
DRL-BASED TASK OFFLOADING FOR DEADLINE-SENSITIVE
APPLICATIONS IN MULTI-ACCESS EDGE COMPUTING

by

Hui Huang

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

June 2024

© Copyright by Hui Huang, 2024

To my dear parents, Guoting Huang & Nihong Wei

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . ix

List of Abbreviations . xi

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Overview of MEC Systems . 1

1.2 Task Offloading for MEC Systems . 2

1.3 Research Gap . 4

1.4 Research Contributions . 5
1.4.1 Contributions of PDMO . 5
1.4.2 Contributions of MELO . 6
1.4.3 Contributions of CRLO . 8

1.5 Thesis Organization . 11

Chapter 2 Related Work . 12

2.1 Dynamic Voltage and Frequency Scaling 12

2.2 Deep Reinforcement Learning . 14

2.3 Time-series Forecasting . 17

2.4 Existing Task Offloading Schemes . 18
2.4.1 Non-learning-based Task Offloading 18
2.4.2 Learning-based Task Offloading 21

Chapter 3 Energy Consumption Minimization with DRL-based Task Of-
floading . 28

3.1 System Model . 28
3.1.1 Overview . 28
3.1.2 Scheduling Model . 32
3.1.3 Job Completion Time Model 39

iii

3.1.4 Energy Consumption Model 43
3.1.5 Problem Formulation . 44

3.2 PDMO: Energy-aware DRL-based Task Offloading 47
3.2.1 POTD3: A Novel Learning Algorithm 47
3.2.2 Details of PDMO . 51

3.3 Evaluation . 56
3.3.1 Evaluation Settings . 56
3.3.2 Convergence . 58
3.3.3 Deadline Misses and Energy Consumption 60
3.3.4 Impact of Queuing Time at Edge Server 62
3.3.5 Impact of Hyperperiod Length 63

3.4 Major Conclusions of PDMO . 64

Chapter 4 Edge-assisted DRL-based Task Offloading 66

4.1 System Model . 66
4.1.1 Overview . 66
4.1.2 Task Model . 69
4.1.3 Communication Model . 71
4.1.4 Completion Time Model . 72
4.1.5 Problem Formulation . 76

4.2 Edge-assisted DRL-based Offloading Scheme 77
4.2.1 Edge-Assisted Learning . 78
4.2.2 Modelling Task Offloading as an MDP 80
4.2.3 Details of MELO . 82

4.3 Evaluation . 86
4.3.1 Evaluation Settings . 86
4.3.2 Convergence . 88
4.3.3 Impact of Transmission Rates 88
4.3.4 Impact of Number of Edge Servers 91

4.4 Major Conclusions of MELO . 92

Chapter 5 Safe Task Offloading with Constrained Reinforcement Learning 95

5.1 System Model . 95
5.1.1 Overview . 95
5.1.2 Task Model . 99
5.1.3 Communication Model . 100
5.1.4 Completion Time Model . 102

iv

5.2 Safety-critical Learning-based Task Offloading 109
5.2.1 Long-sequence Forecasting Model 110
5.2.2 Constrained Reinforcement Learning 110
5.2.3 A Novel Policy Netowk . 111
5.2.4 Reformulating the Offloading Problem as a CMDP 115
5.2.5 Details of CRLO . 120

5.3 Evaluation . 129
5.3.1 Evaluation Settings . 129
5.3.2 Convergence . 132
5.3.3 Completion Time and Deadline Misses 134
5.3.4 Scalability . 136
5.3.5 Impact of Informer and Safety Layer 139

5.4 Major Conclusions of CRLO . 141

Chapter 6 Conclusions and Future work 143

6.1 Conclusions . 143

6.2 Future Work . 144

Bibliography . 147

v

List of Tables

2.1 Task Set with Three Periodic DS Tasks. 13

2.2 Two Sets of AET for Three Periodic DS Tasks. 13

3.1 Key Notations in Chapter 3 . 29

3.2 Details of Tasks . 37

3.3 AET of Jobs. 38

3.4 Simulation Parameters in Chapter 3. 57

3.5 Summary of Comparison Results. 61

4.1 Key Notations in Chapter 4 . 68

5.1 Key Notations in Chapter 5 . 96

5.2 Simulation Parameters in Chapter 5. 130

5.3 Impact of Informer and Safety Layer: Varied Average Task Ar-
rival Rates . 141

5.4 Impact of Informer and Safety Layer in the Scenarios of Varied
Hyperperiod Lengths . 142

vi

List of Figures

2.1 Cycle Conserving Algorithm. 14

2.2 Deep Reinforcement Learning. 15

2.3 Time-series Forecasting. 17

3.1 Architecture of the MEC System under Investigation for PDMO 32

3.2 Hybrid Job Scheduling Example. 38

3.3 Scheme of PDMO. 51

3.4 Convergence vs. Number of Tasks 59

3.5 Convergence vs. Ratio of Rc to Re 60

3.6 Deadline Misses and Energy Consumption 62

3.7 Impact of Edge Server Queuing Time on PDMO 63

3.8 Impact of Hyperperiod Length on PDMO 64

4.1 Architecture of the MEC System under Investigation for MELO. 67

4.2 EALA: Training TD3 on Edge Server. 79

4.3 Architecture of MELO. The Data that Flow in the MEC Sys-
tem Include: 1) Environment States; 2) Training Samples; 3)
Offloading Policy; 4) Periodic Jobs; 5) Sporadic Jobs; 6) Peri-
odic Jobs from Other Mobile Devices; 7) Parameters of Edge
Actor Network. 83

4.4 Convergence of MELO . 89

4.5 Impact of Transmission Rate (λo,e= 0.5) 90

4.6 Impact of Transmission Rate (λo,e = 1.0) 91

4.7 Impact of Number of Edge Servers 93

5.1 Architecture of the MEC System under Investigation for CRLO. 98

5.2 Task Scheduling at Mobile Device and Edge Server 101

5.3 Structure of Policy Network. 112

vii

5.4 Framework of CRLO. 120

5.5 Convergence of CRLO . 133

5.6 Performance of CRLO: Varied Average Task Arrival Rates . . 137

5.7 Performance of CRLO: Varied Lengths of Hyperperiod 138

5.8 Scalability of CRLO . 139

viii

Abstract

The proliferation of computation-intensive applications, such as online gaming and
autonomous driving, has imperatively urged resource-constrained mobile devices to
alleviate the computation and energy consumption pressure with the aid of exter-
nal computing resources. Recently, a cutting-edge computing paradigm, Multi-access
Edge Computing (MEC), has emerged as a promising solution to mitigate the re-
source shortage problem with mobile devices by selectively offloading a portion of
computation-intensive tasks to physically-close edge servers. Over the past years, a se-
ries of task offloading schemes, including non-learning-based offloading and learning-
based offloading, have been extensively studied. However, we notice that many of
the computation-intensive applications are also deadline-sensitive. Namely, the com-
putation tasks from these applications often have deadlines to satisfy. Nevertheless,
the existing task offloading schemes face several limitations that hinder their appli-
cability in deadline-sensitive MEC systems. In the thesis, we aim to employ Deep
Reinforcement Learning (DRL) to address the task offloading problems in multi-tier
deadline-sensitive MEC systems. First, we propose an innovative task offloading
scheme for partially observable MEC systems, referred to as PDMO, which incorpo-
rates partially observable DRL and Dynamic Voltage and Frequency Scaling (DVFS)
to minimize the energy consumption of mobile devices while guaranteeing deadline
satisfaction. Second, we devise a novel Multi-access Edge-assisted Learning-based
Offloading (MELO) scheme to effectively optimize the completion time of tasks in
a highly dynamic MEC system. Lastly, we propose a unique offloading scheme for
safety-critical tasks, Constrained Reinforcement Learning based Offloading (CRLO).
With CRLO, a safety layer is integrated to the policy network of the learning-based
policy generator, which effectively eliminates risky offloading decisions that could
lead to deadline misses. Additionally, to achieve more efficient offloading decisions,
Informer, a computationally-efficient long-sequence forecasting model, is utilized to
forecast temporally-dependent system states for the upcoming time window. The ex-
perimental results indicate that all of the proposed learning-based offloading schemes
outperform the baseline methods in terms of energy consumption or task completion
time.

ix

List of Abbreviations

MEC Multi-access Edge Computing

MDP Markov Decision Process

DS Deadline-Sensitive

NDS Non-Deadline-Sensitive

MTS Multiple-Time-Slot

STS Single-Time-Slot

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

DDPG Deep Deterministic Policy Gradient

PPO Proximal Policy Optimization

DRL Deep Reinforcement Learning

CRL Constrained Reinforcement Learning

MINLP Mixed Integer NonLinear Programming

QoS Quality-of-Service

DQN Deep Q-Network

RL Reinforcement Learning

DVFS Dynamic Voltage and Frequency Scaling

TD3 Twin Delayed Deep Deterministic Policy Gradients

TSF Time-Series Forecasting

x

DPM Dynamic Power Management

IC Integrated Circuits

AET Actual Execution Time

WCET Worst-Case Execution Time

CC Cycle Conserving

LA Look Ahead

DRA Dynamic Reclaiming Algorithm

ASR Aggressive Speed Reduction

DL Deep Learning

IoT Internet-of-Thing

MIMO Multiple-Input-Multiple-Output

C-RAN Cloud-Radio-Access-Network

EDF Earliest-Deadline-First

FIFO First-In-First-Out

CST Context Switch Time

5G Fifth Generation

6G Sixth Generation

PDMO Partially-observable DRL-based Multi-tier Offloading

MELO Multi-access Edge-assisted Learning-based Offloading

CRLO Constrained Reinforcement Learning-based Offloading

xi

Acknowledgements

I would like to extend my deepest gratitude to my supervisor, Qiang Ye, for his
exceptional guidance, unwavering support, and invaluable mentorship throughout
the duration of my doctoral journey, especially amid the pandemic. His expertise,
patience, and encouragement have been pivotal in shaping the direction and success
of this thesis.

I am also indebted to my esteemed committee members for their insightful feed-
back, scholarly advice, and constructive criticism, which have significantly enhanced
the quality and depth of this research. My heartfelt gratitude goes to my parents for
their sacrifices and boundless love, without which my academic journey would have
been unimaginable.

I would like to express my sincere appreciation to Yitong Zhou, Yuxuan Jiang,
Fudong Li, and all other colleagues and peers for their camaraderie, encouragement,
and intellectual exchange, which have enriched my academic experience and fostered a
supportive community. Finally, I aspire to give back to the world in the same generous
spirit that my advisor, mentors, friends, and partners have shown me through their
unwavering support and guidance.

xii

Chapter 1

Introduction

In this chapter, we start with an overview of MEC systems. Subsequently, we delve
into the existing task offloading schemes for MEC systems. Thereafter, we analyze
the limitations associated with the current offloading schemes. Finally, we summarize
the contributions of our research in addressing these identified limitations.

1.1 Overview of MEC Systems

The ubiquity of mobile devices, such as smartphones, tablets, and laptops, has re-
sulted in a proliferation of mobile applications. These mobile applications, e.g.,
image processing, augmented reality, and autonomous driving, demand instanta-
neous interactions and complex computations to satisfy high-level Quality of Service
(QoS) [47, 56, 59]. Generally, meeting the QoS requirements of such applications ne-
cessitates a substantial amount of computation resources. However, due to portable
and commercial considerations, mobile devices are often configured with limited hard-
ware resources, such as low-speed CPU and small-capacity memory. The execution
of multiple computation-intensive applications concurrently on mobile devices may
result in difficulty in satisfying strict time constraints of deadline-sensitive tasks and
energy requirements of mobile devices. Consequently, how to complete computation-
intensive tasks efficiently on resource-constrained mobile devices has become a chal-
lenging problem for both academia and industry.

To alleviate the computation burden on mobile devices, MEC has been introduced
as a viable solution by selectively offloading a portion of computational tasks to nearby
edge servers [88,101,102]. Technically, MEC comprises two types of devices: resource-
constrained mobile devices and resource-rich edge servers. By offloading some of
computation-intensive tasks from mobile devices to edge servers, MEC significantly
reduces energy consumption of mobile devices and facilitates completion of all the
tasks generated on mobile devices. Despite the effectiveness of MEC in addressing

1

the computation problem on mobile devices, determining whether a task should be
processed locally or offloaded to edge servers is non-trivial in practice. For example, if
a large amount of data needs to be uploaded to an edge server when a task is offloaded,
the power used for data uploading could exceed that consumed when the task is
processed locally. Furthermore, due to finite computation resources of edge servers,
a limited number of tasks are allowed to be offloaded. The reason is that offloading
tasks to the overloaded edge servers inevitably lead to unacceptable queueing delays.
Additionally, when a large amount of data needs to be transferred for edge computing,
mobile devices can experience excessively long transmission delays, potentially causing
considerable constraint violations. Therefore, blindly offloading deadline-sensitive
and energy-consuming tasks to edge servers could not only result in considerable
deadline misses, but also negatively degrade the overall performance of MEC systems.

1.2 Task Offloading for MEC Systems

In general, developing effective task offloading methods is about finding satisfactory
answers to the following three critical questions. The first question is whether a task
should be offloaded or not. The second question is related to the scenario where
multiple edge servers are involved in MEC systems. In this case, mobile device needs
to decide where to offload the task. The final question is concerned with how to
determine the optimal offloading policies that can effectively satisfy all performance
requirements.

Great efforts, such as game theory, heuristics, and dynamic programming, have
been made by researchers to answer the questions [15, 26, 33, 75]. Fundamentally,
these schemes are not learning-based. They strive to improve offloading decisions
through the utilization of exhaustive search methods or mathematical optimization
techniques, which depend on either high computational complexity or reliable math-
ematical models. For instance, Jošilo et al. proposed a game-theory-based model
to solve the problem of offloading delay-sensitive task in multiple-wireless-link MEC
scenarios, considering the minimization of both task completion time and energy

2

consumption [48]. Sundar et al. proposed a heuristic offloading algorithm that trans-
forms the original offloading problem into its binary-relaxed surrogate to minimize
completion time for deadline-sensitive tasks [81]. In [76], Rodriguea et al. developed
a mathematical model to determine the suboptimal offloading decisions for a group
of deadline-sensitive applications in varying 5G/6G networks, aiming to minimize the
total service delay. Jiang et al. proposed an offloading approach using Lyapunov op-
timization to maximize the long-term quality of user experience while simultaneously
minimizing the energy consumption of mobie devices [46].

In recent years, considerable DRL-based based offloading approaches have also
been proposed in the literature to optimize task offloading policies. With RL-based
offloading methods, an RL agent interacts with the environment in a trial-and-error
manner. Based on the accumulated feedback from the environment, the appropriate
offloading policy could be found without prior knowledge of the system. The benefits
of RL-based methods over non-learning-based methods can be summarized as follows.
First, instead of creating an intricate mathematical model to optimize offloading poli-
cies iteratively, RL agents learn the most appropriate offloading polices adaptively via
a trial-and-error exploration mechanism without knowing the prior knowledge of MEC
environment. Moreover, the overhead of policy inference in RL-based offloading ap-
proaches is much lower than conventional mathematical models, as only one forward
propagation of the policy network is required for policy generation after model train-
ing. Gao et al. proposed a multi-agent actor-critic offloading approach to enhance task
completion rate and reduce average system cost simultaneously in a large-scale MEC
system that embraces a large amount of cooperative-competitive heterogeneous mo-
bile devices [32]. Wang et al. proposed a meta reinforcement learning-based offloading
method to improve the adaptability of learning model when offloading heterogeneous
tasks in different MEC environments [89]. Dai et al. investigated the optimization of
offloading for computation-intensive tasks with a set of time constraints in vehicular
networks and proposed asynchronous DRL-based offloading approch to jointly opti-
mize offloading decisions, resource allocation, and renting cost [21]. In [1] and [22], the
authors considered a mobile-edge-cloud offloading architecture in a 5G network and
proposed the energy-efficient DRL-based offloading approaches to mitigate long-term

3

energy consumption of mobile devices.

1.3 Research Gap

Although there have been many attempts to enhance offloading decisions, they still
suffer from several drawbacks. First of all, the aforementioned DRL-based offloading
schemes only consider Non-Deadline-Sensitive (NDS) tasks that have no strict dead-
lines. When handling Deadline-Sensitive (DS) tasks with a hard deadline, the schemes
cannot properly guarantee the time constraint satisfcation. Secondly, these schemes
cannot lower CPU frequency to make full use of idle CPU slack to reduce the energy
consumption of mobile devices. Thirdly, the existing schemes assume that complete
information about MEC systems is available at each decision point. However, in prac-
tice, many real-world environments involve unobservable system states. If a system
leverages incomplete information to make task offloading decisions, massive subopti-
mal offloading policies will inevitably incur, resulting in serious deterioration of system
performance. Fourthly, considering the time-varying nature of wireless network and
edge server workload, task offloading becomes highly complicated and is typically
formulated as a Mixed-Integer NonLinear Programming (MINLP) problem, which
generally leads to NP-hard complexity [95]. Therefore, acquiring optimal offloading
policies with minimal computational overhead using conventional non-learning-based
offloading approaches is often impractical due to their high computational complexity,
especially when offloading deadline-sensitive tasks that demand fast policy genera-
tion. Alternatively, RL-based offloading methods are promising. However, most of
them are designed for systems with a limited number of actions. In systems with a
large or even continuous action space, the existing RL-based offloading schemes often
struggle to find the optimal offloading policy. Fifthly, most existing RL-based offload-
ing methods assume that both the training and inference operations of the learning
algorithm are carried out on mobile devices, resulting in heavy computation work-
load on the mobile devices [16, 100]. Specifically, although reinforcement learning is
an effective method for autonomous task offloading, the training and inference oper-
ation of RL inevitably consume a noticeable amount of computational resources [28].

4

Namely, when mobile devices must complete time-sensitive tasks, allocating compu-
tation resources of mobile devices to RL may not be feasible. Finally, most existing
RL-based offloading models focus on the decision-making for every single time slot,
which is computationally expensive in highly-dynamic MEC systems, where the RL
agent frequently updates its input states and resolves the corresponding offloading
problems. To address this problem, MTS offloading schemes are devised to regularly
determine the offloading decisions for a set of tasks that will arrive in the upcoming
MTS period [41, 109]. However, it is still challenging for the RL agent to produce
appropriate offloading policies if it only relies on the observations perceived at the
begining of each MTS period. Namely, Single-Time-Slot (STS) observation does not
accurately reveal the state variation pattern in the subsequent MTS period. Without
sufficient and precise information as inputs of the policy network, the RL agent may
fail to generate the best offloading policies.

1.4 Research Contributions

The objective of the thesis is to utilize deep reinforcement learning, DVFS, and Time-
Series Forecasting (TSF), to minimize energy consumption or task completion time
in multi-tier MEC systems. In this thesis, we focus on enhancing the efficiency of
MEC systems by minimizing energy consumption and task completion time, while
ensuring the deadline constraint of tasks are satisfied.

1.4.1 Contributions of PDMO

In the thesis, to bridge the research gap presented in Section 1.3, we first propose an
intelligent offloading scheme, called PDMO, for the efficient offloading of deadline-
sensitive and non-deadline-sensitive tasks in an MEC system with only one edge
server. The primary objective of PDMO is to minimize the overall energy consump-
tion of mobile devices while ensuring the deadlines oftasks are satisfied. To achieve
this goal, we devise a novel learning algorithm, called Partially-Observable Twin De-
layed Deep Deterministic policy gradient (POTD3), which is capable of effectively
approximating the missing observations of system state. Furthermore, we employ

5

a hybrid task scheduling approach based on DVFS to optimize energy consumption
for both periodic deadline-sensitive tasks and aperiodic non-deadline-sensitive tasks.
The main contributions of PDMO can be summarized as follows:

(i) We propose an innovative DRL-based offloading scheme for partially-observabl
MEC systems, PDMO, which aims to meet the deadline of deadline-sensitive
tasks while minimizing the total energy consumption of mobile devices by up-
loading a selected set of tasks to edge servers. Specifically, the offloading prob-
lem is first formalized as a POMDP due to the existence of unobservable states.
Then, the problem is solved with a modified Deep Deterministic Policy Gra-
dient (DDPG) method, POTD3. Our simulation results indicate that PDMO
outperforms the existing methods.

(ii) We propose a comprehensive task scheduling algorithm for a task set involving
both deadline-sensitive and non-deadline-sensitive tasks, which not only greatly
reduces the energy consumption of mobile devices, but also guarantees that
the deadline of deadline-sensitive tasks can be met. Specifically, the DVFS
technique, which enables mobile devices to adjust CPU frequency dynamically
for saving mobile energy, is used in the scheduling algorithm.

(iii) To minimize the energy consumed by learning algorithms, we propose a holistic
decision-making mechanism for the tasks that arrive within a fixed time interval.
With this innovative mechanism, the frequency of invoking the DRL process is
significantly reduced, ultimately conserving more energy for task processing and
offloading.

1.4.2 Contributions of MELO

Although PDMO serves as an effective method to determine the optimal offloading
policy, it is constrained by the following critical limitations. Firstly, it is specifically
proposed for simpler MEC systems involving only one edge server, thereby limiting
the full utilization of resources at the edge when multiple edge servers are available.
Secondly, the learning algorithm employed by PDMO tends to generate substantial

6

sub-optimal offloading policies due to the overestimation that occurs during the learn-
ing process. Lastly, the training of PDMO takes place on the resource-limited mobile
device, resulting in fewer computational resources available on the mobile device for
processing periodic deadline-sensitive tasks. To address these limitations, we propose
MELO scheme for a multiple-edge-server MEC system to minimize the completion
time of periodic deadline-sensitive tasks while ensuring compliance with their dead-
lines. Particularly, we consider an MEC system that is composed of 3 tiers: mobile
devices, edge servers, and cloud server, where a mobile device could offload part of
its deadline-sensitive computational tasks to one of the multiple edge servers or cloud
server, thereby largely shortening the completion time of these tasks. Furthermore,
considering the potentially extensive action space in MEC systems, we adopt Twin
Delayed Deep Deterministic Policy Gradients (TD3) as the learning algorithm in
MELO because TD3 excels in managing large or continuous action space while effec-
tively mitigating overestimation issues during the learning process [29]. Additionally,
in order to allocate more computational resources to deadline-sensitive tasks on mo-
bile devices, we introduce a novel learning framework called Edge-Assisted Learning
Architecture (EALA). This architecture involves transferring the entire training phase
of TD3 to a learning server deployed at the edge. As a result, a mobile device only
requires a computationally-light agent for policy generation. To the best of our knowl-
edge, it is the first attempt to utilize EALA for deadline-sensitive task offloading in
deadline-sensitive MEC systems. The main contributions of MELO are summarized
as follows:

(i) We propose a novel edge-assisted DRL offloading scheme, MELO, which utilizes
TD3 to optimize offloading policies tailored for deadline-sensitive applications
within a multiple-edge-server MEC system. Technically, the challenge inherent
in our MEC system lies in effectively scheduling multiple periodic deadline-
sensitive tasks concurrently across multiple edge servers to minimize long-term
costs. In our research, we tackle this challenge by formulating the offloading
problem as a Markov Decision Process (MDP) and subsequently solving the
MDP-based problem with the TD3 algorithm.

7

(ii) To ensure that mobile devices have sufficient computation resources for the
execution of their own applications, we propose a new learning architecture
called EALA. This architecture handles all the computation-intensive operations
of TD3 learning on edge server, thereby significantly reducing the computational
burden on mobile devices

(iii) To assess the effectiveness of our proposed offloading model, we conduct exten-
sive experiments, varying several parameters such as the task arrival rate of edge
servers and the number of edge servers. The experimental results demonstrate
the fast convergence of our offloading model. Additionally, MELO outperforms
all baseline offloading approaches in terms of various metrics, including the
completion time of deadline-sensitive tasks and the number of deadline misses.

1.4.3 Contributions of CRLO

Most existing RL-based offloading methods determine the appropriate policy during
each time slot which means that system state is updated and thereafter an offloading
decision is made at each time slot. This could lead to a significant amount of system
overhead, which negatively affects the execution of local tasks. To tackle this issue,
MTS offloading schemes have been proposed to determine offloading decisions for a
set of tasks that will arrive during the upcoming MTS period [41,109]. We notice that
most existing MTS offloading schemes, such as PDMO and MELO, tend to generate
offloading policies based on the system state at the beginning of the MTS period or
the historical statistics. Nevertheless, since the system state evolves over the MTS
period, the RL agent is inherently unable to make the best offloading decisions. A few
MTS schemes, such as [32], [84], and [109], have employed Recurrent Neural Network
(RNN) or Long Short-Term Memory (LSTM) to forecast system states during the
MTS period. However, RNN and LSTM are only effective for short-term prediction,
such as the prediction of the system states over the upcoming 48 time slots or less.
This implies that when the MTS period is longer than 48 time slots, the forecasting
method may fail to accurately predict the system states [111]. Furthermore, if there
are no effective safety measures to regulate the dangerous behaviors of RL agents,

8

directly applying RL-based offloading schemes to safety-critical applications, such as
autonomous driving, could lead to highly risky offloading decisions, which potentially
results in catastrophic consequences [43,62]. Therefore, some safety measures should
be incorporated into the offloading decision-making process to guarantee that the
generated offloading policies are “safe”. To tackle these limitations, we introduce
a novel MEC offloading scheme for safety-critical applications, termed CRLO. This
approach adopts the philosophy of the EALA structure, enables long-term system
state prediction, and incorporates a safety layer into the decision-making module.
Specifically, we introduce an innovative EALA-based multi-tier structure for MEC
task offloading, which involves mobile devices, edge servers, a learning server, and
cloud servers. In this structure, mobile devices are tasked with executing local tasks
and inferring offloading decisions. Edge servers handle the processing of offloaded
tasks. The learning server, situated at the network edge, is dedicated to training the
learning model and predicting future system states. Note that, with this structure,
training and inferring are separate. Namely, the resource-consuming training of the
learning algorithm is done on the learning server while the trained model is used by
mobile devices to make offloading decisions. The separation of training and inferring
leaves as many resources on mobile devices as possible for local task processing. The
cloud servers are used as the last resort when mobile devices and edge servers cannot
handle the tasks to be processed.

CRLO, in particular, adopts a variant of TD3 featuring a novel policy network to
conduct long-term system state prediction and generate secure offloading decisions
[29]. Essentially, this particular variant of TD3 follows the actor-critic architecture.
The policy network in the architecture is used to produce the appropriate action based
on the current state. With CRLO, a long-term forecasting algorithm, Informer, is
utilized to enable system state prediction for a time window that is longer than 48
time slots [111]. Then the predicted system states are used as the additional input
for the policy network of TD3. Essentially, a long-term forecasting module is added
to the input side of the policy network of TD3 in order to generate effective offloading
policies. On the output side, a safety layer is added to regulate the policies generated
by TD3. If a policy violates the safety constraints, the policy will be calibrated to

9

ensure only safe offloading operations are performed. Compared with the existing
RL-based offloading methods based the actor-critic architecture [22, 51, 74], CRLO
tends to result in more efficient and safer offloading decisions thanks to the long-
term prediction module and safety layer. The main contributions of CRLO can be
summarized as follows:

(i) We propose a novel safety-critical RL-based offloading scheme for MEC systems,
CRLO. In CRLO, a novel policy network is devised by integrating the original
policy network of TD3 with a long-sequence forecasting model and a safety layer.
Through these enhancements, CRLO can generate effective offloading policies
based on predicted long-term system states. In addition, with the safety layer,
the number of unsafe offloading decisions is significantly reduced. To the best
of our knowledge, CRLO is the first DRL-based offloading scheme for deadline-
sensitive MEC systems, which takes policy safety into consideration.

(ii) We devise an innovative multi-layer offloading framework, in which resource-
consuming learning modules of the MEC system are relocated to a resource-
sufficient learning server. Different than the existing schemes where edge servers
are responsible for both task processing and learning [32,70,89], this framework
comprises two types of edge servers: computing edge server and learning edge
server. The former processes tasks with strict deadlines offloaded from associ-
ated mobile devices, while the latter handles resource-consuming functionalities,
such as training the RL model and completing transformer-based forecasting.
This orchestration enables mobile devices and computing edge servers to fully
focus on task processing, ultimately resuling in minimum deadline violations.

(iii) We conduct extensive experiments to study the performance of CRLO. Our
experimental results indicate that CRLO converges to the optimal offloading
policy after being trained for 500 epochs or less in the scenerios under investiga-
tion. In addition, CRLO outperforms the baseline offloading methods in terms
of task completion time and the number of deadline misses.

10

1.5 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we first present the
preliminaries of our research work, including DVFS, deep reinforcement learning, and
time-series forecasting model. Afterwards, we review the related work from two per-
spectives: non-learning-based offloading and learning-based offloading. In Chapter 3,
the system models used in PDMO are described in Section 3.1, which is followed by
the problem formulation of task offloading. In Section 3.2, we present the proposed
learning algorithm, POTD3, and the associated offloading scheme, PDMO. Section
3.3 includes the detailed simulation results, and the major conclusions of PDMO are
presented in Section 3.4. In Chapter 4, we provide the overview of our offloading
MEC system in Section 4.1, followed by the description of three essential models of
MELO. Afterwards, the offloading problem is formally formulated. In Section 4.2, we
firstly elaborate on the decoupled learning architecture of EALA, and then present
MELO in detail. At the end of this section, we analyze the complexity of the pro-
posed offloading model. In Section 4.3, we first prove the convergence of MELO and
then carry out the performance comparisons with other baseline methods. Lastly,
we evaluate the scalability of MELO by using different number of edge servers. In
Section 4.4, we present the major conclusions of MELO. In Chapter 5, we first pro-
vide an overview of the system models of CRLO in Section 5.1. In Section 5.2, we
introduce two fundamental techniques employed in CRLO: long-sequence forecasting
and constrained reinforcement learning. Subsequently, we introduce a novel policy
network that integrates these techniques to overcome the limitations outlined in Sec-
tion 1.4.3. The offloading problem is then reformulated as a CMDP and subsequently
solved using CRLO. Section 5.3 presents comprehensive simulation results, while the
conclusions of CRLO are summarized in Section 5.4. In Chapter 6, we present our
conclusions and future work.

11

Chapter 2

Related Work

In this chapter, we give an overview of the existing studies that are related to our
research. Specifically, we first discuss DVFS techniques. Thereafter, we present the
fundamentals of deep reinforcement learning and time-series forecasting. Finally, we
outline the existing task offloading schemes for MEC systems.

2.1 Dynamic Voltage and Frequency Scaling

The processors equipped in mobile devices have emerged as the primary energy-
consuming module, their performance closely depends on power dissipation. When
executing a large number of computation-intensive tasks simultaneously, the power
consumption of processors can exceed 50% of the total battery power [3, 69]. Power
consumption is broadly classified into two categories: dynamic power consumption
and leakage power consumption. Dynamic power is consumed during instruction ex-
ecution, while leakage power, caused by leakage current, is a growing concern due
to the significant amount of power consumption generated constantly by active pro-
cessor cores even during idle periods. In addition, two types of power management
techniques have been developed to reduce dynamic and leakage power consumption:
DVFS and Dynamic Power Management (DPM) [7]. DVFS is a technique that ad-
justs voltage and frequency of processors adaptively at runtime to mitigate overall
power dissipation and heat generation in Integrated Circuits (IC). Conversely, DPM
activates or shuts down processors dynamically according to system states while en-
suring task deadlines [85]. Specifically, DVFS techniques is more suitable for lowering
dynamic power consumption by dynamically scaling CPU frequency. On the other
hand, DPM is primarily responsible for reducing leakage power consumption.

DVFS techniques have been successful in optimizing power consumption of deadline-
sensitive systems, e.g., realtime operating systems. The techniques that reduce power
consumption primarily depend on frequency adjustment between Actual Execution

12

Table 2.1: Task Set with Three Periodic DS Tasks.

Task ID WCET Period
1 2 8
2 2 10
3 3 12

Time (AET) and Worst-Case Execution Time (WCET). As WCET is typically longer
than AET, DVFS techniques can slow down the operating frequency to save energy
while still meeting all task deadlines. Pillai and Shin et al. presented two DVFS tech-
niques: Cycle Conserving (CC) and Look Ahead (LA) [69]. The CC technique scales
the clock frequency based on system usage while assuming worst-cases scenarios at the
beginning. The frequency is then gradually slowed down based on the AET of tasks.
In contrast, LA starts by running with a relatively low frequency and postpones most
of tasks until the end, where they are executed with a high frequency to meet the
task deadlines. In [6], another two DVFS techniques, Dynamic Reclaiming Algorithm
(DRA) and Aggressive Speed Reduction (ASR), are investigated. The former adjusts
operating frequency depending on a queue structure, while the latter is an extension
of DRA.

Table 2.2: Two Sets of AET for Three Periodic DS Tasks.

Task ID AET-1 AET-2
1 1 1
2 1 1
3 2 1

As the work [39], an example of algorithm CC is shown in Fig. 2.1. Correspond-
ingly, a set of periodic deadline-sensitive tasks and the related two sets of AET are
given in Table 2.1 and Table 2.1. We can observe that, after Task 1 completes its
work with the highest frequency (2/8+2/10+3/12=0.7), the system utilization is re-
calculated based on the AET of Task 1 before determining the subsequent frequency
of Task 2 (1/8+2/10+3/12=0.575). Iteratively, the frequency of Task 3 is calculated
based on the AET of Task 1 and Task 2. Note that all three deadline-sensitive tasks
can meet their deadlines strictly, even though the frequencies are slowed down for each

13

scheduling point. Thus, deadline-sensitive systems using the CC technique can dra-
matically reduce energy consumption by gradually lowering the operating frequency
at runtime.

Figure 2.1: Cycle Conserving Algorithm.

2.2 Deep Reinforcement Learning

Deep reinforcement learning is an emerging subfield of machine learning that incor-
porates Deep Learning (DL) and Reinforcement Learning (RL) to train RL agents
to learn from experience and generate optimal problem solution in complex environ-
ments [30,38,57]. In DRL, deep neural networks are used to approximate the policy of
RL agents or the value function, allowing them to learn directly from raw sensory in-
put data. By using deep neural networks, the RL agent can effectively learn complex
features from high dimensional state space, such as images and videos. It makes DRL
suitable for applications in many areas, such as online gaming and augmented real-
ity, where complex decision-making is demanding. For instance, in [8] and [66], the
researchers proposed a DRL-based approach to learn how to play Atari games relying
on pixel image inputs. The approaches show that DRL methods outperform previous
methods and achieve near-human-level performance on serveral games. Chen et al.

proposed an interpretable DRL-based approach to address complex urban scenarios in
end-to-en autonomous driving [13]. Gu et al. proposed a novel DRL-based algorithm
for robotic manipulation in multiple robots scenarios. Liu et al. proposed a DRL

14

approach for clinical decision-making in healthcare systems [60]. Particualarly, the
clinical decision-making problem is transformed into a Markov decision process and
then solved with a trained DRL agent that learns the optimal treatment strategies
relying on patient data.

The environment of standard DRL can be characterized as a four-tuple as: <

S,A,Γ,R >, where S and A denote state space S = {s(t)|∀t ∈ N} and action space
A = {a(t)|∀t ∈ N}. Γ denotes state transition function, Γ = {Γ : S×A×S → [0, 1]},
which indicates the probability of the transition to the next state s(t+ 1) when per-
forming state-action pair (s(t), a(t)). R is the reward functionR = {R : S×A → R}.
Specifically, the RL agent learns the optimal behaviors through trial and error and
upgrades its policy network over time to maximize the total accumulated reward
intentionally [83]. This means that, unlike previous work, expert knowledge is unnec-
essary for these intelligent and autonomous agents. In each learning iteration, the RL
agent initially interacts with the environment and receives the current environmental
state, s(t). Based on the state s(t) and policy network π, an action a(t) is chosen to
perform on the environment. Once this action is completed, two factors, the corre-
sponding immediate reward R(t) and the status of the next state s(t + 1), are used
for updating the parameterised mapping relationship of state-action pairs. The Fig.
2.2 shows the cycle of the DRL learning between the RL agent and its environment.

 Agent
Deep Policy Network,

Environment

State ActionReward

Figure 2.2: Deep Reinforcement Learning.

