion-induced artifacts without compromising 

the fidelity of the ECG signal. 

While it might be tempting to employ signal-wide filtering to address motion artifacts, such 

an approach carries the risk of losing crucial information embedded in the signal. Filtering 

the entire signal may inadvertently discard elements vital for medical diagnostic purposes, 

especially when dealing with artifacts that resemble large-amplitude waveforms, 

occasionally mistaken for QRS complexes. 

Attempting to filter the entire signal encounters limitations related to the wide-ranging 

frequency of motion artifacts. Existing denoising methods, which typically focus on 

specific frequency ranges, may fall short in addressing the diverse frequency characteristics 

of motion artifacts. Their adaptability to various frequency noises might not be sufficient, 

particularly when faced with the complex and variable nature of motion-induced 

disturbances [3]. 

Motion artifacts in electrocardiogram (ECG) signals share characteristics with baseline 

wander, but pose a more challenging issue due to considerable spectral overlap with the 

PQRST complex.  

The prevalence of motion-related disturbances in ECG recordings is notable in the 0.1 to 

10 Hz frequency range, encompassing various activities such as breathing, minor body 

movements, and muscle contractions [[5],[6]]. These disturbances introduce challenges in 

accurate signal analysis and interpretation, particularly in clinical settings where patients 

may exhibit involuntary movements affecting the ECG signal. 

While the majority of motion artifacts are concentrated in the 1 to 10 Hz range, it is worth 

noting that instances of artifact noise above 10 Hz can occur in specific scenarios. For 
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example, during intense or rapid movements, the frequency of motion artifact noise may 

extend beyond 10 Hz. However, in general, this higher frequency range is considered less 

significant compared to the lower frequencies [[5],[6]]. 

The severity of artifact noises can vary, and for certain situations, frequencies up to 100 

Hz may be encountered, contingent on the nature and intensity of the movement [[5],[6]]. 

Understanding the frequency characteristics of motion artifacts is crucial for the 

development of effective signal processing techniques aimed at mitigating their impact on 

ECG signals. 

It is important to note that the 1-10 Hz range predominantly occurs in clinical scenarios 

where patients exhibit minimal or no rapid body movements [[5],[6]]. Recognizing these 

frequency patterns assists in tailoring signal processing methods to address specific 

challenges associated with motion artifacts in different clinical contexts, ultimately 

contributing to the improvement of ECG signal quality and diagnostic accuracy. 

 

1.1 MOTIVATIONS AND OBJECTIVES 

 

Cardiovascular diseases stand as a leading cause of global mortality, impacting 

approximately 550 million individuals worldwide[7]. This alarming statistic underscores 

the critical need for effective diagnostic tools, and vital sign monitoring devices play a 

pivotal role in the identification and management of heart-related conditions. Among these 

vital signs, Electrocardiography (ECG) signals reign supreme as the most widely employed 

diagnostic tool in cardiology [8]. ECG signals are instrumental in both diagnosing and 

monitoring patients with cardiac disorders, providing crucial insights into the electrical 

activity of the heart. 

However, the utility of ECG monitoring devices faces a significant challenge—artifact 

noise. Artifact noise in ECG signals is often a result of various factors such as parkinsonian 

muscle tremors, dry electrode gel, loose leads, wandering baselines, arterial pulse tapping, 

CPR compression, muscle tremors, and neuromodulation [9]. These artifacts, distinct from 
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cardiac electrical activity, can introduce distortions that compromise the accuracy of 

medical diagnoses. Notably, wearable ECG monitoring devices, while revolutionizing 

healthcare, are particularly susceptible to artifact noise, making it imperative to capture 

ECG signals in stable clinical environments. 

The impact of artifact noise on wearable devices is further exacerbated by the unavoidable 

nature of these disturbances. Movement of electrodes on the skin, stemming from body 

activity or patient movement, results in impedance variations and motion artifacts. This 

poses a significant challenge for wearable devices used in high-activity scenarios, as 

artifact noise may lead to the loss of critical information and signal degradation. 

Efforts to address noisy ECG signals have evolved over time, with various methodologies 

employed for detection and denoising. Statistical analysis, time-domain and frequency-

domain filters, wavelet thresholding, Empirical Mode Decomposition (EMD), Independent 

Component Analysis (ICA), and diverse denoising approaches have been explored [[29],  

[32], [74] , [81] ]. While these methods are effective against general noise, the persistent 

challenge lies in addressing artifact noise specifically, which remains a primary obstacle in 

leveraging wearable ECG devices for medical diagnosis. 

In response to this challenge, innovative approaches are being explored. Recognizing that 

artifact noise often coincides with heightened body activity, leveraging 3-axis 

accelerometers alongside ECG signals presents a promising avenue. Human Activity 

Recognition (HAR) systems, a subset of machine learning applications, have demonstrated 

efficacy in identifying high body activity situations using accelerometer signals [[29],  

[32]]. This integration allows for a comprehensive understanding of artifact noise, enabling 

more accurate medical diagnoses. The widespread availability of accelerometers in both 

vital sign monitoring devices and smartphones further enhances the feasibility and 

accessibility of this approach. 

Addressing artifact noise in wearable ECG monitoring devices is a crucial step toward 

enhancing the reliability and accuracy of medical diagnoses. The integration of machine 

learning applications, particularly HAR systems, and the strategic use of accelerometers 

offer a promising solution to identify and mitigate artifact noise, paving the way for 

improved signal quality and diagnostic outcomes in the realm of cardiovascular health. 
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The primary goal of this research is to identify samples containing artifact noises through 

the application of a novel methodology. To achieve this, a K-nearest neighbors (KNN) 

classification method is employed, leveraging extracted features from both ECG and 3-

axis accelerometer signals.  

To address the denoising aspect, a robust algorithm is proposed, incorporating a Bior 

wavelet filter and a denoising autoencoder model. This combined approach proves 

effective in mitigating the impact of artifact noise on ECG signals, resulting in a cleaner 

representation of the initially noisy training dataset. The denoising process is crucial for 

obtaining accurate and reliable information from ECG signals, especially in clinical 

applications where signal fidelity is paramount. 

The denoising algorithm is designed to adapt to the intricacies of real-world scenarios, 

where artifacts can significantly affect signal quality. The utilization of a Bior wavelet filter 

ensures that relevant frequency components are retained, while the denoising autoencoder 

model further refines the denoising process by learning intricate patterns from the 

contaminated signals. 

Furthermore, the denoising algorithm operates in tandem with the sampling frequency, 

ensuring that the denoised signals align seamlessly with the original data. This 

synchronization is vital for preserving the temporal relationships within the signals and 

maintaining the integrity of the clinical information they convey. 

In conjunction with denoising, features essential for subsequent classification tasks are 

extracted using wavelet scattering transform. This multi-scale feature extraction method 

enhances the discriminative power of the features, enabling the classification model to 

better capture and differentiate between subtle variations in the signals. 

In summary, this research encompasses a comprehensive approach that not only identifies 

artifact noises in ECG and accelerometer signals but also addresses the denoising challenge 

through a sophisticated algorithm. The proposed methodology aims to elevate the 

performance of clinical practices by ensuring accurate signal representation, paving the 

way for improved diagnostic capabilities and further advancements in healthcare signal 

processing. 
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1.1.1 Previous Works 

 

The removal of motion artifacts from ECG signals poses substantial challenges, several 

factors contribute to the complexity of this task: 

 Broad Frequency Spectrum: Motion artifacts span a wide frequency range, 
overlapping with the frequency spectrum of ECG signals. This spectral overlap 
complicates the filtering process, as it becomes challenging to remove motion 
artifacts without unintentionally attenuating the ECG signal itself. 

 Transient Nature: Motion artifacts are often short-lived, occurring for brief 
periods. Identifying and eliminating these artifacts without causing a loss of ECG 
signal content is intricate due to their transient nature. 

 Diverse Causes: Motion artifacts can result from various types of movements, 
further complicating the development of a universal noise removal method that 
effectively addresses all motion artifact scenarios. 

 Signal Integrity Concerns: Applying filters to entire ECG signals may lead to the 
loss of crucial diagnostic information. Preserving signal integrity is crucial for 
accurate medical interpretations. 

 Waveform Similarity: Motion artifacts manifest as high-amplitude waveforms, 
occasionally resembling QRS complexes. This similarity can lead to 
misinterpretation, making it inadvisable to utilize such samples for medical 
diagnostic purposes. 

To address these challenges, the following methods have been employed for eliminating 

noise in ECG signals: 

Filtering 

The application of band-pass filters to eliminate motion artifact-related frequency 

components. However, using a wide-range band-pass filter may result in the loss of vital 

signal information [10][11]].  

Adaptive Filtering 

Real-time adaptation to noise characteristics using filters that track both frequency and 

amplitude. Adaptability may be insufficient when dealing with diverse frequency noises 

[[13], [14]].  
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Statistical Methods 

Utilizing statistical techniques to detect and eliminate motion artifacts by modeling both 

the ECG signal and the artifacts. Challenges arise due to variations in motion artifacts based 

on movement types.  

The detection of noisy samples in ECG signal has been a subject of extensive research, 

employing various techniques for signal processing and analysis. Initial attempts involved 

statistical analysis based on extracted features, such as RR intervals and QRS peaks[10]. 

Time-domain and frequency-domain filters, as well as wavelet thresholding techniques, 

have also been utilized to identify and mitigate noisy ECG signals [[11], [13]]. More 

advanced decomposition techniques, including EMD and ICA, have been explored for their 

effectiveness in detecting and managing noisy ECG signals [[11], [13]]. 

Previous studies have addressed the challenge of denoising ECG signals using diverse 

approaches, ranging from weighted averages [[17],[18]] and adaptive filtering [19] to 

techniques like independent component analysis [20] and EMD [[20], [24]]. While these 

methods have proven useful against general noise, the specific concern in medical 

diagnosis using wearable ECG devices often lies in artifact noise. 

Artifact noises are inevitable in wearable ECG monitoring devices and can significantly 

impact the identification of a representative ECG signal. Continuous filtering of the signal 

may lead to the loss of important information, especially when dealing with high-

magnitude artifacts caused by intense physical activity. Conventional low-pass filtering or 

exponential smoothening techniques may fall short in effectively handling such artifacts. 

Numerous prior studies have focused on mitigating noise in ECG signals. While filter-

based methods are common, they may be impractical for effectively eliminating a broad 

spectrum of frequency components associated with artifact noise. Motion artifacts exhibit 

similarities with baseline wander but pose greater challenges due to substantial spectral 

overlap with the PQRST complex. Predominantly, these artifacts manifest within the 1 to 

10 Hz range. In ECG recordings, disturbances associated with motion are observed across 
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the 0.1 to 10 Hz frequency spectrum, covering activities like breathing, minor body 

movements, and muscle contractions. While artifact noise can exceed 10 Hz in specific 

situations, the frequency range of 1-10 Hz is predominant in clinical scenarios without 

rapid body movements [[4],[5]]. 

The application of machine learning classification for detecting motion artifacts in ECG 

signals brings forth numerous advantages over traditional methods. By combining the 

strengths of conventional signal processing techniques with the capabilities of machine 

learning, a more robust and efficient system for artifact detection can be achieved. The 

following points elaborate on the key benefits of this synergistic approach: 

 Automatic Feature Learning: 
Machine learning models excel in autonomously identifying relevant features from ECG 
data. This reduces the reliance on manual feature engineering, a process often time-
consuming and requiring domain expertise. Unlike traditional methods, machine learning 
models can capture intricate data patterns comprehensively. 

 Flexibility and Adaptability: 
Machine learning models showcase high flexibility and adaptability to various types of 
motion artifacts. Their ability to discern complex patterns and adjust to variations in artifact 
characteristics makes them more resilient compared to rigidly designed traditional 
algorithms. 

 Generalization: 
Machine learning models effectively generalize to novel, unseen motion artifacts after 
being trained on a diverse dataset. Traditional methods may struggle with generalization, 
especially when confronted with artifacts significantly differing from those encountered 
during their design. 

 Scalability: 
Machine learning approaches are inherently scalable, accommodating extensive datasets 
encompassing a wide array of motion artifacts. This scalability enhances model 
performance and accuracy by ensuring a comprehensive representation of artifact 
variability. 

 Continuous Improvement: 
Machine learning models can be regularly updated and fine-tuned with new data, ensuring 
ongoing enhancement as more artifact samples become available. In contrast, traditional 
methods might necessitate a complete redesign for significant changes. 

 Integration with Other Tasks: 
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Machine learning models seamlessly integrate into larger systems and pipelines for 
automated ECG analysis. This enables effortless incorporation into clinical workflows, 
facilitating a holistic approach to medical signal processing. 

 Reduced Human Effort: 
Once trained, machine learning models can autonomously detect motion artifacts in real-
time without constant human intervention. This not only enhances efficiency but also 
contributes to cost-effectiveness in clinical settings. 

 Interpretability (in some cases): 
While machine learning models are sometimes perceived as  “black boxes” certain 
algorithms, such as decision trees and linear models, offer interpretability. This 
interpretability can be crucial in medical applications, allowing clinicians to understand the 
rationale behind specific classification decisions. 

The fusion of machine learning with traditional signal processing techniques presents a 

comprehensive and efficient approach to motion artifact detection in ECG signals, offering 

a range of benefits from automatic feature learning to continuous improvement and 

seamless integration into clinical workflows. 

Human activity recognition (HAR) systems, which represent a specialized subset of 

machine learning applications, leverage signals not only from accelerometers but also from 

gyroscopes, magnetometers, and even cameras [[29], [32]]. This multimodal input enables 

HAR systems to recognize and categorize a wide range of high-intensity body activities, 

providing a contextual understanding of the user's movements and activities. In the context 

of ECG signal analysis, the utilization of accelerometer data in conjunction with machine 

learning techniques enhances the capacity to distinguish between genuine cardiac signals 

and artifacts induced by motion or physical activity. In this research, the focus on human 

HAR aligns with prior studies in the field [[29], [30], [31], [32]]. A pertinent strategy for 

evaluating my results involves a comparative analysis with established HAR works. HAR 

typically involves the classification of human activities based on body movement, with 

these movements generating artifact noise in ECG signal due to impedance variations 

between the skin and electrodes. Notably, some earlier works in HAR employed balanced 

labels and extensive datasets [[45],[46]], while others integrated gyroscope, accelerometer, 

and magnetometer data to enhance test accuracy for their models [[47], [49]]. It is essential 
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to highlight that the proposed model does not rely on such additional sensor data, as many 

ECG monitoring wearable devices lack gyroscope or magnetometer sensors. 

While motion artifacts are well-studied in signals like EEG, there is a noticeable gap in the 

detection of motion artifacts in ECG signals within clinical environments. A notable 

exception is a study [61] that proposed a model achieving an impressive accuracy of 

96.87% in classifying artifacts. However, this study segmented ECG signals into 5-second 

intervals, a limitation for clinical cardiac diagnosis, as artifacts may occur in smaller 

segments. This research aims to address this gap by exploring novel ML methods 

specifically tailored for the detection of motion artifacts in ECG signals, ensuring 

applicability to real-world clinical scenarios where precise diagnosis is paramount. 

Table 2-1. Some of related works’ comparison. 

Work Methodology Data Type  

[45]  KNN Accelerometer  

[46]  Decision Tree KNN/QDA Accelerometer  

[49] MLWP Accelerometer + Gyroscope + Magnetometer  

[47] Logistic Regression Accelerometer + Gyroscope  

[48] Deep Learning, Belief Network Accelerometer + Gyroscope  

This work [Chapter 1] Fine KNN using scattering features Accelerometer  

 

The advantage of incorporating accelerometers lies in their widespread availability, found 

in most wearable monitoring devices and smartphones. Recognizing artifact noises through 

this approach enables a more accurate medical diagnosis by identifying specific segments 

of the signal affected by noise. Machine learning applications, particularly those tailored 

for healthcare wearable devices, offer promising solutions, automatically learning and 

improving signal quality [[29], [32]]. 

To tackle the challenge of identifying artifact noises in ECG signals, an innovative 

approach integrates 3-axis accelerometer data with ECG signals. This strategy is 

particularly effective in addressing artifact noises that frequently emerge during episodes 

of intense physical activity. The integration of 3-axis accelerometer data into the ECG 

signal processing framework allows for a more comprehensive understanding of 

physiological responses during periods of heightened physical exertion. 
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In summary, the search for effective methods to remove noise from ECG signals involves 

a wide range of techniques. Recent advancements, including the use of machine learning 

and sensor fusion, offer solutions for accurately identifying and reducing artifact noises. 

This approach shows great potential for enhancing the reliability of wearable ECG 

monitoring devices for medical diagnosis. One approach to address the challenge of 

identifying artifact noises involves integrating 3-axis accelerometer data with ECG signals. 

This method proves particularly effective in managing noise during intense physical 

activity. Integrating accelerometer data into the ECG signal processing framework 

provides a deeper understanding of physiological responses during periods of high activity. 

Table 2-2. Some of related works’ comparison 

Work RMSE SNR Improvement (%)  Method 
[24] 0.037 6.49  WT filtering + DNN 
[72] 0.0189 12.57  Disentangled Autoencoder 
[73] 0.063 9.55  FCN-based DAE 

This Work 0.0058 12.64  WT Bior filtering + DAE 

 

After identifying artifact noises, one approach to tackle the issue of motion artifact removal 

is by using a denoising autoencoder. This technique employs unsupervised learning and 

optimization principles to generate a compact representation of the clean ECG signal while 

efficiently removing noise. 

Table 1-2 provides a comprehensive comparison between my research and previous studies 

with related objectives. In the work presented by [24], a denoising autoencoder coupled 

with a wavelet transform was utilized, incorporating a scale-adaptive thresholding 

technique to address noise in signal data. This effort resulted in a notable enhancement of 

the SNR, improving from 21.56 dB to 22.96 dB. Similarly, in [72], a disentangled 

autoencoder was employed to eliminate noise from ECG signals, and its performance was 

compared with a fully convolutional neural network (FCN). Their methodology yielded a 

substantial average SNR improvement of 12.57%. Another study,  [73], introduced a 

denoising autoencoder based on an FCN for noise reduction in ECG signals, achieving a 

commendable SNR improvement ratio of 9.55%. It is crucial to highlight that these prior 

investigations primarily targeted specific noise types within predefined frequency ranges. 
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In summary, this introduction highlights the significance of ECG signals in diagnosing 

cardiovascular health, emphasizing the need to address artifact noise that compromises 

signal quality. ECG signals, obtained through non-invasive methods, are essential for 

detecting cardiac arrhythmias and other conditions. However, various types of noise, 

including power line interference, body movements, and electromagnetic interference, can 

distort these signals, posing challenges for accurate diagnosis. To mitigate these issues, 

advanced denoising techniques and machine learning methods are explored. This research 

proposes a novel methodology incorporating K-nearest neighbors (KNN) classification, 

wavelet filtering, and denoising autoencoders, aiming to enhance the reliability of ECG 

signals for clinical applications by effectively identifying and removing artifact noise. The 

integration of accelerometer data further supports the identification of high-activity 

periods, improving the accuracy of noise detection and contributing to more reliable 

diagnostic outcomes in wearable ECG monitoring devices. 

 

 

1.2 ORGANIZATION OF THE DISSERTATION 

 

The thesis comprises five chapters, each contributing to the understanding and 

improvement of artifact noise detection and reduction in ECG signals. The subsequent 

chapters are outlined as follows: 

Chapter 2:  

This chapter introduces a novel approach for ECG artifact noise detection. ECG signals are 

acquired following a dedicated protocol, and artifact noise is systematically analyzed 

within the captured signals. A fine KNN classification method is proposed, utilizing 

features extracted from 3-axis accelerometer signals using wavelet scattering transform to 

train the model. The methodology is extensively discussed, accompanied by the 
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presentation of results, and a comprehensive review of previous works related to HAR is 

provided. 

Chapter 3:  

Building upon the model proposed in Chapter 2, this chapter presents a more robust method 

for artifact noise detection. Features are extracted using the wavelet scattering transform 

from both ECG and accelerometer signals. The proposed model demonstrates higher 

accuracy in recognizing artifact noise samples within the ECG signal. The results are 

thoroughly discussed and compared to previous works, showcasing the improved accuracy 

achieved by the model. 

Chapter 4:  

This chapter introduces a comprehensive two-step approach to artifact noise reduction. 

Initially, artifact noise is identified utilizing the methods proposed in Chapters 2 and 3. 

Following the recognition of ECG samples with artifacts, a Bior wavelet denoising method 

is proposed to mitigate high-amplitude noise within the classified samples. Subsequently, 

a Denoising Autoencoder (DAE) is employed to reconstruct the signal and further reduce 

motion artifact noise. Results are discussed in detail, comparing the outcomes with clean 

ECG signals. Power density spectrum and other signal features are considered to evaluate 

the efficacy of the reconstructed signal, and a comparison with previous works 

demonstrates the high accuracy of the proposed method. 

