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Abstract 
The global population is ageing rapidly, and with the increasing population age, 

comes an increasing need to understand the neurophysiological effects of ageing. Human 
brain activity consists of a complex combination of spontaneous transient bursts of neural 
activity with varying spatial and temporal characteristics. The characteristics of these 
transient bursts change during task performance and normal ageing in ways that can 
inform about the underlying neurophysiology. This thesis investigates the spatiotemporal 
characteristics and cortical sources of typical and atypical transient bursts in a large 
cohort of healthy participants and relates the findings to participant age. The thesis is 
comprised of three projects, each of which introduces and validates novel methods for 
investigating transient patterns of human brain activity in normal ageing.  

Project 1 implements source localization techniques to detect the cortical sources 
of sensorimotor beta bursts in MEG data from a cohort of 561 healthy participants 
acquired by the Cambridge Centre for Ageing and Neuroscience (CamCAN). Age-related 
trends were then investigated by applying regression analysis between participant age and 
average source power within several cortical regions of interest. This analysis revealed 
that beta bursts localized primarily to the sensorimotor cortex under the sensor used for 
their detection. Region of interest analysis revealed that there were age-related changes in 
the beta burst localization pattern, including an expansion of source with age.  
 Project 2 applies a data-driven convolutional dictionary learning (CDL) approach 
to detect transient bursts in MEG data from 538 participants in the CamCAN dataset. 
CDL was used to extract repeating spatiotemporal motifs in each participant during a 
sensorimotor task. Motifs were then clustered across participants based on similarity, and 
relevant task-related clusters were analysed for age-related trends in their spatiotemporal 
characteristics. Seven task-related motifs resembling known transient burst types were 
identified through this analysis, including beta, mu, and alpha type bursts. All burst types 
showed positive trends in their activation levels with age that could be explained by 
increasing burst rate with age.  

Project 3 investigated atypical transient patterns of slow cortical activity (i.e., 
paroxysmal slow wave events (PSWEs)) in resting state MEG recordings from 623 
healthy participants in the CamCAN dataset. PSWEs were detected in approximately 
20% of healthy participants in the dataset, and participants with PSWEs tended to be 
older and have lower cognitive performance than those without PSWEs. In addition, 
event features changed linearly with age and cognitive performance, resulting in longer 
and slower events in older adults, and more widespread events in those with low 
cognitive performance. These findings provide the first evidence of PSWEs in a subset of 
purportedly healthy adults.  
 Together, these projects validate new methods for exploring human brain signals, 
provide insights into the neural mechanisms of healthy ageing, and have the potential to 
inform future clinical applications.  
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Chapter 1   

Introduction 
 

1.1 Ageing 

1.1.1 The Ageing Population 

 According to recent projections by the United Nations, it is expected that by 2050, 

17% of the global population and up to 25% of the North American population will be 

over the age of 65. In Canada, as of 2021, there were 7 million people (19% of the 

population) over the age of 65, and 861,000 (2.3% of the population) over the age of 85 

(Statistics Canada,  2021). Over the next 25 years, these numbers are expected to climb to 

more than 12 million (24.9% of the projected population) over 65 and 2.7 million (5.6% 

of the projected population) over 85, respectively (Statistics Canada, 2021). With the 

increasing age of the population, comes an increased prevalence of age-related illness and 

disease, and an increasing need to study the effects of ageing on the human body and 

brain.  

1.1.2 The Ageing Brain 

 Ageing has particularly pronounced effects on the anatomy and function of the 

brain. Ageing is associated with anatomical changes including reductions in brain volume 

(Taki et al., 2011; Fjell & Walhovd, 2010; Hedman et al., 2012; Murman, 2015), 

reductions in synaptic connections (Esiri, 2007; Murman, 2015), demyelination of 

neurons (Fjell & Walhovd, 2010; Murman, 2015), and neurochemical alterations 

(Cleeland et al., 2019). In addition, ageing is associated with reductions in cognitive 

function, particularly in the domains of memory, processing speed, and executive 

function (Fjell & Walhovd, 2010; Murman, 2015). Along with these normal age-related 

changes in brain structure and function, ageing is also considered one of the most 

prominent risk factors for many neuropathologies including stroke, neurodegenerative 

disease, dementia, and movement disorders, which can result in further functional and 

anatomical deficits.  

 Reductions in brain volume across the lifespan have been consistently observed in 

longitudinal magnetic resonance (MR) studies (Hedman et al., 2012; Murman, 2015). 
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These brain volume changes manifest as cortical thinning and enlargement of the 

ventricles, which are apparent in MR images as well as post-mortem investigations. Gray 

matter (i.e., darker brain tissue consisting primarily of neuronal cell bodies) has been 

shown to decrease in volume relatively consistently throughout the lifespan, beginning 

shortly after childhood (Taki et al., 2011; Fjell & Walhovd, 2010; Hedman et al., 2012). 

White matter (i.e., lighter brain tissue made up of bundles of axons) on the other hand, 

continues to increase in volume until middle age before beginning to decrease later in life 

(Taki et al., 2011; Fjell & Walhovd, 2010; Hedman et al., 2012). The spatial pattern of 

volume loss is highly heterogeneous, with particularly large changes observed in the 

frontal, prefrontal, and temporal cortices, as well as the putamen, thalamus, and nucleus 

accumbens (Fjell & Walhovd, 2010). However, other regions, such as the brainstem, are 

comparably well-preserved throughout the lifespan (Fjell & Walhovd, 2010).  The 

observed reductions in brain volume are thought to be the result of alterations in neuronal 

structure such as cell shrinkage, loss of dendritic and axonal arborizations, and reductions 

in synaptic connections (Morrison & Hof, 1997; Esiri, 2007; Murman, 2015). Contrary to 

what might be expected, the volume reductions are not likely caused by neuronal cell 

death, as this is relatively restricted in healthy ageing (< 10% of neurons lost between age 

20-90) (Morrison & Hof, 1997; Fjell & Walhovd, 2010; Murman, 2015).  In addition to 

changes in brain volume, healthy ageing is thought to be associated with network-level 

changes including a shift from focal to widespread patterns of brain activation during task 

performance (Cabeza et al., 2002), and changes in the complexity of local and long-range 

network connections (McIntosh et al., 2014). These physiological changes may reflect 

compensatory mechanisms that emerge as a result of the age-related changes in the 

cellular architecture.  

 The neuroanatomical changes observed with age are likely the result of a 

combination of underlying chemical and molecular factors. Ageing is associated with 

increased demands of neural cells for oxidative metabolism which can lead to damage to 

proteins, nucleic acids, lipids, DNA, and mitochondria (Esiri, 2007). In addition, ageing 

is associated with elevated levels of intracellular calcium which can have damaging 

effects including apoptosis and selective death of dendrites (Esiri, 2007). Additional 

factors such as neurochemical changes (Cleeland et al., 2019), increases in iron 
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concentration (Esiri, 2007), reductions in glucoregulation, and increased inflammation 

(Cleeland et al., 2019) can further contribute to cellular damage. These effects may be 

modulated by genetic factors. Certain genes, such as those involved in synaptic function 

and plasticity, vesicular transport, mitochondrial function and calcium homeostasis in the 

frontal cortex are reduced in expression with age (Esiri, 2007), while others, such as those 

that respond to oxidative stress, increase in expression with age (Esiri, 2007).  

 Perhaps unsurprisingly given the extensive neuroanatomical changes, ageing is 

also associated with functional changes in cognitive performance. However, not all 

cognitive processes are affected to the same extent. In most cases, fluid intelligence (e.g., 

real-time cognitive processing, problem solving, decision making, etc.), attention, 

perception, and short-term memory decline with age, while crystallized intelligence (e.g., 

general knowledge, autobiographical history, vocabulary), speech and language function, 

and procedural memory tend to remain intact (Murman, 2015). The functions that show 

significant decline with age tend to align with the functionally specific brain regions that 

show the most pronounced age-related anatomical changes. For example, the executive 

functions that decline with age are heavily dependent on the fronto-striatal circuits in the 

frontal and pre-frontal cortices, which show some of the most drastic reductions in 

volume with age (Fjell & Walhovd, 2010). Similarly, older adults who show more 

extensive cortical thinning, tend to have lower cognitive scores than older adults who 

maintain a thicker cortex (Fjell et al., 2006).  

1.1.3  Factors Affecting Variability in Brain Age 

            Ageing is a highly heterogeneous process, and the extent to which an individual 

exhibits anatomical and functional age-related changes is dependent on a variety of 

genetic and environmental variables (Raz & Rodrigue, 2006). While the genetic 

contributions are not yet fully understood, there are several candidate genes that are 

thought to have potential roles in the ageing process. The apolipoprotein E (APOE) gene 

is involved in repair, growth, and maintenance of myelin, and possibly plays a role in 

plasticity and amyloid clearance (Deary et al., 2004; Fjell & Walhovd, 2010). There are 3 

major alleles of the APOE gene: ε2, ε3, and ε4. While the ε3 allele is the most common, 

the ε4 allele is a major genetic risk factor for Alzheimer’s disease (AD) (Fjell & Walhovd, 

2010) and lower cognitive performance that becomes more pronounced with age (Esiri, 
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2007). The  ε2 allele on the other hand, is over-expressed in centenarians, suggesting that 

it may play a role in healthy brain ageing (Esiri, 2007). Genetic variations in the brain-

derived neurotrophic factor (BDNF) gene may also contribute to variability in ageing. 

Neurotrophins are a class of proteins involved in brain plasticity, neuronal survival, 

axonal growth, synaptogenesis, and neutrotransmission, and BDNF gene variations have 

been linked to differences in age-related reductions of pre-frontal cortical and amygdala 

volume (Fjell & Walhovd, 2010). Various proinflammatory genes may also be implicated 

in ageing due to their role in apoptotic and neurodegenerative processes (Fjell & 

Walhovd, 2010). Finally, the prion protein gene PRNP may play a role in protecting 

neurons from the effects of cellular stress (Esiri, 2007), which is thought to be one of the 

leading mechanisms driving age-related cellular changes. Individuals who were 

homozygous for the methionine allele of the gene had better cognitive performance in old 

age than those who were heterozygous, suggesting a relationship between the mechanistic 

role of PRNP and resulting cognitive effects (Kachiwala et al., 2005).  

            Along with genetic factors, lifestyle factors including diet, physical activity level, 

extended years of education, and cognitive stimulation can all contribute to variability in 

the effects of ageing. Diet in particular can have a pronounced effect on the ageing brain. 

A healthy diet, including the intake of fatty acids, B-vitamins, and folate can have a 

protective effect for cognitive abilities, while excess calorie intake can result in elevated 

cholesterol and blood pressure which increase the risk for the development of 

cerebrovascular disease or dementia with age (Esiri, 2007; Murman, 2015). Exposure to 

certain pesticides or herbicides through food may also increase the risk of brain disease 

with age (Esiri, 2007). Other environmental factors such as incidence of head trauma, 

substance abuse, or excessive stress can accelerate the cognitive effects of ageing 

(Murman, 2015), and incidence of other diseases such as cardiovascular disease or 

diabetes can also contribute to increased risk for advanced or pathological ageing 

(Murman, 2015). Managing lifestyle factors contributing to unhealthy brain ageing by 

maintaining a healthy diet, exercising regularly, and managing stress, can increase signal 

pathways involved in plasticity and decrease cognitive decline and neural atrophy with 

age (Murman, 2015).  
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            Finally, the study of anatomical and functional changes with age is complicated 

by the blurry distinction between healthy ageing processes and the emergence of age-

related neuropathology. For example, neuron populations that are particularly sensitive to 

deterioration with normal ageing, such as cortical pyramidal cells and pigmented 

dopaminergic neurons, also show degeneration with the progression of Alzheimer’s 

disease and Parkinson’s disease, respectively (Esiri, 2007). Similarly, the neurometabolite 

changes that occur with normal ageing closely resemble what is reported in AD (Cleeland 

et al., 2019), and the memory loss and cortical thinning in the temporal regions that is 

observed in healthy ageing, is also considered to be a hallmark of AD  (Fjell & Walhovd, 

2010). Because of theses similarities, the precise distinction between healthy and 

unhealthy ageing is unclear and heavily debated in the literature. As such, when studying 

the ageing brain, we must consider these pathologies to be yet another factor that affects 

the heterogeneity of the ageing process. 

 Evidently, there are a wide variety of mechanisms underlying the non-uniform 

neuroanatomical and cognitive changes observed with age. Cardiovascular, hormonal, 

cellular, molecular, and biochemical factors all contribute to changes in individual brains 

over the lifespan as well as differences between individuals’ brains. Before we can begin 

to understand the complex interactions between these various mechanisms in human 

ageing, we must first gain insight into the neurophysiological mechanisms of ageing. In 

particular, how does the behaviour of neurons and neuronal networks change across the 

lifespan and how does this relate to the hallmark functional changes observed with age?  

1.2 Cortical Rhythms and Transient Events 

1.2.1 Cellular Basis of Cortical Rhythms 

 Neurons in the brain communicate primarily through chemical synapses, where 

pre-synaptic neurons release chemical neurotransmitters that activate receptors on the 

dendrites of post-synaptic neurons. This post-synaptic receptor activation results in 

alterations to the neuronal membrane permeability that allow either the influx or efflux of 

ions across the membrane. At rest, the intracellular space is characterised by a high 

concentration of positively charged potassium ions and the extracellular space is 

characterized by a high concentration of positively charged sodium ions and negatively 

charged chloride ions, resulting in strong ion concentration gradients. Therefore, when 
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alterations to the post-synaptic neuron cause sodium channels to open, current flows into 

the cell resulting in an excitatory post-synaptic potential, and when potassium or chloride 

channels open, current flows out of the cell resulting in an inhibitory post-synaptic 

potential. When post-synaptic potentials occur synchronously across a sufficiently large 

population of neurons, it results in a measurable change in voltage that can be recorded 

locally in the cortex using local field potential (LFP) recordings or non-invasively from 

outside the head using electroencephalography (EEG). Similarly, the synchronous current 

flow into or out of a large population of similarly oriented neurons generates a magnetic 

field that can be recorded externally with magnetoencephalography (MEG). Rhythmic 

oscillations (i.e., spontaneous rhythmic fluctuations of electrical activity) in the cortex 

arise from frequency-specific synchronous neural activity across many neurons (Lopes 

Da Silva, 1991), with the size of the synchronous neuronal population dictating the power 

of the resulting oscillation (Murthy & Fetz, 1996).  

            The cellular mechanisms underlying these cortical rhythms have been extensively 

studied since the first characterisation of alpha waves by Hans Berger in 1929 (Berger, 

1929). Researchers in the field have since employed various experimental techniques 

including EEG, MEG, and LFP recordings to understand large-scale oscillations, single-

unit recordings to examine spike-timing, in vivo and in vitro imaging to understand circuit 

mechanisms, optogenetic manipulation to selectively investigate nerve cell activation, 

and computational modelling to explore dynamic network behaviour (Wang, 2010). From 

this body of literature, it is evident that the emergence of synchronous rhythmic activity is 

dependent on a complex system of cellular and network level mechanisms. At the cellular 

level, rhythmic activity of a particular frequency arises based on the intrinsic oscillatory 

properties of neurons (Wang, 2010; Buskila et al., 2019), modulated by ion 

concentrations and currents (Kadala et al., 2015), and modulatory inputs from astrocytes 

(Bellot-Saez et al., 2017; Buskila et al., 2019). At the network level, the synchronization 

of a sufficiently large population of neurons is dependent on electrical and chemical 

communication between neurons (Wang, 2010; Timofeev et al., 2012) and recurrent 

thalamocortical connections that facilitate the organization of local and long-range neural 

networks (Steriade, 2004). Finally, different types of rhythmic activity can influence one 

another through cross-frequency coupling mechanisms (Buzsáki & Wang, 2012; Buskila 
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et al., 2019). Figure 1.1 provides a summary of some of the key mechanisms involved in 

the generation of cortical rhythms. 

Figure 1.1 Cellular and network mechanisms involved in the generation of cortical 
rhythms. Created with BioRender.com. 
 

1.2.2  Functional Role of Cortical Rhythms 

  Power spectral density analyses of cortical oscillations have revealed the 

presence of a set of functionally relevant frequency bands ranging from <0.1 Hz to >1000 

Hz  (Penttonen & Buzsáki, 2003). In the healthy brain, there are at least 10 different types 
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of cortical oscillations, each associated with a particular frequency band and contributing 

to different cognitive and perceptual functions (Buskila et al., 2019).  

 During sleep and periods of inattentiveness or drowsiness, cortical oscillations are 

dominated by low-frequency rhythms including delta waves (1-4 Hz) which 

predominantly occur during deep sleep (Steriade & Timofeev, 2003; Timofeev et al., 

2012), and theta waves (4-8 Hz) which occur most often during drowsiness or early sleep 

(Hughes & Crunelli, 2005). Both delta and theta waves have also been implicated in the 

process of sleep consolidation of memory (Hasselmo, 2005; Steriade & Timofeev, 2003; 

Timofeev et al., 2012). The transition to wakefulness is associated with suppression of 

low frequency rhythms and an increase in higher frequency rhythms (McCormick et al., 

2015). During wakeful resting, alpha (8-15 Hz) is the dominant cortical rhythm, 

occurring primarily in the posterior (e.g., occipital) cortex (Hughes & Crunelli, 2005; 

Lozano-Soldevilla, 2018). Posterior alpha is a reliable cortical rhythm found in almost all 

healthy individuals and is thought to play a functional inhibitory role during wakefulness, 

inhibiting brain regions or cognitive processes when they are not needed (Foxe & Snyder, 

2011; Jensen & Mazaheri, 2010; Klimesch et al., 2007). Rolandic mu, which spans the 

same frequency range as posterior alpha, is also present during quiet wakefulness but 

differs from alpha in that it occurs over the central cortical regions and plays a specialized 

role in the inhibition of sensorimotor processes (Pfurtscheller et al., 1997). The beta 

rhythm (15-30 Hz) is similarly involved in inhibitory motor control during wakefulness, 

but it has also been suggested to play a more general role in sensorimotor integration and 

top-down control (Wang, 2010). Finally, active and attentive states of wakefulness are 

characterised by gamma frequency oscillations (>30 Hz) that are highly variable in 

frequency and occur throughout the cerebral cortex as well as subcortical brain regions 

(Buzsáki & Wang, 2012; McCormick et al., 2015). Gamma activity is involved in 

exploratory behaviour and perceptual tasks (Bragin et al., 1995; Gray et al., 1989) and is 

thought to play a role in the integration of sensory information (Gray, 1994).  

1.2.3  Cortical Rhythms as Transient Events 

 While some cortical rhythms may reflect a sustained oscillation at a particular 

frequency that is modulated only by a change in task or brain state, many cortical 

rhythms are not sustained. Instead, these cortical rhythms arise as brief, high-power 
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bursts of rhythmic activity termed “transient events” (Jones, 2016). The first realisation 

of transient events in electrophysiological data dates back to the identification of sleep 

spindles (spontaneous 12-14 Hz transient activity) in human EEG data in the 1930s 

(Berger, 1929; Loomis et al., 1935). Since then, transient events of various frequencies 

have been identified in electrophysiological recordings from humans and animal models, 

and have been linked to physiological and cognitive functions including attention, 

working memory, arousal and relaxation, and voluntary movement (Errington et al., 

2020; Feingold et al., 2015; He et al., 2020; Hebert and Lehmann, 1977; Lakatos et al., 

2004; Little et al., 2019; Lundqvist et al., 2016; Shin et al., 2017; Wessel, 2020).  

            Historically, electrophysiological data has been analysed by averaging across 

many repetitions of a task or aggregating over time, resulting in an easily interpretable 

signal, with high signal to noise ratio. This method, however, is a simplification that 

results in a loss of important information about the transient dynamics in the raw signal. 

As shown in Figure 1.2, traditional average power analysis tends to result in the 

appearance of a sustained signal of a particular frequency that changes in power in 

response to a task. However, when we instead consider power in the individual trials, it is 

evident that the underlying neural activity is not sustained, but rather transient in nature. 

Identifying these transient events and their characteristics (e.g., peak frequency, peak 

power, duration, rate of occurrence, etc.) in the unaveraged signal allows us to gain 

insight into the potential neural mechanisms underlying electrophysiological signals. For 

example, higher power events are suggestive of a larger population of synchronous 

neurons (Murthy & Fetz, 1996), while a higher rate of bursting suggests that the neuronal 

network is becoming active more frequently. In the average, these features would be 

indistinguishable, and thus the study of transient event characteristics provides important 

mechanistic insight that has traditionally been overlooked.  

            This thesis explores two types of transient events, sensorimotor beta bursts and 

paroxysmal slow wave events, and their role in the process of healthy ageing. The 

following sections provide an overview of our current understanding of each of these 

types of transient events.  
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Figure 1.2 Time-frequency representations showing examples of transient events at a 
single MEG sensor (MEG 0221). Data is shown for a representative subject (CC110056) 
from the CamCAN dataset. (A) The average time-frequency representation across 63 
trials of a unilateral button press (sensorimotor) task. In the average, the signal appears 
sustained prior to and following the button press event at time=0. (B) The time-frequency 
representations (colour) and overlaid time courses (white line) for 5 sample trials from 
the same button press task. The individual trials show sporadic, high-power (red) 
transient bursts of activity rather than a sustained signal as is seen in the average. (C) The 
time-frequency representations and overlaid time courses for 2 transient bursts identified 
in the individual trials (indicated by the white boxes in B). Variability in the duration, 
power and frequency span of the bursts can be noted. 
 
1.3 Sensorimotor Beta Bursts 

1.3.1  Sensorimotor Beta Bursts in Health and Disease 

         The resting brain is characterised by high-power rhythmic electrophysiological 

signals (Pfurtscheller & Lopes Da Silva, 1999). Voluntary movement elicits a distinct 

pattern of frequency and region-specific changes in cortical rhythms (Hari & Salmelin, 
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1997) including changes in power of mu (8-12 Hz), beta (15-30 Hz) and gamma (30-90 

Hz) oscillations in the sensorimotor cortices. Movement onset is accompanied by a 

bilateral reduction in sensorimotor beta activity (beta suppression) that persists 

throughout the duration of sustained movement. Approximately 200ms following 

movement offset, strong increases in beta band activity (beta rebound) occur that surpass 

pre-movement levels before ultimately returning to baseline approximately 1-2 seconds 

post-movement (Bardouille & Bailey, 2019; Jurkiewicz et al., 2006; Neuper et al., 2006; 

Pfurtscheller & Lopes Da Silva, 1999).  

            Underlying the movement-related changes in average beta power are short (150-

200 ms) bursts of 15-30 Hz rhythmic neural activity termed “sensorimotor beta bursts” 

(Brady et al., 2020; Shin et al., 2017). In 2015, Feingold et al. first demonstrated that 

brief bursts of beta oscillations in the motor and pre-motor cortices could account for 

virtually all cortical beta-band activity in monkeys. These findings were later replicated 

in a multi-modal, multi-species study by Shin et al. (2017). Further, the work by Shin and 

colleagues also demonstrated that beta burst timing was predictive of behaviour such that 

beta bursts occurring close in time to the onset of a barely perceptible stimulus inhibited 

the participant’s ability to detect the stimulus (Shin et al., 2017). Recently, Brady et al. 

(2020) demonstrated that task-related reductions in the inter-trial average beta-band 

power (i.e., beta suppression) in humans could be explained primarily by a reduction in 

the rate of occurrence of beta bursts with movement onset. Transient beta and mu bursts 

have since been shown to play a functional role in movement initiation and cancellation 

(Errington et al., 2020; Wessel, 2020), and response accuracy and reaction time (He et al., 

2020; Little et al., 2019; Wessel, 2020).  

            Sensorimotor beta bursts have also been shown to change in an age-dependent 

manner. Work by Bardouille & Bailey (2019) demonstrated that, in a large dataset of 

healthy adults, there were marked changes in average movement-related beta power with 

age. In particular, there was a significant increase in the magnitude of beta suppression 

with age, and a significant decrease in the magnitude of beta rebound with age. In other 

words, on average, older adults exhibited a larger drop in beta power with the onset of a 

movement and a smaller rebound in beta power following movement offset (Bardouille & 

Bailey, 2019). Subsequent work by Brady et al. (2020) using the same dataset, showed 
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that the reported age-related changes in average spectral power in the beta band 

(Bardouille & Bailey, 2019) could be explained by specific changes in the underlying 

power, frequency, and rate of occurrence of transient beta bursts. As shown in Figure 1.3, 

significant age-related changes in burst rate, peak power, peak frequency, and frequency 

span were identified in resting state data and across multiple phases of a motor task. Of 

these effects, burst rate was determined to be the predominant factor influencing 

modulations in average beta power. The age-related increase in burst rate prior to 

movement could explain age-related increases in the magnitude of beta suppression, 

while the age-related decrease in burst rate in the post-movement interval could explain 

the decrease in beta rebound magnitude (Bardouille & Bailey, 2019; Brady et al., 2020).  

 
Figure 1.3 Relationships between age and beta burst characteristics detected during 
resting state, pre-movement, movement, and post-movement intervals. Each relationship 
is fit with either a linear (green) or quadratic (red) model, depending on which model was 
deemed the best fit for the data with a chi-square comparison. The shaded region around 
the best fit line indicates the 95% confidence interval. Asterisks indicate significant 
effects. Figure reproduced from Brady et al., 2020.  
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 In addition to healthy ageing, sensorimotor beta bursts are also implicated in 

movement disorders including Parkinson’s Disease (PD). Beta oscillations are thought to 

be generated in a reciprocal basal ganglia-cortical circuit (Levy et al., 2002; Kühn et al., 

2004; Lipski et al., 2017; Shimamoto et al., 2013). The reduced dopaminergic activity 

associated with PD results in disruptions to this circuit that lead to hyper-synchronous 

beta oscillations in the basal ganglia (Jenkinson & Brown, 2011) as well as a reduction in 

resting beta power in the motor cortex (Heinrichs-Graham et al., 2014). Recent work by 

Vinding et al. (2020) demonstrated that the characteristic reduction in motor cortical beta 

could be explained by a reduction in sensorimotor beta burst rate in unmedicated PD 

patients. This finding suggests that sensorimotor beta bursts have important implications 

in age-related neuropathology in addition to healthy ageing.  

1.3.2  Cellular Basis of Beta Bursts 

 Over the years, a considerable amount of work has been conducted to investigate 

the anatomical underpinnings of beta rhythms, but there is still some debate as to the 

specific mechanisms at play and how the proposed mechanisms translate to individual 

transient beta bursts. Research into the cortical sources of beta rhythms suggests that 

sensorimotor beta rhythms are generated in a medium range cortical network involving 

the motor cortex, supplementary motor areas, and contralateral supramarginal gyrus 

(Brovelli et al., 2002) with potential driving inputs from the somatosensory cortex 

(Brovelli et al., 2004). Further, there is also evidence to suggest that a number of sub-

cortical structures, including the subthalamic nucleus, globus pallidus, and striatum are 

involved in beta rhythm generation (Mirzaei et al., 2017; West et al., 2018). In particular, 

recordings from the subthalamic nucleus have revealed movement-related beta frequency 

oscillations that have high coherence with cortical beta oscillations suggesting a common 

network (Blenkinsop et al., 2017; Kramer et al., 2008; Lipski et al., 2017; Marsden et al., 

2001; Roopun et al., 2006; Shimamoto et al., 2013; Yamawaki et al., 2008). In addition, 

research into the role of neurotransmitter activity in beta rhythm generation has revealed 

that gamma aminobutyric acid (GABA) (Gaetz et al., 2011; Muthukumaraswamy et al., 

2013), and dopamine (Levy et al., 2002; McCarthy et al., 2011) concentrations have 

modulatory effects on beta power. When taken together, this research suggests the 
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existence of a complex GABA- and dopamine-dependent corticothalamic network 

underlying beta rhythm generation. 

            With these various neural mechanisms in mind, researchers have begun to use 

computational modelling to construct holistic models of the underlying circuitry 

contributing to the sensorimotor beta response. One such model proposed by Sherman et 

al. (2016) used simulated trains of action potentials to imitate proximal and distal drives 

to a local network to re-create the stereotypical temporal waveform shape of human beta 

bursts. The authors found that a weak, 100 ms proximal drive from the lemniscal 

thalamus (i.e., a feedforward drive) combined with a stronger, 50 ms distal drive from the 

non-lemniscal thalamus or higher-order cortex (i.e., a feedback drive) resulted in a 

reliable reproduction of the transient beta burst waveform (Sherman et al., 2016). The 

proposed mechanism was subsequently validated and shown to be in concordance with 

human neuromagnetic data as well as primate LFP data (Sherman et al., 2016, Neymotin 

et al., 2020). Despite the recent advances in our understanding of the generative 

mechanism of transient beta bursts, the changes in these mechanisms that occur with 

ageing and disease are not yet understood.  

1.4 Paroxysmal Slow Wave Events 

1.4.1  PSWEs in Health and Disease 

            Electrocortical slowing is a commonly observed phenomenon in neurological 

diseases including epilepsy (Milikovsky et al., 2017, 2019; Zelig et al., 2022) and 

Alzheimer’s disease (AD) (Benwell et al., 2020; Brenner et al., 1986; Hier et al., 1991; 

Jeong, 2004; Meghdadi et al., 2021; Milikovsky et al., 2019; Musaeus et al., 2018; Özbek 

et al., 2021; Penttilä et al., 1985; Weiner and Schuster, 1956; Wiesman et al., 2022). 

Patients with epilepsy tend to show higher amplitude delta (0.5-4 Hz) and theta (4-8 Hz) 

oscillations and lower amplitude beta (15-30 Hz) and gamma (30-100 Hz) oscillations 

compared to healthy controls (Milikovsky et al., 2017; Zelig et al., 2022). Similarly, 

patients with AD have increased spectral power and coherence at lower frequencies (e.g., 

delta and theta) and decreased spectral power at higher frequencies (e.g., alpha and beta) 

(Benwell et al., 2020; Meghdadi et al., 2021; Özbek et al., 2021), suggesting a shift 

towards slower oscillatory activity in the disease state.  
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            Recently, Milikovsky and colleagues (2019) observed that this pathological 

slowing is associated with transient (5-10 second) patterns of slow-wave activity, rather 

than a persistent slowing of the sustained signal. The authors termed these transient shifts 

in network activity “paroxysmal slow-wave events” (PSWEs) and showed that the 

duration and number of PSWEs were underlying the slowing effects observed in the 

average spectral power analysis (Milikovsky et al., 2019). They also detected PSWEs at a 

higher rate in both epilepsy and AD populations compared to healthy controls and 

replicated these findings in rodent models of epilepsy (Senatorov et al., 2019; Milikovsky 

et al., 2019; Zelig et al., 2022). In addition, PSWEs were found to be related to cognitive 

impairment and blood-brain barrier disruption (BBBd) in animals and patient populations 

(Milikovsky et al., 2019). A negative relationship was observed between cognitive 

performance and PSWE occurrence in patients with AD suggesting that PSWEs could be 

a marker for cognitive impairment in patient populations. This observation supported 

previous findings that low frequency (e.g., delta and theta) oscillations are related to 

cognitive impairment in older adult populations (Adler et al., 1999; Benwell et al., 2020). 

In addition, it was found that patients with a high rate of PSWEs were more likely to have 

a higher percentage of blood-brain barrier disruption (BBBd) than patients with fewer 

PSWEs and that PSWEs and BBBd tended to be spatially co-localized in patients with 

epilepsy (Milikovsky et al., 2019). 