One representative DRL is DDPG that is proposed to solve the optimization

15

problems with large action in reinforcement learning tasks [57]. Specifically, DDPG
combines the actor-critic approach with deep learning, making it suitable for envi-
ronments with high-dimensional action spaces. The DDPG algorithm comprises an
actor network and a critic network. The function of the actor network is to acquire
a deterministic policy that aims to produce the optimal action corresponding to a
provided state. Alternatively, the role of critic network is to evaluate the reward
linked to state-action pairs. Through the assessment of actions taken across different
states, the critic network provides feedback to the actor network. This feedback is
then used for the refinement of the policy, resulting in a better convergence and more
stable learning compared to pure policy-based DRL methods.However, due to the
overestimation in DDPG, TD3 is proposed as an extension of DDPG to effectively
mitigate the overestimation bias during the learning process by employing two critic
networks [29]. Compared to other actor-critic based DRL algorithms, e.g., DDPG
and A2C, TD3 has been shown to achieve superior performance on serveral bench-
mark environments [57,65]. Technically, TD3 is composed of one actor network π and
two critic networks (Q1 and Q2). Correspondingly, three target networks, π̂, Q̂1, and
Q̂

2, are involved to efficiently stabilize the training process. Additionally, to collect
transition samples for the neural network trainings, a replay buffer Bcr is defined. In
the training phase, six neural networks are firstly initialized with random parame-
ters and then updated periodically until reaching the convergence. More specifically,
based on an environment state s(t), action a(t) is selecting using the policy network
π, a(t) = π(s(t)), which is then performed on the environment. Once the action
a(t) is completed, the RL agent captures the environmental feedback R(t), which is
regarded as an indicator of the performance of action a(t), and observes the next envi-
ronmental state s(t+1) simultaneously. Next, the transition sample of this one-time
interaction, (s(t), a(t),R(t), s(t + 1)), is stored in the replay buffer Bcr for further
model training. Essentially, the actor and critics have distinct updating patterns.
Specifically, in each iteration, a mini-batch of transitions is randomly sampled from
the replay buffer Bcr to update the critic networks Q1 and Q2. During every episode
ϱ, the actor and three target networks are updated based on the critic networks that
are trained during the current iteration.

16

Forecasting Model
 Historical Sequence

 Forecasted Sequence

Figure 2.3: Time-series Forecasting.

2.3 Time-series Forecasting

A TSF model is a mathematical or computational framework used to predict fu-
ture values of a time-series based on historical data. TSF models aim to capture
patterns, trends, and seasonality in the data to make accurate predictions [78, 99].
TSF is a longstanding task with diverse applications, such as wireless network mon-
itoring, smart grid management, and traffic jam control [19, 55, 111]. There exist
three categories of TSF models. The first one is statistical-based TSF methods that
rely on statistical techniques to capture patterns and make predictions. In contrast,
machine learning-based TSF models, including but not limited to linear regression,
decision trees, random forests, and gradient boosting machines, learn from historical
data to formulate predictions and can uncover more complex and hidden relation-
ships in the dataset. The last one is DL-based TSF models, such as RNN, LSTM,
and Transformer, which excel at capturing temporal dependencies within the data
and are particularly well-suited for sequential time-series data. Over the past several
decades, TSF solutions have evolved from traditional statistical methods and machine
learning techniques to DL-based solutions [50,58]. The mechanism of time-series fore-
casting is exhibited in Fig.2.3. In the time-series applications, the enormous amount
of data from the historical data can be utilized to make prediction about the near
future fluctuation. Nevertheless, most existing forecasting approaches are specifically

17

designed for the short-sequence scenarios, where the length of sequences is less than
48 points [52, 97]. Namely, the performance is significantly undermined in terms of
the predictions on long sequences. Hence, the long-sequence forecasting models are
introduced to extend the forecasting capacity [111]. The details of long-sequence
forecasting model will be elaborated in Section 5.2.1.

2.4 Existing Task Offloading Schemes

A variety of different issues in MEC have been investigated over the past years
[9,10,20,42,112]. The existing MEC-based offloading methods can be mainly catego-
rized into two groups: non-learning-based computation offloading and learning-based
computation offloading. Most former approaches achieve the optimal strategy by solv-
ing the optimization problem with a complex mathematical model, while the latter
approaches learn the optimal strategy automatically either using a set of training data
or interactions with the environment. The details of these two groups of offloading
methods are systematically presented in the following subsections.

2.4.1 Non-learning-based Task Offloading

Non-learning-based task offloading typically employs predefined rules, heuristics, or
straightforward algorithms to determine when and how tasks should be offloaded.
These approaches, which do not involve learning mechanisms, are often straight-
forward to implement and may suffice for applications characterized by predictable
workload patterns and stable environments. Many non-learning-based task offloading
approaches have been considerably studied in the literature to optimize the perfor-
mance of MEC systems.

Apostolopoulos et al. investigated a highly dynamic MEC environment that con-
sists of ground and UAV-mounted MEC servers and proposed a novel data offloading
framework to partially offload the data of end users [4]. Particularly, the framework
considered risk-aware behavior of users and uncertainties of the computing environ-
ment. The offloading problem is formulated as a non-cooperative game that provably
and uniquely exists a Pure Nash Equilibrium to maximize the user’s satisfaction.

18

Chen et al. considered a green MEC scenario with multi-user multi-task, and de-
veloped a centralized and distributed greedy maximal scheduling algorithm in the
environment for cooperating fog and cloud computing enviornment. The algorithm
aims to effectively reduce task delay and energy consumption of user equipment [15].
Specifically, they formally formulated the multi-user multi-task computation problem,
and leveraged a Lyapunov optimization algorithm to determine the near-optimal en-
ergy harvesting policy, e.g., the amount of energy being harvested for each mobile
device, as well as the schedule of task offloading, e.g., the portion of tasks being pro-
cessed on the mobile devices and edge servers. Du et al. considered the computation
offloading problem in a mixed fog/cloud system and proposed a multi-tier offloading
approach, which aims to jointly optimize task offloading decisions and the alloca-
tion of computation resources while ensuring user fairness and tolerable computation
delay [25]. The offloading problem is formulated as a relaxation problem that is the-
orectically proved as a NP-hard problem. To solve the problem, a low-complexity
algorithm, which incorporates semidefinite relaxation, randomization, fractional pro-
gramming theory, and Lagrangian, was proposed to solve the NP-hard problem and
then achieve a suboptimal solution. In [26], the authors aimed to develop a cost-
driven computation offloading model for an edge-cloud environments that considers
communication expense asymmetry of non-resident tasks. The offloading problem in
the model is first proved to be an NP-hard problem and then an efficient algorithm
was developed to solve it. Additionally, to handle a homogenous case when the two
types of communication costs between pairwise interactive tasks are symmetric, an
optimal offloading algorithm can be designed by converting the problem into a clas-
sical min-cut problem, which is evaluated by a PageRank-based application with a
manipulated edge-cloud setting. Geng et al. considered the energy optimization on
both the mobile devices and the remote server and proposed a multicore-based heuris-
tic computation offloading approach that takes into account processing capabilities,
energy consumption, and network bandwidth to determine when and how to offload
multiple dependent tasks from mobile devices having a big.LITTLE structure to the
resource-rich remote servers [33]. They solve the offloading problem with a proposed

19

heuristic algorithm that can obtain the best performance in terms of offloading deci-
sions and task scheduling. Ji et al. aimed to relax the assumptions imposed on radio
channels and network queue sizes in the MEC systems with various uncertainties,
and proposed an energy-efficient computation offloading approach that considers the
intrinsic uncertainties in network to minimize the worst-case expected energy con-
sumption of a local device [45]. This approach developed an ϵ-bound approximation
algorithm based on column generation to efficiently identify the optimal offloading
decisions, and the algorithm is evaluated on an Android smartphone. Jošilo et al.

considered the coordination of wireless mobile devices that generate computation-
ally intensive tasks periodically, and proposed a game theorectical-based offloading
model to determine when to perform tasks and whether or not to offload the tasks
to an edge server through wireless link so that the overall cost is minimum [48].
Then, the existence of pure strategy Nash Equilibrium is proved by using a proposed
polynomial-time complexity algorithm. In addition, an asymptotically tight bound
on the approximation ratio of the proposed offloading model is specified, based on a
given upper bound on the price of anarchy of the game. Zhang et al. jointly consid-
ered the computation and caching resources at the mobile edge servers, and proposed
a novel offloading approach for handling latency-sensitive tasks to optimize multi-
ple metrics, e.g., computation offloading, content caching, and resource allocation.
The related offloading problem is formulated as a MINLP problem [104]. Then, the
MINLP problem is solved by using an asymmetric search tree and branch and bound
method to obtain a set of accurate offloading decisions and resource allocation poli-
cies. In [108], the authors studied the offloading problem in caching-restricted MEC
systems for a set of dependent tasks to minimize the task completion time. In our
research, an effective convex programming-based algorithm is first proposed to solve
the hard problem, which cannot be tackled with existing algorithms with constant
approximation. Then, a favorite successor based algorithm is devised to address a
special case referred to a predefined parameter in the offloading problem. Naouri
et al. proposed a three-layer task offloading approach, called DCC, comprising the
device layer, cloudlet layer, and cloud layer [67]. In DCC, tasks with high computing
requirements are offloaded to the cloudlet layer and cloud layer, while tasks with low

20

computing but high communication costs are executed on the device layer. This de-
sign minimizes data transmission to the cloud, effectively reducing processing delay.
Specifically, a greedy task graph partition offloading algorithm, where task schedul-
ing considers device computing capabilities using a greedy optimization approach to
minimize communication costs, is devised. To demonstrate the effectiveness of the
aprroach, a facial recognition system is implemented as a use case scenario. Further-
more, simulation results indicate effectiveness of DCC approach.

Despite the effectiveness of aforementioned non-learning-based schemes, they suf-
fer to several limitations. For instance, the approaches need to consume massive
computation resources to reach a satisfactory optimum, which is infeasible for most
mobile systems. Secondly, these approaches struggle to cope with the highly dy-
namic nature of MEC systems and to promptly generate optimal offloading decisions.
Therefore, these concerns have prompted RL agents to incorporate machine learning
algorithms to learn the best offloading automatically to adapt to the variations of
MEC systems.

2.4.2 Learning-based Task Offloading

Learning-based task offloading strategies leverage machine learning algorithms to dy-
namically determine task offloading decisions within MEC systems. These strategies
involve learning from historical data, instantaneous observations, or system feedback
to optimize the task allocation and offloading process.

To overcome the limiations of non-learning-based offloading approaches, researchers
have increasingly explored machine learning techniques to address the challenges of
task offloading in edge computing. Cao et al. studied multi-user distributed computa-
tion offloading to reduce the system-wide execution cost in a multi-user multi-channel
cloudlet-based edge computing environment [11]. They proposed a game-theoretic
machine learning based approach that formulates the distributed offloading problem
as a noncooperative game for all users in the MEC system, and demonstrate the exis-
tence of pure-strategy Nash equilibrium point. This point could be obtained with the
aid of a stochastic learning process. The proposed offloading algorithm was analyzed

21

theoretically, and simulation results exhibited that it is more effective than all base-
line methods. Elgazzar et al. focused on resource-constrained mobile devices and pro-
posed a cloud-assisted mobile service provisioning framework that allows for dynamic
offloading of resource-intensive tasks to resourceful and reliable remote servers [27].
This approach significantly shortens the latency of computational tasks and reduces
the total amount of transmission data, while also satisfying user-defined energy con-
straints. The offloading model is optimized using a learning-based decision-maker
called Follow-Me-Provider, which generate the offloading policies based on a series
of system states, such as the available resources of mobile systems and immediate
network conditions. In [37], Hao et al. considered offloading computation-intensive,
data-sensitive, and delay-sensitive intelligent tasks in a multi-user multi-server mo-
bile edge computing environment. They developed a task offloading architecture
that includes computation task cognitive layer, edge resoruce cognitive layer, and
global management cognitive layer. The proposed cognitive DL-based task offload-
ing approach optimizes the offloading policies under multi-user multi-edge scenarios
to achieve a lower task duration and energy consumption compared to the base-
line offloading methods. Additionally, the offloading approach specifies where to
run the offloading scheme and how to run it. Kalantarian et al. aimed to jointly
reduce system power consumption and improve battery life of lightweight wearable
health-monitoring devices [49]. To achieve these goals, a novel dynamic computation
offloading approach is proposed to alter the partitioning of data processing between
health monitoring device and mobile application based on the desired classification
accuracy. The experimental results demonstrate that the power usage can be signifi-
cantly reduced by selecting appropriate offloading decisions based on current system
parameters. Furthermore, the effectiveness of the offloading model is also evaluated
in the deadline-sensitive monitoring systems in terms of energy optimization. Prad-
han et al. explored computation offloading for Internet-of-Things (IoT) applications in
the Multiple-Input-Multiple-Output (MIMO) Cloud-Radio-Access-Network (C-RAN)
architecture [71]. Particularly, a low-complexity supervised DL-based offloading ap-
proach was proposed to promote the offloading decisions for computational tasks of

22

the IoT devices in MIMO C-RAN so that the transmit power consumption of the de-
vices can be minimized while the latency requirements of the computation-intensive
tasks are satisfied. Additionally, to enhance the adaptability of the offloading model
to various MEC environments, they employed deep transfer learning to facilitate the
learning process when turning into a new environment. Xu et al. proposed a DL-based
aprroach (DeepWear) for wearable devices to enhance performance and reduce energy
consumption [94]. DeepWear strategically offloads DL tasks from a wearable device
to its paired handheld device through local network connectivity like Bluetooth. Un-
like remote-cloud-based offloading, DeepWear operates without the need for Internet
connectivity, consumes less energy, and ensures robust privacy protection. Further-
more, DeepWear incorporates several innovative techniques including context-aware
offloading, strategic model partitioning, and pipelining support to effectively lever-
age the processing capacity of nearby paired handheld devices. Lastly, this approach
has been implemented on the Android OS and evaluated on COTS smartphones and
smartwatches using real DL models. The experiment results demonstrate that Deep-
Wear achieves up to 5.08X and 23.0X execution speedup, as well as 53.5% and 85.5%
energy savings compared to wearable-only and handheld-only strategies, respectively.
However, aforementioned learning-based offloading approaches are supervised and re-
quire a large amount of manually-labeled data for the training of a robust decision
model, which is generally infeasible in many real-world MEC systems.

Recently, instead of relying on the labeled data, considerable RL-based offloading
methods that learn a automatic decision mode using the interactions between the RL
agent and its external environment, have been widely studied. Zhan et al. proposed
a decentralized DRL-based computation offloading approach to allow a set of mobile
users, who makes offloading decisions independently, to fairly compete for limited
resources in MEC systems so that overall energy consumption is minimized [100].
To address the multi-user offloading problem, the proposed approach utilizes game
theory and formulates the problem as a partially-observable Markov decision process,
which is then solved using a multi-agent policy gradient deep reinforcement learn-
ing. Unlike previous research work, this approach does not require the disclosure of
privacy infromation of mobile users, such as netowrk connectivity and preferences.

23

The authors proposed an online DRL-based offloading approach to jointly optimize
computation offloading decisions, Non-Orthogonal Multiple Access (NOMA) trans-
mission and resource allocation while the total energy consumption of mobile devices
is minimized [24, 72]. To handle time-varying channel conditions, the DRL offload-
ing model learns the near-optimal offloading policies to adapt to network dynamics
so that the objective of energy optimization is achieved. In the research [64], Min
et al. proposed a Q-learning-based computation offloading approach for IoT devices
that selects a suitable MEC server and offloading rate. Specifically, to facilitate the
learning process, they applied a deep Q-network to estimate the Q-value of each
action in Q-learning. In [53], Li et al. devised a Deep Q-Network (DQN) computa-
tion offloading model for a multi-user MEC system to mitigate both offloading delay
and energy consumption for all users. Nevertheless, Q-learning-based offloading ap-
proaches explicitly struggle to address the offloading problems with high-dimensional
and continuous state/action spaces. To address the issue, extensive actor-critic DRL-
based offloading approaches have been proposed to tackle offloading problems with
large action spaces. Wang et al. proposed a customized Proximal Policy Optimization
(PPO) approach referred to as Hybrid-PPO, which is augmented by a parameterized
discrete-continuous hybrid action space [90]. Utilizing Hybrid-PPO, a novel DRL-
based multi-server multi-task collaborative partial task offloading strategy, aligned
with meticulously constructed formal models, is developed. The experimental evalu-
ation demonstrates superior offloading efficiency, surpassing current state-of-the-art
schemes in terms of convergence rate, energy expenditure, time consumption, and
adaptability across diverse network conditions. Qiu et al. proposed a novel online
DRL-based offloading approach in a blockchain-empowered network that considered
both mining tasks and data processing tasks [74]. To be specific, the online offloading
problem is formulated as a Markov decision process to maximize the long-term offload-
ing performance. Additionally, deep reinforcement learning is leveraged to solve the
problem and reduce the computational complexity. Particularly, a novel DDPG algo-
rithm that integrates DDPG method with an adaptive genetic algorithm is designed
to learn an intelligent offloading scheduler for the tasks with different characteristics.

24

Tan et al. formulated the multi-user offloading problem as a distributed decision-
making problem and proposed a multi-agent decebtralized computation offloading
approach to incentivize agents to reconcile the private and global objectives by find-
ing a balance between competition and cooperation with respect to multiple metrics
of MEC system, such as offloading failure rate, communication overhead, and energy
consumption [82]. The mechanism is shown to have Nash equilibrium with optimal
resource allocation in the static scenario. To handle dynamic scenarios, a novel multi-
agent online learning-based algorithm was proposed to learn the partial, delayed and
inaccurate state information, and a reward signal that reduces the need for detailed
information. Ren et al. introduces a fast environment-adaptive DRL-based offloading
approach, FEAT, which is proposed to adapt to unseen environments with minimal
fine-tuning [75]. The approach involves splitting MEC states into internal and en-
vironmental states Subsequently, two main components of FEAT are developed: a
set of internal state-dependent meta-policies and an environmental state-embedded
steerer. The meta-policies learn skills within the internal state space, allowing for
their reuse in different environments, while the steerer learns to select appropriate
meta-policies based on embedded environmental states. When encountering an un-
seen environment with the same internal state space, FEAT requires only minimal
fine-tuning of the steerer using the newly embedded environmental state, with few
internal state explorations. In the context of edge-enabled Internet of Things (IoT),
Lu et al. proposed an improved DDPG-based computation offloading approach to en-
hance Quality of Experience (QoE), such as service latency, energy consumption, and
task success rate [63]. Due to the sensitivity of the critic network of the DDPG algo-
rithm, the learning model integrates a Double-Q learning and Dueling Network, called
Double-Dueling-Deterministic Policy Gradients (D3PG), with the original DDPG to
accelerate and stabilize the learning phase. The simulation results demonstrate the
superior stability and fast convergence of the proposed offloading approach compared
to existing methods.

Nevertheless, these approaches may not effectively process periodic deadline-sensitive
tasks due to the utilization of STS observation as inputs of policy network, result-
ing in substantial suboptimal offloading decisions. Furthermore, they lack effective

25

measures to ensure safety during the learning process, consequently leading to con-
siderable suboptimal offloading policies and deadline misses. To tackle these issues,
many safe DRL-based offloading approaches have been proposed. Gao et al. pro-
posed an Attention-weighted Recurrent Actor-Critic (ARMAAC) based decentralized
computation offloading scheme for large-scale mixed cooperative -competitive MEC
systems to reduce service latency for mobile users [32]. Particularly, the proposed
approach consists of three main components. Firstly, a recurrent actor-critic frame-
work is used to assist mobile device agents in memorizing historical information to
better understand future states. Secondly, an attention mechanism is intorduced to
capture critical features the observations of mobile devices. To meet the constraints
of offloading problem, ARMAAC leverages reward shaping to penalize the unsafe
offloading policies. Finally, the mdoel takes into consideration the stable and conver-
gence difficulties that arise due to the sensitivity correlation between the actor and
critic networks. Tang et al. considered non-divisible, delay-aware tasks, and workload
dynamics of edge servers, and formulate the task offloading problem to minimize the
processing delay and dropped rate of tasks [84]. Specifically, the proposed approach
involves a model-free DRL-based distributed algorithm, allowing each device to de-
termine its offloading decision independently, without knowledge of task models or
the decisions of other devices. To enhance the estimation of the long-term cost, the
techniques such as LSTM, dueling DQN, and double-DQN into the algorithm, are
technically integrated. Furthermore, reward shaping is utilized to guarantee the con-
straints of the offloading problem. Simulation results demonstrate that the proposed
algorithm effectively leverages the processing capacities of edge nodes, leading to a
significant reduction in the ratio of dropped tasks and average delay compared to
several existing algorithms. Gao et al. proposed a novel offloading strategy for MEC
systems, termed Com-DDPG, which leverages multiagent reinforcement learning to
improve offloading performance [31]. Within the transmission radius of the Internet
of Vehicles (IoV), multiple agents collaborate to learn environmental changes, such
as numebr of mobile devices and task queues, and determine appropriate offloading
policies. Specifically, the authors explore task dependency, priority, and resource
consumption from the perspective of server clusters and multiple task dependencies.

26

Subsequently, the proposed method formulates communication behavior among mul-
tiple agents, with the policy determined through reinforcement learning executed as
an offloading policy to produce corresponding outcomes. Furthermore, to enhance in-
formation exchange among agents, a LSTM network is employed as an internal state
predictor to provide a comprehensive system state. Lastly, a Bidirectional Recurrent
Neural Network (BRNN) is utilized to learn and improve features obtained from the
communication of agents. In [41], Huang et al. introduced a 6G-empowered DRL-
based offloading scheme named MELO, designed to facilitate appropriate offloading
decisions for periodic deadline-sensitive tasks. The offloading problem is specifically
formulated as a Markov Decision Process, followed by the utilization of a DRL algo-
rithm, TD3, to address the problem. Furthermore, this approach integrates 6G as
the communication infrastructure to adequately support data transmission between
mobile devices and edge servers. Aimed at optimizing resource allocation on mobile
devices, a novel learning architecture, EALA, is proposed. With EALA, the training
and inference operations of the learning algorithm are decoupled, with training exe-
cuted on edge servers and inference performed on mobile devices. To mitigate deadline
violations during the learning phase, reward shaping is implemented to punish the
offloading policies that result in deadline misses.

27

Chapter 3

Energy Consumption Minimization with DRL-based Task Offloading

In this chapter, we present the details of PDMO, a novel task offloading scheme for
MEC that aims to minimize energy consumption. Specifically, the system model
for PDMO is first discussed. Afterwards, the components of PDMO, including the
proposed learning algorithm called POTD3, are descirbed. Finally, the performance
of PDMO is compared with that of serveral baseline schemes.

3.1 System Model

In this section, we present three system models adopted in PDMO: scheduling model,
job completion time model, and energy consumption model. The scheduling model
is responsible for determining the processing priorities of local tasks and the data
transmission priorities of offloaded tasks in mobile transmitter. The job completion
time model is utilized to calculate the completion time of tasks being processed on
both mobile device and remote servers. The energy consumption model is employed
to measure the overall energy consumption of both local and offloaded tasks when
transmitting task data. The details of the problem formulation are also described in
this section. A list of the key notations uniquely used in Chapter 3 are provided in
Table 3.1.

3.1.1 Overview

In real-world scenarios, many mobile applications such as autonomous driving, involve
both periodic Deadline-Sensitive (DS) tasks and aperiodic Non-Deadline-Sensitive
(NDS) tasks [106]. In our research, we consider a set of periodic DS tasks T =

{τ1, τ2, . . .} and a set of aperiodic NDS tasks Φ = {φ1, φ2, . . .} on mobile devices. In
general, each DS task τn (note that τn ∈ T) is represented using a 4-tuple: τn(pn, wn,
dn, ln). Since task τn is periodic, it is repeated once in a while. We use pn to denote
the period of task τn. It is noteworthy that the task τn is executed only once in per

28

Table 3.1: Key Notations in Chapter 3
Notation Description

T ,Φ DS task set and NDS task set
τn, φm DS task n, τn ∈ T and NDS task (job) m, φm ∈ Φ

τ in i-th job of τn in a hyperperiod
LQ, TQ The local and transfer queue for ready jobs
Hp Length of hyperperiod w.r.t set T
Qnr NDS task queue in a hyperperiod
x Total number of jobs in a hyperperiod
Jl,r,Jl,nr DS and NDS job set for local computing
Je,r,Je,nr DS and NDS job set for edge computing
Jc,r,Jc,nr DS and NDS job set for cloud computing
ℏu Schedulability test result for Jl,r

Us System utilization of local devices
Re, Rc Transmission rates of edge and cloud network
ωe, ωc Speedup variables of edge and cloud server
ζe, ζc Instantaneous workload of edge and cloud server
O Set of offloading profile
Λt Offloading profile at t-th hyperperiod, Λt ∈ O
Ptrans Transmission power of a mobile device
ϑ Average job arrival rate at edge server
ts Scheduling points in a hyperperiod
Td Length of idle time at scheduling point
fl, al, dl Frequency, AET and data size of a local job
de, dc Data size of a job being processed at edge and cloud
f i,
n , fm Frequencies of τ in ∈ Jl,r and φm ∈ Jl,nr

F ,fk Set of frequencies and the maximum frequency in F

29

period. The second element of the 4-tuple, wn, denotes the WCET of τn, which is
a time window required to complete a task in the worst case when CPU runs at the
highest frequency level [37]. In deadline-sensitive systems, a task often requires less
execution time than its WCET. This leads to the term of AET, which is defined as
the specific execution time of a task in a period. In this chapter, we use an to denote
the AET of task τn. The third element of the tuple, dn, represents the volume of the
data that need to be transferred between the local device and the remote server when
the task needs to be offloaded. If a DS task τn cannot be completed within its period
pn, it is considered to miss its deadline. The last element of the tuple, ln, is a status
variable that indicates whether the task τn misses its deadline. In our research, a
3-tuple φm = (wm, dm, km) is used to denote an NDS task. Note that wm and dm are
similar to wn and dn; km is a status variable that indicates whether an NDS task is
finished with a hyperperiod (note that the definition of hyperperiod will be presented
below). In the scheduling phase, DS tasks are assigned with a higher priority than
NDS tasks.

In our research, we assume that each periodic DS task τn arrives at the beginning of
its period. To effectively schedule periodic DS tasks, Islam et al. proposed a scheduling
method based on the concept of hyperperiod [43]. The adoption of hyperperiod
provides an effective method to calculate the CPU utilization of a mobile device,
which can be used to scale CPU frequency in order to reduce energy consumption
of the mobile device. In our research, we adopt a scheduling method based on the
concept of hyperperiod. Technically, the hyperperiod of a set of periodic tasks, Hp,
is defined as a time window within which every DS task in the task set could be
executed at least once. Formally, Hp can be defined using Eq. (3.1):

Hp = LCM(p1, p2, ...), (3.1)

where LCM is a function that calculates the least common multiple of a series of
numbers. Mathematically, Hp is the least common multiple of all task periods re-
garding the task set T . Within each hyperperiod, a DS task τn is executed Hp/pn

times. Note that if a DS task rarely arrives (i.e. the period of a DS task is significantly
longer than that of other DS tasks), the resulting hyperperiod could be overly long.

30

With PDMO, one learning cycle corresponds to one hyperperiod. At the end of each
learning cycle, learning reward is generated and the offloading policy is thereafter
adjusted. This process continues untill PDMO converges. If the hyperperiod is too
long, PDMO will need a lengthy period to converge. In the research, we consider
MEC systems in which the periods of DS tasks are in the range of 4 to 32 timeslots
(unless specified otherwise). For clarity, each execution of task τn in a hyperperiod is
called a job corresponding to the task τn. Additionally, we use τ in to denote the i-th
job of τn in a hyperperiod. Correspondingly, wi

n, din, and lin represent WCET, AET,
and the deadline-miss status variable of job τ in. Note that i ≤ Hp/pn.

Unlike DS tasks, NDS tasks have a flexible arrival pattern. Since each aperiodic
NDS task is executed only once, each NDS task corresponds to one NDS job. There-
fore, we can use φm to denote both an NDS task and the job corresponding to the
task. In the rest of this chapter, unless stated otherwise, we use τ in and φm to denote
a DS job and an NDS job, respectively. Noticeably, each hyperperiod involves both
DS and NDS jobs. The total number of jobs in a hyperperiod, denoted as x, can be
calculated using Eq. (3.2):

x =

|T |∑
n=1

Hp/pn + |Qnr|, (3.2)

where Qnr denotes the queue for the arrived NDS tasks during a hyperperiod and
|Qnr| represents the number of NDS tasks in the queue.

In this research, we consider a 3-tier offloading system that involves mobile device,
edge server, and cloud serve. Fig. 3.1 shows the architecture of the system under
investigation. With this system, a job is either processed locally on a mobile device
or offloaded to an edge server (or a cloud server if the edge server associated with the
mobile device is overloaded). Technically, the proposed offloading scheme, PDMO, is
invoked on a mobile device at the beginning of each hyperperiod to determine where
the jobs of subsequent hyperperiod should be processed. Since DS jobs are periodic,
PDMO is aware of the DS jobs that will arrive in the upcoming hyperperiod. However,
for NDS jobs, PDMO only knows the NDS jobs that have arrived at a mobile device.
Consequently, PDMO only makes an arrangement for the DS jobs that need to be
processed in the upcoming hyperperiod and the NDS jobs that have arrived in the

31

Edge Server

Mobile Device
Mobile Device

Mobile Device

NDS Task 1

Cloud Server

Wireless Task
Offloading

Wired Task
Offloading

... ...

NDS Task 2

DS Task 1 DS Task 2

Figure 3.1: Architecture of the MEC System under Investigation for PDMO

past. At the beginning of a hyperperiod, PDMO classifies these jobs into six job
subsets: Jl,r, Je,r, Jc,r, Jl,nr, Je,nr and Jc,nr. Note that Jl,r, Je,r and Jc,r denote
the DS job subset for the local mobile device, the edge server and the cloud server,
respectively. Jl,nr, Je,nr and Jc,nr represent the NDS job subset for the local mobile
device, the edge server and the cloud server, respectively.

3.1.2 Scheduling Model

For scheduling purposes, the proposed scheme maintains two priority queues, LQ and
TQ, to store the jobs processed locally and those being transferred to an edge/cloud
server. Each queue consists of two components, DS and NDS component, which
include DS and NDS jobs respectively. The DS component is always ahead of the
NDS component so that DS jobs are first processed. Within the DS component, jobs
are sorted based on the Earliest-Deadline-First (EDF) algorithm [79]. In contrast, the
jobs in the NDS component are sorted on a First-In-First-Out (FIFO) basis. Note
that an NDS job is preempted in the scenario where a DS job arrives during the
execution possession of the NDS job.

As aforementioned, at the beginning of a hyperperiod, every job is assigned to one

32

of the subsets. Once subset Jl,r is available, the system utilization of local device, Us,
can be calculated using the AET andWCET information of the jobs in Jl,r. Note that,
at the beginning of a hyperperiod, only the WCET information is available. Each
time a DS job is completed, its AET becomes available and the system utilization Us
is updated using Eq. (3.3):

Us = (
∑

τ jn∈prec(τ in)

ajn +
∑

τ jn /∈prec(τ in)

wj
n)/Hp, (3.3)

where τ in is the next DS job to be completed; prec(τ in) denotes a job set that includes
the DS jobs that have been completed before job τ in in a hyperperiod; ajn and wj

n

denote the AET and WCET of task τ jn. At the beginning of a hyperperiod, Us is also
obtained using Eq. (3.3). However, since prec(τ in) is an empty set at the time, only
the WCET of the jobs in the subset Jl,r is used to calculate the system utilization Us.
To simplify the calculation of Us, the AET ajn in Eq. (3.3) denotes the time interval
used to complete the job τ jn when CPU runs at the highest frequency level. In practice,
CPU frequency can be scaled down adaptively to reduce energy consumption. When
CPU frequency is lowered to run an DS job τ in, the execution time of the job is ain/fl,
where the time interval used to complete the job τ in when CPU runs at the highest
frequency level; fl is the ratio of the lowered CPU frequency to the highest CPU
frequency. Whenever the system utilization Us is less than one, the local CPU is not
fully utilized and the available slack could be used to lower CPU frequency. At the
beginning of a hyperperiod, no DS job has been executed and therefore only static
slack exists. After jobs start to be executed locally, dynamic slack is potentially
reclaimed at runtime due to the difference between AET and WCET of each job.
Both static and dynamic slack can be used by PDMO to lower CPU frequency for
energy minimization.

To achieve this goal, the runtime CPU frequency is lowered adaptively according
to the total amount of static and dynamic slack. Note that blindly lowering CPU
frequency could be harmful to DS jobs because the lowered frequency will incur longer
execution time, inevitably resulting in more deadline misses. To guarantee that the
deadlines of the DS jobs in the subset Jl,r are met, the schedulability test and DVFS
technique are used in the proposed scheme as previous work [5,80]. The schedulability

33

test leads to a positive result if the system utilization Us is less than one. Formally,
we use ℏu to denote the schedulability of subset Jl,r. Note that ℏu can be calculated
using Eq. (3.4):

ℏu =

 1, if Us ≤ 1,

0, otherwise.
(3.4)

Once the schedulability test is passed (i.e. ℏu = 1), the deadlines of DS jobs can be
met rigorously. Otherwise, the local mobile device cannot complete all the DS jobs
assigned to it on time.

The DVFS technique can be leveraged to lower CPU frequency according to the
slack in the local mobile device while ensuring the deadelines are met. In our research,
we use F to denote the set of frequency levels available on the mobile device, where
F = (f1, f2, ...fk), f1 < f2... < fk. For simplicity, we assume that fn is the ratio of
a specific CPU frequency to the highest CPU frequency. For example, if the highest
frequency is 1 GHz and f1 corresponds to the lowest possible frequency on the mobile
device (e.g. 0.6 GHz), then f1 is equal to 0.6. Since fk corresponds to the highest
frequency, fk is equal to 1. In the scenario that Us ≤ 1 and the schedulability test
is passed, the DVFS technique could be used to lower the CPU frequency. With
PDMO, the CPU frequency for the local mobile device, fl, should be set to Us · fk.
However, since mobile devices typically provide a set of discrete frequency levels, fl
is set to an element in F , which is equal to or slightly greater than Us · fk. In our
research, we use ⌈Us · fk⌉ to denote the value assigned to fl.

With PDMO, if a DS job τ in runs at the local mobile device, its deadline can be
surely met because of the employment of schedulability test. However, an offloaded
DS job may miss its deadline due to the unpredictable network delay and queuing
delay at the edge/cloud server. At the end of each hyperperiod, the deadline miss
information is returned by PDMO to learn the system and thereafter make better
offloading decisions. Since DS jobs are periodic, there might be some idle CPU time
between DS jobs. With PDMO, the free time is utilized to schedule NDS jobs. The
details of the job scheduling process at the beginning of a hyperperiod is outlined in
Algorithm 1. Specifically, this algorithm involves the following three modules:

34

(i) PDMO first calculates the length of the hyperperiod Hp according to Eq. (3.1).
Thereafter, at the beginning of a hyperperiod, every job is assigned to one
of six subsets. Finally, LocalScheduling is used to schedule local jobs and
TransScheduling is employed to schedule the jobs to be offloaded to edge/cloud
servers.

(ii) With LocalScheduling, the system utilization Us is first calculated based on
subset Jl,r. If the schedulability test is passed (i.e. Us < 1), the first job in
the queue LQ is allowed to execute at the decision point ts with a modified
frequency fl = ⌈Us · fk⌉, where ts denotes a critical time when either a job is
completed or a new job arrives. To avoid too many frequency adjustments,
NDS jobs would not be scheduled if the length of idle time Td is shorter than
a predefined threshold T ∗. Generally, the length of T ∗ should be based on the
Context Switch Time (CST), which is the time used to replace the currently-
running process with another process on a mobile device. For example, T ∗ could
be set to a value that is equal to a multiple of CST, such as 10 * CST. Since DS
jobs have higher priority than NDS jobs, the NDS job φm ∈ Jl,nr is permitted
to be executed only if all DS jobs in LQ are completed.

(iii) With TransScheduling, the DS and NDS jobs in TQ are sorted at each decision
point. After TQ is sorted, the first job in TQ is offloaded to an edge server or
a cloud server. Note that DS jobs should always be ahead of NDS jobs in TQ.
Namely, an NDS job is preempted in the scenario where a DS job arrives when
the NDS job is transmitting its data.

Fig. 3.2 includes an example that illustrates how DS/NDS jobs are scheduled
simultaneously. In this example, there are four DS tasks and three NDS tasks. The
details of these tasks are outlined in Table 3.2. Specifically, we assume that the
frequency levels range from 0 to 1.0, with a step increase being 0.1. The transmission
rate of the local device is set to 10 Mbps. The threshold T ∗ is set to 0.5 seconds.
The hyperperiod Hp is equal to LCM(4, 6, 12, 6) = 12 seconds and the total number
of jobs x is equal to 12/4 + 12/6 + 12/12 + 12/6 + 3 = 11. The six job subsets are

35

Algorithm 1: Hybrid Job Scheduling with DVFS.
Input: DS and NDS task sets: T , Φ
Output: operating frequency fl, scheduling sequences Sl and St

1 Function MainScheduling;
2 Calculate Hp using Eq. (3.1);
3 Allocate jobs to subsets: Jl,r, Je,r,Jc,r, Jl,nr, Je,nr, Jc,nr;
4 LocalScheduling(Jl,r,Jl,nr);
5 TransScheduling(Je,r,Jc,r,Je,nr,Jc,nr);
6 Function LocalScheduling(Jl,r,Jl,nr);
7 Update system utilization Us based on AETs of τ in ∈ Jl,r;
8 for t = 1 to Hp do
9 if t = ts then

10 Sort jobs in queue LQ;
11 Pop the head job in LQ, τ̂ ← τ in = LQ.head ;
12 if τ̂ ∈ Jl,r then
13 Update Us using Eq. (3.3);
14 Execute τ̂ with frequency fl ← ⌈Us · fk⌉ ;
15 end
16 else
17 while LQ ̸= ∅ and Td ≥ T ∗ do
18 τ̂ ← φm = LQ.head;
19 Execute τ̂ with the lowest frequency frequency f1;
20 end
21 end
22 end
23 end
24 Function TransScheduling(Je,r,Jc,r,Je,nr,Jc,nr);
25 for t = 1 to Hp do
26 if t = ts then
27 Sort jobs in queue TQ;
28 Pop the first job in queue TQ, τ̂ ← LQ.head ;
29 Conduct data transmission of job τ̂ with rate Re;
30 end
31 end

Jl,r = {τ 11 , τ 31 , τ 12 , τ 13 }, Jl,nr = {φ1, φ2}, Je,r = {τ 21 , τ 14 }, Je,nr = {φ3}, Jc,r = {τ 22 , τ 24 }
and Jc,nr = {∅}. The AET of these jobs are shown in Table 3.3.