Chapter 5:  

The final chapter summarizes the key findings of the dissertation and provides a 

conclusion. Additionally, potential research directions for future work are outlined, 

opening avenues for further exploration and advancements in the field of ECG artifact 

noise detection and reduction. This comprehensive conclusion helps contextualize the 

significance of the research conducted and encourages ongoing investigations in related 

areas. 
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CHAPTER 2 A NEW APPROACH FOR ECG ARTIFACT 

DETECTION USING FINE-KNN CLASSIFICATION 

AND WAVELET SCATTERING FEATURES IN VITAL 

HEALTH APPLICATIONS 

2.1 INTRODUCTION 

This chapter is focused on the extraction of features from accelerometer signals using the 

wavelet scattering transform, Figure 2-1. Subsequently, leveraging a KNN classifier to 

train the proposed model, aiming to identify artifacts in ECG signals that share the same 

timestamp. This novel application involves the utilization of the KNN classification 

method within a machine learning framework to effectively detect artifact noises in ECG 

signals based on my curated dataset. 

Figure 2-1. Block diagram of proposed method. 

 

The approach, which employs wavelet scattering transform for feature extraction, 

demonstrates promising results in enhancing the robustness of feature representation. The 

KNN classifier is then instrumental in leveraging the learned patterns to discern and 

categorize artifacts in ECG signals. Importantly, the methodology explored in this chapter 

is not limited solely to ECG signal analysis. It has the potential for broader applications in 
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vital sign monitoring, extending to other domains such as photoplethysmography (PPG) 

and electroencephalogram (EEG) monitoring devices. 

The utilization of the wavelet scattering transform for feature extraction adds a layer of 

sophistication to my approach, allowing me to capture intricate details across different 

scales in the accelerometer signals. Additionally, the combination of principal component 

analysis (PCA) and the KNN machine learning methods contributes to the training and 

refinement of my model, further enhancing its accuracy and adaptability to diverse 

datasets. 

This chapter lays the foundation for a versatile and effective methodology that can be 

applied not only to artifact detection in ECG signals but also to a spectrum of vital sign 

monitoring applications. The incorporation of advanced signal processing techniques and 

machine learning methods demonstrates the potential for widespread applicability and 

impact in the realm of healthcare and beyond. 

 

This chapter is structured as follows: 

 Data Acquisition Method and Protocols: 

Section 2.2 provides a detailed description of the methods and protocols employed for data 

acquisition. It outlines the procedures followed to collect the necessary data for the study. 

 Signal Analysis: 

In Section 2.3, the analysis of the acquired signals is presented. This involves a 

comprehensive examination of the characteristics, patterns, and key features inherent in the 

collected data. 

 Wavelet Scattering Transform as Feature Extraction: 

Section 2.4 delves into the wavelet scattering transform, elucidating its role as a feature 

extraction method. The discussion covers the principles and advantages of employing 

wavelet scattering to enhance the representation of signals. 

 Machine Learning Classification Model: 
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Section 2.5 elaborates on the construction of the machine learning classification model. It 

encompasses explanations of the KNN classifier and PCA methods, detailing how these 

components contribute to the model's architecture. 

 Model Training and Test Results: 

In Section 2.6, the focus shifts to the training of the model and the subsequent examination 

of test results. This section includes a comparative analysis with previous works, offering 

insights into the model's performance and its advancements over existing approaches. 

 

2.2 DATA ACQUISITION METHOD AND PROTOCOLS 

 

The provided dataset comprises labeled raw accelerometry data obtained from a MAX 

ECG monitoring device during various activities, including walking, driving, stair 

climbing, sitting, and clapping, recorded from a healthy 48-year-old male participant. The 

MAX ECG monitor device was strategically placed on the chest to collect the data, while 

the MoveSense Android application facilitated the capture, clock synchronization, and 

storage of data in CSV files. 

The dataset is annotated with activity types, where each label corresponds to a specific 

activity: 1 for walking, 2 for descending/ascending stairs, 4 for driving, 77 for clapping, 

and 99 for non-study activities, including sitting. The dataset includes five columns: labels, 

timestamps (t) indicating relative time, and X, Y, and Z accelerometer signals. 

To enhance the dataset's signal quality, a 5th order moving average filter from the 

MATLAB Clean Data toolbox was applied to smooth the acceleration components, 

because this type of filter provides a balanced approach to noise reductio. A 5th order 

moving average filter effectively reduces high-frequency noise, which is common in 

acceleration data from sensors due to vibrations and rapid movements. By averaging five 

consecutive data points, the filter smooths out short-term fluctuations, resulting in a cleaner 

signal. Higher-order moving average filters can over-smooth the data, potentially removing 

relevant signal variations and leading to a loss of important information. By using a 5th 
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order filter, MATLAB ensures that the signal is smoothed enough to reduce noise but not 

so much that it eliminates useful signal details [85]. The data collection protocol involved 

a sequence of activities, such as driving for 10 km, followed by a stop and clapping for 5 

minutes. The participant was instructed to clap three times at the beginning and end of each 

activity to facilitate accurate segmentation and identification of start and stop times. 

The walking component of the dataset involved traversing  1.7 km on level ground, 

descending and ascending stairs, lasting for a total of 18 minutes. The participant mimicked 

free-living activity by walking at a usual pace along a predefined course. Additionally, data 

corresponding to a few seconds before/after activities, sitting, and standing were included 

and labeled as "99." 

The primary objective of capturing this dataset was to investigate the impact of each 

activity on the signal and identify potential noises in the ECG signal. ECG signals 

corresponding to each activity were analyzed to identify artifact noises, with the label "77-

clapping" specifically indicating the presence of such noise. The clapping activity, 

characterized by extensive body movements, resulted in significant artifact noises in the 

ECG signal. 

A time-domain plot of the accelerometer signals, along with labels, is presented in Figure 

2-2 Notably, extreme signal fluctuations are observed in samples labeled as "77." The 

detection and classification of labels with a high probability of containing artifact noises 

enable the targeted filtering of those specific parts of the signal. 
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Figure 2-2. (a) Dataset labels, time-domain plot of (b) X, (c) Y, and (d) Z accelerometer signals (dataset) 



 
 

21 
 
 

 

The dataset encompasses X, Y, and Z signals from the accelerometer sensor with a 

sampling frequency of 104 Hz, ECG signals sampled at 125 Hz, and corresponding 

timestamps. MATLAB Data Clean Toolbox was utilized for retiming the dataset file and 

data cleaning. The dataset consists of a total of 309,000 samples, providing a 

comprehensive resource for studying the interplay between various activities and their 

effects on both accelerometer and ECG signals. 

Table 2-1. Number of samples including 3 signals (X, Y, Z)  in Phisyonet dataset [87]. 

Label #Samples 

1 319,080 

2 118,098 

3 110,118 

4 385,611 

77 52,824 

99 311,664 

Total 1,609,059 

 

 

The capturing protocol used in this work is similar to the Physionet dataset [87], which 

allowed me to use both datasets to train a Fine-KNN classification model. The Physionet 

dataset comprises labeled raw accelerometry data obtained during various activities such 

as walking, stair climbing, and driving, involving 32 healthy adults equipped with four 

different accelerometer devices positioned on the left wrist, left hip, left ankle, and right 

ankle. The participants, consisting of 13 men and 19 women aged between 23 and 52 years, 

with 31 of them being right-handed, wore 3-axial ActiGraph GT3X+ devices for data 

collection, synchronized externally using ActiLife software [87]. Activities were labeled 

accordingly (1=walking; 2=descending stairs; 3=ascending stairs; 4=driving; 77=clapping; 

99=non-study activity) [87]. The study protocol comprised a walking pathway (approx. 

0.66 miles) followed by a driving trail (approx. 12.8 miles), with data retrieval immediately 
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after each participant's session. The walking segment included intervals of walking on level 

ground, descending stairs, and ascending stairs, lasting between 9.0 and 13.5 minutes each, 

during which participants were instructed to walk at their usual pace along a predefined 

course to simulate free-living activity [87]. 

 

This step was pivotal in confirming the adequacy of the captured dataset before 

constructing my proposed model. As depicted in Table 2-1, the Physionet dataset 

encompassed 1,609,059 samples of 3-axis accelerometer signals, which were utilized to 

train a simple Fine-KNN model employing time-domain features through cross-validation 

with 5 folds, with 25% of the dataset allocated as test data. Labels 2 and 3 were merged as 

label 2 for model training using the Physionet dataset. Furthermore, I applied Principal 

Component Analysis (PCA) to reduce dimensionality, retaining 95% of the variance. Table 

2-2 displays the test accuracy results for both datasets, demonstrating comparable 

outcomes. 

 

The congruent test accuracy results for both datasets, as evidenced in Table 2-2, affirmed 

the sufficiency and comparability of the captured dataset with the Physionet dataset. This 

validation constituted a crucial prerequisite before advancing to the development of my 

proposed model, ensuring the robustness and reliability of the foundational data. 

Table 2-2. Dataset comparison using my captured accelerometer dataset and Physionet dataset [87]. 

Method Dataset Test Accuracy (%) 

Fine-KNN with PCA (95%) Physionet[87] 90.1 

Fine-KNN with PCA (95%) Captured Dataset 89.4 

 

2.3 SIGNAL ANALYSIS 

To streamline the processes of feature extraction and model training using classification 

learner the accelerometer and ECG datasets were strategically partitioned into 20 distinct 

CSV files. Each CSV file corresponds to samples associated with a specific label, 

effectively organizing the data for enhanced analysis and modeling. The rationale behind 
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dividing the dataset into multiple CSV files lies in the requirement of the MATLAB 

Classification Learner toolbox [82], which necessitates input datasets in the form of 

timetables. This decision was driven by the aim to simplify the structure of input data, 

making it more compatible with the tool’s functionalities. By segregating data into 

individual files based on labels, the input becomes more coherent and conducive to 

efficient analysis, feature extraction, and model training.  
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Figure 2-3. Time-domain ECG signal and related scalogram of captured dataset for (a) “1”. (b) “2” (c) “4” (d) 

“77” and (e) “99” labels. (window of 1000 samples). 

Figure 2-3 (d) illustrates both the time-domain and scalogram plots of 1000 ECG samples, 

each containing artifact noise. The ECG signal is notably distorted, evident in both its time-

domain representation and the frequency-domain scalogram plot. The frequency-domain 

plot reveals a substantial number of components, highlighting the complexity introduced 

by the artifact noise. 

Specifically, in the samples labeled as ”77” (as presented in Fig 2.3.d), the artifact noise is 

prominently observed. The ECG signal in these instances appears significantly distorted, 

and the frequency-domain scalogram plot exhibits a multitude of components indicative of 

the introduced artifacts. The identification of these artifacts in the samples labeled as ”77” 

underscores the presence of signal abnormalities within this subset of the ECG data. The 

comprehensive analysis of both time and frequency domains through the scalogram plot 

allows for a detailed examination of the impact of artifact noise on the ECG signal. These 

findings not only confirm the presence of artifacts but also emphasize the importance of 

addressing and mitigating these abnormalities, particularly in samples labeled as “”77,” to 

ensure the reliability and accuracy of subsequent signal processing and classification tasks.  

In this comprehensive analysis, a total of 109 time-domain and frequency-domain features 

were meticulously extracted from the datasets captured by the 3-axis accelerometer and 

ECG signals. This detailed feature extraction process aimed to showcase the manifestation 

of artifact noise within samples labeled as “77” and concurrently investigate the statistical 
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attributes associated with these particular instances. The suite of individual features for 

each dataset encompasses a diverse range of statistical attributes, including Root Mean 

Square (RMS), standard deviation (STD), maximum and minimum range values, peak 

amplitude, band power, kurtosis, skewness, and interquartile range (IQR). 

Each of these statistical attributes plays a pivotal role in providing insights into various 

aspects of signal characteristics. By leveraging these features, the ability to conduct a 

nuanced analysis of the samples labeled as “77” is gained, specifically focusing on their 

inherent artifact noise. The interquartile range, a statistical attribute calculated for the 

captured signals, emerges as a particularly insightful metric. IQR is an excellent measure 

for representing the variability within the dataset, aiding in the identification of distinctive 

patterns and characteristics [86]. Higher values of IQR, observed in an accelerometer 

signal, signify rapid body activities captured by the 3-axis accelerometer. These elevated 

IQR values correlate with a heightened likelihood of encountering ECG artifact noises [86]. 

Therefore, the inclusion of IQR in feature set enhances the discriminative power of the 

analysis, allowing for a more nuanced interpretation of the interplay between accelerometer 

signals and the presence of artifact noise in ECG samples labeled as “77.” 

Table 2-3 presents the IQR values for the samples. Notably, the accelerometer signals 

labeled as "77" exhibit IQR values ranging from 2.5987 to 15.7992. The highest IQR value 

is observed in these samples, indicating high-intensity movement and the presence of 

significant artifacts. This elevated IQR indicates a significant spread of data points, 

emphasizing the need for a detailed analysis of these particular samples. In addition to IQR, 

another crucial statistical feature considered is the standard deviation, which gauges the 

dispersion of data concerning the mean. STD provides insights into the magnitude and 

variability of signal oscillation. A low STD suggests that the signal is closely centered 

around the mean, while a high STD implies a more widely distributed signal. This 

variability is indicative of the signal’s magnitude of change. Analyzing the accelerometer 

dataset, high STD values are found to be associated with rapid changes in signals, often 

resulting from swift posture adjustments. Samples labeled as “77” consistently exhibit the 

highest STD values, indicating increased variability and abrupt changes in the signals. This 

insight is crucial in understanding the nature of the movement and identifying potential 
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artifact noise in these specific samples. By considering both IQR and STD, these statistical 

attributes offer a comprehensive view of the signal characteristics. These features not only 

emphasize the distinctive characteristics of samples labeled as "77" but also offer valuable 

insights into the presence of artifact noise [3]. Hence, it aids in labeling samples containing 

artifact noise. The analysis identifies artifact noise in the label "77" using time-domain 

features extracted from the signal. 

 

Table 2-3.Statistical performance comparison of 3-Axis accelerometer signal among different time-domain 

features. 

Labels 1 2 4 77 99 

X RMS 0.9728 1.2845 0.8446 2.8253 1.3075 

Y RMS 9.2477 10.0313 9.84 14.5224 10.0667 

Z RMS 1.4255 1.3402 1.4762 3.8397 1.5964 

ECG 

RMS 

333.6022 309.7283 302.6719 418.2551 327.2388 

X STD 0.6712 1.2593 0.7764 2.6593 1.112 

Y STD 0.8695 2.293 1.0915 9.5646 2.1962 

Z STD 1.1501 1.234 0.9481 3.6073 1.5641 

ECG 

STD 

328.1553 303.882 296.6482 413.8744 321.6916 

Y Min 2.2685 3.7712 3.2687 -16.2311 3.9866 

Z Min -7.9349 -10.7418 -4.1493 -53.8763 -10.7585 

Y Max 16.937 26.0468 19.3538 63.2876 20.713 

Z Max 18.3799 11.2251 6.3173 43.0053 4.1828 

X 

IQR 

0.6461 1.699 0.777 2.5987 1.5602 

Y 

IQR 

0.8471 2.43 1.2084 15.7992 2.9552 

Z 

IQR 

1.1917 1.3663 1.2682 2.8332 1.5458 

ECG 

IQR 

106 85 73 177 87 
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2.4 WAVELET SCATTERING TRANSFORM AS FEATURE 

EXTRACTION 

The wavelet scattering transform can be regarded as an equivalent deep convolutional 

network, structured through a cascade of wavelets, modulus nonlinearities, and lowpass 

filters. This configuration allows the extraction of low-variance features from real-valued 

time series with minimal setup, making it particularly advantageous for applications in 

machine learning and deep learning [33]. The notable advantage of wavelet scattering 

resides in its capability to generate signal representations that demonstrate not only 

translation or shift-invariance but also stability against time-warping deformations [33].  

Utilizing the wavelet scattering transform for the extraction of features from ECG or 

accelerometer signals significantly enhances the accuracy of a trained model. Several 

factors contribute to the effectiveness of this approach: 

Multiresolution Analysis 

Wavelet scattering excels in capturing information at multiple resolutions. In the case of 

ECG and accelerometer data, which often contain features at different scales, the 

multiresolution analysis empowers the model to effectively capture and represent relevant 

information across various frequency bands. This comprehensive analysis contributes to a 

more nuanced understanding of the signal’s characteristics. 

Translation Invariance: 

Wavelet scattering is renowned for its translation-invariant properties. This means that 

small shifts in the input signal do not significantly impact the representation. In scenarios 

involving accelerometer and ECG signals, where precise alignment of features may vary, 

the translation-invariant nature of wavelet scattering ensures that the model focuses on 

essential information regardless of slight temporal shifts. 

Preservation of Signal Characteristics: 

Wavelet scattering captures both amplitude and phase information. The preservation of 

these signal characteristics is essential for maintaining the integrity of the original signal 

while extracting relevant features. In ECG and accelerometer signals, where both 
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amplitude and phase information play a vital role, this attribute significantly contributes to 

the improved performance of the model. 

Non-Redundancy: 

Wavelet scattering provides a non-redundant representation of the signal, emphasizing 

unique features without unnecessary duplication. This non-redundancy enhances the 

efficiency of the feature set, preventing the model from being overwhelmed by redundant 

or irrelevant information. The focus on essential features improves the model’s ability to 

generalize to new data and enhances its overall performance. 

 

The coeffication of wavelet scattering transform for feature extraction offers a holistic 

approach to signal analysis, particularly in the context of ECG and accelerometer data. Its 

ability to handle multiresolution information, maintain translation invariance, preserve 

signal characteristics, and provide a non-redundant representation collectively contributes 

to the increased accuracy and robustness of models trained on such features. 

The processing of data in the wavelet scattering transform occurs in stages, and each stage 

involves three fundamental operations, as illustrated in Figure 2-4 This multi-stage 

processing is a key characteristic of the transform and contributes to its effectiveness in 

capturing complex signal structures. The cascade of wavelets enables the decomposition 

of the signal into various frequency components, providing a multi-scale representation 

that is crucial for discerning patterns at different levels of detail. 

 

 

  

 

Figure 2-4. Three main operations of wavelet transform stages. 

 

In the context of the wavelet scattering framework, Figure 2-5 (a) visually represents 

Morlet (Gabor) wavelet filter banks, illustrating the deployment of two distinct banks. The 

parameters Q1 and Q2, set at 8 and 1 respectively, play a pivotal role in defining the 
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characteristics of the wavelet filters. Specifically, λ=2(k/Q) for k ϵ Ζ, where Q-1 corresponds 

to the bandwidth of ψ, contributes to the adaptability of the wavelet filters across different 

scales and frequencies. The choice of Morlet (Gabor) wavelet filters, characterized by their 

complex sinusoidal shape, enhances the network’s ability to capture both temporal and 

frequency-related features. The use of two banks further allows for a more comprehensive 

analysis of the signal, accommodating variations in different frequency bands. This multi-

scale and multi-frequency analysis is particularly advantageous in scenarios where signals 

may exhibit diverse patterns across varying temporal and amplitude scales. 

 

 
Figure 2-5.Scaling function- coarsest-scale wavelet first filter bank with invariance scale of 40 seconds (a) Filter 

banks (b) Scaling Function. 
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The invariance scale, Morlet wavelet filter banks, and the flexibility introduced by 

parameter choices in the wavelet scattering decomposition collectively contribute to the 

effectiveness of this approach in capturing intricate details within accelerometer signals. 

The adaptability to translations, coupled with the ability to discern changes in duration and 

amplitude, positions wavelet scattering as a robust technique in the realm of signal 

processing and feature extraction for accelerometer data. 

The specific configuration employed in the wavelet scattering framework in this work, 

involves the use of two complex-valued 1-D Morlet filter banks. These filter banks exhibit 

an invariance scale of 40 and operate with a sampling frequency of 104. The choice of an 

invariance scale of 40 was determined through experimentation, considering its ability to 

preserve the most pertinent signal information for my classification model. Additionally, a 

frequency resolution per octave was set for the first and second filter banks, denoted as 

Q1=8 and Q2=1, respectively. Q2 indicates the quality of the low-pass filter in the first-

order wavelet filter bank. Higher Q2 values enhance frequency localization but may lead 

to increased time spreading. Conversely, Q1 indicates the quality of the high-pass filter in 

the second-order wavelet filter bank. Lower Q1 values prioritize frequency localization, 

potentially resulting in increased time spreading. 

In an example involving ECG signals, MATLAB suggested specific values of 8 and 1 for 

Q2 and Q1, respectively. A Q2 value of 8 provides adequate frequency localization while 

minimizing time spreading, thereby facilitating the capture of relevant features in the 

signal. On the other hand, a Q1 value of 1 was recommended to prioritize frequency 

localization over time spreading, enabling the detection of fine-scale variations in the high-

frequency components of the signal. 

 It is worth emphasizing that the adaptability of the invariance scale parameters was 

explored, and the selection of 40 demonstrated superior performance in preserving 

essential signal characteristics for my specific classification task.This parameter tuning 

contributes to the overall effectiveness of the wavelet scattering function in extracting 

discriminative features, making it a valuable asset in signal processing applications where 

accurate representation and classification are paramount. 
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2.4.1 Wavelet Scattering in MATLAB 

 

A wavelet scattering network offers a powerful means to extract low-variance features 

from real-valued time series and image data for application in machine learning and deep 

learning contexts, requiring minimal configuration. These features exhibit insensitivity to 

translations within a user-defined invariance scale and maintain continuity with respect to 

deformations. In the case of 2-D data, such features also demonstrate insensitivity to 

rotations. The scattering network employs predefined wavelet and scaling filters to achieve 

these characteristics. 