            Synthesizing the above work provides evidence for the existence and disease-

dependent modulation of PSWEs in humans and animal models, and a fundamental 

relationship between PSWEs, cognitive impairment, and BBBd. However, there has been 

little research into the presence of PSWEs in healthy populations. It is known that non-

pathological (i.e., healthy) ageing is associated with declines in cognitive functions 

including memory, executive function, processing speed and reasoning that occur from 

middle age onwards (Deary et al., 2009). In addition, alterations to blood-brain barrier 

integrity occur with age as a result of physiological factors including the accumulation of 

iron in astrocytes and decreased activity of transporters involved in the extrusion of 

toxins from the brain (Popescu et al., 2009). The relationships between ageing, cognitive 

performance, and BBBd therefore suggest that PSWEs may be related to normal ageing 

and associated cognitive decline in humans. Electrophysiological studies of non-
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pathological ageing, however, have provided mixed results. In animal models of ageing, 

older mice were found to have increased low-frequency activity in EEG (Senatorov et al., 

2019) and a higher number of PSWEs compared to younger mice (Milikovsky et al., 

2019; Senatorov et al., 2019). Human electrophysiological studies, however, have either 

found no significant changes in low-frequency oscillatory activity with age (Caplan et al., 

2015; Cesnaite et al., 2023), or have found reduced low-frequency activity in healthy 

older adults (Emek-Savas et al., 2016; Leirer et al., 2011; Meghdadi et al., 2021; Vlahou 

et al., 2015). It is clear from these contradictory findings that further investigations into 

the role of PSWEs in healthy ageing are required.  

1.4.2 Cellular Basis of PSWEs 

 The phenomenon of cortical slowing that is often reported in patients with AD and 

cognitively impaired older adults tends to be quite generalized, affecting widespread 

brain regions (Benwell et al., 2020; Gómez et al., 2013). This generalized slowing could 

be the result of subtle shifts in the mechanisms underlying generalized alpha rhythms, 

which are the dominant resting frequency in healthy adults. Alpha (8-15 Hz) and theta (4-

8 Hz) oscillations have been found to be generated by a similar thalamic mechanism, 

whereby strong depolarization in thalamocortical cells causes strong activation of 

glutamate receptors leading to alpha waves, while weaker depolarization and reduced 

glutamate receptor activation in the same thalamocortical cells leads to theta waves 

(Hughes & Crunelli, 2005). In a healthy brain, reduced arousal is associated with a 

decrease in thalamic glutamate receptor activity resulting in a shift from alpha to theta 

waves (Hughes & Crunelli, 2005). In a pathological brain, dysregulation of this 

thalamocortical circuit could result in atypical periods of slow wave activity in the theta 

frequency range. It has been demonstrated that sufficient glutamate and acetylcholine 

concentrations are required to generate reliable 10-12 Hz oscillations in the thalamus, and 

that reduced activity of these neurotransmitters leads to reductions in the oscillatory 

frequency (Hughes & Crunelli, 2005). In patients with AD, reductions in acetylcholine 

activity have been reported (Soininen et al., 1992), providing a potential neurochemical 

mechanism of slowing in AD. This mechanism, however, has not been investigated in the 

context of PSWEs.  
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            Research into the specific cortical and cellular underpinnings of PSWEs is limited 

due to the recency of their discovery. Studies with patient populations and animal models 

suggest that PSWEs tend to localize to temporal (e.g., hippocampal) brain regions where 

high blood-brain barrier permeability is detected (Milikovsky et al., 2019; Senatorov et 

al., 2019). In rodent models of ageing, Senatorov and colleagues (2019) demonstrated 

that degradation of the blood-brain barrier triggers hyperactivation of the transforming 

growth factor-beta (TGF-beta) signalling pathway (Senatorov, 2019). The result of the 

TGF-beta signalling cascade is neuronal hyperexcitability and an increased incidence of 

hippocampal PSWEs (Senatorov, 2019), suggesting a relationship between TGF-beta 

signalling and PSWE generation. However, the precise causal mechanism underlying this 

relationship is not fully understood.  

            Our current understanding of PSWEs suggests multiple possible cellular 

mechanisms that could result in either focal or widespread PSWEs. In order to elucidate 

the role of these mechanisms in healthy ageing, further investigation into the prevalence 

and characteristics of PSWEs in healthy ageing is required. 

1.5 Technical Considerations 

1.5.1 Magnetoencephalography 

 Magnetoencephalography (MEG) is a powerful non-invasive functional 

neuroimaging technique that has been instrumental in advancing our understanding of 

human brain function over the past few decades. MEG is sensitive to small (e.g., 5-100 

fT) fluctuations in magnetic fields induced by electric currents in the brain (Baillet, 2017; 

Cohen, 1968, 1972). As described in Section 1.2.1, these currents arise from synchronous 

activity across populations of neurons in the cerebral cortex (Hansen et al., 2010), and 

therefore provide a direct measure of underlying neural activity. Despite the knowledge 

that the source of neuromagnetic activity is a set of synchronous post-synaptic potentials 

across a population of similarly oriented dendrites that may span several centimetres of 

cortex, it has been observed that from a distance (e.g., outside the head), this post-

synaptic activity can be approximated by a current dipole oriented along the dendrites 

(Hämäläinen et al., 1993). Modelling the cortex as a spherical, homogeneous conductor, 

we can describe the current density by two components: the primary current, which 

describes the current flow in the vicinity of the cell, and the volume current, which flows 
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passively everywhere in the medium. A current dipole is essentially a concentration of the 

primary current density to a single point. A current dipole 𝑄"⃗  with position 𝑟!"""⃗  within a 

spherically symmetric conductor produces a magnetic field B at a distant sensor with 

position r and orientation z, according to Equation 1.1  (Williamson & Kaufman, 1981; 

Hämäläinen et al., 1993):  

 

Equation 1.1     B" =
#!
$%

&''⃗ ×*+'⃗ ,+"'''''⃗ -∙/#''''⃗
|+'⃗ ,+"'''''⃗ |$

 

 

 This simplified model illustrates the general principles of neuromagnetic source 

and can be used to reasonably estimate the magnetic fields generated by a post-synaptic 

potential at a given source. However, more complex methods that use more realistic 

conductor shapes are also common (Hämäläinen et al., 1993). Equation 1.1 demonstrates 

that distant sensors are sensitive to the tangential component of primary currents. In other 

words, MEG is specifically sensitive to dendrites that are oriented tangentially to the 

surface of the head (i.e., those that line the banks of sulci in the cortex). In simple terms, 

this is because the neuromagnetic field wraps around the dendrites such that tangentially 

oriented dendrites create a field that propagates out of (and then back into) the head, 

allowing the field to be measured externally (see Figure 1.4A).  

 The current MEG landscape consists of two main types of MEG systems: 

cryogenic systems, and optically pumped magnetometer (OPM) systems. Cryogenic 

MEG systems detect neuromagnetic fields using sensitive detector coils that are made of 

materials that have superconducting properties (i.e., near zero resistance to current flow) 

at low temperatures (e.g., less than 10 Kelvin). The current on the superconducting coil 

wire is then transformed into a measurable voltage via a superconducting quantum 

interference device (SQUID). In order to maintain a sufficiently low temperature for the 
superconducting components, cryogenic MEG sensors are typically housed in a dewar of 

liquid helium. OPM systems on the other hand are a more recent advancement in MEG 

technology that allow sensitive magnetic recordings to be performed at room temperature 

(Knappe et al., 2014; Boto et al., 2017; Tierney et al., 2019). This advancement has 

several advantages over cryogenic technology including reduced operating costs and an 
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increased signal to noise ratio, because without the cryogenic dewar, sensors can be in 

closer proximity to the head. Despite these advantages, OPM is relatively new and 

rapidly changing and thus is not as widely used as cryogenic MEG. For the remainder of 

this thesis, I will focus primarily on cryogenic MEG as the data analysed in this work was 

acquired using a cryogenic system.  

 There are three main types of detector coils used in cryogenic MEG: 

magnetometers, axial gradiometers, and planar gradiometers (see Figure 4B). 

Magnetometers consist of a single coil loop oriented with the flat surface of the loop 

parallel to the surface of the head. Any magnetic field passing through the loop, either 

from the head or the surrounding environment, will induce a current in the magnetometer. 

Gradiometers on the other hand consist of two coils, wound in opposite directions, and 

are sensitive to gradients in magnetic fields along the spatial dimension. In axial 

gradiometers, the second coil is located approximately 5 cm above the first, allowing for 

sensitivity to magnetic fields that demonstrate a large change as one moves away from 

the scalp. Planar gradiometers consist of two coils in the same plane, equidistant from the 

head, making them sensitive to magnetic fields that change as one moves tangentially to 

the scalp. The benefit of gradiometers is that changing magnetic fields can be captured 

close to the source (i.e., near-field sources)  but not far from the source (i.e., far-field 

sources). Therefore, gradiometers are sensitive to changing fields coming from inside the 

head but not to changes in fields from distant sources in the surrounding environment. In 

this work, data was collected using a 306-channel Vectorview system (Elekta Neuromag, 

Helsinki, Finland) which has a sensor array comprised of 102 triple-sensor element chips. 

Each chip consists of a single magnetometer and a pair of planar gradiometers oriented 

90 degrees to one another (see Figure 4C), to allow signals of all orientations to be 

detected. 
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Figure 1.4 MEG sensor specifications. (A) An illustration demonstrating how 
neuromagnetic fields are produced and detected using MEG sensors. Neurons oriented 
tangentially to the surface of the head generate a magnetic field that propagates out of the 
head and is detected by detector coils in the MEG helmet. (B) Schematics of the 3 types 
of detector coils commonly used in MEG systems. (C) The arrangement of 
magnetometers and gradiometers in the Elekta Neuromag 306-channel Vectorview 
system used in this work. The sensor array is comprised of 102 triple sensor element 
chips that consist of 1 magnetometer (black) and 2 planar gradiometers that are oriented 
at 90 degrees with respect to one another (white and grey). Elekta chip schematics are 
taken from the Elekta Neuromag System Hardware Technical Manual (Revision F, 2005). 
Figure created with BioRender.com.  
 

 MEG is capable of measuring neural activity on a millisecond timescale providing 

high temporal resolution that is limited only by the sampling rate of the system (up to 12 

kHz) (Hall et al., 2014). Further, unlike the electrical signals recorded in EEG, magnetic 

fields are not susceptible to distortion by the skull and scalp and have a consistent 

attenuation rate through all media in the head, allowing for an accurate (i.e., centimetre 

resolution) estimation of source (Baillet, 2017; Hansen et al., 2010). The high 

spatiotemporal resolution afforded by MEG has allowed us to advance research into 
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human brain activity underlying sensory processing, motor control, and cognition 

(Logothetis, 2008), and has provided a useful clinical tool for diagnosis and pre-surgical 

planning in patients with neurological diseases such as epilepsy (Barth et al., 1982; 

Bowyer et al., 2005; Hansen et al., 2010; Papanicolaou et al., 2005).  

1.5.2  Source Localization 

 Cryogenic MEG provides a set of signals that characterizes the pattern of radial 

magnetic activity a few centimetres above the surface of the head. The challenge we are 

then faced with is identifying the set of neural sources responsible for generating the 

observed pattern of activity. This problem is typically referred to as the “inverse problem” 

because it involves starting with the effect (i.e., the sensor activity) and working 

backwards to identify the cause (i.e., the neural generators). Unfortunately, this problem 

is mathematically ill-posed, meaning that there are an infinite number of solutions that 

can result in the same pattern. While Maxwell’s equations can be used to compute 

forward solutions (i.e., estimates of surface activity for known generators) as described in 

Section 1.5.1, the inverse problem has no unique solution (Williamson & Kaufman, 

1981). Therefore, source localization methods typically compute forward solutions at one 

or more points in the source space and use iterative methods along with physiological 

constraints and regularization techniques to identify the most plausible source or 

combination of sources to explain the observed pattern of sensor activity (Halder et al., 

2019).  

            The simplest method of source localization attempts to explain sensor activity 

with a single equivalent current dipole. A dipole is a point source, meaning that it is an 

infinitely small point at a particular location, that has negative and positive poles of 

equivalent strength (Newman, 2019). Focal electrical brain activity can be readily 

modelled by a current dipole which represents the movement of a localized charge over a 

short distance (i.e., the product of current and distance) (Williamson & Kaufman, 1981; 

Hämäläinen et al., 1993). While it is not true that neural activity is generated by infinitely 

small point sources, this simplification is reasonable for focal cortical sources. Post-

synaptic potentials over a 1mm2-1cm2 cortical patch generate a complex magnetic pattern 

close to the source, but when recorded from a distance (i.e., from outside the body), much 

of this complexity is lost, such that a single equivalent current dipole is a reasonable 
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representation (Williamson & Kaufman, 1981). Dipole modelling involves an iterative 

process that begins by placing a dipole with a random position, orientation, and strength, 

and computing the forward solution for that dipole. The forward solution is then 

compared to the observed data and small adjustments are made to traverse the parameter 

space until the best fit (i.e., least squared difference between observed and modelled 

patterns) is found (Newman, 2019). This procedure can also be performed with more than 

one dipole if multiple focal sources are expected. While this method is suitable for 

interpreting the simplest magnetic field patterns (Williamson & Kaufman, 1981), it has 

several associated limitations. Most notably, dipole fitting requires the user to define the 

number of dipole sources, and the chosen number of dipoles can drastically change the 

results, making the method susceptible to high inter-rater variability. Further, some a 

priori knowledge of the expected source distribution is required for accurate dipole 

modelling, but this expectation of source can lead to confirmation bias.  

            When minimal a priori information about the source is available, or a distributed 

source is anticipated, distributed source modelling is often used (Hämäläinen & Ilmoieni, 

1994). The procedure for distributed source modelling involves simultaneously fitting a 

dipole at every vertex on a tesselated cortical surface (typically 10,000-20,000 vertices) 

and then determining the optimal primary current density at each point to best match the 

observed data (Newman, 2019). One of the most common distributed source models is 

minimum norm estimation (MNE). MNE constrains the source model by assuming that 

the best estimate of the true primary current density explains the measured signals while 

minimizing the length of the current vector (Hämäläinen & Ilmonieni, 1994). This 

method, however, has the inadvertent effect of being biased towards superficial sources. 

Therefore, modern versions of MNE tend to apply additional constraints to penalize 

superficial sources in favour of deeper ones. Some variants of MNE also apply additional 

regularization methods to normalize noise. Examples of noise normalization methods 

include dynamic statistical parametric mapping (DSPM; Dale et al., 2000), and 

standardized low-resolution brain electromagnetic tomography (sLORETA; Pascal-

Marqui, 2002).  

            An alternative method for localizing widespread sources of MEG activity is a 

beamformer spatial filter. Beamformers operate by computing a forward solution at every 
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point in the source space, and then for each point, building a spatial filter (i.e., a set of 

weights applied to the data from each MEG sensor) that suppresses signal from every 

location other than the point of interest (Newman, 2019). Some beamformers operate on 

signals in the time domain (e.g., synthetic aperture magnetometry (SAM; Robinson & 

Vrba, 1991) and linearly constrained minimum variance (LCMV; VanVeen et al., 1997)), 

while others operate on signals in the frequency domain (e.g., dynamic imaging of 

coherent sources (DICS; Gross et al., 2001). DICS, which is of interest for the study of 

frequency-specific cortical oscillations, operates by calculating the cross spectral density 

for each point over a frequency range of interest, in addition to calculating the forward 

solution at each point (Gross et al., 2001). Given these values, power and coherence to a 

given reference point can be calculated for each point in the source space, and one of 

these measures can then be used to visualize source contributions on a co-registered 

anatomical MRI.  

            Distributed source models and beamformers both provide plausible explanations 

of source, but also have associated limitations. On one hand, MNE tends to have low 

resolution and is likely to overestimate the spatial extent of the source, while 

beamformers tend to null highly correlated sources due to the nature of the spatial 

filtering technique, resulting in a possible underestimation of source (Newman, 2019). 

Given the complexity of the inverse problem, it is unknown which of these methods 

provides a more accurate estimate of source, and the choice of method is highly 

dependent on the research question at hand.  

1.5.3  Transient Event Detection 

 In recent years there has been an increasing interest in transient burst-based 

analyses and with this interest has come a surge in development of analysis methods for 

detecting and characterising bursts. At present, there is no gold-standard method for 

detecting and characterising transient bursts in electrophysiological data, and each 

proposed method comes with associated advantages and limitations.  

The simplest, and most commonly used burst detection method uses amplitude 

thresholding to detect bursts of high-power activity within a pre-defined frequency range 

of interest. This method, popularized by Shin et al. (2017) defines bursts as local maxima 

in the time-frequency representation that exceed a pre-set power threshold (multiple of 
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the median power) and fall within a pre-defined frequency range (Brady et al., 2020; Shin 

et al., 2017). While this method has been widely used to detect mu, beta, and gamma 

bursts in human and animal models (Errington et al., 2020; Feingold et al., 2015; He et 

al., 2020; Hebert and Lehmann, 1977; Lakatos et al., 2004; Little et al., 2019; Lundqvist 

et al., 2016; Shin et al., 2017; Wessel, 2020), it is limited in its applications due to its 

imposition of assumptions about the frequency, waveform shape, and linearity of the 

signal of interest. In addition, the method does not effectively account for the aperiodic 

background activity when applying thresholding. Further, this method operates on a 

single signal (e.g., channel or source reconstructed time course), and does not take into 

consideration multi-channel interactions or signal spread, making it difficult to compare 

spatiotemporal characteristics between subjects. To address these limitations, a number of 

alternative burst detection methods have been proposed.  

 The Better Oscillation Detection (BOSC) and Periodic/Aperiodic 

Parameterization of Transient Oscillations (PAPTO) methods are alternative amplitude 

thresholding methods that have been designed to account for aperiodic background 

activity in the signal and have been shown to increase sensitivity to bursts (Brady & 

Bardouille, 2022; Caplan et al., 2015; 2001; Kosciessa et al., 2020; Rayson et al., 2022; 

Whitten et al., 2011). These methods, however, still rely on several fundamental 

assumptions about the approximate frequency, waveform shape, and spatial location of 

the signal of interest. To reduce these assumptions, many have moved towards data-

driven methods of burst detection. Examples of this include Empirical Mode 

Decomposition (EMD) and cycle- by-cycle analyses which automatically detect 

approximately sinusoidal waveforms in nonlinear or nonstationary data (Cole & Voytek, 

2019; Fabus et al., 2021; Huang et al., 1998), and Brief Amplitude Undulation (BAU) 

detection which automatically detects stereotypical waveforms based on their shape in the 

temporal domain (Abeles, 2014; Tal and Abeles, 2016; 2018). Several types of dictionary 

learning algorithms including MoTIF (Brockmeier and Principe, 2016; Jost et al., 2006), 

Sliding Window Matching (Gips et al., 2017), and Adaptive Waveform Learning 

(Hitziger et al., 2017) have also been applied to the burst detection problem. These 

algorithms, which were largely developed for other applications such as image 

processing, and audio signal segmentation, have shown promise as burst detection 
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methods due to their ability to learn repeating temporal motifs in the signal. While the 

data-driven nature of all of these methods provides an improvement over traditional 

amplitude thresholding methods, these methods are still limited in scope as they operate 

on a single time course and fail to consider the multi-channel dynamics that are critical to 

understanding electrophysiological signals, and how they change across a population.  

 Analysis methods that account for multi-channel interactions, such as Hidden 

Markov Modelling (HMM) and EEG Microstates have been used to detect transient states 

of brain activity during task-performance and in disease (Baker et al., 2014; Becker et al., 

2020; Coquelet et al., 2022; Michel & Koenig, 2018; Quinn et al., 2018; Seedat et al., 

2020; Vidaurre et al., 2016). HMM identifies full graphical networks that exist for 100-

200ms at a time and exhibit rapid shifts between states, while the EEG Microstates 

method identifies short periods of stable scalp potentials that reflect sharp events of 

neural synchronization (Coquelet et al., 2022). A strength of these data-driven approaches 

is that they can identify repeating transient states across the whole head. However, the 

assumption that multiple states cannot coexist in time is a limitation as it is not 

uncommon to observe independent electrophysiological processes (e.g., occipital alpha 

and sensorimotor beta) co-occurring in time.  

Another method that has been proposed for use in the multi-channel detection of 

transient bursts is the well-known Independent Component Analysis (ICA) algorithm 

(Briley et al., 2021; Himberg et al., 2004; Hyvärinen & Oja, 2000; Oja & Zhijian, 2006; 

Vigário et al., 1998). ICA has been a widely successful workhorse for extracting 

spatiotemporal components in electrophysiological data. However, assuming the 

independence of sources may not be realistic when working with highly correlated task-

related brain oscillations such as sensorimotor mu and beta. In addition, ICA considers 

long time course states of brain activity and does not break the signal into short repeating 

temporal motifs that are characteristic of transient bursts.  

Finally, multivariate convolutional sparse coding (CSC), which is a specification 

of the broader class of convolutional dictionary learning (CDL) algorithms is a 

potentially promising multi-channel, data-driven event detection method. CDL represents 

the multivariate neural signals as a set of spatiotemporal patterns, called atoms, with their 

respective onset times and magnitudes, called activations. CDL operates similarly to 
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classical Independent Component Analysis (ICA), decomposing the signals as a sum of 

topographies and sources (Dupré la Tour et al., 2018). However, CDL does so not by 

assuming that the sources are independent, but by assuming that the source time courses 

are formed by repeated waveforms. In this work, we explore the use of CDL for large-

scale burst detection applications.  

1.6 Thesis Overview 
 This thesis investigates the characteristics and neural sources of transient patterns 

of human brain activity in a large cohort of healthy participants. The objectives of the 

thesis are a) to develop and validate novel tools for detecting transient events and 

identifying their generative sources in the brain, and b) to provide insight into the 

neurophysiological changes that occur in healthy ageing. In each chapter of the thesis, a 

transient event framework is applied to explore the relationship between oscillatory 

neural activity and normal ageing. Chapters 2 and 3 implement novel methods to 

investigate the sources and spatiotemporal characteristics of typically occurring transient 

events related to a sensorimotor task and reveal insights into mechanistic changes that 

occur with healthy ageing. Chapter 4 then explores the prevalence and characteristics of 

atypical slow wave transients in the same cohort of healthy adults and relates the findings 

to ageing and cognitive performance. Each chapter of this thesis consists of a peer-

reviewed publication containing original research that addresses the above objectives. 

Together, the chapters of this thesis provide validation for new methods of transient event 

detection and localization as well as insights into the neural mechanisms of ageing.  

 Project 1 (Chapter 2) aims to a) implement existing source localization algorithms 

for use in the detection of the cortical sources of transient beta bursts and b) uncover age-

related trends in the source localization pattern of transient beta bursts. In this work, 

minimum norm estimation and beamformer methods are implemented for this novel 

application allowing the precise cortical sources of transient beta bursts to be identified 

for the first time. Further, distinct changes in the source patterns of beta bursts with age 

are revealed, providing insight into the cortical mechanisms underlying changes in 

sensorimotor beta activity with age. Project 1 is published as follows: 
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Power, L., & Bardouille, T. (2021). Age‐related trends in the cortical sources of transient 

beta bursts during a sensorimotor task and rest. NeuroImage, 245, 118670. 

https://doi.org/10.1016/j.neuroimage.2021.118670 

 Project 2 (Chapter 3) uses a data-driven transient event detection approach 

(convolutional dictionary learning) to naively detect and characterise ageing trends in 

task-related transient bursts at the group level. This project provides validation of a data-

driven framework for identifying functionally relevant bursting activity in 

neurophysiological recordings. The work reveals the presence of several types of task-

related transient events including sensorimotor beta and mu bursts, and occipital and 

temporal alpha bursts. Age-related changes in the rate of occurrence of all types of events 

are also observed.  Project 2 is published as follows:  

Power, L., Allain, C., Moreau, T., Gramfort, A., & Bardouille, T. (2023). Using 

convolutional dictionary learning to detect task-related neuromagnetic transients and 

ageing trends in a large open-access dataset. NeuroImage, 267, 119809. 

https://doi.org/10.1016/j.neuroimage.2022.119809 

 Finally, project 3 (Chapter 4) aims to determine the prevalence of PSWEs in 

healthy populations and to identify the relationships between age, cognitive performance, 

and PSWE characteristics. The work quantifies the prevalence of atypical PSWEs in 

healthy participants for the first time and demonstrates a relationship between PSWEs 

and participant age. These findings have important clinical implications as PSWEs were 

previously thought to be a marker of neuropathology. Project 3 is published as follows:  

Power, L., Friedman, A., & Bardouille, T. (2024). Atypical slow paroxysmal activity in 

healthy adults: Relationship to age and cognitive performance. Neurobiology of Aging, 

136, 44-57. https://doi.org/10.1016/j.neurobiolaging.2024.01.009 

 The data used in this thesis comes from a large open-access dataset collected by 

the Cambridge Centre for Ageing and Neuroscience (CamCAN). The dataset consists of 

imaging and behavioural data from over 600 healthy participants with a uniform age 

distribution between 18-88 years (Shafto et al., 2014; Taylor et al., 2017). This dataset is 

ideal for studying cross-sectional ageing trends in a healthy population. However, it is 

important to note that given the cross-sectional nature of the data, we can only infer age-

related trends, and cannot confirm that the effects are present across the lifespan of an 
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individual. Cross-sectional ageing studies are inherently limited because there are 

environmental and lifestyle factors that vary between age groups that may be unrelated to 

ageing. For example, medicine, nutrition, and hygiene practices have all changed 

significantly in the past 60-70 years, and differences in any of these variables could 

confound the age-related effects observed in this work. Therefore, the inferences made 

throughout this thesis should be interpreted with this limitation in mind. 
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Chapter 2   

Age-Related Trends in the Cortical Sources of Transient Beta 
Bursts During a Sensorimotor Task and Rest 
 

2.1 Preamble 
 Previous work by our group detected transient beta bursts during a sensorimotor 

task and rest in a large dataset collected by the Cambridge Centre for Ageing and 

Neuroscience (CamCAN) (Brady et al., 2020). As described in Section 1.3.1, this work 

revealed significant age-related changes in the burst rate, peak power, peak frequency, 

and frequency span of the beta bursts. The findings of this work provided significant 

evidence that the temporal characteristics of individual beta bursts changed throughout 

the lifespan. It further demonstrated that these temporal burst features could explain 

changes in average beta power observed in previous works (Bardouille & Bailey, 2019), 

providing insight into the neural population mechanisms involved in age-related changes 

in average power. However, this work did not consider the spatial characteristics or 

cortical sources of the bursts. This was due in part to a lack of established methods to 

identify the sources of individual transient events. Thus, this chapter aims to expand on 

this prior work by presenting a method to localize transient beta burst sources, and 

applying that method to the same (i.e., CamCAN) dataset to explore changes in the 

cortical generators of beta bursts across the lifespan.  

 

Chapter 2 of the thesis contains peer-reviewed work published in NeuroImage in 

December, 2021. Text in the introduction and discussion has been modified to reduce 

redundancies in the thesis, but all other sections appear as published. The reference for 

the publication is provided below.  

 

Power, L., & Bardouille, T. (2021). Age‐related trends in the cortical sources of transient 

beta bursts during a sensorimotor task and rest. NeuroImage, 245, 118670. 

https://doi.org/10.1016/j.neuroimage.2021.118670 

 



 
 

 
 

30 

2.2 Abstract 
Interpreting neurophysiology recordings as a series of transient bursts with varying 

temporal and spectral characteristics provides meaningful insight into mechanisms 

underlying neural networks. Previous research has revealed age-related changes in the 

time-frequency dynamics of sensorimotor beta bursts, but to date, there has been little 

focus on the spatial localization of these beta bursts or how the localization patterns 

change with normal healthy ageing. The objective of the current study is to implement 

existing source localization algorithms for use in the detection of the cortical sources of 

transient beta bursts, and to uncover age-related trends in the resulting source localization 

patterns. Two well-established source localization algorithms (minimum-norm estimation 

and beamformer) were applied to localize beta bursts detected over the sensorimotor 

cortices in a cohort of 561 healthy participants between the ages of 18 and 88 (CamCAN 

open access dataset). Age-related trends were then investigated by applying regression 

analysis between participant age and average source power within several cortical regions 

of interest. This analysis revealed that beta bursts localized primarily to the sensorimotor 

cortex ipsilateral to the side of the sensor used for their detection. Region of interest 

analysis revealed that there were age-related changes in the beta burst localization 

pattern, with most substantial changes evidenced in frontal brain regions. In addition, 

regression analysis revealed a tendency of age-related trends to peak around 60 years of 

age suggesting that 60 is a potential critical age in this population. These results show for 

the first time that source localization techniques can be implemented for the identification 

of the sources of transient beta bursts. The exploration of these sources provides us with 

insight into the anatomical generators of transient beta activity and how they change 

across the lifespan. 

2.3 Introduction 
 Movement-dependent transient beta bursts are thought to emerge in the neocortex 

with synaptic drive from proximal and distal sources in the cortex, basal ganglia and 

thalamus (Bonaiuto et al., 2021; Sherman et al., 2016; Whittington et al., 2000). 

However, the specific cortical sources that are involved in beta burst generation during 

each phase of movement are not yet fully understood. To identify the underlying cortical 

sources responsible for generating transient beta bursts using MEG, we must solve the 
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inverse problem (Hämäläinen & Ilmoniemi, 1994; Sarvas, 1987). Several different 

algorithms have been developed to tackle this ill-posed problem including non-adaptive 

spatial filters, such as minimum norm estimation (MNE) and its variants (e.g. dynamic 

statistical parametric mapping (dSPM), standardized low-resolution brain 

electromagnetic tomography (sLORETA), etc.) and adaptive spatial filters, such as 

beamformer algorithms (e.g. dynamic imaging of coherent sources (DICS), linearly 

constrained minimum variance (LCMV)) (Gross et al., 2001; Halder et al., 2019; 

Newman, 2019). Both algorithm types tesselate the brain into a large number of segments 

(on the order of 10,000) and compute a forward solution (i.e., lead field generated by an 

equivalent current dipole) at each vertex. The goal is then to re-create the measured data 

by varying the magnitude (and sometimes orientation) of each current dipole (Newman, 

2019).  

 In the present study, we combine the use of these source localization algorithms 

with recent developments to detect transient burst onsets to determine the cortical 

generators of beta activity on a burst-by-burst basis. Previous work has successfully 

detected changes in average spectral power between movement intervals (e.g., pre-versus 

post-movement, movement versus baseline), which we know to be dependent on the 

underlying transient burst characteristics (Brady et al., 2020; Shin et al., 2017). However, 

source maps based on these comparative approaches confound power change due to 

transient bursts in each interval and fail to localize sources of transient bursts directly. To 

date, source localization of transient beta bursts on a burst-by-burst basis, performed 

independently for each interval/condition within a recording has not yet been 

implemented. Such an approach would prove valuable for improving our understanding 

of the generator of these transient bursts. Here, we will be attempting to localize the 

cortical sources of transient beta bursts using two well-established source localization 

algorithms: MNE, and DICS beamformer. Each method has a different set of 

regularization procedures in place to constrain the number of possible solutions to the 

inverse problem, each with their associated strengths and weaknesses. It is unclear which 

of these algorithms will be more beneficial for the novel problem of localizing transient 

beta sources. Therefore, both methods will be employed, and concordance between 

methods will be evaluated.  
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 Previous source localization studies focused on changes in average spectral power 

have demonstrated that the sensorimotor beta band response involves somewhat diffuse 

activation of the bilateral primary motor, primary somatosensory and supplementary 

motor cortices, and contralateral activation of the pre-motor cortex (Cheyne, 2013; Gaetz 

et al., 2011; Wilson et al., 2010). The beta suppression that occurs during and 

immediately prior to movement tends to localize bilaterally in the primary somatosensory 

cortex (Jurkiewicz et al., 2006). Beta suppression can primarily be explained by a 

reduction in the number of beta bursts during movement, compared to the pre-movement 

interval (Brady et al., 2020). Therefore, we expect to find prominent beta burst activity in 

both the contralateral and ipsilateral hemispheres during the pre-movement interval. It is 

unclear, however, whether the bilateral source pattern observed in average spectral power 

data is due to simultaneous reductions in beta bursts that occur independently in each 

hemisphere, or a primary reduction in bursts in the contralateral hemisphere that has 

widespread source contributions. Identifying the sources of the individual beta bursts in 

the pre-movement interval will provide insight into the contributions of each hemisphere. 