With LocalScheduling, the system utilization Us is first calculated according to
subset Jl,r: Us = 1/12+1/12+1/12+2/12 ≈ 0.42. Then, for the job τ 11 , the frequency

36

Table 3.2: Details of Tasks
Task No. Period(s) WCET (s) Data(Mb)

τ1 4.0 1.0 5.0
τ2 6.0 1.0 20.0
τ3 12.0 2.0 15.0
τ4 6.0 2.0 10.0
φ1 N/A 4.0 15.0
φ2 N/A 1.0 5.0
φ3 N/A 1.0 30.0

is set to ⌈0.42 · 1⌉ = 0.5. At the first decision point ts = 0, LQ = (τ 11 , τ
1
2 , τ

1
3 , φ1, φ2).

The head job τ 11 in the queue LQ is first scheduled. Since the AET of job τ 11 is 0.5
seconds, the execution time of job τ 11 is calculated, T 1

1 = 0.5/0.5 = 1.0 second. Before
scheduling job τ 12 , the system utilization Us is recalculated based on the AET of job
τ 11 : Us = 0.5/12+1/12+1/12+2/12 ≈ 0.38. For the job τ 12 , the CPU frequency is set
to ⌈0.38 · 1⌉ = 0.4. Similarly, the job τ 31 runs with a frequency of 0.4 for 3.75 seconds.
At the decision point ts = 7.25, the first NDS job φ1 in the queue LQ is allowed to
execute at the lowest frequency 0.1 for 0.75 seconds because the idle time interval
Td = 0.75 is greater than the threshold T ∗ = 0.5. At the decision point ts = 8.0,
preemption takes place. The NDS job φ1 is suspended and preempted by the DS job
τ 31 . After the system utilization Us is recalculated according to the AET of job τ 11 ,
job τ 12 and job τ 13 , it is adjusted to 0.4. Therefore, the DS job τ 31 is executed at the
frequency 0.4. The scheduling process continues until the end of the hyperperiod.

With TransScheduling, the queue LQ is sorted at each scheduling point. At time
slot 0, the priority queue TQ contains one DS job (i.e. the job τ 14) and one NDS job
(i.e. the job φ3). The DS job τ 14 that has highest priority is first to transmit its data.
After the job τ 14 finishes data transmission, the NDS job φ3 is scheduled to carry out
data transmission. At the decision point ts = 4.0, the DS job τ 21 arrives and thereafter
starts uploading its data. The DS job τ 22 and τ 24 are scheduled in the same fashion.

37

Table 3.3: AET of Jobs.
Job No. τ 11 τ 21 τ 31 τ 12 τ 22 τ 13

AET (s) 0.5 edge 0.5 1.0 cloud 1.5
Job No. τ 14 τ 24 φ1 φ2 φ3

AET (s) edge cloud 2.0 0.5 edge

0 1 2 3 4 5 6 7 8 9 10 11

Frequency

Time12

0.5

1.0

Local Jobs Offloaded Jobs Idle Time

Figure 3.2: Hybrid Job Scheduling Example.

38

3.1.3 Job Completion Time Model

As shown in Fig. 3.1, the MEC system under investigation involves mobile device,
edge server, and cloud server. To be specific, mobile device communicates with edge
server via a wireless connection. In contrast, the communication between edge and
cloud server is carried out via a wired link. The reason to consider a 3-tier system in
our research is that edge server typically have limited computation resources, which
might not be sufficient to accommodate the jobs offloaded from mobile device. To
relieve the burden on edge server, a portion of the jobs can be offloaded to a cloud
server that is assumed to have more computation resources. In the model, we use
a vector Λ = (λ1

1, ...λ
i
n, ..., λ1, ..λm, ...) to denote the offloading policy for both DS

and NDS jobs in a hyperperiod. Note that λi
n and λm denote the offloading decision

for the DS job τ in and NDS job φm, respectively. Given an offloading policy, if the
offloading decision λi

n or λm is equal to 0, the job τ in or φm is processed on the local
mobile device. In contrast, if the offloading λi

n or λm is equal to 1, then, the job τ in or
φm is offloaded to the edge server. If the job λi

n or λm is equal to 2, then, the job τ in

or φm will be offloaded to the cloud server. The number of elements in the offloading
policy Λ is equal to the sum of the number of DS jobs and the number of NDS jobs
in queue Qnr. In our research, we use O to denote the set of all possible offloading
policies. Obviously, Λ ∈ O.

Furthermore, we use Ptrans to denote the transmission power of the mobile device
when a job is offloaded to the edge server. In addition, we use cg to represent the
channel gain between the mobile device and edge servers. Finally, σ2 is the receiver
noise of the mobile device that can be modeled with a circularly symmetric complex
Gaussian distribution [54]. With these definitions, the upload rate of the mobile
device can be calculated using Eq. (3.5):

Re = W log2

(
1 +
Ptrans · cg

σ2

)
, (3.5)

where W denotes the network bandwidth. Finally, the transmission rate of the wired
link between a base station (where an edge server is colocated) and a cloud server is
denoted as Rc. Since the result returned from the edge/cloud server to the mobile

39

device is typically much smaller than the amount of data that need to be uploaded.
We assume that the transmission delay associated with the returned result can be
ignored. Therefore, the download rate of the mobile device does not need to be
modelled.

Jobs Processed on Mobile Device

As mentioned previously, to reduce the energy cost of local jobs, the DVFS technique
is applied to adjust CPU frequency dynamically. For a local DS job τ in ∈ Jl,r, the
CPU frequency fl is referred to the system utilization Us. In contrast, the CPU
frequency for an NDS job φm ∈ Jl,nr depends on the length of idle time Td and its
WCET wm. In summary, the CPU frequency fl for a job processed on the mobile
device can be calculated using Eq. (3.6):

fl =

 ⌈Us · fk⌉, τ in ∈ Jl,r,Us ≤ 1,

f1, φm ∈ Jl,nr, Td ≥ T ∗.
(3.6)

Based on the CPU frequency fl, the completion time of a local job, T c
l , can be

calculated using Eq. (3.7):

T c
l =

 ain/f
i
n, τ in ∈ Jl,r,

am/f1, φm ∈ Jl,nr,
(3.7)

where f i
n is the CPU frequency for the job τ in; f1 denotes the lowest CPU frequency

for the NDS job φm. All of these CPU frequencies are determined using Eq. (3.6).

Jobs Offloaded to Edge Server

If a job in the queue TQ is offloaded to the edge server, the execution time of this
job, Te, consists of four parts: 1) the queuing time at the local device, Tw

e ; 2) the
time used to transfer data between the mobile device and the edge server, T t

e ; 3) the
queuing time at the edge server, T q

e ; 4) the computation time on the edge server, T c
e .

The length of the first part Tw
e depends on the number of jobs ahead of the job under

40

investigation. Note that the job under investigation can be either an DS job τ in or an
NDS job φm. Formally, Tw

e can be calculated using Eq. (3.8):

Tw
e =

∑

τ jl ∈prec(τ in)
djl /Re, τ in ∈ Je,r

∑
τ jl ,φk∈prec(φm)

(djn + dk)/Re, φm ∈ Je,nr

(3.8)

where prec(φm) is the jobs ahead of NDS job φm in the queue TQ; τ jl ̸= τ in; φk ̸= φm.
In general, edge servers are physically close to mobile devices. Therefore, the

propagation delay induced by packet transmission between edge servers and mobile
devices can be omitted. Consequently, the time used to transfer data between the
mobile device and the edge server, T t

e , dominates the data transmission delay, which
can be computed by the upload rate of the mobile device and the size of the data to
be uploaded. Hence, the delay T t

e is calculated using Eq. (3.9):

T t
e = de/Re, (3.9)

where de denotes the size of data that need to be offloaded.
In the MEC system, the available computation resources of the edge server are

shared by numerous associated mobile devices. Hence, the queuing time of a job
on the edge server, T q

e , is determined by the total number of offloaded jobs from
connected mobile devices and the scheduling method for the queue. In our research,
we focus on one of the mobile devices connected to the edge server. The DS and NDS
jobs on the mobile device are generated according to the simulation settings that are
given in Section 3.3.1. When a job from the mobile device is offloaded to the edge
server, it is added to the job queue of the edge server. In order to calculate the queuing
time of the job that is offloaded from the mobile device in a manageable manner, the
jobs offloaded from other mobile devices to the edge server are modelled using Poisson
distribution. Namely, we assume that the jobs from other connected mobile devices
arrive at the edge server according to a Poisson distribution [61]. The average arrival
rate of the jobs from other mobile devices is denoted as ϑ. Furthermore, we assume
that the edge server uses EDF to schedule the offloaded jobs in its queue. With these
assumptions, varying arrival rate ϑ leads to different queueing time T q

e .

41

Note that edge servers are computationally faster than mobile devices. A job being
processed on the edge server consumes less computation time. Thus, the computation
time of a job completed by the edge server, T c

e , can be defined as a fraction of its
AET on the mobile device. Formally, the edge computation time of a job T c

e can be
calculated using Eq. (3.10):

T c
e = al/(ζe · ωe) (3.10)

where al is the AET of a job if it is processed locally; ωe denotes the speedup
of the edge server over the mobile device; ζe is a parameter based on the current
workload on the edge server (e.g. if two jobs are being processed simultaneously on
the edge server, then ζe = 1/2).

To this end, the completion time of a job being offloaded to the edge server, Te,
can be calculated using Eq. (3.11):

Te = Tw
e + T t

e + T q
e + T c

e . (3.11)

Jobs Offloaded to Cloud Server

In our research, we assume that the computation resources on the cloud server can
satisfy all demands of the offloaded jobs. Namely, a job starts to be processed imme-
diately after it arrives at the cloud server. Consequently, the queueing delay on the
cloud server, T q

c , is equal to zero. Hence, the execution time of a job offloaded to the
cloud server comprises three components: 1) the queuing time at the local device, Tw

c ;
2) the time consumed to transfer data between the mobile device and cloud server,
T t
c ; 3) the computation time at the cloud server, T c

c .
Similar to the scenario where a job offloaded to the edge server, an offloaded job

cannot be processed until all the jobs ahead of the current job in the queue TQ have
been dealt with. As a result, the local queuing time, Tw

c , can be calculated using an
equation similar to Eq. (3.8). Note that, a cloud-processing job cannot be transferred
to the cloud server directly. Instead, it is first forwarded to a base station in the mobile
network via a wireless connection, then the base station relays the job to the cloud

42

server. Since the propagation delay between the base station and the cloud server is
relatively large, it cannot be ignored any more. Overall, if a job is offloaded to the
cloud server, the time used to transfer data between the mobile device and the cloud
server, T t

c , can be calculated using Eq. (3.12):

T t
c = T t

e + 2 · Lc, (3.12)

where T t
e is the time used to transfer the data between the mobile device and the

base station (where the edge server is located); ·Lc is one-way propagation delay of
wired link between the base station and the cloud server.

Typically, cloud server is more powerful than edge server. Therefore, the speedup
of the cloud server over the mobile device, ωc, is greater than ωe. The computation
time of a job completed by the cloud server can be calculated using Eq. (3.13):

T c
c = al/(ζc · ωc) (3.13)

where ζc is a parameter that is based on the current workload on the cloud server (e.g.
if two jobs are being processed simultaneously on the edge server, then ζe = 1/2).
Thus, the completion time of a job offloaded to the cloud server, Tc, is the sum of
three components:

Tc = Tw
c + T t

c + T c
c . (3.14)

3.1.4 Energy Consumption Model

For a job processed locally on the mobile device, the energy consumption results
from the processing of the job. For a job offloaded to the edge or cloud server, only
the energy consumed by the transceiver of the mobile device needs to be taken into
consideration.

Let us first consider the energy cost of a job processed locally. In our research,
we focus on the energy consumed by the CPU for local jobs. For modern processors,
running a job consumes two types of power, static power and dynamic power. Tech-
nically, static power is consumed even if no instruction is executed, while dynamic

43

power is involved when instructions of a job are executed [106]. Therefore, the energy
consumption of a local job, Ec

l , is the sum of the static energy consumption, Es,
and the dynamic energy consumption, Ed. Formally, Ec

l can be calculated using Eq.
(3.15):

Ec
l = Es + Ed = (Ps + Pd) · T c

l , (3.15)

where Ps and Pd denote the power consumption rate of static and dynamic power,
respectively. Specifically, Ps and Pd can be calculated using the following equations
[43]:

Ps = V · Is + |Vbs| · Ij. (3.16)

Pd = c · V 2 · fl. (3.17)

where Is and Vbs denote the subthreshold current and the body bias voltage; Ij is the
reverse bias junction current; c is a coefficient; V represents the voltage related to the
frequency fl. Apparently, Pd is proportional to the CPU frequency fl. Consequently,
Pd decreases as fl goes down. As a result, when fl is lower, the energy consumption
of a local job, Ec

l , will be lower.
In terms of the power consumption for a job offloaded to the edge or cloud server,

we focus on the energy consumed by the transceiver of the mobile device in order
to send/receive the job data. This type of energy consumption is related to the size
of data transferred between the mobile device and the edge/cloud server, and the
instantaneous transmission rate. Hence, the energy consumed by the transceiver, Et

l ,
can be calculated using Eq. (3.18) [14]:

Et
l = (dl/Re) · Ptrans, (3.18)

where Ptrans denotes the power consumption rate of the transceiver.

3.1.5 Problem Formulation

In this subsection, we formulate the multi-tier offloading problem that jointly opti-
mizes the total energy consumption of mobile devices and the completion rate of NDS

44

jobs under the condition that the deadline constraints of DS jobs can be satisfied.
We use T i

n and Tm to denote the completion time of the DS job τ in and the NDS job
φm, respectively. For a local DS job τ in ∈ Jl,r, T i

n depends on the number of jobs in
set prec(τ in). Formally, it can be calculated using Eq. (3.19):

T i
n = ain/f

i
n +

∑
τ jn∈prec(τ in)

ajn/f
j
n, (3.19)

where f j
n can be obtained using Eq. (3.6). For the offloaded DS job τ in ∈ Je,r,Jc,r, the

completion time T i
n can be calculated using Eq. (3.11) and Eq. (3.14). To determine

whether a DS job misses its deadline, the completion time T i
n is compared with its

period pn. The status variable that indicates whether the job τn misses its deadline,
lin, can be set using Eq. (3.20):

lin =

 1, if T i
n ≥ pn,

0, otherwise,
(3.20)

where lin = 1 indicates that the job τ in misses its deadline and lin = 0 indicates that
the deadline is met. Based on this definition, the total number of deadline misses of
DS jobs in a hyeperiod,Mr, can be calculated using Eq. (3.21):

Mr =
∑

τ in∈Jl,r,Je,r,Jc,r

lin. (3.21)

If an NDS job, φm ∈ Jl,nr, is processed locally, it is not dealt with until all local
DS jobs and the local NDS jobs ahead of φm in LQ are completed. Therefore, its
completion time, Tm, can be calculated using Eq. (3.22):

Tm = T c
m +

∑
τ jn,φk∈pred(φm)

T j
n + T c

k , (3.22)

where T c
m and T c

k denote the local completion time of the NDS job φm and φk,
respectively; T j

n is the local completion time of the DS job τ jn. If the completion
time Tm > Hp, the completion-status variable km is set to 1. Otherwise, the variable
km is set to 0. When an NDS job, φm ∈ Je,nr,Jc,nr, is offloaded to the edge/cloud

45

server, the computation result from server can be returned to the local device anytime.
However, the completion-status variable km is set to 1 if the overall completion time
is greater than the hyperperiod; otherwise, km is set to 0. Overall, the incompletion
rate of NDS jobs, Cnr, is defined as:

Cnr =
∑

φm∈Qnr

km / |Qnr|. (3.23)

Furthermore, we use Ei
n to denote the energy consumption of a DS job τ in that

is successfully completed within its period. And we use Em to denote the energy
consumption of an NDS job φm that is successfully completed within its hyperperiod.
Namely, lin = 0 and lm = 0. Thus, the total energy consumption of the jobs in a
hyperperiod, El, is the sum of the local computation cost and the data transmission
cost. Formally, El can be calculated using Eq. (3.24):

El =
∑

τ in∈Jl,r,Je,r,Jc,r, lin=0

Ei
n +

∑
φm∈Qnr, lm=0

Em, (3.24)

where Ei
n and Em are calculated with Eq. (3.15) and Eq. (3.18).

Finally, the multi-tier offloading optimization problem can be formulated as a
minimization problem using Eq. (3.25):

min
Λ

κ · El + α · Mr + υ · Cnr

subject to C1 : λi
n, λm ∈ {0, 1, 2}

C2 :
∑

τ in∈Jl,r

wi
n/Hp ≤ 1

C3 : ωc ≫ ωe > fl,

(3.25)

where κ, α, and υ are three tunable coefficients predefined to balance the energy
consumption, the deadline misses of DS jobs, and the completion rate of NDS jobs.
Note that, compared with κ and α, υ should be set to a small value so that the weight
associated with the completion rate of NDS jobs is not high. In this minimization
problem, the constraint C1 ensures that a job is allocated to only one tier and offload-
ing policy Λ is a candidate in set O . Furthermore, the constraint C2 guarantees that

46

the sum of the computation resources allocated to DS jobs, τ in ∈ Jl,r, do not exceed
the total amount of computation resources of the mobile device. The constraint C3

guarantees that the computation speed of the edge/cloud server is faster than that
of the local device. In our research, we found that it is non-trivial to find a solution
to this optimization problem mathematically. Therefore, we attempt to employ deep
reinforcement learning to generate a satisfactory solution. The details of the proposed
scheme are presented in Section 3.2.

3.2 PDMO: Energy-aware DRL-based Task Offloading

In our research, we attempt to utilize deep reinforcement learning to solve the min-
imization problem for multi-tier MEC offloading. Since the MEC environment is
not completely observable, it is challenging to find an optimal offloading policy. To
achieve satisfactory offloading policy, we first propose a partially-observable DRL
algorithm, POTD3, which considers both observable and unobservable states of the
MEC system. Thereafter, we design a dynamic DRL-based computation offloading
scheme, PDMO, which leverages POTD3 to learn the near-optimal offloading strat-
egy. With PDMO, the energy consumption and the number of deadline misses are
minimized while the completion rate of NDS jobs is maximized.

3.2.1 POTD3: A Novel Learning Algorithm

DDPG is a general model-free DRL approach based on the actor-critic structure
that was proposed to deal with optimization problems with a high-dimension action
space [57]. Technically, the DRL learning method comprises four neural networks:
actor network πθµ , actor target network πθµ′ , critic network πθQ and its target network
πθQ′ . The actor network is used to select a possible action while the critic network
is employed to evaluate the performance of this action. The actor target network is
used to stabilize the learning process. Currently, DDPG has been extensively applied
to communication applications [91,98]. However, for time-variant environments that
involve uncertainty, DDPG has been proven to be unstable and ineffective. In partic-
ular, DDPG induces extensive overestimation of Q-values, implicitly leading to many

47

sub-optimal policies. Moreover, most DDPG-based applications assume that the
complete information of the MEC system under investigation is available at decision
points. However, this is unrealistic for systems involving unknown features. Aiming
to tackle the overestimation problem, Scott et al. proposed an enhanced DDPG ap-
proach, called TD3, which eliminates overestimation by utilizing a double-actor-critic
neural network structure [29]. The second weakness of DDPG can be potentially
addressed by converting the problem formulation from MDP to Partially Observable
Markov Decision Process (POMDP).

In the multi-tier MEC offloading problem, part of the system states are unobserv-
able. Therefore, DDPG is not an appropriate learning algorithm for the system under
investigation. In our research, we proposed a novel learning algorithm for the MEC
offloading problem, POTD3, which is derived from TD3. Compared with DDPG,
POTD3 includes two additional measures. With the first additional measure, one
more critic network is added to the learning model. Namely, POTD3 includes two
pairs of critic and target network, which are denoted as πθQ1 , πθQ2 , πθQ

′
1
, π

θQ
′
2
. The

benefit of this additional measure is that the number of overestimated Q-values could
be reduced significantly during the training phase. To be specific, one of the critic
networks is randomly selected as the estimator of the Q-value, while the other is used
to evaluate the Q-value. With the update rule, the value target can prevent additional
overestimation when using standalone Q-learning target as DDPG [29].

With the second additional measure in POTD3, the MEC offloading problem is
formulated as a POMDP. In this manner, a DRL agent can perform effectively on the
environments involving uncertainty. Technically, a POMDP is commonly defined as
a 5-tuple, (S,A, T,R,O,Γ), where S and A denote the state space S = {st|∀t ∈ N}
and the action space A = {at|∀t ∈ N} respectively. T denotes the state transition
function, T = {T : S × A × S → [0, 1]}, which indicates the probability of the
transition to the next state st+1 when the state-action pair (st, at) is performed. R is
the reward function R = {R : S×A→ R}. O is a set of observations O = {o1, o2, ...}
and Γ is an observation function Γ = {Γ : S × O → [0, 1]}. Note that, POTD3
is stochastic, resulting in random transitions between states. The DRL agent aims
to find the optimal policy π∗ : O → A, which is defined as the maximum expected

48

Algorithm 2: POTD3.

1 Initialize actor and its target network θµ, θµ′ ;
2 Initialize critics and their target networks θQ1 , θQ2 , θQ′

1 ,θQ′
2 ;

3 Initialize replay bufferM;
4 for episode t in 1,2,3,... do
5 Observe state st and obtain unobservable state ut−1;
6 Update the observation ot = (ot−1, st, ut−1);
7 Store transition (ot−1, at−1, ot, rt−1) intoM;
8 Select action at = πθµ(ot) + ϵ and calculate reward rt;
9 Sample mini-batch of N transitions (on, an, on+1, rn) from bufferM;

10 Smooth action an: ãn ← πθµ′ (on) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c);
11 Loss function for critics is formulated as:

yn ← rn + γ ·mini=1,2πθQ
′
i
(on+1, ãn);

12 Update critic networks: θQi ← minθQi N
−1

∑
(yn − πθQi (on, an));

13 if t mod δ then
14 Update actor network:

∇θµJ(θ
µ) = N

∑
∇anπθQ1 (on, an) |an=πθµ (on) ∇θµ(on);

15 Update target networks of actor and critics:
θµ

′ ← νθµ + (1− ν)θµ
′ ;

16 θQ
′
i ← νθQi + (1− ν)θQ

′
i ;

17 end
18 Continue till convergence;
19 end

49

discounted reward π∗ = argmaxπ E[
∑∞

t=0ϱR
π
t |b], where Rπ

t denotes the reward given
by the policy π at time slot t; ϱ is the discount rate, 0 < ϱ < 1; b denotes the starting
belief state [86]. In POMDP, the action at is selected according to the observation ot

as the state st is partially known. Namely, DRL agent cannot apply the incomplete
states of the environment according to πθµ(st) directly. Instead, it selects an action
based on πθµ(ot).

The details of POTD3 are presented in Algorithm 2. In each iteration t, the
agent first observes available environment state st and obtains the estimation of the
unobservable state ut−1. Then, the observation ot is updated relying on the state
st, unobservable state ut−1 and last observation ot−1. Afterwards, the transition
(ot−1, at−1, ot, rt−1) is stored into the replay bufferM for the training of neural net-
works. According to the observation ot, the agent chooses an appropriate action at

with an exploration noise ϵ using the actor network πθµ . After the interaction is done,
the reward rt is calculated accordingly. In order to prevent the overfitting to narrow
peak, the action an issued by πθµ is smoothed to a small area, which is described in
Line 10. In Line 12, the pair of critic networks is updated based on the minimum
target value of actions. Once every δ iterations, the actor network πθµ is updated
using πθQ1 with deterministic policy gradient, which is described in Line 14. To apple
POTD3 to the MEC offloading problem, we proposed a new DRL-based offloading
scheme, PDMO, which is illustrated in the next subsection.

The computational complexity of Algorithm 2 involves two components: actor
network update and critic network update. The actor network is updated by execut-
ing forward-propagation Nmb + δ times and backward-propagation Nmb times during
each updating window, where Nmb denotes the size of the mini-batch and δ is the
length of the updating window. In our research, we use Na to denote the number
of neurons in the actor network. The computational complexity of updating actor
network during one iteration corresponds to the total number of neuron operation in-
volved in the required forward and backward propagation: O(((Nmb+ δ)+Nmb)∗Na)

= O((2 ∗ Nmb + δ) ∗ Na). The critic network update involves carrying out forward
propagation 2∗Nmb ∗ δ times and backward propagation 2∗Nmb ∗ δ times during each
updating window. In our research, we use Nc to denote the number of neurons in

50

DS Jobs

NDS Jobs

Offloading Policy

Tier 1: Mobile Device

Tier 2: Edge Server

Tier 3: Cloud Server

Energy Consumption

Deadline Misses of DS Jobs

Miss Deadline?

0

1

0

1

2

0

…

…

Completion of NDS Jobs

POTD3

Observation

Observable States

AET Buffer

Reward Calculation

Maximum Reward

Reward

Unobservable States :AET of Jobs

Figure 3.3: Scheme of PDMO.

the critic network. The computational complexity of updating critic network during
one iteration corresponds to the total number of neuron operation involved in the
required forward and backward propagation: O((2 ∗ Nmb ∗ δ + 2 ∗ Nmb ∗ δ) ∗ Nc) =
O(4 ∗ Nmb ∗ δ ∗ Nc). Suppose that Algorithm 2 needs i iterations to converge, the
computational complexity of Algorithm 2 is O((2 ∗Nmb + δ) ∗Na + 4 ∗Nmb ∗ δ ∗Nc).
Once Algorithm 2 converges, the actor network itself can be used to make offloading
decisions. This decision-making process only involves one forward propagation of the
actor network. Therefore, its computational complexity is O(Na).

3.2.2 Details of PDMO

As shown in Fig. 3.3, the PDMO scheme involves three tiers: mobile device, edge
server, and cloud server. Initially, there are a set of DS tasks T = {τ1, τ2, ...} and a
set of NDS tasks Φ = {φ1, φ2, ...} in the local device. As DS jobs repeat periodically,
the number of DS jobs in each hyperperiod is unchanged. The number of NDS jobs in
each hyperperiod varies due to their aperiodic nature. As described in Section 3.1.1,
the total number of jobs in a hyperperiod x can be calculated using Eq. (3.2). To
make proper offloading decisions for varying x, PDMO maintains a uniform offloading

51

profile for both DS and NDS jobs Λ = (λ1
1, ...λ

i
n, ..., λNDS

, λ1, ..λNNDS
, 0, ..., 0). Note

that, at the beginning of a hyperperiod, the number of DS jobs that will arrive dur-
ing the current hyperperiod, NDS, is fixed because DS tasks are periodic, while the
number of NDS jobs that have arrived, NNDS, varies from hyperperiod to hyperpe-
riod. Obviously, NNDS = |Qnr|. Since a learning algorithm prefers to deal with an
offloading profile with a fixed number of elements, a uniform offloading profile with
NDS + NNDS,F ixed elements is maintained in PDMO. Namely, NNDS,F ixed positions
in Λ are reserved for NDS jobs. If NNDS=NNDS,F ixed, all the reserved positions will
be utilized. If NNDS < NNDS,F ixed, the unused positions at the end of Λ will be filled
with zeros (i.e. placeholders). If NNDS > NNDS,F ixed, only the first NNDS NDS jobs
will be scheduled, other NDS jobs will be buffered for future processing.

The objective of POTD3 is to learn the best offloading policy so that the minimum
amount of energy is consumed on the mobile device while the deadline of DS jobs
can be met as well as the completion rate of NDS jobs is maximized. To achieve
this objective, the multi-tier offloading optimization problem is transformed into to
a POMDP. Then, a satisfactory offloading policy is generated at the beginning of
each hyperperiod. The details of PDMO are summarized in Algorithm 3. The major
modules of PDMO are presented as follows.
A. System Observation
At the beginning of the t-th hyperperiod, PDMO first observes the current system
state st that involves network condition, workload of mobile device and workload
edge server and cloud server. Meanwhile, the AET of DS jobs in the last hyperperiod
is also observed. Thereafter, the average AET is calculated and stored in an AET
buffer. Instead of using the system state st directly, the input of PDMO has switched
to the observation ot that consists of multiple elements. One of the elements is the
observable system state st, which is denoted as a 5-tuple (Bt,Lt,Qt, Et, Ct). The
elements involved in the 5-tuple are presented as follows:

(i) Network Condition (Bt): Network condition Bt is mainly determined by the
transmission rate Re since the transmission rate from edge to cloud Rc is rela-
tively stable.

52

(ii) Local Workload (Lt): Since DS jobs are periodic, the total number of DS jobs
in each hyperperiod is fixed, leading to an unchanged system utilization before
jobs are placed into different queues. Therefore, the fluctuation of workload Lt

results from the changing number of NDS jobs in Qnr.

(iii) Edge Queuing Information (Qt): In the MEC system, all associated mobile
devices can compete for the limited computation resources at the edge server.
Therefore, the edge queuing delay is a factor that should be taken into con-
siderations. With PDMO, the queuing signal of eligible edge server Qt should
be sent back to the mobile device before it makes offloading decisions for the
current hyperperiod.

(iv) Workload of Edge and Cloud Servers (Et and Ct): The workload of edge and
cloud server, Et and Ct, affect the offloading decisions made on the mobile device.
The two states are mainly based on the speedups ωe and ωc as well as the
instantaneous workload ζe and ζc.

With PDMO, the unobservable state of the MEC offloading system corresponds
to the average AET of DS jobs in the t-th hyperperiod, At. Although At is unavail-
able, At−1 is available because the DS jobs in the (t − 1)-th hyperperiod have been
completed. In our research, the system observation at the t-th hyperperiod, ot, is set
to (ot−1, ot−2, ...ot−M , st,At−1), where M is a predefined constant. Note that ot ∈ O.
In addition, the elements in the vector for ot are generated with random values if
t < (M + 1).
B. System Action
PDMO attempts to make a holistic decision for both DS and NDS jobs for each hy-
perperiod. Namely, at the beginning of a hyperperiod, PMDO needs to determine
whether a job should be offloaded or not by configuring the offloading profile. Namely,
the action at the t-th hyperperiod, at corresponds to Λt, ∀t ∈ N. Formally, Λt can be
generated by the actor network πθµ according to the observation ot using Eq. (3.26):

Λt = πθµ(ot) + ϵ. (3.26)

where ϵ corresponds to the exploration noise.

53

C. Observation Transition
After the mobile device performs the offloading actions, the observation ot will switch
to the observation for the next hyperperiod, ot+1. Note that, the transition from st

to st+1 is a stochastic process, resulting in the entire transition being stochastic.
D. Reward Function
The objective of PMDO is to minimize the energy consumption of the mobile device,
satisfy the deadline constraint of DS jobs, and maximize the completion rate of NDS
jobs. To achieve the objective, PMDO initially determines whether a DS job τ in misses
its deadline at the end of each hyperperiod after all the DS and NDS jobs in the
hyperperiod are processed according to the offloading policy Λt. If the job τ in misses
its deadline, its deadline-miss variable, lin, is set to 1. Then, the reward of job τ in is
replaced with a predefined maximum reward, denoted as r∗, to informatively guide
the DRL agent to move towards other secure offloading policies. Otherwise, PMDO
calculates the total energy consumption of the mobile device El and the completion
rate of NDS jobs Cnr. Thus, the immediate reward of the job (rt) for the current
hyperperiod can be given by

rt =

Mr · r∗, if ∃ lin = 1,

κ · El + υ · Cnr, otherwise,
(3.27)

whereMr denotes the number of DS jobs that miss their deadlines. Note that, κ and
υ can be configured by mobile device users manually for different performance goals.
For example, the setting of κ > υ indicates that the mobile user intends to save more
energy rather than completing more NDS jobs.

With PDMO, the objective is to find an optimal policy so that the cumulative re-
ward R that considers both the current hyperperiod and all past hyperperiods, instead
of the immediate reward for the current hyperperiod, is maximized. Mathematically,
R is the weighted average of −rt (where t = 0, 1, ...), which can be calculated using
Eq. (3.28):

R = AV G(−rt · εt), (3.28)

54

where εt ∈ [0, 1] denotes the discount rate and it goes up at time goes by.

The details of PMDO are summarized in Algorithm 3. Specifically, the system
state st is first observed according to the conditions of the mobile device, edge server,
and cloud server. With the unobservable state At−1, the current observation ot is
obtained accordingly. Next, the transition sample (ot−1,Λt−1, ot, rt−1) is stored into
the replay buffer M. Afterwards, PMDO chooses an offloading policy Λt based on
the observation ot. According to the generated offloading policy Λt, each job in the
hyperperiod t is dispatched to one of the six job subsets and then scheduled aligned
with Algorithm 1. At the end of each hyperperiod, the immediate reward rt can be
obtained using Eq. (3.26). On this basis, the cumulative reward, R, can be obtained,
and the actor/critic network is updated using POTD3. PMDO continues until the
stop condition is satisfied.

Algorithm 3: PDMO.
Input: DS task set T and NDS task set Φ
Output: Offloading policy Λt,Λt ∈ O

1 for Hyperperiod t, t = 1, 2, 3.., do
2 Observe current state of mobile device, network and servers:

st=(EWt, CWt, LQt, BWt, EQt);
3 Obtain the average AET of DS jobs in last hyperperiod to calculate At−1;
4 Update current observation ot with ot−1, st and At−1;
5 Store transition (ot−1,Λt−1, ot, rt−1) into memoryM;
6 Choose an offloading policy Λt using actor network πθµ ;
7 Schedule jobs using Algorithm 1;
8 Update actor and critics according to Lines 13-18 of Algorithm 2;
9 Continue till stop condition is satisfied;

10 end

55

3.3 Evaluation

In this section, we comprehensively evaluate the convergence performance of PDMO
by varying the number of tasks and the ratio of cloud transmission rate to edge
transmission rate. In addition, the performance of PDMO is compared to that of the
existing offloading schemes in terms of energy consumption and deadline miss.

3.3.1 Evaluation Settings

In our simulations, we consider a set of DS tasks and a set of NDS tasks. The total
number of jobs corresponding to these tasks can be calculated using Eq. (3.2). Note
that mobile applications typically include a number of light-weight tasks. The period
and data size of these tasks tend to be relatively small. In our simulations, a set of
DS tasks are generated. Unless specified otherwise, the period of these DS tasks is
set to a value in the range of [4, 32] seconds. The hyperperiod of this set of tasks,
Hp, is 288 seconds, which is calculated using Eq. (3.1). The data size of these tasks
varies from 0 Mb to 100 Mb. The WCET of the DS tasks is set to a value in the
range of [1, 6] seconds. To allow dynamic frequency scaling, the AET of a DS job is a
random number in the range of [0.5 x WCET, WCET]. The transmission power of the
transceiver in a mobile device is set to 1.0J/s. To estimate the energy consumption
of mobile devices, we adopt the power consumption model used in [14, 80]. The
speedup of an edge server and a cloud server over a mobile device is set to ωe = 4 and
ωc = 12 respectively. As mentioned in Section 3.1.3, we focus on one of the mobile
devices connected to an edge server in our simulations. We assume that the jobs
offloaded from other mobile devices to the edge server follow a Poisson distribution.
The average arrival rate of these jobs, ϑ, is set to a value in the range of 0 job/sec
to 1 job/sec. Unless specified otherwise, the parameters used in our simulations are
summarized in Table 3.4.

Note that PDMO is essentially a trial-and-error scheme. Consequently, it is pos-
sible that too many DS jobs are assigned to Jl,r at the beginning of a hyperperiod.
Obviously, some of these DS jobs cannot be executed at all duo the limited compu-
tation resources on a mobile device. To speed up the convergence of PDMO, when a

56

Table 3.4: Simulation Parameters in Chapter 3.
Parameter Value

Number of DS tasks (|T |) [4, 10]
Number of NDS tasks (|Φ|) [0, 10]
Period (pn) [4, 32] seconds
WCET [1, 6] seconds
Data (din, dm) [10, 100] Mb
Transmission power (Ptrans) 1.0 J/s
Server speedups (ωe, ωc) 4, 12
Transmission rates (Re, Rc) (0, 75] Mbps, [50, 150] Mbps
Propagation delay (Lc) 0.5 seconds
Average job arrival rate (ϑ) (0, 1) job/sec
Performance preference (κ, υ) 0.8, 0.2
Length of hyperperiod (Hp) 288 seconds
Mini-batch size 128
Learning rate for actor and critic network 0.0001, 0.0003
Discount rate 0.99
Updating episode (δ) 100 x Hp

DS job assigned to Jl,r is not executed at all, the energy consumption of this job is
set to max(Ec

l , E
t
l). As mentioned previously, Ec

l and Et
l can be calculated using Eq.