The foundation for this mathematical framework was laid by Mallat in collaboration with 

Bruna and Andén, marking a pioneering effort in the study of convolutional neural 

architectures [[34], [37]]. Subsequently, Andén and Lostanlen contributed by developing 

efficient algorithms for the wavelet scattering of 1-D signals [[36], [38]], while Oyallon 

extended this work to encompass 2-D scattering with the development of efficient 

algorithms[38]. The collaborative efforts of Andén, Lostanlen, and Oyallon have 

significantly shaped the ScatNet [40] and Kymatio [41] software, essential tools for 

computing scattering transforms. Mallat and his peers identified three key properties 

inherent in deep learning architectures for extracting meaningful features from data, 

namely: 

 Multiscale contractions 
 Linearization of hierarchical symmetries 
 Sparse representations 

Remarkably, the wavelet scattering network embodies all these properties. Wavelet 

transforms effectively linearize small deformations, such as dilations, by segregating 

variations across different scales. Furthermore, for many natural signals, the wavelet 

transform inherently yields sparse representations. The scattering transform, when coupled 

with other features of the scattering network, generates data representations that minimize 

intra-class differences while preserving discriminability across different classes. An 

essential distinction between the scattering transform and deep learning networks lies in 

the fact that the filters are predefined, rather than being learned. This a priori definition of 
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filters imparts a unique advantage to the scattering transform—since it doesn’t necessitate 

learning filter responses, it can be successfully applied in situations where training data is 

scarce. This characteristic makes the scattering transform a valuable tool in scenarios where 

traditional deep learning networks may face limitations due to insufficient training data 

availability.  To perform feature extraction on data using MATLAB, I leverage the 

waveletScattering function for time series and waveletScattering2 for image data. 

Configuring the network involves setting parameters such as the invariance scale size, the 

number of filter banks, and the number of wavelets per octave in each filter bank. For 

waveletScattering2, an additional parameter is the number of rotations per wavelet. To 

obtain features from time series, I employ the waveletScattering object functions 

scatteringTransform or featureMatrix. 

The process of the scattering transform unfolds iteratively. Initially, the data undergoes 

convolution with the scaling function to yield zeroth-order scattering coefficients. The 

subsequent steps involve: 

 

1. Applying the wavelet transform to the input data with each wavelet filter in the first 
filter bank. 

2. Computing the modulus of each filtered output, resulting in nodes known as the 
scalogram, U[1]. 

3. Averaging each modulus with the scaling filter to produce the first-order scattering 
coefficients, S[1]. 

This process repeats at every node, and the scatteringTransform function returns both the 

scattering and scalogram coefficients. Meanwhile, the featureMatrix function provides the 

scattering features. These outputs are easily consumable by various learning algorithms. 

The Wavelet Scattering Transform is a mathematical operation that encompasses a series 

of convolutions and modulus operations on an input signal using a set of wavelet filters. 

The resulting coefficients effectively capture the energy of the input signal across different 

scales and time-shifts. Leveraging the hierarchical structure of wavelet scattering, this 

method excels in feature extraction, particularly in scenarios involving noisy data, as it 

provides a robust and discriminative representation of signal characteristics. In applications 

like healthcare, where accurate analysis of signals, such as ECG data, is critical, the 
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Wavelet Scattering Transform proves to be a valuable tool for enhancing the performance 

of learning algorithms. 

 

 

2.4.2 Number of Coefficients 

 

The determination of the number of scattering coefficients in the waveletScattering method 

is influenced by various parameters, including SignalLength, InvarianceScale, and 

SamplingFrequency. The computation of scattering coefficients is closely tied to the 

characteristics of the wavelet filter banks, including their number, quality factors (Q1 and 

Q2), and the chosen invariance scale, all in conjunction with the length of the signal. The 

calculation of scattering coefficients follows a two-step process:  

1. The zeroth-order scattering coefficients result from convolving the signal with a 
wavelet filter bank at the finest scale. The number of zeroth-order coefficients 
corresponds to the number of wavelet filters in the filter banks, and in this example, 
there are 2 filter banks (one with Q1=8 and one with Q2=1). 

2. The 1st-order scattering coefficients are derived by convolving the zeroth-order 
coefficients with a wavelet filter bank at the next larger scale. The number of 1st-
order coefficients is the product of the number of wavelet filters in the filter bank 
and the number of zeroth-order coefficients. 

 

2.4.3  Scattering Path 

 

The Wavelet Scattering Transform allows for multiple orders of scattering coefficients, 

capturing the time-frequency structure of the input signal at different scales and time-shifts. 

The number of coefficients at each order is determined by the length of the input signal 

X1, the invariance scale, and the sampling rate, among other factors. In this case, the 

InvarianceScale is set to 40 seconds, indicating the maximum time-shift between 

coefficients at different orders. The number of coefficients at each order is determined by 

dividing the length of the input signal by the invariance scale and downsampling at each 
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layer. The resulting XS1 matrix is of size 261 × 36, where 261 is the number of paths 

through the scattering tree, and 36 is the number of coefficientts at each scale. The 

featureMatrix function is then used to compute the scattering coefficients for the input 

signal X1, resulting in a matrix XS1 with dimensions 261 × 36. Each row corresponds to a 

unique scattering path, and each column corresponds to a different scattering coefficient. 

The number of paths is determined by the number of unique scattering paths computed by 

the wavelet scattering transform network.  

The number of paths is calculated as the total number of possible combinations of wavelet 

coefficients across all scales and windows. In this example, with 2 layers and an invariance 

scale of 40 seconds, the calculation is NumofLayers(NumofLayers — 2) × Coeffs@eachScale × 

(SignalLength / Invariance Scale), resulting in 8208 paths. However, not all of these paths 

are unique due to symmetries of the wavelet filters [84]. MATLAB uses a process of 

pruning and symmetry reduction to eliminate redundant paths, resulting in a final number 

of 261 unique paths.  

 

2.5 MACHINE LEARNING CLASSIFICATION MODEL 

2.5.1 KNN Classifier 

 

K-Nearest Neighbor (KNN), is a versatile supervised machine learning algorithm used for 

both classification and regression tasks. It is particularly effective for imbalanced datasets, 

making it a suitable choice as a classifier in such scenarios. In my specific dataset, 

characterized by its imbalanced nature, it is advised against down-sampling or up-sampling 

to avoid compromising time series features. 

The parameter "K" in KNN represents the number of neighbors considered when predicting 

or classifying a new unknown variable. The algorithm seeks to identify the closest 

neighbors around an unknown datapoint to determine its class. The distance from all points 

in the proximity of the unknown data is calculated, and those with the shortest distances 

are filtered out. The success of classification and prediction hinges on selecting an 

appropriate value for K. 
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Determining the optimal value for K involves testing the model’s accuracy across different 

K values (Table 2-4). It is a common practice to choose an odd value for K to avoid 

situations where elements from both groups are equal. Larger K values may lead to 

underfitting, causing the model to struggle with learning from the training data, while 

smaller K values may result in overfitting, where the model captures noise along with the 

training data. 

KNN is a non-parametric supervised classifier that compares data with the entire dataset. 

After transforming data points into mathematical vectors, the algorithm calculates the 

distance between vectors to find the probability of similarity to the test data. Classification 

is then based on the points that share the highest probabilities. Three different distance 

functions—Euclidean, Minkowski, and Hamming—can be employed in this process. In 

this context, the Euclidean distance function is utilized, representing the shortest distance 

between two points regardless of dimensions, and it is the most commonly used method in 

KNN. 

 
Figure 2-6. K=1 and K=20 Nearest neighbors. 

 

KNN is advantageous in handling non-linear data, making it suitable for scenarios where 

the relationship between the dependent and independent variables is not a straight line [76]. 

It excels in scenarios where it is necessary to identify the K nearest neighbors of the test 

data, providing a small number of training samples close to the test samples. In comparison 
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to simpler algorithms like linear regression, KNN’s ability to work well with non-linear 

data is a notable strength. 

The Fine-KNN variant, employed in this work, takes advantage of the simplicity of KNN 

by considering only one neighbor for data point distinction.  To determine the optimal 

value of “K” for the KNN classifier, various nearest neighbors methods were employed to 

train the proposed model. The test accuracy results were compared, and it was found that 

the best value for “K” is 1, indicating fine KNN. 

 

Table 2-4.Comparison of different trained Nearest Neighbors methods to find best number of K. 

Classifier 

Type 

Model Flexibility Test Accuracy 

(%) 

Fine KNN Finely detailed distinctions 

between classes, K = 1 

94.7 

Medium KNN Medium distictions between 

classes. K=10 

94.4 

Coarse KNN Coarse distinctions between 

classes. K=100 

93 

Cosine KNN Medium distinctions between 

classes, using a Cosine distance 

metric. K =10 

89.3 

Cubic KNN Medium distinctions between 

classes, using c cubic distance 

metric. K=10. 

94.2 

Weighted 

KNN 

Medium distinctions between 

classes, using a distance weight. 

K=100. 

94.5 

 

The Euclidean distance function plays a pivotal role in the Fine-KNN classifier, 

quantifying the dissimilarity between data points in the feature space. Moreover, the 

Euclidean distance function employed by the Fine-KNN classifier is well-suited for 

accelerometer signals. Its capability to measure the distance between points in a 
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multidimensional space allows for the effective capture of similarities and differences in 

signal patterns [76]. This is crucial when dealing with accelerometer data that may exhibit 

nuanced variations influenced by factors such as motion intensity, orientation, and 

environmental conditions.   

The choice of Fine-KNN for accelerometer signal classification aligns with the unique 

requirements of the dataset. Accelerometer signals, being inherently dynamic and subject 

to diverse environmental conditions, benefit from the simplicity and adaptability of the 

Fine-KNN classifier. It excels in scenarios where a single nearest neighbor provides 

sufficient discriminatory information, making it particularly suitable for applications where 

precision in signal classification is paramount. 

2.5.2 PCA (Principal Component Analysis) 

 

To enhance the accuracy of the KNN classifier, employing dimensionality reduction 

techniques such as PCA becomes a valuable strategy. The application of PCA is 

particularly advantageous when employed before KNN, as it contributes to the meaningful 

adjustment of the distance metric used in the classification process. In this study, PCA is 

implemented with the objective of capturing 95% of the variance within the dataset. Large 

datasets often pose challenges in terms of interpretation, prompting the utilization of PCA 

to alleviate this issue by reducing dimensionality. This not only increases interpretability 

but also mitigates information loss. PCA achieves this by generating new uncorrelated 

variables that successively maximize variance. The core functionality of PCA lies in its 

ability to transform a large dataset with interrelated variables into a new set of variables 

known as principal components. These components are uncorrelated and are arranged in 

descending order of component variance. The coefficient matrix, denoted as Coeff, is 

pivotal in this process. Each column of Coeff contains coefficients for a specific principal 

component. 

The mathematical formulation Coeff=PCA(X) signifies the computation of principal 

component coefficients or loadings for an n-by-p data matrix X, where rows correspond to 

observations and columns to variables. By default, PCA centers the data and employs the 
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singular value decomposition (SVD) algorithm. The overarching goal of PCA is to reduce 

the dimensionality of a dataset, consisting of numerous interrelated variables, while 

preserving as much variation as possible. This transformation results in a set of principal 

variables that are uncorrelated, enhancing interpretability without sacrificing critical 

information present in the dataset. 

This technique is particularly beneficial in circumventing the dimensionality curse 

associated with large datasets, where memory and CPU resources are constrained. Notably, 

MATLAB provides a built-in PCA option within the Classification Learner Tool  [82[, 

simplifying the implementation of PCA in conjunction with classification tasks and 

facilitating efficient management of large datasets. As such, the combination of PCA and 

KNN serves as a robust methodology for improving the accuracy of classification 

algorithms, especially in scenarios involving complex, high-dimensional data. 

Moreover, PCA serves as a versatile tool in the realm of data analysis, offering benefits 

beyond dimensionality reduction. PCA not only diminishes noise in the data but also plays 

a pivotal role in feature selection and the generation of independent, uncorrelated features 

[43]. 

One of the primary advantages of PCA is its noise reduction capabilities. PCA identifies 

the principal components of the data, which are new variables that are linear combinations 

of the original variables. These principal components are ordered by their importance, with 

the first component explaining the maximum variance in the data, followed by the second 

component, and so on.  The principal components extracted by PCA are orthogonal to each 

other, meaning they are uncorrelated. As a result, redundant or noisy information present 

in the original high-dimensional data tends to be spread across multiple components. By 

selecting only the most important components, PCA effectively filters out the noise present 

in the less significant components. By reducing the dimensionality of the data while 

preserving its essential structure, PCA enhances the signal-to-noise ratio. The signal, which 

represents the meaningful information in the data, is retained in the reduced-dimensional 

space, while the noise, which represents irrelevant or random variations, is diminished. By 

identifying and eliminating noise components in the dataset, PCA allows for a cleaner and 

more focused representation of the underlying patterns [43]. In the context of training 
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model on accelerometer dataset, where noise may be prevalent due to various 

environmental factors, PCA becomes instrumental in enhancing the signal-to-noise ratio. 

In addition to noise reduction, PCA assists in feature selection to some extent. It achieves 

this by highlighting the principal components that contribute the most to the variance in 

the data. This selective emphasis on crucial features not only simplifies the dataset but also 

aids in creating a more efficient representation for model training [43]. Feature selection is 

particularly valuable when dealing with high-dimensional datasets, as it helps focus on the 

most relevant information. Feature selection process in MATLAB is explained in 

Appendix C.  

Furthermore, PCA generates independent and uncorrelated features, providing a unique 

advantage in model training. This independence ensures that the selected features are not 

redundant, offering a diverse set of information for the model to learn from [43]. The 

absence of correlation among features can contribute to better model interpretability and 

generalization. 

An additional noteworthy benefit of PCA is its ability to mitigate overfitting. Overfitting 

occurs when a model learns noise in the training data, resulting in poor generalization to 

new, unseen data. By retaining only essential features and discarding noise, PCA helps in 

creating a more parsimonious model that is less prone to overfitting [43]. This, in turn, 

contributes to enhanced model performance and reliability. 

 

Considering these advantages, PCA emerges as a judicious choice for training 

accelerometer dataset. Its multifaceted impact, ranging from noise reduction to feature 

selection and addressing overfitting concerns, aligns well with the challenges often 

encountered in accelerometer data analysis. Integrating PCA into the preprocessing 

pipeline can significantly contribute to the robustness and effectiveness of models trained 

on accelerometer datasets. 
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2.6 MODEL TRAINING AND TEST RESULTS 

The wavelet scattering network is characterized by its ability to manifest multiscale 

contractions, linearize hierarchical symmetries, and provide sparse representations. These 

properties collectively contribute to the creation of data representations that minimize intra-

class differences while preserving discriminability across different classes. One notable 

advantage of the wavelet scattering transform is its independence from the need to learn 

filter responses. This characteristic proves invaluable, especially in scenarios where 

training data may be limited[42]. By utilizing predefined wavelet filters, the function 

computes the scalogram and subsequently applies an averaging filter to facilitate feature 

extraction. 

As previously mentioned, the dataset has been partitioned into individual samples 

corresponding to each label, resulting in 15 matrices across 5 labels and 3 signals. The 

utilization of 1-D wavelet scattering transform has proven effective in extracting reliable 

features from the raw signals captured by a 3-axis accelerometer. This transformative 

process involves essential operations such as  convolution, nonlinearity, and averaging 

(low-pass filtering) to generate a wavelet scattering transform for a given time series input 

signal. As it explained in Appendix A, convolution in wavelet scattering transform helps 

by capturing different frequency components present in the ECG signal, including those 

affected by motion artifact noise. Nonlinearity introduces nonlinearities into the 

transformed signal, enabling the model to capture complex patterns and variations. For 

each signal, the wavelet scattering function set, characterized by an invariance scale of 40 

seconds, dissects each block of the signal into distinct scattering windows. Table 2-5 

provides an overview of the number of samples and their corresponding scattering 

coefficients. The MATLAB DSP toolbox’s “numCoefficients” function is employed to 

calculate the number of scattering coefficients for each matrix, each window has 261 

scattering paths. Calculation of scattering paths is explained in Appendix C. Following 

feature extraction, a timetable is constructed with 15 cells, each containing the extracted 

features for an individual matrix. This timetable serves as the training dataset input for the 

Classification Learner tool. 



 
 

41 
 
 

 

 

 

 

Table 2-5. Number of samples and corresponding windows for each signal (X, Y, and Z). 

Label Number of samples for each signal Number of windows 

1 36462 36 

2 52530 52 

4 133488 131 

77 54384 54 

99 31827 32 

 

The Fine KNN model was trained utilizing the raw dataset from a 3-axis accelerometer, 

with wavelet scattering coefficients serving as essential features, as previously outlined.  

In preparation for model training, all wavelet scattering coefficients were seamlessly 

integrated into the Classification Learner Toolbox as a timetable in CSV format. The 

dataset was then strategically partitioned into distinct training and test sets, a crucial step 

to assess the model’s performance on unseen data. The utilization of the Classification 

Learner Toolbox’s internal option for PCA further enhanced the model’s training process. 

PCA, configured to retain 95% of the variance, played a pivotal role in reducing the 

dimensionality of the training dataset. This reduction not only streamlined computational 

efficiency but also ensured that the model could discern the most impactful features in the 

dataset, thereby optimizing its predictive capabilities[43]. 

The PCA process facilitated the creation of new uncorrelated variables, with each variable 

capturing maximized variance successively. This transformation contributes to the model’s 

ability to focus on the most relevant information during training. By selectively retaining 

features that contribute significantly to the dataset’s variance, PCA aids in mitigating the 

risk of overfitting while preserving the essential characteristics of the data. 

During the testing phase, 25% of the captured dataset was designated as test data. This 

partitioning strategy allows for a robust evaluation of the model’s generalization 

performance, ensuring its efficacy in making accurate predictions on new and unseen 

instances. The incorporation of rigorous testing procedures underscores the model’s 
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reliability and its potential for real-world applications where performance on diverse 

datasets is paramount. 

In a wavelet scattering network, the features extracted encompass a combination of 

information from all layers, not solely relying on the output of the final convolution layer. 

This architectural design allows for a holistic representation of the input signal, capturing 

nuanced details across different hierarchical levels. One noteworthy characteristic of the 

scattering coefficients is the variation in energy levels across layers—typically, the energy 

decreases as the layer level ascends. It has been observed that the first two layers contain a 

substantial portion, around 99%, of the total energy in the scattering coefficients [44]. The 

first layer of the scattering network captures low-frequency components of the signal, 

which tend to contain a significant portion of the ECG signal's energy. These components 

often represent the overall trend or global structure of the signal. The second layer of the 

scattering network combines information from the first layer in a hierarchical manner, 

leading to the extraction of higher-level abstractions or more complex patterns. These 

abstractions may still capture a substantial amount of energy due to their relevance to the 

ECG signal's structure.  

As it is explained in Appendix A, to achieve wavelet decomposition within the scattering 

network, Gabor wavelets are employed. Gabor wavelets are well-suited for this purpose 

due to their ability to effectively capture both temporal and frequency characteristics of 

signals. The decomposition process involves the utilization of a low-pass filter (ϕ), which, 

in the context of wavelet scattering, is often implemented as a Gaussian function. This filter 

plays a critical role in identifying and retaining essential features while suppressing 

unwanted noise, contributing to the network’s robustness in handling various signal 

complexities. 

The use of Gabor wavelets in conjunction with the Gaussian low-pass filter not only 

facilitates efficient wavelet decomposition but also ensures that the resulting features are 

informative and discriminative. The scattering network’s ability to consider multiple layers 

and the concentration of energy in the initial layers make it well-suited for applications 

where a comprehensive understanding of signal characteristics is paramount. The wavelet 

scattering network’s feature extraction mechanism, employing Gabor wavelets and a 



 
 

43 
 
 

 

Gaussian low-pass filter, offers a versatile and powerful approach for signal analysis. The 

consideration of energy distribution across layers enhances the network’s ability to discern 

important signal patterns, making it a valuable tool in various domains, including image 

and signal processing. 

In this chapter, a robust KNN model designed for classification is introduced, incorporating 

a reliable evaluation strategy involving 5-fold cross-validation. The model is carefully 

configured with a choice of 1 neighbor and utilizes the Euclidean distance metric, 

showcasing its effectiveness in capturing local patterns in the feature space. Impressively, 

this proposed KNN model achieves a commendable test accuracy of 94.7%, attesting to its 

robust performance.  
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Figure 2-7. Test confusion matrix of the trained/tested KNN model with wavelet scattering coefficients(a) TPR 

(true positive rate) vs FNR (false negative rate) (b) PPV (positive predictive value) vs FDR (false discovery rate). 