Beta rebound, on the other hand, tends to localize more contralaterally in the primary 

motor cortex (Jurkiewicz et al., 2006). Beta rebound is the result of an increase in the 

both the number and peak power of beta bursts in the post-movement interval compared 

to the movement and baseline intervals (Brady et al., 2020). We would therefore expect to 

find significant beta bursting activity localizing to the contralateral hemisphere during the 

post-movement interval. It is unknown however, whether the high-power nature of the 

post-movement bursts is due to high power activity at few focal sources or the 

coordinated activity of a large number of contributing sources. It is therefore necessary to 

localize the individual beta bursts themselves, rather than changes in average spectral 

power with respect to the pre-movement interval, in order to elucidate the underlying 

sources contributing to the movement-related beta response.  

 In addition, there is reason to believe that the beta burst localization patterns will 

show changes across the lifespan that could have functional and/or clinical relevance. In 

addition to the findings that average spectral power and transient beta bursts have age-

related properties (Bardouille & Bailey, 2019; Brady et al., 2020), a number of functional 

neuroimaging studies have noted changes in the spatial representation of motor activity 
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with age.  A series of fMRI studies show that older participants tend to have activation 

across a broader range of motor and non-motor regions than their younger counterparts 

when performing repetitive motor tasks (Hutchinson, 2002; Mattay et al., 2002). Older 

participants show bilateral activation of the sensorimotor cortex and putamen and 

contralateral activation of the cerebellum that are not consistently observed in younger 

participants (Mattay et al., 2002; Vallesi et al., 2010). It has been proposed that this 

change in activation pattern is related to the recruitment of compensatory mechanisms 

that are required to account for age-related structural and chemical changes in the brain. 

These previously reported age-related changes in movement-related brain activation, 

combined with the findings that transient beta bursts demonstrate age-related changes, 

suggest that the cortical sources of transient beta bursts may change with normal healthy 

ageing.  

 The objective of the current study is thus two-fold. First, we aim to implement 

existing source localization algorithms for use in the detection of the cortical sources of 

transient beta bursts. Based on studies using average spectral power data, we hypothesise 

that bursts identified in the pre-movement interval will localize primarily to the primary 

somatosensory cortices and have bilateral sources, and those identified in the post-

movement interval will localize primarily to the contralateral primary motor cortex. 

Secondly, we aim to uncover age-related trends in the source localization pattern of 

transient beta bursts. Based on previous studies of movement-related brain activation, we 

predict that older participants will tend to show a more widespread pattern of activation 

than their younger counterparts. Particularly, it is expected that older participants will 

show increased activation in the pre-motor and supplementary motor areas and will 

recruit ipsilateral sensorimotor regions in addition to the contralateral sources expected in 

the younger participants.  

 To our knowledge, the present study is the first to implement source localization 

algorithms for the identification of the sources of transient beta bursts. Success of this 

work could therefore provide the framework for future studies to explore the cortical 

sources of a variety of transient event types. In addition, the work will provide insight 

into age-related changes in the sources of transient beta bursts. The exploration of these 

sources and how they change across the lifespan could have functional or clinical 
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implications as the results could provide anatomical justification for previously observed 

electrophysiological and behavioural changes in motor function with age.  

2.4 Methods 
Text in Sections 2.4.1-2.4.4 was adapted from Bardouille and Bailey (2019) and Brady et 

al. (2020). Work described in these sections was completed previously, except where 

specified.  

2.4.1  Participants and Experimental Paradigm 

 MEG data was collected from 650 participants in Phase 2 of the Cam-CAN 

examination of healthy cognitive ageing. Participant ages ranged from 18 to 88 years of 

age, with an equal distribution in age per decile and equal proportions of males and 

females. All participants provided written, informed consent prior to participating in each 

phase of the study. The study was conducted in compliance with the declaration of 

Helsinki and data collection was approved by local ethics boards (see Shafto et al., 2014). 

In the current work, we report findings from 561 participants (86.3% of the original 650 

datasets) who had sufficient MEG and anatomical MRI data required for localization. 

Each participant performed the ‘Sensorimotor task’ and a ‘Resting state’ scan (CamCAN 

et al., 2014). In the sensorimotor task, participants responded with a right index finger 

button press to unimodal or bimodal audio/visual stimuli. The order of bimodal and 

unimodal trials was randomized, and the inter-trial interval varied between 2 and 26 s. 

The button press task did not include specific imperatives related to performance (e.g., 

fast responses). Thus, brain-behaviour interactions focused on response time were not 

investigated in this report. In the resting state scan, data were acquired for 8 minutes and 

40 seconds while participants rested with their eyes closed. The first 20 seconds of the 

resting data were discarded. 

2.4.2 Data Acquisition 

 Data were obtained from the CamCAN repository (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/ (Shafto et al., 2014; Taylor et al., 2017)). MEG data were 

acquired at 1000 Hz with inline band-pass filtering between 0.03 and 330 Hz using a 306-

channel Vectorview system with continuous head position monitoring (Elekta Neuromag, 

Helsinki, Finland). Digitization of anatomical landmarks (i.e., fiducial points; nasion and 

left/right preauricular point) as well as additional points on the scalp was also performed 
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for co-registration of MEG and MRI coordinate systems. Electrooculogram (EOG) and 

electrocardiogram (ECG) were recorded concurrently. T1-weighted magnetic resonance 

images (MRI) were acquired using a 3T Siemens Tim Trio system with a 32-channel head 

coil. 

2.4.3 MRI Data Processing 

 Each participant’s MRI was reconstructed using the FreeSurfer recon-all 

algorithm (Dale et al., 1999; Desikan et al., 2006; Fischl et al., 1999a, 1999b, 2001, 2002, 

2004). The reconstruction process provided a digitization of the cortical surface for 

source estimation, a transformation to the average (i.e., fsaverage) brain for spatial 

normalization and group statistics, and a boundary element model of the brain to provide 

more accurate calculation of the forward solution (Hamalainen & Sarvas, 1989). 

Locations for source estimation were defined covering the entire cortical surface with 

5 mm spacing. Finally, each participant’s MRI data was registered to the MEG data based 

on the alignment of anatomical landmarks (i.e., fiducials) in MEG and MRI, and MEG 

head digitization with the scalp was visualized on the MRI (MNE python coreg, v.0.14) 

using a semi-automated process (Bardouille & Bailey, 2019). Coregistration data are 

available at https://github.com/tbardouille/camcan_coreg. Participants missing MRI data 

were excluded from further analyses.  

2.4.4 MEG Data Processing 

 Data were pre-processed by the CamCAN group using temporal signal space 

separation to perform environmental noise reduction, reconstruction of missing or 

corrupted MEG channels, continuous head motion correction, and a transform of each 

dataset to a common head position (Taulu & Simola, 2006). All subsequent MEG 

processing was completed in the Python programming environment (v.2.7.13), using the 

MNE-python library (v.0.18.1) (Gramfort et al., 2014). Python code for all subsequent 

analysis is available at 

https://github.com/lindseypower/CamCAN_BetaSourceLocalization. Raw MEG data 

were lowpass filtered at 125 Hz and notch filtered at 50 Hz and 100 Hz to remove signals 

related to power lines. The task data was then parsed into trials synchronized to each 

button press, with a duration of 3.4 s, including a 1.7 s pre-movement interval. The 3.4 s 

window length was selected to ensure a sufficient post-movement interval to capture the 
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entire beta rebound response. Trials were excluded if the button press occurred more than 

1 s after the cue (indicating poor task performance) or if the button press occurred within 

3 s of the previous button press (which provided insufficient baseline for subsequent 

analysis). Participants with less than 55 trials after these exclusions were excluded from 

further analysis due to insufficient data.  The rest data were cropped to a single 210 s trial 

including 105 s prior to and following the midpoint of the resting data. The length of this 

trial was chosen to be approximately equal in length to the sum of all task trials. 

Independent component analysis was performed on the task and rest data using the 

FASTICA algorithm (Hyvärinen & Oja, 2000; Delorme et al., 2007) to remove artifacts 

using a fully automated process. This process resulted in cleaned MEG task data (i.e., 

channels x time x trials) and cleaned rest data, which were used for burst detection and 

localization.  

 As part of the current localization work, empty room noise data for each 

participant was also processed using similar methods. The head transformation and 

digitization info for the empty room noise data was matched to that of the task data to 

ensure equivalent processing. The empty room noise data was then filtered to remove 

environmental noise and bad channels (MNE python maxwell_filter function). Additional 

processing steps including filtering and ICA were then carried out as described above for 

the task data.  

 Beta bursts were detected in task and rest data at two peak MEG sensors using 

methods described by Shin et al. (2017). Sensors MEG0221 (left central sensor, 

contralateral to the hand used in the task) and MEG1311 (right central sensor, ipsilateral 

to the hand used in the task) were selected as the peak sensors. These sensors overlay the 

left and right sensorimotor areas, are most sensitive to task-related changes in average 

beta power (predicted to originate in the sensorimotor cortex), are far away from the 

midline (to ensure sensitivity to a single hemisphere) and are in mirrored positions on the 

sensor array (Brady et al., 2020). Single-trial time-frequency representations (TFRs) were 

generated using a Morlet wavelet for frequencies between 1 and 100Hz, with a 1Hz 

resolution. Local maxima in spectral power were then identified in the TFRs. Beta bursts 

were defined as local maxima that exceeded a spectral power of 6x the median power (as 

defined by Shin et al., 2017) and had a peak frequency between 15-30Hz. To facilitate 
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localizing bursts occurring in different task states, bursts were detected in two intervals of 

the Task data (pre-movement and post-movement), and throughout the Resting State data 

for each participant in the CamCAN dataset. Pre-movement bursts were defined as beta 

bursts with a peak time between -1.25 to -0.25 s relative to movement onset and post-

movement bursts were defined as having a peak time between 0.25 to 1.25 s relative to 

movement onset. In the current work, the 55 highest power beta bursts were selected for 

each condition (pre-movement, post-movement, and rest) and sensor (left and right) to be 

used in the localization procedure.  

2.4.5  Burst Localization Algorithm 

 In order to isolate data segments associated with transient bursts, we re-epoched 

the MEG data for each participant based on the onset times of the detected bursts to 

create “beta burst epochs”. As per prior work in transient burst characterization, the burst 

onset time for each local maximum in the TFR was determined using the full width at 

half-maximum along the time axis. Each beta burst epoch was 1.15 s in length, centered 

on the burst onset time. An epoch length of 1.15 s was selected as this was the average 

inter-burst interval for the data. Figure 2.1 shows an example of bursts detected in a 

single trial TFR and a resulting beta burst epoch. Two source localization methods: 

dynamic imaging of coherent sources (DICS) beamformer and minimum norm estimation 

(MNE) were then applied to each set of epoched data to localize spectral power change 

associated with beta bursts.  

Figure 2.1 An example of a time frequency representation for a single task epoch (top) 
and a single beta burst epoch (bottom). The MEG time course is overlaid on the TFR as a 
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white line and transient beta bursts are identified by white dots. The beta burst epoch is 
indicated in the task epoch as a red box. The 400 ms burst and pre-burst intervals used in 
the source localization algorithms for this beta burst epoch are shown by white boxes. 
 
DICS Beamformer:  

 For each participant in the CamCAN dataset, and for each condition (pre-

movement, post-movement, and rest), the beta burst epochs were used to compute a 

forward solution. Cross-spectral density was then computed using the epoched MEG data 

and the noise cross-spectral density was computed using the empty room noise data 

collected prior to the participant’s MEG session. The DICS beamformer was then applied 

to pre-burst (-0.575 to -0.175s relative to burst onset) and burst (0 to 0.400s relative to 

burst onset) intervals of each beta burst epoch across a 15-30Hz frequency range. The 

400 ms burst and pre-burst interval length was selected in order to capture the entirety of 

the longest burst events while ensuring maximal separation between intervals. The 

difference between burst and pre-burst source power estimates was then calculated using 

the following equation:  

 

Equation 2.1   ∆𝑃(𝑓) = 𝑙𝑜𝑔1 /
2%&'()(4)

2*'+,%&'()(4)
0 

 

The resulting source estimate was then averaged across all frequencies of interest and 

morphed to the fsaverage brain to allow source estimates to be compared across 

participants.  

Minimum Norm Estimation:  

 For the minimum norm estimation procedure, beta burst epochs were used to 

compute a forward solution and an inverse operator for each participant in the CamCAN 

dataset, and for each condition. A noise covariance matrix was also computed using the 

empty room noise data collected prior to the participant’s MEG session. A source 

estimate was then computed in the 15-30Hz frequency band using the minimum norm 

method of estimation. The resulting estimate was parsed into pre-burst (-0.575 to -0.175s) 

and burst (0 to 0.400s) intervals, and the difference in spectral power between intervals 

was calculated using Equation 2.1. The resulting source estimate was then morphed to the 

fsaverage brain to allow comparison to other participants.  
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 Note that while variants of the original MNE method (e.g. dSPM, sLORETA, etc.) 

are widely used and often considered superior to MNE, these methods do not provide a 

benefit over original MNE for the current application. dSPM and sLORETA methods are 

both derived from MNE by multiplying the estimation result by a normalization matrix 

(Hauk et al., 2011). Because the current methodology involves the voxel-wise division of 

the active by the baseline interval, any multiplication factor is cancelled out during this 

process, rendering these advanced methods equivalent to the original MNE. For that 

reason, this work employing the original MNE is generalizable to the aforementioned 

MNE variants.  

 Each source localization method yielded a 20484-vertex map that represented the 

mean difference in power between the beta burst and an interval prior at each vertex. 

These “beta burst power” values were unitless and directly comparable between 

participants and localization methods.              

2.4.6  Data Analysis 

 The beta burst localization algorithm described above was applied to each 

participant in the CamCAN dataset using bursts detected by the left (contralateral) and 

right (ipsilateral) sensors in the pre-movement, post-movement and resting state 

conditions. Grand average source estimations were then created for each estimation 

method and condition by averaging the 20484-vertex beta burst power estimates across 

all participants (N=561). To assess whether sources detected by the left (contralateral) 

and right (ipsilateral) sensors were independent, coherence analysis was employed for the 

pre-movement and post-movement intervals. For all participants, the MEG time course 

data from each sensor was extracted during each time interval. The coherence spectrum 

between left and right sensor time courses during each interval was then calculated and 

plotted for all frequencies between 0 and 100 Hz. Low coherence (<0.1) indicates that the 

sources detected by the two sensors are independent, while high coherence indicates 

correlated sources between the left and right hemisphere. We expected that there would 

be low coherence (i.e., no synchrony) between left and right hemisphere bursts given that 

beta rhythms are generally understood to be independently generated in each hemisphere 

via thalamocortical loops.  
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 To provide a measure of similarity between the two methods, the correlation 

coefficient between the grand average source estimations generated by the MNE and 

DICS beamformer methods was then calculated for each condition. In addition, 

difference maps were created comparing the two estimation methods for each condition 

to visually assess areas with varying source power between methods. Difference maps 

were created by subtracting the DICS beamformer source estimation from the MNE 

source estimation for each participant and conducting t-tests at each vertex comparing the 

difference across participants to a null hypothesis of 0 (indicating no difference between 

estimation methods). The T statistics for each vertex were then plotted on a 3-dimesional 

average head model and examined qualitatively to assess regions of significant difference 

between methods. Using a Bonferroni corrected alpha of 2.44e-6 (0.05/20484 vertices) 

and 560 degrees of freedom, T statistics with a magnitude greater than 4.61 are 

considered significant.  

 To facilitate visualization of age-related changes, average source estimations were 

created for participants in each of 5 coarse age bins: 18-32 years (N=83), 33-46 years 

(N=129), 47-60 years (N=132), 61-74 years (N=119) and 75-88 years (N=98). The source 

estimates were then plotted on a 3-dimensional head model and examined qualitatively to 

assess for any gross age-related trends and identify potential regions of interest. Based on 

this preliminary analysis, 12 regions of interest (6 per hemisphere) were selected from a 

standard set of anatomical parcellations defined by Destrieux and colleagues (Destrieux 

et al., 2010). Regions corresponding to the middle frontal gyrus (region 15), superior 

frontal gyrus (16), supramarginal gyrus (26), superior parietal lobule (27), postcentral 

gyrus (28) and precentral gyrus (29) were selected for further investigation. Within each 

region of interest, the beta burst power was averaged across the constituent vertices. 

Figure 2.2 shows the regions of interest used for this analysis and their associated 

abbreviations.  
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Figure 2.2 The regions of interest used for the age-related analysis. Regional 
abbreviations will be used in the results figures to identify relevant brain regions.  
 

 Age-related trends in beta burst power were then investigated by conducting 

linear and quadratic regression between average regional beta burst power and age across 

all participants. The goodness of fit of each model (linear and quadratic) to the data was 

assessed using a chi-square test. An F-test was then employed to decide the more 

appropriate model for each region of interest. A quadratic model was selected if F > 4, 

indicating 95% confidence. Otherwise, a linear model was deemed most appropriate. The 

T statistic associated with the chosen model was then plotted on the 3-dimensional head 

model to visually represent the anatomical regions associated with significant age-related 

changes. Regressions were computed for each region of interest (12), condition (3), 

localization method (2) and sensor (2) with alpha = 0.05. Due to the large number of t-

tests, a Bonferroni correction was applied to yield a corrected alpha value of 0.000174 

(0.05/288 tests).  

 In addition to the region of interest-based analysis, the age-related change in the 

peak location of the beta burst spatial map was also assessed. The goal was to assess if 

there was a shift in the focal source of the beta burst generator with age, motivated by a 

visual inspection of the average source estimations for coarse age bins (Figure 2.5). For 

each participant, the vertex in their source estimation with the greatest relative source 

power was identified and the associated x, y, and z coordinates were used to represent the 

peak location. The x, y, and z coordinates were then regressed against age across 

participants for each condition (3), sensor (2), and localization method (2) in order to 

evaluate any age-related shifts in peak localization. A Bonferroni corrected p-value of 

0.00139 (0.05/ 36 tests) was used to assess significance. To provide a qualitative 



 
 

 
 

42 

depiction of the position and variability of peak locations with age, the peak vertex for 

each participant was also plotted on a 3-dimensional average brain model, with coloured 

markers representing participant age.  

 Finally, in order to visualize the points throughout the lifespan that are associated 

with the largest changes in brain activity, the data was binned into fine, 2-year age bins 

(35 bins in total), and average source estimates were calculated for each group. To 

compute the average source maps per group, the 20484-vertex beta burst power maps 

computed for each participant were averaged across all participants in the 2-year age bin 

(approximately 16 participants per group). Paired-sample T-tests were then conducted 

comparing the 20484-vertex average source power map for each age group to every other 

age group in the sample. In this context, the T statistic quantifies the difference in source 

power maps between the two age groups. The resulting T statistics were plotted as a 2-

dimensional colourmap, similar to a correlation matrix. Age groups that have the 

particularly dissimilar localization patterns have high T statistics (shown as yellow pixels 

in the colour map). Clusters of high T statistics in the 2-dimensional colormap (shown as 

large yellow regions) can provide an indication of the age groups where large shifts in 

brain activity occur. A total of 1225 t-tests (35x35 groups) were conducted for each 

condition (3), localization method (2) and sensor (2). Therefore, a Bonferroni correction 

was applied to yield a corrected alpha value of 3.4e-6 (0.05/14700 tests). Using an alpha 

of 3.4e-6 and 16 degrees of freedom (16 people per bin on average), T statistics with a 

magnitude greater than 6.54 are considered significant. 

2.5 Results 

2.5.1 Grand Average Localization 

 Grand average source estimates created using the MNE source estimation method 

are shown for each condition in Figure 2.3. All estimates have been morphed to an 

average 3-dimensional headspace for direct comparison between groups. Overall, we 

found high concordance in the spatial localization of beta bursts between the DICS 

beamformer and MNE methods. However, the DICS beamformer method yielded 

consistently lower relative activation values across all conditions (see Appendix A for 

DICS beamformer estimates). Transient beta bursts detected in the resting state mainly 

localize ipsilateral to the sensor used for their detection. Bursts detected at the left 
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(contralateral) sensor localized primarily to the left sensorimotor cortex, pre-motor, and 

supramarginal regions, with very little right hemisphere contribution. Bursts detected at 

the right (ipsilateral) sensor during resting state had a similar pattern of localization over 

the right sensorimotor cortex with minimal left hemisphere activation. Bursts detected in 

the pre-movement interval also strictly localized to the side of the sensor used for their 

detection, with a localization pattern centred over the somatosensory cortex and 

supramarginal gyrus. This lateralization suggests that both the resting state and pre-

movement bursts have independent cortical generators in the left and right hemispheres. 

This was confirmed through coherence analysis which revealed that MEG data recorded 

from the left and right hemisphere sensors during the pre-movement interval had 

coherence < 0.01 for all frequencies between 0 and 100 Hz. Compared to the resting state 

bursts, pre-movement bursts had a more focal localization pattern with lower peak 

magnitude. This discrepancy in the spatial distribution of beta burst activity between the 

resting state and pre-movement interval suggests that there may be a shift in the cortical 

generators of beta bursts in preparation for motor performance.  

Figure 2.3 Average source estimation patterns for 561 healthy participants as estimated 
by the MNE source estimation method. Source estimation patterns are shown during 
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resting state (top) pre-movement (middle), and post-movement (bottom) conditions, for 
bursts detected at left (contralateral) and right (ipsilateral) sensors. The left, dorsal and 
right views of the 3-dimensional head model are shown for each condition. The colour 
bar values represent the relative power between the active and baseline intervals as 
calculated in Equation 2.1. Note that the scales are different for each condition to reflect 
the full range of relative power values for each condition.  
 

 Bursts detected in the post-movement interval showed a much broader pattern of 

localization compared to rest and pre-movement, with bilateral sources detected at both 

sensors of interest. Bursts detected at the left (contralateral) sensor localized to the 

bilateral sensorimotor sources, as well as left hemisphere pre-motor and superior parietal 

sources. Bursts detected at the right (ipsilateral) sensor localized approximately 

bilaterally to the sensorimotor cortices, pre-motor, and superior parietal sources. It was 

unclear from this result whether left and right hemispheric bursts during the post-

movement interval had a common neural source or if they emerged through independent 

generators. A coherence analysis between the MEG data recorded at left and right 

hemisphere sensors during the post-movement interval revealed coherence values of < 

0.0002 for all frequencies between 0 and 100 Hz. This suggests that the bursts localized 

in each hemisphere had independent generators but concurrent timing.  

2.5.2  Comparison of MNE and Beamformer Methods 

 As indicated by the grand averages (Figure 2.3, Supplementary Figure A.1), MNE 

and DICS beamformer methods showed high concordance in their spatial localization of 

transient beta bursts. The correlation coefficients between the localization maps produced 

by each method were 0.778 and 0.806 for the resting state condition (left and right 

sensors, respectively), 0.695 and 0.626 for the pre-movement condition (left, right), and 

0.899 and 0.885 for the post-movement condition (left, right). These values indicate a 

high degree of similarity between the two localization methods. From this analysis, it can 

be concluded that the similarity between estimations is sufficient to proceed with a single 

analysis method in the main body of this manuscript. Difference maps comparing the 

MNE and DICS beamformer estimation methods for each condition are shown in Figure 

2.4.  Across all conditions, the MNE method has higher relative source power near the 

focal source (i.e., the sensorimotor cortices), as shown by the positive values in Figure 

2.4. Alternatively, the DICS beamformer method has higher source power in the 
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surrounding (non-focal) brain regions across all conditions. These results together suggest 

that MNE and DICS beamformer estimation methods have similar patterns of 

localization, but that the MNE method results in a more focal localization compared to 

the DICS beamformer method for beta burst localization. For that reason, only the results 

from the MNE analysis will be shown herein. The results for the DICS beamformer 

analysis can be found in Appendix A.   

Figure 2.4 Difference maps comparing the MNE and DICS beamformer localization 
methods (MNE - DICS beamformer). Differences in localization during the resting state 
(top), pre-movement (middle) and post-movement (bottom) conditions are shown for the 
left and right sensors, respectively. Left hemisphere, dorsal, and right hemisphere views 
are shown for each condition and sensor. The colour bar values represent t-statistics for 
the t-test between the MNE - DICS beamformer difference and a null hypothesis of zero 
difference at each vertex. Positive values therefore indicate vertices where the MNE 
localization algorithm had greater relative source power and negative values indicate 
vertices where the DICS beamformer algorithm had greater relative source power.  
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2.5.3  Source Patterns by Age 

 In order to evaluate the presence of age-related trends in source estimation 

patterns, the data was binned into 5 coarse age bins as shown in Figure 2.5.  As in Figure 

2.4, the average relative power for each condition is plotted on a 3-dimensional head 

model. Within the resting state and pre-movement conditions, the regions of interest in 

the source estimation remain relatively constant across groups, with only small age-

related changes in magnitude being noted in the contralateral and/or ipsilateral frontal and 

sensorimotor cortices. In the post-movement condition, however, there are some notable 

differences in both location and magnitude between age groups. In particular, the 18-32-

year group shows a much more focal source pattern compared to the older groups. For 

bursts detected by the left (contralateral) sensor, the 18-32-year group has high-power 

sources confined to the left sensorimotor and superior parietal cortices, while the 

subsequent age groups show a broadening of the spatial extent of high-power sources to 

include the right sensorimotor cortex and the bilateral premotor cortices. For bursts 

detected by the right (ipsilateral) sensor, the localization pattern is bilateral even in the 

18-32-year age group but is restricted to the left and right sensorimotor cortices. As with 

the left sensor, this pattern expands to include surrounding cortical regions in the older 

age groups. In both cases, this pattern appears to reach maximum spatial distribution in 

the 47-60- year age group before levelling off, and possibly reducing spatial extent in the 

oldest age bins. While it was initially hypothesised that age-related changes would 

present as linear trends in source pattern, this preliminary investigation suggested the 

possibility of quadratic trends, particularly in the post-movement condition.  
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Figure 2.5 Average source estimation patterns for 5, 14-year spanning age groups of 
healthy participants during resting state (top), pre-movement (middle) and post-
movement (bottom) conditions, for bursts detected at left (contralateral) and right 
(ipsilateral) sensors. Dorsal views are shown for each age group, condition, and sensor. 
The colour bar values represent the relative power between the active and baseline 
intervals as calculated in Equation 2.1. Note that the scales are different between 
conditions in order to maximize the contrast but are kept consistent across age groups 
within the same condition to allow for direct comparison between ages.  
 
2.5.4  Region of Interest-Based Ageing Trends 

 Age-related trends in relative source power and the results of the best-fit model 

for each region of interest are shown in Figure 2.6. A Bonferroni-corrected significance 

level of 0.000174 is used to evaluate all models. Results are only shown for the post-

movement condition as the resting state and pre-movement conditions had primarily null 
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results. Significant results for the resting state and pre-movement conditions are 

discussed briefly in text and figures are presented in Appendix A. 

 
Figure 2.6 The best-fit regression models for each of 12 anatomical regions of interest. 
The average beta burst source power values during the post-movement condition for each 
region of interest are plotted against age along with the best-fit regression model (linear: 
blue; quadratic: green). The T statistics associated with the chosen models are plotted 
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using a colour bar on the dorsal view of the 3-dimensional head model. Data is shown 
from 561 healthy participants from the left and right sensors. Resting state and pre-
movement data is shown in Appendix A.  
 

 For bursts detected by the left (contralateral) sensor during the resting state 

condition, all regions of interest had linear changes in relative power with age, but the 

majority of the fits were non-significant. A significant positive linear trend was observed 

only in the left middle frontal gyrus (p = 5.46e-5). For bursts detected by the right 

(ipsilateral) sensor during the resting state condition, all of the of the regions of interest 

also showed non-significant linear trends with age. For bursts detected by the left 

(contralateral) sensor during the pre-movement interval, all regions of interest had linear 

changes in relative power with age, but all fits were non-significant. For bursts detected 

by the right (ipsilateral) sensor during the pre-movement interval, all regions also showed 

non-significant linear trends. The lack of significance of these results suggests that there 

is little support for age-related changes in beta burst source localization during the resting 

and pre-movement interval using the methods described.  

 In the post-movement interval, there was a mix of quadratic and linear age-related 

trends that were observed, with many regions of interest having significant trends. For 

bursts detected by the left (contralateral) sensor, these regions include the right middle 

frontal gyrus (p = 1.86e-13) and superior frontal gyrus (p = 4.81e-8) and the left middle 

frontal gyrus (p = 2.70e-12), superior frontal gyrus (p = 1.72e-5) and post-central gyrus 

(p = 1.06e-5). Each of these regions had a positive slope in younger participants followed 

by a significant negative quadratic trend with a peak at approximately 60 years of age. 

For bursts detected by the right (ipsilateral) sensor, the right middle frontal gyrus (p = 

6.90e-15), superior frontal gyrus (p = 7.43e-8), and post-central gyrus (p = 1.89e-5), and 

the left middle frontal gyrus (p = 5.70e-9) and superior frontal gyrus (p = 3.10e-8) had 

significant age-related trends. The majority of these trends followed the same quadratic 

trend described in the left sensor data, with the exception of the left middle frontal gyrus 

which showed a positive linear trend with age. The statistical significance of these trends 

indicates that these anatomical regions may play an important role in age-related changes 

in the network that generates beta bursts.  
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 It can be noted from Figure 2.6 that all significant quadratic trends in the post-

movement interval reach their peak amplitude (vertex) at approximately 60 years of age. 

For bursts detected by the left (contralateral) sensor in the post-movement interval, the 

average peak age for significant quadratic fits was 59 + /- 6 years (mean + /- standard 

deviation). For bursts detected by the right (ipsilateral) sensor in the post-movement 

interval, the average peak age for significant quadratic fits was 60 + /- 6 years. This 

provides evidence for the presence of a critical age at approximately 60 years. Prior to 

this age, relative source power increases across many regions of interest, however, after 

this point, relative source power begins to level off and, in some cases, decreases with 

increasing age.  

2.5.5  Peak Location Ageing Trends 

 Figure 2.7 indicates that there were also shifts in the peak source location with 

increasing age. For bursts detected at the left (contralateral) sensor, there were significant 

anterior shifts in peak source location with age found in the resting state ( p = 8.263e-05) 

and post-movement ( p = 8.221e-10) conditions. This trend can be appreciated 

qualitatively in Figure 2.7 and suggests an age-related shift in the main generator of beta 

bursts in these conditions. There were no significant relationships between the 

medial/lateral or inferior/superior coordinates and participant age. For bursts detected at 

the right (ipsilateral) sensor, there were no significant relationships between peak 

coordinate and participant age detected in any of the conditions.  
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Figure 2.7 Significant trends in peak location with age. Peak location of transient beta 
bursts detected at the left (contralateral) sensor during the (A) resting state and (B) post-
movement conditions. Points on the 3-dimensional average brain model (left) show the 
peak location for each participant, with colour representing the age of the participant. 
Pictured here is a section of the left central brain region, enlarged to show the shift in 
peak position in this region. “A ”and “P ”labels indicate the anterior and posterior ends of 
the section. Both conditions show an anterior shift with age indicated by the positive 
trends in the y-coordinate with age (right). Non-significant conditions are not shown in 
this figure.  
 