(3.15) and Eq. (3.18) respectively.
In our research, we compared PDMO with a set of baseline offloading methods

that are described as follows:

(i) Local Computing (LC): With LC, given a job set, every DS and NDS job is
processed on the local device. With this method, the DVFS technique is used
to lower the CPU frequency whenever possible.

(ii) Server Computing (SC): With SC, all jobs are offloaded to either an edge or
cloud server. When jobs are offloaded to servers, we employ the TransScheduling
function in Algorithm 1.

(iii) Random Offloading (RO): With RO, the DS and NDS jobs are assigned to one
of the six job subsets randomly. Thereafter, each job is processed at one of the
computation tiers accordingly.

57

(iv) DDPG-based Multi-tier Offloading (DMO): DMO and PDMO are highly similar.
The only difference between them is that DMO leverages the traditional DDPG
algorithm, instead of POTD3, to learn the optimal offloading policy. Since
DDPG is used as the learning algorithm, the unobservable state of the MEC
system (i.e. the AET information) cannot be utilized.

(v) PDMO-WD (PDMOWithout DVFS): Both PDMO and PDMO-WD use POTD3
to learn the optimal offloading policy. However, PDMO-WD does not include
the DVFS mechanism. With PDMO-WD, a job processed on the local mobile
device is always executed at the maximum CPU frequency.

To quantify the performance of the offloading schemes under investigation, three
evaluation metrics, which are normalized with min-max normalization, are used in
our research:

(i) Number of Deadline Misses: It indicates the total number of deadline misses for
DS jobs. Reducing this number can ensure that more DS jobs are completed
within their periods.

(ii) Energy Consumption: It consists of two components: energy cost of local com-
putation and transmission energy consumption.

(iii) Completion of NDS jobs: It is the percentage of the completed NDS jobs in a
hyperperiod.

3.3.2 Convergence

In this section, we present the convergence performance of PDMO using the results
from two experiments. In the first experiment, we aim to study the impact of the
number of tasks on the convergence of PDMO. In each simulation, the number of DS
tasks stays the same for each hyperperiod. In our experiments, this number could be
set to 4, 6, 8 or 10. The number of NDS tasks varies from hyperperiod to hyperperiod.
In our experiments, this number is a random number in the range of 0 to 10. In the
following sections, the number of NDS tasks is set in the same manner. The period of

58

0 250 500 750 1000 1250 1500 1750 2000
Episode #

0

5

10

15

20

25

30

35

40

45

N
u
m
b
er
 o
f
D
ea

d
lin

e
M
is
se

s

DS=4, NDS=[0,10]
DS=6, NDS=[0,10]
DS=8, NDS=[0,10]
DS=10, NDS=[0,10]

(a) Deadline Misses
0 250 500 750 1000 1250 1500 1750 2000

Episode #

-40

-35

-30

-25

-20

-15

-10

-5

0

Le
ar
n
in
g
 R
ew
ar
d
s

DS=4, NDS=[0,10]
DS=6, NDS=[0,10]
DS=8, NDS=[0,10]
DS=10, NDS=[0,10]

(b) Learning Rewards
0 250 500 750 1000 1250 1500 1750 2000

Episode #

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
n
er

g
y

C
on

su
m

p
ti
on

DS=4, NDS=[0,10]
DS=6, NDS=[0,10]
DS=8, NDS=[0,10]
DS=10, NDS=[0,10]

(c) Energy Consumption

Figure 3.4: Convergence vs. Number of Tasks

each RL task in one simulation is selected from the period set {4, 6, 12, 18, 32, 16}. In
our experiments, the number of RL tasks and the periods selected for each simulation
leads to a fixed hyperperiod 288 seconds. When the number of RL tasks is equal to
4, 6, 8 and 10, the total number of RL jobs are 115, 187, 217 and 289, respectively.
The range of Re in this experiment is set to [10 Mbps, 30 Mbps]. The average job
arrival rate is set to 0.05 job/sec. Our simulation results are summarized in Fig. 3.4.
Obviously, PDMO can quickly converge after a few gradient updates. For instance, in
the simulation where there are 4 DS tasks, PDMO converges to its best performance
within 250 episodes or so. That is because, in this case, most jobs are dispatched
to different computation tiers properly, resulting in fewer incorrect decisions in the
training process. It is worth noting that as the number of tasks increases, the it
takes longer and longer for PDMO to converge. The reason behind this trend is
that a higher number of tasks mean that more jobs need to compete for the limited
computation and transmission resources, leading to a longer training time to arrive
at the optimal arrangement. For the simulation where there are 10 DS tasks, PDMO
converges within around 1750 episodes.

In the second experiment, we attempt to understand the impact of network con-
dition on PDMO convergence. In these simulations, the number of DS tasks is set
to 6. Our simulation results are summarized in Fig. 3.5. Since the transmission rate
Rc between edge and cloud is relatively stable, we vary the transmission rate Re and
arrive at different Rc/Re ratios. Specifically, Rc/Re is set to 5, 10 and 20 in three

59

different simulations. Our simulation results show that PDMO can always converge
to its optimum within 1650 episodes when Rc/Re ratio varies.

0 250 500 750 1000 1250 1500 1750 2000
Episode #

0

10

20

30

40

50

60

70

N
u
m
b
er
 o
f
D
ea

d
lin
e
M
is
se
s

Ratio-5
Ratio-10
Ratio-20

(a) Deadline Misses
0 250 500 750 1000 1250 1500 1750 2000

Episode #

-40

-35

-30

-25

-20

-15

-10

-5

0

Le
ar
n
in
g
 R
ew

ar
d
s

Ratio-5
Ratio-10
Ratio-20

(b) Learning Rewards
0 250 500 750 1000 1250 1500 1750 2000

Episode #

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
iz
ed

 E
n
er
g
y
C
on

su
m
p
ti
on

Ratio-5
Ratio-10
Ratio-20

(c) Energy Consumption

Figure 3.5: Convergence vs. Ratio of Rc to Re

3.3.3 Deadline Misses and Energy Consumption

In this section, we compare PMDO with the existing methods under investigation
in terms of energy consumption and deadline miss. In this set of simulations, the
number of DS tasks within a hyperperiod is set to 6 and the Rc/Re ratio is set to 5.
Correspondingly, the number of RL jobs within each hyperperiod is 187. The range
of Re is [10 Mbps, 30 Mbps]. The average job arrival rate is 0.05 job/sec. Fig. 3.6
includes the detailed simulation results. Overall, four conclusions could be drawn from
the simulations. First of all, blindly offloading all jobs to servers (i.e. the SC scheme)
would consume much energy and force numerous jobs to miss their deadlines. That is
because transmission energy consumption depends on the size of the data transferred
between mobile devices and edge/cloud servers. When the size of the data is relatively
large, the transmission energy consumption could easily be higher than local energy
consumption. With our simulation configuration, transmission energy consumption
tends to be higher than local energy consumption. Furthermore, when there are
many jobs in TQ, the queuing time would spike, ultimately resulting in lengthened
completion time. Compared with SC, Rand-O consumes less energy and leads to
less deadline misses. This is due to the fact that, with Rand-O, all jobs are evenly
dispatched to three computation tiers. Consequently, only 2/3 of the jobs are offloaded

60

Table 3.5: Summary of Comparison Results.
Method Miss Rate Energy Consumption NDS Completion Rate

LC 13.0 % 1 68%
SC 17.3% 91.7% 88%
RO 10.8 % 82.7% 93%
DMO 1.9 % 79.3% 95%

PDMO-WD 1.4 % 78.5% 94%
PDMO 0.8% 74.6% 97%

to either an edge server or a cloud server. Thirdly, all learning-based offloading
schemes (including DMO, PDMO-WD, and PDMO) outperform non-learning-based
offloading schemes in terms of both deadline miss and energy consumption. Note
that, although DMO and PDMO-WD are close to PDMO in term of deadline miss
(because all of them take deadline into consideration during the learning process),
DMO and PDMO-WD lead to much higher energy consumption. Finally, PDMO
results in the least amount of energy consumption and the fewest number of deadline
misses. There are two main reasons why PDMO outperforms DMO. Firstly, PDMO
leverages two critic networks to efficiently eliminate overestimated Q-values during the
learning process. Additionally, unlike DMO, which is fed with incomplete information
in partially observable MEC systems, PDMO approximates the missing system states
by utilizing past experiences. With complete information about the system as inputs,
PDMO is more likely to generate better offloading policies. Compared to PDMO-WD,
PDMO can save more energy due to the utilization of DVFS techniques.

A summary of the simulation results in terms of normalized energy consump-
tion, deadline miss rate and NDS completion rate is included in Table 3.5. The
experimental results indicate the PDMO outperforms other offloading schemes under
investigation in terms of all the metrics under investigation. In particular, PDMO
can achieve an 0.6% and a 3.9% advantage over the second best offloading scheme
in terms of deadline miss and energy consumption respectively. Furthermore, with
PDMO, the completion rate of NDS jobs is 97%, which is very close to the perfect
rate of 100%.

Overall, our experimental results indicate that PDMO can always converge within

61

0 250 500 750 1000 1250 1500 1750 2000
Episode #

0

5

10

15

20

25

30

35

40

45
N
um

be
r o

f D
ea

dl
in

e
M

is
se

s

LC
SC
RO

DMO
PDMO-WD
PDMO

(a) Deadline Misses

0 250 500 750 1000 1250 1500 1750 2000
Episode #

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed
 E
ne
rg
y
Co

ns
um

pt
io
n

LC
SC
RO

DMO
PDMO-WD
PDMO

(b) Energy Consumption

Figure 3.6: Deadline Misses and Energy Consumption

a short period. In addition, among the offloading methods under investigation,
PDMO leads to the lowest number of deadline misses, the lowest energy consumption
and the highest NDS completion rate. We believe that PDMO is a highly feasible
offloading scheme for 3-tier MEC systems involving mobile devices, edger severs and
cloud server.

3.3.4 Impact of Queuing Time at Edge Server

As mentioned in Section 3.1.3, the queuing time of an offloaded job on the edge server,
T q
e , is determined by the total number of offloaded jobs from connected mobile devices

and the scheduling algorithm for the queue. In our research, we focus on one of the
mobile devices connected to the edge server, and we assume that the jobs from other
connected mobile devices arrive at the edge server according to a Poisson distribution.
Furthermore, we assume that the edge server uses EDF to schedule the offloaded jobs
in its queue. Consequently, the average arrival rate of the jobs from other connected
mobile devices, ϑ, determines T q

e of the job offloaded from the mobile device that we
focus on. In this set of simulations, the parameters (such as period and AET) of the
jobs from other mobile devices are generated according to Table 3.4, which ensures
that the jobs from other mobile devices are similar to those from the mobile device
that we focus on. The average arrival rate, ϑ, is set to 0.05, 1.0, 0.3, 0.5, 0.7, 0.8, and

62

0.9 job/sec respectively. As a result, in our simulations, the average queuing time
of a job offloaded to the edge server is 0.5, 0.9, 1.5, 2.1, 2.5, 2.9, and 3.4 seconds
respectively. The performance of PDMO under varied queuing time is included in
Fig. 3.7. The experimental results indicate that both the number of deadline misses
and the amount of energy consumption increase with the queuing time. Namely, the
queuing time at the edge server has a negative impact on the performance of PDMO.

0.5 1.0 1.5 2.0 2.5 3.0
Average Queuing Time

0

1

2

3

4

5

6

7

N
um

be
r o

f D
ea

dl
in
e
M
is
se
s

(a) Deadline Misses

0.5 1.0 1.5 2.0 2.5 3.0
Average Queuing Time

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

 E
ne

rg
y
Co

ns
um

pt
io
n

(b) Energy Consumption

Figure 3.7: Impact of Edge Server Queuing Time on PDMO

3.3.5 Impact of Hyperperiod Length

In this section, we study the performance of PDMO when one of the DS tasks rarely
arrives. In this scenario, the resulting hyperperiod is lengthy. Specifically, we consider
a set of 6 DS tasks. The periods of the first five DS tasks are 4, 6, 12, 18, and 32
seconds respectively. The period of the last DS task is set to 16, 576, 864, 1152, or
1440 seconds, which leads to a hyperperiod of 288, 576, 864, 1152, or 1440 seconds.
Furthermore, since the total number of jobs in a hyperperiod is related to the length of
the hyperperiod (typically, the longer the hyperperiod, the higher the number of jobs
within a hyperperiod), we use the number of deadline misses per 100 jobs (instead
of the number of deadline misses within each hyperperiod) to quantify the deadline-
meeting performance of PDMO in this section. Finally, the average arrival rate, ϑ,
is set to 0.05 job/sec. Fig. 3.8 includes the details of the impact of hyperperiod

63

length on PDMO. Note that as the length of the hyperperiod goes up, the number of
jobs within a hyperperiod increases. Consequently, the decision-making environment
becomes more complex and PDMO’s offloading decision deteriorates, resulting in
more deadline misses and more energy consumption. In summary, the longer the
hyperperiod, the worse the performance of PDMO in terms of deadline miss and
energy consumption.

288 576 864 1152 1440
Length of Hyperperiod

0

1

2

3

4

5

6

N
um

be
r o

f D
ea

dl
in

e
M

is
se

s(
Pe

r 1
00

 Jo
bs

)

(a) Deadline Misses

288 576 864 1152 1440
Length of Hyperperiod

0.80

0.85

0.90

0.95

1.00

N
or
m
al
iz
ed

 E
ne

rg
y
Co

ns
um

pt
io
n

(b) Energy Consumption

Figure 3.8: Impact of Hyperperiod Length on PDMO

3.4 Major Conclusions of PDMO

In our research, we propose a partially-observable DRL-based multi-tier offloading
scheme, PDMO, for MEC systems without complete system information, which in-
volves both DS and NDS tasks. Different from the existing offloading methods for
MEC, PDMO employs an enhanced DDPG learning algorithm, POTD3, to learn the
appropriate offloading policy so that the deadlines of DS tasks can be met, the total
energy consumption is minimized, and the completion rate of NDS tasks is maxi-
mized. Technically, the offloading problem is formulated as a POMDP, which can
be solved using the proposed learning algorithm, POTD3. In addition, the DVFS
technique is used to further reduce the computation cost. To evaluate the effective-
ness of PDMO, we investigate the convergence of PDMO by varying the number of

64

tasks and the transmission rate ratio. In addition, we compare the performance of
PDMO to that of the existing offloading schemes in terms of energy consumption and
deadline miss number. Finally, we study the impact of edge server queuing time and
hyperperiod length on the performance of PDMO. Our experimental results indicate
that PDMO outperforms the existing offloading schemes for MEC.

Note that, three key parameters are used to adjust the weight of the optimization
objectives: minimizing the number of deadline misses, minimizing energy consump-
tion of mobile devices and maximizing the completion rate of NDS tasks. Although
this is a feasible approach, selecting the appropriate values for these key parameters
is not a simple task. Our next-step research will focus on a more feasible method
to integrate the optimization objectives. Furthermore, with PDMO, each mobile de-
vice can only offload its tasks to one edge server. If each mobile device can interact
with multiple edge servers simultaneously, the resources on edge servers could be
better utilized, potentially leading to less deadline misses and energy consumption.
In the near future, we also plan to investigate the performance of PDMO in this
multi-edge-server scenario.

65

Chapter 4

Edge-assisted DRL-based Task Offloading

In this chapter, we present the edge-assisted learning-based task offloading scheme
for multiple-edge-server MEC systems, MELO, which is aimed at minimizing task
completion time. Specifically, we first present the system models of MELO. Subse-
quently, we delve into the detailed description of this proposed mechanism. Finally,
we conduct a comprehensive evaluation on the performance of MELO against various
baseline schemes.

4.1 System Model

In this research, we attempt to solve the problem of finding the optimal offloading
policy for periodic deadline-sensitive applications on mobile devices in the multiple-
edge-server MEC systems. To formally formulate the problem, we adopt three in-
dependent models: task model, communication model, and completion time model.
The details of these models are described in this section.

4.1.1 Overview

In this section, we present a 6G-empowered MEC architecture for offloading a set
of periodic deadline-sensitive tasks. As shown in Fig. 4.1, the hierarchy of this ar-
chitecture is 1/M/1, consisting of one mobile device, a number of E homogeneous
edge servers ES = {ES1, ES2, ..., ESE} in close proximity, and one remote cloud
server. Note that, the hardware and software settings, e.g., the maximum frequency
of processors, are identical among E edge servers. In the architecture, mobile device
communicates with each edge server ESe(e ∈ E) via the potential 6G wireless net-
works that are capable of supporting a more reliable and faster connectivity than
current 4G/5G networks [44]. On the other hand, a task is allowed to be offloaded
to the cloud server through wired optical cables if edge servers do not have enough
computational resources.

66

Figure 4.1: Architecture of the MEC System under Investigation for MELO.

In mobile device, we consider two sorts of tasks, including periodic deadline-
sensitive tasks and sporadic deadline-sensitive tasks. The mobile devices, e.g., smart-
phone, laptop, and autonomous vehicle, execute the former tasks periodically while
only scheduling the latter in a comprehensive manner after it arrives to system with
a random interval. We do not consider how to offload the sporadic task to remote
servers and simply dispatch all of them to the local device for two reasons. First,
our model aims to make the offloading decision for a set of tasks within a slotted
time period, the arrival of sporadic tasks cannot be captured at the decision points.
More details will be illustrated in section 4.1.2. Second, sporadic tasks, e.g., airbag
activation task in a vehicle and routing replanning in autopilot system, typically
have relatively short deadlines. It is hard to guarantee the deadlines in highly dy-
namic networks [36, 107]. For a periodic task, each mobile device needs to decide
not only whether to offload the task or not, but also where to offload the task. In
addition, we assume that mobile device maintains two waiting queues, computation
queue Ql and offloading queue Qo, to well schedule local tasks and the offloaded
tasks, respectively. In other words, for each incoming task in mobile devices, it needs
to compete for the limited computation or transmission resources with other ready

67

Table 4.1: Key Notations in Chapter 4
Symbol Definition
U ,V Sets of periodic and sporadic tasks
µi, νk i-th periodic task and k-th sporadic task
µj
i j-th job of periodic task i in a hyperperiod

νn
k n-th job of sporadic task i in a hyperperiod
Hp Hyperperiod of task set U
Ẑp Total number of periodic jobs in a hyperperiod
Υl,Υo,e Workloads of mobile device and ESe, ESe ∈ ES
Ru Uplink rate from mobile device to edge server
fl, fe, fc Computation speedup of mobile, edge and cloud server
Jl, Jo Job sets for local and edge processing periodic jobs
Js Job set of sporadic task arriving in current hyperperiod
Jf Job set for unfinished sporadic task in last hyperperiod
Jo,e Job set to be offloaded to ESe, e ∈ E
X Offloading policy vector
Pm Transmission power
dm Distance from mobile device to edge servers
Ix Interference from other mobile devices
xj
i Offloading decision of periodic job µj

i , µ
j
i ∈ U

Pe
m Transmission power of mobile device

λo,e Arrival rate of periodic task at edge server ESe

λl,s Arrival rate of sporadic task at mobile device

tasks in queues. Alternatively, the computation resources at edge servers also is as-
sumed to be shared with a set of other mobile devices. Thus, the MEC system should
manage a set of waiting queues for each independent edge server that is defined as
EQ = {EQ1, EQ2, ...}. For each edge server, the arrival pattern of the periodic
deadline-sensitive tasks from other devices is portrayed as a Poisson distribution that
follows the arrival rate λo,e, e ∈ {1, 2, ...E} [73]. Furthermore, we assume that the
characteristics of the offloaded tasks from other devices, such as the required CPU
cycles and data bits, are identical. Without loss of generosity, EDF is leveraged to
ensure the deadlines of ready tasks in every waiting queue [105]. To keep consistency
with practical scenarios, we assume all edge servers are resource-constrained. Thus,
to prevent deadline miss of an offloaded task, it is allowed to push the computation
to the cloud server.

68

4.1.2 Task Model

Each mobile device involves a set of periodic deadline-sensitive tasks U = {µ1, µ2, . . .},
each of which continuously repeats its operations with a fixed pattern, e.g. periodic
traffic monitoring [48]. Particularly, each periodic task µi, µi ∈ U , can be character-
ized by a three-tuple: (pi, ci, di). Note that, task µi is repeated periodically. Thus, pi
represents the period of task µi. During each pi, task µi is executed once. ci denotes
the required computation resources, which are the CPU cycles required to run the task
µi with the maximum speed of mobile device fl (cycles per second) [21]. Since task
µi is deadline-sensitive, the execution time of task µi at mobile device can be ci/fl,
which is generally shorter than its period (deadline). Otherwise, task µi will pile up
as time goes by. If periodic task µi cannot be completed within period pi, it is claimed
that task µi misses its deadline. The last element of the tuple di is corresponding to
the size of data associated with task µi. Besides, we also consider a set of sporadic
deadline-sensitive tasks in our model that can be denoted as V = {ν1, ν2, . . .}. As
sporadic tasks are assumed to be processed solely at the mobile device, the data size
can be omitted in its notations. Then, each sporadic task νk, νk ∈ V , is represented
as only a two-tuple (ck, ωk), where ck and ωk is the required CPU cycles and the
deadline of task νk, respectively. We denote the arrival pattern of sporadic tasks that
follow a Poisson Distribution with rate λl,s [73]. For simplicity, the key notations
used in this paper are summarized in Table 4.1.

In our model, it is assumed that a periodic task denoted as µi initiates its execution
at the onset of each period pi. Each execution instance of task µi is regarded as a job
associated with task µi. Note that, in practice, tasks tend to have different periods.
To simplify job scheduling, a term named “hyperperiod” is used in our research [106].
Mathematically, the hypeperiod, Hp, is defined as the least common multiple of the
periods of the periodic tasks in task set U . This definition guarantees that, within each
hyperperiod, each periodic task is executed at least once. Formally, the hyperperiod
for task set U can be calculated using Eq. (4.1):

Hp = LCM(p1, p2, ...), (4.1)

69

where LCM(·) denotes the function that calculates the least common multiple of a
series of numbers. For example, if task set U includes 3 periodic tasks and their
periods are 2, 3, and 4 seconds respectively, then the corresponding hyperperiod is
12 seconds.

During each hyperperiod, task µi are executed Hp/pi times. Thus, the total
number of periodic tasks in a hyperperiod can be given by

Ẑp =
∑
µi∈U

(Hp/pi). (4.2)

In our research, let µj
i denote the j-th job of task µi in a hyperperiod. Similarly,

one sporadic task can be invoked multiple times in a hyperperiod, the n-th arrival
of this task is denoted as νn

k . Unless stated otherwise, we use the terms job and
task interchangeably. Furthermore, we define Jl and Jo as the job sets to store
the periodic jobs for local processing and edge computing, respectively, while Js

denotes the set of sporadic jobs that arrive at mobile system following the arrival
rate λl during one hyperperiod. It is noteworthy that Jl and Jo are cleared out after
switching to a new hyperperiod as all periodic jobs have reached the deadlines. Let
Jo,e denote the job set that contains the jobs being offloaded to ESe, then we have
Jo = Jo,1∪, ...,Jo,e∪, ...,Jo,E . Let Jf denote the set of incomplete sporadic jobs in the
last hyperperiod. Therefore, the total job set of local processing Jto is a combination
of Js, Jf , and Jl. At the beginning of each hyperperiod, the mobile system only has
information about Jl, Jo, and Jf . Then, after the periodic jobs are assigned to either
Jl or Jo according to a specific partitioning algorithm, the instant system workload
of the local device at this time point can be calculated using Eq. (4.3):

Υl =

∑
µj
i∈Jl

cji

fl · Hp

+Υs
l , (4.3)

where cji is equal to ci that represents the required CPU cycles of periodic job µj
i , and

Υs
l denotes the workload generated by job set Jf that can be given by

Υs
l =

∑
νnk∈Jf

cnk/fl. (4.4)

70

Note that, this workload will be re-accessed during a hyperperiod in the conditions
that one periodic job is completed or one sporadic is invoked.

At the edge tier, we assume that the length of hyperperiods of other mobile devices
associated to ESi can be different. Then, the immediate workload of edge server ESe

at the beginning of each local hyperperiod, Υo,e(e ∈ E), can be modeled as

Υo,e =

∑
µj
i∈Jo,e

cji

fe · Hp

+Υp
o,e. (4.5)

In E.q. (4.5), fe is the maximum operating frequency at the edge server. Υp
o,e indi-

cates the remaining workload of the last hyperperiod, which was offloaded by other
associated mobile devices to ESe. This workload can be formulated as follow:

Υp
o,e =

∑
µj
i∈Ĵ

p
o,e

cji/fe, (4.6)

where Ĵ p

o,e is a job set that includes the incomplete periodic jobs of ESe in the
last hyperperiod. Similar to the local device, the edge server is to re-estimate its
instantaneous workload once there is either a job completion or arrival in system.

4.1.3 Communication Model

To offload a periodic job from mobile device to edge servers, transmission delay is
generated in a 6G wireless channel with millimeter-wave communication [77]. In our
offloading model, we assume the transmission rates during uplink and downlink follow
Shannon-Hartley Theorem. Let Bu denote the wireless bandwidth. Pm and Gm are
referred to the transmission power and channel gain. C is the noise power. Ix denotes
the interference of other mobile devices and servers. Then, the uplink rate of mobile
devices can be calculated as follows:

Ru = Bu · log2(1 +
Pm · Gm
C + Ix

). (4.7)

In Eq. (4.7), the channel power gain Gm can be given by

Gm = Le·−ℵ
m , (4.8)

71

where Le
m denotes the distance from mobile device to edge server, and ℵ is the path

loss exponent [12].

Since the size of the computation results from remote servers is much smaller
than that of the uploading data, it is reasonable to assume that this communication
is delay-free, especially when that amount of data is transferred in a 6G network,
which is expected to be 100 times faster than the current wireless networks [103].
Thus, we do not consider the downlink rate for the transmission of computation
results from edge server to mobile.

To generate an offloading policy for each periodic job, we define X = {x1
1, ..., x

j
i , ...}

as the Ẑp dimensional offloading decision vector in local device. Particularly, for each
offloading decision xj

i , we have

xj
i =

 e, if µj
i is offloaded to ESe, e ∈ E

0, otherwise.
(4.9)

Relying on the decision vector, all periodic jobs in a hyperperiod are dispatched to
the corresponding job sets for further processing.

4.1.4 Completion Time Model

The objective of the proposed scheme is to minimize the job completion time and
the number of deadline violations. Targeting on this goal, the proper offloading
decisions should be cautiously made by the local scheduler when considering the delay
incurring the offloading of a job. For simplicity, we make two assumptions for edge
and cloud computing. First, we assume both edge and cloud servers can provide faster
computation services compared with mobile devices. In addition, both transmission
rate Ru and the arrival rates (λl, λo,1, ...) are invariable during a hyperperiod. Based
on the assumptions, given an offloading vector X , each periodic job can be executed
either at mobile device or one of the edge servers. In this section, two completion
time models are illustrated as follows.

72

Completion time at Mobile Device

Let TCj→l
i be the completion time of a periodic job µj

i that is allocated to mobile
device according to X . Without loss of generality, we assume that only one proces-
sor with limited computation capability is embedded in mobile device. Therefore,
one periodic job cannot be scheduled immediately at its arrival time if existing the
deadline-sensitive jobs with higher priority in local computation queue Ql. Due to
this resource competition mechanism, TCj→l

i includes two components: local queuing
time TQj→l

i and local computation time TP j→l
i . Let ΦQl

(µj
i) denote a job set that

contains the deadline-sensitive jobs that have a higher priority than job µj
i (µ

j
i ∈ Jl)

at its arrival time point. Given the local operating frequency, fl, the local queuing
time of µj

i is calculated using Eq. (4.10):

TQj→l
i =

∑
µb
m∈ΦQl

(µj
i)

∑
νvz∈ΦQl

(µj
i)

cbm + cvz
fl

. (4.10)

After job µj
i is scheduled successfully, the corresponding computation time TP j→l

i is
calculated using Eq. (4.11):

TP j→l
i = cji/fl. (4.11)

To this end, the completion time of job µj
i (µ

j
i ∈ Jl) is the summation of its local

queuing and processing time that is

TCj→l
i = TQj→l

i + TP j→l
i . (4.12)

Similarly, for a sporadic job, it also needs to wait for its scheduling window after
arriving at systems. Therefore, the completion for a sporadic job TCn

k at the local
device can be given by

TCn
k = (

∑
µb
m∈ΦQl

(νnk)

∑
νbz∈ΦQl

(νnk)

cbm + cvz
fl

) +
cnk
fl
, (4.13)

where ΦQl
(νn

k) is the higher priority job set corresponding to job νn
k . For each local

job, if it cannot be completed before the deadline, the deadline miss occurs. We define
two variables, lji and lnk , for the deadline-sensitive jobs that cannot meet the deadline
requirements of local and edge processing using Eq. (4.14) and Eq. (4.15):

73

lji =

 1, if TCj
i > pji

0, otherwise.
(4.14)

lnk =

 1, if TCn
k > znk

0, otherwise.
(4.15)

Completion time at Edge Server

Once a periodic job is offloaded to edge server, transfer delay, edge queuing delay, and
edge computation delay should be considered. Specifically, after offloading decisions
have been made by local scheduler, all the offloading jobs µj

i (µ
j
i ∈ Jo,e, e ∈ E) are

executed at the associated edge server ESe. That means, the necessary data of these
jobs need to be transmitted to the designated edge server for further processing.
Provided that the size of computation results is generally small, it is reasonable to
ignore this amount of transfer delay. Once one offloaded job µj

i finishes its work at
edge server, a signal is returned to the mobile device to indicate whether this job has
missed the deadline. Due to the limited computation capacity of edge servers, the
offloaded jobs are allowed to be forwarded to the cloud server if the associated edge
server becomes overloaded. For the reasons, we have two communication scenarios
that are discussed as follows.

In the first scenario, we assume that the servicing edge server ESe has sufficient
computation resources for the offloaded jobs. Let TT j→e

i denote the transfer delay of
an offloaded job µj

i from the local device to edge server ESe that includes two parts
(transmission delay and propagation delay). The former is incurred during the data
transmission for a job, while the latter can be omitted at edge computing as mobile
device and edge server are generally located close to each other. Then, the transfer
delay of an offloaded job can be computed by

TT j→e
i =

dji
Re

u

+
E∑

e=1

∑
µb
m∈ΦQo (µ

j
i)

dbm
Re

u

(4.16)

where Re
u indicates the instant transmission rate of edge server ESe, and ΦQo(µ

j
i) is

the priority job set referred to job µj
i in offloading queue Qo.

74

As the edge servers are resource-constrained, the limited resources need to be
competed by all the associated mobile devices. Then, an offloaded job µj

i cannot
be scheduled immediately until all the predecessor jobs complete their work. Let
TQj→e

i denote the queuing time of job µj
i at edge server ESe. The length of TQj→e

i

is determined by the realtime workload of the edge system that has been discussed
in section 4.1.2, and the arrival rate of edge server ESe, λo,e. Another delay is the
computation delay that is denoted as TP j→e

i . The length of TP j→e
i is strongly relevant

to the processor speed of the edge server (fe) that can be computed by Eq. (4.17).

TP j→e
i =

cji
fe
, (4.17)

To this end, the total completion time of µj→e
i at this scenario can be given by

TCj→e
i = TT j→e

i + TQj→e
i + TP j→e

i , (4.18)

Remark 1. The edge servers are generally configured with more CPU cores, conse-
quently shortening the queuing time of the offloaded jobs by dispatching these jobs
into different cores and then processing them in a parallel manner. In addition, the
processor speed of edge server is much faster than local device, eventually resulting
in less computation time (TP j→e

i ≪ TP j→l
i).

The second scenario is that the resources of edge servers become deficient. In
this case, inappropriate offloading decisions for the deadline-sensitive jobs can lead to
deadline violation. To reduce the deadline misses, deadline-sensitive jobs are allowed
to forward to cloud server. Thus, the completion time of the offloaded jobs consists
of three components that are discussed as follows. The first component is the transfer
delay from the mobile device to edge server ESe, TT j→c

i , which can be calculated by
Eq. (4.20). Note that, one offloaded job should be shifted to the corresponding edge
server first before forwarding to the cloud server. Second, the round-trip propagation
delay between edge server ESe and cloud server is considered because these two
kinds of servers are physically deployed far away from each other that leads to a long
propagation delay. We assume the round-trip delay is a constant in our model that
is represented as 2 · Lc. The last component is the computation time at cloud server,

75

which is denoted as TP j→c
i . Thus, we can compute the total completion time of a

periodic job µj
i (µ

j
i ∈ Jo,e) in this scenario by using Eq. (4.19), Eq. (4.20), and Eq.

(4.21).

TCj→c
i = TT j→c

i + TP j→c
i + 2 · Lc, (4.19)

where TT j→c
i , TP j→c

i are calculated as follows:

TT j→c
i = 2 · Lc + TT j→e

i , (4.20)

TP j→c
i =

dji
fc
, (4.21)

where fc denotes the maximum speed of cloud server, and TT j→e
i can be obtained

by using Eq. (4.16). Similar to the local computation, the deadline variable of the
offloaded jobs is determined by Eq. (4.14).

Remark 2. As the computation capability of cloud server is sufficient because it has
more CPU cores and faster processor speed (fc ≫ fe), none of the offloaded jobs
need to wait for computation resources. Therefore, the queuing time in cloud server
TQj→c

i is negligible.

4.1.5 Problem Formulation

To appropriately support computation-intensive and deadline-sensitive applications
in 6G-based MEC systems, we integrate the models mentioned previously to find the
appropriate offloading strategies so that the minimum completion time of a set of
periodic deadline-sensitive tasks is achieved.

Definition 1. Penalty Completion Time (PCT). Let Ĵ be the set of periodic jobs that
violate the deadline constraints in a hyperperiod. That is lji = 1, ∀µj

i ∈ Ĵ . The
overall PCT is defined as the sum of the worst-case completion time of these jobs,

Πn =
∑
µj
i∈Ĵ

pji . (4.22)

76

Definition 2. Total Completion Time (TCT). Given the PCT and job set Ĵ in a
hyperperiod, the TCT for a set of periodic jobs can be given by

Π = Πn +
∑

µj
i∈{Jl,Jo/Ĵ }

TCj
i . (4.23)

To this end, the computation offloading problem in our model, subjecting to a set
of constraints, can be formulated as follows:

OPMobile : min
X

Π

subject to C1 : xj
i ∈ {0, 1, ..., E}, ∀µ

j
i ∈ U ,

C2 : fl ≪ fe ≪ fc,

C3 : Υl,Υo,e < 1, ∀e ∈ E ,

C4 : TCj→l
i , TCj→e

i , TCj→c
i < pji , ∀µ

j
i ∈ Jl,Jo,

C4 : TCn
k < znk , ∀νn

k ∈ Js,Jf .

(4.24)

The constraints in the formulation are illustrated as follows: C1 indicates that each
periodic job can only choose to be executed either locally or offloaded to one of the
edge servers. C2 guarantees that the CPU speed of cloud server is much faster than
the speed at edge servers, as well as the speed of edge servers is faster than that of
mobile device. C3 makes sure the instant workloads of mobile device and edge servers
cannot exceed their computation capacity. C4 and C5 guarantee that the completion
time of each job of mobile device cannot surpass its deadline. This optimization
problem is computationally hard to solve. In our research, we attempted to employ
a deep reinforcement learning method, TD3, to find a satisfactory solution.

4.2 Edge-assisted DRL-based Offloading Scheme

In our model, the offloading policy is closely related to the communication cost be-
tween mobile device and edge server, the available computation resources of mobile
device and edge servers, the arrival rate of sporadic jobs of mobile device as well as
the job arrival rates of each edge server. These system properties tend to fluctuate
due to the dynamic nature of the MEC environment. Therefore, it is hard to find

77

an appropriate solution for the offloading problem OPMobile in a polynomial time
with the traditional optimization methods. Furthermore, the existing computation
offloading schemes are impractical as they do not consider the resources consumption
at mobile tier for the training of complicated deep learning model [17]. To address
these challenges, we first present a novel architecture for the edge-assisted learning,
called EALA, which attempts to reclaim more mobile computation resources for the
execution of local deadline-sensitive jobs through deploying the learning components
at edge tiers and executing these components with the delegated core of edge servers.
Then, we propose a TD3-based computation offloading scheme, MELO, to optimize
the completion time of a set of deadline-sensitive jobs by leveraging the proposed
EALA to train the near-optimal offloading decision model.