 

In Figure 2-7, I delve into the performance of the model by presenting a comprehensive 

test confusion matrix. Notably, the “4” label emerges as the best-predicted class, boasting 

the largest number of accurately classified samples. The True Positive Rate (TPR), 

representing the proportion of correctly classified observations per true class, is particularly 

noteworthy for label 77, achieving an impressive 91.2%. On the flip side, the False 

Negative Rate (FNR) is minimized, with the highest occurrence at 2.9% when classifying 

as 99 labels. 

Figure 2-7 (b) provides a visual representation that underscores the model’s prowess in 

accurately predicting the “4” class while shedding light on challenges encountered in 

predicting the “2” class. This class experiences the highest False Discovery Rate (FDR), 

highlighting areas for potential improvement in the model’s predictive capabilities. 

The 94.7% test classification accuracy attained with the proposed approach underscores its 

efficacy in handling the inherent complexities of the dataset. Notably, the model leverages 

raw signals from a 3-axis accelerometer, acknowledging the imbalanced nature of the 

dataset. To further enhance the model’s ability to discern intricate patterns, wavelet 
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scattering coefficients have been employed as features during the training phase. This 

innovative feature extraction technique contributes significantly to the success of the 

classification model by providing a more comprehensive representation of the underlying 

signal structures. 

The combination of this innovative feature extraction method and the robust KNN 

algorithm positions my approach as a promising solution for effective classification tasks. 

This is particularly true when confronted with challenging and imbalanced datasets, 

demonstrating the adaptability and performance of the proposed methodology in real-world 

scenarios. 

 

 

 
Figure 2-8. Test ROC curve of label 77 

 

The Receiver Operating Characteristic (ROC) curve serves as a graphical representation of 

the trade-off between TPR and FPR across various classification score thresholds. By 

plotting TPR against FPR, the ROC curve provides valuable insights into the performance 

of a classifier under different conditions. The AUC “Area under the ROC Curve” is a 

numerical metric derived from the ROC curve and reflects the integral of TPR values 

concerning FPR, spanning from FPR=0 to FPR=1. 
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A higher AUC value signifies superior overall classification quality, with the AUC range 

falling between 0 and 1. A value of 1 indicates perfect classification, while a value of 0.5 

suggests performance equivalent to random chance. The AUC value is a valuable 

quantitative measure, offering a comprehensive assessment of a classifier’s ability to 

discriminate between classes. In the context of Figure 2-8, which portrays the ROC curve 

for the label "77," the accompanying AUC value of 0.95 attests to the classifier's strong 

discriminatory performance. This high AUC suggests that the classifier exhibits robust 

sensitivity (true positive identification) while effectively minimizing false positive 

identifications. 

Understanding and analyzing ROC curves and their associated AUC values are 

fundamental steps in evaluating and fine-tuning classification models. Researchers and 

practitioners leverage these metrics to gauge the efficacy of their classifiers, enabling 

informed decisions on model selection and parameter tuning to achieve optimal 

performance in diverse applications. In essence, the ROC curve and AUC serve as crucial 

tools in the assessment and refinement of classification models, contributing to the ongoing 

advancements in machine learning and data-driven decision-making. 

 

2.7 SUMMARY 

In this chapter, a novel approach to machine learning is introduced, showcasing the 

application of a KNN model for the classification of extracted wavelet scattering 

coefficients derived from a 3-axis accelerometer signal. The primary objective is to 

leverage this model to detect artifact noises present in associated ECG signals. The 

underlying premise involves considering human body activity as a key factor in 

recognizing artifacts within ECG signals. 

To accomplish this, a well-established supervised machine learning technique, the KNN 

classifier was employed. The performance of this approach is thoroughly evaluated by 

testing its ability to classify both human activity and artifacts in 3-axis accelerometer 

signals, utilizing the wavelet scattering coefficients obtained from the captured dataset. 
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The results of the trained model are promising, demonstrating a high-test accuracy of 

94.7% and a positive predictive value (PPV) of 93% specifically for samples labeled with 

artifact noises (denoted as “77”). This noteworthy performance suggests the potential 

utility of the proposed model as an effective artifact recognition technique, particularly in 

the context of vital sign monitoring devices such as those used for EEG, PPG, and ECG 

signals. 
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CHAPTER 3 ROBUST ECG ARTIFACT NOISE CLASSIFICATION 

METHOD USING WAVELET SCATTERING 

FEATURES IN VITAL HEALTH APPLICATIONS 

3.1 INTRODUCTION 

In Chapter 1, a novel approach was introduced for the classification of ECG samples that 

include artifacts, leveraging 3-AXIS accelerometer signals synchronized with ECG data 

obtained from a wearable device. Building upon this foundation, Chapter 2 presented an 

advancement aimed at enhancing the classification accuracy. This was achieved by 

proposing a method that utilizes features extracted not only from the 3-axis accelerometer 

signals but also from the accompanying ECG signal to train the classifier. 

Figure 3-1. Block diagram of proposed model 

 

The primary objective of this chapter is to address the challenges posed by artifact—

containing ECG samples through a more comprehensive feature extraction strategy. By 

incorporating information from both the ECG and accelerometer signals, the proposed 
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method aims to capture a broader range of relevant noise characteristics, thus contributing 

to the refinement of the classification model. 

As demonstrated in Figure 3-1, a machine learning approach is introduced to train a model 

capable of recognizing artifact noises within ECG and accelerometer signals. The chosen 

machine learning technique for this task is the KNN classification method. This method is 

employed to train the model using features extracted from both the ECG and accelerometer 

signals. 

A crucial aspect of the feature extraction process is the use of the wavelet scattering 

transform. This technique allows for the extraction of robust features by capturing 

information at multiple scales and providing a more resilient representation of the signal, 

especially in the presence of artifacts. The sampling frequency is carefully matched to 

ensure the compatibility of the signals before the application of the wavelet scattering 

transform. This chapter not only builds upon the groundwork laid in Chapter 1 but also 

introduces a new dimension to the classification approach. The incorporation of features 

from both ECG and accelerometer signals, coupled with the application of the KNN 

classification method and wavelet scattering transform, reflects a comprehensive and 

innovative strategy aimed at improving the accuracy of classifying ECG samples 

containing artifacts. 

This chapter is structured to provide a comprehensive exploration of the research 

conducted. Each section is carefully designed to contribute to the reader’s understanding 

of the study’s methodology, challenges, and outcomes. The chapter unfolds as follows: 

Data Acquisition Method, Protocols and Frequency Matching 

Section 2.2 outlines the data acquisition process, encompassing the methods and protocols 

employed. It delves into the procedures undertaken to collect essential data for the study. 

Furthermore, this section provides an in-depth description of the frequency matching 
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process applied to ECG and accelerometer signals. Ensuring both signals share the same 

sampling frequency is a crucial step in the feature extraction process. 

 

Signal Analysis 

The analysis of acquired signals is presented in Section 2.3.This involves a meticulous 

examination of signal characteristics, patterns, and key features inherent in the collected 

data. The section provides insights into the nature of the signals under investigation. 

Feature Extraction, Model Training and Test Results 

In Section 2.4, the focus shifts to the training of the model and the subsequent examination 

of test results. This section includes a comparative analysis with previous works, offering 

valuable insights into the model’s performance and highlighting advancements over 

existing approaches. 

By meticulously organizing the chapter in this sequential manner, the reader is 

systematically guided through the various stages of the research, from the exploration of 

previous works to the final evaluation of the machine learning classification model. This 

structured narrative enhances comprehension and facilitates a cohesive understanding of 

the research journey. 

 

3.2 DATA ACQUISITION METHOD AND PROTOCOLS  

The acquired datasets, consisting of ECG and accelerometer data, are utilized as detailed 

in Section 2.1, employing the same data cleaning process facilitated by the Data Clean 

MATLAB tool. The captured dataset encompasses signals from the accelerometer sensor 

along the X, Y, and Z axes, each sampled at a frequency of 104 Hz. Simultaneously, the 

associated ECG signal is recorded at a sampling frequency of 125 Hz, complete with 
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corresponding timestamps for temporal alignment. The accelerometer dataset is composed 

of 309,000 samples for each of the X, Y, and Z signals, while the ECG dataset comprises 

371,394 samples, as depicted in Figure 3-2. 

 
Figure 3-2. My captured dataset label distribution. 

 

The use of consistent data cleaning procedures ensures the quality and reliability of the 

datasets, addressing potential artifacts or inconsistencies that may arise during data capture. 

The timestamps accompanying the ECG signal facilitate temporal synchronization with the 

accelerometer data, allowing for meaningful correlation and joint analysis of physiological 

and movement-related information. 

The careful selection of sampling frequencies plays a pivotal role in accurately capturing 

the dynamics of accelerometer signals and ECG signals, both essential components for 

comprehensive health and activity monitoring. In this context, a deliberate choice was 

made to set the sampling frequency at 104 Hz for accelerometer signals and 125 Hz for 

ECG signals. 

Commercial wearable devices often impose constraints on sampling frequencies and other 

parameters due to technological and resource limitations. In this scenario, the highest 

available sampling frequency for the accelerometer was 104 Hz, while 125 Hz emerged as 

the closest match for the ECG signal. This matching process was facilitated through a 

mobile application, allowing simultaneous capture of both signals with the aim of 

achieving easier frequency alignment during subsequent analysis. 
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By aligning the sampling frequencies, the chosen approach facilitates seamless frequency 

matching during subsequent stages of signal processing. This alignment is crucial for the 

extraction of relevant features and patterns, as it allows for a more accurate representation 

of the interplay between physical movements and cardiac events. This, in turn, enhances 

the interpretability of the data, providing a more nuanced understanding of health and 

activity dynamics.The considerable number of samples in both the accelerometer and ECG 

datasets provides a rich source of information for comprehensive analysis.  

 

3.3 SIGNAL ANALYSIS 

In Section 2.3, a comprehensive exploration was undertaken, presenting a visual and 

statistical examination of the impact of artifact noise on both ECG and Accelerometer 

signals. The analysis highlighted the deleterious effects on the the QRS complex usually 

contains frequencies between 8 to 50 Hz [5], although abnormal ventricular conduction 

complex of the ECG signal [5], illustrating the need for robust methodologies in handling 

such noise in signal processing. 

To facilitate subsequent stages of feature extraction and model training, a strategic 

approach was implemented in preprocessing the accelerometer and ECG datasets. This 

involved partitioning the datasets into 20 distinct CSV files, each containing samples 

associated with a specific label. The rationale behind this segmentation was twofold: 

firstly, it streamlined the input data structure for compatibility with the MATLAB 

Classification Learner toolbox; secondly, it addressed the toolbox’s preference for 

timetables as input datasets. 

An additional preprocessing step involved resampling the ECG signal at a frequency of 

104 Hz, employing the resampling tools available in the Digital Signal Processing (DSP) 

module of MATLAB, as elaborated in Appendix E. The resampled ECG signals were 

subsequently merged with accelerometer signals, creating a cohesive dataset for further 

analysis. The antialiasing low-pass filter employed in MATLAB is implemented as a finite 
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impulse response (FIR) filter [53]. FIR filters are chosen for their advantageous linear 

phase response and are commonly crafted using methodologies such as windowing or 

frequency-sampling techniques [53].  

Utilizing a combination of up-sampling, antialiasing filtering, and down-sampling, this 

methodology allows for the alteration of the input signal’s sampling rate while concurrently 

minimizing aliasing effects and preserving the essential characteristics of the signal [53]. 

By strategically manipulating the sampling rate through these sequential steps, the 

approach effectively mitigates the potential introduction of unwanted artifacts, ensuring 

the fidelity of the signal representation. 

Furthermore, the linear phase response inherent in FIR filters is instrumental in maintaining 

the temporal relationships within the signal, a crucial aspect in applications where the 

timing of events is of paramount importance. This preservation of temporal coherence is 

vital, particularly in fields such as digital signal processing, communications, and audio 

processing, where the accurate representation of signal dynamics is imperative for 

successful analysis and interpretation. 

In practical terms, the efficacy of this antialiasing technique extends to scenarios where 

signal processing involves diverse frequency components. By dynamically adjusting the 

filter cut-off frequency based on the signal’s characteristics, the approach accommodates 

variations in the input signal, making it versatile for a wide range of applications. 

Figure 3-3 illustrates a time-domain plot of the captured ECG signal, offering insights into 

the signal’s characteristics. Notably, artifact noise becomes evident in samples labeled as 

“77,” as highlighted in Figure 3-3(c) and Figure 3-3(d) The presence of artifacts is visually 

apparent as the ECG signal appears distorted, and the frequency-domain scalogram plot 

reveals a multitude of components. 

In particular, Figure 3-3(d) presents a scalogram diagram of the captured ECG signal, with 

artifacts distinctly marked by red circles. These artifacts are specifically observed in 

samples labeled as “77,” indicating a correlation between this label and the occurrence of 
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signal abnormalities. The scalogram’s visual representation offers a comprehensive view 

of the signal’s frequency components and the impact of artifacts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-3.Time-domain plot of ECG signal (a) with no artifacts. (b)with artifacts and window length of 500 

samples (label 77). (c) Captured dataset labels, (d) Scalogram of captured ECG signal. Artifacts are marked in 

red. 
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To delve deeper into the artifacts, Figure 3-3(b) provides a time-domain plot specifically 

focusing on 500 samples from the ECG signal labeled as “77.” Both Figure 3-3(d) and 

Figure 3-3(b) consistently depict the distortion in the ECG signal, emphasizing the 

significant number of components evident in the frequency-domain scalogram plot. 

These collective findings strongly suggest the presence of artifacts and signal abnormalities 

within the ECG data associated with the “77” label. Understanding and addressing these 

artifacts are critical for accurate signal analysis and subsequent classification tasks, such 

as those involving the use of classifiers like the K-nearest algorithm. By employing 

techniques like wavelet scattering transform for feature extraction, it becomes possible to 

enhance the robustness of feature sets, making the classification process more effective, 

especially in the presence of artifacts. The combination of detailed visual analysis and 

advanced signal processing methods contributes to a comprehensive approach in handling 

artifacts and ensuring the reliability of ECG data analysis. 

Table 3-1 provides a comprehensive overview of the attributes associated with both clean 

signals, labeled as “4,” and noisy signals, labeled as “77.” Notably, the highest peak value 

is observed in the segment labeled “77,” indicative of artifact noise that introduces 

significant amplitude signal fluctuations. 

Kurtosis, a statistical measure of the distribution’s tail and peak, reveals interesting insights 

into the nature of the signals. The Noisy ECG exhibits the lowest kurtosis value (8.8788), 

a metric that characterizes the degree of signal deviation from a Gaussian distribution. 

Artifact noise can introduce irregular and spurious peaks or distort the signal’s shape, 

causing deviations from the expected kurtosis of a Clean ECG signal. Unusual kurtosis 

values may point to the presence of outliers or non-normal data points attributed to noise. 

Distinct patterns in kurtosis values may offer clues about the specific type of artifact noise; 

for instance, muscle movement artifacts could manifest as sharp, non-Gaussian peaks, 

while baseline drift might result in a flatter distribution with low kurtosis. 
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Table 3-1. An overview to characteristics of clean, noisy, filter output and final reconstructed ECG 

signals. 

Parameter Clean ECG (label 4) Noisy ECG (label 77) 

Mean(µV) -59.8197 -60.4043 

Peak Value (µV) 1586 2024 

RMS (µV) 306.2112 441.8252 

STD (µV) 298.7792 437.7131 

Median (µV) -56 -64 

Shape Factor 2.0316 1.7799 

Kurtosis 15.5691 8.8788 

Clearance Factor 15.6746 11.8628 

Band-Power 0.45 –10 Hz (%) 15.83 21.31 

 

The clearance factor, which measures the separation between the QRS complex and the 

signal baseline, provides additional insights. A high clearance factor indicates well-

separated QRS complexes, whereas a low clearance factor suggests poor separation. 

Artifact noise often compromises QRS complex visibility by introducing high-frequency 

components that obscure the baseline, thereby reducing the clearance factor. 

As highlighted in Section 2.1, artifact noise predominantly occurs within the 0.45-10 Hz 

bandwidth. The “Band-power” value in Table 3-1 signifies the percentage of signal power 

within this frequency range relative to the total signal power spanning from 0 to 62.5 Hz 

(Nyquist frequency). As expected, the presence of artifact noise is reflected in an increased 

band-power (0.45-10 Hz) from 15.83% in the clean signal to 21.31% in the noisy signal. It 

is important to note that the occurrence of artifact noise can vary across different frequency 

ranges, contingent on the speed of body movement. 
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In conclusion, the detailed analysis of these attributes provides valuable insights into the 

characteristics of clean and noisy ECG signals, aiding in the identification and 

understanding of artifact noise and its impact on signal features. Such insights are crucial 

for developing effective signal processing and classification strategies, particularly in 

applications where accurate signal interpretation is essential. 

 

3.4 FEATURE EXTRACTION, MODEL TRAINING AND TEST 

RESULTS 

 

In this dedicated section, my attention pivots towards the intricate process of feature 

extraction from both ECG and Accelerometer 3-axis signals. This pivotal step serves as a 

foundation for subsequent model training and the examination of test results. Notably, the 

dual consideration of ECG and Accelerometer signals enriches the feature set, allowing for 

a more comprehensive understanding of physiological and motion-related aspects. 

The feature extraction process is a critical precursor to model training, as it involves 

distilling meaningful information from raw signals. For ECG signals, it entails capturing 

essential cardiac characteristics, while accelerometer 3-axis signals contribute valuable 

insights into body movements and orientations. The fusion of these distinctive features 

aims to create a holistic representation of the underlying physiological and physical 

dynamics. 

As the model undergoes training with the enriched feature set, the subsequent examination 

of test results becomes a crucial evaluation phase. This involves assessing the model’s 

performance metrics, such as accuracy, precision, and recall, to gauge its efficacy in 

accurately classifying and recognizing patterns within the signals. The interpretation of 

these results provides valuable insights into the model’s reliability and effectiveness in 

real-world scenarios. 
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Furthermore, this section incorporates a comparative analysis with existing works in the 

field. By benchmarking this model against previous approaches, I gain a deeper 

understanding of its strengths and potential areas for improvement. Comparative studies 

offer valuable benchmarks, shedding light on the advancements achieved over prior 

methodologies and establishing the model’s standing within the broader research 

landscape. 

The insights derived from the comparative analysis not only validate the model's 

performance but also contribute to the ongoing refinement of signal processing techniques. 

By identifying areas where my approach excels or diverges from earlier methods, I pave 

the way for continuous innovation and optimization in the realm of physiological signal 

analysis. This section serves as a comprehensive exploration of feature extraction from 

ECG and Accelerometer signals, encompassing the nuanced intricacies of model training 

and the meticulous evaluation of test results. The inclusion of a comparative analysis 

elevates the discussion, providing a holistic perspective on the model’s performance and 

its contributions to the evolving landscape of signal processing in healthcare and motion 

analysis. 

 

3.4.1 Feature Extraction 

 

As it explained in Appendix A and Section 2.4, a noteworthy advantage of the scattering 

transform is its independence from learning filter responses, making it particularly 

applicable in scenarios where training data may be limited. This feature distinguishes 

wavelet scattering from some other feature extraction methods that heavily rely on 

extensive training datasets [[16]- [18]]. 

In my specific implementation, I have adopted a wavelet scattering framework that 

incorporates two complex-valued 1-D Morlet filter banks. The selection of specific 

parameters, such as an invariance scale of 40 and a sampling frequency of 104, has been 
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the result of consideration. The rationale behind this choice is deeply rooted in the need to 

strike a balance between capturing essential signal characteristics and avoiding 

unnecessary features that could compromise accuracy. 

In the process of experimentation, it was observed that MATLAB imposes limitations on 

using smaller invariance scale numbers (Appendix B). A smaller scale can lead to the 

omission of certain signal characteristics, impacting the overall representation (Appendix 

A, B and Section 2.4). On the other hand, opting for a larger invariance scale introduces 

unnecessary features in the signal, potentially lowering classification accuracy.  

Figures 3-4 (a) and 3-4 (b) visually depict the Gabor wavelets integral to my approach, 

along with their corresponding low-pass filter. Furthermore, Figure 3-4 (b) illustrates that 

the coarsest-scale wavelet consistently adheres to the invariance scale determined by the 

time window of the low-pass filter. 

By employing the Wavelet Scattering function and carefully selecting appropriate wavelet 

filters, I ensure the effective extraction of relevant features. This process allows me to 

capture essential information from the data, forming a robust foundation for training my 

classification model. The integration of wavelet scattering in my approach not only 

enhances feature extraction but also contributes to the creation of a classification model 

capable of discerning intricate patterns in the presence of artifacts or noise within the signal 

data. 
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Figure 3-4. (a) Filter banks and (b) Scaling function- coarsest-scale wavelet first filter bank with invariance scale 

of 40 seconds. 

 

Table 3-2 presents a detailed overview of the captured dataset, delineating the number of 

samples and windows. Each window, a fundamental unit of analysis, comprises 261 

scattering paths. These paths contribute collectively to the holistic feature representation 

of the data.  
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Table 3-2. Number of samples and corresponding windows for each signal (Accelerometer and ECG). 