2.5.6  Source Map Ageing Trends 

 Because there was evidence of both linear and quadratic age-related trends in 

Figures 2.5, 2.6, and 2.7 we implemented a post-hoc analysis to further investigate the 

difference in source maps between age groups, quantified as a T statistic. The data was 

binned into fine, 2-year age groups and an average relative power map was calculated for 

each age group. Paired sample T-tests were then conducted between each pair of maps 
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and the resulting T statistics are plotted using a colour bar in Figure 2.8 . Here, a high T 

statistic indicates that the beta burst source map is very different between participants in 

age groups X and Y. Yellow and green regions of the figure represent comparisons that 

had the highest T statistics. Looking at the age groups associated with these comparisons 

can give us an indication of ages at which the beta burst source pattern undergoes 

significant changes.  

Figure 2.8 T statistics computed by conducting paired-samples T-tests between the 
average source estimations of all 2-year age groups. The colour bar represents the 
magnitude of the T statistic with purple representing low values (similar source maps) 
and yellow representing high values (dissimilar source maps). Note the differences in 
scale between conditions. Data is shown for resting state (top), pre-movement (middle) 
and post-movement (bottom) conditions. Attention should be drawn to yellow and green 
regions, which represent comparisons between groups that had the highest T statistics and 
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therefore the most dissimilar source estimations. Boxes A, B, and C highlight some of 
these regions of this plot that show the highest T statistics. Notably, box A highlights a 
large difference in source estimation pattern between individuals in their 30s-40s and 
those in their 50s-60s, box B highlights a difference between individuals in their mid-20s 
and all other ages, and box C highlights a difference between individuals in their 40s and 
those over 70.  
 
 The T statistics were the highest in the post-movement condition (left sensor: 170 

+ /- 132; right sensor 181 + /- 137 (mean + /- standard deviation)), indicating the highest 

variability between age groups, followed by the resting state condition (left sensor: 111 + 

/- 85; right sensor: 141 + /- 104) and then the pre-movement condition (left sensor: 87 + 

/- 64; right sensor: 94 + /- 69). The majority of tests were highly significant with a critical 

T statistic of 6.54.  

In the pre-movement condition, the pairs that showed the highest T statistics, and 

were therefore the most dissimilar, were those in their 30 s and 40 s paired with those in 

their 50 s and 60 s (see Figure 2.8 , box A). The mean T statistic for groups aged 30–50 

compared to groups 52+ was 101 + /- 71 for the left sensor and 123 + /- 81 for the right 

sensor. These values are higher than the overall sensor means for the pre-movement 

condition indicating that there may be a critical age around 50 years after which the 

pattern of source localization is dissimilar to the pattern that was present in the preceding 

years.  

 In the post-movement interval, the highest T statistics appear when comparing 

those in their mid-20s to any other age group (see Figure 2.8 , box B). The mean T 

statistic when comparing groups aged 22–28 to all other groups was 314 + /- 140 for the 

left sensor and 331 + /- 153 for the right sensor. This indicates that there is a fundamental 

difference in the source localization present in the youngest age group that could signify a 

shift in brain activity beyond a critical age. This finding is in line with the observation 

that the 18-32-year age group had an average spatial localization map that was dissimilar 

from older age groups in the post-movement interval (Figure 2.5). Other pairings that 

exhibited high T statistics were those comparing individuals in their late 40s to 

individuals in their 70s and above (see Figure 2.8 , box C). When comparing groups age 

46–50 to those aged 70+, the mean T statistic was 221 + /- 134 for the left sensor and 203 

+ /- 110 for the right sensor. This indicates that there could be an additional shift in brain 
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activity in this dataset that occurs later in life (between 50 and 70 years of age). This is in 

line with the finding that all significant quadratic trends peaked around this critical age 

(Figure 2.6) .  

 In the resting state data, the pairings with the highest T statistics were concordant 

with those pairings identified in the post-movement interval. Particularly, the resting state 

condition had the highest T statistics when comparing individuals in their late 40s to 

individuals above 70. The mean T statistic for these groups was 197 + /- 110 for the left 

sensor and 217 + /- 76 for the right sensor. This provides further support for the existence 

of critical ages at which the pattern of brain activity shifts.  

2.6 Discussion 

2.6.1 Summary of Findings 

 The present work investigated the efficacy of two well-known source localization 

algorithms (MNE and DICS beamformer) for use in the localization of the cortical 

sources associated with transient beta bursts. Movement-related beta bursts were detected 

at two MEG sensors located in the contralateral and ipsilateral sensorimotor cortices. 

Bursts localized primarily to the primary motor and somatosensory cortices, as expected, 

but also showed variable localization in the premotor, superior parietal and supramarginal 

regions depending on the movement condition. The pattern of beta burst localization was 

highly concordant between localization methods for the majority of conditions, but the 

MNE method consistently showed higher relative activation values, and more focal 

source estimation patterns compared to the DICS beamformer method. This suggests that 

while both methods are capable of reliably identifying the sources of beta bursts, the 

MNE localization algorithm has greater amplification of differences between baseline 

and active bursting intervals and more focal estimation of source. Age-related analysis 

revealed significant quadratic trends in relative activity in the middle and superior frontal 

brain regions during the post-movement interval, suggesting an increase in frontal 

bursting activity with age that peaks at approximately 60 years of age. Further analysis 

revealed potentially critical ages at 25–30 years and 60 years, during which the spatial 

pattern of beta burst activity undergoes a significant shift. The results of this study 

provide support for the use of existing source localization methods for localizing transient 
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bursting activity and reveal significant age-related trends in the spatial pattern of beta 

bursts that increase our understanding of age-dependent changes in neuronal activity.  

2.6.2  Significance 

 Bursts detected in the pre-movement interval had a focal, unilateral pattern of 

localization that was centred on the post-central (somatosensory) gyrus ipsilateral to the 

sensor used for their detection. Bursts detected in the post-movement interval, on the 

other hand, were centred on the pre-central (motor) gyrus and had a more widespread, 

bilateral localization pattern, with slightly stronger activation in the hemisphere 

contralateral to movement (left). The tendency of pre-movement events to localize 

posterior to post-movement events is in line with previous findings that beta suppression 

(prior to and during movement) localizes post-centrally while beta rebound (post-

movement) localizes pre-centrally (Jurkiewicz et al., 2006). The finding that pre-

movement sources were more focal and lateralized than post-movement sources, 

however, appears to contradict previous literature that indicates that beta suppression has 

more diffuse and bilateral representation compared to beta rebound (Jurkiewicz et al., 

2006). A possible explanation for this apparent discrepancy is that the documented 

bilateral movement-related beta suppression, as compared to a pre-movement baseline, is 

associated with a reduction in independent sources of bursting activity in both the left and 

right sensorimotor regions. Our findings that the left and right motor cortical sensors 

(MEG0221 and MEG1311, respectively) detected different unilateral sources of the beta 

bursts suggests that the two hemispheres independently contribute to the bilateral peaks 

in average spectral power typically observed in the beta band during the pre-movement 

interval.  

 In the post-movement interval on the other hand, our results suggest roughly 

synchronous timing of beta bursts in the left and right hemispheres. However, further 

investigation into the coherence of the MEG time courses at MEG0221 and MEG1311 

during the post-movement interval revealed that there was very low coherence between 

hemispheres, suggesting that bursts occurring during this time are generated by 

independent left and right cortical sources. Given this, a likely explanation for the 

apparent synchronicity between hemispheres is that the transient beta burst rate increases 

substantially in both hemispheres during the post-movement interval (Brady et al., 2020). 
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This movement-related facilitation following movement-related inhibition likely 

generates a period of time during which beta bursts are more likely to occur in each 

hemisphere. This would result in rough co-occurrence of beta bursts across hemispheres 

and spatial maps with bilateral activation irrespective of which sensor was used for event 

detection. As such, we posit that the bilateral patterns observed are considered to be a 

statistical anomaly that is an artefact of the analysis rather than the result of a common 

generator between hemispheres. Regardless, the finding that left hemisphere activity was 

greater than right hemisphere activity overall suggests that there is more bursting 

detectable in the hemisphere contralateral to movement compared to ipsilaterally, which 

provides a potential explanation for the documented lateralization of post-movement beta 

rebound. The high level of concordance in the location of contributing sources between 

DICS and MNE methods provides support for the validity of these novel findings.  

 When examining age-related trends in the patterns of beta event localization, one 

noteworthy finding was that younger participants, particularly the 18–32-year age group, 

showed a localization pattern that was highly discordant with older participants. 

Comparing 2-year averaged maps to one another further supported the uniqueness of this 

age group as groups in their twenties tended to be highly dissimilar (T > 300) from all 

other age groups. This finding suggests that there are critical differences in the sources of 

beta generation in young adults compared to middle age and older adults. The most likely 

explanation for this finding is that the brains of many of the young adults (age < 32) in 

this study were not fully developed at the time of study. Previous neuroimaging work has 

indicated that the human brain continues to develop well into a person’s twenties (Giedd 

et al., 1999 ; Sowell et al., 1999 ; Sowell, 2001). This means that the neuroanatomy and 

physiology of young adults is still changing, and this is likely why we observed 

discordance in beta event localization between young adults and their older counterparts. 

This finding has far-reaching implications for the neuroimaging community. Often, 

studies involving human participants, including neuroimaging studies, recruit healthy 

participants from an undergraduate and/or graduate student population, resulting in many 

studies having an average participant age that is skewed towards young adults (e.g., < 25 

years). The results of the present study show that the sources of brain activity of 

participants in this age group are dissimilar from the sources used by older participants, 
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suggesting that source localization results obtained in young adults may not be 

generalizable to older adults. We should therefore use caution when interpreting 

neuroimaging studies for which the sample of participants is restricted to young adults, as 

these findings may not be reflective of the general population.  

 When assessing relative source power in various anatomical regions of interest, 

the most significant continuous age-related trends that emerged were the quadratic trends 

observed in the post-movement data. It was initially hypothesised that relative source 

power would vary linearly with age, such that sources surrounding the sensorimotor 

cortex, including the premotor and supplementary motor areas, would show an increase 

in relative activation with increasing age. This hypothesis was based on previous fMRI 

studies that indicated that older participants tend to recruit more widespread 

compensatory mechanisms when performing a motor task (Hutchinson, 2002 ; Mattay et 

al., 2002 ; Vallesi et al., 2010). There was relatively good agreement between the 

compensatory areas suggested in the previous work and the regions of interest that 

showed the most significant age-related changes in the present work. Particularly, the 

superior and middle frontal regions (premotor areas) had highly significant age-related 

trends in the post-movement data across both localization methods. However, these 

regions exhibited an increase in magnitude with age that ceased around 60 years of age, 

rather than a linear increase over all ages.  

 While quadratic trends were not hypothesised, they are also not unfounded. In a 

previous paper published by our group using the same dataset, we examined age-related 

trends in beta event characteristics (event rate, peak frequency, duration, peak power, etc.) 

and found that many of these characteristics exhibited quadratic trends with age. 

Particularly, the peak power of the events showed an initial positive correlation with age 

followed by a negative quadratic age-related trend in the rest, pre-movement and post-

movement conditions (Brady et al., 2020). The relative source power computed in the 

current work showed a similar quadratic age-related trend across a number of frontal and 

central regions of interest. In addition, the vertex of the quadratic trends observed in the 

previous work tended to fall around 60 years, which matches the approximate vertex of 

the parabolas observed here. The consistency of this relationship along with the 

concordance to the previous event characteristic findings (Brady et al., 2020) suggests 
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that there may be a critical shift in brain activity at approximately 60 years of age. Prior 

to this age, relative source power steadily increases across bilateral frontal and central 

brain regions. After this point, however, there is a change in the trajectory of the trend 

and relative source power begins to fall off in these regions. This pattern could be 

indicative of a functional shift in activity that occurs later in life and could signify a 

critical age in the normal ageing process for the sensorimotor neural network.  

2.6.3 Limitations and Future Directions 

 This study demonstrated the successful implementation of source localization 

algorithms for use in localizing transient beta bursts detected at single sensors centred 

over the right and left sensorimotor cortices. While this has provided us with valuable 

information, the use of individual sensors for beta burst localization is a limitation of this 

method because each sensor is sensitive to activity at a number of sources in the brain. 

For that reason, it would be beneficial for future studies to investigate the possibility of 

identifying beta bursts of interest by a combination of spatial and temporal 

characteristics, rather than their presence at a single sensor. This would allow for more 

accurate identification of bursts associated specifically with the sensorimotor network. 

Such analysis could be implemented with an iterative learning algorithm such as 

convolutional sparse coding (Dupré La Tour et al., 2018). However, this method requires 

further validation before it can be implemented for use in beta burst localization.  

2.7 Conclusion 
 In the present work, two source localization algorithms were successfully 

implemented to localize the cortical sources of transient beta bursts during pre-

movement, post-movement and resting state conditions. Beta bursts detected during the 

pre-movement and post-movement intervals had approximately concordant localization 

patterns to those observed in beta suppression and rebound providing support for the 

validity of the current methods. This work also revealed several age-related phenomena 

including a unique localization pattern in young adults compared to older adults that is 

likely due to ongoing brain development, and the presence of a critical shift in the sources 

of beta bursts at age 60. The results of this work have provided validation for the use of 

existing source localization methods for identifying the cortical sources of transient beta 
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bursts and have advanced our understanding of the relationship between beta bursts and 

normal healthy ageing. 
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Chapter 3   

Using Convolutional Dictionary Learning to Detect Task-

Related Neuromagnetic Transients and Ageing Trends in a 

Large Open-Access Dataset 

 
3.1 Preamble 
 The work presented in Chapter 2 provided important insights into the generative 

sources of transient beta bursts during a sensorimotor task and rest. However, a key 

methodological limitation was identified in this work. In Chapter 2, and in other work by 

our group (Brady et al., 2020), transient bursts were detected using a simple amplitude 

thresholding method to identify high power bursts of activity within a pre-defined 

frequency range of interest (see Section 1.5.3). While this is one of the most commonly 

used burst detection approaches, it is limited in its applications due to its imposition of 

assumptions about the frequency, waveform shape, and linearity of the signal of interest. 

Further, this method operates on a single signal (e.g., channel or source reconstructed 

time course), and does not take into consideration multi-channel interactions or signal 

spread, making it difficult to compare spatiotemporal characteristics between subjects. 

For these reasons, we wished to develop and validate a multi-channel, data-driven 

approach to investigating transient bursts that would improve upon the burst detection 

methods employed in Chapter 2. Therefore, Chapter 3 applies a data-driven convolutional 

dictionary learning approach to naively detect task-related neuromagnetic transients in 

the large CamCAN dataset and introduces a novel clustering method to evaluate age-

related changes in transient event characteristics across the group.  

 

Chapter 3 of the thesis contains peer-reviewed work published in NeuroImage in 

February, 2023. Text in the introduction and discussion has been modified to reduce 

redundancies in the thesis, but the methods and results sections appear as published. The 

reference for the publication is provided below.  
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Power, L., Allain, C., Moreau, T., Gramfort, A., & Bardouille, T. (2023). Using 

convolutional dictionary learning to detect task-related neuromagnetic transients and 

ageing trends in a large open-access dataset. NeuroImage, 267, 119809. 

https://doi.org/10.1016/j.neuroimage.2022.119809 
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3.2 Abstract 
Human neuromagnetic activity is characterised by a complex combination of transient 

bursts with varying spatial and temporal characteristics. The characteristics of these 

transient bursts change during task performance and normal ageing in ways that can 

inform about underlying cortical sources. Many methods have been proposed to detect 

transient bursts, with the most successful ones being those that employ multi-channel, 

data-driven approaches to minimize bias in the detection procedure. There has been little 

research, however, into the application of these data-driven methods to large datasets for 

group-level analyses. In the current work, we apply a data-driven convolutional 

dictionary learning (CDL) approach to detect neuromagnetic transient bursts in a large 

group of healthy participants from the CamCAN dataset. CDL was used to extract 

repeating spatiotemporal motifs in 538 participants between the ages of 18–88 during a 

sensorimotor task. Motifs were then clustered across participants based on similarity, and 

relevant task-related clusters were analysed for age-related trends in their spatiotemporal 

characteristics. Seven task-related motifs resembling known transient burst types were 

identified through this analysis, including beta, mu, and alpha type bursts. All burst types 

showed positive trends in their activation levels with age that could be explained by 

increasing burst rate with age. This work validated the data-driven CDL approach for 

transient burst detection on a large dataset and identified robust information about the 

complex characteristics of human brain signals and how they change with age.  

3.3 Introduction 
 Recent work has shown that sensorimotor beta burst characteristics change with 

normal healthy ageing. Particularly, it has been demonstrated that transient beta burst 

characteristics (e.g., burst rate, peak frequency, peak power) show age-related changes 

(Brady and Bardouille, 2022; Brady et al., 2020) that can explain the previously observed 

age-related increase in sensorimotor beta suppression in the average (Bardouille et al., 

2019; Rossini et al., 2007). Furthermore, it has also been shown (in Chapter 2) that the 

spatial localization of transient beta bursts changes with age, expanding to recruit 

additional areas, and exhibiting an anterior shift in peak localization with increasing age 

(Power and Bardouille, 2021).  
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With increasing interest in transient burst-based analyses developing in recent 

years, has come a surge in development of analysis methods for detecting and 

characterising bursts. At present, there is no gold-standard method for detecting and 

characterising transient bursts in electrophysiological data, and the various  proposed 

methods come with associated advantages and limitations (as described in Section 1.5.3). 

In addition, there is no obvious framework to complete a group-level analysis of the 

combined spatial and temporal characteristics of identified bursts and most techniques 

have not been optimized for use with large datasets.  

 This work aims to address these gaps by applying multivariate convolutional 

sparse coding (CSC) which is a specification of the broader class of convolutional 

dictionary learning (CDL) algorithms, to detect transient bursts in a large open-access 

dataset. CDL represents the multivariate neural signals as a set of spatiotemporal patterns, 

called atoms, with their respective onset times and magnitudes, called activations. CDL 

has emerged as a convenient and efficient tool to extract patterns, in particular due to its 

ability to easily include physical priors for the patterns to recover. For example, for 

M/EEG data, Dupré la Tour et al. (2018) have proposed a CDL method which extracts 

atoms that relate to the current dipoles used to model brain activity by imposing a rank-1 

structure to better account for the linear spread of the signal across channels. Each atom 

is associated with an activation vector that provides a record of time points throughout 

the signal at which the atom is present, and the associated magnitude of the atom at those 

time points (Dupré la Tour et al., 2018; Jas et al., 2017; Moreau and Gramfort, 2020). 

CDL operates similarly to classical Independent Component Analysis (ICA; Winkler et 

al., 2015), decomposing the signals as a sum of topographies and sources (Dupré la Tour 

et al., 2018). However, CDL does so not by assuming that the sources are independent, 

but by assuming that the source time courses are formed by repeated waveforms. CDL 

has been previously validated on single subject datasets to recover biological artifacts, 

non-sinusoidal mu patterns with sensorimotor topography, occipital alpha bursts, and 

evoked-type responses (Allain et al., 2021; Dupré la Tour et al., 2018).  

 Despite the success of CDL and other data-driven methods on single subject 

studies, the validity of multi-channel, data-driven methods for use in between-subject 

comparisons and group-level analyses has been largely unexplored. Some work has 
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employed HMM extended to a multi-subject setting by concatenating data across 

participants to identify common repeating states (Baker et al., 2014; Becker et al., 2020; 

Quinn et al., 2018; Seedat et al., 2020; Vidaurre et al., 2016), and few studies have 

demonstrated that ICA and EEG Microstates yield consistent patterns across participants 

(Himberg et al., 2004; Michel and Koenig, 2018). However, none of these studies 

explored variability between subjects, and group-level differences and trends, 

highlighting the need for methods to explore group-level trends in transient bursts 

detected by a robust data-driven method. The favourable characteristics and promising 

preliminary results of the CDL method make it a logical candidate for group-level 

investigations of transient bursts. 

 The objective of the current work is thus to use the CDL method to detect and 

characterise ageing trends in task-related transient bursts at the group level in a large, 

open-access dataset. Here, we detect (in single subjects) repeating spatiotemporal atoms 

in sensorimotor MEG data from the CamCAN dataset (Shafto et al., 2014; Taylor et al., 

2017), and cluster similar atoms across participants to allow for group-level analysis. We 

then assess clusters for age-related trends in atom characteristics. It is hypothesised that 

CDL will successfully extract task-related atoms that are biologically plausible, including 

those that resemble sensorimotor beta and mu transient bursts. This hypothesis is based 

on the findings of previous literature that demonstrate a functional role of beta and mu 

transient bursts in sensorimotor tasks (Errington et al., 2020; Feingold et al., 2015; He et 

al., 2020; Hebert and Lehmann, 1977; Lakatos et al., 2004; Little et al., 2019; Lundqvist 

et al., 2016; Shin et al., 2017; Wessel, 2020). It is further hypothesised that within task-

related atom clusters, atoms will show age-related changes in their spatiotemporal 

characteristics, in line with previous findings. Specifically, it is predicted that for 

sensorimotor beta-type bursts, burst frequency will decrease with age, spatial position 

will shift anteriorly with age, and pre-movement activation will increase with age as a 

result of increasing burst rate with age (Bardouille et al., 2019; Brady et al., 2020).  

 This work presents, for the first time, the detection of group-level trends in 

transient bursts using a flexible, multi-channel, data-driven CDL method. By combining 

this powerful detection algorithm with the big data available in the CamCAN dataset, we 

can increase our understanding of the role of neuromagnetic transients in normal healthy 
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ageing and provide an improved framework for analysing transient bursts at the group 

level in future work.  

3.4 Methods 
This work uses the same dataset as described in Chapter 2. Refer to Chapter 2 for 

descriptions of the participants and experimental paradigm (2.4.1), data acquisition 

(2.4.2) and MRI data processing (2.4.3).  

See Figure 3.1 for a workflow diagram describing the analysis procedure for this work.  

 

Figure 3.1 Workflow diagram.  
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3.4.1 MEG Data Processing 

 All MEG processing was completed in the Python programming environment 

(v.3.7.7), using the MNE-Python library (v.0.23.0) (Gramfort et al., 2013; 2014). Python 

code for this analysis is available at https://github.com/tbardouille/camcan_CSC_beta.  

Data were pre-processed using temporal signal space separation (tSSS) to perform 

environmental noise reduction, and reconstruction of missing or corrupted MEG channels 

(Taulu and Simola, 2006). The task data was then parsed into trials synchronized to each 

button press, with a duration of 3.4s, including a 1.7s pre-movement interval. The 3.4s 

window length was selected to ensure a sufficient post-movement interval to capture the 

entire beta rebound response. Trials were excluded if the button press occurred more than 

1s after the cue (indicating poor task performance) or if the button press occurred within 

3s of the previous button press (which provided insufficient baseline for subsequent 

analysis). Data were bandpass filtered between 2 Hz and 45 Hz and resampled with a 

sample rate of 150 Hz.  

3.4.2 Convolutional Dictionary Learning 

 Convolutional Dictionary Learning (CDL) was applied to each subject to extract 

20 spatiotemporal atoms of duration 500ms from the multivariate MEG recording (see 

Figure 3.2). The objective of CDL is to decompose a signal into the convolution between 

a few translationally invariant recurring patterns, called atoms, and their sparse activation 

vectors. This is done by minimizing an objective function (see supplementary Equation 

B.1) that represents the residuals of the signal after the dictionary of atoms has been 

removed, plus a sparsity promoting regularization that pushes the activation vector to be 

as sparse as possible. In the application to M/EEG signals, a rank-1 constraint is added to 

the dictionary to take into account the physics of the signals (i.e., the instantaneous linear 

spread of the signals across channels; see supplementary Equation B.2). This extra 

constraint decomposes the atoms with a spatial and a temporal component, which can 

easily be interpreted by neuroscientists. The optimization is done in an alternating way: 

the dictionary is fixed and the activation vectors are learned, then vice versa, and the 

operation is repeated until convergence. The result of the optimization is a set of 

instantaneous spatiotemporal signals and associated sparse activation vectors.  
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 In the current work, we relied on the alphacsc Python package (Dupré la Tour et 

al., 2018) for CDL with rank-1 constraint. The hyperparameters used in this work are 

based on those established by Dupré la Tour et al. (2018) and used in the alphacsc 

tutorials. These hyperparameters were used because they have given satisfying results for 

detecting similar types of induced responses (e.g., somatosensory mu waves) in previous 

work. For each considered subject, CDL outputs 20 spatiotemporal atoms alongside their 

respective sparse activation vector z that corresponds to the onsets of the waveforms. For 

each atom, CDL with rank-1 constraint provides the topography, later referred to as u of 

size number of MEG sensors, and the temporal waveform v of duration 500ms.  

Figure 3.2 CDL decomposes raw signals (left) as the convolution between the sparse 
activation signal (black stem on the right) and the pattern obtained as the product of a 
spatial map and a temporal pattern. The bottom row on the left corresponds to stimuli 
events (visual or auditory). Each atom on the right can be associated with a response type 
(auditory, visual, heartbeat and eye blinks).  
 
3.4.3 Atom Clustering 

 After applying CDL to each individual participant, atoms from all participants 

were clustered into groups, based on their spatiotemporal similarity. The approach of 

detecting atoms in individuals and then clustering across participants was employed to 

ensure that individual variability in atoms was preserved to allow for between-subject 

comparisons of atom characteristics. A correlation-based clustering approach taking into 

consideration both the u (spatial) and v (temporal) vectors was applied to the atoms. The 
clustering relies on a simple iterative approach that groups atoms together on the basis of 

high correlation without prior specification of the number of clusters. This method is 

similar to that described by Bansal et al. (2004) and has been widely used for biomedical 
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clustering applications in the past (Bhattacharya and De, 2008; 2010; Miljkovic et al., 

2010). This method was selected over other traditional clustering methods because it 

allowed for simultaneous consideration of multiple clustering metrics (i.e., both spatial 

and temporal vectors), which is not possible with other “out of the box” clustering 

methods.  

 To compare two atoms (u1, v1) and (u2, v2), we used the Pearson correlation 

coefficient of the u vectors Ru and the maximum cross-correlation coefficients of the v 

vectors Rv. Cross-correlation was used for the v vector to account for phase differences in 
otherwise similar waveforms. The algorithm then stepped through each atom of interest 

sequentially (in no particular order), and clustered atoms with one another based on the 

magnitude of their correlation coefficients (R values). Each atom was compared to pre-

existing clusters by calculating Ru and Rv values between the current atom and each atom 

in the cluster, and then averaging across all R values (for u and v separately) obtained 

from the cluster. If, for a given cluster, both (Ru and Rv) average values exceeded a pre-

determined threshold r, the atom was considered highly correlated to the cluster. For 

atoms that were highly correlated to more than one pre-existing cluster, the atom was 

added to the cluster to which it had the highest cumulative correlation (average Ru + 

average Rv) . If the atom was not highly correlated (i.e., the average Ru and Rv values did 

not exceed the threshold) to any of the pre-existing clusters, then a new cluster was 

created. The algorithm proceeded through all atoms of interest, yielding a number of 

clusters not defined a priori.  

 Preliminary correlation-based analysis of single participants’ atoms revealed that a 

few participants had numerous highly correlated atoms (i.e., little variability in the 

spatiotemporal features of their atoms) as presented in Figure 3.3. Visual inspection of the 

atom data revealed that these participants tended to have atom profiles dominated by 

artefacts (i.e., eyeblink and other global artifacts, see Figure B.1 compared to Figure B.2) 

or by a persistent slow (alpha frequency) rhythm with variable topographic 

representation. This observation suggested that these participants have abnormal and/or 

artefactual data that should be excluded from further analysis to avoid skewing effects in 

the whole-group clustering process. This prompted the development of an exclusion 
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process based on the correlation-based clustering methods described above, by which 

participants with low atom variability were identified and excluded from further analysis. 

 Here, the 20 atoms computed for a given participant were compared to one 

another and clusters of highly similar atoms were created within participants. In order to 

select the optimal R value threshold r for clustering, the threshold was varied from r = 

0.2 to r = 0.9 and clustering was performed for each value of r. Histograms illustrating 

the number of clusters yielded per participant were then created and examined for each 

value of r (see Figure B.3). The goal of the analysis was to select a threshold that yielded 

maximum separation between participants with few groups (high degree of similarity 

between atoms) and those with many groups (dissimilar atoms). Therefore, histograms 

were examined for a bimodal distribution with maximal separation between peaks. On 

this basis, a R value threshold of r = 0.8 was selected. All participants with less than 13 

distinct groups of atoms were excluded from subsequent analyses. The value of 13 

clusters was selected as the point that best separated the first and second peaks of the 

distribution. Based on these criteria, 25 participants were excluded at this step, resulting 

in a total of 538 participants who were used for the remaining analyses.  

 

Figure 3.3 Two-variable correlation matrices from a representative sample of participants 
who were excluded (left) or not excluded (right) from the dataset. Each 20 ×20 cell 
correlation matrix shows data from a single participant, comparing each of the 
participant’s 20 atoms to each other. The colour of the cells represents the magnitude of 
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the spatiotemporal correlation between each pair of atoms. As indicated in the legend on 
the bottom right, u vector correlation is represented by a white to blue colour bar (low to 
high correlation), and the v vector cross-correlation is represented by a yellow to red 
colour bar. Atom pairs with a high correlation in both the u and v vector are thus indicated 
by dark purple colouration in the correlation matrices. It can be observed from the 
examples given here that excluded participants have numerous highly correlated atoms 
presenting as many dark purple cells in their matrices. This is highly dissimilar from 
other non-excluded participants, for whom the correlation matrices have few highly 
correlated atoms.  
 

 The correlation-based clustering methods described above were then applied on 

the whole-group level to create clusters of atoms of the same type across participants, 

which would facilitate atom comparisons between participants. The selection of an R 

value threshold r for the global clustering was conducted separately from the single 

subject clustering due to the differing objectives of the two analyses. While the single 

subject clustering aimed to exclude participants with an abnormally high degree of 

similarity between atoms, the global clustering aimed to create clusters of atoms between 

participants that had a lower level of similarity but could be presumed to be 

representative of similar neural processes. Therefore, it was predicted that the r used for 

the global clustering would be lower than that of the subject level clustering.  

 To select the optimal r for the global clustering, the threshold was once again 

varied from r = 0.2 to r = 0.9 and clustering was performed for each threshold. Because 

of the high computational time associated with clustering on a 538-person dataset, 

threshold selection was performed using 10 randomly selected 50-person datasets. The R 

value threshold r was selected based on the analysis of both qualitative and quantitative 

metrics. Firstly, the u and v vectors of a selection of atoms in each cluster were manually 

inspected to qualitatively assess the success of the clustering. Functional labels (e.g., 

“occipital alpha ”, “left central beta ”, “eyeblink artefact ”, etc.) were assigned to atoms in 

each cluster to assess whether similar types of atoms were being appropriately clustered 

together for various R thresholds. This qualitative analysis suggested that r = 0.4 yielded 

the most appropriately grouped atom clusters. This selection was supported by 

quantitative metrics comparing the number of clusters detected at each R threshold to the 

number of “top clusters ”(i.e., common clusters, defined as clusters for which a minimum 

of 25% of participants had atoms present in the cluster; see Figure 3.5). Figure 3.4 shows 
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that r = 0.4 yielded the highest number of top clusters relative to the overall number of 

clusters, suggesting that the top clusters were most representative of the group. These 

findings were consistent across 10 random selections of data, suggesting that the choice 

of threshold was stable, and that the selection and ordering of subjects did not have a 

large effect on the overall results. r = 0.4 was thus selected as the optimal clustering 

threshold for the global analysis and was used in subsequent analysis of the entire dataset.  