4.2.1 Edge-Assisted Learning

EALA aims to leverage the computation resources of edge servers to alleviate the
burden of mobile device. Instead of learning the offloading model at model device,
EALA decouples its inference and training. In other words, the inference is carried
out at mobile device, while the training process is conducted at edge server. In EALA,
mobile devices store one policy actor θ∅m that is responsible to issue the offloading de-
cisions referred to the immediate states st. Alternatively, edge servers are configured
with one actor network θ∅e , one actor target θ∅

′
e , two critic networks (θQ1

e and θQ2
e),

and two related target networks (θQ1′
e and θQ2′

e). To train TD3 model, the interaction
(st, at, rt, st+1) from mobile device is delivered to edge server and then stored into
a replay buffer Me. For each episode δe, TD3 agent of edge servers will randomly
choose a mini-batch of interaction samples from Me for the model updating. After
completing this update, the parameters of the edge actor θ∅e is returned to the mobile
device (θ∅m ← θ∅e). The framework of EALA is shown in Fig. 4.2.

With EALA, the entire learning process is conducted at edge server, which leads
to a significant complexity reduction at mobile device. Furthermore, with a faster
processor at edge servers, especially the servers configured with TPU, the training
can be greatly accelerated. Thus, the time complexity for a training episode δe at
mobile device comprises two parts. The first one is communication time complexity,

78

Upload Sample,

Mobile

Edge

Update Critics Update Critics Update Critics and Actor

Reclaimed Resources for Task Execution Occupied Resources for Model Training

Download Parameters, Upload Sample,Upload Sample,

Figure 4.2: EALA: Training TD3 on Edge Server.

which is determined by transmission time of samples being offloaded to edge server
and the time the parameters of θ∅e being downloaded to the mobile device. Let
∆s and ∆θ∅e

denote the data size of sample (st, at, rt, st+1) and the parameters of
edge actor θ∅e , respectively. Nd denotes the number of forward-propagation of θ∅m
during a training episode δe. Note that, we assume the uplink rate is equal to the
downlink rate, Rd = Ru. Then, the time complexity for communication depends
on the number of the samples being offloaded to the edge server is O(∆s·Nd

Ru
+

∆
θ∅e

Rd
).

The second part is the computation time complexity that depends on the number
of forward-propagation of mobile actor denoted as Nf and the number of neurons of
mobile actor network N∗. Then, the computation time complexity of mobile device
for EALA is O(Nf · N∗). Suppose the model can converge to the best policy after
learning for Ni episodes. The total time complexity of learning at mobile device
is Om = O(∆s·Nd·Ni

Ru
+

∆
θ∅e

·Ni

Rd
+ Nf · N∗ · Ni). In the next generation of 6G-based

MEC system, we can assume ∆s,∆θ∅e
≪ Rd [76, 96]. It is reasonable to ignore the

time complexity for data transmission of samples and parameters. For example,
one actor policy network consists of one input layer, two hidden layers, and one

79

output layers. We also assume that the corresponding number of neurons of layers
are 20, 1024, 1024, 20, respectively. The size of each parameter is 32 bits. Then,
the total size of parameters of this neural network is 34.85 Mb. We assume that
the downlink transmission rate is 100 Mbps. The transmission time is 34.85/100 =

0.34 seconds. Hence, it is reasonable to ignore the time complexity for the data
transmission of samples and parameters as only a small amount of data need to
be tranmitted with a tiny cost in the high-speed 5G/beyong 5G networks [76, 96].
Additionally, it is noteworthy that the partially-trained parameters of neural networks
can be transferred to the mobile device upon completion of each hyperperiod update.
This allows sufficient time for the transmission of policy network parameters to the
mobile device before it starts subsequent decision-making processes. Therefore, it can
be concluded that the time complexity of EALA for the mobile device can be lowered
down to O(Nf ·N∗ ·Ni).

4.2.2 Modelling Task Offloading as an MDP

To adopt DRL to solve our computation offloading problem, we first need to model the
offloading problem as an Markov Decision Process (MDP). As discussed in section
4.2.1, the MELO scheme comprises a local policy network situated at the mobile
device and a global learning model deployed at the edge tier. The basic elements at
t-th heperperiod of TD3 are defined as follows:

• State: To decide whether offloading a set periodic jobs of a hyperperiod, we
should consider a set of environment factors at each decision point, including re-
altime workload of mobile and edge serverW t = {Υt

l ,Υ
t
o,1,Υ

t
o,2, ...,Υ

t
o,e, ...}, the

arrival rates of jobs at the local device and edge serversΘt = {λt
l,s, λ

t
o,1, ..., λ

t
o,e, ...},

the transmission rates of edge servers Rt = {Rt
u,1, ...,Rt

u,e, ...}, and the tasks
profile It = {Itl , Ito,1, ..., Ito,e}, e ∈ E . Particularly, W t can be obtained by using
Eq. (4.3) and Eq. (4.5). The status of arrival rates, Θt, are captured periodi-
cally by the mobile device. The instant transmission rates of edge servers, Rt,
are calculated as Eq. (4.7). Then, the system state of t-th hyperperiod can be

80

defined as:
S : st = {W t,Θt,Rt, It}, t ∈ N. (4.25)

• Action: For each of periodic job µj
i that is allowed to being processed locally

or at either of edge servers, 1+ E choices are available for its execution. At the
start of each hyperperiod, we have the number of Ẑp periodic jobs. Then, the
action is a decision vector that can be defined as

A : X t = {x1,t
1 , ..., xj,t

i , ...}. (4.26)

• Reward Function: As the target of our offloading model is to minimize the
completion time of mobile jobs with hard deadlines, the minimum reward should
be granted along with the deadline guarantee of these jobs. If a job (µj

i or νn
k)

can be completed successfully before its deadline, the reward is defined as its
actual completion time. Otherwise, the reward is assigned to a larger value.
Thus, the reward function Rt is formulated as

Rt : rt =

 Πt, if no deadline misses,

r∗,t, Otherwise,
(4.27)

where r∗,t is the reward for the inappropriate offloading policy that leads to
deadline misses. To punish the improper offloading policies, a larger value
is assigned to the reward r∗,t = (Πt)

(1+κ·ςt), where κ is a coefficient, and ς t

denotes the miss rate for both periodic and sporadic deadline-sensitive jobs in
t-th hyperperiod that can be formulated as follows:

ς t =

∑
µj
i∈J t

l ,J t
o
lji +

∑
νnk∈J t

s ,J t
f
lkn

Ẑp + |J t
s |+ |J t

f |
. (4.28)

We define the computation offloading policy as πθ∅m
(st|X t). Then, the near-optimal

policy π∗
θ∅m
(st|X t) can be learned through maximizing the negative discounted long-

term cumulative reward L(πθ∅m
) that can be defined as follows:

π∗
θ∅m
(st|X t) = argmax

π
−L(πθ∅m

), (4.29)

where L(πθ∅m
) = E(st,X t)∼ρπ

θ∅m
[
∑∞

i=t κ
i−t · ri]. ρπ

θ∅m
denotes the state-action mapping

inducing by the policy πθ∅m
and κ ∈ [0, 1) represents the discounted factor.

81

4.2.3 Details of MELO

In this section, we present the implementation of the proposed MELO scheme. Given
a task set U = {µ1, µ2, ...}, this study attempts to select the best offloading policy
X = {x1

1, x
1
2, ...} for the number of Ẑp periodic jobs in a hyperperiod. The aim of this

study is to minimize the completion time of these periodic jobs at mobile device while
the corresponding time constraints can be met. To achieve this goal, an TD3 based
offloading scheme, MELO, is devised to make the optimal offloading decisions by using
neural networks. In addition, a new learning architecture, which takes advantage of
the powerful edge servers and the advanced 6G networks, is developed to enhance the
scalability of MELO. The data flows of MELO are illustrated in Fig. 4.3. From the
figure, it indicates that our offloading model involves two key tiers that are described
as follows:

• At the mobile tier, the offloading scheduler is committed to map environment
states st to a policy X t via mobile actor network θ∅m at the start of t-th hyperpe-
riod. Aligned with the policy Xt, each periodic job is either allocated to mobile
device or one of the edge servers. Then, the periodic jobs (µj

i ∈ Jl) and the
detained sporadic jobs in the (t− 1)th hyperperiod (νn

k ∈ J t
f) are co-scheduled

by the local processor based on the EDF algorithm. When new sporadic jobs
are coming during the hyperperiod, the total jobs in the local processor are
re-scheduled accordingly. At the end of each hyperperiod, a training sample is
forwarded to replay buffer at edge server.

• At the edge tier, each edge server is responsible for managing the jobs from all
associated mobile devices properly, including offering comprehensive scheduling
and allocating sufficient computation resources, and forwarding extra jobs to
cloud server. More importantly, edge servers are also committed to offer training
services for mobile devices. Namely, for each episode δe, the learning agent of
edge server needs to randomly select a batch of training samples from replay
buffer M, and then update the policy actor θ∅e by using TD3. Once θ∅e is
renewed, a copy of its parameters is sent back to the mobile device.

82

Notice that, once the mobile actor θ∅m is updated in light of θ∅e , the offloading decision
can be made through mapping the state to the relevant offloading policy.

Figure 4.3: Architecture of MELO. The Data that Flow in the MEC System Include:
1) Environment States; 2) Training Samples; 3) Offloading Policy; 4) Periodic Jobs;
5) Sporadic Jobs; 6) Periodic Jobs from Other Mobile Devices; 7) Parameters of Edge
Actor Network.

Alg. 4 includes the detailed steps in MELO. Specifically, MELO takes a specified
periodic task set U , a sporadic task set V , and information of edge environment as
the input and outcomes with the near-optimal offloading policy in X . Before heading
into the training phase, MELO agent first needs to initialize the neural networks at
both mobile and edge tier (θ∅e , θ∅

′
e , θQ1

e , θQ2
e , θQ1′

e), and the Replay Buffer (M) at
edge tier (Line 1). Meanwhile, mobile device downloads a copy of the parameters of
θ∅e and then assigns the downloaded parameters to its own actor network θ∅m. At the
beginning of t-th hyperperiod, the reward in the last hyperperiod rt−1 is calculated
by using Eq. (4.26) (Line 6). Afterward, the mobile agent observes the environment
state st and then uploads the transaction sample (st−1,X t−1, rt−1, st) to the Replay
BufferM(Line 7-8). Relying on the mobile policy network θ∅m, the offloading policy
X t can be obtained as follow:

X t = πθ∅m
(st) + ϵ, (4.30)

83

where ϵ denotes the noise for exploration purpose. According to X t, each job µj
i is

allocated to two job subsets Jl and Jo (Line 10). For every time episode δe, MELO
will take several steps to update its neural networks (Line 13-19). As EALA is one
re-organized version of TD3, it is applied to the same update mechanism that is
detailed in the related work [29]. First, it samples a minibatch of N transitions
(sn,X n, rn, sn+1) arbitrarily from Replay Buffer M to train the neural networks.
To avoid the overfitting to local optimum, the policy actions X n issued by πθ∅e

are
smoothing to a small area, which is defined as follows:

X n : X̃ n ← π
θ∅

′
e
(sn) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c). (4.31)

Then, the loss function for the critic networks is formulated as

yn ← rn + γ ·min(π
θ
Q′
i

e

(sn+1)), i = 1, 2. (4.32)

Based on the loss function, the critic networks θQ1
e , θQ2

e are updated according to the
minimum target value of actions that is defined as Eq. (4.33) and Eq. (4.34).

θQ1
e ← θQ1

e − α
N∑

n=1

dπθQ1
e
(sn,X n)

dθQ1
e

· (πθQ1
e
(sn,X n)− yn) (4.33)

θQ2
e ← θQ2

e − α
N∑

n=1

dπθQ2
e
(sn,X n)

dθQ2
e

· (πθQ2
e
(sn,X n)− yn) (4.34)

After each δe hyperperiods, actor network θ∅e is updated by using πθQ1
e

with determin-
istic policy gradient that is given by Eq. (4.35).

θ∅e ← θ∅e + β ·
N∑

n=1

dπ∅Q1
e
(sn,X)
dX

·
πθ∅e

(sn)

dθ∅e
. (4.35)

Next, the target networks of actor and critics are updated as follows:

θ∅
′

e ← τθ∅e + (1− τ)θ∅
′

e . (4.36)

θ
Q′

i
e ← τθQi

e + (1− τ)θ
Q′

i
e , i = 1, 2. (4.37)

Lastly, the updated θ∅e will be sent back to mobile device. The training process is
completed until the predefined conditions are satisfied.

84

Algorithm 4: MELO Offloading.
Input: Periodic task set U , sporadic task set V , edge environment information
Output: Offloading policy X t,X t ∈ X

1 Initialize parameters of neural networks θ∅e , θ∅
′

e , θQ1
e , θQ2

e , θQ1′
e , θQ2′

e , and
Replay BufferM;

2 Download a copy of θ∅e from the edge server to the mobile device, θ∅m ← θ∅e ;
3 Calculate the length of Hp by using Eq. (4.1);
4 for each Ht

p, t = 1, 2, 3..., do
5 Update the reward rt−1 based on Eq. (4.26);
6 Observe environmental state st{W t,Θt,Rt, It};
7 Upload the transition (st−1, at−1, rt−1, st) to edge server and store it into

M;
8 Select an action X t by Eq. (4.30);
9 Allocate job µj

i , µ
j
i ∈ U into Jl, Jo upon X t;

10 Schedule jobs in Jl, Jf , and Js with frequency fl;
11 Offload jobs in Jo to either of edge server ESi in light of X t;
12 Sample a mini-batch of N transitions (sn,X n, rn, sn+1) fromM;
13 Smooth action X n adopting Eq. (4.31);
14 Calculate the loss function of critic networks by using Eq. (4.32);
15 Update critic networks θQ1

e and θQ1
e by using Eq. (4.33) and Eq. (4.34) ;

16 if (t mod δe = 0) then
17 Update actor network θ∅e using Eq. (4.35);
18 Update target networks θ∅′e , θQ1′

e , and θQ2′
e with Eq. (4.36) and Eq.

(4.37) ;
19 Download a copy of θ∅e to mobile device, θ∅m ← θ∅e ;
20 end
21 Until reach stop conditions;
22 end

85

4.3 Evaluation

In this section, we describe the configuration of the experiments and the details of
our experimental results.

4.3.1 Evaluation Settings

In our research, we simulate the task model, communication model, completion time
model, and EALA design with Pytorch. Specifically, in our simulations, we consider
a circular region whose area is π×200m×200m. Three to five edge servers are evenly
distributed on the edge of the experimental region. Each edge server is connected to
one cloud server. The distance from mobile devices to edge servers is set to Le

m =

200m. The corresponding path loss exponent ℵ is set to 2 [12]. We consider a set of
periodic deadline-sensitive tasks. Each task consists of its own required computation
cycles, period, and size of data. The required computation cycles of a task is randomly
selected from the interval [1, 10] G cycles, and the size of data is in the range from 100
Mb to 2Gb. As mobile devices typically tend to execute small and light applications
due to lack of sufficient computation resources, the periods of these tasks are set to
be small values. Thus, the periods of tasks are randomly generated from the range
[4, 32] seconds. The length of hyperperiod for the selected periodic jobs is set to 32
seconds according to Eq. (4.1). In addition, a 500 Mhz wireless bandwidth network
is considered in our model. The computation speeds of mobile device, edge servers,
and cloud server (fl, fe, and fc) are set to 1G, 8G, and 20G cycles/s, respectively.
The arrival rate λl,s and the arrival rate of each edge server λo,e are set to the interval
[0.01, 1.0] job/s. To obtain the transmission rates of edge servers via Eq. (4.7), the
interference Ix is set to the interval [10−6.95, 10−8.78], which leads the transmission
rates into the range [50, 1000] Mbps. In the model, the transmission power Pm is
set to 64 mWatt. The implementation of the learning module is similar to that of
our previous study [40]. Specifically, both the actor and critic networks consist of 2
hidden layers, where the related number of neurons is 256. The learning rate and
discount rate are set to 0.0003 and 0.99, respectively. Besides, the mini-batch of
training samples is set to 128. The length of episode δe is set to 100 x Hp.

86

We compare MELO with the following baseline methods:

(i) Local Computing (LC):Both periodic and sporadic jobs are executed on mobile
devices during the entire period. Namely, no job is offloaded to edge or cloud
servers.

(ii) Random Offloading (RO): Part of periodic jobs are offloaded to edge servers in
a random fashion, while other jobs are performed on mobile devices.

(iii) Server Computation Learning-based Offloading (SCLO): SCLO is similar to
MELO. It also learns the TD3-based decision model at edge servers. The differ-
ence between these two offloading schemes is that SCLO attempts to offload all
the jobs to the edge servers. Namely, there are no periodic jobs being executed
at the local device. Consequently, each job should pick either of the edge servers
for its execution.

(iv) Multi-access Mobile-assisted Learning-based Offloading (MMLO): Similar to
MELO, MMLO generates the optimal offloading decisions with the TD3-based
offloading model. However, instead of training at the edge tier, MMLO places
the training operations at the mobile device. For this reason, mobile device
needs to allocate a portion of computation resources to the update of neural
networks. In our simulations, mobile device reserves a predefined amount of re-
sources for network training at the end of each hyperperiod. The corresponding
required cycles for the training are set to [5, 10] G cycles.

In our research, two metrics are used to measure the performance of MELO and other
baseline methods. Specifically, the first metric is the total completion time of periodic
jobs in a hyperperiod, which is normalized using min-max normalization and can be
obtained using Eq. (4.23). The other metric is the number of deadline misses during
a hyperperiod that can be calculated using Eq. (4.28).

87

4.3.2 Convergence

In this section, we illustrate the convergence of MELO under different learning rates.
In the experiments, the learning rate is set to 0.003, 0.0003, and 0.00003, respec-
tively. Furthermore, there are 10 periodic tasks (33 jobs) being executed in the MEC
system. The wireless transmission rate is set to a value in the range of 400 Mbps
to 600 Mbps. The local arrival rate λl,s is in the range [0.01, 0, 05] job/s, and the
arrival rate λe,o for each edge server is set to 0.05 job/s. Fig.4.4 shows the curve in
terms of the normalized completion time and the number of deadline misses for the
specified learning rates. Apparently, when learning rate is equal to 0.003 and 0.00003,
MELO consumes considerable training to reach its convergence. More importantly,
the learning model cannot learn the most proper offloading policy. Alternatively,
when the learning rate=0.0003, MELO can converge to the near-optimal policy after
being trained for roughly 50 episodes. Therefore, learning rate = 0.0003 that has
better training efficiency, is leveraged in our following experiments.

4.3.3 Impact of Transmission Rates

In this section, we first investigate the impact of transmission rates on MELO and
the baseline methods. In the experiments, two scenarios are considered: a relatively
light workload of edge servers,λo,e = 0.5 as well as a near-overloaded workload of edge
servers λo,e = 1.0. In addition, 10 periodic tasks (33 jobs) are involved. The transmis-
sion rate of sporadic tasks at mobile device is set to 0.05 s/job, and the coefficient κ
is set to 1. Fig. 4.5 and Fig. 4.6 illustrate the effectiveness of MELO under different
average transmission speeds in both scenarios. From Fig. 4.5, we can observe that
the total completion time declines dramatically when the average transmission rates
are speeded up from 100 Mbps to 500 Mbps, but only a slight improvement can be
achieved after the transmission rate is greater than 700 Mbps. Moreover, the number
of deadline misses also drops sharply as the transmission rate becomes faster. When
the transmission rate is faster than 700 Mbps, the miss rates of the offloaded jobs
for two learning-based counterparts lie in a satisfactory range from 6.1% (MELO)

88

0 50 100 150 200 250 300
Episode #

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

No
rm

ali
ze

d C
on

su
mp

tio
n T

im
e

Learning Rate=0.003
Learning Rate=0.0003
Learning Rate=0.00003

(a) Completion Time vs. Learning Rates

0 50 100 150 200 250 300
Episode #

0

1

2

3

4

5

6

7

Nu
mb

er
of

De
ad

lin
e M

iss
es

Learning Rate=0.003
Learning Rate=0.0003
Learning Rate=0.00003

(b) Deadline Miss vs. Learning Rates

Figure 4.4: Convergence of MELO

to 7.4%(SCLO). This observation indicates that the system performance can be en-
hanced via increasing the transmission speed.

However, when the workload of edge servers nearly reach its maximum capacity,
e.g., λo,e = 1, as shown in Fig. 4.6, SCLO has a limited improvement in terms of the
completion time compared with MMLO and MELO, even performs much worse than
the other two non-learning-based methods (LC and RO). That is because SCLO is
sensitive to the growth of edge workload since the increasing workload. If there are
too many jobs from other devices that have a shorter deadline, the queuing time of
the offloaded jobs can be extensive. Another observation is that MMLO performs as

89

100 300 500 700 900
Average Transmission Rate(Mbps)

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze
d C

om
ple

tio
n T

im
e

LC
RO
SCLO
MMLO
MELO

(a) Completion Time vs. Transmission Rate

100 300 500 700 900
Average Transmission Rate(Mbps)

5

10

15

20

25

Nu
mb

er
of

De
ad
lin
e M

iss
es

LC
RO
SCLO
MMLO
MELO

(b) Deadline Miss vs. Transmission Rate

Figure 4.5: Impact of Transmission Rate (λo,e= 0.5)

better as MELO in terms of the reduction of deadline misses when the transmission
speed is faster than 500 Mbps. However, in the cases that MEC system only can
support a lower transmission rate, e.g., less than 500 Mbps, MMLO sees a rise at
miss rate, which can reach up to 18.2%. It is because MMLO should allocate extra
local computation resources for model training at the end of each hyperperiod. Con-
sequently, most jobs arrived at these time slots need to be offloaded to edge servers to
catch the deadlines. For the circumstances that the transmission rate and resources
of edge servers are deficient, more jobs being offloaded will lead to more deadline
violations. Clearly, MELO outperforms these other offloading methods in terms of

90

100 300 500 700 900
Average Transmission Rate(Mbps)

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze
d C

om
ple

tio
n T

im
e

LC
RO
SCLO
MMLO
MELO

(a) Completion Time vs. Transmission Rate

100 300 500 700 900
Average Transmission Rate(Mbps)

5

10

15

20

25

Nu
mb

er
of

De
ad
lin
e M

iss
es

LC
RO
SCLO
MMLO
MELO

(b) Deadline Miss vs. Transmission Rate

Figure 4.6: Impact of Transmission Rate (λo,e = 1.0)

both two measurements. That is because MELO not only can intelligently schedule
more jobs to mobile device if there is serious congestion at edge tier, but also offload
more jobs to edge servers if they have sufficient computation resources and stable
communication.

4.3.4 Impact of Number of Edge Servers

To further demonstrate the effectiveness of our offloading model in the dynamic MEC
systems, we study the performance of the schemes under investigation when the
number of edge servers vary. In the simulations, 10 periodic tasks are considered

91

in a hyperperiod, and the corresponding amount of jobs is 33. In addition, the
transmission rate of each edge server is set to [400, 600] Mbps. λl,s is set from 0.01

job/s to 0.05 job/s. On the other hand, the arrival rates at edge server λo,e are set to
the range [0.5, 1.0] job/s. As shown in Fig 4.7, it can be seen that both the completion
time and the number of deadline misses increase slowly when the number of edge
servers decreases from 5 to 4, while having a significant performance degradation
when the number of edge servers is lowered down to 3. The observation demonstrates
that, when MEC system contains a limited number of edge servers, mobile device has
a smaller flexibility on its decision-making for the offloaded jobs. Then, many of the
offloaded jobs are inevitably executed at the busy servers. Furthermore, to prevent
more deadline misses, more jobs having a short deadline intend to be processed locally
with a slower processor rather than being offloaded to those busy servers, consequently
resulting in a larger completion time. For these reasons, increasing the number of
edge servers can effectively improve the performance of MEC systems. However,
even more servers are involved, both SCLO and MMLO methods are still stuck in
severe deadline violation and a large completion time. This is because SCLO is only
capable of processing jobs at edge servers. Once edge servers become overloaded, the
offloaded jobs should cost a large amount of time to wait for its scheduling window,
explicitly enlarging the total completion time and deadline misses. On the other
hand, with a smaller number of servers, MMLO needs to process more jobs at local
processor with a lower operating frequency. Thus, the deadline misses and completion
time of MMLO grow rapidly along with the reducing number of servers. Compared to
baseline methods, our proposed offloading method can reduce the completion time and
deadline misses by at least 24% and 31% with respect to the second-best algorithm.

4.4 Major Conclusions of MELO

In this chapter, we propose an edge-assisted learning based offloading scheme, MELO,
to generate the appropriate offloading decisions for deadline-sensitive tasks in a 6G-
empowered MEC system. Specifically, we consider a 3-tier system that involves
mobile devices, edge servers, and cloud servers. With MELO, depending on the

92

�� $� !
� �� $� !
� �� $� !
�
�#��� ����������� $� !

���

���

���

���

��	

���

�
�

�
��
�%
��

��
��

��
�"
��
��
��

�
�

� �� ��� ��� ���

(a) Completion Time vs. No. of Edge Servers

��������� ��������� ���������
���������
�����������

�

�

��

��

��

��

��
��
��
�	
��
��
��
��
�
��
��
�

��
��
����
����
�
��

(b) Deadline Miss vs. No. of Edge Servers

Figure 4.7: Impact of Number of Edge Servers

workload of mobile devices and edge servers, deadline-sensitive tasks are completed
locally or offloaded to edge/cloud server in order to minimize their completion time.
Note that MELO is based on a novel edge-assisted learning architecture, EALA.
The advantage of EALA over the existing learning process in MEC systems is that
the inference and training operation of the learning algorithm are decoupled. The
training operation is carried out on edge servers while the inference operation is per-
formed on mobile devices. In this manner, more computational resources could be
used to handle deadline-sensitive tasks on mobile devices. Our experimental results

93

indicate that MELO outperforms the existing offloading schemes in terms of com-
pletion time and deadline miss. We notice that, in our experiments, the completion
time decreases as the transmission rate between mobile devices and edge servers goes
up. However, when the transmission rate approaches 700 Mbps, the completion time
starts to decrease at a lower rate. Note that the impact of mobility on MELO has
not been thoroughly investigated. In the future, we will attempt to understand the
performance of MELO when mobility is taken into consideration.

94

Chapter 5

Safe Task Offloading with Constrained Reinforcement Learning

In this chapter, we introduce the proposed safe task offloading scheme (CRLO) to
minimize task completion time. First of all, we outline the system model utilized in
CRLO. Subsequently, we systematically present the details of the proposed scheme.
Finally, we analyze the performance of CRLO in terms of convergence, completion
time, deadline miss, and scalability.

5.1 System Model

In this section, we first give the overview of our offloading MEC system. Afterwards,
three essential models, including task model, communication model, and completion
time model, are presented systematically. At the end, the offloading problem with
a set of constraints is formally formulated. For clarity, the key notations used in
Chapter 5 are outlined in Table 5.1.

5.1.1 Overview

In the research, we consider a multi-tier 5G-enabled edge computing system, which
consists of a mobile layer, edge layer, and cloud layer. The structure of this system
is described in Fig. 5.1. In the mobile device layer, there is a group of homogeneous
mobile devices, M = {1, ...,m, ...}, that seamlessly communicate with a cluster of
homogeneous computing edge servers, Ω = {Ω1, ...,Ωe, ...}, and one learning server
that is deployed at edge, ΩM , via wireless communication. Unless stated otherwise, in
the subsequent sections, the term “edge server” refers to the computing edge server.
Each mobile device m performs its own periodic task set, Um, where each task in Um
is repeated according to its period untill it is explicitly terminated.

In our research, we focus on the periodic task offloading behavior regarding a
specific mobile device m in the edge computing system, which is illustrated in Fig.
5.1. Hence, the tasks offloaded from other mobile devices M̃ (M̃ = M/m) to the

95

Table 5.1: Key Notations in Chapter 5
Symbol Definition
M Set of mobile devices
m m-th mobile device
M̃ Set of mobile devices excluded m
Ω,Ωe Set of edge servers and e-th edge server, Ωe ∈ Ω
Tm Time line at mobile device m
Tm Hyperperiod of periodic task set Um, m ∈M
tm Time slot of a hyperperiod at mobile device m
Um Periodic task set of mobile device m
µk
i,m k-th periodic task i in a hyperperiod, m ∈M

vim Aperiodic task i, m ∈M
Um Task set that includes all tasks of a hyperperiod, m ∈M
Rk

i,m Deadline indicator of task µk
i,m

Qco
m Computation queue of mobile device m
Qtr

m Transmission queue of mobile device m
Qa

m Aperiodic task queue of mobile device m
Qe Task queue of edge server Ωe

λe
z Task arrival rate of edge server Ωe

λe,ch
m Rate parameter of channel gain

λa
m Task arrival rate of aperiodic task of mobile device m

fm CPU frequency of mobile device
fe CPU frequency of edge server
fc CPU frequency of cloud server
Re

m Transmission rate of mobile device m to edge server Ωe

Um
m Sub task set of mobile device m processed locally
U e,e
m Sub task set of mobile device m processed at edge server Ωe

J k
i,m Offloading decision of task µk

i,m

Dp,c
e Round-trip propagation time from edge server to cloud server
Le

m Distance from mobile device m to edge server Ωe

ℜk
i,m Deadline indicator of task µk

i,m

πm Orginal policy network of mobile device m
πf
m the policy network with forecasting module in the mobile device m

πsafe
m Safe policy network of mobile device m

96

edge server Ωe is assumed to be followed a Poisson distribution with an expected rate
of λe

z. Additionally, a set of aperiodic tasks arrives at the mobile device m similarly
following a Poisson distribution with an expected rate of λa

m. The ready aperiodic
tasks are store in a FIFO queue Qa

m. As aperiodic tasks generally have a soft deadline,
they are only processed on the mobile device m if there are no ready periodic tasks
in the local task queue. We only consider the offloading of periodic tasks, as our
offloading model focuses on MTS task offloading, where scheduling aperiodic tasks
that have an uncertain arrival pattern is impractical [40,41]. At each decision point,
periodic tasks are possibly processed locally or offloaded to one of the edge servers
according to an offloading policy. To efficiently handle local-processing tasks and
offloaded tasks efficiently, we maintain two priority queues on the mobile device: the
computation queue Qco

m and the transmission queue Qtr
m. These queues prioritize

the in-queue tasks based on EDF [105]. More specifically, the computation queue
manages locally-precessed tasks, e.g., ordering the arrived local tasks and dispatching
the highest-priority task to the processor. Similarly, the transmission queue manage
the offloaded tasks in a same manner. At the beginning of each MTS period, the
mobile scheduler initially determines the proper offloading decisions for all periodic
tasks in the period. If one task is designated to be processed on the mobile device, it
will be delivered to computation queue Qco

m once it arrives in the operating system.
Otherwise, the task is placed in transmission queue Qtr

m for further task transmission.
Note that, each offloaded task is labeled to explicitly indicate to which edge server
the task is being offloaded. For clarity, the key notations of this report are outlined
in Table 5.1

In the edge layer, all edge servers are deployed evenly in proximity to mobile
devices to support computational services. In our offloading model, we assume that
all edge servers are configured with identical hardware and software settings, such
as the same processor speed and memory capacity. To comprehensively schedule the
offloaded tasks from all associated mobile devices, each edge server Ωe maintains a
priority queue Qe based on EDF as well. Due to limited computation resources,
not all offloaded tasks can be processed properly when edge servers are overloaded.
If the excessive offloaded tasks cannot be scheduled promptly, considerable deadline

97

T

Figure 5.1: Architecture of the MEC System under Investigation for CRLO.

misses may unexpectedly occur. To expand computational capability of our MEC
system, the surplus offloaded tasks can potentially be delivered to a complementary
computing resource, the cloud server, which is assumed to be equipped with sufficient
computation resources to execute all offloaded tasks in parallel fashion. In addition,
our offloading model involves a forecasting module deployed at the learning server.
Specifically, the forecasting module can be regarded as a virtual version of the physical
MEC system. The virtual avatar of the MEC system is capable of capturing realtime
information of the physical MEC system, such as task arrival rates of edge servers
and network channel dynamics. Additionally, it can process computation-intensive
analysis tasks for the associated mobile devices. With the forecasting module, it
implies that standalone “myopic” mobile devices are no longer treated as isolated
information islands. Instead, the global optimality of decision-making on mobile
devices can potentially be achieved by utilizing the acquired “far-sighted” information
and profitable analysis from the forecasting module.

98

5.1.2 Task Model

In practice, many mobile devices support a variety of different computation-intensive
applications, such as face recognition and navigation. Computation-intensive ap-
plications often involve periodic tasks. In our research, we focus on the offload-
ing scheme for a set of periodic tasks on the mobile device m, denoted as Um =

(µ1,m, ..., µi,m, ...),m ∈ M. Each periodic task µi,m is characterized as a three-tuple,
µi,m = (di,m, ci,m, pi,m), where di,m, ci,m, and pi,m denote the data size, the required
computation cycles, and task period, respectively. Additionally, the aperiodic task
of mobile device m is denoted as Vm = (v1m, ..., v

i
m, ...),m ∈ M. Each aperiodic task

has one attribute, vim = (χi
m), where χi

m denotes the required CPU cycles of task vim.

Due to the nature of periodic tasks, all of them arrive to system with an invariant
pattern, allowing the mobile scheduler to schedule multiple tasks simultaneously for a
fixed number of time slots [105]. Namely, scheduling periodic tasks can be considered
as an MTS optimization problem. For this reason, we divide the timeline of mobile
device m into a series of equally-divided time intervals Tm = {1, ..., Tm, ...}, each of
which contains multiple time slots. Also, we denote tm as a single time slot in each
interval Tm, tm ∈ {1, ..., |Tm|}, where |Tm| represents the length of a time interval.
Without loss of generosity, we refer to the equally-divided time interval Tm as a
“hyperperiod” consistent with the previous schemes [40,41,43]. The hyperperiod can
be calculated using the least common multiple of the task periods, as shown in Eq.
(5.1). The reason for introducing the hyperperiod is to ensure that each periodic task
in the set Um can be executed at least once within a given time interval. Additionally,
by using a one-time policy generation for multiple tasks, the computation overhead
of the mobile scheduler can be significantly reduced.

|Tm| = LCM(p1,m, ..., pi,m, ...). (5.1)

During the Tm-th hyperperiod, each periodic task µi,m(Tm) may be executed multiple
times. To differentiate each repetition of a task during a hyperperiod, we define
µk
i,m(Tm) as the k-th executable iteration of task µi,m(Tm) in the hyperperiod. Hence,

99

the total number of periodic tasks in a hyperperiod can be given by

|Um| =
∑

µi,m∈Um

|Tm|
pi,m

. (5.2)

As mentioned in Section 5.1.1, there are two priority queues (Qco
m and Qtr

m) that
operate in the mobile device m based on EDF scheduling algorithm. Given a periodic
task set Um being scheduled in the task queues Qco

m and Qtr
m in the hypereriod Tm, the

execution pattern of set Um can be predetermined to align with the deadlines of tasks
in the queues. Similarly, the edge server Ωe also handles a task queueQe to manipulate
offloaded tasks orderly. The discrepancy of schedulings between mobile devices and
edge servers is that mobile scheduling only needs to address the allocated local tasks,
while edge scheduling not only must consider the offloaded tasks of mobile device
m, but also the tasks arrived arbitrarily from other coexisting mobile devices. This
means that the execution priorities of offloaded tasks in task queue Qe are constantly
reprioritized to adapt to the system dynamics, e.g., the arrival of a new task at the
edge server. The mechanism of task scheduling are demonstrated in Fig. 5.2. Due
to the flexible completion deadlines of aperiodic tasks, it is important to note that
aperiodic tasks certainly have lower scheduling priorities than periodic tasks in the
queue Qco

m. Since all periodic tasks have stringent deadlines, any periodic task failed
to be accomplished on time will be discarded before the start of the next hyperperiod.
Let ℜk

i,m(Tm) denote the deadline-miss indicator of task µk
i,m at Tm-th hyperperiod.

Specifically, if task µk
i,m violates the deadline constraints, the indicator is set to 1.

Otherwise, it is set to 0.

5.1.3 Communication Model

In this paper, we adopt a wireless communication model in which part of the periodic
tasks are offloaded to edge servers via orthogonal channels, and hence there is no
interference among mobile devices during the data transmission procedure [68]. To
remain consistent with existing work [35, 87], we assume that wireless transmission
suffers from path loss and small-scale fading. Let |Gem|2 denote the channel gain from
mobile device m to edge server Ωe, which follows an exponential distribution with rate

100

(a) Mobile Task Scheduling: The execution pattern of periodic tasks during different
hyperperiods on mobile device 1 is static, e.g., ∀Tm ∈ Tm, µ1

1,1 > µ1
3,1 > µ1

2,1.
Aperiodic tasks v11 , v21 , and v31 , are allowed to execute when there are no ready
periodic tasks in the task queue Qco

m .