Label Number of samples for each signal Number of windows 
1 36462 36 
2 52530 52 
4 133488 131 

77 54384 54 
99 31827 32 

 

3.4.2 Results and Discussions 

 

The fine KNN model underwent training utilizing wavelet scattering coefficients extracted 

from the 3-axis accelerometer and ECG raw datasets, as detailed in Section 2.5 and 

Appendix C. The Classification Learner toolbox in MATLAB [82] was employed for 

importing all scattering coefficients. Subsequently, the dataset was split into training (75%) 

and testing (25%) subsets to facilitate model training and evaluation. By importing the 

scattering coefficients into the Classification Learner as a table, effective data manipulation 

within the toolbox was ensured. 

In practical applications, the proposed model aims to classify labels and identify ECG 

artifacts within vital sign monitoring systems. The model is adept at efficiently processing 

and analyzing data collected over short time spans. Its application is particularly valuable 

for detecting and filtering out or removing artifact noises present in vital sign monitoring 

systems, thereby enhancing the accuracy and reliability of recorded data for medical 

diagnosis. 

While ECG signals are typically captured in stable clinical environments for enhanced 

diagnostic accuracy, existing works often focus on classifying noisy and clean ECG signals 

rather than specifically detecting motion artifacts in ECG signals [[56], [57]]. For instance, 

in [59], a balanced dataset (50:50) comprising acceptable (clean) and unacceptable (noisy) 

ECG signals was used with a convolutional neural network (CNN) for classification. Their 

deep learning model successfully screened 88% of noisy signals. Another approach 

proposed in [60] involved a robust technique based on signal decomposition on mixed 

codebooks. This method addressed the challenge of extracting ECG waves and identifying 
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various ECG noises, achieving a classification accuracy of 97.19%. However, it is worth 

noting that this technique was not specifically designed for detecting or classifying artifact 

noises. 

In a different study [61], a model was proposed to classify artifacts with an impressive 

accuracy of 96.87% using a KNN classifier. However, this model segmented ECG signals 

into 5-second intervals, which may be less suitable for clinical diagnosis purposes, as 

artifacts can manifest in smaller segments. The adaptability and versatility of the proposed 

method in addressing artifacts in various vital signals, along with its potential for real-time 

application, position it as a valuable contribution to the field of signal processing and 

medical diagnostics. 

In this research, the proposed KNN model takes a distinctive approach, incorporating a 

robust methodology for evaluation. The model leverages a 5-fold cross-validation strategy, 

considering 1 nearest neighbor and utilizing the Euclidean distance metric. Impressively, 

this model achieves a commendable test accuracy of 98.8%. Figure 3-6 presents the test 

confusion matrix, offering insights into the model's performance across various classes. 

It is noteworthy that the class labeled "4" attains the highest prediction accuracy. This 

outcome may be attributed to the class having the largest number of samples, indicating a 

potential challenge in dealing with imbalanced datasets. To delve deeper into the model's 

performance metrics, the TPR is examined, representing the proportion of correctly 

classified observations per true class. Simultaneously, the FNR indicates the proportion of 

incorrectly classified observations per true class. 
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Figure 3-5. Test ROC curve of label 77. 

 

This comprehensive evaluation of the proposed KNN model sheds light on its strengths 

and weaknesses across various classes, providing valuable insights for refining and 

optimizing the model's performance in future iterations. The consideration of class-specific 

metrics offers a nuanced understanding of the model's behavior, allowing for targeted 

improvements and ensuring its effectiveness across diverse scenarios. 

ROC is a valuable graphical representation that contrasts the TPR against the FPR at 

various classification score thresholds. This visualization serves as a crucial tool for 

assessing the effectiveness of a classifier in distinguishing between different classes. An 

additional metric derived from the ROC curve is the AUC, which offers a quantitative 

measure of the classifier's overall performance. 

The AUC values range from 0 to 1, where higher values signify superior classification 

performance. In the context of Figure 3-5, which depicts the ROC curve specifically for 

the "77" label, the calculated AUC value is an impressive 0.995. This high AUC value is 

indicative of excellent classification performance, particularly for labels associated with 
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artifact noises (77). The model, therefore, demonstrates a remarkable ability to discriminate 

instances of the "77" label from other classes. 

For the class labeled "77," the TPR impressively reaches 99.3%, underscoring the model's 

proficiency in correctly identifying instances within this category. Conversely, the highest 

false negative rate (2.9%) is observed for the class labeled "99." Figure 3-6(b) further 

elucidates the prediction performance across different classes, revealing nuances in the 

model's predictive accuracy. 

Surprisingly, despite the overall high accuracy, the class labeled "4" exhibits the poorest 

prediction values. Additionally, the class labeled "2" stands out with the highest FDR, 

highlighting areas for potential improvement in the model's precision within this particular 

class. 

The significance of a high AUC value lies in the model's capacity to effectively balance 

sensitivity and specificity, crucial in scenarios where accurate classification amidst noise 

or artifacts is essential. The robust performance observed in the ROC curve and the 

corresponding AUC value suggests that the model exhibits a high level of precision in 

distinguishing instances of the "77" label, thus contributing to its overall efficacy in 

handling artifact noises. 

It is worth noting that while the AUC is a valuable summary metric, examining the ROC 

curve itself can provide additional insights into the trade-offs between sensitivity and 

specificity at different decision thresholds. This comprehensive evaluation ensures a 

nuanced understanding of the classifier's behavior, facilitating informed decisions in the 

context of the specific application or dataset under consideration. 

 

 

 

 

 

 

 



 
 

65 
 
 

 

            

 
Figure 3-6. Test confusion matrix of the trained/tested KNN model with wavelet scattering coefficients(a) TPR 

(true positive rate) vs FNR (false negative rate) (b) PPV (positive predictive value) vs FDR (false discovery rate). 
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The proposed methodology has demonstrated remarkable success, achieving a test 

classification accuracy of 98.8%. This exceptional result underscores the effectiveness of 

my approach in handling the complexities of the input data. My method primarily 

harnessed raw signals obtained from accelerometers and ECG measurements as the input 

dataset. However, this initial dataset posed a challenge due to an inherent imbalance in the 

distribution of classes. 

To overcome this class distribution imbalance, a critical preprocessing step involved the 

extraction of wavelet scattering coefficients as features from the accelerometer signals. 

This step not only addressed the class distribution issue but also enriched the dataset with 

discriminative features capable of capturing nuanced patterns, particularly in the presence 

of artifact noise in ECG signals. 

The utilization of wavelet scattering coefficients as features for model training proved to 

be a pivotal decision. This feature extraction technique excels in preserving important 

signal characteristics while mitigating the impact of noise and artifacts. The resultant high 

classification accuracy achieved in this study serves as a testament to the robustness and 

efficacy of my approach in accurately classifying ECG artifact noise. 

Furthermore, it is noteworthy to highlight the adaptability of the proposed method to handle 

diverse challenges in signal processing. The raw signals from accelerometers and ECG, 

although initially presenting an imbalance, were successfully transformed into a feature-

rich dataset that significantly improved the model's ability to discern subtle variations and 

accurately classify instances of artifact noise in ECG signals. 

In conclusion, the comprehensive integration of raw signal utilization, wavelet scattering 

feature extraction, and a strategic approach to addressing class distribution imbalances has 

proven to be a winning combination. The achieved high classification accuracy not only 

affirms the success of the proposed methodology but also positions it as a promising 

solution for robust signal processing applications, particularly in scenarios where accurate 

classification of ECG artifact noise is paramount. 
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3.5 SUMMARY 

 

In this chapter,  a novel machine learning approach design is introduced for the detection 

of artifact noises in ECG signals. The employed methodology leverages a KNN machine 

learning model trained with wavelet scattering coefficients extracted from both 

accelerometer and ECG signals. This innovative approach was chosen to enhance the 

model's ability to discern subtle patterns indicative of artifacts in complex physiological 

data. 

The evaluation of the trained model yielded highly promising results, demonstrating a 

remarkable test accuracy of 98.8%. Notably, PPV for samples specifically labeled with 

artifact noises (denoted as "77") reached an impressive 98.6%. These compelling outcomes 

suggest the potential efficacy of the proposed model as an advanced artifact recognition 

technique. 

The success of this model opens up exciting possibilities for its application in vital sign 

monitoring devices, including EEG, PPG, and ECG devices. Integrating this model into 

such devices holds the promise of significantly improving their functionality by effectively 

filtering out unwanted artifact noises. This enhancement is anticipated to elevate the 

accuracy and reliability of vital sign measurements, which is crucial for ensuring the 

precision of diagnostic and monitoring tools in healthcare settings. 

In conclusion, the introduced machine learning approach represents a significant step 

forward in artifact noise detection within physiological signals. Its successful 

implementation and impressive performance metrics position it as a promising tool for 

improving the accuracy and reliability of vital sign monitoring devices, with broader 

applications in the realm of healthcare technology. 
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CHAPTER 4 A ROBUST TWO-STEP APPROACH TO ECG 

ARTIFACT NOISE REDUCTION 

4.1 INTRODUCTION 

In this chapter, a comprehensive two-step denoising approach is introduced to address 

motion artifact noise in ECG signals. Beyond noise reduction, the chapter delves into the 

realm of ECG signal compression, aiming to not only cut costs but also significantly 

enhance the efficiency of signal processing. The primary objective is to showcase the 

superiority of integrating denoising and compression techniques within the context of 

clinical practice, thereby achieving both improved denoising performance and enhanced 

compression capabilities. 

Figure 4-1. Integration Diagram of Proposed System (using Wavelet signal denoiser + DAE) 

 

As it demonstrated in Figure 4-1, building on the foundation laid in Chapter 3, where a 

robust ML classification algorithm was developed to identify ECG samples affected by 

artifact noise, this chapter focuses on a novel denoising algorithm. The proposed algorithm 

leverages the power of a DAE architecture to effectively compress ECG signals. By 

employing a synergistic denoising strategy that combines a Bior wavelet filter with the 

advanced capabilities of a denoising autoencoder model, the algorithm becomes adept at 

classifying and denoising ECG signals contaminated by artifact noise. 

The incorporation of a Bior wavelet filter adds an additional layer of sophistication to the 

denoising process, enabling the extraction of pertinent features across different scales in 

the ECG signal. The denoising autoencoder model complements this by learning intricate 
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patterns and representations inherent in the signal, enhancing the algorithm's ability to 

discern and mitigate artifact-induced noise. 

The denoising process is pivotal for the subsequent steps in ECG signal analysis. By 

effectively classifying and denoising ECG signals contaminated by artifact noise, the 

algorithm ensures a cleaner representation of the initially noisy training dataset. This 

cleaner representation not only facilitates more accurate analysis and diagnosis in clinical 

settings but also contributes to the creation of a robust foundation for downstream 

applications, such as real-time monitoring and predictive modeling. 

This chapter introduces a sophisticated two-step denoising approach, emphasizing the 

integration of motion artifact noise reduction and ECG signal compression. Through the 

utilization of a Denoising Autoencoder architecture and a Bior wavelet filter, the proposed 

denoising algorithm demonstrates its efficacy in enhancing signal quality, thereby 

advancing the capabilities of clinical ECG signal processing. 

This chapter is thoughtfully organized to offer a thorough exploration of the conducted 

research. The progression unfolds in a structured manner, delving into various key aspects 

of the study. 

Theoretical Basis of Method: 

Section 4.2, delves into the theoretical foundations that underpin the proposed 

methodology. This includes a detailed explanation of the employment of the wavelet bior 

denoiser (4.2.1) and the denoising autoencoder (4.2.2). The combination of these two 

methods serves as a two-stage process designed to effectively eliminate artifact noise in 

ECG signals, ensuring a high-performance outcome. This section provides a 

comprehensive understanding of the methodologies employed and their synergistic 

application to enhance signal quality. 

 

Data Preparation: 

Section 4.3 focuses on the critical phase of data preparation. The acquired signals undergo 

a meticulous analysis, involving an in-depth examination of signal characteristics and the 

identification of key features inherent in the collected data. This section not only sheds 

light on the nature of the signals under investigation but also offers a detailed analysis of 
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noise behavior within the signal. Understanding these nuances is pivotal for subsequent 

stages in the research. 

 

Training the Model: 

In Section 4.4, the narrative shifts towards the training of the model, a pivotal stage in the 

research journey. The subsequent examination of test results in 4.1.1 provides valuable 

insights into the model's efficacy. This section includes a comparative analysis with 

previous works, establishing a benchmark for the model's performance. By highlighting 

advancements over existing approaches, the novel contributions of this research is 

showcased, offering a deeper understanding of the model's capabilities. 

 

Throughout these sections, the chapter aims to provide a comprehensive and detailed 

account of the research methodology, from its theoretical underpinnings to the practical 

implementation and evaluation. The meticulous structure ensures clarity and coherence, 

allowing readers to navigate through the intricacies of the research process with a clear 

understanding of each stage's significance. 

 

4.2 THEORETICAL BASIS OF METHOD 

 

The ECG waveform serves as a graphical representation of the intricate depolarization and 

repolarization processes within the heart. The His-Purkinje system, known for its 

remarkable conduction velocity of 2-4 m/sec, plays a pivotal role in the rapid transmission 

of electrical impulses through the ventricles, resulting in the swift movement of the QRS 

complex on an ECG and the formation of a QRS loop on a vectorcardiogram [62]. 

Responsible for the expeditious electric conduction in the ventricles, the His-Purkinje 

System (HPS) coordinates the contraction of ventricles, ensuring efficient cardiac pump 

function by relaying electrical impulses from the atrioventricular node to the muscle cells 

[64]. 
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In contrast, the atria exhibit a slower conduction velocity, typically ranging from 0.5 to 1 

m/sec. The activation propagation through the atria gives rise to the P-wave on the ECG or 

the P-loop on the vectorcardiogram. Repolarization, occurring at a much slower rate, 

contributes to the formation of the slow-deflecting T-wave (or T-loop) [64]. The varied 

speeds of wavefront propagation throughout the cardiac cycle correspond to different 

frequency components present in the ECG waves. T-wave content is concentrated within 

frequencies from zero (DC) to 10 Hz, P-wave content exhibits frequencies ranging from 5 

to 30 Hz, and the QRS complex typically encompasses frequencies between 8 to 50 Hz, 

with abnormal ventricular conduction possibly reaching frequencies above 70 Hz, resulting 

in notches on the QRS complex [63]. 

For accurate cardiac vascular disease diagnosis, medical experts require clean and 

complete QRS complexes[64]. This necessity underscores the challenge posed by the 

presence of artifact noise in wearable ECG monitoring devices, which renders the acquired 

signals unsuitable for medical purposes. To address this, I propose a robust method for 

recognizing and classifying artifact noises. Electrode motion artifacts, often induced by 

skin stretching altering the skin's impedance, resemble baseline wander in their signal 

characteristics. These artifacts, prevalent in the frequency range of 1 to 10 Hz, manifest as 

large-amplitude waveforms sometimes mistaken for QRS complexes in the ECG [5]. 

Attempting to remove these noises from the original signal involves reconstructing the 

signal, as traditional filters are ineffective due to the wide-ranging frequency spectrum and 

high amplitude of artifacts. However, my results indicate that reconstruction is not a 

foolproof solution. The substantial noise introduces signal corruption and distortion, 

making it challenging or impossible to achieve successful reconstruction. This highlights 

the complexity and importance of addressing artifact noise in ECG signals for accurate and 

reliable medical diagnosis. 

4.2.1 Wavelet Bior Denoiser 

 

The application of Biorthogonal (Bior) wavelet filters, a subset of wavelet filters, presents 

a powerful approach for mitigating artifact noise in ECG signals through wavelet denoising 
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techniques. Within the realm of wavelet families, biorthogonal wavelets stand out due to 

their distinctive characteristics, featuring one scaling function (father wavelet) and one 

wavelet function (mother wavelet). Unlike other wavelet families such as Daubechies (db) 

or Symlet (sym) wavelets, Bior wavelets demonstrate remarkable proficiency in temporal 

localization, rendering them highly effective in capturing short-duration features or 

transient events within the signal with exceptional accuracy [26]. 

In the context of ECG signals, preserving the sharp, short-duration features, such as the 

QRS complex, is pivotal for accurate diagnosis. While Bior wavelets exhibit remarkable 

time localization capabilities, they display relatively poorer frequency localization 

compared to other wavelet families. This characteristic can present challenges in precisely 

distinguishing between various frequency components within the signal, particularly when 

addressing noise that is concentrated within specific frequency bands [26]. 

The wide frequency support of Bior wavelets, coupled with their proficiency in capturing 

fine temporal details of ECG waveforms, makes them well-suited for preserving diagnostic 

features [26]. MATLAB, a widely used computational tool, offers a dedicated wavelet 

signal denoiser that leverages the strengths of Bior wavelets for mitigating motion artifact 

noise in ECG signals. 

The denoising process involves decomposing the ECG signal into a series of wavelet 

coefficients, each corresponding to different frequencies and time scales. This 

decomposition is facilitated by the wavelet transform, a mathematical technique that serves 

as the foundation for the denoising procedure. The MATLAB wavelet signal denoiser 

employs a judicious thresholding step, eliminating noise coefficients while retaining those 

crucial for representing the ECG signal [84]. The denoised ECG signal is then 

reconstructed based on the retained wavelet coefficients. 

 

The efficacy of the MATLAB wavelet signal denoiser, especially in reducing noise in ECG 

signals, has been substantiated in a study featured in the journal "Computers in Cardiology" 

[65]. In this study [65], the authors examined algorithms designed to filter white Gaussian 

noise and 50 Hz power line noise from ECG signals. Utilizing various wavelets, they 

investigated the impact and efficacy of these wavelet selections on the filtering procedure. 
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Notably, this denoiser surpassed traditional band-pass filters in effectively eliminating 

motion artifact noise from ECG signals. 

Specifically, the Bior 1.1 wavelet filter, a representative of biorthogonal wavelet filters, 

demonstrates its effectiveness in noise removal across a broad spectrum of frequencies. 

Implementing a seven-level decomposition scheme, Bior 1.1 breaks down the signal into 

seven distinct levels of detail. Throughout this process, the lowpass coefficients of the 

initial level of detail are retained, while the high-pass coefficients are discarded. This 

iterative filtration process enhances the adaptability of Bior 1.1 in handling signals with 

diverse frequency components, making it a valuable tool for comprehensive noise removal 

in ECG signals [84]. 

 

 
Figure 4-2. Original ECG signal with artifact noise (blue) vs denoised signal using wavelet signal denoiser (red) 

– 6000 samples. 
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Figure 4-3. Coefficients extracted using MATLAB wavelet signal denoiser (Original vs Denoised ECG signals). 

 

The demonstrated efficacy of the Bior 1.1 wavelet filter in mitigating a spectrum of noise 

types, including baseline wander, muscle noise, and power line interference, highlights its 

robust suitability for comprehensive noise reduction in ECG signals [26]. Employing the 

Bior 1.1 filter and the universal threshold denoising method in MATLAB, with specific 

parameter configurations (level = 6, soft threshold rule, and Q-value = 0.05), the ECG 

signal underwent a processing phase. The results, depicted in Figures 4-2 and 4-3, 

showcase the original and denoised signals alongside the extracted coefficients. The choice 

of a decomposition level of 6 is pivotal, as it enables the signal to be decomposed into six 

distinct levels, facilitating a comprehensive multi-resolution analysis. This analysis, 

conducted to capture details at various scales, strikes a delicate balance between preserving 

relevant signal information and removing noise. The careful consideration of this 

parameter is crucial, as excessively large values risk distorting the signal shape, 

emphasizing the importance of finding an optimal decomposition level. Soft thresholding, 
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a key component of the denoising method, plays a vital role in shaping the denoised signal. 

This technique tends to produce smoother results by aggressively shrinking smaller 

coefficients more than their larger counterparts. Its suitability for signals with sparse 

representations makes it an apt choice for ECG signals, where preserving the integrity of 

the signal's essential features is paramount. The Q-value, another significant parameter in 

this denoising process, exercises control over the threshold value and holds a crucial role 

in distinguishing signal from noise. A lower Q-value corresponds to a higher threshold, 

leading to a more assertive removal of noise. This dynamic interplay between the Q-value 

and thresholding contributes to the precision of the denoising process. 

In the quest for an optimal balance between effective noise reduction and the preservation 

of vital ECG signal features, the chosen characteristics, including the specific filter, level 

of decomposition, soft thresholding, and Q-value, collectively form a tailored approach. 

This approach ensures that the denoising process achieves its goal of enhancing signal 

clarity while mitigating the impact on crucial ECG signal characteristics. 

The primary objective of this processing was to effectively reduce noise levels, particularly 

those characterized by high amplitudes, while simultaneously minimizing any potential 

loss of information within the ECG signal. The next step involves the reconstruction of the 

signal using a DAE to address any alterations that may have occurred during the initial 

filtering phase. 