Figure 3.4 Plot showing the total number of clusters (solid lines) and the number of top 
clusters (dashed lines) identified with varying R value thresholds. Each colour of line is a 
different random sample of 50 participants from the CamCAN dataset. For all samples, 
the total number of clusters increases as the threshold increases, while the number of top 
clusters shows a clear peak at approximately r = 0.4 .  
 
 Global clustering on the entire dataset yielded 226 clusters of atoms, 11 of which 

were considered “top clusters” by the criteria that a minimum of 25% of participants had 

atoms present in the cluster. The 25% value was selected as a reasonable trade-off 

between maximizing the number of participants in the top clusters and ensuring that 

movement-related atoms of interest were being captured. Figure 3.5 shows representative 

atoms for each of the top clusters identified when the minimum percentage was varied to 

values of 50, 35, 25, 20, and 15%. Minimum percentages above 25% primarily captured 

eyeblink artifacts as these were the most stereotypical atoms in the population. The 25% 
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cut-off was the greatest cut-off that provided insight into movement-related atoms of 

interest (e.g., contralateral sensorimotor beta) and was therefore selected as an 

appropriate threshold to define top clusters. To ensure adequate sample sizes for assessing 

cross-sectional ageing trends, only these top clusters are analysed in subsequent sections. 

However, additional analysis of other smaller clusters can be found in the supplementary 

material Figure B.7.  

 

Figure 3.5 Representative atoms (spatial topographies and temporal waveforms) for the 
top clusters that are returned when the top cluster cut-off is varied. The top clusters 
identified at values of 50, 35, 25, 20, and 15% are shown. Note that each percentage 
captures all the clusters in its row, as well as all of the above clusters. Black boxes -
indicate the clusters that were determined to be “task-related” (as defined in Section 
3.4.4). It can be observed that task-related clusters resemble common induced responses 
(e.g., occipital alpha, and sensorimotor beta and mu), while non-task-related clusters 
resemble common artefacts (e.g., eyeblinks and heartbeats), and evoked responses (e.g., 
auditory and visual).  
 
3.4.4  Selection of Task-Related Atom Clusters 
 Each of the top clusters were then analysed to reveal which were “task-related”. 

Clusters were classified as task-related based on criteria related to the average 

characteristics of their component atoms (i.e., the individual atoms that make up the 

cluster). In particular, atoms in a cluster had to have, on average, a focal source and a 

task-related reduction in activation. These criteria are based on previous findings that 
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task-related transients, particularly the movement-related beta transients hypothesized to 

be present in this work, have a focal localization pattern (Power and Bardouille, 2021) 

and a marked reduction and rebound in their rate of occurrence with the onset and offset 

of task performance (Brady et al., 2020). The focality of source was determined for each 

atom by calculating an equivalent current dipole (ECD) from the spatial representation of 

u. The dipole was then projected onto the participant’s MRI to determine the anatomical 

position and orientation of the source. If the average goodness of fit for atoms in a given 

cluster exceeded 90%, then the cluster source was considered to be focal. The task-related 

reduction in activity criteria was assessed by segmenting the activation z vector into pre-

task, task, and post-task intervals (where the task was a unimanual button press) and 

calculating the percent change in activation between intervals. The pre-movement, 

movement, and post-movement intervals were set to -1.25s to -0.25s, -0.25s to 0.25s, and 

0.25s to 1.25s relative to movement onset, respectively. Percent changes were then 

calculated between the movement and pre-movement, movement and post-movement, 

and post-movement and pre-movement intervals. More specifically, the percent change 

between period A and period B corresponds to the sum of the activations during period A 

divided by the sum of activations during period B, subtracted by 1. A positive value for 

this metric corresponds to a relative increase in the average number of activations in A 

compared to B while a negative value corresponds to a decrease.  

 If, on average, activations for an atom in a given cluster had a decrease from the 

pre-movement to movement interval that exceeded 10% and an increase from the 

movement to post-movement interval that exceeded 10%, the cluster was considered to 

meet the criteria for a task-related change in activity. Clusters were also assessed for an 

additional “rebound ”criteria, to determine whether clusters exhibited an increase in 

activity above pre-movement levels, characteristic of movement-related beta transients 

(Brady et al., 2020). If, on average, atoms in the cluster had a difference between post-

movement and pre-movement that exceeded 10%, the cluster was also considered to have 

a rebound component. The 10% threshold used to compare task intervals was selected 

based on the magnitude of task-related changes in beta activity reported in previous 

analyses of the CamCAN dataset (Bardouille et al., 2019; Brady et al., 2020). Using both 

average power (Bardouille et al., 2019), and burst-based (Brady et al., 2020) analyses of 
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beta activity, task-related changes on the order of 10-30% were observed. Therefore, to 

capture beta events along with other task-related event types for which the magnitude of 

this change is not defined, the threshold was set to the lower end of this range.  

 Of the 11 clusters included in this analysis, seven met the criteria for both focality 

and activity changes and were therefore classified as task-related. Of these, only one did 

not meet the additional rebound criteria.  

3.4.5 Representative Atom Generation 

 For each of the task-related clusters identified in previous steps, a representative 

atom was generated using a modified version of the CDL process described in Section 

3.4.2. The creation of a representative atom allowed the cluster to be characterised and 

visualised, and provided a basis of comparison for atoms within and between clusters. For 

each atom in a given cluster, representative MEG data for the atom was recreated by 

convolving the activation vector with the outer product of the u and v vectors to yield 

MEG time course data (channels x time). The MEG data from all component atoms in the 

cluster was then concatenated to create a single representative signal for the cluster. CDL 

was then applied to the concatenated signal to learn a single, 500ms atom that would be 

representative of the most highly repetitive spatiotemporal signal in the cluster. An ECD 

was also computed for each representative atom using spatial representation of the u 

vector projected onto an average template brain.  

 The concatenated signal for each cluster was also used to generate a time-

frequency representation (TFR) to show each atom clusters’ frequency-specific behaviour 

relative to the movement task, averaged over tasks and participants. The concatenated 

signal was epoched based on stimulus onset as described in Section 3.4.1. TFRs were 

then generated using a Morlet wavelet transform with a 500ms wavelet, and were used as 

a basis of comparison between the atom types detected in this work and traditional band-

limited power analyses.  

3.4.6  Demographic Analysis 

 The demographic characteristics of each task-related cluster were first 

investigated by creating histograms depicting the age and sex distribution of the 

participants whose atoms were included in the cluster. Participants were only counted 

once per cluster, regardless of how many atoms the participant had assigned to a given 
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cluster. The demographic distributions for each cluster were then compared to the 

demographic distribution of the overall dataset (538 participants). The cluster and overall 

distributions were then quantitatively compared by conducting a Chi-squared test with a 

Bonferroni-corrected a = 0.007 (as the result of 0.05 divided by 7 clusters) to determine 

whether the real cluster demographics were significantly different from what would be 

expected if clusters were created by random sampling. The results of the Chi-squared test 

provided information on the presence of age- or sex-related biases within clusters.  

 To further investigate demographic trends within each cluster, a series of 

regression analyses were conducted relating the component atoms’ spatiotemporal 

characteristics to participant age. Atom characteristics including peak frequency of the 

power spectrum, activation sum (in the pre-movement and post-movement intervals 

described in Section 3.4.4), and dipole position and orientation were regressed with age 

using both linear and quadratic models. To determine the best fit model type, goodness of 

fit of each model (linear and quadratic) to the data was assessed using a Chi-squared test. 

An F-test was then employed to decide the more appropriate model for each regression. A 

quadratic model was selected if F>6.635, indicating 99% confidence. Otherwise, a linear 

model was deemed most appropriate. The appropriate model was then plotted, and 

significant trends were assessed using Bonferroni-corrected a=0.007.  

 Additional regression analyses were also implemented to disambiguate the effects 

of burst rate and burst power on changes in the activation sum for each task interval and 

cluster. The distinction between these underlying factors is important because they are 

related to fundamentally different activity of the neural network (e.g., burst rate is related 

to neural firing rates while burst power is related to neural network size). Therefore, the 

independent analysis of burst rate and burst power was performed to determine whether 

burst rate or burst power underlies age-related changes in atom activation sum, for each 

cluster. Burst rate was defined as the number of non-zero activation values in the interval 

of interest divided by the length of the interval. This was calculated for each component 

atom during each task interval (pre-movement and post-movement) and regressed against 

age using the linear and quadratic models as described above. Burst power was defined as 

the magnitude of the non-zero activations and was assessed as a distribution of values for 

each atom in each task interval. The role of burst power in the activation sum trends was 
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investigated by calculating the distribution of activation values for each atom and 

assessing the shift in the distribution with age. A Gaussian function was fit to the 

distribution of activation values for each atom, and the µ (mean) and s (standard 

deviation) values for each distribution were regressed against age to assess for age-related 

changes in the distribution.  

 In addition to the atoms’ characteristics, the relationship between participant age 

and the correlation of their atoms to the cluster’s representative atom was also assessed. A 

significant age-related change in correlation would indicate that similarity to the 

representative atom changed with age and would provide particular insight into whether 

atom characteristics may be converging towards or deviating from the mean with age. 

The correlation of the u vectors and the maximum cross-correlation of the v vectors were 

calculated between each atom in a given cluster and the cluster’s representative atom to 

provide a measure of atom similarity to the representative atom for the group. As above, 

linear and quadratic regression analyses relating the correlation values of each atom to the 

age of the participant to whom the atom belonged were conducted. All linear and 

quadratic regression analyses were assessed for significance with a Bonferroni-corrected 

a = 0.007.  All results are reported to two decimal places.  

3.5 Results 

3.5.1  Spatiotemporal Characteristics of Task-Related Atoms 
 The global clustering methods described above resulted in seven task-related 

clusters of atoms across participants. Figure 3.6 shows the spatial topographies and 

temporal waveforms for each of the representative atoms for the task-related clusters. Of 

the seven representative atoms, four had waveforms resembling alpha waves (i.e., 8 to 12 

Hz sinusoid), one had a waveform resembling a mu wave (i.e., complex waveform with a 

peak frequency of 8 to 12Hz), and two had waveforms resembling beta waves (i.e., 

complex waveform with a peak frequency of 15 to 30Hz). Three of the clusters 

characterized by alpha-type waveforms had topographies resembling occipital activation. 

These clusters were distinguished spatially by their tendency to activate sensors either in 

the left occipital lobe (LO_alpha), right occipital lobe (RO_alpha) or more anteriorly and 

medially in the medial occipitoparietal region (MOP_alpha). The fourth alpha-type 

waveform had an associated spatial topography resembling left temporal lobe activity 
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(LT_alpha). The cluster characterised by a mu waveform had a spatial topography 

resembling right central (sensorimotor) activation (RC_mu). Finally, both clusters 

characterised by beta waveforms had topographies suggesting left central (sensorimotor) 

activity. One such cluster showed peak activity just anterior to the center of the 

topography, near the primary motor area (LPreC_beta), and the other showed peak 

activity just posterior to the center of the topography, near the primary somatosensory 

area (LPostC_beta).  

 

Figure 3.6 The seven task-related clusters identified in this work. (Left) The shift-
invariant spatial and temporal vectors of the representative atoms created for each of the 
seven clusters identified. Clusters are given a functional label based on the spatial and 
temporal representation of the atom. (Center) Box plots depicting the distribution of peak 
frequencies of the component atoms for each cluster. (Right) The mean and standard 
deviation (error bars) of the summed activation during the pre-movement (solid bar), 
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movement (vertical striped bar), and post-movement (diagonal striped bar) intervals for 
the component atoms of each of the seven clusters.  
 

 The distributions of the peak frequencies and activation sums of the component 

atoms are shown in Figure 3.6. In general, the alpha-type clusters (LO_alpha, RO_alpha, 

MOP_alpha, and LT_alpha) have relatively narrow frequency distributions, with few 

outliers. The mean peak frequencies of the component atoms for the alpha-type clusters 

are 10.36 +/- 1.56 Hz, 9.98 +/- 0.80 Hz, 9.23 +/- 1.08 Hz, and 9.72 +/- 1.61 Hz (mean +/- 

standard deviation), for LO_alpha, RO_alpha, MOP_alpha, and LT_alpha, respectively. 

The mu-type cluster has a slightly wider frequency distribution with a mean of 11.10 +/- 

1.99 Hz, and the beta-type clusters have the widest frequency distributions with means of 

16.03 +/- 2.81 Hz and 15.50 +/- 3.02 Hz, respectively. This suggests that there is more 

variability in the frequency content of the atoms making up the beta-type clusters than the 

mu- or alpha-type clusters. In terms of activation sums, all task-related clusters had, on 

average, a decrease in activation from the pre-movement to movement time intervals, and 

a subsequent increase in activation from movement to post-movement, as this was one of 

the criteria required to classify the cluster as “task-related”. However, it should be noted 

that for all clusters, there was a large amount of variability in the level of activation of the 

component clusters during each task interval, as indicated by the error bars in Figure 3.6. 

In addition, 6 of the task-related clusters (LO_alpha, RO_alpha, RC_mu, LT_alpha, 

LPreC_beta, and LPostC_beta) also had a rebound component, meaning that there was an 

increase in activation from pre-movement to post-movement intervals. Notably, the beta-

type clusters (LPreC_beta and LPostC_beta), on average, have the largest difference 

between post-movement and pre-movement activation. This characteristic “rebound” of 

activation is in line with existing literature that notes a post-movement rebound of beta 

power, surpassing baseline (i.e., pre-movement) levels, in primary sensorimotor areas 

contralateral to the movement. 

 For each component atom, and each representative atom, an ECD was calculated 

to infer the approximate source of the atom. The representative atom dipoles (fit to an 

average template brain) are shown in Figure  3.7. In general, the ECDs for the 

representative atoms localize to the expected regions based on their spatial topographies. 

Representative atoms for LO_alpha and RO_alpha both localized to very similar 
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positions near the midline of the occipital lobe. Despite hemispheric differences in the 

topographies of these two atom clusters, their exact dipole localization was relatively 

indistinguishable. The representative atom for MOP_alpha localized near the midline at 

the boundary of the occipital and parietal lobes (slightly anterior and superior to the other 

occipital alpha clusters). The representative atom for LT_alpha localized to the left 

temporal lobe just posterior to the center of the head. The representative atom for RC_mu 

localized anterior to the pre-central sulcus in the right hemisphere, and the representative 

atom for LPreC_beta localized to a similar location in the left hemisphere. The 

representative atom for LPostC_beta localized slightly posterior to the LPreC_beta atom 

in the left post-central gyrus. Table B.2 (Appendix B) presents the positions, orientations, 

and goodness of fit values for each of the representative atom ECDs.  

 

Figure 3.7 The dipole fits for each of the seven representative atoms. Axial, sagittal, and 
coronal slices are shown for each fit, with the thin lines indicating the position of the 
dipole in each plane and red arrows indicating the orientation of the dipole. 
Representative atom dipoles were fit to an average template brain.  
 
 Average TFRs were created for each atom cluster to allow the atoms’ behaviour to 

be compared to traditional average spectral power analysis (see Figure 3.8). In an average 

power analysis of an audio-visual cued simple movement task, we would expect to see 

suppression of occipital alpha and sensorimotor mu and beta activity, and a rebound in 

sensorimotor beta activity. As shown in Figure 3.8, each atom type shows a distinct 
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reduction in activity near the onset of the movement (at time = 0 s) and an increase to 

baseline activity following the task. In addition, clear rebound behaviour is evident in the 

beta-type atoms, reflecting the post-movement beta rebound seen in traditional analyses 

(for example, Bardouille et al., 2019). This suggests that CDL reconstructs the expected 

brain responses. Finally, the right central mu atoms show a frequency profile that is 

distinctly different from the occipital and temporal alpha atoms, providing further 

confidence in the relationship between the CDL-detected waveforms and traditional 

analyses.  

Figure 3.8 Time-frequency representations generated from the concatenated signal for 
each of the 7 task-related atom clusters. The signal is averaged across epochs and atoms, 
and activity is shown relative to movement onset (time = 0s). Color represents the 
magnitude of the activity in dB.  
 
3.5.2  Demographic Distributions 

 The demographic composition of each cluster was assessed by comparing the age 

and sex distributions of the cluster to the distribution generated from the overall dataset 

using a Chi-squared test. Clusters LT_alpha and LPostC_beta were found to have an age 

distribution that was significantly different from that of the overall dataset, with Chi-

squared values of 27.47 (p = 0.0012) and 36.29 (p = 0.000035), respectively. Both 

clusters had age distributions that were skewed towards older participants. Histograms 

showing the distributions of the two significant clusters compared to the overall dataset 
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are presented in Figure 3.9.  No other clusters had age or sex distributions that were 

significantly different from that of the overall dataset.  

Figure 3.9 The age distribution of participants in the LPostC_beta (striped) and LT_alpha 
(black) clusters compared to the age distribution of the overall dataset (grey).  
 
3.5.3  Age-Related Trends in Atom Characteristics 

 All clusters were examined for age-related changes in their component atom 

characteristics including peak frequency, activation sum (in the pre-movement and post-

movement intervals), dipole position and orientation, and correlation of the u and v 

vectors to the mean atoms’ vectors. Of these, activation sum showed significant age-

related changes across the most clusters. Age-related trends in activation sum for each 

cluster are shown in Figure 3.10 for the pre-movement and post-movement intervals. In 

the pre-movement interval, clusters LO_alpha, RO_alpha, MOP_alpha, LPreC_beta, and 

LPostC_beta showed significant positive linear trends with increasing age. In the post-

movement interval, clusters LO_alpha and RO_alpha showed positive quadratic trends 

with a vertex around 40 years, clusters MOP_alpha, RC_mu, and LT_alpha showed 

significant positive linear trends with age, and cluster LPreC_beta showed a negative 

quadratic trend with a vertex at approximately 60 years. The corrected p-values and 

RMSE values for all trends can be found in Table 3.1.  
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Figure 3.10 Results of linear and quadratic regression of summed activation and burst 
rate with age during pre-movement and post-movement. Summed activation and burst 
rate during each interval are plotted against participant age for the component atoms of 
each cluster. Blue plots represent those that were modelled by a linear fit, and green plots 
were modelled by a quadratic fit. Asterisks indicate clusters and intervals for which the 
best fit regression was significant (Bonferroni corrected alpha < 0.007).  
 

 To investigate the roles of burst rate in the activation sum trends, linear and 

quadratic regression were also conducted between burst rate and age. The results are 

displayed alongside the activation sum regression results in Figure 3.10. P-values and 

RMSE values associated with this analysis can be found in Table 3.1. The results of the 

burst rate regression in the pre-movement interval were similar to those of the activation 

sum regression with positive linear trends evident in most clusters. As with activation 

sum, clusters LO_alpha, RO_alpha, MOP_alpha, LPreC_beta, and LPostC_beta showed 

significant positive linear trends with increasing age, but in addition, cluster LT_alpha 

also showed a significant positive increasing trend in burst rate which was not present in 

the activation sum regression. Similarly, the results of the burst rate regression in the 

post-movement interval also showed high concordance to the activation sum regression 

results. All significant effects in the post-movement interval matched those found in the 
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activation sum regression except for clusters LO_alpha and RO_alpha which were better 

fit with a positive linear model in the burst rate regression rather than the positive 

quadratic model fit in the activation sum regression. Despite the discrepancy in the best 

model fit, LO_alpha, and RO_alpha show similar increasing trajectories for both 

activation sum and burst rate. These results suggest that burst rate can account for the 

majority of the trends that were observed in activation sum with age.  

Table 3.1  

p-values and RMSE values for age-related regression of the summed activation vector, 
activation burst rate, and mu and sigma of the activation distribution. Data is shown for 
the pre-movement and post-movement activation intervals. Significant p-values are 
indicated by an asterisk.  
 
Cluster Pre-Movement 

Sum Rate Mu Sigma 
p-value RMSE p-value RMSE p-value RMSE p-value RMSE 

LO_alpha 5.1e-7* 2.2e-9 2.8e-8* 4.6e-1 2.7e-2 2.9e-11 7.6e-2 1.6e-11 
RO_alpha 2.8e-7* 2.0e-9 2.1e-6* 4.5e-1 8.4e-2 3.1e-11 1.6e-1 1.6e-11 
MOP_alpha 1.1e-8* 2.4e-9 2.5e-7* 4.5e-1 4.3e-1 3.4e-11 6.1e-2 1.8e-11 
RC_mu 8.6e-3 3.1e-9 2.2e-2 6.1e-1 9.6e-1 3.8e-11 8.4e-1 1.7e-11 
LT_alpha 9.1e-3 2.6e-9 2.4e-3* 5.3e-1 3.9e-1 2.8e-11 4.8e-1 1.4e-11 
LPreC_beta 2.5e-5* 2.3e-9 1.4e-3* 5.4e-1 8.9e-3 4.1e-11 4.1e-5* 1.4e-11 
LPostC_beta 4.8e-5* 2.3e-9 4.8e-4* 6.2e-1 7.0e-1 3.4e-11 5.7e-1 1.3e-11 
 Post-Movement 

Sum Rate Mu Sigma 
p-value RMSE p-value RMSE p-value RMSE p-value RMSE 

LO_alpha 1.7e-7* 2.7e-9 8.3e-7* 5.9e-1 2.2e-1 3.0e-11 1.7e-1 1.6e-11 
RO_alpha 1.1e-9* 2.6e-9 6.1e-8* 5.4e-1 5.6e-1 3.2e-11 3.3e-1 1.6e-11 
MOP_alpha 4.4e-5* 2.6e-9 4.0e-5* 4.8e-1 7.9e-1 3.3e-11 5.1e-1 1.8e-11 
RC_mu 6.2e-3* 3.0e-9 3.9e-3* 6.1e-1 6.0e-1 3.7e-11 4.6e-1 1.6e-11 
LT_alpha 3.4e-3* 2.8e-9 1.5e-3* 6.0e-1 2.3e-2 2.8e-11 8.1e-1 1.3e-11 
LPreC_beta 9.9e-4* 3.6e-9 3.3e-5* 8.7e-1 1.4e-3* 4.4e-11 2.3e-1 1.5e-11 
LPostC_beta 3.3e-1 3.2e-9 2.6e-1 8.1e-1 3.2e-2 3.2e-11 1.6e-1 1.3e-11 
 

 The role of burst power in the activation sum trends was then investigated by 

calculating the distribution of activation values for each atom and assessing the shift in 

the distribution with age. Relevant p-values are given in Table 3.1. In the pre-movement 

interval, no significant age-related changes in the distribution mean were found, and only 

one significant effect of the distribution standard deviation was found (LPreC_beta). For 

cluster LPreC_beta, the standard deviation increased linearly with age suggesting that 

older participants had more variable burst power values than younger participants. The 

lack of effects in the mean value, however, suggested that the magnitude of burst power 

does not change significantly with age. In the post-movement interval, there was a single 
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significant age-related quadratic effect in the mean of the distribution for cluster 

LPreC_beta. The effect was such that the atoms from the youngest and oldest participants 

had a distribution that was shifted towards larger activation values, while those atoms 

belonging to middle-aged participants tended to come from a distribution with a lower 

mean activation value. This suggests that, for cluster LPreC_beta, burst power is highest 

in young and old participants. This contrasts the results of the activation sum regression 

for cluster LPreC_beta which showed that young and old participants had a reduced 

activation sum compared to their middle-aged counterparts. These results suggest that 

burst power plays a lesser role in the overall activation sum trends, and in some cases 

may even contradict the overall effects driven by burst rate. Supporting figures can be 

found in Appendix B, Figure B.4.  

 In addition to the dominant age-related effects demonstrated in activation sum, 

several spurious age-related trends in other atom characteristics were found. Figure B.5 

shows plots of the age-related linear and quadratic effects of peak frequency, y position of 

the dipole, and correlation of the u and v vector to the mean atom, and highlights the 

clusters for which these effects were significant. There were no significant age-related 

effects found in the x or z position or x, y, or z orientation of the dipole for any cluster. 

The correlation of the u vector (spatial topography) to the mean atom showed a 

significant negative linear trend with age for cluster LO_alpha (p = 0.0035). This 

indicates that the spatial topography for cluster LO_alpha becomes increasingly variable, 

or dissimilar to the mean atom with age. The correlation of the v vector (temporal 

waveform) to the mean atom showed a significant positive linear trend with age for 

clusters LPreC_beta (p = 0.0029) and LPostC_beta (p = 0.0021) indicating that these 

clusters showed a convergence in their temporal waveform with age. In addition, peak 

frequency of the component atoms showed a significant negative linear trend in cluster 

RO_alpha with age (p = 0.0016) and a significant positive linear trend in cluster RC_mu 

with age  (p = 0.0014). Finally, the y position of the dipole showed a significant negative 

linear trend with age in cluster LT_alpha (p = 0.0018), indicating that there may be a 

posterior shift in the dipole position of cluster LT_alpha with age.  
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 A summary of all age-related effects observed in each cluster is shown in Table 

3.2. The variability in the effects observed in different clusters suggests that all clusters 

are distinct and have unique individual relationships to the ageing process.  

 

Table 3.2  

Summary of the age-related effects for each cluster.  

Cluster Age-Related Effects 

LO_alpha Linear increase in pre-movement activation 
Positive quadratic effect in post-movement activation 
Linear increase in pre-movement and post-movement burst rate 
Linear decrease in u vector correlation to mean atom 

RO_alpha Linear increase in pre-movement activation 
Positive quadratic effect in movement and post-movement activation 
Linear increase in pre-movement, movement, and post-movement burst rate 
Linear decrease in peak frequency  

MOP_alpha Linear increase in pre-movement and post-movement activation 
Positive quadratic effect in movement activation 
Linear increase in pre-movement and post-movement burst rate 

RC_mu Linear increase in movement and post-movement activation 
Linear increase in post-movement burst rate  
Linear increase in peak frequency 

LT_alpha Age distribution skewed towards older adults  
Linear increase in post-movement activation 
Linear increase in pre-movement and post-movement burst rate 
Linear increase in y position of dipole (posterior shift) 

LPreC_beta Linear increase in pre-movement activation 
Negative quadratic effect in post-movement activation 
Linear increase in pre-movement burst rate 
Negative quadratic effect in post-movement burst rate 
Linear increase in pre-movement sigma property of activation distribution 
Positive quadratic effect in post-movement mu property of activation distribution 
Linear increase in v vector correlation to mean atom 

LPostC_beta Age distribution skewed towards older adults  
Linear increase in pre-movement activation 
Linear increase in pre-movement burst rate  
Linear increase in v vector correlation to mean atom 
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3.6 Discussion 

3.6.1  Summary of Findings 

 In this work, a multi-channel data-driven CDL approach and unsupervised 

clustering method were successfully applied to the large open-access CamCAN dataset to 

detect a set of prototypical, transient task-related atoms that occurred across many 

participants. The atom clusters that were generated had stereotypical patterns resembling 

known task-related brain activity, including occipital alpha and sensorimotor beta and 

mu. The spatial and temporal characteristics of each type of atom showed various age-

related changes, with activation sum (driven by burst rate) showing the most prominent 

age-related effects across atom types. The results of this work suggest that several distinct 

types of sensorimotor and occipital transients are present in human MEG data, and that 

these transient bursts change in their rate of occurrence during task performance and 

throughout the normal ageing process. The use of the data-driven CDL approach 

combined with simple correlation clustering across participants allowed for these bursts 

to be detected and characterised at the group level through a data-driven approach that 

generated rich information about the complex types of transients underlying human brain 

activity.  

3.6.2 Significance 

 It was hypothesised that some of the task-related atoms identified in this work 

would resemble sensorimotor beta and mu transients as these have been shown in 

previous literature to have a marked (mu and beta) reduction and (beta) rebound in 

occurrence with the onset and offset of a voluntary movement (Errington et al., 2020; 

Feingold et al., 2015; He et al., 2020; Hebert and Lehmann, 1977; Lakatos et al., 2004; 

Little et al., 2019; Lundqvist et al., 2016; Shin et al., 2017; Wessel, 2020). In line with 

this hypothesis, two of the identified atom clusters resembled left sensorimotor beta 

transients, and one atom cluster resembled a right sensorimotor mu transient. The 

frequency bands and movement-related temporal behaviour associated with each of these 

atoms coincided with the features associated with sensorimotor beta and mu activity 

identified in classical average power analysis (as shown in Figure 3.8). Given that the 

sensorimotor task used in this dataset was a right-handed unimanual button press, it was 

expected that contralateral (left) sensorimotor beta transients would be a dominant task-
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related atom type across many participants. An interesting finding of this analysis, 

however, was that two distinct clusters of contralateral sensorimotor beta transients 

emerged with slightly different representative waveforms and spatial topographies. Upon 

fitting an ECD for the representative atom for each cluster, it was found that one atom 

localized slightly pre-centrally, while the other localized slightly post-centrally. This 

finding suggests that these two atom clusters may represent two distinct types of beta 

transients that come from different (primary motor and primary somatosensory) sources 

and may have different physiological properties. Further, post-hoc analysis revealed that 

in the pre-movement interval there was higher activation of the LPostC_beta atoms 

compared to the LPreC_beta atoms (p = 0 .034) and in the post-movement interval there 

was higher activation of the LPreC_beta atoms compared to the LPostC_beta atoms (p = 

0 .018), suggesting that these two types of beta bursts were related to different phases of 

movement. The finding of differentiable beta bursts for two separate generators is a novel 

contribution of the CDL method. Other thresholding-based transient burst detection 

methods rely on specifying an approximate burst frequency and spatial location prior to 

detection. Therefore, previous methods have been largely insensitive to the subtle 

waveform and spatial differences between pre- and post-central bursts.  

 Despite the identification of multiple contralateral central beta burst clusters, no 

contralateral central mu burst clusters or ipsilateral central beta burst clusters were 

identified in this analysis. This apparent gap is not due to an inability of the CDL method 

to detect such atoms but is rather a result of the “top cluster” cut-off selected in this work. 

The objective of this work was to assess cross-sectional ageing trends in highly 

stereotypical atom types, and as such, only the largest (i.e., most common) atom clusters 

were investigated. The result of this, however, is that some atom types were not included 

if they had high between-subject variability resulting in the formation of several, smaller 

clusters rather than a single larger cluster. As shown in Figure 3.5, this was the case for 

clusters of contralateral central mu and ipsilateral central beta atoms, which formed 

clusters identifiable by CDL, but whose cluster sizes did not meet the required “top 

cluster” threshold. To address the limitation imposed by the top cluster framework, an 

alternative analysis method has been provided in the supplementary material (see Figure 

B.7) that provides more insight into the diversity of atom clusters. While the selection of 
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top clusters was necessary for the current work to ensure adequate sample sizes for 

studying cross-sectional ageing trends, future work using CDL and atom clustering 

should consider which analysis strategy is best suited for the research question at hand.  