(b) Edge Task Scheduling: Suppose µ1
1,1 and µ1

2,1 are offloaded to an edge server
sequentially. The execution pattern of these two tasks depends on when the tasks
from other mobile devices that have a higher priority arrive. In this example, the
sequence in hyperperiod 1 is µ1

1,1 > µ1
3,2 > µ1

2,1, while it has been changed to
µ1
1,1 > µ1

2,1 > µ1
2,3 in hyperperiod 2. Note that, the execution sequence of the

offloaded tasks within a hyperperiod are constantly updated as new tasks arrive and
in-queue tasks are completed.

Figure 5.2: Task Scheduling at Mobile Device and Edge Server

parameter λe,ch
m [110]. we also use Pm,e to denote the transmission power of mobile

device m. Therefore, the instantaneous transmission rate from mobile device m to
edge server Ωe can be expressed as

Re
m = Bup

m log2(1 +
|Gem|2 · Pe

m

(Le
m)

ℓ · ϱ2
), (5.3)

where Bup
m denotes the allocated bandwidth of mobile devicem, and Le

m is the distance
between mobile device m and edge server Ωe. Here, ℓ denotes the path loss exponent,
and ϱ2 indicates the power of Gaussian noise at mobile device m. We assume that
the results of periodic tasks in edge computing are negligible, and therefore we do
not consider downlink transmission rate in this paper. For example, when performing

101

periodic object recognition, edge servers only need to return the object label, which
involves a minimal amount of data that can be easily transmitted to mobile devices
within a short time.

Mobile devices typicall have limited processing power, which means that not all
periodic tasks can be executed successfully on the local processor if the workload
of mobile devices have been exceeded their computation capacity. To address this
issue, a portion of periodic tasks can be offloaded to resource-rich edge servers. Due
to the dynamic nature of the MEC system, mobile devices need to make careful
offloading decisions when deciding which tasks to be offloaded. For instance, data-
driven tasks may opt for local computing to avoid potential network congestion,
while computation-driven tasks prefer remote computing at edge servers because of
the limited computation resources of mobile devices. Let µk

i,m(Tm) denote task µk
i,m at

hyperperiod Tm. The offloading decision for this task can be represented as J k
i,m(Tm),

where J k
i,m(Tm) = 0 indicates that task µk

i,m(Tm) is assigned to mobile device m for
local processing. Alternatively, if task µk

i,m(Tm) is offloaded to the e-th edge server,
J k

i,m(Tm) is set to e. It is worth noting that each periodic task µk
i,m(Tm) is indivisible

and can only be processed either on mobile device m or on one of the edge servers
during the hyperperiod Tm.

5.1.4 Completion Time Model

As mentioned earlier, each periodic task can be processed on a mobile device, an edge
server, or a cloud server. In this subsection, we explain how the total completion time
of a periodic task µk

i,m(Tm) is calculated in various computing sceanrios. Furthermore,
we present the deadline constraints that are considered in our research.

Completion Time of Local Processing Tasks

Given the offloading decision of task µk
i,m(Tm), e.g., J k

i,m(Tm) = 0, it indicates that
task µk

i,m(Tm) needs to be placed in the computation queue Qcomp
m for local computing.

It is assumed that mobile devices are equipped with a single CPU that operates a
frequency of fm, which is measured in CPU cycles per second. Hence, due to the

102

limited computation resources at mobile device m, task µk
i,m(Tm) possibly postpones

its execution at the time slot of arrival, which is denoted as (k−1) ·pki,m. The task will
be revoked until all of its in-queue predecessors are processed. We define Dk,q,m

i,m (Tm)

as the queuing time of task µk
i,m(Tm) in queue Qco

m, which can be calculated using the
following equation:

Dk,q,m
i,m (Tm) =

∑
Ψc

m(µk
i,m(Tm))

cyx,m(Tm)

fm
, (5.4)

where Ψc
m(·) denotes a task set that includes all of the predecessors of task µk

i,m(Tm)

in queue Qco
m, and x ̸= i, y ̸= k.

After all the preceding tasks have been executed, task µk
i,m(Tm) is immediately

reactivated and then placed on the mobile processor for local processing. Therefore,
the local computation time of task µk

i,m(Tm) can be calculated as

Dk,c,m
i,m (Tm) =

cki,m(Tm)

fm
. (5.5)

Let Dk,m
i,m (Tm) denote the completion time of task µk

i,m(Tm) being processed locally.
Given the local queueing time Dk,q,m

i,m (Tm) and local computation time Dk,c,m
i,m (Tm) of

task µk
i,m(Tm), we have

Dk,m
i,m (Tm) = Dk,q,m

i,m (Tm) +Dk,c,m
i,m (Tm). (5.6)

For example, suppose in the 2-th hyperperiod of 2-th mobile device (m = 2, T2 =

2, |T2| = 12,), where periodic task µ1
3,2(2) arrives at time slot 4. However, it cannot

be executed immediately as there are two predecessor tasks µ2
1,2(2) and µ1

2,1(2) in set
Ψc

m(µ
1
3,2(2)). Let’s assume that D2,m

1,2 (2) = 1 and D1,m
2,1 (2) = 2. Therefore, µ1

3,2(2)

queues for a total of 3 time slots (D1,q,m
3,2 (2) = 3) until it is executed at time slot 7.

Assuming that D1,c,m
3,2 (2) = 1, task µ1

3,2(2) is completed at time slot 8. Thus, the total
completion time of task µ1

3,2(2) for local processing is 3 + 1 = 4 slots.

103

Completion Time of Offloaded Tasks

In our model, an offloaded periodic task µk
i,m(Tm) has to be allocated to the e-th edge

server according to the offloading decision, e.g., J k
i,m(Tm) = e. At the beginning of

hyperperiod Tm, the mobile scheduler initially places the task µk
i,m(Tm) into queue Qtr

m

and then compares its priority with other in-queue tasks. If there exist incomplete
predecessors of tasks µk

i,m(Tm) at its arrival time, the task µk
i,m(Tm) cannot be trans-

mitted until all its predecessors complete the data transmission. Let Ψt
m(µ

k
i,m(Tm))

denote the predecessor set of task µk
i,m(Tm) being assigned to edge computation, the

waiting time of this task in mobile transmitter can be obtained as follows:

Dk,e,w,e
i,m (Tm) =

∑
Ψt

m(µy
i,m(Tm)),x ̸=i,y ̸=k

dyx,m(Tm)

Re
m(tm)

, (5.7)

where Re
m(tm) is the instantaneous transmission rate between mobile device m and

edge server Ωe at time slot tm, tm ∈ Tm. Once all the predecessors are completed, task
µk
i,m(Tm) is invoked and begins transmitting its data. Hence, the total time consumed

by data transmission of task µk
i,m(Tm) can be given by

Dk,e,d,e
i,m (Tm) =

dki,m(Tm)

Re
m(tm)

. (5.8)

Additionally, the total time consumed by the offloaded task in mobile device, denoted
by Dk,e,m̃,e

i,m (Tm), is the sum of the local waiting time in the mobile transmitter and
the data transmission time, which can be computed as follows:

Dk,e,m̃,e
i,m (Tm) = Dk,e,w,e

i,m (Tm) +Dk,e,d,e
i,m (Tm). (5.9)

We have made the assumption that the limited computation resources at edge servers
are fairly competed by all the associated mobile devices. For this reason, instead of
scheduling a task µk

i,m(Tm) instantly, it needs to join the queue Qe upon arrival at
the edge server Ωe. Namely, this task is potentially postponed its execution until the
completion of all its predecessors. Thus, the edge queuing time of task µk

i,m(Tm) is
the total completion time of its predecessors that can be given by

104

Dk,e,q,e
i,m (Tm) =

∑
Ψe(µk

i,m(Tm))

cyx,m(Tm) + cki,z(Tm)

fe
. (5.10)

In the equation, Ψe(µ
k
i,m(Tm)) represents the predecessors set of the offloaded task

µk
i,m(Tm) when it is offloaded to the edge server Ωe. cyx,m(Tm) and have not yet

completed their computation. The variable cyx,m(Tm) denotes the required CPU cycles
of the predecessors offloaded from mobile device m, where x ̸= i and y ̸= k. On the
other hand, cki,z(Tm) denotes the cycles of the predecessors from other associated
mobile devices, where z ∈ M̃. The notation fe denotes the operating frequency of
edge servers. It is worth noting that the predecessor set Ψe(µ

k
i,m(Tm)) is constantly

refreshed because of the arbitrary arrival of tasks from mobile set M̃. This refresh
happens when a new task arrives or an old task is accomplished. Once task µk

i,m(Tm)

is executed on the edge server Ωe, it is possible to calculate the corresponding edge
computation time as

Dk,e,c,e
i,m (Tm) =

cki,m(Tm)

fe
. (5.11)

Let Dk,e,ẽ,e
i,m (Tm) denote the total time cost of task µk

i,m(Tm) at the edge server Ωe,
which is the sum of edge queuing time and edge computation time that can be given
by

Dk,e,ẽ,e
i,m (Tm) = Dk,e,q,e

i,m (Tm) +Dk,e,c,e
i,m (Tm). (5.12)

To this end, the completion time of an offloaded task µk
i,m(T) for edge computing on

the edge server Ωe can be calculated as follows:

Dk,e,e
i,m (Tm) = Dk,e,m̃,e

i,m (Tm) +Dk,e,ẽ,e
i,m (Tm). (5.13)

On the other hand, if the task µk
i,m(Tm) is incorrectly offloaded to an overloaded edge

server, it must be uploaded to the remote cloud server to mitigate the impact of the
inappropriate offloading decisions. Specifically, the cloud server acts as complemen-
tary computing resources to expand the computation capability of the MEC system
in handling the excessive offloaded tasks of edge servers. If the total processing time
of a task at the edge server, comprising both the queueing time and computation

105

time, leads to a deadline violation, and if the sum of the round-trip propagation time
from the edge server to the cloud server and its computation time does not result in a
deadline violation, the task is shifted to the cloud server. It should be noted that even
with the cloud server as a backup computation resource, it does not imply that edge
servers have infinite computation resources to process all offloaded tasks. In addition,
we also assume that the resource-sufficient cloud server enables parallelism in task
execution, which results in no extra queuing time in cloud computation. Let Dp,c

e

denote the round-trip propagation time of the task µk
i,m(Tm) between the edge server

Ωe and the cloud server. Then, the time cost corresponding to the cloud computing
can be given by

Dk,e,c
i,m (Tm) = Dp,c

e +
cki,m(Tm)

fc
, (5.14)

where fc denotes the CPU speed of cloud server. The second component of Eq.
(5.14) is the processing time of task µk

i,m(Tm) at the cloud server. Thus, combined
with transmission time from the mobile devicem to the edge server Ωe, the completion
time of task µk

i,m(T) being processed at the cloud server can be computed by

Dk,c
i,m(Tm) = Dk,e,m̃,e

i,m (Tm) +Dk,e,c
i,m (Tm). (5.15)

To this end, we have the completion time of task µk
i,m(Tm) being processed among

various computing layers,

Dk
i,m(Tm) =

 D
k,e,e
i,m (Tm)|Dk,c

i,m(Tm), J k
i,m(Tm) = e

Dk,m
i,m (Tm), J k

i,m(Tm) = 0.
(5.16)

Deadline Constraints

In this section, we illustrate the task completion and deadline satisfaction on the mo-
bile device m. Let Um

m (Tm) denote the allocated task set for local-processing in Tm-th
hyperperiod. The completion time of a local-processing task µk

i,m(Tm) ∈ Um
m (Tm) in-

volves both local queuing time and local execution time. Additionally, we define an-
other task set U e,e

m (Tm) to include the tasks offloaded to the edge server Ωe. As shown

106

in Fig. 5.2, task scheduling on mobile devices relies on EDF, where task priorities can
be predetermined at decision points. On this basis, the relevent deadline indicators of
local-processing tasks, ℜm

m(Tm) = ℜ1
1,m(Tm)∩, ...,∩ℜk

i,m(Tm) = 0, µk
i,m(Tm) ∈ Um

m (Tm),
should satisfy

∑
µk
i,m(Tm)∈Um

m (Tm)

cki,m(Tm)

fm · |Tm|
< 1, (5.17)

where cki,m(Tm)

fm|Tm| represents the portion of workload imposed by task µk
i,m(Tm) on the

mobile device m in hyperperiod Tm [43, 105]. If the accumulated total workload of
mobile device m in a hyperperiod is less than 1, it indicates that all deadlines of
local-processing tasks can be strictly met under EDF scheduling. Alternatively, if a
task µk

i,m(Tm), µk
i,m(Tm) ∈ U e,e

m (Tm), is accomplished successfully on either the edge
server Ωe or the cloud server, the relevant deadline satisfaction can be guaranteed if

ℵki,m(Tm) +Dk,e,e
i,m (Tm) < k · pki,m(Tm), (5.18)

ℵki,m(Tm) +Dk,c
i,m(Tm) < k · pki,m(Tm), (5.19)

where ℵki,m(Tm) = (k−1) ·pki,m(Tm) denotes the arrival time of task µk
i,m(Tm). Inequa-

tions (5.18) and (5.19) demonstrate that the completion time of task µk
i,m(Tm) being

processed on the edge server Ωe or the cloud server cannot exceed the corresponding
deadline. Notably, both task sets Um

m (Tm) and U e,e
m (Tm) will be empty by the end of a

hyperperiod, as all in-set task deadlines will have expired by then. To assess deadline
satisfaction, the mobile scheduler compares the completion time of each task with its
respective deadlines. If the completion time of task µk

i,m(Tm) suffices to its deadline
constraint, the deadline indicator ℜk

i,m(Tm) is set to 0. Otherwise, this indicator is
assigned a value of 1.

107

Problem Formulation

In the research work, we focus on the task offloading problem in a 5G-enabled MEC
system. In this system, the mobile device acts as an intelligent agent to automati-
cally generate appropriate offloading policies for a set of computation-intensive pe-
riodic tasks. Edge servers provide computation services for the offloaded tasks of
multiple mobile devices. In general, the MEC system is a highly dynamic working
environment characterized by frequent variations in network channels and uncertain
workload of edge servers. That implies that making offloading decisions for tasks in
a nonstationary environment is an exceedingly challenging task. The objective of our
work is to find the optimal offloading decisions that minimize the overall completion
time while ensuring task deadline constraints. We define the task set that contains
all offloaded tasks of mobile device m in hyperperiod Tm as U e

m(Tm). This set is
formed by taking the union of all task sets for each edge server Ωe in the system,
such that U e

m(Tm) = U1,e
m (Tm)∪, ...,∪U e,e

m (Tm), ...,Ωe ∈ Ω. The total completion time
of local-processing tasks and offloaded tasks in a hyperperiod, Dm

m(Tm) and D
e

m(Tm),
can be calculated independently as follows:

Dm

m(Tm) =
∑

µk
i,m(Tm)∈Um

m (Tm)

Dk,m
i,m (Tm), (5.20)

De

m(Tm) =
∑

µk
i,m(Tm)∈Ue

m(Tm)

Dk,e,e
i,m (Tm) +Dk,c

i,m(Tm). (5.21)

Let Jm(Tm) = {J 1
1,m(Tm), ...,J k

i,m(Tm), ...} denote the profile of offloading decisions
at hyperperiod Tm. Since the minimum completion time of tasks can be achieved by
properly adjusting the offloading decisions Jm(Tm), our task offloading problem can
be formulated as follows:

min
Jm(Tm)

Dm

m(Tm) +D
e

m(Tm) (5.22)

subject to C1 : J k
i,m(Tm) ∈ {0, 1, ..., e, ...}, (5.23)

Constraints : (5.17)− (5.19). (5.24)

108

The aforementioned constraints are described as follows: C1 indicates that each peri-
odic task must be allocated to either mobile device m or an edge servers. Constraint
(5.17) to (5.19) ensure that all periodic tasks on mobile device m satisfy their deadline
constraints. However, due to constraint C1, the resulting offloading problem (5.22)
becomes a computationally-hard MINLP problem. Furthermore, solely focusing on
minimizing completion time in a greedy manner may result in significant deadline
violations. Therefore, it is crucial to strike a balance between optimizing completion
time and ensuring deadline satisfaction. Moreover, due to privacy concerns, stan-
dalone mobile devices often face challenges in accessing global system information,
e.g., the offloading policies of other coexisting mobile devices. When making offload-
ing decisions merely based on local information, it can lead to substantial suboptimal
decisions. Therefore, we propose a constrained reinforcement learning-based offload-
ing approach to address the offloading problem. Our approach adopts constrained
reinforcement learning and a long-sequence forecasting model to improve the accu-
racy of decision-making in a highly-vibrating MEC system. Practical MEC systems
typically involve other costs, such as energy consumption and fees charged by resource
renting on servers. These additional costs can be integrated into Eq. (5.22) and des-
ignated with appropriate coefficients, which can then be optimized by our model-free
reinforcement learning model.

5.2 Safety-critical Learning-based Task Offloading

In this section, we first introduce three basic elements used in CRLO, including long-
sequence forecasting model and constrained reinforcement learning. Furthermore,
we propose a new policy network that seamlessly integrates the conventional policy
network of actor-critic based algorithms with the long-sequence forecasting model
and constrained reinforcement learning. Aiming to address the offloading problem
while satisfying a set of constraints, we reformulate the problem as a Constrained
Markov Decision Process (CMDP). To solve the reformulated problem, we propose a
safety-critical learning-based offloading scheme, CRLO, to intelligently generate near-
optimal offloading policies while satisfying safety constraints. Finally, we conclude

109

this section with the complexity analysis of the proposed offloading scheme.

5.2.1 Long-sequence Forecasting Model

The long-sequence forecasting model takes a multivariate state matrix consisting of
a series of historical long-sequences of environment states as inputs and outputs pre-
dictions of the states [92, 111]. Particularly, the multivariate input matrix is defined
as Lhist

m (Tm) = {Lhist
m (Tm − 1), ...,Lhist

m (Tm − h), ...}, where Lhist
m (Tm − h) denotes the

previous experience of environment states at (Tm− h)-th hyperperiod. Alternatively,
the output matrix is also constituted with a set of predicted long-sequences, defined
as Lr

m(Tm). Noticeably, each long sequence in Lhist
m (Tm) or Lr

m(Tm) is referred to a
certain input state, e.g., the transmission rate Re

m and task arrival rate λe
z in our

offloading model. Instead of using RNN and LSTM for the state predictions, one
computationally-efficient and predictively-accurate long-sequence forecasting model,
Informer, is utilized to tackle our MTS long-sequence offloading problem [111]. To
be more specific, Informer consists of an encoder and a decoder. The encoder uses
a combination of self-attention and convolutional operation to process the input ma-
trix Lhist

m (Tm) and generates a compressed representation of the input. The decoder
contains two multi-head attention layers, each of which has its own feed-forward net-
work. The decoder takes the compressed representation of encoder and the second
half of matrix Lhist

m (Tm) as inputs to predict the future values of the long sequences.
Eventually, the decoder outputs the final results of long-sequence prediction, Lr

m(Tm).

5.2.2 Constrained Reinforcement Learning

As most existing DRL-based offloading approaches in the Chapter 4 have not suffi-
ciently considered the safety of model learning, directly applying RL-based offloading
approaches to safety-critical systems, such as aircraft control and temperature mon-
itoring systems in nuclear plant, is infeasible [43, 62]. This concern has prompted
RL agents to incorporate safety considerations as keeping constraints as “on average”
can inevitably incur catastrophic consequences in the systems. One emerging sub-
field of reinforcement learning, called Constrained Reinforcement Learning (CRL),

110

ensures that the RL agent learns to perform tasks in a safe and reliable fashion. In
our next work, we will leverage CRL to regulate the unsafe offloading policy during
the learning process. Basically, CRL is specifically designed to address optimization
problems with a set of constraints. It is normally defined as a tuple with six elements:
< S,A,Γ,R, κ, C > [2, 23, 62]. In the tuple, S is the state space, sm(Tm) ∈ S. A
denotes the action space, am(Tm) ∈ A. In addition, Γ(sm(Tm + 1)|sm(Tm), am(Tm))

is the probability of transitioning from state sm(Tm) to state sm(Tm + 1) after per-
forming the action am(Tm): S × A × S → [0, 1]. R is the reward function, which
can be characterized as R : S × A → R. κ denotes the discount factor of learning,
κ ∈ (0, 1), and C = {Ci,m : S × A → R, i ∈ {1, ..., |Um|},m ∈ M} is a set of con-
straint functions. One representative constrained reinforcement learning is leveraging
a safety layer for safe exploration, in which the risky actions can be reduced signifi-
cantly [23]. To learn the constraint functions of the safety layer, a set of associated
safety signals that indicates per-state observations of constrained values is defined
as C = {Ci,m : S → R, i ∈ {1, ..., |Um|},m ∈ M}, where Ci,m(sm(Tm + 1)) is the
safety signal of state sm(Tm+1) after performing state-action pair (sm(Tm), am(Tm)).
That is Ci,m(sm(Tm) + 1) ≜ Ci,m(sm(Tm), am(Tm)). It is important to note that the
safety signal Ci,m(sm(Tm)+1) represents the safe distance against the upper bounded
constants C̃i,m. After the policy network πm generates an action am(Tm), it is inter-
nally calibrated within the safety layer through a closed-form calculation to obtain
the optimal safe action a∗m(Tm).

5.2.3 A Novel Policy Netowk

In the MEC system, mobile devices are inherently equipped with a parameterized pol-
icy network πm that aims to establish the appropriate mappings between the system
states and the offloading policies by constantly interacting with the environment.
Nevertheless, the policy network used in existing reinforcement learning methods,
such as DQN and DDPG, exclusively struggles to issue safe and far-sighted policies
for solving the MTS long-sequence problem due to the lack of a constraint-guaranteed
and state forecasting mechanism, as noted in [44, 93]. To overcome these drawbacks,
we redesigned the policy network by incorporating a forecasting model and a safety

111

layer to enhance its efficiency. Specifically, instead of directly feeding immediate
states into the policy network, a forecasting model is first introduced to proactively
predict the fluctuations of the states in the next hyperperiod. By having more ac-
curate knowledge about the variations in the state, a potentially better offloading
policy can be achieved. Furthermore, to prevent risky offloading decisions that result
in high costs of failure, we developed an advanced safety layer that can ensure the
satisfactions of multiple active constraints simultaneously, in contrast to the conven-
tional safety layer in [23], which only permits one active constraint during each policy
generation. The advanced safety layer is integrated at the end of the policy network
πm. An overview of the redesigned policy network, denoted as πsafe

m , is shown in Fig.
5.3.

Figure 5.3: Structure of Policy Network.

The first layer of the policy network πsafe
m is an advanced input layer that incor-

porates a forecasting model concatenated ahead of the original input layer to improve
the input states. Specifically, the forecasting model predicts state variations for the
next hyperperiod based on a series of historical records, while the original input layer
accepts all states of the MEC system, including static states and varying states. To
be specific, static states, e.g., the remaining workload of edge servers in the last hy-
perperiod, are assumed to remain unchanged within a hyperperiod but vary among
different hyeperperiods. On the other hand, varying states constantly change over

112

time and can be predicted using the forecasting model. In each iteration, the forecast-
ing model initially takes experience as input and outputs the predictions of varying
states. These predictions, combined with observations of static states, create a hy-
brid of states that are fed into the original input layer before being passed to the
subsequent layers. Notice that we use the Informer forecasting model, which has
an extended prediction capacity and is particularly effective in solving long-sequence
forecasting problems, to achieve the varying states in our offloading model. During
each forward propagation of the policy network πsafe

m , the Informer forecasting model
uses the historical experience Lhist

m (Tm) to predict the varying states Lr
m(Tm). Let

Zm(Tm) = {Z1(Tm), ...,Zhz(Tm), ...} denote the multivariate matrix of static states
whose values can be observed internally in the mobile device at decision points. The
hybrid inputs sm(Tm) = {Lr

m(Tm),Zm(Tm)} is fed into the original input layer at
the end of forecasting preprocessing phase. The fully connected layer is responsi-
ble for connecting the input layer with the output layer. It is constituted of several
hidden layers, each of which contains a batch of neurons that are activated using
Rectified Linear Unit (ReLU). Technically, the outcome of the input layer is pro-
cessed by passing it through these four hidden layers. The output of the last hidden
layer is then passed to the output layer. The output layer is responsible for gener-
ating safe actions that comply with a set of constraints. To ensure compliance with
these constraints, a safety layer is additively attached to the end of the original out-
put layer, which corrects any improper outputs of the original policy network. This
assures that the ultimate issued actions not only lead to near-optimal performance
but also strictly obey the predefined constraints. Unlike [23], where only one active
constraint is allowed in each iteration, the constraint satisfaction in our offloading
model is more complicated since multiple active constraints need to be secured simul-
taneously. Namely, the constraint set Cm(Tm) = {C11,m(Tm), ..., Cki,m(Tm), ...} must be
satisfied in each iteration of decision-making. Therefore, the safety layer is essentially
accountable to ensuring the constraints of all tasks in a hyperperiod. Let Lsafe

m denote
a safety layer referred to all safe actions {a11,m(Tm), ..., a

k
i,m(Tm), ...}.

Technically, the deployment of the safety layer Lsafe
m consists of two steps: the

pretraining of the linear safety signal model and the generation of safe actions. In

113

the first step, a safety signal model is trained using a set of pre-collected data. To
create pretraining dataset, the MEC system is randomly executed for a number of
hyperperiods, and transition samples (spm(Tm), a

p
m(Tm), s

p
m(Tm+1)) are collected into

a pretraining buffer Bp
m. Note that each execution is terminated instantly if there is a

constraint violation or the predefined time limit is reach. Without loss of generosity,
let θsafem denote the parameters of the Neural Network (NN) used to approximate the
associated constraints Cm(sm(Tm), am(Tm)), and fm(sm(Tm); θ

safe
m) denote a neural

network that takes sm(Tm) as input and outputs a vector with the same dimension as
the action am(Tm). To approximate the constraint Cm(sm(Tm), am(Tm)), the following
linearization is performed as

Cm(sm(Tm) + 1) ≜ Cm(s(Tm))← Cm(sm(Tm)) + fm(sm(Tm); θ
safe
m) · am(Tm). (5.25)

In pretraining phase, a random batch of transitions Ipm = {spn,m(Tm), a
p
n,m(Tm), s

p
n,m(Tm+

1)} are selected arbitrarily from the pretrain buffer Bp
m to train the neural network

of signal model. Note that each sub-level Lk,safe
i,m corresponds to one sub-action

ak,pi,n,m(Tm), which is an element of apn,m(Tm). When entering the action-calibration
process, all sub-levels are operated as one overall safety layer Lsafe

m to guarantee all
the constraints simultaneously. Based on the collected pretrain set Bp

m, the neu-
ral network fm(sm(Tm); θ

safe
m) can be trained by solving the following optimization

problem:

arg min
θsafem

∑
Ip
m

(Cm(spn,m(Tm) + 1)− (Cm(spn,m(Tm))

+ fm(sn,m(Tm), θ
safe
m)⊺ · apn,m(Tm)))

2.

(5.26)

After the neural network of the safety layer is fully trained, the pre-trained safety
layer is appended to the end of the original output layer to calibrate unsafe actions.
During the phase of action generation, the original action am(Tm) is fed into the
safety layer Lsafe

m . In light of state sm(Tm), the optimal safe action asafem (Tm) can be
achieved by solving

114

argmin
a
∥ a− am(Tm) ∥2 (5.27)

s.t. Cm(sm(Tm), am(Tm)) ≜ Cm(sm(Tm))

+ fm(sm(Tm); θ
safe
m) · am(Tm) ⩽ C̃m.

(5.28)

The optimization above aims to find a safe action that is closest to the original action
am(Tm) in terms of Euclidean distance. To solve this problem, a closed-form solution
is used to calculate the most appropriate safe sub-action ak,safei,m (Tm) independently,
as presented in [23]. It is worth noting that the reliable outputs of the policy network
πsafe
m is the overall safe action asafem (Tm), which combines all safe sub-actions and can

be represented as asafem (Tm) = {a1,safe1,m (Tm), ..., a
k,safe
i,m (Tm), ...}.

5.2.4 Reformulating the Offloading Problem as a CMDP

In each hyperperiod, mobile device m observes not only static states, such as task
features and remaining workload, but also a series of varying states, including network
dynamics and workload variations in the near future. By taking both static states
and varying states as inputs, the policy network πsafe

m aims to generate appropriate
offloading policies to specify the subsequent task allocation. To evaluate performance
of offloading policy, two metrics are utilized, including task completion time and
deadline miss. The main objective of our offloading model is to minimize both of
the measurements via continually optimizing the offloading policies using constraint
reinforcement learning.

System State

As mentioned, each state set sm(Tm) consists of static state set Zm(Tm) and varying
state set Lr

m(Tm), that is, sm(Tm) = {Zm(Tm),Lr
m(Tm)}. Specifically, static state set

includes three elements. The initial element pertains to the workload of mobile device
m, denoted asWa

m(Tm), which arises from the presence of prior-arrived aperiodic tasks
within the local environment. The second element is the rest workload of edge servers
in the last hyperperiod, which is denoted as We(Tm) = {W1(Tm), ...We(Tm), ...}.
The last element is the profile of task set Θm(Tm), e.g., the required CPU cycles

115

and data size of periodic tasks. The varying state set Lr
m(Tm) is constitued of two

components: the transmission rates from mobile device m to edge servers, denoted
as Rm(Tm) = {R1

m(Tm), ..., R
e
m(Tm), ...}, and the task arrival rates of edge servers

λe
z(Tm) = {λ1

z(Tm), ...λ
e
z(Tm), ...}, which implicitly reflect the runtime workload of

edge servers in a sequential manner. Noticeably, the states in set Zm(Tm) are assumed
to be constant during a hyperperiod but vary among different hyperperiods. In con-
trast, due to the uncertainties in the MEC system, each state in set Lr

m(Tm) constantly
changes among different timeslots. For this reason, the states in set Zm(Tm) can be
observed instantaneously with a minor overhead at decision points. On the other
hand, Re

m(Tm) and λe
z(Tm), Re

m(Tm) ∈ Rm(Tm), λe
z(Tm) ∈ λe

z(Tm), represent the vari-
ations of the upcoming hyperperiod that can be predicted using the forecasting model.
It is aware of that each Re

m(Tm) or λe
z(Tm) is a long MTS sequence that can be denoted

specifically as Re
m(Tm) = {Re

m(1), ..., R
e
m(tm), ...} and λe

z(Tm) = {λe
z(1), ..., λ

e
z(tm), ...}.

Additionally, the immediate workload of edge server Ωe, We(Tm), arises because of
the incomplete tasks of the last hyperperiod. It can be calculated as follows:

We(Tm) =
∑

µk
i,m(Tm)∈Ψe,rest

m (Tm)

cki,m(Tm)

fe · |Tm|
, (5.29)

where Ψe,rest
m (Tm) denotes the task set that embraces all incomplete tasks from the

previous hyperperiod at the edge server Ωe. In addition, the mobile device m inter-
nally monitors the system conditions and stores the information in the profile Θm(Tm)

before entering the next hyeperperiod. Due to continuous variations in the transmis-
sion rates and task arrival rates of the edge servers, it is essential to use a forecasting
model to foreseeably identify the potential changes in the states so as to the actual
variations in near future can be properly estimated. To achieve this goal, we leverage
the Informer forecasting model, which is described in Section 5.2.1, to predict the
future variations of states Rm(Tm) and λe

z(Tm) proactively. Particularly, we estimate
each transmission rate between the mobile device m and the edge server Ωe for dif-
ferent timeslots using Eq. (5.3). Moreover, the task arrival rate of the edge server Ωe

follows a Poisson distribution. As a result, the input states of policy network πsafe
m

116

in the hyperperiod Tm can be characterized as follows:

s(Tm) = {Wa
m(Tm),We(Tm),Θm(Tm), R

e
m(Tm), λ

e
z(Tm)}. (5.30)

Action

At the beginning of each hyperperiod Tm, the RL agent of mobile device m chooses
an appropriate offloading policy for a set of periodic tasks Um(Tm). This policy not
only decides whether to offload the tasks, but also explicitly specify where to offload
them. Therefore, the offloading policy of task set Um(Tm) in each hyperperiod is
regarded as the action of learning model. As the original policy networks of DDPG
and TD3 are primarily designed to solve problems with continuous action space,
they face difficulties in efficiently deadling with problems that have a large discrete
action space. For instance, the action space in our offloading problem is equivalent
to |U|Ω|

m |. Apparently, when the number of edge servers increases slightly, the action
space grows exponentially, making it a challenging task to handle. Similar to the work
of Christodoulou et al. [18], the original “raw” action Jm(Tm) generated by policy
network πm is coded using a softmax function for vectorization to tackle the large
discrete action space. However, this “raw” action does not consider the constraints of
the MEC system. To ensure these constraints are met, the “raw” action Jm(Tm) =

πm(sm(Tm)) is rectified to its safe neighboring action by passing through the safety
layer of policy network πsafe

m , where J safe
m (Tm) = Lsafe

m (Jm(Tm)). Therefore, the
final action of mobile device m at hyperperiod Tm can be represented as a vector of
safe offloading decisions corresponding to the task set Um(Tm), which are defined as
follows:

J safe
m (Tm) = (J 1,safe

1,m (Tm), ...,J k,safe
i,m (Tm), ...), (5.31)

where J k,safe
i,m (Tm) is the safe offloading decision associated with the task µk

i,m(Tm).

Reward

Since the objective of our offloading model is to minimize the completion time of
periodic tasks from mobile device m, the periodic tasks need to be processed either at

117

the mobile device or at the remote servers. If the offloading decision of task J k
i,m(Tm) is

equal to 0, this task should be processed locally. Otherwise, it needs to be offloaded to
the edge server Ωe aligned with the offloading decision J k

i,m(Tm) = e. To upgrade the
offloading decisions, the RL agent calculates the total reward based on the overall task
completion time and the total number of deadline violations. More specifically, if a
task µk

i,m(Tm) violates the deadline constraint (e.g., Rk
i,m(Tm) = 1), the task reward is

assigned to a constant penalty of r∗ to discourage the incorrect decision. Otherwise,
the task reward is computed based on its completion time. In the context of no
deadline is missed in a hyperperiod, the total reward for task set Um(Tm) is simply
the sum of the completion times of all tasks, that is Dm(Tm) = D

m

m(Tm) + D
e

m(Tm).
However, in the case of missed deadline in a hyperperiod, the reward calculation
should be carried out separately. Let ϕmiss

m (Tm) denote the set of tasks that miss
their deadlines in hyperperiod Tm, and ϕdone

m (Tm) denote the task set of tasks without
deadline violations. Therefore, the total reward for hyperperiod Tm can be calclulated
as follows:

Rm(Tm) =

Dm(Tm), ϕmiss
m (Tm) = ∅,

Rmiss
m (Tm) +Rdone

m (Tm), otherwise,
(5.32)

where Rmiss
m (Tm) denotes the total reward for the tasks violated the deadlines, which

can be given by

Rmiss
m (Tm) =

∑
µk
i,m(Tm)∈ϕmiss

m (Tm)

r∗ · |ϕmiss
m (Tm)|. (5.33)

Another reward Rdone
m (Tm) denotes the total completion time of the tasks being com-

pleted before deadlines can be calculated as

Rdone
m (Tm) =

∑
µk
i,m(Tm)∈ϕdone

m (Tm)

(Dk,m
i,m (Tm) +Dk,e,e

i,m (Tm) +Dk,c
i,m(Tm)). (5.34)

Noticeably, the number of deadline misses Rmiss
m (Tm) will be drastically reduced with

the application of the safety layer, particularly in cases where the length of hyperpe-
riod is relatively short. The relevant evaluations will be presented in Section 5.3.

118

Constraints

In deadline-sensitive MEC systems, constraint satisfaction is critical when performing
deadline-sensitive task offloading. For safety concerns, the completion time of a task
µk
i,m(Tm) must not exceed its deadline. Hence, the upper bound constant C̃ki,m in

CMDP is mapped to the deadline of task µk
i,m(Tm), C̃ki,m = pki,m. Considering the

periodicity nature of tasks, the upper bound of tasks remains constant across different
hyperperiods. Therefore, the constraint of task µk

i,m(Tm) can be formulated as

Cki,m(Tm) : Dk
i,m(Tm) < pki,m, µ

k(Tm)
i,m ∈ Um(Tm), (5.35)

where Cki,m(Tm) denotes constraint of task µk
i,m(Tm) in hyperperiod Tm. On this basis,

the constraint set Cm(Tm) referred to task set Um(Tm) in hyperperiod Tm can be given
by

Cm(Tm) = {C11,m(Tm), ..., Cki,m(Tm), ...}. (5.36)

Problem Reformulation

In our work, an offloading decision is made via using the policy network πsafe
m to gener-

ate an appropriate offloading policy J safe
m (Tm) regarding state sm(Tm), J safe

m (Tm) =

πsafe
m (sm(Tm)). Aiming to this goal, we strive to discover the best offloading policy

π∗,safe
m for task set Um(Tm) that ensures minimum completion time and meeting dead-

lines. As our offloading problem entails minimizing the positive total reward, which
is equivalent to maximizing the negative of the total award in TD3 learning, we can
formulate the problem as a CMDP that can be expressed as follows:

π∗,safe
m = argmax

πsafe
m

∑
Tm∈Tm

κ(Tm−1) · −Rm(Tm)|πsafe
m , (5.37)

subject to Constraint (5.36), (5.38)

where κ is the discount factor, κ ∈ (0, 1], that is used to calculate the discounted
reward in the future.