Within the MATLAB wavelet signal denoiser, I benefit from the flexibility to fine-tune 

parameters, tailoring the noise reduction process to meet specific requirements. For 

instance, should the goal be to further eliminate noise, adjustments such as increasing the 

number of decomposition levels or raising the threshold value can be explored. However, 

it is crucial to note that as these parameters are elevated, there is a simultaneous reduction 

in the level of detail present in the signal, as highlighted in previous studies [26]. 
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4.2.2 Denoising Autoencoder 

 

Autoencoders 

Autoencoders represent a specific class of neural networks widely employed in 

unsupervised learning tasks, with a notable application being denoising. Unsupervised 

learning, synonymous with unsupervised machine learning, involves machine learning 

algorithms analyzing and clustering unlabeled datasets. This process enables the discovery 

of concealed patterns or data groupings without the need for human intervention. In the 

denoising context, autoencoders play a crucial role by learning to reconstruct clean versions 

of noisy input data through the acquisition of a compressed representation of the underlying 

structure. 

MATLAB serves as a convenient environment for the implementation and training of 

autoencoders, facilitating the exploration of various architectures and training strategies. 

The theoretical foundation of autoencoders for denoising is grounded in the principles of 

dimensionality reduction and reconstruction. The fundamental concept involves training 

an autoencoder to encode and decode data with the primary goal of minimizing the 

disparity between the original input and the reconstructed output. This process empowers 

the autoencoder to discern the essential features of the data while effectively filtering out 

undesirable noise. 

Here is a high-level overview of the autoencoder denoising process in MATLAB: 

Data Preparation: 

As a preliminary step, prepare a dataset containing pairs of clean input data and their 

corresponding noisy versions. These paired instances serve as the training set for the 

autoencoder. 

Network Architecture: 

Define the architecture of the autoencoder within MATLAB [83], specifying the number 

and sizes of layers. Typically, an autoencoder comprises an encoder and a decoder, with 

one or more hidden layers facilitating the compression of input data and subsequent 

reconstruction. 

Training: 
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Initiate the training phase by utilizing the noisy input data as both input and target output. 

The training objective is to minimize the disparity between the input and output, 

necessitating the adjustment of network weights and biases through optimization 

algorithms like stochastic gradient descent (SGD). 

Noise Removal: 

Once trained, the autoencoder transforms into a valuable tool for denoising new input data. 

The noisy data is fed into the trained autoencoder, which encodes it into a compressed 

representation before decoding to yield the denoised output. 

The crux of the denoising capability lies in the autoencoder's ability to extract meaningful 

features from noisy input during training. The minimization of reconstruction error ensures 

effective noise filtration, resulting in the production of a clean version of the input. While 

autoencoders, with well-designed architectures and training strategies, exhibit 

effectiveness in denoising tasks, their performance hinges on factors such as the quality 

and diversity of training data, as well as network architecture and hyperparameters. Hence, 

a degree of experimentation and tuning is often requisite to attain the desired denoising 

performance. 

 

Denoising Autoencoders  

 

Motion artifacts pose a significant challenge in the analysis of ECG signals due to their 

wide frequency spectrum, often overlapping with the frequency range of the ECG signal 

itself. Filtering out motion artifacts without inadvertently removing crucial components of 

the ECG signal is a complex task. These artifacts manifest as large-amplitude waveforms, 

occasionally resembling QRS complexes, making it challenging to utilize such samples for 

accurate medical diagnostics. 

In addressing motion artifacts, one commonly used approach involves Denoising 

Autoencoders (DAEs), which are neural network-based denoising techniques. However, 

DAEs are typically chosen for their time-domain denoising capabilities rather than their 

frequency localization characteristics. Unlike wavelet-based methods, DAEs do not 
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inherently possess the ability to precisely identify and isolate noise in specific frequency 

bands (Appendix D). 

Wavelet-based methods, renowned for their dual-domain analysis in both time and 

frequency, offer a contrasting advantage. This becomes particularly crucial when dealing 

with ECG signals contaminated with artifact noise exhibiting specific frequency 

characteristics. Wavelets effectively isolate and attenuate noise components within defined 

frequency bands while preserving essential ECG features. 

In contrast, DAEs focus on learning data-driven representations of signals in the time-

domain, often lacking the precision required for isolating noise in specific frequency bands. 

However, this characteristic aligns with the challenge presented by motion artifacts, which 

have a widespread frequency spectrum. 

DAEs are commonly employed for general noise reduction and feature preservation, 

prioritizing broader applications over precise frequency localization. Within the realm of 

signal processing and image restoration, autoencoders, in general, have gained significant 

popularity. A notable contribution is the denoising autoencoder introduced by Vincent et 

al. [27], which intentionally introduces noise into the initial input data. This unique 

approach enhances the model's resilience by minimizing the discrepancy between output 

and input data. 

 

The DAE stands out as an optimal choice for the reconstruction and denoising of ECG 

signals contaminated with motion artifact noises, owing to several key attributes: 

Non-linearity Handling: 

DAEs excel in capturing non-linear relationships within data. Given the inherent 

complexity of ECG signals and their propensity to exhibit non-linear patterns, the 

application of a DAE becomes particularly effective. This capability allows the model to 

adeptly capture and model intricate features present in the signals. 

Feature Learning: 
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One of the notable advantages of DAEs is their ability to autonomously learn relevant 

features from input data during the training process. In the context of ECG signals with 

motion artifacts, which may display diverse and complex patterns, this feature learning 

capability proves invaluable. The model automatically identifies and adapts to the intricate 

features within the data. 

Robust to Noise: 

The primary objective of a DAE is to reconstruct input signals from their corrupted 

versions, inherently rendering them robust to noise. By learning to reconstruct signals 

despite the presence of motion artifact noises, DAEs effectively contribute to the denoising 

of ECG signals, ensuring the preservation of essential information. 

Adaptability: 

DAEs exhibit a high degree of adaptability to variations in input data, enabling them to 

handle different levels and types of noise. This adaptability is particularly critical when 

working with real-world ECG signals, which may exhibit diverse noise characteristics. The 

model's ability to adapt ensures robust performance across varying signal conditions. 

Reduced Dimensionality: 

The latent representation learned by DAEs not only captures essential information but also 

discards noise. This reduction in dimensionality facilitates a more focused representation 

of the signal, thereby aiding in the effective removal of noise. The model can distill the 

crucial aspects of the signal while minimizing the impact of unwanted artifacts. 

Training on Noisy Data: 

DAEs follow a training paradigm involving noisy input and clean target pairs. This 

approach is instrumental in teaching the model to distinguish between signal and noise. By 

exposing the DAE to a variety of noisy input scenarios during training, the network 
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develops a robust understanding of noise patterns, enabling it to generalize well to denoise 

unseen signals effectively. 

In conclusion, the Denoising Autoencoder emerges as a powerful tool for ECG signal 

denoising, leveraging its capacity to handle non-linearities, learn intricate features, and 

exhibit robustness to noise. These attributes make DAEs well-suited for real-world 

applications, where ECG signals often exhibit complex patterns and may be affected by 

various types of noise, such as motion artifacts. 

4.3 DATA PREPARATION  

The data acquisition and preparation process followed the methodology detailed in Section 

3.2. ECG signals were acquired using the MAX ECG monitoring device, and subsequent 

preprocessing steps were applied to ensure data quality. After preprocessing, the dataset 

was organized and segmented into distinct CSV files based on the corresponding labels 

assigned to each signal. 

Specifically, 6000 samples were selected for analysis, encompassing two main categories: 

clean signals labeled as '4' and signals with artifacts labeled as '77.' This deliberate selection 

allowed for a focused investigation into the variations present in the signals concerning 

bandpower, time-domain features, frequency-domain characteristics, and other relevant 

signal attributes. 

The choice of these specific labels facilitates a targeted exploration of signal differences, 

providing insights into how the presence of artifacts impacts various signal properties. This 

detailed analysis is essential for understanding the effects of artifacts on ECG signals and 

aids in devising effective signal processing and classification strategies. 

Moreover, the segmentation of the dataset into clean and artifact-laden signals enables a 

comparative study, shedding light on the distinctive features associated with each signal 

type. Such an approach is crucial for developing robust algorithms and classifiers capable 

of accurately distinguishing between normal and artifact-affected ECG signals. 

This well-defined dataset, organized by labels, not only streamlines the analytical process 

but also serves as a valuable resource for future studies and benchmarking. The systematic 
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exploration of bandpower, time-domain, and frequency-domain characteristics across these 

carefully selected samples contributes to a comprehensive understanding of the signal 

properties, laying the foundation for informed decision-making in signal processing tasks. 

4.4 TRAINING THE MODEL 

 

Motion artifacts present challenges in ECG signal processing due to their similarity to 

baseline wander, but mitigating these artifacts is a more complex task. The spectral content 

of motion artifacts significantly overlaps with that of the PQRST complex, posing a 

considerable challenge for effective removal. Typically manifesting in the frequency range 

of 1 to 10 Hz, motion-related disturbances in ECG recordings often arise from activities 

such as breathing, minor body movements, and muscle contractions [[70],[71]]. 

While most motion artifacts are found within the 0.1 to 10 Hz range, there are exceptions, 

particularly during vigorous or rapid movements, where the noise may extend beyond 10 

Hz. However, this higher-frequency noise is generally considered less substantial 

compared to the lower frequency range. Notably, in my observations, artifact noises in the 

specific case have been identified reaching up to 100 Hz in frequency, highlighting the 

importance of understanding and characterizing the nature of the movement [[70],[71]]. 

To address the challenge of motion artifact removal, I employed a denoising autoencoder 

implemented in MATLAB. This denoising technique utilizes the principles of 

unsupervised learning and optimization to acquire a condensed representation of the clean 

ECG signal while effectively eliminating noise. During the training phase, the denoising 

autoencoder aims to minimize the loss function, a task typically achieved through gradient-

based optimization methods. To facilitate the training process, MATLAB provides built-

in functions such as 'trainAutoencoder' or 'trainNetwork,' which handle the intricacies of 

backpropagation and parameter updates, streamlining the implementation and training of 

DAEs in MATLAB [83]. 

The denoising autoencoder was trained on a workstation using MATLAB R2022. This 

robust training environment ensures the efficient processing and optimization required for 
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achieving precise reconstruction of ECG signals, free from motion artifacts. The successful 

implementation of denoising autoencoders in MATLAB serves as a valuable tool in 

enhancing the quality of ECG data, especially when confronted with challenges posed by 

motion artifacts. 

Training a DAE involves a series of computational steps, primarily centered around the 

backpropagation of gradients and the subsequent adjustment of model parameters using 

optimization techniques such as gradient descent. This iterative process refines the weights 

and biases of the DAE by considering the gradients of the loss function with respect to 

these parameters. The overarching goal is to iteratively update the model's parameters to 

converge towards values that minimize the loss function, thereby enhancing the denoising 

performance of the autoencoder. 

Gradient descent, a widely employed optimization method in DAE training and various 

other neural network models, plays a pivotal role in this process. It systematically adjusts 

the model's parameters, fine-tuning them to reach optimal values that lead to improved 

denoising capabilities. 

In the specific context of the proposed Denoising Autoencoder, I've chosen the 'satlin' 

transfer function for the encoder and 'purelin' for the decoder. These transfer functions 

define how the input information is transformed at each layer of the autoencoder. 

Additionally, L2 weight regularization with a factor of 0.01 is incorporated to prevent 

overfitting, and sparsity regularization with a coefficient of 4 is applied to encourage 

sparsity in the network.  

Moreover, a sparsity ratio of 0.1 is set to control the level of sparsity within the hidden 

layers of the autoencoder. The architecture of the DAE comprises 75 hidden layers, a 

design choice that can influence the model's capacity to learn complex representations of 

the input data. The training process is executed over a maximum of 500 epochs, allowing 

the model to learn and adapt over multiple iterations. 

The selection of the 'satlin' transfer function for the encoder in the DAE is a strategic choice 

aimed at introducing saturation and enabling the network to learn intricate non-linear 

relationships within the data. This function proves effective in capturing complex patterns 

present in the input signal, thereby enhancing the model's capability to represent the 
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underlying structure of ECG data. On the other hand, the 'purelin' transfer function is 

judiciously chosen for the decoder due to its linear nature, ensuring that the decoder's 

output is a direct linear transformation of the hidden layer. This characteristic facilitates 

the reconstruction of the denoised signal. 

To prevent overfitting, L2 weight regularization is applied, penalizing large weight values. 

The chosen regularization factor of 0.01 strikes a delicate balance between encouraging the 

network to learn meaningful features and preventing it from fitting noise present in the 

training data. This parameter choice aligns with recommendations from MATLAB. 

Sparsity regularization further contributes to the DAE's effectiveness by encouraging the 

learning of sparse representations. With a coefficient of 4, the emphasis is placed on having 

a small number of active neurons in the hidden layers. This promotes a more compact and 

efficient representation of the input signal, as suggested by MATLAB. Additionally, a 

sparsity ratio of 0.1, as recommended by MATLAB, sets the target level of sparsity within 

the hidden layers, aiding in controlling the activation of neurons and promoting a sparse 

representation [83]. 

The decision to incorporate 75 hidden layers in the DAE architecture is deliberate, aiming 

to enhance the model's capacity to learn intricate representations of the input data. A deeper 

network allows for more hierarchical and abstract feature learning, capturing complex 

patterns within the ECG signal. The chosen range of hidden layers, spanning from 25 to 

100, was explored to determine the value yielding optimal performance. 

In terms of training parameters, the DAE undergoes training for a maximum of 500 epochs, 

providing sufficient iterations for the model to adapt and learn from the input data. Notably, 

peak performance is achieved at epoch 56, indicating that the DAE effectively denoises the 

input data. 

It is noteworthy that during training, the performance of the DAE is assessed using a 

performance metric, and in this case, the peak training performance reached 32.5748 at 

epoch 56. This metric serves as a quantitative measure of how well the DAE is denoising 

the input data, with higher values indicating better performance. The epoch at which the 

peak performance is achieved provides insights into the convergence and effectiveness of 

the training process. 
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The training of a Denoising Autoencoder involves a thoughtful selection of parameters, 

transfer functions, and regularization techniques to optimize denoising performance. The 

iterative nature of the process, driven by gradient descent, allows the model to adapt and 

improve its ability to reconstruct clean data from noisy inputs. The specific choices made 

in the proposed DAE, such as the transfer functions and regularization parameters, 

contribute to its unique characteristics and denoising capabilities. 

 

4.4.1 Results and Discussions 

 

Table 4-1 offers a comprehensive overview of attributes associated with various stages of 

ECG signal processing, including the clean signal (labeled as 4), the noisy counterpart 

(labeled as 77), the output after applying wavelet denoising, and the ultimately 

reconstructed ECG signal. This tabulated data serves as a valuable resource for conducting 

direct comparisons, enabling a lucid evaluation of the impact and efficacy of both the 

wavelet filtering (denoising) and DAE stages on the signal. In Table 4-1, “Clean ECG” 

represents the parameters for label 4 samples. “Noisy ECG” represents the label 77 

classified samples using the proposed methods in Chapters 2 and 3. “Filter Output” 

represents the output characteristics for label 77 classified samples applied to the proposed 

Bior wavelet denoiser in this chapter. The “Reconstructed” column represents the final 

results for classified noisy ECG samples after applying the proposed DAE. Finally, 

“Reconstructed Raw ECG” represents the final results for applying all samples of the 

captured raw ECG signal to the denoiser. This comparison shows how the results could 

differ without classifying the artifact noise and without applying the proposed models from 

Chapters 2 and 3.  

Notably, the "77" labeled segment in the Table 4-1 exhibits the highest peak value, 

indicative of artifact noise and notable amplitude signal fluctuations. The kurtosis value, a 

statistical measure of the shape of the signal distribution, is found to be lowest in the Noisy 

ECG segment (8.8788). This reduction in kurtosis suggests the presence of irregular and 
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spurious peaks introduced by artifact noise, leading to deviations from the expected 

distribution of a clean ECG signal. 

As demonstrated in Table 4-1, the kurtosis value for the reconstructed raw ECG is 10.8192, 

which is smaller than that of the clean signal, indicating the presence of outliers or non-

normally distributed data points. The bandpower in the 0.45 – 10 Hz range for the 

reconstructed raw ECG is 20.08%, which is close to the 21.31% for the noisy signal. 

Additionally, other parameters in Table 4-1 indicate distortion and the presence of artifact 

noise in the reconstructed raw ECG signal. 

Artifact noise in ECG signals can manifest as irregular peaks or distortions, resulting in 

non-Gaussian behavior in the data distribution. Unusual kurtosis values may signify the 

presence of outliers or non-normally distributed data points, often attributed to the 

influence of noise. Different types of artifact noise may exhibit distinct patterns in kurtosis. 

For instance, muscle movement artifacts may introduce sharp, non-Gaussian peaks, while 

baseline drift could lead to a flatter distribution with low kurtosis. 

The clearance factor, measuring the separation between the QRS complex and the baseline 

of the ECG signal, is a vital parameter. A high clearance factor indicates a well-separated 

QRS complex, while a low clearance factor suggests poor separation. Artifact noise can 

impede this separation, as it introduces high-frequency components to the ECG signal, 

obscuring the QRS complex. 

Samples with artifact noises were classified in Chapters 2 and 3, and these classified 

samples were then applied to the denoising method proposed in this chapter. Additionally, 

the raw dataset was applied to the trained Denoising Autoencoder (DAE), and the results 

are demonstrated in Table 4-1. The column “Reconstructed raw ECG” shows the results 

for the proposed DAE using the whole raw ECG signal samples without classifying the 

artifact noise. The column “Reconstructed” shows the final results for the proposed system 

where classified ECG samples with artifact noise were applied to the proposed model. 

Comparing these two columns shows that classifying artifact noises using 3-axis 

accelerometer and ECG signals before applying the denoising method significantly 

enhances the denoising performance of the DAE. Below is a detailed explanation of the 

rationale behind my approach and its potential impact on the results: 
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Rationale for Classifying Artifact Noise Before Using DAE 

Targeted Denoising: 

By classifying and isolating the artifact noise first, I ensured that the DAE specifically 

targets the noisy segments of the signal. This approach allows the DAE to focus its learning 

and reconstruction capabilities on the parts of the signal that need the most attention, rather 

than applying a generalized denoising process to the entire signal. 

 

Signal Preservation: 

Applying the DAE to the entire signal, including the clean segments, could potentially 

distort the already clean parts of the ECG. By classifying the noise first, the clean sections 

of the signal are preserved in their original state, ensuring that the integrity of the true ECG 

signal is maintained. 

 

Improved DAE Performance: 

The DAE can be more effectively trained when it is provided with examples that are 

specifically noisy. The learning process becomes more efficient as the autoencoder learns 

to differentiate between noise patterns and true signal patterns. This targeted training can 

lead to better reconstruction performance compared to a generalized approach. 

 

Reduced Computational Load: 

By classifying and only applying the DAE to the noisy segments, the computational burden 

is reduced. This makes the process more efficient as the DAE does not need to process the 

entire signal, only the portions identified as problematic. 

 

Potential Impact on Results 

Using the DAE on the entire signal without prior classification might lead to the following: 

 

Generalized Denoising: 
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The DAE might apply a generalized denoising effect across the entire signal. While this 

could still reduce noise, it might also inadvertently alter parts of the signal that were already 

clean, potentially leading to a loss of important ECG features. 

 

Lower Precision: 

The precision in removing noise may decrease because the DAE would need to distinguish 

between noise and signal within the entire dataset simultaneously, which is a more complex 

task compared to focusing solely on the noisy segments. 

 

Potential Overfitting: 

Without classification, the DAE might overfit to patterns that are not representative of 

noise, especially if the noise patterns are sparse compared to the overall dataset. 

 

By first classifying the artifact noise in the ECG signals, I ensured that the DAE could 

operate more effectively and efficiently, preserving the clean parts of the signal while 

focusing its denoising capabilities where they were most needed. This step-wise approach 

not only improved the quality of the reconstructed signal but also maintained the integrity 

of the original ECG data, which is crucial for accurate analysis and diagnosis.Figure 4-4 

demonstrates the proposed block diagram to extract characteristics in Table 4-1. 

Considering the frequency domain, artifact noise is known to be prevalent within the 0.45 

- 10 Hz bandwidth. The "Band-power" value in Table 4-1 represents the percentage of 

signal power within this frequency range relative to the total signal power spanning from 

0 to 62.5 Hz. As anticipated, the presence of artifact noise is reflected in an increased band-

power (0.45-10 Hz), rising from 15.83% in the clean signal to 21.31% in the noisy signal. 

It is crucial to acknowledge that the occurrence of artifact noise can vary across different 

frequency ranges, contingent on the speed of body movement. The comprehensive insights 

provided by these attributes in Table 4-1 serve as a foundation for a nuanced understanding 

of the signal characteristics and the effectiveness of denoising techniques in mitigating the 

impact of artifacts on ECG data. 
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Table 4-1. An overview to characteristics of clean, noisy, filter output and final reconstructed ECG signals and 

reconstructed raw ECG signal. 

Parameter Clean ECG 

(label4) 

Noisy ECG 

(label77) 

Filter 

Output 

Reconstructed Reconstructed 

raw ECG 

Mean (µV) -59.8197 -60.4043 -60.2214 -60.0818 -60.3823 

Peak Value (µV) 1586 2024 1761 1624 2083 

RMS (µV) 306.2112 441.8252 381.6869 312.7667 418.5652 

STD (µV) 298.7792 437.7131 386.3333 299.7861 399.1458 

Median (µV) -56 -64 -64.4375 -56.901 -61.2153 

Shape Factor 2.0316 1.7799 1.8895 1.9789 1.7968 

Kurtosis 15.5691 8.8788 9.6195 12.7252 10.8192 

Clearance 

Factor 

15.6746 11.8628 14.0608 15.5307 13.0791 

Band-Power 0.45 

–10 Hz (%) 

15.83 21.31 19.28 17.46 20.08 

 

An innovative two-stage algorithm has been developed to address artifact noise in ECG 

signals, aiming to enhance signal quality without compromising underlying information.  