 In addition to sensorimotor beta and mu atoms, three of the seven task-related 

atom clusters identified in this work resembled occipital alpha transients, and one 

resembled a temporal alpha transient. The presence of these atoms was not explicitly 

hypothesised in this work, as most sensorimotor literature does not focus on the occipital 

(or temporal) alpha signal. However, the task-related nature of this signal is not 

surprising. It is well-established that occipital alpha is primarily a resting-state signal, and 

that its amplitude decreases relative to baseline with increased alertness or attention to 

stimuli (Britton et al., 2016). Task-related atoms were identified in this work as those that 

showed a decrease in activation relative to pre-movement levels with the onset of a 

sensorimotor task, and an increase in activation relative to movement levels following the 

offset. Because the occipital alpha signal is inversely related to alertness, it is 

unsurprising that engagement in a sensorimotor task resulted in a reduction and rebound 

of these occipital alpha atoms’ activation values. Similarly to the left sensorimotor beta 

atoms, the analysis also identified multiple distinct occipital alpha patterns. In this case, 

the temporal waveform of the alpha atoms was quite consistent across the three clusters, 

but the spatial representation varied between clusters. This suggests that there may be 

several distinct generators of occipital alpha in the left and right occipital and posterior 

occipitoparietal regions, as well as potentially related alpha generators in the temporal 

regions. While occipital alpha atoms were not the intended target of this analysis, the 

data-driven nature of the CDL method allowed for their identification. As a result, we 

were afforded a unique opportunity to assess age-related trends in transient bursts of 

occipital alpha in the context of a motor task, which otherwise would not have been a 

focus.  

 Each of the atom clusters identified in this work showed trends in some of their 

spatiotemporal characteristics with age, with all atoms showing a significant trend in 

activation sum during at least one of the task intervals. Interestingly, occipital alpha-type 

clusters tended to show consistent increasing trends in activation with age across both 

pre-movement and post-movement intervals, whereas beta- and mu-type clusters tended 
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to have differential age-related effects depending on the phase of movement. This 

suggests that occipital alpha transients show an overall increase in activation with age 

that is independent of the phase of movement, while beta/mu transient activation trends 

are dependent on the movement phase. The overall increase in occipital alpha activity 

with age, while not hypothesised, is in line with previous findings that show that ageing 

is associated with a reduced frequency of brain activity and that older participants tend to 

have dominant alpha peaks in their spectrograms (Chiang et al., 2011). Further 

investigation into the underlying properties of the activation showed that for all occipital 

alpha clusters, the increasing trends observed in activation sum with age could be 

explained by similar trends in burst rate with age. Burst power, however, did not play a 

significant role. This finding suggests that increasing occipital alpha activity with age is 

related to an increase in the number of activations of the underlying neural networks (i.e., 

the neuronal firing rate), rather than the magnitude of the individual activations (i.e., the 

size of the activated neuronal population).  

 Similarly, for beta atoms, burst rate was also the primary driver behind age-related 

changes in activation sum. In the pre-movement interval, both beta atoms showed a linear 

increase in activation sum with age that could be explained by an associated increase in 

burst rate with age. This pre-movement increase in sensorimotor beta burst rate is in line 

with our hypothesis and previous findings that burst rate is the primary factor influencing 

increases in pre-movement sensorimotor beta with age (Brady et al., 2020). In the post-

movement interval, the age-related trends were less consistent. The left pre-central beta 

cluster showed a negative quadratic trend in activation sum with a peak around 60 years 

of age that was mirrored by a similar negative quadratic trend in burst rate with age. In 

addition, there was also a significant positive quadratic trend in both the mean and 

standard deviation of the activation distribution for the left pre-central beta cluster during 

post-movement that contrasted the negative quadratic trend observed in the activation 

sum and burst rate. This suggests that young and old participants exhibit a larger number 

of lower power sensorimotor bursts than middle-aged participants, but that the increased 

burst rate is the primary factor driving an overall increased activation sum in young and 

old participants. Interestingly, the quadratic activation trends in the post-movement 

interval for the left pre-central beta cluster were not present in the left post-central beta 
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cluster. This further demonstrates that the two beta clusters are distinct from one another 

and vary differently with age. Overall, these results provide strong evidence that age-

related changes in transient bursts are primarily driven by changes in the firing rate of the 

underlying neural networks.  

 Surprisingly, the hypotheses that beta and mu sensorimotor atoms would show a 

decrease in burst frequency and an anterior shift in dipole position with age were largely 

unsupported by our results. In fact, the right central mu cluster showed an increase in 

burst frequency with age, while the left central beta clusters did not show any significant 

change in frequency with age. A possible explanation for this apparent discrepancy is that 

if central mu bursts increase in frequency with age such that their peak frequency 

approaches 15 Hz (as is observed in the right central mu cluster), these bursts may begin 

to be considered as beta bursts instead of mu bursts if the signals are dichotomized based 

on classic frequency band limits. The misrepresentation of these high-frequency mu 

bursts as low-frequency beta bursts could then result in the appearance of a reduction in 

frequency of beta bursts. This effect could also contribute to an exaggerated increasing 

trend in burst rate with age in other analyses, as more mu bursts may be counted as beta 

in older participants. The anterior shift in the source of beta bursts that was noted 

previously using minimum norm source estimation (Power and Bardouille, 2021) was not 

present for either of the sensorimotor beta clusters in this work. This may be due in part 

to the discrepancy in source localization methods and a reduced sensitivity of the ECD fit 

compared to the minimum norm estimation method.  

3.6.3 Limitations and Future Directions 

 As a result of the success of CDL for detecting group-level, task-related transient 

events, several new avenues for future research have emerged. One such direction for 

future research is to use this approach to create a data-driven set of representative atoms 

that could be used as a standard dictionary of transient bursts. Previous research has 

discussed the value of creating such a dictionary (Tal et al., 2020), and applying the 

methods described here to a large dataset of resting state data, such as that offered in the 

CamCAN dataset, would allow for such a set of transients to be realised. While CDL and 

the associated clustering methods presented here could be applied to any dataset 

regardless of size, the relatively small cluster sizes (i.e., 25–40% of participants per 



 
 

 
 

91 

cluster) reported here suggest that a top cluster analysis of a much smaller dataset would 

not yield particularly representative results. However, with access to a standard dictionary 

derived from a large dataset, template matching could be used to search small datasets for 

signals that have high similarity to the standard transients. This would provide an 

opportunity for fast and efficient identification of a variety of transient bursts, regardless 

of the dataset size.  

 The CDL approach described here also lends itself well to applications where an 

external synchronisation signal (i.e., a task) is not present in the data. In the current work, 

we were interested in detecting task-related transients that were comparable to those 

detected by existing methods to help validate the efficacy of our methods. However, CDL 

is also well-suited for detecting transient signals that are not related to a task, because it 

can detect transient signals throughout electrophysiological data without reliance on task-

related timestamps. This makes CDL an ideal tool for resting-state applications and burst-

based neurofeedback applications (see Karvat et al., 2020; Ossadtchi et al., 2017) where 

we cannot rely on the concatenation of task-based trials for our analysis.  

 Despite the overall success and promising areas for future work based on these 

results, there are some limitations of the current work that should be addressed. One such 

limitation is that in the current analysis, the data was bandpass filtered between 2 and 45 

Hz to target the mu and beta frequency activity upon which the hypotheses were based. 

The limitation of this is that higher frequency activity (e.g., gamma bursts) were not 

identifiable in this work. Therefore, future work may wish to expand the frequency band 

of interest to detect a wider range of bursts than were targeted in this work. In addition, 

future work could improve upon the clustering methods used in this work. While the 

correlation-based clustering method was successful for clustering atoms based on the 

simultaneous consideration of spatial and temporal metrics, it may not be desirable for all 

applications as it relies on a number of user-defined hyperparameters tuned by manual 

data inspection. To improve upon this and increase the ease of use of our methods, future 

developments could be made to existing “out of the box” clustering methods to formalize 

an algorithm that could simultaneously consider multiple clustering metrics. Finally, a 

limitation of the CDL algorithm is that it imposes a particular duration on the atoms that 

are being detected. This could result in the exclusion of some types of transient bursts 
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that have a duration that is much longer or much shorter than the pre-defined atom 

window. This limitation demonstrates that while CDL imposes fewer assumptions than 

previous methods and employs a data-driven approach, it is not entirely without 

restrictions.  

 Prior to using CDL for transient burst detection applications, researchers should 

consider the applicability of the method to the research question at hand and should 

consider the advantages and disadvantages of CDL compared to other burst detection 

methods. In some cases, a simpler amplitude-thresholding method may be sufficient, or 

potentially more appropriate than CDL. For example, if a researcher is interested in 

investigating the transient bursts that specifically underlie a sustained signal in the 

spectral power, a spectral power thresholding approach may be preferred because the 

bursts can be directly related to the average spectral power. However, this method should 

only be used if the researcher has a hypothesis about the approximate location and 

frequency of interest, and if the bursts can be assumed to have a Morlet wavelet shape 

(and the researcher is not interested in variations in waveform shape). If any of these 

conditions are not met, then CDL could be a beneficial alternative to investigate the 

research question.  

3.7 Conclusion 
 The CDL methods employed in this work have provided us with an opportunity to 

investigate transient bursts at the group level using a data-driven approach that makes 

minimal assumptions about the spatial and temporal dynamics of the signal. This has 

allowed us to identify multiple, distinct types of transient bursts that have similar 

temporal and/or spatial patterns and may co-occur in time and space. In particular, we 

were able to identify 2 distinct types of contralateral sensorimotor beta bursts and 3 

distinct types of occipital alpha bursts. Due to the constraints of other methods, the 

detection of these types of similar, but distinct, atoms was not previously possible. In 

addition, the data-driven nature of this work allowed us to gain important insight into the 

spatiotemporal dynamics of occipital alpha bursts in the context of a motor task, even 

though hypotheses about these bursts were not made. This insight would have been lost 

had a different method that required a-priori specification of frequency bands been used. 

The clustering methods applied in this work allowed us to investigate data-driven 
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transient bursts at the group level for the first time, which opened up the possibility of 

studying age-related trends in a large dataset. This work therefore afforded us with the 

unique opportunity to gain rich information about the age-related changes in these 

various transient burst types, and provided convincing evidence that burst rate was the 

primary factor driving these age-related changes. The methods developed in the current 

work provide a framework that other researchers can use in the future to detect transient 

bursts at the group level and further our collective understanding of human 

neuromagnetic transients. 
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Chapter 4   

Atypical Slow Paroxysmal Activity in Healthy Adults: 

Relationship to Age and Cognitive Performance 
 

4.1 Preamble 
 Transient beta bursts are detectable in all healthy participants and have been 

widely accepted as a reliable movement-dependent phenomenon. Therefore, beta bursts 

were ideal for validating novel analysis methods such as those presented in Chapters 2 

and 3. Explorations of beta bursts in the prior chapters provided rich information about 

the neural mechanisms of sensorimotor processes and how those mechanisms change 

across the lifespan. While this is useful information for our understanding of healthy 

ageing, the clinical applicability of the work is less clear. Given this, an interesting 

progression of this work is to expand some of the concepts and methods used to analyse 

beta bursts into other frequency bands, particularly those that could have important 

clinical implications. Slow wave brain activity has been associated with a number of age-

related neuropathologies and its study has the potential to provide insight into the ageing 

brain. However, studying slow wave activity in healthy ageing using a transient event 

framework has never been done. Therefore, Chapter 4 explores transient (i.e., 

paroxysmal) slow wave events in the large CamCAN dataset and characterises the 

relationship between slow wave event features and healthy ageing and cognition.  

 

Chapter 4 of the thesis contains peer-reviewed work published in Neurobiology of Aging 

in April, 2024. Text in the introduction and discussion has been modified to reduce 

redundancies in the thesis, but the methods and results sections appear as published. The 

reference for the publication is provided below.  

 

Power, L., Friedman, A., & Bardouille, T. (2024). Atypical slow paroxysmal activity in 

healthy adults: Relationship to age and cognitive performance. Neurobiology of Aging, 

136, 44-57. https://doi.org/10.1016/j.neurobiolaging.2024.01.009 
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4.2 Abstract 

Paroxysmal patterns of slow cortical activity have been detected in EEG recordings from 

individuals with age-related neuropathology and have been shown to be correlated with 

cognitive dysfunction and blood-brain barrier disruption in these participants. The 

prevalence of these events in healthy participants, however, has not been studied. In this 

work, we inspect MEG recordings from 623 healthy participants from the CamCAN 

dataset for the presence of paroxysmal slow wave events (PSWEs). PSWEs were detected 

in approximately 20% of healthy participants in the dataset, and participants with PSWEs 

tended to be older and have lower cognitive performance than those without PSWEs. In 

addition, event features changed linearly with age and cognitive performance, resulting in 

longer and slower events in older adults, and more widespread events in those with low 

cognitive performance. These findings provide the first evidence of PSWEs in a subset of 

purportedly healthy adults. Going forward, these events may have utility as a diagnostic 

biomarker for atypical brain activity in older adults. 

4.3 Introduction 
 Paroxysmal slow wave events (PSWEs) are a clinically relevant transient event 

type that were first described by Milikovsky and colleagues in 2019. The group reported 

the presence of PSWEs in patients with Alzheimer’s disease (AD) and epilepsy as well as 

in animal models of AD, epilepsy, and normal ageing (Milikovsky et al., 2019). 

Importantly, this work revealed that the frequency of occurrence of PSWEs had a strong 

relationship with the extent of blood-brain barrier disruption and level of cognitive 

impairment of patients with AD and epilepsy.  
 The established relationship between PSWEs, cognitive impairment, and BBBd 

suggests that PSWEs may be a signal of interest in other neurological processes that are 

associated with cognitive impairment and BBBd. One such process for which the 

presence of PSWEs has not yet been investigated, is the process of normal (i.e., non-

pathological) ageing. Non-pathological ageing is associated with a decline in cognitive 

functions including memory, executive function, processing speed and reasoning that 

occurs from middle age onwards (Deary et al., 2009a; Hedden and Gabrieli, 2004; Park 

and Reuter-Lorenz, 2009). This cognitive decline is thought to be related to subtle and 

widespread changes that lead to atrophy of neural tissue and overall reduction in brain 
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volume (Deary et al., 2009a). The extent of cognitive ageing varies significantly between 

individuals and depends on a variety of factors including genetic (Deary et al., 2004; 

Deary et al., 2009b), cardiovascular (Hochstenbach et al., 1998; Rafnsson et al., 2009, 

2007), dietary (e.g., lack of B-vitamins, antioxidants, omega-3 fatty acids, etc.) (Deary et 

al., 2009a), and lifestyle (e.g., smoking, alcohol consumption, physical activity levels, 

etc.) (Fratiglioni et al., 2004; Ganguli et al., 2005; Nooyens et al., 2008). In addition, non-

pathological ageing is associated with BBBd which may further contribute to cognitive 

decline (Senatorov et al., 2019). A combination of physiological factors including the 

accumulation of iron in astrocytes (Connor et al., 1990) and decreased activity of 

transporters involved in the extrusion of toxins from the brain (Toornvliet et al., 2006) 

can participate in alterations to the blood-brain barrier that are seen with age (Popescu et 

al., 2009). Other conditions that increase in prevalence with age such as hypertension and 

type-2 diabetes are risk factors for BBBd and vascular dementia (Popescu et al., 2009). 

The evidence for cognitive decline and BBBd with normal ageing and age-related 

pathology (Montagne et al., 2015; Sweeney et al., 2018; van de Haar et al., 2016) raise 

the hypothesis that PSWEs may also be found in non-pathological ageing and be 

associated with cognitive decline. 

 Electrophysiological studies of non-pathological ageing, however, have provided 

mixed results. In animal models of ageing, older mice were found to have increased low-

frequency activity in EEG (Senatorov et al., 2019) and a higher number of PSWEs 

compared to younger mice (Milikovsky et al., 2019; Senatorov et al., 2019). Human 

electrophysiological studies, however, have either found no significant changes in low-

frequency oscillatory activity with age (Caplan et al., 2015; Cesnaite et al., 2023), or have 

found reduced low-frequency activity in healthy older adults (Emek-Savaş et al., 2016; 

Leirer et al., 2011; Meghdadi et al., 2021; Vlahou et al., 2015). To our knowledge, the 

presence of PSWEs in non-pathological ageing has not been investigated in humans, and 

all other studies of low-frequency activity in healthy ageing have used average spectral 

power approaches and relatively small datasets.  

 The limitation of previous average spectral power analyses is that changes in 

spectral power can be caused by various rhythmic signal characteristics including power, 

frequency, duration, or number of high-power events in the signal. Luckily, this limitation 
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can be overcome by detecting and characterising individual transient bursts in the raw 

data. A large body of literature has explored the presence and characteristics of high-

power transient bursts in the mu, beta, and gamma frequency bands (Brady et al., 2020; 

Milikovsky et al., 2019; Sherman et al., 2016; Shin et al., 2017; van Ede et al., 2018) and 

has demonstrated the diverse relationships between burst characteristics and spectral 

power. The success of previous literature suggests that the investigation of the 

characteristics of individual PSWEs in a large dataset of healthy individuals will allow us 

to extract more specific information about event characteristics and relate these to age-

related effects previously observed using spectral power analyses. The limitations of 

previous spectral power analyses along with the discrepancy between 

electrophysiological studies of healthy ageing and studies of pathological populations and 

animal models, suggests a need for further detailed investigation of slow-wave activity in 

a large cohort of healthy participants. 

 The objectives of the current work are to determine the prevalence of PSWEs in 

healthy populations and to identify the relationship between age, cognitive performance, 

and PSWE characteristics. We used a large open-access dataset of healthy human MEG 

data collected by the Cambridge Centre for Ageing and Neuroscience (CamCAN; Shafto 

et al., 2014; Taylor et al., 2017) for the detection of PSWEs. We hypothesised that 

PSWEs increase in prevalence with participant age and are associated with lower 

cognitive performance. The current work provides complementary insight into the 

functional impact of slow-wave activity in healthy ageing, improves our understanding of 

age-related functional brain changes, and may promote the use of EEG/MEG for the early 

diagnosis of age-related cognitive decline.  

4.4 Methods 

4.4.1  Participants and Experimental Paradigm 

 MEG data was collected by the Cambridge Centre for Ageing and Neuroscience 

(CamCAN) in Phase 2 of the CamCAN examination of healthy cognitive ageing. A key 

characteristic of this large open access dataset is the uniform age distribution between 18 

and 88 years. The current work uses MEG data acquired during the “resting state” 

component of the study. In this component, approximately 9.5 minutes of data were 

obtained from 623 healthy participants while they rested with their eyes closed. 
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 Participants also completed a series of 14 domain-specific cognitive tasks as part 

of the CamCAN examination, spanning several cognitive domains including emotion, 

language, memory, and executive function (Shafto et al., 2014; Taylor et al., 2017). Six of 

these tasks were excluded from the current analysis due to subjectivity of their scoring 

metrics. The remaining 8 tasks included 2 language tasks, 3 memory tasks, 2 executive 

function tasks, and 1 emotion recognition task. Descriptions of all included tasks are 

provided in Table 4.1. Of the 623 participants included in the MEG data analysis, 500 had 

available data for all 8 cognitive tasks.  

 

Table 4.1 

Cognitive task descriptions.  

 

Task Name Cognitive Domain Description Scoring Metric 

Tip-of-Tongue 
Task (TOT)* Language 

View faces of famous 
people and respond 
with (a) the person’s 
name, (b) “don’t know”, 
or (c) “tip-of-tongue” 
(i.e., know but 
temporarily unable to 
retrieve)  

Tip of Tongue ratio = 
(# of tip of tongue)/ 
(# of tip of tongue + 
# of correct known)  

Picture-Picture 
Priming Language 

Name picture when 
picture is presented 
alone or preceded by a 
phonologically or 
semantically related 
image  

Overall number of 
correct responses  

Visual Short-
Term Memory 
Task (VSTM) 

Memory 

View 1-4 coloured discs 
and then report the 
colour at a cued 
location after a delay  

Average number of 
discs remembered 
for 4-disc condition  

Familiar Face 
Recognition Memory 

View faces of famous 
people and judge 
whether they are 
familiar and what they 
are known for, and 
attempt to provide their 
name  
 
 

Accuracy = # 
correctly named/ # 

recognized  
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Task Name Cognitive Domain Description Scoring Metric 

Unfamiliar 
Face 
Recognition 

Memory 

View a target image of 
an unfamiliar face, then 
identify the same 
individual in an array of 
6 unfamiliar faces  
 

Overall accuracy  

Fluid 
Intelligence 
Task 

Executive Function 

Complete 4 subsets of 
nonverbal puzzles 
involving series 
completion, 
classification, matrices, 
and conditions  

Overall accuracy 
across all 4 tasks  

Hotel Task* Executive Function 

Allocate time equally 
between several hotel-
related tasks including 
writing bills, sorting 
money, proofreading, 
sorting cards, and 
alphabetizing a list  

Deviation from 
optimal time 
allocation  

Emotional 
Expression 
Recognition 

Emotion 
View expressive face 
and label the emotion 
expressed  

Overall accuracy  

*Lower scores indicate better performance 

 To assess differences in cognition related to PSWE characteristics, an average Z-

score was calculated to represent the overall cognitive ability for each participant. Z-

scores were calculated relative to all participants (i.e., 500 participants with available 

cognitive data) for each of the 8 cognitive tasks individually and were then averaged 

across all tasks to generate an overall cognitive score. In the case of the tip-of-tongue and 

hotel tasks, lower scores were indicative of better cognitive performance and therefore 

the signs of the raw scores were flipped prior to calculating the Z-scores. For all other 

tasks, the raw scores were not modified. 

  In addition, participants completed Addenbrooke’s Cognitive Examination-

Revised (ACE-R) which is a brief cognitive assessment that is useful for detecting 

dementia and mild cognitive impairment. This assessment was used as part of the 

CamCAN screening procedure to exclude participants with neuropathology, but it also 

provides an overall standardized cognitive score that is a useful addition to our analysis. 

The ACE-R score is therefore included in our cognitive analysis. However, ACE-R scores 

are strongly skewed towards high values in this relatively cognitively intact population. 
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Thus, the ACE-R scores are analysed separately from the aggregate Z-scores described 

above.  

4.4.2 MEG Data Acquisition 

 Data were obtained from the CamCAN repository (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/ (Shafto et al., 2014; Taylor et al., 2017). MEG data were 

acquired at 1000 Hz with inline band-pass filtering between 0.03 and 330 Hz using a 306-

channel Vectorview system with continuous head position monitoring (Elekta Neuromag, 

Helsinki, Finland). Digitization of anatomical landmarks (i.e., fiducial points; nasion and 

left/right preauricular point) as well as additional points on the scalp was also performed 

for registration of MEG and MRI coordinate systems. Electrooculogram (EOG) and 

electrocardiogram (ECG) were recorded concurrently. 
4.4.3 MEG Data Processing 

 Data were pre-processed by the CamCAN group using temporal signal space 

separation to perform environmental noise reduction, reconstruction of missing or 

corrupted MEG channels, continuous head motion correction, and a transform of each 

dataset to a common head position (Taulu and Simola, 2006). All subsequent MEG 

processing was completed in the Python programming environment (v.2.7.13), using the 

MNE-python library (v.0.18.1) (Gramfort et al., 2014). Data analysis scripts used in this 

work are available at https://github.com/lindseypower/CamCAN_detectPSWEs.  Raw 

MEG data were bandpass filtered between 1 and 50 Hz. The data was then cropped into a 

single 9-minute epoch beginning 15 seconds after the onset of the recording. Independent 

component analysis was performed on the cropped data using the FASTICA algorithm 

(Delorme et al., 2007) to remove artefacts using a fully automated process. Epochs with 

signals that exceeded 5 pT (magnetometers) or 400 pT/cm (gradiometers) were not 

included when calculating the deconstruction. Following this, components were excluded 

if the amplitude and phase of the component was similar to that of the EOG or ECG 

(Bardouille et al., 2019). An average of 4 +/- 1 (mean +/- standard deviation) independent 

components were removed from each subject’s data. This process resulted in cleaned 

MEG data (i.e., channels x time) which was used for subsequent analysis. 
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4.4.4  Paroxysmal Slow Wave Event Detection 

 Paroxysmal slow wave events (PSWEs) were detected at each MEG channel (102 

magnetometers and 204 gradiometers) in each participant. Briefly, MEG data was 

windowed into 2 second windows with a 1 second overlap. The power spectrum was then 

calculated for each time window and the median power frequency (MPF) was selected for 

that window. The algorithm then found all windows that had an MPF between 1-6 Hz, 

and if more than 4 consecutive windows (i.e., at least 5 seconds of data) met this low-

frequency criteria, then this segment of data was considered a PSWE. The low frequency 

threshold of 6 Hz was defined based on ROC (receiver operating characteristic) analysis 

to determine the frequency that best separated patients with AD from healthy age-

matched controls in prior work. Thresholds of 2,4,6, and 8 Hz were compared, and it was 

found that 6 Hz resulted in the greatest area under the curve in the ROC analysis and was 

therefore selected as the frequency threshold that would characterize PSWEs (Milikovsky 

et al., 2019). Following PSWE detection,  characteristics of each PSWE, including the 

onset and offset times (s), duration (s), and mean frequency (Hz) were calculated (see 

Figure 4.1).  

 
Figure 4.1 Methods for detecting PSWEs in MEG data. PSWEs are characterised by their 
frequency, duration and channel spread.  
 
 The events detected in this work are considered paroxysmal, rather than 

continuous, because they are characterised by a sudden drop in the MPF of the signal. 

Figure 4.2 shows the MPF and spectrogram over time for a representative participant 

with PSWEs and an age-matched participant without PSWEs. It is clear from this 

representation that the typical 10-15 Hz MPF exhibits sudden drops at irregular intervals 
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throughout the signal. These drops in MPF are associated with transient increases in low 

frequency power evident in the participant’s spectrogram. The behaviour of this signal is 

strikingly different from an age-matched control who shows a stable MPF of 

approximately 10 Hz over time and consistently high power in the canonical alpha 

frequency band. To further illustrate the paroxysmal nature of the signals of interest, 

enlarged views of 3 sample PSWEs are presented in Figure 4.3. Here, the sudden 

decrease in MPF and sudden increase in low-frequency power can be observed on a 

shorter timescale. Following a 5-10 second period of low frequency activity, a similarly 

sudden return to baseline behaviour is observed in all cases. The synchronous behaviour 

of all participating channels is also apparent in Figure 4.3.  

Figure 4.2 Median power frequency plots, spectrograms, and raw data traces for a 
representative participant with PSWEs (left) and an age-matched participant with no 
PSWEs (right). The top panels show the MPF for all channels over time, the second-row 
panels show the MPF for a single channel (MEG1421) over time, the third-row panels 
show the spectrograms for channel MEG1421 where colour represents the magnitude of 
activity in dB, and the bottom panels show the raw data for channel MEG1421. The 
horizontal dashed lines show the 6 Hz frequency cut-off, and the vertical dashed lines 
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indicate the onset of each detected PSWE. Note that not all indicated PSWEs were 
captured by MEG1421.   

Figure 4.3 Median power frequency plots, spectrograms, and raw data traces for 3 
sample PSWEs from a representative participant (sub-CC610405). The top panels show 
the MPF over time where each coloured line represents one of the channels identified as 
contributing to the event. The horizontal dashed lines show the 6 Hz low-frequency cut-
off for classifying an event as a PSWE. The middle panels show the spectrograms 
associated with each event for a single channel where colour represents the magnitude of 
activity in dB.. The bottom panels show the raw data for the same single channel 
 

For each participant, events were collapsed across channels such that any events 

that occurred at different channels but had overlapping onset and offset times were 

averaged together to create a single event. Specifically, events were ordered based on 

their onset times, and for each event, if the offset time was later than the onset time of an 

event from another channel, then the events were pooled. The characteristics of the 

overlapping individual channel events were averaged to obtain an average event duration 
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and frequency that would characterise the multi-channel event. The number of channels 

involved in the multi-channel event was also recorded as an event characteristic. After 

pooling events across channels, events with only 1 active channel were excluded because 

activity generated within brain tissue is generally captured by multiple sensors and 

single-channel effects are often artefactual. In addition, due to the low-frequency nature 

of the signal of interest, events were excluded from the analysis if they occurred during 

significant head movements. Specifically, 1-sample t-tests were used to determine 

whether the head position velocities during an event were significantly different from the 

mean head position velocity during the entire scan. Those events that had velocities that 

were significantly different (p<0.05/number of events) from the mean were excluded 

from further analysis.  

 PSWEs were further characterised based on their spatial distribution in the MEG 

sensor array. MEG channels were divided into 8 regions based on their lobe (frontal, 

parietal, temporal, occipital) and hemisphere (left, right) placement (see supplemental 

Figure C.1 for illustration of channels by region). For each PSWE, the number of 

contributing channels from each of the 8 regions was counted and recorded as an 

indicator of spatial distribution. 

4.4.5  Demographic Analysis 

 Following the detection of PSWEs in all datasets, participants were split into 

groups based on PSWE presence (i.e., “PSWEs” and “No PSWEs”). Chi-squared tests 

were performed for characteristics of age, sex, ACE-R scores, and aggregate cognitive 

scores using a significance threshold of alpha=0.05. Effect size was measured using 

Cramer’s V.  

4.4.6  Statistical Analysis 

 Spectral power in canonical frequency bands including delta (0-4 Hz), theta (4-8 

Hz), alpha (8-12 Hz) and beta (12-30 Hz) bands were compared between participants 

with and without PSWEs using t-tests. Spectral power was calculated for gradiometers 

and magnetometers separately and a Bonferroni-corrected significance threshold of 

0.00625 (0.05/8 tests) was used for all t-tests. Effect size was measured using Cohen’s D.  

  For those participants who had detectable PSWEs (N=127), statistical analyses 

were conducted assessing the relationship between PSWE characteristics and participant 
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age/cognitive performance using the R statistical software packages (R Core Team, 

2021). Characteristics including event duration, event frequency, number of channels, and 

number of regions were calculated for each PSWE. In addition, an overall indicator of 

event prevalence (i.e., time in events) was calculated for each participant. Time in events 

was calculated as the sum of the durations of all detected PSWEs (in seconds) for a given 

participant. For each characteristic, the distribution of values was plotted and 

Kolmogorov-Smirnov tests with alpha=0.05 were used to assess the normality of the 

distribution as well as the normality of the residuals for a linear model. In cases where the 

relevant distribution was significantly different from normal (e.g., right skewed), a 

logarithmic transform was applied to the data to improve normality.  

  For each characteristic, simple linear regression models were used to assess the 

relationship between the characteristic and participant age, and between the characteristic 

and cognitive score. A forward stepwise approach was then used to add cognitive score as 

an additional predictor to the linear model with age, and to add age as an additional 

predictor to the linear model with cognitive score. Akaike information criterion (AIC) 

was used to compare models with and without the additional predictors to assess the 

contribution of the additional predictors to the model.   

  For time in events, the relationship with age and cognitive score were relatively 

weak (see Figure 4.6). However, when inspecting the distribution of log-transformed time 

in events values across all participants, it was found to be approximately bimodal with an 

excess mass of 0.0871 (p=0.016). Based on this, a bimodal curve was fit to the 

distribution and the data were split into “less” and “more” time in events groups based on 

a splitting point that was defined as the local minimum between the two modes. 

Differences in participant age between groups with more, less, and no PSWEs were then 

assessed using a Kruskal-Wallis test (i.e., non-parametric ANOVA), followed by pairwise 

Wilcoxon rank sum tests in cases where the Kruskal-Wallis was significant with 

alpha=0.05. Similar statistical analysis was used to assess differences in cognitive score 

between groups. To evaluate the association between PSWE prevalence and particular 

cognitive domains, Kruskal-Wallis tests were also conducted comparing Z-scores for 

individual cognitive tasks between participants with more time in events, less time in 

events, and no events. A Bonferroni-corrected alpha of 0.00625 (0.05/8 cognitive tests) 
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was used to assess significance. Effect sizes for Kruskal-Wallis tests were measured using 

eta2. 