119

Figure 5.4: Framework of CRLO.

5.2.5 Details of CRLO

To alleviate the computation burden of mobile devices, we have developed a computationally-
efficient learning-based offloading architecture. This architecture automates the opti-
mization of offloading policies and explicitly mitigates the computation burden on the
mobile device by separating model trainning from policy inference. Specifically, the
module of model training that consumes massive computation resources is relocated to
the resource-sufficient learning server. Alternatively, the computationally-light policy
inference is regularly operated on the resource-limited mobile device. Furthermore,
the forecasting module, another computation-intensive module, is also moved to the
learning server. The fundamental changes in mode organization brings the benefit
of freeing up substantial computation resources on mobile devices and edge servers
to handle computation-intensive tasks. The framework of CRLO is demonstrated in
Fig. 5.4. In this framework, mobile device m is configured with one processor that
has a frequency of fm. In addition, there is one policy network πsafe

m installed on the
mobile devicem for periodic policy generation. It is worthy noting that the policy net-
work πsafe

m only includes the orginal policy network πm and the safety layer since the

120

forecasting module has been detached and relocated to the learning server. To train
policy network πsafe

m , the replay buffer Bcr
m,M and pretrain buffer Bp

m,M are constructed
accordingly at the learning server. The former regularly collects transition samples
{(sm(Tm),J safe

m (Tm),Rm(Tm), sm(Tm + 1))} from mobile device m, while the latter
acquires one collection of pretraining samples {(spm(Tm),J p,safe

m (Tm), s
p
m(Tm + 1))}

ahead of starting the learning phase. Noticeably, both the pretraining of the safety
layer and the model learning have been moved to the learning server. Hence, we
use distinct notations for the neural networks at the learning server. To differentiate
them from their counterparts on the mobile device m, we include an additional “M”
in the subscripts. For example, πsafe

m represents the policy network on the mobile de-
vice m, while πsafe

m,M is its avatar on the learning server. Furthermore, the forecasting
module periodically observes the state variations of the MEC system and updates its
internal information accordingly. Let L̃e(Tm) denote the varying states of the MEC
system with respect to the mobile device m in the hyperperiod Tm. Notably, unlike
the varying states Lr(Tm) being constituted with the state predictions returned from
the forecasting module, state set L̃e(Tm) consists of the ground truth values of the
varying states in the hyperperiod Tm. With adequate global information, the fore-
casting module is capable of providing a variety of functionalities for all associated
mobile devices. For instance, to reduce the cost of state predictions on mobile devices,
the Informer forecasting model is migrated to the learning server and operated on the
forecasting module. As the entire learning process is carried out remotely, mobile
device m only stores one replication of the policy network πsafe

m locally. Moreover,
to support the two aforementioned computation-intensive modules, one assumption
has been made that the computation resources of the learning server are sufficient.
We denote the replications of neural networks at the learning server as πsafe

m,M , Q1
m,M ,

Q2
m,M , π̂safe

m,M , Q̂1

m,M , and Q̂
2

m,M , πsafe
m,M , and π̂safe

m,M , respectively. Specifically, the first
three notations represent one pair of actor-critic networks and the last three notations
denote the relevant target networks.

121

Algorithm 5: CRLO Module at Mobile Device m

1 Initialize the policy network πm;
2 for each hyperperiod, Tm = 1, 2, 3..., do
3 if receive new πsafe

m,M then
4 Update the policy network: πsafe

m ← πsafe
m,M ;

5 end
6 Observe the stable states of local system Zm(Tm) ;
7 Fetch the varying states Lr

m(Tm) from the learning server;
8 Feed the state sm(Tm) = {Zm(Tm),Lr

m(Tm)} into policy network πm;
9 Generate the safe offloading policy J safe

m (Tm) by using Eq. (5.39);
10 Allocate the task set Um

m (Tm) to local processor;
11 Execute the task µk

i,m(Tm) ∈ Um
m (Tm) with frequency fm;

12 Offload the task set U e,e
m (Tm) to the edge server Ωe,Ωe ∈ Ω;

13 for µk
i,m(Tm) ∈ U e,c

m (Tm) arrives to the edge server Ωe do
14 if (Qe is full) then
15 Forward the task µk

i,m(Tm) ∈ U e,c
m (Tm) to the cloud server Ωc;

16 Execute task µk
i,m(Tm) with frequency fc;

17 end
18 Execute the task µk

i,m(Tm) ∈ Ũ e,e
m (Tm) with frequency fe;

19 end
20 Calculate the total reward Rm(Tm) using Eq. (5.32) ;
21 Observe the next state sm(Tm + 1);
22 Upload transition sample (sm(Tm),J safe

m (Tm),Rm(Tm), sm(Tm + 1)) up to
the learning server ΩM ;

23 end

122

The Module of CRLO at Mobile Device

The primary responsibility of mobile devices is to generate the most suitable offload-
ing policy automatically, which can adapt to the variations of the MEC system and
achieve the best performance. At each decision point, mobile device m regularly as-
sesses whether to update the policy network πsafe

m . If the replication of the neural
network πsafe

m,M completes one-round of training with a batch of transition samples,
the temporally-trained parameters are returned to the mobile device m, and the local
policy network πsafe

m is updated accordingly, πsafe
m ← πsafe

m,M (Line 3-5). Afterward,
mobile device m observes the internal states Θm(Tm) and acquires the workload con-
ditions of edge servers We(Tm)(Line 6). At the same time, it sends a request to the
forecasting module on the learning server to fetch the varying states of the MEC sys-
tem Lr

m(Tm), which are proactively forecasted with the Informer forecasting model
(Line 7). The hybrid state sm(Tm) = {Zm(Tm),Lr

m(Tm)} is fed into the policy net-
work πsafe

m to generate the “raw” offloading policy Jm(Tm) (Line 8). Then, the safety
layer Lsafe

m modifies the “raw” offloading policy to achieve the best safe offloading
policy J safe

m (Tm). The process of safe policy generation can be expressed as follows:

J safe
m (Tm) = πsafe

m (sm(Tm)) = Lsafe
m (Jm(Tm))

= Lsafe
m (πm(sm(Tm)) + ε),

(5.39)

where ε denotes the exploration noise (Line 9). Lsafe
m (·) is the correction function of

the safety layer.

Aligned with safe offloading policy J safe
m (Tm), all tasks in the set Um(Tm) are

dispatched to specified computing resources accordingly. Namely, the task set Um
m ,

which consists of all local-processing tasks, is forwarded to the mobile computation
queue Qco

m and then executed on the local processor with the speed of fm (Line 10-11).
Alternatively, the offloaded tasks in the set U e,e

m (Tm) are uploaded to the edge server
Ωe. Once scheduled to the processor of the edge server, the tasks are executed with
the CPU frequency of fe (Line 12). As the computation resources at edge servers are
fairly competed with all other coexisting mobile devices of the MEC system, partial
offloaded tasks in the set U e,e

m (Tm) must be forwarded to the cloud server if the edge

123

server Ωe becomes overwhelmed. Hence, the task set U e,e
m (Tm) is divided into two

subsets, Ũ e,e
m and U e,c

m (Tm), where Ũ e,e
m denotes the subset being executed at the edge

server Ωe, while U e,c
m (Tm) is the subset being offloaded to the cloud server. The details

of edge computation are illustrated in Lines 12-19. At the end of hyperperiod Tm,
mobile device m accumulates the total completion time of all periodic tasks and the
number of deadline misses. It then calculates the total learning reward Rm(Tm) using
Eq. (5.32) (Line 20). Additionally, mobile device m observes the next system state
sm(Tm + 1) and uploads the transition (sm(Tm),J safe

m (Tm),Rm(Tm), sm(Tm + 1)) to
the replay buffer Bcr

m at the learning server (Line 21-22).

The Module of CRLO at Learning Server

The learning server is the most critical component in our offloading model as it is
capable not only of performing model training, but also of operating a forecasting
module to gather information of the MEC system globally, and then make predictions
on varying states of the policy network πsafe

m . To be specific, the learning server must
pretrain the safety layer and forecasting model independently ahead of entering the
training phase of policy network πsafe

m . Consequenctly, during training process of
policy network πsafe

m , the learning server can offer two fundamental services for the
mobile device. Firstly, it is periodically in response to the requests of mobile device
m by providing the desired varying states of the MEC system. Secondly, it constantly
trains the TD3 agent with transition samples collected from the MEC system and
sends partially trained parameters of the policy network to the mobile device m. The
working mechanism is articulated as follows. Initially, the learning server collects
a batch of randomly-executed pretrain samples from the mobile device m, denoted
as Ipm = {spm(Tm),J p,safe

m (Tm), s
p
m(Tm + 1)}, where m ∈ M. These samples are

subsequently stored in the pretrain buffer Bp
m,M (Line 1-2). With the collection of

pretrain samples, the safety signal model of the safety layer Lsafe
m,M is trained using

Eq. (5.26) (Line 3). Once pretraining is finished, the fully-trained safety layer Lsafe
m,M

is concatenated with the policy network πsafe
m,M and its target network π̂safe

m,M (Line
4). The forecasting module maintained by the learning server includes the informer
forecasting model, which can predict the future state fluctuations of the MEC system.

124

When mobile device m sends a request to acquire the predictions of varying states for
the upcoming hyperperiod, the learning server retrieves the disired predictions from
the forecasting model and returns them to the mobile device m immediately. Let
Fm,M be the Informer forecasting model used in the forecasting module. At the end
of each hyperperiod Tm, the forecasting module updates its information based on a
collection of data captured by the MEC system that can be represented as

Sm,M(Tm) = {Zm(Tm), L̃e
m(Tm)}. (5.40)

The forecasting module leverages its predictive capabilities to anticipate the neces-
sary varying states Lr

m(Tm) by utilizing the historical experience of forecasting mod-
ule Lhist

m (Tm), Lr
m(Tm) = Fm,M(Lhist

m (Tm)). The predicted states are subsequently
returned to the mobile device m (Line 7-9).

The learning server plays important role in training the neural networks of TD3
algorithm (Line 5) and (Line 10-22). At the beginning of the training process, a set
of model components at the learning server. e.g., the replay buffer Bcr

m and neural
networks πsafe

m,M , π̂safe
m,M , Q1

m,M , Q2
m,M , Q̂1

m,M , Q̂2

m,M , need to be initialized before the
learning process can begin systematically (Line 5). When entering the training phase,
the forecasting module first updates itself regularly with the latest system information
SM(Tm) that is uploaded from all associated mobile devices and edge servers (Line
7). When a request for state prediction is received from the mobile device m, the
corresponding varying states Lr

m(Tm) are predicted using the Informer Fm,M based on
a series of historical records (Line 8). The forecasted results Lr

m(Tm) are immediately
returned to the mobile device m (Line 9). At the end of a hyperperiod Tm, the replay
buffer Bcr

m,M receives a transition sample (sm(Tm),J safe
m (Tm),Rm(Tm), sm(Tm + 1))

from the mobile device m (Line 10). To train the critic networks, a mini-batch
of transition samples Itrm = {sn,m(Tm),J safe

n,m (Tm),Rn,m(Tm), sn,m(Tm+1)} previously
recorded in the replay buffer Bcr

m,M is arbitrarily selected (Line 11). In order to reduce
the variance of stochastic training and prevent overfitting to a local optimum, the
smoothing regularization is utilized to mitigate the impact of the variance on policy
generation (Line 12). As a result, the generated safe offloading policies referred to
the selected samples are revised slightly by adding a small amount of clipped noise as

125

J safe
n,m (Tm + 1) :J̃ safe

n,m (Tm + 1)← π̂safe
m,M(sn,m(Tm + 1)) + ε,

ε ∼ clip(N (0, σ̃),−c, c).
(5.41)

Unlike DDPG that can induce substantial overestimation by using a single estimated
Q-value to derive the value target, TD3 utilizes two estimated values to minimize
deviation from the ground-truth value target. In each iteration, two estimated Q-
values are derived according to Eq. (5.42) and Eq. (5.43)

Q̂
1,target

m,M = Q̂
1

m,M(sn,m(Tm + 1),J safe
n,m (Tm + 1)), (5.42)

Q̂
2,target

m,M = Q̂
2

m,M(sn,m(Tm + 1),J safe
n,m (Tm + 1)). (5.43)

Next, the minimum estimated Q-value is used to calculate the value target Yn,m that
can be given by

Yn,m ←Rn,m(Tm) + κ · min
i=1,2

(Q̂
1,target

m,M , Q̂
2,target

m,M). (5.44)

Let θ1,Qm,M and θ2,Qm,M denote the parameters of the critic networks Q1
m,M and Q2

m,M ,
respectively. The parameters of critic networks θ1,Qm,M and θ2,Qm,M can be updated based
on the value target by minimizing the loss function as follows:

θ1,Qm,M ←θ1,Qm,M − α
∑
Itr
m

dQ1
m,M(sn,m(Tm),J safe

n,m (Tm))

dθ1m,M

· (Q1
m,M(sn,m(Tm),J safe

n,m)− Yn,m)

(5.45)

θ2,Qm,M ←θ2,Qm,M − α
∑
Itr
m

dQ2
m,M(sn,m(Tm),J safe

n,m (Tm))

dθ2m,M

· (Q2
m,M(sn,m(Tm),J safe

n,m)− Yn,m)

(5.46)

After a certain number of ϱ hyperperiods, the policy network πsafe
m,M is updated using

the deterministic policy gradient with the assistance of critic network Q1
m,M (Line 16).

Let θsafem,M denote the parameters of the policy network πsafe
m,M . The update of θsafem,M can

be expressed as follows:

θsafem,M ← θsafem,M+β ·
∑
Itr
m

dQ1
m,M(sn,m(Tm),J safe

m (Tm))

dJ safe
m (Tm)

·
πsafe
m,M(sn,m(Tm))

dθsafem,M

.

(5.47)

126

When the parameters of safe actor θsafem,M are updated, the latest version of the updated
parameters is downloaded to the mobile device m (Line 17). Let θ̂

safe

m,M , θ̂1,Qm,M , and
θ̂
2,Q

m,M denote the parameters of the actor target and critic targets. The last step of the
learning process in each iteration is to update the parameters of the target networks
(Lines 19-20). The learning process will continue until it meets the predefined stop
conditions.

Complexity Analysis

The total computation complexity of handling task set Um on the mobile device m

consists of two parts: the complexity of the multi-layer task offloading and the com-
plexity of the multiple functionalities of the learning server. In this subsection, we will
analyze the complexity of these two parts independently. The first part of complexity
involves the policy generation complexity on the mobile device m and the task execu-
tion complexity at different computing tiers. The other part of complexity includes
the complexity of the safety layer pretraining, the complexity of maintaining the fore-
casting module, and the complexity of TD3 trainning. Since the update period of the
policy network πsafe

m,M is set to one episode (ϱ× |Tm|), we will conduct the complexity
analysis for this length of time. For each episode, the mobile device m needs to carry
out both policy generation and local task execution ϱ times. Let Υf

m denote the num-
ber of multiplication operations required for one forward propagation of the policy
network, and Υl

m denote the operations required for processing local tasks in a hyper-
period aligned with the chosen offloading policy. Hence, the computation complexity
of mobile device m is O(ϱ2Υl

mΥ
f
m). Accordingly, the unique role of edge servers and

cloud server is to process the offloaded tasks from the mobile device m. Let Υe
m and

Υe,c
m denote the multiplication operations required to process the offloaded tasks up-

loaded from the mobile device m to the edge servers and cloud server, respectively.
The corresponding computation complexities of the edge servers and cloud server are
O(ϱΥe

m) and O(ϱΥc
m). Therefore, the overall computation complexity of multi-tier

task offloading referred to the mobile device m is O(ϱ2Υl
mΥ

f
m+ϱΥe

m+ϱΥc
m). It should

be noted that the complexity is identical both during training and after training since
the learning modules have been entirely moved to the learning server.

127

Algorithm 6: CRLO Module at Learning Server

1 Collect a set of safe training samples from the mobile device m:
Ipm = {spm(Tm),J p,safe

m (Tm, s
p
m(Tm + 1))};

2 Store the collected pretrain set into the pretrain buffer Bp
m,M ;

3 Pretrain the safety signal model of safety layer for the mobile device m using
Eq. (5.26);

4 Concatenate the pretrained safety layer Lsafe
m with the policy netwok πsafe

m,M

and the target network π̂safe
m,M ;

5 Initialize the neural networks at the learning server πsafe
m,M , π̂safe

m,M , Q1
m,M ,

Q2
m,M , Q̂1

m,M , Q̂2

m,M ;
6 for each hyperperiod, Tm = 1, 2, 3..., do
7 Update the forecasting module based on the global information of the

MEC system Sm,M(Tm);
8 Generate the predictions of varying states using forecasting model:

Lr
m(Tm) = Fm,M(Lhist

m (Tm));
9 Return the forecasted varying states Lr

m(Tm) to the mobile device m;
10 Store the transition sample of mobile device m

(sm(Tm),J safe
m (Tm),Rm(Tm), sm(Tm + 1)) into the replay buffer B,Mcr

m;
11 Sample a mini-batch of transitions Itrm from Bcr

m,M ;
12 Smooth the offloading policy J safe

n,m (Tm) in the set Itrm using Eq. (5.41);
13 Calculate the value target Yn,m with Eq. (5.44);
14 Update the parameters of critic networks θQ,1

m,M and θQ,2
m,M using Eq. (5.45)

and Eq. (5.46);
15 if (Tm = ϱ) then
16 Update actor πsafe

m,M using Eq. (5.47);
17 Send the parameters of the policy network πsafe

m,M to the mobile device
m;

18 Update the target networks π̂safe
m,M , Q̂1

m,M , Q̂2

m,M using the equations as
follows: θ̂safem,M ← τ · θsafem,M + (1− τ) · θ̂

safe

m,M ;
19 θ̂

i,Q

m,M ← τ · θi,Qm,M + (1− τ) · θ̂
i,Q

m,M , i = 1, 2;
20 end
21 Until reach the predefined stop conditions;
22 end

128

In terms of the complexity of the learning server, it primarily consists of three
components. The first component is due to the pretraining of safety layer. Let Υs

m,M

denote the multiplication operations required for pretraining the safety layer Lsafe
m at

the learning server. Then, the complexity of the first component isO(|Ipm|Υs
m,M). The

second component is produced because of the maintenance of the forecasting module.
Let Υd,U

m,M denote the cost for the updating the forecasting module, and Υd,I
m,M denote

the forecasting cost of system states. Thus, the complexity of forecasting module in
an episode is O(ϱ(Υd,U

m,M +Υd,I
m,M)). The last component is the complexity of training

neural networks of TD3. Let Υb,ac
m,M and Υb,cr

m,M denote the required multiplication
operations for backward propagation of actor and critic network, respectively. In each
episode, TD3 updates actor network once and two critic networks ϱ times. Therefore,
the computational complexity for the training of neural networks is O(|I trm |(2ϱΥ

b,cr
m,M +

Υb,ac
m,M)). After model training, the computation complexity of learning server, which

only consists of the first component, is reduced significantly to O(ϱ(Υd,U
m,M +Υd,I

m,M)).

5.3 Evaluation

In this section, we first describe the evalution settings of our experiments. Next,
the convergence of our offloading scheme is presented. Afterwards, we compare the
proposed offloading scheme with a few baseline methods in the scenarios of varied
task arrival rates and hyperperiod lengths. Furthermore, the impact of the forecasting
model (i.e., Informer) and the safety layer on CRLO are evaluated separately. Finally,
we demonstrate the scalability of our offloading scheme by varying the number of edge
servers.

5.3.1 Evaluation Settings

We consider a non-stationary MEC system that covers a π × 200m × 200m circular
region, evenly encompassing 1 to 5 edge servers. Each edge server is connected to
the same cloud server. Each mobile device m communicates with all available edge
servers in the region simultaneously, where Le

m = 200. The experimental settings are
described in Table 5.2. To simulate a time-dependent environment and reveal the

129

Table 5.2: Simulation Parameters in Chapter 5.
Parameter Value Description

|Um| [4, 10] Number of periodic tasks in Um
pki,m [4, 36] Period of tasks
dki,m [10, 100] Mb Data size of tasks
cki,m [1, 10]× 109 cycles Required CPU cycles of tasks
fm 1 GHz CPU speed of mobile device
fe 4 GHz CPU speed of edge server
fc 8 GHz CPU speed of cloud server
Ptrans 64 mWatt Transmission power
Re (0, 300] Mbps Transmission rates
ℓ 2 Path loss exponent
λa
m 0.1 Arrival rate of aperiodic task
Dp,c

e 0.6 seconds Roundtrip cloud propagation delay
Itrm 512 Mini-batch size of training samples
κ 0.99 Discount rate
ϱ 100 x |Tm| Updating episode of πsafe

m,M

impact of forecasting model on decision-making, we model the task arrival process
of edge server λe

z as a Markov chain with four transition states. The states are
defined with “low=λe

z,1”, “medium=λe
z,2”, “high=λe

z,3”, and “very high=λe
z,4”. Each

of these states is the hyperparameter of a Poisson distribution. Another feature that
needs to be predicted using the forecasting model is the transmission rate between
a mobile device and an edge server. As discussed in Section 5.1.3, the transmission
rate is explicitly determined by the channel gain |Gem|2, which follows an exponential
distribution. The rate parameter of the exponential distribution also consists of four
transition states in our model, denoted as λe,ch

m,1 , λ
e,ch
m,2 , λ

e,ch
m,3 , and λe,ch

m,4 . To verify the
effectiveness of our proposed model under different time-dependent transition states,
we create a four-state Markov chains similar to [109]. In this Markov chain, the
transition possibility matrix PMar is formulated as follows:

130

PMar =

0 1.0 0 0

0.25 0 0.30 0.45

0 1.0 0 0

0 1.0 0 0

 . (5.48)

Notice that the transition frequency of Markov states is set to 20 time slots.
As shown in Fig. 5.4, our proposed offloading method adopts a decoupled actor-

critic architecture that separates the training modules and policy inference into differ-
ent computing tiers. More concisely, the policy network and critic networks are each
composed of three fully connected hidden layers, with 1024 neurons in each layer.
The size of the replay buffer Bcr

m is set to 106, and the mini-batch size for training
in each iteration is set to 512. In addition, we set the learning rate to 10−7 and the
discounted rate to 0.99. It is worth noting that the degradation of additive noise
in policy generation is utilized during the training process. Hence, the coefficient of
additive noise ε is gradually decreased from 0.5 to 0.1 during the training process. In
the safety layer, the neural network consists of three hidden layers, and each layer
contains 2048 neurons. The learning rate for the safety layer is set to 10−6. To suf-
ficiently pretrain the safety layer, we utilize a total number of 10240 samples. The
hyperparameters for “Informer” forecasting model are configured consistently with
the work [111].

We compare the performance of our proposed scheme with the following baseline
offloading methods:

(i) All-SERVER: All tasks are purely offloaded to edge servers.

(ii) All-RANDOM: All tasks are kept local or offloaded to an edge server randomly.

(iii) LSTM-O: All tasks are kept local or offloaded to an edge server using the TD3
learning algorithm enhanced by the LSTM forecasting model. LSTM-O is based
on [84], where Double Deep Q-Network (DDQN) is used as the learning algo-
rithm and LSTM is used to provide predicted system states for DDQN. For the
purpose of fair comparison, the offloading scheme in [84] is modified by replacing
DDQN with TD3, which finally leads to this baseline method, LSTM-O.

131

(iv) MATCH-O: In accordance with matching theory and under a set of constraints,
all tasks are processed either on the mobile device or one of the edge servers [34].
Initially, each task is randomly allocated to one of the processing units (mobile
device or edge servers). Subsequently, the tasks are swapped continuously until
the total task utility is minimized.

(v) PPO-O: All tasks are executed either on a mobile device or an edge server
utilizing the PPO learning algorithm, wherein reward shaping is employed to
penalize deadline violations [90].

(vi) TD3-O: All tasks are are kept local or offloaded to an edge server according the
TD3 learning algorithm, in which reward shaping is similarly used to penalize
deadline misses [41].

MATCH-O is selected because it addresses the constrained task offloading problem
using matching theory in multi-edge-server MEC systems. LSTM-O is similar to our
approach, focusing on offloading non-divisible tasks among multiple edge servers and
aiming to enhance the offloading policy with more representative inputs to the policy
network. PPO-O and TD3-O represent existing works dedicated to addressing similar
offloading problems using on-policy and off-policy reinforcement learning techniques,
respectively. In our research, we evaluate the performance of the offloading models
using two metrics: 1) min-max normalized completion time and 2) number of deadline
misses

5.3.2 Convergence

To demonstrate validation of the proposed offloading model in terms of convergence,
we perform the model in the context of different hyperparameters of neural networks.
In the experiments, we investigate the average reward of the proposed algorithm across
600 episodes, each of which consists of 100 hyperperiods. Each hyperperiod represents
one interaction of the mobile device with the MEC system, taking the action generated
by current policy network πsafe

m . Four transition states of transmission rate and task
arrival rate are set to [0.5, 1.0, 1.5, 2.0]. We set |Um| to 10, resulting in a total number

132

0 100 200 300 400 500 600 700 800
Episode #

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

ali
ze

d
Av

er
ag

e R
ew

ar
d

lr=1e-4
lr=1e-5

lr=1e-6
lr=1e-7

lr=1e-8

(a) Impact of Learning Rate on Convergence

0 100 200 300 400 500 600 700 800
Episode #

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze

d
Av

er
ag

e R
ew

ar
d

Batch=64
Batch=128
Batch=256

Batch=512
Batch=1024
Batch=2048

(b) Impact of Batch Size on Convergence

Figure 5.5: Convergence of CRLO

of tasks in a hyperperiod |Um| = 88, and a length of a hyperperiod |Tm| = 80 time
slots. The simulation results are presented in Fig. 5.5, where the x-axis indicates the
episode of learning, and the y-axis shows the normalized average reward of episodes.
Fig. 5.5(a) depicts the convergence of our proposed approach under various learning
rate settings, denoted as “lr” in the figure. Note that in our experiments, the learning
rate refers to the step size of the policy network in each episode towards the optimal
value of the loss function. As shown in the figure, when the learnig rate is set to
lr= 10−4, it leads to unstable convergence and suboptimal average reward since a
large step size implies a comparatively fast optimization process, which can potentially

133

miss the best value inadvertently and converge to the local optimum. However, as
the learning rate steadily increases to lr= 10−5 and lr= 10−6, both the learning rates
still correspond to a relatively small average reward due to an inappropriate step size
in terms of learning exploration. When the learning rate set to a small value, e.g.,
lr= 10−8, the model training is too slow and hardly converges to the best average
reward. Although a relatively small learning rate, e.g., lr= 10−7, induces a slightly
slower convergence rate, it allows the RL agent to gradually learn until converging to
the optimal average reward. Fig. 5.5(b) illustrates the convergence of the proposed
offloading model with different batch sizes of training samples Bcr

m,M . As seen in
the figure, when the batch size is increased from 64 to 256, the improvement in
convergence speed and average reward is insignificant. When we further increase the
batch size to 512, the model can learn smoothly and converge to the best reward after
being trained for fewer than 500 epochs. However, with a larger batch size, e.g., 1024
and 2048, the performance remains identical with the bath size of 1024. It indicates
that when the size of training samples reaches a threshold, e.g., 512, expanding the
batch size would no longer improve the average total reward.

5.3.3 Completion Time and Deadline Misses

In this section, we evaluate the proposed offloading method by comparing its perfor-
mance with other counterparts described in Section 5.3.1. In the experiments, the
average task arrival rate λe

z,avg is calculated as the average of the rates of the four state
transitions. For instance, when the four state transitions are set to [0.2, 0.4, 0.6, 0.8],
the average task arrival rate λe

z,avg is equal to 0.5. In Fig. 5.6 shows that MATCH-O
outperforms ALL-RANDOM and ALL-SERVER. However, it is less effective than all
learning-based algorithms. Furthermore, it is observed that learning-based algorithms
achieve lower completion times and fewer deadline misses as the average task arrival
rate increases gradually. Particularly, the performance PPO-O is similar to that of
TD3-O, but worse than that of CRLO. The reason is that CRLO not only reduces
overestimation with its double-critic structure but also achieves safe policy generation
with its forecasting model and safety layer. Furthermore, LSTM-O slightly outper-
forms TD3-O, implying that the LSTM forecasting model is effective in predicting

134

MEC states. On the other hand, CRLO maintains the shortest completion time and
the fewest number of deadline misses when compared to other baseline methods as the
task arrival rate increases. In particular, when the average task arrival rates are small,
for instance, λe

z,avg = 0.5, there is enormous optimized space for learning-based of-
floading algorithms to learn how to effectively distribute computation-intensive tasks
to the most appropriate computing tiers, resulting in optimized completion time and
reduced number of deadline misses. As the task arrival rate increases from 0.5 to 1.3,
CRLO improves the performance of completion time and miss rate to 9.8% and 2.5%
compared to the second-best algorithm (LSTM-O). As the average task arrival rate
increases to 2.1 and 2.9, the edge servers become overwhelmed due to the massive
tasks offloaded from other mobile devices. In contrast to other baseline methods,
which result in significant increases in both completion time and deadline misses as
the task arrival rate goes up, the completion time of CRLO experiences only slight in-
creases of 15.8%, 4.4%, and 6.4%, respectively. Additionally, the associated deadline
miss rate does not exceed 5.5%.

We also investigate the correlation between the length of hyperperiod and the
performance of the offloading algorithms. In the experiments, the hyperperiod lengths
are configured with 40, 48, 64, and 80 time slots, which correspond to 29, 34, 45,
and 88 tasks, respectively. The workloads of the hyperperiods are 60%, 98%, 115%,
and 260%, respectively. In Fig. 5.7(a), we can observe that the CRLO algorithm
consistently achieves the lowest average completion time as the length of hyperperiod
is enlarged, particularly when the length of hyperperiod is greater than 48 time slots.
Note that when the length of hyperperiod is relatively small, such as |Tm| = 40 and
|Tm| = 48, MATCH-O demonstrates comparable performance with other learning-
based algorithms. Additionally, all learning-based offloading algorithms achieve the
same level of performance. However, as the length gradually increases up to 80
time slots, CRLO outperforms other baseline methods significantly. For instance, the
average completion time of CRLO is shorter than that of PPO-O, TD3-O, and LSTM-
O by 22.8%, 15.8%, and 11.9%, respectively. The reason behind this observation is
that as the hyperperiod length increases, the impact of state variations on decision-
making is aggravated accordingly. Without proper measures to improve the fidelity

135

of the long-sequence state inputs of the policy network, both TD3-O and LSTM-O
struggle to generate optimal offloading decisions. Fig. 5.7(b) illustrates that as the
hyperperiod length increases, the number of deadline misses also goes up. It can
be seen that when the length of the hyeperperiod is shorter than a threshold, e.g.,
|Tm| = 48 in our case, all learning-based algorithms can strictly guarantee the deadline
satisfaction. However, when the length is expanded to larger than 48, only CRLO
can maintain practical rates of deadline miss, which are 0.3% and 2.1% for |Tm| = 64

and |Tm| = 80, respectively. This is because when the length of the hyperperiod
becomes larger, more workload of the mobile device needs to be uploaded to edge
servers. Due to the uncertainties in the MEC system, more deadline misses are
incurred. Additionally, longer hyperperiods undermine the performance of LSTM-O,
whose miss rate dramatically raises to 6.19% when the hyeperperiod length is equal
to 80. However, under the same configuration, CRLO achieves only a 2.1% miss rate.

5.3.4 Scalability

To prove the robustness of CRLO, we gradually increase the number of edge servers
to investigate how this configuration affects the scalability and overall performance of
our offloading method. As the number of edge servers increases, the All-Server and
All-Random offloading methods exhibit limited enhancements in terms of average
completion time and deadline misses. This can be attributed to the limited ability of
these methods to effectively utilize the augmented computational capacity offered by
the edge servers, thereby resulting in unsatisfactory performance. Furthermore, the
performance of these two offloading methods is inferior compared to the other baseline
algorithms. Thus, in Fig. 5.8, we particularly compare the average completion time
of MATCH-O and other three learning-based offloading algorithms. We observe that
the performance of MATCH-O degrades significantly as the number of edge servers
decreases since it is hard to yield accurate matching with insufficient information in a
resource-limited MEC system. Additionally, it is also noteworthy that both average
completion time and the number of deadline misses of all learning-based algorithms
decline gradually as the number of edge servers increases. It should be noted that
CRLO constantly outperforms the other algorithms in all the experiments. This is

136

0.5 1.3 2.1 2.9
Average Task Arrival Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

ali
ze

d
Co

m
ple

tio
n

Tim
e

ALL_RANDOM
ALL_SERVER
MATCH-O

PPO-O
TD3-O

LSTM-O
CRLO

(a)

0.5 1.3 2.1 2.9
Average Task Arrival Rate

0

5

10

15

20

25

Nu
m

be
r o

f D
ea

dli
ne

 M
iss

es

ALL_RANDOM
ALL_SERVER
MATCH-O

PPO-O
TD3-O

LSTM-O
CRLO

(b)

Figure 5.6: Performance of CRLO: Varied Average Task Arrival Rates

because CRLO not only considers the promotion on the input states but also regulates
the number of deadline misses. As shown in Fig. 5.8, when the MEC system consists
of a small number of edge servers, e.g., |Ω| = 1, PPO-O, TD3-O, and LSTM-O
lead to worse results than CRLO, with an average completion time at least 12.2%
slower and a deadline miss rate 16.3% higher. The reason for this observation is
that when the capacity of the MEC system is limited, these three learning-based
counterparts struggle to make optimal offloading decisions as they have difficulty
in balancing the optimization of average completion and deadline misses. As the
number of edge servers increases from 2 to 5, it indicates that the capacity of the

137

40 48 64 80
Length of Hyperperiod

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

ali
ze

d
Co

m
ple

tio
n

Tim
e

ALL_RANDOM
ALL_SERVER
MATCH-O

PPO-O
TD3-O

LSTM-O
CRLO

(a)

40 48 64 80
Length of Hyperperiod

0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f D
ea

dli
ne

 M
iss

es

ALL_RANDOM
ALL_SERVER
MATCH-O

PPO-O
TD3-O

LSTM-O
CRLO

(b)

Figure 5.7: Performance of CRLO: Varied Lengths of Hyperperiod

MEC system has been gradually grown. Correspondingly, the performance of CRLO
improves steadily, especially when the number of edge servers increases to 5, for which
the average completion time of CRLO decreases significantly by 46% and the miss rate
is also largely reduced to 2.1% compared to the case when |Ω| = 1. The experiments
support our speculation that the performance of the MEC system can be effectively
enhanced by increasing the number of edge servers.

138

1 2 3 4 5
Number of Edge Servers

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
om

pl
et

io
n

Ti
m

e

MATCH-O
PPO-O
TD3-O
LSTM-O
CRLO

(a)

1 2 3 4 5
Number of Edge Servers

0

5

10

15

20

N
um

be
r

of
 D

ea
dl

in
e

M
is

se
s

MATCH-O
PPO-O
TD3-O
LSTM-O
CRLO

(b)

Figure 5.8: Scalability of CRLO

5.3.5 Impact of Informer and Safety Layer

To investigate the impact of informer and safety layer on CRLO, we carry out a series
of experiments in the context of different average task arrival rates and hyperperiod
lengths. To assess the impact, we developed two additional learning-based offloading
models, TD3-IO and TD3-SO, which are uniquely designed to include either the
Informer or safety layer. It is worth noting that, similar to TD3-O, TD3-IO also
leverages reward shaping as a safety measure during model learning. Moreover, our
analysis includes two boundary methods, TD3-O and CRLO, that have been described
in Section 5.3.1.

139

As shown in Table 5.3, CRLO perpetually achieves lower task completion time and
miss rate than TD3-IO and TD3-SO, with the figures always being better than those
for TD3-O. Notably, when edge servers have massive idle computation resources, e.g.,
λe
z,avg = 0.5, the impact of Informer and safety layer on average completion time and

deadline misses is similar. There are two main reasons for this observation. First,
since only a small number of tasks from other mobile devices are offloaded to edge
servers, the RL agent has sufficient space to improve offloading decisions. Second,
even if the chosen offloading decisions are suboptimal, the performance of the MEC
system remains acceptable and close to that of CRLO. That is because the average
completion time and miss rate remain low when the MEC system is not busy, leaving
little room for optimization with both Informer and safety layer. As the average
task rate increases from 1.3 to 2.9, TD3-SO shows slightly worse performance than
TD3-IO, with an average completion time that is roughly 3% longer and miss rate
that is 1% higher. This observation suggests that when more tasks arrive at edge
servers within a hyperperiod, the MEC environment becomes more dynamic. In such
circumstances, the impact of Informer is more significant than safety layer in terms
of decision-making. In particular, when λe

z,avg = 2.9, Informer can improve average
completion time and miss rate by 9% and 4.5%, respectively, compared to TD3-O.
These improvements are slightly higher than those of TD3-SO, which improve TD3-O
by 5% and 3.8%, respectively.