 

 
Figure 4-4. Proposed DAE block diagram employed to demonstrate characteristics of clean, noisy, filter output 

and final reconstructed ECG signals in Table 4.1. 
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The initial stage of the algorithm employs a Bior wavelet denoiser to effectively filter the 

signal. This step is crucial for reducing noise while preserving the essential features of the 

ECG waveform. However, some portions of the signal are deformed by artifact noise and 

cannot be fully denoised. In the subsequent stage, the proposed Denoising Autoencoder 

(DAE) is applied to further reconstruct the signal, enhancing the quality of the denoised 

output.  

Table 4-2 Performance characteristics of proposed DAE model. 

RMSE Input SNR (dB) Output SNR (dB) 

0.0058 21.9 24.67 

 

As it is demonstrated in Table 4-2, the performance evaluation of the denoising 

autoencoder yielded a RMSE of 0.0058, indicating a high level of accuracy in the 

reconstruction process. Additionally, the output noise level was measured at 24.67 dB, 

affirming the algorithm's proficiency in reducing unwanted artifacts. 

Before application of the algorithm, the ECG signal, originally plagued by artifacts labeled 

as "77," exhibited a SNR of 21.9 dB. However, the proposed algorithm led to a significant 

improvement, increasing the SNR at the output by 2.77 dB. This enhancement underscores 

the effectiveness of the two-stage approach in reducing noise and enhancing the overall 

signal quality. 

To visually represent the impact of the algorithm, Figure 4-5 provides PSD diagrams for 

the clean, noisy, and ultimately reconstructed ECG signals. The diagrams vividly illustrate 

that the majority of fluctuations initially occurred within the 0-30 Hz bandwidth. However, 

after the application of the Bior wavelet denoiser and the Denoising Autoencoder, a 

substantial portion of these fluctuation components has been successfully eliminated, as 

evidenced by Figure 4-5(b). 

The proposed two-stage denoising and reconstructing algorithm demonstrates its efficacy 

in mitigating artifact noise in ECG signals. The combination of the Bior wavelet denoiser 

and the Denoising Autoencoder results in a notable improvement in signal quality, as 

indicated by quantitative measures such as RMSE and SNR, as well as through visual 
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representations of Power Spectral Density diagrams. This algorithm holds promise for 

applications where accurate ECG signal analysis is paramount. 

 

 

 

 
Figure 4-4. Power spectral density diagrams of (a). clean, b. noisy and c. filtered/reconstructed final ECG signal. 
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In contrast to the aforementioned studies in Section 1.1.1, Table 2-1, this work 

distinguishes itself by concentrating on the reduction of artifact noise, a type of interference 

identified through a machine learning classification system. Motion artifacts, in particular, 

introduce noise across a broader frequency spectrum, posing a unique set of challenges. In 

this context, the proposed two-stage algorithm has demonstrated superior performance in 

terms of SNR ratio (12.64%) improvement and RMSE (0.0058), underscoring its 

effectiveness in addressing the complexities associated with artifact noise. The two-stage 

algorithm not only enhances the SNR but also mitigates RMSE, showcasing its robustness 

in handling diverse noise sources that can be encountered in real-world signal processing 

scenarios. This distinction positions my approach as a promising solution for applications 

where artifact noise poses significant challenges in signal analysis and interpretation. 

4.5 SUMMARY 

In this chapter, a novel approach was introduced, presenting a fusion of DAE with wavelet 

denoising techniques to proficiently eliminate artifact noises from ECG signals. This 

innovative method harnesses Bior wavelet denoising to address high-amplitude noise 

within recorded ECG signals, particularly in the presence of artifacts. Following the 

application of Bior wavelet denoising, the filtered signal is reconstructed using the 

proposed denoising autoencoder. 

The efficacy of this integrated technique has yielded promising results, as evidenced by a 

remarkably low RMSE value of 0.0058 and a substantial improvement in SNR by 12.64%. 

These outcomes signify a significant enhancement, highlighted by an average output SNR 

of 24.67 dB. Such improvements ensure the precise assessment of finer details within ECG 

signals, including ST-segment changes and T-wave abnormalities. 

These encouraging findings pave the way for the potential application of the proposed 

technique as a robust artifact noise removal tool in vital sign monitoring devices. Beyond 

ECG signals, this approach holds promise for implementation in diverse vital sign 

monitoring contexts, such as EEG and PPG. The incorporation of this model into these 
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devices has the potential to greatly enhance the accuracy and reliability of vital sign 

measurements by effectively filtering out unwanted noises with wide-ranging frequency 

components. 

As part of future research endeavors, the scope of the proposed method will be extended 

to EEG and PPG signals, acknowledging the diverse nature of noise in these signals. 

Comprehensive experiments in real-world settings will be conducted to evaluate the 

robustness of this approach and explore any potential limitations that may arise in practical 

scenarios. This expansion of the research agenda aims to further validate and refine the 

proposed method, ensuring its applicability across a broader spectrum of vital sign 

monitoring applications. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

 

This chapter serves as a comprehensive overview of the contributions discussed in 

preceding chapters and outlines potential avenues for future research within the scope of 

the dissertation. The primary focus of this thesis has been the exploration of innovative 

methods for the recognition and classification of samples containing artifact noises within 

ECG signals. In pursuit of this objective, a KNN model has been introduced and trained 

utilizing features extracted through the application of the wavelet scattering transform. 

Notably, feature extraction has been conducted not only on ECG signals but also on 3-axis 

accelerometer signals, contributing to a more holistic understanding and classification 

capability. 

The thesis proposes a two-step methodology for denoising artifact-laden samples, 

leveraging a fine-KNN classification model. The denoising process involves the 

application of a Bior wavelet filter followed by the implementation of a DAE for signal 

reconstruction. This intricate approach aims to enhance the accuracy and reliability of the 

classification process by mitigating the impact of artifact noises in the signal. 

Preliminary results have yielded promising outcomes, showcasing a high accuracy rate in 

the classification of samples. The effectiveness of the fine-KNN model, coupled with the 

denoising steps, underscores the robustness of the proposed methodology in handling 

artifacts and enhancing the overall signal classification process. 

Moving forward, there exist several avenues for future work in this domain. Firstly, further 

exploration of different wavelet bases and filter configurations in conjunction with the 

wavelet scattering transform could be undertaken to optimize feature extraction for specific 

artifact types. Additionally, the fine-tuning of hyperparameters within the KNN model and 

the denoising components could potentially elevate the performance even further. The 

extension of the methodology to address real-time applications and scalability 

considerations is another compelling direction for future research. 

The culmination of efforts presented in this thesis lays the groundwork for a sophisticated 

approach to recognizing and classifying samples with artifact noises in ECG signals. The 
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promising results underscore the potential applicability of the proposed methodology in 

real-world scenarios and motivate ongoing research endeavors to refine and extend the 

current framework. 

 

5.1 MAIN CONTRIBUTIONS 

 

 

Chapter 2 introduced the first significant contribution, unveiling a fine-KNN classification 

model trained with features derived from the wavelet scattering transform applied to 3-axis 

accelerometer signals. The exploration of time-domain and frequency-domain aspects of 

ECG signals enables the detection and analysis of motion artifacts in ECG samples. These 

signals, captured during various activities, bear resemblance to HAR systems. To assess 

the proposed model's efficacy, performance metrics such as PPV and test accuracy are 

employed. Comparative analysis with previous works underscores the model's high 

accuracy in recognizing artifact noise solely through captured 3-axis accelerometer signals. 

This versatility positions the proposed method as applicable to a spectrum of vital sign 

signals beyond ECG. 

In Chapter 3, the second contribution builds upon the fine-KNN model by incorporating 

both ECG and 3-axis accelerometer signals. This hybrid approach harnesses a KNN 

machine learning model, leveraging wavelet scattering coefficients extracted from both 

accelerometer and ECG signals. The model's performance is rigorously evaluated, 

revealing promising results with high test accuracy and PPV, particularly in effectively 

handling samples marked with artifact noises (labeled as "77"). 

The third contribution, outlined in Chapter 4, introduced a robust two-step motion artifact 

denoising method. This innovative approach combines DAE with wavelet denoising 

techniques to efficiently eliminate artifact noises from ECG signals. The proposed 

methodology incorporates Bior wavelet denoising to address high-amplitude noise 

prevalent in ECG samples identified as having motion artifacts. Subsequently, the filtered 
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signal undergoes reconstruction using the proposed DAE. Performance evaluation 

showcases promising results, marked by a remarkably low RMSE value and a substantial 

enhancement in SNR. These outcomes signify a noteworthy improvement, ensuring the 

precise assessment of finer details within ECG signals, such as ST-segment changes and 

T-wave abnormalities. This robust denoising technique holds significant promise for 

advancing the accuracy and reliability of ECG signal analysis, especially in scenarios 

where motion artifacts pose challenges to signal interpretation. 

 

5.2 FUTURE WORK 

 

 

The motion artifact classification methods and the two-step denoising approach proposed 

in this thesis are pivotal for the precise assessment of intricate details within ECG signals. 

These methods specifically enable accurate analysis of ST-segment changes and T-wave 

abnormalities. The promising results suggest that the proposed method could serve as a 

robust tool for artifact noise removal in various vital sign monitoring devices, including 

EEG, PPG, and ECG. Integrating this model into such devices holds significant potential 

to enhance the accuracy and reliability of vital sign measurements by effectively filtering 

out unwanted noises with diverse frequency components. 

 

Rationale for Using a Single Dataset 

Data acquisition in this research involved capturing a single dataset as explained. Using 

one dataset allowed me to thoroughly analyze and fine-tune my methods without the 

complexities and variations that come with multiple datasets. This focused approach 

ensured that I could meticulously control and understand the variables and conditions 

affecting the ECG signals and the introduced motion artifacts. 
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Ensuring Robustness and Validity 

To ensure that the limitations of using a single dataset did not affect the classification 

results, I validated my dataset against a larger and more diverse dataset from Physionet 

[87], as detailed in section 2.2. This comparative analysis demonstrated that the 

characteristics and noise patterns in my dataset were consistent with those found in the 

Physionet dataset, thereby affirming the validity and robustness of my results. The 

comparable performance between the two datasets provided confidence that my single 

dataset was representative and sufficient for the initial development and testing of my 

methods. 

To build a more robust model in future work, I will capture additional datasets that include 

a wider variety of activities, such as punching and jumping. These activities are expected 

to introduce different types and intensities of motion artifacts in the ECG signal. By 

incorporating these new datasets, I aim to: 

Enhance Reliability: Validate the model across a broader range of motion artifacts, 

ensuring that it performs well under diverse conditions. 

Improve Performance: Fine-tune the model to handle more complex and varied noise 

patterns, leading to better artifact classification and signal reconstruction. 

Increase Robustness: Ensure that the model can generalize well across different scenarios 

and types of physical activities, making it more adaptable for real-world applications. 

 

Integration with Wearable ECG Monitoring Devices 

All proposed methods are designed for wearable ECG monitoring devices. Running 

machine learning algorithms requires hardware resources, and the initial idea was to use 

mobile phones as the processing core. This approach allowed me to achieve high test 

accuracy while keeping processes and resource demands limited. In the future, capturing 

more diverse datasets will further improve model accuracy and robustness, making it more 

suitable for integration into various wearable devices. This expansion will ultimately 

enhance the reliability and performance of vital sign monitoring systems, ensuring they can 

effectively filter out unwanted noises and provide accurate measurements in real-

time.Expanding Applications and Real-World Testing 
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Future research will aim to extend the application of the proposed method to EEG and PPG 

signals, considering the unique noise profiles encountered in these signals. Additionally, 

comprehensive experiments in real-world settings are planned to assess the robustness of 

the approach and identify potential limitations in practical scenarios. This exploration 

opens up numerous avenues for future work in this domain. 

 

Exploring Different Activities 

Another approach involves testing the system with various activities to increase robustness 

and determine which activities generate higher artifact noises. This will help in refining the 

classification methods to handle a wider range of scenarios. 

 

Optimization and Adaptation 

Exploring different wavelet bases and filter configurations in tandem with the wavelet 

scattering transform could optimize feature extraction for distinct types of artifacts, 

enhancing the method's adaptability and effectiveness. Additionally, fine-tuning the 

hyperparameters within the KNN model and the denoising components presents an 

opportunity to further improve performance. 

 

Real-Time Applications and Scalability 

Extending the methodology to real-time applications is a compelling direction for future 

research. Real-time applications pose unique challenges, requiring algorithm adaptations 

to ensure timely and accurate signal processing. Scalability considerations are also 

paramount as the proposed method advances towards broader implementation and usage. 

The combination of advanced motion artifact classification, two-step denoising, and the 

exploration of different configurations opens up new horizons for applying this 

methodology in vital sign monitoring. Continuous refinement through optimization, real-

world experimentation, and addressing scalability concerns positions this research at the 

forefront of advancements in signal processing for healthcare applications. 
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APPENDIX A – WAVELET SCATTERING TRANSFORM 

The wavelet scattering function is composed of both a mother wavelet and a father wavelet. 

In this specific application, it is opted for the Morlet wavelet, defined by equation 2.1, to 

serve as the mother wavelet. The choice of the Morlet wavelet was driven by its well-

established properties in signal processing and its effectiveness in capturing both temporal 

and frequency information in a signal. The Morlet wavelet is a complex wavelet that 

combines sinusoidal oscillations with a Gaussian window. This characteristic makes it 

particularly suitable for applications like feature extraction in ECG signals, where 

capturing both time and frequency aspects is crucial. The oscillatory nature of the Morlet 

wavelet allows it to efficiently represent periodic patterns in the signal, while the Gaussian 

window contributes to its ability to localize features in both time and frequency domains. 

By incorporating the Morlet wavelet into the wavelet scattering function, the resulting 

feature extraction process gains the advantages of a multi-scale representation. The Morlet 

wavelet's flexibility in handling different scales contributes to a more comprehensive 

analysis of the signal, making it robust against noise and enhancing the discriminatory 

power of the extracted features. It is worth noting that the choice of the mother wavelet can 

significantly impact the performance of the wavelet scattering transform. Different 

wavelets may be better suited for specific types of signals or noise characteristics. 

Therefore, the selection of the Morlet wavelet in this context is a thoughtful decision, 

aligning with its strengths in preserving signal features and mitigating the effects of noise. 

The incorporation of the Morlet wavelet as the mother wavelet in the wavelet scattering 

function enhances the feature extraction process, especially in applications dealing with 

ECG signals. This choice reflects a strategic consideration of the wavelet's characteristics, 

emphasizing its ability to capture intricate patterns in both time and frequency domains, 

ultimately contributing to a robust and informative representation of the underlying signal. 

( )  =  ( − ) ( | | )                                                                                 (2.1) 

 

In the context of wavelet analysis, where ω represents frequency, σ is a measure of support, 

μ denotes scale, ψ is the wavelet function, and C1/C2 are constants, obtaining a locally 
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translation-invariant descriptor can be achieved by employing a time average, as illustrated 

in equation 2.2. The variable ϕ corresponds to the low-pass filter, while x represents the 

signal under analysis. The application of equation 2.2 serves to eliminate high-frequency 

components, which can later be recovered through the wavelet modulus operation. The ϕ(t) 

component of the equation acts as the low-pass filter, facilitating the derivation of locally 

translation-invariant descriptions of the signal x at a predefined scale of t. It is noteworthy 

that each family of wavelets is denoted by λm, and these wavelets exhibit an octave 

frequency resolution of Qm. To further enhance the analysis, high-pass filter banks can be 

constructed by dilating the wavelet function ψ. This dilation process allows for the creation 

of filter banks that capture varying frequency components, contributing to a more 

comprehensive representation of the signal x. The resulting locally translation-invariant 

descriptors, coupled with the octave frequency resolution provided by the wavelet families, 

empower the analysis of signals in diverse scales and frequency bands. The interplay of 

wavelet functions, low-pass filters, and high-pass filter banks, along with the incorporation 

of locally translation-invariant descriptors, forms a robust framework for the analysis and 

representation of signals, offering adaptability to different scales and frequency 

resolutions. 

| | = ∗  ϕ | ∗  ψλ  |                                                                                               (2.2) 

In the context of wavelet scattering transform, the first order of scattering coefficients is 

characterized by equation 1.3. This equation serves the purpose of quantifying the average 

signal amplitude within the frequency interval defined by ψλ1. The first-order scattering 

coefficients play a pivotal role in providing a fundamental representation of the signal's 

characteristics. Specifically, they capture essential information about the signal's amplitude 

distribution within the range spanned by the mother wavelet function ψλ1. This 

measurement is crucial for discerning patterns and features in the signal at a particular 

frequency scale, laying the groundwork for subsequent stages of the scattering transform. 

It is important to note that the choice of the wavelet basis function ψ and its associated 

scale parameter λ1 significantly influences the characteristics of the first-order scattering 

coefficients. The flexibility in selecting different wavelets enables adaptability to diverse 

signal structures and facilitates the extraction of relevant features across various frequency 
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bands. As we delvinge into the realm of wavelet scattering, the comprehensive nature of 

the first-order coefficients becomes apparent. Beyond merely measuring average signal 

amplitudes, they contribute to a richer understanding of the signal's frequency content and 

distribution. This nuanced representation proves advantageous, especially when confronted 

with signals embedded in noisy environments or exhibiting complex patterns. Furthermore, 

the first-order scattering coefficients lay the foundation for higher-order coefficients, 

fostering a hierarchical feature extraction approach. The subsequent orders build upon the 

initial measurements, capturing increasingly intricate details of the signal's behavior across 

multiple scales.  

( , λ ) = | ∗  ψλ  | ∗  ϕ                                                                                                (2.3) 

To compute the second-order scattering coefficients, it is necessary to iterate through the 

previously outlined steps for each term |x * ψλ1|, as defined in equation 2.4. This involves 

an extension of the initial wavelet transform process, where the signal x is convolved with 

the wavelet function ψ at a particular scale λ1. The resulting modulus of the convolution, 

denoted as |x * ψλ1|, serves as the basis for further computations.   Expanding on this, the 

second-order scattering coefficients involve a cascaded application of the wavelet 

transform to the aforementioned modulus |x * ψλ1|. For each scale λ2, this process is 

repeated, leading to an enhanced representation that captures intricate details at multiple 

scales. The hierarchical nature of the second-order scattering coefficients allows for a more 

nuanced understanding of the signal, particularly beneficial when dealing with complex 

data such as ECG signals. Moreover, the repeated application of the wavelet transform at 

different scales contributes to the robustness of the feature extraction process. It enables 

the identification and preservation of significant signal components while mitigating the 

impact of noise, a crucial aspect when working with real-world data that often contains 

various artifacts. To derive the second-order scattering coefficients, the methodology 

involves a systematic application of the wavelet transform to the modulus of the signal 

convolved with the wavelet function at each scale. This hierarchical approach enhances the 

feature extraction process, providing a more comprehensive representation of the signal's 

characteristics. The iterative nature of the computation ensures a thorough exploration of 
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multiple scales, contributing to the effectiveness of the scattering transform in capturing 

and discriminating features in the presence of noise. 

( , λ ) = | ∗  ψλ  | ∗ | ψλ  | ∗  ϕ                                                                                                (2.4) 

S0x, S1x, and S2x denote the 0th order (corresponding to the low pass filter or time 

average), 1st order, and 2nd order scattering coefficients, respectively.  

Moreover, the application of modulus nonlinearities enhances the stability of the transform, 

making it less sensitive to amplitude variations and noise. This feature is particularly 

valuable when dealing with real-world time series data that often exhibit fluctuations and 

interference. The incorporation of lowpass filters aids in capturing the low-frequency 

components of the signal, ensuring a comprehensive representation that includes both high 

and low-frequency information. In practical terms, the wavelet scattering transform proves 

advantageous for processing time series data, such as ECG, where robust feature extraction 

is essential for accurate analysis. Its shift-invariance and stability against deformations 

make it well-suited for scenarios where signals may undergo temporal distortions or 

variations. Furthermore, the low-variance features extracted by the transform serve as 

valuable inputs for machine learning and deep learning models, facilitating tasks such as 

classification and anomaly detection. The wavelet scattering transform, with its unique  

oefficientn of wavelet cascades, modulus nonlinearities, and lowpass filters, stands out as 

a powerful tool for extracting robust features from time series data. Its applicability to 

various domains, including healthcare for ECG analysis, underscores its versatility and 

effectiveness in capturing intricate signal characteristics. 