  To contextualize the PSWE findings in relation to traditional metrics, model 

comparisons between linear models of 1-6 Hz average power, 1-6 Hz root mean square 

(RMS), and time in events with age were conducted. Linear models were constructed 

using the entire CamCAN cohort (N=623). Average power and RMS were calculated and 

analysed separately for magnetometers and gradiometers. In addition, previous literature 

investigating the relationship between low-frequency spectral power and age has reported 

decreases in low-frequency power with age in healthy populations and increases in low-

frequency power in age-related neuropathology. To contextualize the differences between 

PSWE prevalence groups in relation to these previous findings, the interaction effect of 

age and PSWE group on power in the 1-6 Hz band was tested using a multiple linear 

regression model. Similarly, the interaction effect of cognitive score and PSWE group 

was also investigated. Average power was calculated and analysed separately for 

magnetometers and gradiometers.  

4.4.7  Spatial Analysis 

 To assess the spatial distribution of PSWEs, the number of active channels in each 

of 8 spatial regions were compared. Statistical analyses were conducted for gradiometers 

and magnetometers separately. For each set of events, a Kruskal-Wallis test with alpha = 

0.05 was used to determine whether there were significant differences in the number of 

active channels in the different spatial regions during PSWEs. When significant 

differences were found, multiple pairwise comparisons were subsequently used to 

determine which regions were significantly different from one another. A Bonferroni-

corrected alpha of 0.00179 (0.05/28 pairs) was used to assess significance of the pairwise 

comparisons.  

 Spatial maps were also created to provide a visual representation of PSWE 

distribution across channels. The total number of PSWEs detected at each channel (across 

all participants) was calculated and plotted on a spatial topography. Separate plots were 

created for magnetometer and gradiometer arrays.  
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4.5 Results 

4.5.1 PSWEs and Power Spectral Density 

 Of the 623 participants included in the PSWE analysis, 127 (~20%) had any 

detectable PSWEs. The onsets of the detected PSWEs were uniformly distributed across 

the recording time. The presence of PSWEs was found to be associated with power 

spectral density such that participants with PSWEs had increased power at low 

frequencies including delta (gradiometers: T(df=172) = 8.75, p=1.89e-15, effect 

size=0.978;  magnetometers: T(df=164) = 10.1, p<2.2e-16, effect size=1.19) and theta 

(gradiometers: T(df=199) = 2.96, p=3.46e-3, effect size=0.290; magnetometers: 

T(df=199) = 3.64, p=3.51e-4, effect size=0.357) frequency bands. At higher frequencies 

(i.e., alpha and beta), power spectral density values were not significantly different 

between participants with and without PSWEs (see Figure 4.4). Further exploration of 

canonical frequency band power in relation to this work is included in the supplemental 

material (Figures C.2-C.3). 

Figure 4.4 Power spectral density plots in dB for all gradiometers (left) and 
magnetometers (right) averaged across groups of participants with PSWEs (blue), and no 
PSWES (orange). The solid lines represent the group mean and the shaded region 
represents the 95% confidence interval. 
 
4.5.2 Demographic Differences 

 Significant differences in demographic characteristics were also found between 

participants with and without PSWEs (see Figure 4.5, Table 4.2). Chi-squared tests 

comparing the distributions of each group revealed that participants with PSWEs have a 

significantly different age distribution than those without PSWEs (X2(df=9) = 87.2, 

p=5.96e-15, effect size=0.265) such that there is a higher proportion of older participants 



 
 

 
 

108 

with PSWEs compared to those without. In addition, there was a higher proportion of 

females with PSWEs compared to those without PSWEs (X2(df=1) = 4.62, p=0.0316, 

effect size=0.0609). Cognitive performance was also skewed to lower values for 

participants with PSWEs compared to those without PSWEs for both aggregate cognitive 

scores (X2(df=8) = 16.5, p=0.0361, effect size=0.115) and ACE-R scores (X2(df=9) = 

36.5, p=3.19e-5, effect size=0.265). 

Figure 4.5 Distributions comparing participants with PSWEs (light grey) and those with 
no PSWEs (dark grey) Groups are scaled to the same total density for comparison. Ridge 
plots show the distributions of participant age (A), aggregate Z scores of cognitive 
performance (B), and ACE-R scores of cognitive performance (C). A stacked bar plot is 
used to compare the distributions of males and females in the two groups (D).  
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Table 4.2 

Summary demographics for participants with and without PSWEs and for the overall 
group. Means and standard deviations are given for continuous metrics.  

 
4.5.3 PSWE Prevalence with Age and Cognitive Performance 

 For participants with PSWEs, the PSWE prevalence (i.e., time in events) was 

further investigated for trends related to age and aggregate (mean Z) cognitive score. The 

aggregate cognitive scores were chosen over ACE-R scores for further investigation 

because the values were more normally distributed.  
 Within the group of participants with PSWEs (N=127), log-transformed time in 

events values were regressed against age and cognitive score using simple linear 

regression. A significant increasing trend was found with age (F(df=1,125) = 4.46, 

p=0.0366, R=0.164), but no significant effect was found with cognitive score (see Figure 

4.6). Stepwise addition of age to the linear model of cognitive score resulted in a 

significant improvement in the model AIC, but stepwise addition of cognitive score to the 

model of age did not improve AIC. Based on a comparison of AIC between all models, 

the model containing age as the only predictor was the best fit for the data.  

 In addition to the regression analysis, it was determined based on an excess mass 

test, that the distribution of the log-transformed time in events values were approximately 

bimodal (excess mass = 0.0871, p=0.016). Participants who had detectable events were 

therefore split into two groups based on the log-transform of their time in events. Fitting a 

bimodal curve to the distribution revealed modes at 0.8 and 2.1 and a splitting point at 

1.6. “Less PSWE” participants were thus defined as participants with a log-transformed 

time in events value less than 1.6 (approximately 40 seconds; N=76), and “more PSWE” 

participants were defined as those with a log-transformed time in events value greater 

than or equal to 1.6 (N=51). Note that the total recording time for each participant was 

Variable PSWEs No PSWEs Overall 
Age 61 +/- 16 52 +/- 19 54 +/- 18 
Sex 69 F, 58 M 238 F, 257 M 307 F, 315 M 

Mean Z Score -0.15 +/- 0.68 0.03 +/- 0.64 -0.007 +/- 0.65 
ACE-R Score 94 +/- 5 95 +/- 5 95 +/- 5 
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540 seconds, therefore, participants with more time in PSWEs spent at least ~7% of the 

recording in PSWEs. Kruskal-Wallis tests comparing the ages of participants with more 

PSWEs, less PSWEs, and no PSWEs found significant differences between groups 

(H(df=2) = 26.6, p=1.65e-6, effect size = 0.0397). Pairwise Wilcoxon rank sum tests 

revealed that those with more PSWEs were significantly older than those with less 

PSWEs (p=0.019) and those with no PSWEs (p=7.7e-6), and that those with less PSWEs 

were significantly older than those with no PSWEs (p=0.015). The mean (+/- standard 

error) participant age was 52 +/- 1 for participants with no PSWEs, 58 +/- 2 for 

participants with less PSWEs, and 65 +/- 2 for participants with more PSWEs. Kruskal-

Wallis tests comparing the cognitive scores of participants with more, less, and no 

PSWEs revealed significant differences between groups (H(df=2) = 15.1, p=5.25e-4, 

effect size=0.0211). Pairwise Wilcoxon rank sum tests revealed that participants with 

more PSWEs had significantly lower cognitive scores than those with less PSWEs 

(p=0.014) and those with no PSWEs (p=3.2e-4). No significant differences in cognitive 

scores were found between those with less and no PSWEs. The mean (+/- standard error) 

cognitive score was 0.030 +/ 0.029 for participants with no PSWEs, -0.060 +/- 0.084 for 

participants with less PSWEs, and -0.29 +/- 0.079 for participants with more PSWEs.  
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Figure 4.6 The relationship between PSWE prevalence and participant age/aggregate 
cognitive score. (A) Linear regression relating age to log-transformed time in events 
values. The solid black line is the best fit regression for this data. (B) Violin plots 
showing the age distribution of participants with no PSWEs (light grey), less PSWEs 
(medium grey), and more PSWEs (dark grey). (C) Linear regression relating cognitive 
score to log-transformed time in events values. (D) Cognitive scores for participants in 
each PSWE prevalence group. Asterisks indicate a significant effect between groups.  
 
 Analysis of individual cognitive task data revealed that participants with more 

time in PSWEs had lower mean Z-scores than those with less or no time in PSWEs for all 

cognitive tasks (see Figure 4.7). However, the only cognitive tasks for which this 

difference was statistically significant with Bonferroni-corrected alpha=0.00625 were the 

fluid intelligence task (H(df=2) = 14.5, p=7.20e-4, effect size=0.0201), and the hotel task 

(H(df=2) = 11.2, p=3.74e-3, effect size=0.0148). In both cases, the more PSWEs group 

had significantly lower Z scores than the no PSWEs group (fluid intelligence p=0.0015; 

hotel p=0.004). 
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Figure 4.7 Relationship between individual cognitive task scores and PSWE prevalence. 
Distributions of mean Z-scores for each of 8 cognitive tasks are shown for participants 
with no PSWEs (light grey), less PSWEs (medium grey) and more PSWEs (dark grey). 
Significant differences are indicated by asterisks.  
 
4.5.4 Comparison to Common Metrics 

 Linear model comparisons between 1-6 Hz average power, 1-6 Hz RMS, and time 

in PSWEs with age revealed that time in PSWEs explained the most variance in age (see 

Figure C.4, Table C.1). This finding suggests that the time in PSWEs metric is more 

sensitive to age-related effects than other traditional metrics, and thus provides novel and 

valuable information about age-related brain activity. A complete breakdown of this 

analysis, including figures and statistical results is included in the supplemental material 

(Figure C.4, Table C.1).  
 Multiple linear regression assessing the effects of age and PSWE prevalence on 

low-frequency band power revealed significant effects (gradiometers: F(df=5,617) = 

12.7, p=9.40e-12, R=0.293; magnetometers: F(df=5,617) = 18.4, p<2.2e-16, R=0.351; 

see Figure 4.8). Particularly, an interaction effect was found whereby participants in the 

less and no PSWE groups showed a decreasing trend in 1-6 Hz band power with age, in 

line with previous findings of healthy ageing (Emek-Savaş et al., 2016; Leirer et al., 

2011; Meghdadi et al., 2021; Vlahou et al., 2015), while participants in the more PSWEs 

group showed an increasing trend in 1-6 Hz band power with age. This interaction effect 

was significant for magnetometer power values (age by more-less: p=0.0496; age by 

more-none: p=0.0429) but did not reach significance for gradiometers (age by more-less: 

p=0.0563, age by more-none: p=0.0517). Multiple linear regression assessing the effects 
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of cognitive score and PSWE prevalence on low-frequency band power also revealed 

significant effects (gradiometers: F(df=5,617) = 11.3, p=2.09e-10, R=0.276; 

magnetometers: F(df=5,617) = 16.6, p=2.38e-15, R=0.333). In this case however, there 

was a significant effect of group (high-none) for gradiometers (p=9.60e-5) and 

magnetometers (p=1.03e-7), but no significant interaction effect of cognitive score and 

PSWE prevalence.  

Figure 4.8 Interaction effect of age and PSWE prevalence on 1-6Hz band power for 
gradiometers (left) and magnetometers (right). Significance is indicated by asterisks. 
 
4.5.5  Burst Characteristics of PSWEs 

 In addition to PSWE prevalence, PSWE characteristics including event duration, 

event frequency, number of channels, and number of regions were regressed against age 

and cognitive score (see Figure 4.9). For event duration, there was a significant increase 

in log-transformed event duration with age (F(df=1,916) = 23.6, p=1.40e-6, R=0.155) and 

a decrease with cognitive score (F(df=1,916) = 7.63, p=5.84e-3, R=0.0847). The stepwise 

addition of age to the linear model of cognitive score improved the model AIC, but the 

addition of cognitive score to the model of age did not. The model of age alone was the 

best model to explain the effects related to event duration. Log-transformed mean 

frequency was found to decrease with age (F(1,916)=25.1, p=6.66e-7, R=0.160), but no 

significant effect of cognitive score was found. However, both the addition of age to the 

cognitive score model and cognitive score to the age model resulted in an improved 

model AIC, and the model containing both predictors was found to be the best fit for the 

mean frequency data. Log-transformed number of channels and log-transformed number 
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of regions both showed decreases with cognitive score (channels: F(df=1,916) = 32.4, 

p=1.68e-8, R=0.182; regions: F(df=1,916) = 23.2, p=1.68e-6, R=0.154), but no 

significant changes with age. In both cases, the addition of age to the cognitive score 

model and the addition of cognitive score to the age model resulted in an improved model 

AIC, and the model containing both predictors was the best fit for the data. The 

relationship between event spread and age and cognitive performance is further explored 

in supplemental Figure C.5.  

Figure 4.9 Results of regression between PSWE characteristics and age/cognitive score. 
Each point represents the characteristic associated with a single PSWE and black lines 
show the best fit result of the regression. Significance is indicated by asterisks.  
 
4.5.6 Spatial Distribution of PSWEs 

 The spatial distribution of PSWEs is shown in Figure 4.10. A Kruskal-Wallis test 

comparing the number of channels affected by PSWEs in each spatial region revealed 

that, for both gradiometers and magnetometers, there were significant differences 

between regions (gradiometers: H(df=7) = 949, p<2.2e-16, effect size=0.128; 

magnetometers: H(df=7) = 727, p<2.2e-16, effect size=0.0981). A diagrammatic 

representation of the significant differences between brain regions is shown in Figure 

4.10C. In particular, for gradiometer events, the number of affected channels in the 

temporal regions (left and right) were significantly higher than all other regions, and the 

number of affected channels in the parietal regions (left and right) were significantly 

lower than all other regions. The number of affected channels in the frontal regions were 
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significantly greater than in the occipital regions. There were no significant differences 

between the left and right hemispheres with the exception of the occipital region where 

the right hemisphere had a greater number of affected channels than the left hemisphere. 

For magnetometer events, the results were quite similar with a few exceptions. Firstly, for 

magnetometers, there were no significant differences between the number of channels 

affected in the frontal and occipital regions. And secondly, while there was no significant 

difference between left and right occipital regions, there was a significant difference 

between left and right frontal regions.  

Figure 4.10 Spatial distribution of gradiometer and magnetometer PSWEs. (A) Mean 
number of channels in each spatial region for  magnetometer (light grey) and gradiometer 
(dark grey) PSWEs. Error bars represent standard error. The 8 spatial regions indicated 
are left occipital (LO), right occipital (RO), left temporal (LT), right temporal (RT), left 
parietal (LP), right parietal (RP), left frontal (LF), and right frontal (RF). The diagram of 
the sensors included in each region is provided in the supplemental material (Figure C.1). 
(B) Spatial topographies showing the total number of PSWEs across all participants that 
were detected at each channel. Plots are shown for magnetometers and gradiometers 
separately. (C) Visual representation of the difference in the number of active channels 
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between spatial regions, averaged across participants. Significant differences between 
brain regions are indicated by arrows. Arrows point in the direction of the brain region 
with a greater number of active channels. Line width represents the magnitude of the 
difference.   
 
4.6 Discussion 

4.6.1  Summary of Findings 

 This work provides the first characterisation of the presence and prevalence of 

PSWEs in a healthy human population. In this work, PSWEs were identified in MEG 

recordings from a subset (~20%) of healthy participants. This finding demonstrates for 

the first time, that PSWEs can be found in some individuals in the absence of a known 

neuropathological diagnosis and that the prevalence of this purportedly pathological 

activity in persons without a diagnosis is as high as 1 in 5. The presence and prevalence 

of PSWEs in healthy participants was found to be related to the age and cognitive 

performance of participants such that older participants and those with lower cognitive 

scores tend to have more time spent in a PSWE state. In addition, it was found that 

PSWE characteristics including event duration and event frequency changed linearly with 

age, resulting in longer, and slower events in older adults. On the other hand, lower 

cognitive performance was found to be related to more widespread events (i.e., higher 

number of channels and regions affected). This work provides unique insight into the 

transient nature of low-frequency brain activity. While the debate regarding whether a 

transient or continuous analysis of neurophysiological data is most appropriate is still 

unresolved, this work provides a novel, complementary perspective on slow wave activity 

in a healthy cohort by highlighting the characteristics of transient events that are most 

relevant to the age and cognitive score. Finally, this work provides the first sensor-level 

evidence for potential sources of PSWEs in healthy ageing.  

4.6.2  Significance 

 The findings of this work have several implications for our understanding of 

changes in cortical network activity during ageing. Importantly, the findings suggest that 

there may be a meaningful difference in the neurophysiology of a subset of participants 

leading to the emergence of atypical brain activity. Participants with PSWEs tend to be 

older and have lower cognitive performance than those without PSWEs, but it remains 

unclear whether the presence of these events can be attributed to normal variability in 
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non-pathological ageing, or if the presence of PSWEs suggests underlying undiagnosed 

pathology in this subset. Previous studies suggest that increased low-frequency brain 

activity is more indicative of pathology than healthy ageing. While increased low-

frequency activity is commonly observed in age-related pathology such as dementia and 

AD (Brenner et al., 1986; Hier et al., 1991; Jeong, 2004; Musaeus et al., 2018; Penttilä et 

al., 1985; Weiner and Schuster, 1956), studies of healthy older adult populations have 

often observed an opposite effect whereby low-frequency activity actually decreases with 

age (Emek-Savaş et al., 2016; Leirer et al., 2011; Meghdadi et al., 2021; Vlahou et al., 

2015). Interestingly, when relating our PSWE prevalence findings to average band power, 

we found an interaction effect between PSWE prevalence and age whereby participants 

with more PSWEs showed an increasing trend in band power with age, while participants 

with low or no PSWEs showed a decreasing trend in band power with age. In the context 

of previous age-related band power findings, this suggests that prevalent PSWEs are 

likely not characteristic of a healthy ageing brain and rather may be indicative of 

underlying cortical dysfunction. This observation suggests that PSWEs may have utility 

as a biomarker for atypical brain ageing. However, further work is required to elucidate 

the clinical applicability of this marker.  

 This work provides the first evidence for an association between PSWEs and 

cognitive processes in healthy adults. Particularly, cognitive performance was found to be 

related to the spatial spread of PSWEs such that those with lower cognitive scores had 

events that were captured on a large number of sensors and spatial regions. The 

relationship between overall cognitive score and PSWE prevalence was found to be 

primarily driven by age-related effects, however, we made an interesting observation 

whereby some cognitive tasks (e.g., fluid intelligence and hotel tasks) showed more 

prominent changes with PSWE prevalence than others. While the origin of this effect 

cannot be fully disentangled from the effect of age, this suggests that some cognitive 

processes, particularly higher order fluid intelligence and executive function processes 

have a stronger relationship to PSWE prevalence compared to other cognitive processes 

such as memory, language, and emotion recognition. Fluid intelligence tasks are typically 

cognitively demanding and require the integration of sensory, language, working 

memory, and higher-order reasoning and decision-making processes that require 
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activation of broadly distributed brain networks (Barbey et al., 2014). Therefore, the 

relationship between PSWEs and cognitive performance seems to depend on the 

cognitive demands of the task. This, together with the high occurrence of PSWEs in 

patients with AD (Milikovsky et al., 2019), suggests the need for future studies to test 

whether PSWE analysis can be used as a sensitive biomarker for early diagnosis of 

neurodegenerative brain disorders associated with cognitive decline.  

 The current work also provides insight into the mechanisms underlying PSWE 

generation using sensor-level regional analyses. Spatial topographies suggested 

widespread activation of large cortical networks during PSWEs, with particularly high 

activation of temporal sensors compared to other regions. These regional findings are in 

line with cognitive performance findings that showed a strong association between fluid 

intelligence and executive function and PSWE occurrence, since widespread sources are 

involved in these functions (Barbey et al., 2014).  This evidence, taken together, provides 

some clues as to the functional relevance of PSWEs. In particular, it suggests temporal 

regions (i.e., temporal cortex or subcortical temporal structures such as the hippocampus), 

or widely distributed sources as potential sources of PSWE generation.  

4.6.3  Limitations and Future Directions 

 It should be noted that there are limitations associated with the sensor-based 

spatial analysis conducted in this work. In particular, a region-based approach was used 

to index spatial spread, which provides only a rough estimate of underlying source 

activity. The sensor/region-based approach is limited due to variability in the position of 

the sensors relative to different participants’ heads, and the complexity of the inverse 

problem. While we generally expect that sensors strongly activated by an event are close 

to the source of the event, it is impossible to confirm this without source estimation. 

Therefore, further studies using source localization approaches and/or intraoperative 

recordings are required to test the spatial hypotheses formed in this work. One logical 

approach to investigating PSWEs at the source level is to apply a transient burst 

localization method as previously proposed (Power and Bardouille, 2021). This method 

was attempted by our group and the results are included in the supplemental material (see 

Figure C.6). However, the source estimation resulted in high activity primarily in ventral 

regions of the cortex. Because MEG source estimation generally has low accuracy for 
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ventral and/or deep sources, we were not confident in the accuracy of these activation 

maps. In addition, MEG source localization is limited for this application because the 

PSWEs are widely distributed across cortical regions, as is evident from Figure 4.10. The 

MEG imaging modality is unreliable in its detection of deep and diffuse cortical sources 

because most source localization methods model a source as a focal (i.e., <10mm2) 

cortical patch (Hansen et al., 2010). Due to these limitations, future work is required 

before definitive conclusions about PSWE sources can be made. To mitigate these 

limitations, future work could consider resting-state fMRI or multimodal imaging (e.g., 

simultaneous EEG-fMRI) results from participants known to have PSWEs. The 

differences between resting-state brain activity of participants with and without PSWEs 

could be investigated to identify the presence of any neurophysiological correlates of the 

PSWE signal. 
 While this work has provided promising results towards the identification of a 

potentially relevant marker of atypical brain function, there are some potential confounds 

of the work that should be addressed. Firstly, the significant correlation between age and 

cognitive score (p<2.2e-16, R=0.524) is a confound to our interpretation of the age and 

cognitive performance-related effects. We attempted to investigate the relative 

contributions of age and cognitive score to the model using stepwise regression. This 

suggested that age was the primary predictor of most of the PSWE effects, with the 

exception of spatial spread metrics which showed primary effects with cognitive 

performance. Despite our attempts, it is difficult to fully disentangle these highly related 

predictors, and this should be acknowledged when interpreting the results of this work.  

 In addition, given the high power, transient nature of the signal of interest, it is 

possible that some relevant signal was excluded during pre-processing steps. In 

particular, the exclusion of independent components and the removal of data segments 

corresponding to head movements may have inadvertently resulted in the loss of PSWE 

segments which could have confounded our results. The potential effects of these 
exclusions were investigated by comparing the age and cognitive performance values 

between the clean data and excluded components and it was found that there were no 

significant differences in effects between included and excluded data. Therefore, we can 

conclude that while some PSWEs were excluded from analysis, these exclusions did not 
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affect the overall findings of the work. In the future, large data projects that use artefact 

rejection with methods such as ICA should employ cautious investigation of excluded 

data. As we have done, excluded components should be interrogated carefully in order to 

obtain fulsome and balanced insight into their relationship to identified trends.  

 In addition, there are some avenues for future research that could further improve 

our understanding of the presence and prevalence of PSWEs. Firstly, while previous 

research examining PSWE prevalence used EEG data, our work detected PSWEs in MEG 

data. Due to differing sensitivity and channel numbers between technologies it is difficult 

to directly compare our findings to previous work. Therefore, future research should 

consider comparing PSWE detection in EEG and MEG from the same cohort of 

participants to provide insight into the sensitivity of each to PSWE activity. Another 

limitation of this work is that the temporal characteristics of the PSWE signal studied in 

this work were pre-defined based on previous observations of low frequency transient 

signals in pathological populations (Milikovsky et al., 2019). The PSWEs were detected 

in this work using identical methods to those described in the original characterisation of 

PSWEs by Milikovsky and colleagues (2019) to allow for comparison to previous results. 

However, it is possible that the constraints applied to the PSWE signal are not capturing 

the entire nature of the relevant signal in this cohort of healthy adults. For this reason, 

future studies should consider alternative methods of transient signal detection that make 

fewer a-priori assumptions about the temporal features of the signal of interest. For 

example, a method such as convolutional dictionary learning (Dupré la Tour et al., 2018; 

Power et al., 2023) could be used on this dataset to naively detect transient 

electrophysiological markers of ageing.  

4.7 Conclusion 
 This work provides unique insight into electrophysiological characteristics of the 

ageing brain by utilizing a large open-access dataset and a transient event framework. We 

suggest that PSWEs could become a biomarker for the detection of atypical brain activity 

associated with reduced cognitive abilities in older adults. The identification of such a 

biomarker that is easily detectable through fast, non-invasive measurements is 

particularly desirable for rapid assessment of cognitive dysfunction which would 

normally require significant time and human resources to complete. These findings have 
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important implications for the future of the field of cognitive ageing research as they 

provide new information on pathophysiological mechanisms underlying the ageing brain 

and a promising target for therapy. 
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Chapter 5   

Discussion 
5.1 Summary of Findings 

 This thesis explores the relationship between age and transient patterns of brain 

activity in a healthy adult population. Novel analysis methods were employed to probe 

the temporal and spatial characteristics of typical and atypical transient events in 

neuromagnetic recordings, providing insight into the neurophysiological mechanisms 

involved in healthy ageing and task performance. The thesis is comprised of 3 projects.  

In project 1, we investigated age-related trends in the cortical sources of transient 

beta bursts during a sensorimotor task and rest. It was found that beta bursts localized 

primarily to the sensorimotor cortex under the sensor used for their detection and had 

slight variations in their location depending on the movement condition. In addition, age-

related changes in source were observed including an anterior shift in peak position with 

age, and an increase in frontal activation with age that peaked around age 60. These 

results showed for the first time that source localization techniques can be implemented 

for the identification of the sources of transient beta bursts, and provided insight into the 

anatomical generators of transient beta activity and how they change across the lifespan. 

 In project 2, we applied a convolutional dictionary learning algorithm to naively 

detect task-related neuromagnetic transients and assessed their relationship to age. A set 

of 7 task-related spatiotemporal patterns were identified including patterns that resembled 

beta, mu, and alpha type transients. All burst types showed positive trends in their 

activation levels with age that could be explained by increasing burst rate with age. This 

work validated the data-driven CDL approach for transient burst detection on a large 

dataset and identified robust information about the complex characteristics of human 

brain signals and how they change with age. 

 Finally, in project 3, we detected and characterised atypical slow wave transients 

(i.e., PSWEs) in a purportedly healthy population and investigated their relationship to 

age and cognitive performance. PSWEs were detected in approximately 20% of healthy 

participants in the dataset, and participants with PSWEs tended to be older and have 
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lower cognitive performance than those without PSWEs. In addition, event features 

changed linearly with age and cognitive performance, resulting in longer and slower 

events in older adults, and more widespread events in those with low cognitive 

performance. These findings provided the first evidence of PSWEs in a subset of 

purportedly healthy adults, which has implications for our understanding of their clinical 

relevance.  

5.2 Neural Mechanisms of Transient Events 

 One of the main advantages of analysing neurophysiological signals using a 

transient event framework is that the results can provide greater mechanistic insight than 

can be derived from traditional average power measures. Studying the temporal and 

spatial characteristics of transient events and how those characteristics change with task 

performance, disease, and normal ageing, provides a window into the network-level 

mechanisms underlying these processes. Together, the chapters of this thesis provide 

significant insights into the mechanisms of typically occurring sensorimotor beta bursts 

as well as atypical PSWEs. This section provides a big picture overview of the 

mechanistic insights provided by this thesis, along with promising directions for further 

exploration. In the subsequent sections, specific hypotheses are explored in greater detail. 

5.2.1  Mechanisms of Beta Bursts 

 The sources and network mechanisms underlying beta bursts were investigated in 

Chapters 2 and 3. Chapter 2 provided insight into the generative location of beta bursting, 

suggesting the presence of multiple cortical generators in the pre-central and post-central 

gyri that are differentially involved in different phases of a motor task. The work further 

revealed marked age-related changes in beta source, particularly in the post-movement 

interval, suggesting that with age, the coordinated beta bursting involved in the 

termination of voluntary movement expands from a relatively focal synchronous 

population in the primary motor cortex to a coordinated effort of a much more 

widespread cortical area. A potential functional explanation for this expansion of source 

is that the activation of a wider population of neurons is protective against loss of 

function if regional neurodegeneration occurs with age. As described in the introduction 

(Section 1.1), there are many factors that contribute to the degradation of grey and white 

matter with age. Because functions confined to a focal region would be more vulnerable 
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to the effects of this degradation, older adults may shift to a more spatially distributed 

network to protect against functional losses, or to compensate for neurodegeneration that 

has already occurred. In Chapter 3, the changes observed in activation sum, burst rate, 

and burst power with age provided additional insight into the network-level mechanisms 

underlying age-related effects. For beta-type atoms, burst rate was found to be the 

primary driver behind age-related changes in atom activation, with the age-related trends 

in beta burst rate in the pre- and post-movement intervals mirroring trends in beta 

activation. Burst power, however, did not play a significant role. This finding suggests 

that changing beta activity with age is related to changes in the number of activations of 

the underlying neural networks (i.e., the firing rate of the neuronal population), rather 

than the magnitude of the individual activations (i.e., the number of neurons contributing 

to the signal). Taken together, these findings suggest that while the network involved in 

beta generation becomes more widely distributed with age, the number of contributing 

neurons in the brain areas common across the population does not necessarily increase, 

and that the rate of occurrence of population bursting changes throughout the lifespan. 

 While the current thesis provides some hypotheses regarding the neural networks 

involved in beta bursts and their age-related dynamics, further investigations are required 

to validate these hypotheses, and to begin to understand the specific cellular and 

molecular underpinnings of the network-level changes. Computational modelling 

provides a promising avenue for investigating these mechanisms. In particular, the open-

source Human Neocortical Neurosolver (HNN) software package (Neymotin et al., 2020) 

provides a useful framework for investigating changes in beta burst dynamics with age. 

The foundation of the HNN model is a scalable local network of pyramidal neurons and 

inhibitory interneurons in the supragranular (layers 2 and 3) and infragranular (layer 5) 

layers. Activity in the local network is driven by exogenous driving input through two 

pathways. The first is a proximal (i.e., feedforward) drive that originates in the lemniscal 

thalamus and contacts the basal dendrites of pyramidal cells, propagating upwards to the 

superficial cortical layers. The second is a distal (i.e., feedback) drive that originates in 

the higher-order cortex or non-specific thalamic nuclei and contacts the apical dendrites 

of the pyramidal neurons, propagating downwards to the infragranular layers. The HNN 

uses this basic model to simulate electrophysiological signals comparable to those 
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recorded experimentally by MEG or EEG (i.e., equivalent current dipole time 

courses). Work by Sherman et al. (2016) demonstrated that this model could be used to 

simulate the temporal waveform of transient beta bursts by combining a strong distal 

drive in-phase with a weaker proximal drive. The authors were then able to validate this 

mechanism in animal models (Sherman et al., 2016). Using this model as a starting point, 

age-related trends in beta burst mechanisms could be investigated by modifying the 

parameters of the model to induce changes in the simulated beta bursts that are reflective 

of the age-related changes observed empirically. For example, parameters of the model 

such as the firing rate and relative timing of the input drives, and the post-synaptic 

receptor weights, could be modified and related to the beta burst characteristics of the 

resulting simulated signals to provide insight into the relationship between neural 

parameters and burst characteristics. This information could then be used to form and test 

hypotheses about the relationship between neural parameters and age.  