To further investigate the impact of the Informer and safety layer on CRLO,
we vary the lengths of the hyperperiod and consider different numbers of tasks in
a hyperperiod as discussed in Section 5.3.3. As shown in Table 5.4, the impact
of both Informer and safety layer graudually agrravate as the length of hyperperiod
increases. When the hyperperiod is short, e.g., |Tm| = 40, both of technologies achieve
similar improvements compared to TD3-O. This implies that if the mobile device is
not busy and only executes a small number of tasks, reward shaping is sufficient to
ensure deadline satisfaction, as in TD3-IO. Alternatively, since the hyperperiod is
relatively short, the impact of state forecasting is insignificant, resulting in decent
performance of TD3-SO becasue TD3-SO makes offloading decisions based only on
immediate and historical states without taking into account the intrinsic patterns of

140

Table 5.3: Impact of Informer and Safety Layer: Varied Average Task Arrival Rates

Normalized Completion Time
Parameter TD3-O TD3-IO TD3-SO CRLO

λe
z,avg=0.5 1 0.86 0.87 0.85

λe
z,avg=1.3 1 0.91 0.94 0.88

λe
z,avg=2.1 1 0.92 0.95 0.87

λe
z,avg=2.9 1 0.91 0.95 0.87

Deadline Miss Rate
Parameter TD3-O TD3-IO TD3-SO CRLO

λe
z,avg=0.5 5.6% 0.7% 0.6% 0.6%

λe
z,avg=1.3 7.3% 2.8% 3.8% 2.3%

λe
z,avg=2.1 9.0% 4.7% 5.9% 4.0%

λe
z,avg=2.9 11.2% 6.7% 7.4% 5.5%

state transition. As the length of the hyperperiod increases from 48 to 80, it is seen
that Informer has a greater impact on performance optimization, achieving 7%, 10%,
and 12% improvements in average compeltion time, and 0.9%, 3.7%, and 4.0% in the
rate of deadline miss with respect to TD3-O. Nevertheless, the effect of safety layer
increases more slowly along with the expansion of the hyperperiod. This is because
as the length of the hyeperperiod increases, it becomes more difficult for realtime and
historical states to accurately uncover the upcoming state variations in a hyperperiod.
As a result, the effectiveness of TD3-SO is significantly undermined.

5.4 Major Conclusions of CRLO

In this chapter, we propose a safety-critical RL-based offloading scheme, CRLO, which
automatically generates the appropriate offloading policies for computation-intensive
tasks on mobile devices in MEC systems. Specifically, we devise a novel offloading
policy network that adopts a forecasting model and a safety layer to safely generate ef-
ficient offloading policies. With the forecasting model, long-term system states could
be utilized to help arrive at effective offloading decisions. The safety layer regulates
the output of the RL agent so that unsafe offloading decisions are calibrated before

141

Table 5.4: Impact of Informer and Safety Layer in the Scenarios of Varied Hyperperiod
Lengths

Normalized Completion Time
Parameter TD3-O TD3-IO TD3-SO CRLO

|Tm| = 40 1 0.98 1 0.96
|Tm| = 48 1 0.93 0.98 0.91
|Tm| = 64 1 0.90 0.96 0.88
|Tm| = 80 1 0.88 0.94 0.86

Deadline Miss Rate
Parameter TD3-O TD3-IO TD3-SO CRLO

|Tm| = 40 0 0 0 0
|Tm| = 48 1.1% 0.2% 0.3% 0
|Tm| = 64 4.9% 1.2% 1.4% 0.4%
|Tm| = 80 7.8% 3.8% 4.3% 2.1%

they are executed. Furthermore, we develop a multi-layer task offloading structure,
where all resource-consuming learning modules are relocated to a learning server at
the network edge. In this manner, most of the computation resources on mobile de-
vices and edge servers could be dedicated to the execution of computation-intensive
tasks. Our experimental results indicate that the proposed offloading scheme outper-
forms the baseline offloading methods in terms of task completion time and deadline
satisfaction. Our potential future work is described as follows. First, as stated in
Section 5.1.1, we model the arrival of other concurrent tasks at edge servers using the
Poisson distribution. In the future, we will consider a more realistic scenario where
the task arrival corresponds to the offloading policies of other coexisting mobile de-
vices. We will then attempt to solve the related offloading problem using multi-agent
reinforcement learning. Additionally, we have not yet considered the impact of mo-
bile device mobility on our proposed approach. Our future work will evaluate the
effectiveness of our offloading approach by taking into consideration the mobility of
mobile devices.

142

Chapter 6

Conclusions and Future work

In this chapter, we outline the conclusions drawn from our research, followed by the
potential research directions for our future work.

6.1 Conclusions

In this thesis, we present three DRL-based offloading approaches aimed at enhancing
system performance by generating more accurate offloading strategies for periodic
deadline-sensitive tasks in the multi-tier MEC systems. Specifically, we focus on im-
proving system performance from two perspectives, energy consumption minimization
and completion time minimization.

Firstly, we propose a novel DRL-based offloading scheme called PDMO, which
incorporates DVFS and partially-observable deep reinforcement learning to minimize
energy consumption for a set of periodic deadline-sensitive tasks. To effectively sched-
ule both periodic deadline-sensitive tasks and aperiodic non-deadline-sensitive tasks
in mobile devices, an efficient task scheduling algorithm based on the cycle conserv-
ing DVFS technique is developed. Furthermore, we address the issue of unobservable
states in the MEC system by proposing a partially observable DRL algorithm known
as PDTD3, which can effectively handle incomplete observations using a series of
historical records. Moreover, reward shaping is leveraged to guide the RL agent in
generating secure policies. The experimental results indicate that PDMO achieves
convergence well across different numbers of tasks and various transmission rates,
outperforms baseline methods in terms of energy minimization while maintaining a
low number of deadline violations.

Secondly, we propose another DRL-based offloading approach, MELO, which
leverages edge-assised DRL learning to minimize task completion time. To be spe-
cific, we introduce a decoupled learning architecture called EALA, which relocates
the computational modules of the learning algorithm to a dedicated learning server.

143

This novel learning structure not only significantly facilitates the learning process by
taking advantage of superior computing capability of the learning server, but also
preserves a vast amount of computation resources on mobile devices and computing
edge servers for task execution. As a result, the overall task completion time is short-
ened. Furthermore, we integrate a double-critics DRL algorithm (TD3) to eliminate
overestimation during model training, resulting in more accurate offloading policies.

Finally, we propose a safety-critical DRL-based learning approach, CRLO, which
utilizes safe DRL to address offloading problems with a set of constraints. Specifi-
cally, by integrating a pretrained safety layer into the original policy network, risky
offloading policies can be transformed into safe policies. Moreover, to tackle the
challenges of task offloading in a highly dynamic and temporally dependent MEC
system, we incorporate a time-series long-sequence forecasting module to predict the
state variations of the subsequent hyperperiod proactively. Consequently, the policy
network can produce improved offloading policies based on more accurate states.

6.2 Future Work

In this thesis, we primarily focus on DRL-based deadline-sensitive task offloading in
multi-tier MEC systems. Along this path, there are serveral potential directions for
our future work. The details of these research directions are presented as follows:

(i) As mentioned in Section 5.1.1, our current model characterizes the arrival of
computational tasks at edge servers using the Poisson distribution. In the fu-
ture, we will attempt to improve the fidelity of our simulations by establishing
explicit connections between task arrivals at edge servers and the offloading de-
cisions made by varied mobile devices. This implies that each mobile device
will be equipped with its own decision-making agent, and the policies generated
by these agents will directly influence the decision of other agents within the
system. To achieve this goal, we intend to delve into the realm of multi-agent re-
inforcement learning to tackle the multi-agent offloading problem. Instead of de-
pending on conventional methods such as game theory, we will introduce a novel
approach termed Centralized Multi-Agent Transformer Offloading (CMATO).

144

This approach leverages the capabilities of Multi-Agent Transformer (MAT) to
derive holistic offloading decisions for all participating agents. With MAT, the
multi-agent offloading task can be converted into a sequential decision-making
problem, which is thereafter solved by multi-agent reinforcement learning. This
approach is expected to enhance both the efficiency and efficacy of decision-
making processes in multi-agent scenarios, enabling all participating agents to
dynamically adapt to changing environments and optimize offloading policies in
real-time.

(ii) The existing offloading approaches have overlooked the mobility feature of mod-
ern mobile devices, a pivotal aspect influencing task offloading decisions. Any
movement of mobile devices alters the environment that they are involved in,
including factors such as network connectivity and the availability of reachable
edge servers. Thus, incorporating mobility into offloading strategies is crucial
for accurately capturing the dynamics of MEC environments. It becomes even
more pronounced in MEC systems, where the intricate coordination of mobile
devices in three-dimensional space is considered. Our future work will focus on
evaluating the efficacy of our proposed offloading approaches in the scenarios
where mobility is considered, taking into account the dynamic nature of their
spatial relationships and movement patterns.

(iii) Existing DRL-based offloading approaches are proposed for specific MEC con-
figurations distinguished by fixed parameters, such as the computational capa-
bilities of edge servers and task arrival patterns. Although some parameters,
such as task sizes and channel conditions, may vary over time, others remain
constant. Consequently, when these DRL-based methods are deployed in var-
ied MEC environments, they may experience performance decline due to their
inability to adapt to unforeseen or novel scenarios. In light of this limitation,
we are motivated to explore novel transfer DRL-based approches that enable
rapid adaptation to unseen MEC environments. Our objective is to develop
a fast-adaptive DRL-based framework for task offloading, characterized by its

145

ability to seamlessly adjust to new environments with minimal fine-tuning re-
quirements.

146

Bibliography

[1] L. Ale, N. Zhang, X. J. Fang, X. F. Chen, S. H. Wu, and L. Z. Li. Delay-
aware and energy-efficient computation offloading in mobile-edge computing
using deep reinforcement learning. IEEE Transactions on Cognitive Communi-
cations and Networking, 7(3):881–892, 2021.

[2] S. Amani, C. Thrampoulidis, and L. Yang. Safe reinforcement learning with lin-
ear function approximation. In International Conference on Machine Learning,
pages 243–253, 2021.

[3] M. Ansari, K. A. Yeganeh, S. Safari, and A. Ejlali. Peak-power-aware en-
ergy management for periodic real-time applications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(4):779–788,
2019.

[4] P. A. Apostolopoulos, G. Fragkos, E. E. Tsiropoulou, and S. Papavassiliou. Data
offloading in uav-assisted multi-access edge computing systems under resource
uncertainty. IEEE Transactions on Mobile Computing, 22(1):175–190, 2023.

[5] H. Aydin, R. Melhem, D.Mosse, and P. Mejia-Alvarez. Power-aware scheduling
for periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–600,
2004.

[6] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez. Power-aware scheduling
for periodic real-time tasks. IEEE Transactions on computers, 53(5):584–600,
2004.

[7] M. Bambagini, M. Marinoni, H. Aydin, and G. Giorgio. Energy-aware schedul-
ing for real-time systems: a survey. ACM Transactions on Embedded Comput-
ing Systems (TECS), 15(7):7:1–7:34, 2016.

[8] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dkebiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, and C. Heess. Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[9] Z. Cai and T. Shi. Distributed query processing in the edge-assisted IoT data
monitoring system. IEEE Internet of Things Journal, 8(16):12679–12693, 2021.

[10] Z. Cai and X Zheng. A private and efficient mechanism for data uploading
in smart cyber-physical systems. IEEE Transactions on Network Science and
Engineering, 7(2):766–775, 2020.

147

[11] H. J. Cao and J. Cai. Distributed multiuser computation offloading for cloudlet-
based mobile cloud computing: a game-theoretic machine learning approach.
IEEE Transactions on Vehicular Technology, 67(1):752–764, 2017.

[12] T. F. Cao, C. Q. Xu, J. P. Du, Y. W. Li, H. Xiao, C. H. Gong, L. J. Zhong,
and D. Niyato. Reliable and efficient multimedia service optimization for edge
computing-based 5G networks: game theoretic approaches. IEEE Transactions
on Network and Service Management, 17(3):1610–1625, 2020.

[13] J. Y. Chen, S. B. Li, and M. Tomizuka. Interpretable end-to-end urban au-
tonomous driving with latent deep reinforcement learning. IEEE Transactions
on Intelligent Transportation Systems, 23(6):5068–5078, 2021.

[14] M. Chen and Y. X. Hao. Task offloading for mobile edge computing in software
defined ultra-dense network. IEEE Journal on Selected Areas in Communica-
tions, 36(3):587–597, 2018.

[15] W. W. Chen, D. Wang, and K. Q. Lin. Multi-user multi-task computation
offloading in green mobile edge cloud computing. IEEE Transactions on Services
Computing, 12(5):726–738, April 2018.

[16] X. Chen, J. S. Zhang, B. Lin, Z. Y. Chen, K. Wolter, and G. Y. Min. Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge environ-
ments. IEEE Transactions on Parallel and Distributed Systems, 33(3):683–697,
2021.

[17] X. Chen, J. S. Zhang, B. Lin, Z. Y. Chen, K. Wolter, and G. Y. Min. Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge environ-
ments. IEEE Transactions on Parallel and Distributed Systems, 33(3):683–697,
2021.

[18] P. Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint
arXiv:1910.07207, 2019.

[19] R. G. Cirstea, B. Yang, C. J. Guo, T. Kieu, and S. R. Pan. Towards spatio-
temporal aware traffic time series forecasting. In Proceedings of IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 2900–2913, 2022.

[20] M. Dai, Z. Su, Q. Xu, and N. Zhang. Vehicle assisted computing offloading
for unmanned aerial vehicles in smart city. IEEE Transactions on Intelligent
Transportation Systems, 22(3):1932–1944, 2021.

[21] P. L. Dai, K. W. Hu, X. Wu, H. L. Xing, and Z. F. Yu. Asynchronous deep rein-
forcement learning for data-driven task offloading in MEC-empowered vehicular
networks. In Proceedings of IEEE Conference on Computer Communications
(INFOCOM), pages 1–10. IEEE, 2021.

148

[22] Y. Y. Dai, K. Zhang, S. Maharjan, Y. Zhang, S. Pushp, and X. Z. Liu. Edge in-
telligence for energy-efficient computation offloading and resource allocation in
5G beyond. IEEE Transactions on Vehicular Technology, 69(10):12175–12186,
2020.

[23] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa.
Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757,
2018.

[24] T. Dinh, Q. D. La, T. Q. Quek, and H. Shin. Learning for computation of-
floading in mobile edge computing. IEEE Transactions on Communications,
66(12):6353–6367, 2018.

[25] J. B. Du, L. Q. Zhao, J. Feng Q. Li, and X. L. Chu. Computation offloading
and resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee. IEEE Transactions on Communications, 66(4):1594–1608,
December 2018.

[26] M. Z. Du, Y. Wang, K. J. Ye, and C. Z. Xu. Algorithmics of cost-driven
computation offloading in the edge-cloud environment. IEEE Transactions on
Computers, 69(10):1519–1532, 2020.

[27] K. Elgazzar, P. Martin, and H. S. Hassanein. Cloud-assisted computation of-
floading to support mobile services. IEEE Transactions on Cloud Computing,
4(3):279–292, 2014.

[28] L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. Proceedings of
the IEEE International Conference on Learning Representations (ICLR), 2020.

[29] S. Fujimoto, H. Van Hoof, and D. Merger. Addressing function approximation
error in actor-critic methods. arXiv:1509.02971v6, 2018.

[30] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning (ICML),
pages 2052–2062, 2019.

[31] H. H. Gao, X. J. Wang, W. Wei, A. Al-Dulaimi, and Y. S. Xu. Com-ddpg:
task offloading based on multiagent reinforcement learning for information-
communication-enhanced mobile edge computing in the internet of vehicles.
IEEE Transactions on Vehicular Technology, 73(1):348–361, 2024.

[32] Z. Gao, L. Yang, and Y. Dai. Large-scale computation offloading using a
multi-agent reinforcement learning in heterogeneous multi-access edge com-
puting. IEEE Transactions on Mobile Computing, January 2022. DOI:
10.1109/TMC.2022.3141080.

149

[33] Y. L. Geng, Y. Yang, and G. H. Cao. Energy-efficient computation offloading
for multicore-based mobile devices. In Proceedings of IEEE Computer Com-
munications Conference(INFOCOM), pages 46–54, April 2018.

[34] B. Gu, Z. Y. Zhou, S. Mumtaz, V. Frascolla, and A. K. Bashir. Context-aware
task offloading for multi-access edge computing: matching with externalities. In
Proceedings of IEEE global communications conference (GLOBECOM), pages
1–6, 2018.

[35] S. T. Guo, J. D. Liu, Y. Y. Yang, B. Xiao, and Z. T. Li. Energy-efficient dy-
namic computation offloading and cooperative task scheduling in mobile cloud
computing. IEEE Transactions on Mobile Computing, 18(2):319–333, 2019.

[36] M. Hamad, Z. A. Hammadeh, S. Saidi, V. Prevelakis, and R. Ernst. Prediction
of abnormal temporal behavior in real-time systems. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, pages 359–367, 2018.

[37] Y. X. Hao, Y. Q. Jiang, M. S. Hossain, M. F. Alhamid, and S. U. Amin. Learn-
ing for smart edge: cognitive learning-based computation offloading. Mobile
Networks and Applications, 25(3):1016–1022, 2020.

[38] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on Artificial Intelligence,
pages 2094–2100, 2016.

[39] H. Huang, M. Lin, and Q. C. Zhang. Double-q learning-based dvfs for multi-
core real-time systems. In Proceedings of International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pages 522–529, 2017.

[40] H. Huang, Q. Ye, and Y. T. Zhou. Deadline-aware task offloading with partially-
observable deep reinforcement learning for multi-access edge computing. IEEE
Transactions on Network Science and Engineering, 9(6):3870–3885, 2021.

[41] H. Huang, Q. Ye, and Y. T. Zhou. 6g-empowered offloading for realtime appli-
cations in multi-access edge computing. IEEE Transactions on Network Science
and Engineering, 10(3):1311–1325, 2022.

[42] Y. Hui, Z. Su, and T. H. Luan. Unmanned era: a service response frame-
work in smart city. IEEE Transactions on Intelligent Transportation Systems,
23(6):5791–5805, 2021.

[43] F. Islam and M. Lin. Hybrid DVFS scheduling for real-time systems based on
reinforcement learning. IEEE Systems Journal, 11(2):931–940, 2017.

150

[44] B. F. Ji, Y. N. Wang, K. Song, C. G. Li, H. Wen, V. G. Menon, and S. Mumtaz.
A survey of computational intelligence for 6G: key technologies, applications
and trends. IEEE Transactions on Industrial Informatics, 17(10):7145–7154,
2021.

[45] T. X. Ji, C. Q. Luo, L. X. Yu, Q. L. Wang, S. H. Chen, A. Thapa, and P. Li.
Energy-efficient computation offloading in mobile edge computing systems with
uncertainties. IEEE Transactions on Wireless Communications, 21(8):5717–
5729, 2022.

[46] H. B. Jiang, X. x. Dai, Z. Xiao, and A. K. Iyengar. Joint task offloading and re-
source allocation for energy-constrained mobile edge computing. IEEE Transac-
tions on Mobile Computing, January 2022. DOI: 10.1109/TMC.2022.3150432.

[47] Y. X. Jiang and D. H. Tsang Tsang. Delay-aware task offloading in shared fog
networks. IEEE Internet of Things Journal, 5(6):4945–4956, 2018.

[48] S. Jošilo and G. Dán. Computation offloading scheduling for periodic tasks in
mobile edge computing. IEEE/ACM Transactions on Networking, 28(2):667–
680, 2020.

[49] H. Kalantarian, C. Sideris, B. Mortazavi, N. Alshurafa, and M. Sarrafzadeh.
Dynamic computation offloading for low-power wearable health monitoring sys-
tems. IEEE Transactions on Biomedical Engineering, 64(3):621–628, 2016.

[50] S. Khanderwal and D. Mohanty. Stock price prediction using arima model.
International Journal of Marketing & Human Resource Research, 2(2):98–107,
2021.

[51] X. J. Kong, G. H. Duan, M. L. Hou, G. J. Shen, H. Wang, X. R. Yan, and
M. Collotta. Deep reinforcement learning based energy efficient edge com-
puting for Internet of Vehicles. IEEE Transactions on Industrial Informatics,
18(9):6308–6316, 2022.

[52] G. K. Lai, W. C. Chang, Y. M. Yang, and H. X. Liu. Modeling long-and
short-term temporal patterns with deep neural networks. In Proceedings of In-
ternational ACM SIGIR Conference on Research & Development in Information
Retrieval, pages 95–104, 2018.

[53] J. Li, H. Gao, T. J. Lv, and Y. M. Lu. Deep reinforcement learning based
computation offloading and resource allocation for MEC. In Proceedings of
International Conference on IEEE Wireless Communications and Networking
Conference, pages 1–6, June 2018.

151

[54] M. S. Li, J. G, L. Zhao, and X. M. Shen. Deep reinforcement learning for
collaborative edge computing in vehicular networks. IEEE Transactions on
Cognitive Communications and Networking, 6(4):1122–1135, 2020.

[55] S. Y. Li, X. Y. Jin, Y. Xuan, X. Y. Zhou, W. H. Chen, Y. X. Wang, and X. F.
Yan. Enhancing the locality and breaking the memory bottleneck of transformer
on time series forecasting. In Proceedings of IEEE International Conference on
Neural information processing systems(NeurIPS), volume 32, 2019.

[56] Z. Z. Liang, Y. Liu, T. M. Lok, and K. B. Huang. Multiuser computation of-
floading and downloading for edge computing with virtualization. IEEE Trans-
actions on Wireless Communications, 18(9):235–250, 2019.

[57] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, Y. Tassa T. Erez, D. Silver,
and D. Wierstra. Continuous control with deep reinforcement learning. In Pro-
ceedings of International Conference Learning Representations(ICLR), 2016.

[58] M. H. Liu, A. L. Zeng, M. X. Chen, Z. J. Xu, Q. X. Lai, L. N. Ma, and Q. Xu.
Scinet: Time series modeling and forecasting with sample convolution and in-
teraction. In Proceedings of the Advances in Neural Information Processing
Systems, pages 5816–5828, 2022.

[59] S. H. Liu, B. Wang, X. J. Deng, and L. T. Yang. Self-attentive graph convolution
network with latent group mining and collaborative filtering for personalized
recommendation. IEEE Transactions on Network Science and Engineering,
9(5):3212–3221, 2021.

[60] S. Q. Liu, K. C. See, K. Y. Ngiam, L. A. Celi, X. Z. Sun, and M. L. Feng. Rein-
forcement learning for clinical decision support in critical care: comprehensive
review. Journal of Medical Internet Research, 22(7):e18477, 2020.

[61] Z. K. Liu, P. L. Dai, H. L. Xing, Z. F. Y, and W. Zhang. A distributed algorithm
for task offloading in vehicular networks with hybrid fog/cloud computing.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(7):4388–
4401, 2021.

[62] Z. X. Liu, Z. P. Cen, V. Isenbaev, W. Liu, S. Wu, B. Li, and D. Zhao. Con-
strained variational policy optimization for safe reinforcement learning. In Pro-
ceedings of IEEE Conference on Machine Learning (ICML), pages 13644–13668,
2022.

[63] H. D. Lu, X. M. He, M. Du, X. K. Ruan, Y. F. Sun, and K. Wang. Edge QoE:
computation offloading with deep reinforcement learning for Internet of Things.
IEEE Internet of Things Journal, 7(10):9255–9265, 2020.

152

[64] M. H. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. H. Zhuang. Learning-
based computation offloading for IoT devices with energy harvesting. IEEE
Transactions on Vehicular Technology, 68(2):1930–1941, 2019.

[65] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In Proceedings of International conference on machine learning (ICML), pages
1928–1937, 2016.

[66] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[67] A. Naouri, H. X. Wu, N. A. Nouri, S. Dhelim, and H. S. Ning. A novel framework
for mobile-edge computing by optimizing task offloading. IEEE Internet of
Things Journal, 8(16):13065–13076, 2021.

[68] A. Ndikumana, N. H. Tran, T. M. Tai, Z. Han, W. Saad, D. Niyato, and
S. C. Hong. Joint communication, computation, caching, and control in big
data multi-access edge computing. IEEE Transactions on Mobile Computing,
19(6):1359–1374, 2020.

[69] P. Pallai and K. G. Shin. Real-time dynamic voltage scaling for low-power
embedded operating systems. In Proceedings of International Conference on
ACM SIGOPS Operating Systems Review, pages 89–102, 2001.

[70] S. K. Panda, M. Lin, and T. Zhou. Energy efficient computation offloading
with dvfs using deep reinforcement learning for time-critical iot applications in
edge computing. IEEE Internet of Things Journal, 10(8):6611–6621, 2022.

[71] C. Pradhan, A. Li, C. Y. She, Y. H. Li, and B. Vucetic. Computation offloading
for IoT in C-RAN: optimization and deep learning. IEEE Transactions on
Communications, 68(7):4565–4579, 2020.

[72] L. P. Qian, Y. Wu, F. L. Jiang, N. N. Yu, W. D. Lu, and B. Lin. NOMA assisted
multi-task multi-access mobile edge computing via deep reinforcement learning
for industrial Internet of Things. IEEE Transactions on Industrial Informatics,
17(8):5688–5698, 2020.

[73] X. D. Qin, B. Li, and L. Ying. Distributed threshold-based offloading for large-
scale mobile cloud computing. In Proceedings of IEEE Conference on Computer
Communications, pages 1–10, 2021.

153

[74] X. Y. Qiu, L. B. Liu, W. H. Chen, Z. C. Hong, and Z. B. Zheng. Online deep
reinforcement learning for computation offloading in blockchain-empowered mo-
bile edge computing. IEEE Transactions on Vehicular Technology, 68(8):8050–
8062, 2019.

[75] T. Ren, Z. Y. Hu, H. He, J. W. Niu, and X. F. Liu. Feat: towards fast
environment-adaptive task offloading and power allocation in mec. In Proceed-
ings of the IEEE Conference on Computer Communications, pages 1–10, 2023.

[76] T. K. Rodrigues, J. J. Liu, and N. Kato. Offloading decision for mobile multi-
access edge computing in a multi-tiered 6G network. IEEE Transactions on
Emerging Topics in Computing, 10(3):1414–1427, 2021.

[77] T. K. Rodrigues, K. Suto, and N. Kato. Edge cloud server deployment with
transmission power control through machine learning for 6G Internet of Things.
IEEE Transactions on Emerging Topics in Computing, 9(4):2099–2108, 2019.

[78] s. f. Wu, X. Xiao, Q. G. Ding, P. L. Zhao, Y. Wei, and J. Z. Huang. Adversarial
sparse transformer for time series forecasting. In Proceedings of the Advances
in Neural Information Processing Systems, pages 17105–17115, 2020.

[79] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient scheduling of real-time
tasks on multicore processors. IEEE Transactions on Parallel and Distributed
Systems, 19(11):1540–1552, 2008.

[80] S. Z. Sheikh and M. A. Pasha. Energy-efficient real-time scheduling on mul-
ticores: a novel approach to model cache contention. ACM Transactions on
Embedded Computing Systems (TECS), 19(4):1–25, 2020.

[81] S. Sundar and B. Liang. Offloading dependent tasks with communication delay
and deadline constraint. In Proceedings of IEEE Conference on Computer
Communications (INFOCOM), pages 37–45, 2018.

[82] J. Tan, R. Khalili, H. Karl, and A. Hecker. Multi-agent distributed reinforce-
ment learning for making decentralized offloading decisions. In Proceedings of
the IEEE International Conference on Computer Communications (Infocom),
pages 2098–2107, 2022.

[83] H. R. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan, J. Schulman,
F. De Turck, and P. Abbeel. A study of count-based exploration for deep
reinforcement learning. In Proceedings of IEEE International Conference on
Neural Information Processing Systems(NeurIPS), pages 4–9, 2017.

[84] M. Tang and V. W. S. Vincent. Deep reinforcement learning for task offloading
in mobile edge computing systems. IEEE Transactions on Mobile Computing,
21(6):1985–1997, 2022.

154

[85] U. U. Tariq, H. Ali, L. Liu, J. Hardy, M. Kazim, and W. Ahmed. Energy-aware
scheduling of streaming applications on edge-devices in iot-based healthcare.
IEEE Transactions on Green Communications and Networking, 5(2):803–815,
2021.

[86] E. Walraven and M. T. Spaan. Accelerated vector pruning for optimal POMDP
solvers. In AAAI, pages 3672–3678, 2017.

[87] F. Wang, J. Xu, and S. G. Cui. Energy-efficient dynamic computation offloading
and cooperative task scheduling in mobile cloud computing. IEEE Transactions
on Wireless Communications, 19(4):2443–2459, 2020.

[88] F. Wang, J. Xu, and S. G. Cui. Optimal energy allocation and task offloading
policy for wireless powered mobile edge computing systems. IEEE Transactions
on Wireless Communications, 19(4):2443–2459, 2020.

[89] J. Wang, J. Hu, G. Y. Min, A. Y. Zomaya, and N. Georgalas. Fast adaptive
task offloading in edge computing based on meta reinforcement learning. IEEE
Transactions on Parallel and Distributed Systems, 32(1):242–253, 2021.

[90] T. Wang, Y. X. Deng, Z. Yang, Y. Wang, and H. B. Cai. Parameterized deep
reinforcement learning with hybrid action space for edge task offloading. IEEE
Internet of Things Journal, March 2023. DOI: 10.1109/JIOT.2023.3327121.

[91] X. F. Wang, Y. W. Han, V. C. Leung, D. Niyato, X. Q. Yan, and X. Chen.
Convergence of edge computing and deep learning: a comprehensive survey.
IEEE Communications Surveys & Tutorials, 22(2):869–904, 2020.

[92] H. X. Wu, J. H. Xu, J. M. Wang, and M. S. Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In Proceed-
ings of the Advances in Neural Information Processing Systems, volume 34,
pages 22419–22430, 2021.

[93] Y. Z. Xia, X. J. Deng, L. Z. Yi, L. T. Yang, X. Xiao, C. L. Zhu, and Z. P. Tian.
AI-driven and MEC-empowered confident information coverage hole recovery
in 6G-enabled IoT. IEEE Transactions on Network Science and Engineering,
10(3):1256–1269, 2022.

[94] M. W. Xu, Q. Feng, M. Z. Zhu, F. F. Huang, S. Pushp, and X. Z. Liu. Deepwear:
adaptive local offloading for on-wearable deep learning. IEEE Transactions on
Mobile Computing, 19(2):314–330, 2019.

[95] B. Yang, X. L. Cao, J. Bassey, X. F. Li, and L. J. Qian. Computation offload-
ing in multi-access edge computing: A multi-task learning approach. IEEE
Transactions on Mobile Computing, 20(9):2745–2762, 2021.

155

[96] Y. You, Z. Zhang, C. J. Hsieh, J. Demmel, and K. Keutzer. Fast deep neural
network training on distributed systems and cloud TPUs. IEEE Transactions
on Parallel and Distributed Systems, 30(11):2449–2462, 2019.

[97] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 472–
480, 2017.

[98] A. Zappone, M. Di Renzo, and M. Debbah. Wireless networks design in the
era of deep learning: model-based, AI-based, or both? IEEE Transactions on
Communications, 67(10):7331–7376, 2019.

[99] A. L. Zeng, M. X. Chen, L. Zhang, and Q. xu. Are transformers effective for
time series forecasting? In Proceedings of the AAAI conference on artificial
intelligence (AAAI), pages 11121–11128, 2023.

[100] Y. F. Zhan, S. Guo, P. Li, and J. Zhang. A deep reinforcement learning based of-
floading game in edge computing. IEEE Transactions on Computers, 69(6):883–
893, 2020.

[101] D. Y. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. X. Zhang, and P. J. Wan.
Near-optimal and truthful online auction for computation offloading in green
edge-computing systems. IEEE Transactions on Mobile Computing, 19(4):880–
893, 2020.

[102] D. Y. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. X. Zhang, and P. J.
Wan. A survey on mobile augmented reality with 5G mobile edge comput-
ing: architectures, applications, and technical aspects. IEEE Communications
Surveys & Tutorials, 23(2):1160–1192, 2021.

[103] J. Zhang, G. J. Han, J. F. Sha, Y. J. Qian, and J. Liu. AUV-assisted subsea
exploration method in 6G enabled deep ocean based on a cooperative pac-
men mechanism. IEEE Transactions on Intelligent Transportation Systems,
23(2):1649–1660, 2021.

[104] J. Zhang, X. P. Hu, Z. L. Ning, E. C-H. Ngai, L. Zhou, J. B. Wei, J. Cheng,
B. Hu, and V. CM. Leung. Joint resource allocation for latency-sensitive services
over mobile edge computing networks with caching. IEEE Internet of Things
Journal, 6(3):4283–4294, 2019.

[105] Q. C. Zhang, M. Lin, L. T. Yang, Z. K. Chen, S. U. Khan, and P. Li. A double
deep Q-learning model for energy-efficient edge scheduling. IEEE Transactions
on Services Computing, 12(5):739–749, 2019.

156

[106] Q. C. Zhang, M. Lin, L. T. Yang, Z. K. Chen, and P. Li. Energy-efficient
scheduling for real-time systems based on deep Q-learning model. IEEE Trans-
actions on Sustainable Computing, 4(1):132–141, 2017.

[107] W. Y. Zhang, Z. Z. He, L. Y. Liu, Z. H. Jia, Y. X. Liu, M. Gruteser, D. Ray-
chaudhuri, and Y. Y. Zhang. Elf: accelerate high-resolution mobile deep vision
with content-aware parallel offloading. In Proceedings of the 27th Annual In-
ternational Conference on Mobile Computing and Networking, pages 201–214,
2021.

[108] G. M. Zhao, H. L. Xu, Y. M. Zhao, C. M. Qiao, and L. S. Huang. Offloading
dependent tasks in mobile edge computing with service caching. In Proceedings
of IEEE Computer Communications Conference(INFOCOM), pages 1997–2006,
July 2020.

[109] J. K. Zheng, T. H. Luan, L. X. Gao, Y. Zhang, and Y. Wu. Learning based
task offloading in digital twin empowered internet of vehicles. arXiv preprint
arXiv:2201.09076, 2021.

[110] C. J. Zhong, H. A. Suraweera, G. Zheng, L. Krikidis, and Z. Y. Zhang. Wireless
information and power transfer with full duplex relaying. IEEE Transactions
on Communications, 62(10):3447–3461, 2014.

[111] H. Y. Zhou, S. H. Zhang, J. Q. Peng, S. Zhang, J. X. Li, H. Xiong, and W. C.
Zhang. Informer: Beyond efficient transformer for long sequence time-series
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
pages 11106–11115, 2021.

[112] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou. Task scheduling in deadline-aware
mobile edge computing systems. IEEE Internet of Things Journal, 6(3):4854–
4866, 2019.

157

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	Acknowledgements
	Introduction
	Overview of MEC Systems
	Task Offloading for MEC Systems
	Research Gap
	Research Contributions
	Contributions of PDMO
	Contributions of MELO
	Contributions of CRLO

	Thesis Organization

	Related Work
	Dynamic Voltage and Frequency Scaling
	Deep Reinforcement Learning
	Time-series Forecasting
	Existing Task Offloading Schemes
	Non-learning-based Task Offloading
	Learning-based Task Offloading

	Energy Consumption Minimization with DRL-based Task Offloading
	System Model
	Overview
	Scheduling Model
	Job Completion Time Model
	Energy Consumption Model
	Problem Formulation

	PDMO: Energy-aware DRL-based Task Offloading
	POTD3: A Novel Learning Algorithm
	Details of PDMO

	Evaluation
	Evaluation Settings
	Convergence
	Deadline Misses and Energy Consumption
	Impact of Queuing Time at Edge Server
	Impact of Hyperperiod Length

	Major Conclusions of PDMO

	Edge-assisted DRL-based Task Offloading
	System Model
	Overview
	Task Model
	Communication Model
	Completion Time Model
	Problem Formulation

	Edge-assisted DRL-based Offloading Scheme
	Edge-Assisted Learning
	Modelling Task Offloading as an MDP
	Details of MELO

	Evaluation
	Evaluation Settings
	Convergence
	Impact of Transmission Rates
	Impact of Number of Edge Servers

	Major Conclusions of MELO

	Safe Task Offloading with Constrained Reinforcement Learning
	System Model
	Overview
	Task Model
	Communication Model
	Completion Time Model

	Safety-critical Learning-based Task Offloading
	Long-sequence Forecasting Model
	Constrained Reinforcement Learning
	A Novel Policy Netowk
	Reformulating the Offloading Problem as a CMDP
	Details of CRLO

	Evaluation
	Evaluation Settings
	Convergence
	Completion Time and Deadline Misses
	Scalability
	Impact of Informer and Safety Layer

	Major Conclusions of CRLO

	Conclusions and Future work
	Conclusions
	Future Work

	Bibliography