The invariance scale in wavelet scattering networks has the potential to be notably large, 

primarily influenced by the average operation determined by the low-pass filter. This scale 

of invariance is a critical parameter, as the scattering wavelet network exhibits translation 

invariance up to this specific scale. This property makes it particularly robust in capturing 

patterns and features that may undergo translations within a certain range.The wavelet 

scattering decomposition further extends its utility by effectively capturing variations in 

both duration and amplitude within accelerometer signals. This is crucial in applications 

such as signal processing for accelerometers, where changes in both temporal and intensity 

aspects of the signal carry valuable information. 
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The process of obtaining higher-order wavelet scattering coefficients (m ≥ 2) involves 

iterating the previously described procedure, as outlined in Equation 1.5. This iterative 

approach enables the extraction of increasingly complex and nuanced features from the 

signal. To elaborate further, each order of scattering coefficients provides unique insights 

into the signal's characteristics at different scales. The 0th order captures the low-frequency 

components or overall trends, the 1st order focuses on finer details and transitions, while 

the 2nd order delves even deeper into the signal's intricacies. The iterative application of 

the scattering transform enhances the feature extraction process, allowing for a more 

comprehensive representation of the signal's hierarchical structure. Additionally, the use 

of wavelet scattering is particularly advantageous when dealing with signals that exhibit 

noise or artifacts. The multi-scale nature of the transform aids in discerning genuine signal 

patterns from undesired interference, contributing to the robustness of the extracted 

features. Equation 2.5 serves as a guide for extending the feature extraction process to 

higher orders, emphasizing the adaptability and versatility of the wavelet scattering 

transform in capturing the diverse and complex characteristics present in signals. This 

comprehensive approach to feature extraction is beneficial in applications such as signal 

processing, where a nuanced understanding of the signal's composition is crucial for 

subsequent analysis and classification tasks. 

( , λ , … , λ  ) = | ∗  ψλ  | ∗ | ψλ  | … ∗ | ψλ  | ∗  ϕ                                            (2.5) 
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APPENDIX B – WAVELET SCATTERING IN MATLAB 

The waveletScattering function is utilized to construct a Wavelet Scattering Transform 

network (sn1) with specific parameters tailored for robust signal analysis. The key 

parameters include: 

• Signal Length: Specifies the length of the input signal (X1) with 36462 samples. 

• Invariance Scale: Sets the invariance scale to 40 seconds, determining the analysis 

window size and temporal resolution of scattering coefficients. 

• Sampling Frequency: Defines the sampling frequency of the input signal (X1) as 104 Hz. 

• Q1 and Q2: Represent the number of wavelet filters at the first and second layers of the 

scattering transform, respectively. In this instance, Q1=8 and Q2=1, indicating two filter 

banks—zeroth and first order filter banks. 

Following the construction of the Wavelet Scattering Transform network, the 

featureMatrix function is employed to compute scattering coefficients for each path 

through the scattering tree. The input signal (X1) with a signal length of 36000 samples 

produces the XS1 matrix. This resulting matrix is of size 261x36, where 261 denotes the 

number of paths through the scattering tree, and 36 signifies the number of coefficients at 

each scale. 

The mathematical computation of the scattering coefficients unfolds through several steps: 

1. Convolution with Wavelet Filters: The input signal undergoes convolution with a set of 

wavelet filters at the first layer, yielding low-pass and high-pass filtered signals. 

2. Downsampling: The low-pass filtered signals are downsampled by a factor of 2, and the 

high-pass filtered signals undergo another set of wavelet filters at the second layer, 

generating 1st-order scattering coefficients. 

3. Second-Order Scattering Coefficients: The 1st-order scattering coefficients undergo 

downsampling by a factor of 2 and pass through a modulus operation to compute second-

order scattering coefficients. It is noted that only zeroth and first order scattering 

coefficients are present in this specific case. 

4. Path Iteration: The entire process is repeated for each possible path through the 

scattering tree, resulting in a set of 261 paths for the network. 
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5. Magnitude Computation: The magnitude of the resulting scattering coefficients is 

computed and stored in the XS1 matrix. 

In summary, the wavelet scattering technique, coupled with the described mathematical 

computations, provides a comprehensive and robust feature extraction method for signals, 

especially in scenarios involving noisy data such as ECG signals. The resulting scattering 

coefficients, stored in the XS1 matrix, capture essential information at different scales, 

contributing to effective signal analysis and subsequent applications, such as classification 

using a KNN classifier. 

 

Number of Coefficients 

To calculate the total number of coefficients in the waveletScattering transform, MATLAB 

employs a formula based on the provided parameters. The formula is expressed as follows: 

ncf = 2 + 2 × (Q1 x Q2 + Q2
2 ) × J × log (SignalLength ×  SamplingFrequency /

 InvarianceScale) 

where ncf represents the number of coefficients, and the variables are defined as follows: 

• Q1 and Q2: Quality factors of the two wavelet filter banks used. 

• J: Wavelet scales used in the transform (40 seconds windows). 

• SignalLength: Length of the input signal in samples. 

• SamplingFrequency: Sampling frequency of the input signal in Hz. 

• InvarianceScale: Invariance scale of the scattering coefficients in seconds. 

 

Substituting the provided values into the formula, I obtain: 

ncf = 2 + 2 × (1 × 8 + 8 × 8) × 40 × log2(36462 × 104 / 40) 

ncf = 36 
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Scattering Paths 

The formula to calculate the number of unique scattering paths involves the number of 

possible combinations of scattering orders, filters, and delays that can be applied to the 

input signal. The formula for the number of unique scattering paths for a given signal length 

N, invariance scale T, and a filter bank of Q filters is: 

M = Q × (Q − 1) /  

Plugging in the values from the provided MATLAB algorithm, I get: 

M = 8 × (8-1) (log2(36462/40)) = 261.0171 

Therefore, MATLAB calculates the number of unique scattering paths to be 261. 
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APPENDIX C – MACHINE LEARNING  

KNN Classifier 

The Euclidean distance function is a fundamental metric used to quantify the distance 

between two points in a two-dimensional plane. For two points with coordinates (x, y) and 

(a, b), the Euclidean distance (dist) is calculated as follows: 

 

( , ), ( , ) =  ( − ) + ( − )                      (2.6) 
 

In the context of the K-nearest neighbors (KNN) algorithm, this distance measure plays a 

crucial role. The algorithm identifies the K-nearest neighbors of a given data point, where 

K is a predefined value. Subsequently, the class assignment for the data point is determined 

by selecting the class with the highest count among the K neighbors. Mathematically, this 

can be expressed as: 

 ( =  | = ) =  ∑  ( ( ) ∈ = )                                                       (2.7)    

 

S ( =  | = ) represents the probability of the data point belonging to class j, a 

denotes the set of K-nearest neighbors, and I is the indicator function. 

In the specific case of the fine-KNN classifier, only one neighbor is considered for 

distinguishing data points. The Euclidean distance for fine KNN is expressed by the 

following equation: 

= ∑ ( − )                                     (2.8) 
 

In this equation, n represents the number of values in each sample vector, and X1 and X2 

denote input samples. The fine-KNN classifier thus utilizes a simplified distance metric, 

considering the individual components of the sample vectors. It is worth noting that the 

choice of distance metric, such as the Euclidean distance, and the value of K are crucial 

parameters in the performance of the KNN algorithm. Fine-tuning these parameters is often 

necessary to achieve optimal classification results in diverse applications. 
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The KNN algorithm stands out for its commendable performance in effectively classifying 

noises during model training, particularly in the realm of ECG and accelerometer signal 

processing. This efficacy is notably evident in scenarios involving activities that introduce 

noise into the ECG signal, such as clapping. The success of KNN in these applications can 

be attributed to several inherent characteristics that enhance its adaptability and robustness.   

Localized Decision Boundaries: 

KNN operates on the principle of proximity in feature space. This proves advantageous 

when confronted with intricate and complex decision boundaries. The algorithm excels in 

creating localized decision boundaries based on the nearest neighbors. In the context of 

artifact noise classification, where patterns may exhibit variations across different sections 

of the feature space, KNN’s ability to adapt to local patterns enhances its performance. 

 

Non-Parametric Nature: 

KNN is a non-parametric algorithm, implying that it refrains from making assumptions 

about the underlying data distribution. This characteristic lends itself well to applications 

involving diverse and dynamic patterns, a common scenario in artifact noise classification. 

The algorithm’s flexibility enables it to handle varying data distributions without imposing 

rigid assumptions. 

Feature Interactions: 

In scenarios where both ECG and accelerometer signals are involved, the interactions 

between features can be intricate. KNN excels in capturing complex feature interactions 

without imposing strict assumptions about the relationships between features. This 

adaptability is crucial in applications where the relationships between different signal 

components play a significant role in accurate classification [61]. 

The collective characteristics of KNN position it as an invaluable tool, particularly well-

suited for tasks that demand robust noise classification within diverse and dynamic signal 
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datasets [76]. In the context of this work, a Fine-KNN classifier is employed, utilizing the 

Euclidean distance function, to effectively classify accelerometer signals. 

KNN, as a versatile classification algorithm, is known for its simplicity and effectiveness. 

It operates based on the principle of proximity, classifying a data point by considering the 

classes of its nearest neighbors. 

 

PCA in MATLAB 

MATLAB employs the singular value decomposition method to calculate principal 

component coefficients, a crucial step in PCA. PCA is widely utilized for dimensionality 

reduction and feature extraction. Given a data matrix X with n observations and p variables, 

the SVD of X is represented as X=USV, where U and V are orthogonal matrices, and S is 

a diagonal matrix containing the singular values of X. 

The principal component coefficients, often termed loadings, are simply the elements of 

the V matrix. It is noteworthy that the principal component coefficients matrix is always a 

p × p squared matrix. This is because each principal component is a linear combination of 

all p variables in the data matrix. Consequently, the coefficients for each principal 

component must be stored in a p×1 vector. Given there are p principal components in total, 

the coefficients matrix will have dimensions p × p. Moreover, since each principal 

component is a linear combination of all p variables, the coefficients matrix must store the 

coefficients for all p variables for each of the p principal components, resulting in a p × p 

squared matrix.  

The transformation of data through centering, rotating, and scaling, as informed by PCA, 

can lead to improved convergence times and result in higher-quality outcomes. While 

theoretically, PCA may not alter the fundamental nature of the data, in practice, it 

accelerates training rates, simplifies required neural structures, and yields systems that 

more accurately characterize the "intermediate structure" of the data, avoiding the need to 

account for multiple scales. It is important to note that PCA is an algorithm that does not 

consider the response variable or prediction target. It treats features with large variances as 
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important, but these features may not necessarily be directly linked to the prediction target. 

As such, careful consideration is required when interpreting the significance of features 

identified by PCA in relation to the overall predictive goals of a model. 

The principal component analysis process, as implemented in MATLAB, can be 

comprehensively divided into six distinct steps: 

1. Dataset Preparation: Begin with a dataset comprising d+1 dimensions, where d 
represents the input features (X_train), and 1 denotes the corresponding labels 
(y_train). In this step, the labels are disregarded, resulting in a reduced d-
dimensional dataset. The modified dataset (X_train) is then employed to identify 
principal components. 

2. Mean Computation: Treat the modified dataset as a matrix A and compute the 
mean of each dimension across the entire dataset. This yields a vector of mean 
values corresponding to the d dimensions of the dataset. 

3. Covariance Matrix Calculation: Utilizing Equation 1.3, calculate the covariance 
matrix of A. The resulting square matrix is of dimensions d * d. The covariance 
matrix is computed by determining the covariance between two variables, X and 
Y, employing the formula: 
 

( , ) =  ∑ ( − ̅)( − )                                          (2.9) 

 

4. Eigenvalue and Eigenvector Extraction:  
 Proceed to extract eigenvalues and corresponding eigenvectors from the 

covariance matrix. For a square matrix A, consider a vector v and scalar λ 
satisfying Av=λv, where λ is the eigenvalue associated with eigenvector v. 
The eigenvalues are determined by solving the characteristic equation: 

det( − ) = 0                                                                                (2.10) 

 Subsequently, sort the eigenvectors in descending order based on their 
eigenvalues. Form a d * k dimensional matrix W, selecting the eigenvectors 
with the largest eigenvalues. The choice of eigenvectors with higher 
eigenvalues captures the most significant information about the data 
distribution. 

5. Dimensionality Reduction: The selected matrix W is then used to transform the 
original dataset samples into a new subspace. The transformation is achieved via 
the equation y=WT⋅ x, where WT denotes the transpose of matrix W. 

6. Final Transformation: Complete the PCA process by transforming the samples 
into the new subspace using the computed matrix W. The transformed dataset y 
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reflects the essential characteristics of the original data in a reduced-dimensional 
space. 

By meticulously following these six steps, MATLAB's PCA implementation provides a 

powerful tool for dimensionality reduction and feature extraction, facilitating efficient data 

representation and analysis. The process ensures that the most informative features are 

retained while discarding less significant information, leading to enhanced computational 

efficiency and improved interpretability of the dataset. 
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APPENDIX D – DENOISING AUTOENCODERS 

 

The denoising autoencoder operates through two distinct stages: encoding and decoding. 

The encoder performs a nonlinear transformation, mapping an input  

x to a hidden representation ʐ. Subsequently, the decoder executes another nonlinear 

transformation, mapping the hidden representation ʐ back to the reconstructed data  . This 

multi-stage process enables effective data recovery and denoising, contributing to the 

versatility of autoencoders in addressing signal processing challenges, including those 

posed by motion artifacts in ECG signals. 

Encoder: 

ʐ = ( + )                                               (4.1) 

Decoder: 

= ( ʐ + )                                              (4.2) 

In the given context, the symbols W and b denote the weight and bias matrices of the 

encoder, respectively, while Ŵ and b̂ represent the corresponding matrices for the decoder. 

These matrices play a pivotal role in autoencoder architectures, which are neural network 

models employed for unsupervised learning tasks such as feature learning and data 

compression. Furthermore, the activation functions f and g, applied within the network, 

introduce non-linearities critical for capturing complex relationships in the data. 

The choice of activation functions, f and g, is a crucial aspect in the design of the 

autoencoder. Commonly used activation functions include the sigmoid, hyperbolic tangent, 

and rectified linear functions, each offering unique characteristics suitable for specific 

types of data and learning objectives. 

The objective function that governs the training process of the autoencoder is defined as 

follows: 

( ) =  ∑ || − | |                                             (4.3) 

=  , , ,                                               (4.4) 
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It is worth noting that the success of an autoencoder relies heavily on the careful tuning of 

these parameters and the choice of the appropriate activation functions. Through iterative 

optimization, the autoencoder learns a compact and informative representation of the input 

data, facilitating tasks such as dimensionality reduction and denoising. The specific 

configuration and hyperparameters selected during training significantly influence the 

effectiveness of the autoencoder in capturing meaningful features and patterns from the 

input data. In this way, the autoencoder serves as a powerful tool for unsupervised learning, 

particularly in scenarios where obtaining labeled data may be challenging or expensive. 

The DAE, pioneered in [24], represents an evolution of the conventional autoencoder (AE), 

introducing a stochastic element to enhance its capabilities. Unlike the AE, which focuses 

on deterministic transformations, the DAE is designed to handle noisy or corrupted input 

data, aiming to reconstruct a clean version of the original input. 

In the framework of the DAE, the process begins with an initial input, denoted as x, which 

undergoes a stochastic transformation, resulting in a corrupted counterpart  . This 

stochastic transformation is expressed as   ∼ q( |x), indicating that   is generated based 

on a probabilistic distribution q conditioned on the original input x. This corrupted 

representation   captures the effects of noise or corruption introduced to the input. 

 

Figure 5-1. The structure of denoising autoencoder [73]. 
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Moving forward, the DAE takes this corrupted representation   as input data and 

endeavors to map it to a corresponding hidden representation ʐ. The ultimate goal is to 

successfully reconstruct the original input ( ) from its corrupted version, completing the 

denoising process. 

This denoising capability is particularly valuable in various applications, such as image 

processing, speech recognition, and data compression, where input data may be susceptible 

to noise or corruption. The stochastic nature of the DAE allows it to learn robust 

representations by considering different possible corrupted versions of the input during 

training. 

Figure 4-3 provides a visual depiction of the denoising process in the DAE. The 

incorporation of stochasticity not only enhances the model's ability to handle noisy input 

but also contributes to its adaptability and generalization to diverse and unpredictable data 

scenarios.The Denoising Autoencoder, with its stochastic approach to handling corrupted 

input, presents a powerful tool for reconstructing clean representations of data in the 

presence of noise. This makes it a valuable asset in scenarios where robust and accurate 

data reconstruction is essential. The stochastic transformation and subsequent 

reconstruction contribute to the model's versatility and effectiveness in real-world, noisy 

data environments. 

The robust nonlinear mapping capabilities of both Autoencoder (AE) and Denoising 

Autoencoder (DAE) models have led to their increased popularity in diverse applications, 

ranging from data compression [[28], [66]] to noise reduction in critical domains like 

speech signals [[67], [68]] and medical images [70]. 

In this chapter, a comprehensive set of quantitative performance metrics is employed to 

rigorously evaluate the efficacy of my models. These metrics include the Root Mean 

Square Error (RMSE), Power Spectral Density (PSD) diagrams, and Signal-to-Noise Ratio 

Improvement (SNRimp). 

The RMSE serves as a pivotal indicator, quantifying the variance between the predicted 

output of the model and the actual output. A lower RMSE value signifies a reduced 

disparity, indicating superior performance. Mathematically, RMSE is defined as: 
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=  × ∑ ( − )                                    (5.5) 

Here, x represents the value at sampling point i in the original ECG signal, and  signifies 

the value at the corresponding point in the predicted output. 

SNRimp is a crucial metric that measures the disparity between the SNR subsequent to 

noise reduction and the initial input signal SNR. A higher SNRimp value indicates superior 

denoising performance. It is calculated as the difference between the output SNR (SNRout) 

and the input SNR (SNRin): 

= −                                       (4.6) 

The input SNR (SNRin) and output SNR (SNRout) are defined by the following expressions: 

= 10 × 10
∑ 2=1

∑ ( − )2=1
                                  (4.7) 

= 10 × 10
∑ 2=1

∑ ( − )2=1
                                  (4.8) 

Here,   represents the value at sampling point i in the noisy ECG signal, and  corresponds 

to the value at the same sampling point in the denoised waveform. N represents the length 

of the ECG signal. In these equations, the detailed representations of original, noisy, and 

denoised ECG signals provide a comprehensive framework for evaluating the performance 

of AE and DAE models in noise reduction applications. The inclusion of multiple metrics 

ensures a thorough assessment of the models' capabilities in handling complex signal 

processing tasks. 
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APPENDIX E – RESAMPLING 

 

Resampling methods serve as a valuable approach for aligning the sampling frequencies of 

two signals, particularly when dealing with signals of disparate rates that need to be 

synchronized for further analysis or processing. These techniques enable the adjustment of 

the sampling rate of a signal while maintaining its content and inherent characteristics [53]. 

As delving into the consideration of employing resampling methods for sampling 

frequency matching, several factors come into play: 

1- Difference in Sampling Rates: 

Resampling proves instrumental in aligning two signals with distinct sampling rates, 

facilitating their comparison or combination. This is particularly pertinent in this scenario, 

where the combination of ECG and accelerometer signals is essential for training my 

model. 

 

2- Signal Characteristics: 

Resampling methods are designed to preserve the essential features of a signal, such as its 

frequency content, during the alteration of the sampling rate. However, it is crucial to 

acknowledge that resampling is not without its trade-offs [53]. The process introduces 

interpolation or decimation errors that can impact signal quality. The severity of these 

errors depends on the specific resampling algorithm employed and the properties of the 

original signal. 

3- Computational Complexity: 

 Resampling algorithms can exhibit computational intensity, especially when dealing with 
large signals or real-time applications [54]. Certain methods, like polyphase resampling 
[26] or sinc interpolation [55], involve intricate calculations and may necessitate 
substantial processing power. In this approach, a combination of up-sampling, filtering, 
and down-sampling using MATLAB DSP tools is employed. The procedure involves the 
following steps: 
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 Up-sampling: This involves increasing the sampling rate by inserting zeros between the 
original samples. MATLAB utilizes the ‘upfirdn’ function, combining up-sampling and 
filtering in a single step. 

 

 Antialiasing Low-Pass Filter: After up-sampling, an antialiasing low-pass filter is applied 
to the signal. This filter eliminates high-frequency components (above the Nyquist 
frequency) introduced during up-sampling, preventing aliasing—distortion occurring when 
high-frequency components fold back into the desired frequency [53]. 
 

 Down-sampling: This process reduces the sampling rate by discarding some samples from 
the up-sampled and filtered signal. Down-sampling occurs after the antialiasing filtering 
stage, with the down-sampling factor determining the number of retained samples from the 
up-sampled signal. 

The careful consideration of these factors and the implementation of a well-defined 

resampling strategy, as outlined in this approach, are crucial for maintaining signal 

integrity and facilitating the integration of heterogeneous signals for subsequent analysis 

and model training. 

In conclusion, the use of FIR filters in MATLAB, combined with the meticulous 

manipulation of sampling rates through up-sampling, antialiasing filtering, and down-

sampling, underscores a powerful strategy for altering sampling rates while preserving 

signal integrity. This approach finds utility in diverse fields, ensuring accurate signal 

representation and mitigating aliasing effects for more robust signal processing 

applications. 
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