5.2.2 Mechanisms of PSWEs 

 The mechanisms of PSWE generation are more elusive, but the results of Chapter 

4 provide some insights that will allow us to form more targeted hypotheses going 

forward. For beta transients, burst rate emerged as the clear driver of age-related changes 

in beta activation. However, for PSWEs, the number (i.e., rate) of PSWEs, as well as the 

duration and frequency all changed significantly with age, making it difficult to pinpoint 

the network mechanism driving the age-related trends. Interestingly, however, different 

relationships were observed for age and cognitive performance such that age was 

primarily related to the prevalence (i.e., number and duration) of events, and cognition 

was more strongly associated with the spatial spread of events (i.e., the number of 

channels and regions affected). This suggests that different network mechanisms may be 

involved in the PSWEs that appear in healthy ageing compared to those that appear in the 

progression to cognitive decline. In other words, the appearance and increased prevalence 

of focal PSWEs with age may be a normal feature of ageing, while the emergence of 

widespread events could be indicative of cognitive impairment or a pathological process. 

The mechanistic distinction between focal and widespread events is not clear from the 

current work. For example, focal and widespread events could emerge from independent 

mechanisms, or they could be inherently focal but have a tendency to co-occur resulting 
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in the appearance of widespread events. A third potential mechanism is that PSWEs could 

have a focal generator that eventually triggers the global spread of events, similar to the 

mechanism of secondary generalized seizures in epilepsy. This mechanism would be in 

line with previous speculation that PSWEs reflect sub-clinical seizures in patients with 

epilepsy or AD (Milikovsky et al., 2019).  

In order to elucidate which of these mechanisms are involved in focal and 

widespread PSWEs, careful inspection of individual events and their source progression 

over time is required. In the current work, PSWE source localization was completed 

across events and subjects, and throughout the entire duration of the events, which 

resulted in the appearance of a distributed source pattern in the ventral regions of the 

brain. While this was a logical first step in estimating source, this averaging approach 

may not have been appropriate if the PSWE sources are heterogenous within or between 

events. In future work, PSWEs could be localized individually in order to get a sense of 

the variability in source between events. Additionally, if there is fairly low source 

variability between events, dynamic modelling (e.g., time resolved MNE or beamformer) 

could be performed on the PSWEs for each participant to provide insight into the 

generative source of the PSWEs (i.e., the source at onset) as well as their spatial 

progression over time. While these methods would likely provide rich information about 

the spatial dynamics of PSWEs in individual participants, the potential inter-subject 

variability may pose a challenge when attempting to interpret group-level effects. 

Therefore, applying these methods to the participants in the CamCAN dataset would 

likely require the development of methods to quantify and compare time-varying sources 

across large groups of participants. Despite these challenges, improving our 

understanding of the source progression of PSWEs is a necessary future direction towards 

understanding their clinical significance.  

 In addition to time-resolved source estimations of individual events, 

computational modelling approaches would also be beneficial to further elucidate the 

mechanisms of PSWE generation. Potential candidate models for recreating PSWEs 

include models used to simulate paroxysmal patterns of seizure activity (e.g., neural mass 

models, neural field models, formal mathematical models, etc.) (Wendling et al., 2016; 

Jafarian et al., 2021), and models that have been used to simulate changes in low 
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frequency power in the transition from sleep to wake (e.g., Robinson et al., 2001). 

Attempting to model PSWE characteristics using these types of models would provide 

insight into whether the PSWE phenomena observed in this work are mechanistically 

similar to seizure activity or the low frequency patterns present during sleep. These 

insights would guide our understanding of the implications of such phenomena in healthy 

ageing. Further, validating the hypotheses formed through computational modelling with 

animal models would also be a beneficial next step. Assuming one or both of the 

proposed model types provide a reasonable hypothesis of PSWE generation, the 

hypothesis could then be tested by electrically or chemically inducing the proposed 

generative mechanisms in animal models and evaluating the presence of PSWEs in EEG 

or LFP recordings. The concordance between computational and animal model findings 

would provide strong evidence for a generative mechanism of PSWEs.  

5.3 Multiple Cortical Generators of Beta Bursts 

 An interesting finding of Chapter 3 was that two distinct clusters of contralateral 

sensorimotor beta transients emerged with slightly different representative waveforms 

and spatial topographies. Upon fitting an ECD for the representative atom for each 

cluster, it was found that one atom localized slightly pre-centrally, while the other 

localized slightly post-centrally. This finding suggests that these two atom clusters may 

represent two distinct types of beta transients that come from different (primary motor 

and primary somatosensory) sources and may have different physiological properties. 

The concept of different pre-central and post-central beta generators was also suggested 

in Chapter 2 where post-central (i.e., somatosensory) sources were found to be associated 

with pre-movement beta bursts, and pre-central (i.e., primary motor and pre-motor) 

sources were found to be associated with post-movement beta bursts. In line with this, in 

Chapter 3 we found that in the pre-movement interval there was higher activation of the 

left post-central beta atoms compared to the left pre-central beta atoms (p = 0.034) and in 

the post-movement interval there was higher activation of the left pre-central beta atoms 

compared to the left post-central beta atoms (p = 0.018). This finding suggests that the 

left post-central beta atoms identified in Chapter 3 may be related to the post-central 

generators involved in pre-movement beta bursts described in Chapter 2, and the left pre-
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central beta atoms in Chapter 3 may be related to the pre-central generators involved in 

post-movement beta activity described in Chapter 2.  

 The converging evidence of multiple cortical generators for pre-movement and 

post-movement transient beta bursts has interesting implications for the emergent field of 

travelling cortical waves (Hindriks et al., 2014; Muller et al., 2018). Previous research in 

non-human primates and tetraplegic human participants has demonstrated that beta waves 

propagate short distances in the motor cortex, along the anterior-posterior axis in the 

primary motor cortex and along the medial-lateral axis in the pre-motor cortex, at speeds 

between 10-35 cm/second (Rubino et al., 2006; Takahashi et al., 2011). However, the 

propagation between pre-central (motor) and post-central (somatosensory) sources was 

not investigated in these works. The findings of Chapters 2 and 3 suggest that beta waves 

likely either propagate across the central sulcus throughout the phases of movement, or 

that there are two independent beta generators that switch their dominance depending on 

the phase of movement. These two potential mechanisms are depicted in Figure 5.1.  
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Figure 5.1 Potential mechanisms of sensorimotor beta burst generation. (A) Depicts the 
proposed independent generators mechanism whereby distinct sources in the primary 
motor (M1) and primary somatosensory (S1) cortices generate beta bursts independently. 
M1 beta (red) and S1 beta (blue) exhibit task-dependent fluctuations in bursting as 
depicted. (B) Depicts the alternative travelling wave mechanism whereby sensorimotor 
beta is generated by a single source, but that source propagates in space over time. This 
unified beta (beta-all; purple) shows task-dependent fluctuations over time that are an 
approximate summation of M1 and S1 beta depicted in A. At T0 beta bursting resets, then 
at different time points throughout the ISI (e.g., T1, T2, T3), the center of the generative 
source shifts as depicted on the cortical surface. Figure created using icons from 
Biorender.com. 
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As shown in Figure 5.1A, the independent generator hypothesis posits that there 

are two primary sources of beta activity: one in the primary motor cortex (M1 beta), and 

one in the primary somatosensory cortex (S1 beta). In this hypothesis, M1 and S1 beta 

bursts respond independently to the motor and somatosensory components of the task, 

respectively. M1 beta bursting exhibits a distinct suppression prior to and during 

movement, then a large rebound immediately following movement, before returning to 

baseline several seconds after movement termination. S1 beta bursting also exhibits a 

task-related beta suppression but does so in response to the tactile feedback associated 

with the button press task and is therefore delayed compared to the M1 suppression 

response. The combination of these two independent beta responses would explain the 

source patterns observed in Chapter 2 in the pre- and post-movement conditions. In 

particular, during pre-movement, S1 beta bursting would be greater than M1 beta 

bursting, and during post-movement M1 beta bursting would be greater than S1 beta 

bursting. This switching of dominance of M1 and S1 beta throughout the task would 

result in the appearance of a pre-movement S1 beta source, and a post-movement M1 

beta source in the average source maps. In support of the independent generator 

mechanism is the finding that pre-movement and post-movement beta bursts had 

distinctly different relationships with age. On average, post-movement beta bursts 

localized to the primary motor cortex. However, compared to beta bursts in other 

conditions, post-movement bursts showed the most substantial age-related changes, 

including an expansion of source with age. Pre-movement beta bursts on the other hand, 

localize primarily to the primary somatosensory cortex and broader sensory areas, and 

these sources are relatively stable with age. This discrepancy could be indicative that M1 

and S1 beta circuits are distinct and have different responses to the neurophysiological 

effects of ageing. For example, M1 neurons may be more vulnerable to the effects of 

ageing than S1 neurons resulting in the recruitment of more compensatory brain regions 

with age.   

 The alternative travelling wave hypothesis depicted in Figure 5.1B posits that all 

sensorimotor beta activity is generated by a unified mechanism whose source propagates 

in space over time. In this hypothesis, I propose that beta bursts emerge in M1 with the 

offset of a voluntary movement (T1 in Figure 5.1B) and subsequently move in the 



 
 

 
 

131 

posterior direction as beta activity returns to baseline, ultimately settling in S1 in 

preparation for subsequent movement. During a voluntary movement, the beta bursting 

mechanism effectively “resets” and when the movement is terminated, bursts once again 

emerge in M1 and repeat the same pattern of propagation. This mechanism would also 

explain our findings of an S1 source during pre-movement and an M1 source during post-

movement. Further, the travelling wave mechanism would provide a potential explanation 

for the observation that the localization pattern and ageing trends noted in resting state 

were somewhere in between what was seen for pre-movement and post-movement type 

bursts. This pattern would make sense in the context of the proposed mechanism as the 

source of resting state bursts would likely be between the M1 and S1 extremes (see T2 in 

Figure 5.1B), but likely closer to S1, in line with the activation patterns observed in 

Chapter 2.  

 In the context of existing hypotheses of the functional role of beta oscillations 

(e.g., Pfurtscheller et al., 1996; Engel & Fries, 2010), both the independent generator and 

travelling wave mechanisms are plausible. The independent generator mechanism is more 

in line with the “idling” hypothesis of beta function which suggests that beta 

synchronicity (or high beta burst rate) is characteristic of an idling or resting state, while 

desynchronization of beta reflects a switch to an active state (Pfurtscheller et al., 1996). 

In line with this, in the independent generator model, beta in M1 and S1 is simply 

suppressed when the corresponding functional region becomes active (and rebounds in 

M1 following the movement). On the other hand, the travelling wave mechanism is more 

in line with the hypothesis of an active inhibitory role of beta (Engel & Fries, 2010). In 

this model, post-movement beta bursting could reflect a strong inhibitory signal that is 

involved in the termination of movement and thus is strongest in M1 where movement 

signals are generated. As the time since movement termination progresses, motor 

inhibition becomes less important, and beta bursting returns to its default source in the 

somatosensory regions. In the context of this explanation, the expansion of source with 

age in the post-movement interval could suggest that the termination of movement 

becomes more difficult with age requiring the coordinated effort of a wider cortical area, 

while the lack of such expansion in pre-movement could be due to the more passive 

inhibitory role at that time. Future work investigating the correlations between the spatial 
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extent of activation and behavioural measures such as reaction time or perceived effort 

for movement termination would provide insight into the validity of this proposed 

explanation.  

 While we cannot make conclusions about the definitive mechanism from our 

current findings, further analysis of the CamCAN data and follow-up animal studies may 

help to elucidate the roles of the independent generator and travelling wave mechanisms. 

One approach using the CamCAN data would be to detect beta bursts in source localized 

time courses in M1 and S1 hand regions and compare how burst dynamics change over 

time in each region. Rather than assessing burst characteristics in coarse pre-movement 

and post-movement time intervals, bursts could be characterised in a continuous manner 

throughout the inter-stimulus interval (ISI) to allow time-varying burst dynamics to be 

investigated. For example, peak burst time could be plotted against other burst 

characteristics (e.g., burst power, burst frequency, probability of burst, etc.) for S1 and 

M1 bursts separately. If the independent generator hypothesis holds, we would expect 

that M1 burst power or burst probability would decrease throughout the ISI, while S1 

bursting would remain relatively constant. On the other hand, if the travelling wave 

hypothesis holds, we would expect S1 bursting to increase as M1 bursting decreased 

throughout the ISI. In addition, employing the burst localization methods described in 

Chapter 2 in finer time intervals in the ISI may allow us to assess subtle spatial shifts in 

burst location over time. This work would hopefully provide more insight into 

sensorimotor beta bursting mechanisms; however, the spatial resolution of MEG may be 

insufficient to explore such subtle differences in spatial patterns in relatively short time 

periods. If this is the case, additional LFP studies in animal models may be required to 

further investigate the sensorimotor network dynamics.  

5.4 A Critical Shift in Brain Activity 
 Quadratic age-related trends with a vertex around 60 years were observed 

repeatedly in Chapter 2 and Chapter 3 findings. In Chapter 2 it was found that, prior to 

age 60, relative source power steadily increases across bilateral frontal and central brain 

regions. After this point, however, there is a change in the trajectory of the trend and 

relative source power begins to fall off in these regions. Similarly, quadratic trends in 

activation sum and burst rate were also observed in the post-movement interval for the 
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left pre-central beta cluster in Chapter 3. These quadratic trends were not hypothesised 

for post-movement sensorimotor beta bursts but were also not unfounded given the 

general theme of quadratic trends in our previous analyses of the CamCAN dataset 

(Brady et al., 2020; Brady et al., 2022). Specifically, previous analysis of beta bursts in 

the CamCAN dataset revealed quadratic trends with age in transient event characteristics 

including burst rate, peak power, and frequency span that tended to peak around 60 years 

of age. The consistency of the quadratic relationship in Chapters 2 and 3, along with the 

concordance to these previous event characteristic findings (Brady et al., 2020; Brady et 

al., 2022), suggest that 60 may be a critical age in this population. 

 There are several potential explanations for this apparent shift in the trajectory of 

brain activity at age 60. Firstly, this consistent pattern could be indicative of a functional 

shift in activity that occurs later in life and could signify a critical age in the normal 

ageing process at which significant changes to the sensorimotor network occur. This 

notion is supported by evidence of similar quadratic effects in neuroanatomical structure 

with age. In particular, white matter volume shows an inverted u-shaped trajectory across 

the lifespan with a peak around middle age (Taki et al., 2009; Hedman et al., 2012), 

suggesting that these types of trajectories are not unfounded in the brain. This pattern of 

white matter volume with age could potentially explain some of the quadratic changes in 

beta burst source found in Chapter 2. White matter is involved in forming long-range 

network connections between different brain areas. As such, it is sensible that increases in 

the spatial extent of beta burst source in early adulthood could be related to increases in 

white matter during this time, and the subsequent reduction in the extent of beta sources 

later in life could be due to white matter atrophy that begins in middle age.  

Such a critical anatomical and functional shift could be triggered by either genetic 

or environmental factors. A potential environmental factor that could feasibly trigger such 

a critical shift is retirement, as the age of the vertex in the observed quadratic trends 

aligns with the average age of retirement in the United Kingdom, where the CamCAN 

data was collected. Working requires significant cognitive stimulation particularly in the 

domain of fluid intelligence. Upon retirement, there is a drastic reduction in this type of 

stimulation, which could feasibly trigger synaptic pruning and advanced white matter 

degradation, which in turn could be responsible for the changes in source pattern and 



 
 

 
 

134 

burst rate observed in this work. Future work could investigate this mechanism by 

comparing brain activity of individuals of the same age who are working and retired, or 

by comparing those who retired at different ages. 

 Alternatively, however, this apparent peak at 60 years could be related to 

confounds of the sample rather than a true functional shift. For example, there could be 

biases in the demographics of the sample. A study by Green and colleagues (2018) 

investigated patterns of participation in the CamCAN dataset and found that the 

likelihood to participate in the study peaked between 58 and 67 years of age (Green et al., 

2018), which is similar to the peak age observed in our work. The CamCAN dataset 

maintains an approximately even distribution of participants per decile, however, the 

work by Green et al. indicates the presence of a sampling bias as the sample of willing 

participants was broader for the 58–67-year age group. In addition, due to the nature of 

the ageing process and the increasing prevalence of disease with age, the oldest adults in 

this dataset are sampled from a limited pool of the healthiest adults (i.e., those who have 

lived long lives without disease), while there is likely more variability in the health of the 

younger and middle-aged adults. This is supported by results from Chapter 3 which 

showed that younger adults tended to have more variability in their burst types than older 

adults. Particularly, the age distributions of the top beta clusters were skewed towards 

older adults, while the less common beta-type clusters tended to have distributions 

skewed to younger adults (see Figure B.7). While it is not clear that these sampling biases 

directly affect our results, more work should be conducted to investigate the origin of the 

60-year peak.  

 The findings of Chapter 4 also have implications for our understanding of the 

potential shift in cortical network activity during ageing. Importantly, the Chapter 4 

findings revealed that approximately 20% of the purportedly healthy participants in the 

CamCAN dataset had PSWEs, suggesting that there may be a meaningful difference in 

the neurophysiology of this subset of participants leading to the emergence of abnormal 

brain activity. These unexpected findings suggest that some of the CamCAN participants 

may have been misclassified as “healthy”. Previous research has demonstrated that task 

performance in healthy older adults tends to be associated with widespread networks, 

while older adults with cognitive impairment tend to have a focal activation pattern that is 
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more similar to younger adults (Cabeza et al., 2002; McIntosh et al., 2014). It has been 

suggested that a failure to shift to a more globalized pattern results in cognitive 

impairment. In the context of the CamCAN dataset, where we likely have a mix of 

“healthy” and “unhealthy” older adults, it is possible that the observed quadratic effects 

in Chapter 2 are driven by the “unhealthy” older adults who have spatial patterns similar 

to the younger adults. Given this hypothesis, an interesting avenue for future research 

would be to investigate whether the existence of PSWEs affects participants’ brain 

activity in other contexts. For example, we could compare the spatial and temporal 

pattern of beta bursting between those with PSWEs and a group of age-matched adults 

without PSWEs. Alternatively, we could remove the subset of participants with PSWEs 

from the data and assess whether the age-related beta trends are preserved when these 

presumed “unhealthy” participants are removed.  

5.5 The Role of Alpha Bursts 
 This thesis explores transient signals in the low frequency range (PSWEs; 1-6 Hz) 

as well as higher frequency transient beta signals (15-30 Hz). Signals in the intermediate 

alpha frequency range (8-12Hz), however, were not a focus of this work. Despite this, the 

nature of the methods employed and the relationships between alpha and the other 

frequency bands investigated in this work allowed for some unexpected insights into the 

mechanisms of alpha signals. As discussed in Chapter 3, alpha-type transients were some 

of the most abundant task-related atoms identified by CDL. Among the top 7 task-related 

clusters, 3 clusters resembled spatial variations of occipital alpha, 1 resembled temporal 

alpha (i.e., tau), and 1 resembled central mu (which has a central frequency in the alpha 

range but a more complex frequency distribution than other alpha atoms). This suggests 

not only that alpha events are abundant, but also that there is a high degree of variability 

in the spatial pattern of alpha events, resulting in the emergence of several distinct alpha 

clusters that are common across participants. The sensorimotor task used in this work 

involved the presentation of a visual and/or auditory cue that prompted the participant to 

perform a unimanual button press. As such, multiple functional regions (i.e., visual, 

auditory, and sensorimotor) were involved in the task, and showed reductions in alpha 

power during task performance. Interestingly, CDL allowed the associated functionally 

distinct alpha events to be easily separated based on their unique spatial distributions. In 
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previous literature, auditory alpha (i.e., tau) signals have been obscured due to their 

proximity to other sources of alpha in the occipital and sensorimotor regions (Wisniewski 

et al., 2024). The results of Chapter 3, however, provide support for the notion that there 

are, at minimum, 3 functionally distinct generators of alpha in the occipital, sensorimotor, 

and temporal regions. Furthermore, CDL extracted 3 common subtypes of occipital alpha 

events (as well as several other less common subtypes; see Figure B.7) for which the 

spatial representation varied slightly between clusters. This suggests that the generator of 

occipital alpha is not constant and that there is variability in the source of occipital alpha 

within and between participants. While these findings are not necessarily surprising, the 

ability to identify these features using a data-driven approach is a novel contribution of 

this thesis.   

 Chapter 3 also provided novel insight into age-related changes in alpha-type 

transients. Interestingly, occipital and temporal alpha-type clusters tended to show 

consistent increasing trends in activation with age independent of the phase of movement. 

The overall increase in occipital alpha activity with age, while not hypothesised, is in line 

with previous findings that show that ageing is associated with a reduced frequency of 

brain activity and that older participants tend to have dominant alpha peaks in their 

spectrograms (Chiang et al., 2011). Further investigation into the underlying properties of 

the activation showed that for all occipital and temporal alpha clusters, the increasing 

trends observed in activation sum with age could be explained by similar trends in burst 

rate with age (see Figure 3.10, Table 3.1). Burst power, however, did not play a 

significant role (see Figure B.4, Table 3.1). This finding suggests that increasing occipital 

and temporal alpha activity with age is related to an increase in the number of activations 

of the underlying neural networks (i.e., the firing rate of the neuronal population), rather 

than the magnitude of the individual activations (i.e., the size of the activated neuronal 

population). These findings provide novel mechanistic insight into age-related changes in 

the generative mechanisms of alpha.  

In addition to trends in activation sum and burst rate, several other significant age-

related trends were revealed, particularly for temporal alpha atoms. For example, the age 

distribution of participants who had temporal alpha atoms was significantly different 

from the overall population such that older adults were more likely to have temporal 
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alpha atoms. Further, the temporal alpha cluster was the only top cluster for which a 

positional shift was observed, with a significant posterior shift in ECD position observed 

with increasing age. These findings suggest that temporal alpha may play an important 

role in the healthy ageing process - a feature that has likely been overlooked in previous 

literature due to its limited study.  

 Another area of this thesis from which insights into alpha activity can be inferred, 

is the study of PSWEs in Chapter 4. As described in the introduction (Section 1.4.2), 

alpha and theta (4-8 Hz) oscillations are thought to be generated by a common thalamic 

mechanism whereby strong depolarization in thalamocortical cells causes strong 

activation of glutamate receptors leading to alpha waves, while weaker depolarization 

and reduced glutamate receptor activation in the same thalamocortical cells leads to theta 

waves (Hughes & Crunelli, 2005). As such, the emergence of PSWEs, which typically 

have a peak frequency in the canonical theta frequency range (e.g., 4-6 Hz), could be the 

result of a modification to this mechanism resulting in the generation of theta waves in 

place of the typical alpha waves. In support of this, previous investigations of PSWEs in 

patients with AD have demonstrated that these patients exhibit an increase in spectral 

power in the PSWE frequency range along with a reduction in spectral power in the alpha 

frequency range (Milikovsky et al., 2019). In the current work, individuals with PSWEs 

had a significant increase in delta and theta band power, and a slight (non-significant) 

decrease in alpha band power. This suggests that some, but likely not all, of the PSWE 

activity may be associated with a reduction in alpha activity. Interestingly, the 

supplementary analysis conducted in Chapter 3 (e.g., Figure B.7) provides interesting 

insight into this potential shared mechanism as well. In panel C of Figure B.7, it can be 

observed that several of the occipital and temporal atom clusters identified in this work 

had contributing atoms with peak frequencies below 6 Hz, suggesting that some 

participants may have lower frequency variations of the average temporal and occipital 

“alpha” atoms. Some of the temporal atoms (e.g., the fourth atom cluster shown in Figure 

B.7C) have particularly low frequencies suggesting that there may be some overlap 

between the atoms identified in Chapter 3 and the PSWEs described in Chapter 4, which 

were detected at the highest rates at temporal sensors. Future work could investigate the 

feasibility of this shared alpha/theta mechanism for generating PSWEs by using 
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computational models of the thalamocortical circuit to simulate PSWEs characteristics as 

described in Section 5.2.2. In addition, alpha bursts could be detected in the resting state 

data and the relationship between alpha burst characteristics and PSWEs could be 

examined to identify correlations between event types.  

5.6 Clinical Applications 
 While this thesis is primarily focused on changes in brain activity in healthy 

ageing, some of the findings have important clinical implications. Most notably, the 

PSWEs described in Chapter 4 have potential as a biomarker for the detection of atypical 

brain activity associated with reduced cognitive abilities in older adults. PSWEs were 

previously considered to be a pathological signal related to cognitive impairment and 

anatomical abnormalities in patient populations (Milikovsky et al., 2019). Therefore, their 

presence in 20% of this purportedly healthy population is striking and raises the question 

of whether their presence could be indicative of an underlying undiagnosed pathology. If 

PSWEs are inherently pathological, their presence in this dataset is evidence that they 

may be a more sensitive marker of neuropathology than other metrics used to screen 

these participants. The identification of such a sensitive biomarker that is easily 

detectable through fast, non-invasive measurements is particularly desirable for rapid 

assessment of cognitive dysfunction. However, it is not clear from the current work 

whether PSWEs are in fact a marker of pathology, or if they are a normal variant of brain 

activity associated with healthy ageing; and further work is required to elucidate the 

clinical relevance of our findings.  

 The delineation of age-related changes in average low frequency band power for 

the “more PSWEs” group (presented in Figure 4.8) provides evidence for a pathological 

origin of PSWEs. In the less and no PSWEs groups, low frequency power decreases with 

age in line with findings from healthy populations (Emek-Savaş et al., 2016; Leirer et al., 

2011; Meghdadi et al., 2021; Vlahou et al., 2015), however in the more PSWEs group, 

low frequency power increases with age in line with findings from populations with 

dementia and AD (Brenner et al., 1986; Hier et al., 1991; Jeong, 2004; Musaeus et al., 

2018). In addition, in many of the analyses performed in Chapter 4, (see Figs 4.6,4.7,4.8) 

the “more PSWEs” group differed significantly from the other groups, while the “no 

PSWEs” and “less PSWEs” groups had similar findings. Given this, perhaps the 
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existence of PSWEs is normal, but high prevalence of PSWEs is indicative of pathology. 

Alternatively, it could be that those with less PSWEs are just at an earlier stage of 

pathology that will later progress to a “more PSWEs” phenotype. One way to investigate 

these potential hypotheses and to gauge the clinical relevance of PSWEs is to conduct a 

longitudinal study examining changes in PSWE prevalence over time. This would allow 

us to determine whether participants in the less PSWEs group progress to the more 

PSWEs group over an extended period (e.g., 5-10 years), and importantly, would provide 

insight into whether PSWEs are predictive of clinical progression.  

 Assessing the relationship between the spatial localization of PSWEs and areas of 

clinically relevant anatomical features is another potential direction for future research 

that would increase our understanding of the clinical relevance of PSWEs. Focal 

increases in blood-brain barrier disruption (Milikovsky et al., 2019) and cortical thinning  

(Fjell & Walhovd, 2010) have been shown to be associated with AD. Therefore, the co-

localization of PSWE sources and areas of BBBd or cortical thinning could provide 

evidence that PSWEs are markers of region-specific degradation, as suggested by 

previous work in patient populations (Milikovsky et al., 2019). The spatial findings in 

Chapter 4 show PSWE activity predominantly in the temporal regions (Figure 4.10), with 

potential sources in the temporal pole (Figure C.4). This is in line with findings that 

patients with AD have substantially more cortical thinning in the anterior temporal 

regions than healthy older adults (Fjell & Walhovd, 2010). This concordance provides 

preliminary evidence that PSWEs may be related to functionally relevant brain areas in 

AD, but further work is required to determine whether participants with PSWEs are 

displaying neuroanatomical signs of AD. 

 In addition to the apparent clinical implications of the PSWE findings, the 

advances in our understanding of beta burst mechanisms afforded by Chapters 2 and 3 

may have clinical implications as well. Sensorimotor beta bursts have been implicated in 

motor disorders such as Parkinson’s disease. It has been demonstrated in previous work 

that patients with PD have a reduced beta suppression response (Heinrichs-Graham et al., 

2014) that can be explained by a decreased resting beta burst rate (Vinding et al., 2020). 

Interestingly, this mechanism is similar (although opposite) to what is observed in our 

current and previous (Bardouille & Bailey, 2019; Brady et al., 2020) work with the 
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CamCAN dataset whereby increases in pre-movement burst rate with age seem to be 

responsible for increased beta suppression magnitude with age. This suggests that there 

may be similar, potentially opposing, mechanisms at play in healthy ageing as in 

symptomatic PD. In addition, work by Heinrichs-Graham and colleagues (2014) observed 

a reduction in the post-movement beta rebound amplitude in patients with PD, 

particularly in the supplementary motor area. This is interesting in the context of the 

findings of Chapter 2 which suggest increased post-movement beta activity in this area in 

healthy older adults. Once again, the mechanisms in PD and healthy ageing seem to 

oppose one another. Together, the insights into beta burst mechanisms provided by this 

thesis may have implications in our understanding of PD. In particular, the opposing 

trends in PD and healthy ageing could be evidence in support of the hypothesis that a 

failure to shift to widespread beta generators with age results in vulnerability to 

neuropathology.  

5.7 Limitations and Future Directions 
 Finally, there are a few methodological limitations and confounds of the current 

thesis that should be addressed. In this section, limitations and discrepancies in the 

various source localization and transient event detection methods are discussed, along 

with the inherent limitations of the CamCAN dataset, and suggestions for future 

improvements and supplementary analyses are provided.  

  The discrepancy in source localization methods used in Chapters 2 and 3 is a 

potential limitation of our interpretations across chapters. In Chapter 2, MNE and 

beamformer methods were used to identify the sources of transient beta bursts, while in 

Chapter 3, an ECD model was used to identify the primary source of beta atom 

generation. This discrepancy in methods makes it difficult to directly compare spatial 

findings between chapters. Distributed source models such as MNE and beamformer are 

generally considered to be more robust and more widely applicable than ECD models and 

therefore were a sensible choice for use in Chapter 2. The ECD method, however, was 

selected in Chapter 3 because it provided a simple measure of focality (e.g., goodness of 

fit) that we used in our analysis pipeline to differentiate focal brain activity from 

artefacts. There is no similar measure for beamformer or MNE. Therefore, to use one of 

these methods in Chapter 3, we would have had to invent a way to filter out non-focal 
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sources. A further challenge to implementing a distributed source model in Chapter 3 is 

that they identify the source of all brain activity that occurs at a particular time within a 

given frequency band. In Chapter 3, our aim was to disentangle distinct sources of 

multiple types of bursts of the same frequency band that may overlap in time. Thus, MNE 

and beamforming approaches were limited for this application. In the future, it would be 

worthwhile to explore alternative approaches to circumventing the issue of overlapping 

timing between burst types with the same frequency but distinct spatial patterns, to allow 

CDL-detected bursts to be modelled with an MNE or beamformer approach. For 

example, the burst timing of different subtypes of atoms could be compared and co-

occurring atoms could be excluded or otherwise accounted for to ensure that only one 

subtype of atoms was being localized at a time. Further development is required to 

determine the feasibility of such an approach. 

 Another methodological inconsistency between chapters is that, despite the 

emphasis of the importance of data-driven detection methods in Chapter 3, a simple 

thresholding approach was used to detect PSWEs in Chapter 4. This decision was made 

because the signal of interest was relatively novel, and the events had never been 

characterized in a healthy population. The method of PSWE detection was developed by 

Milikovsky et al. (2019) to discriminate between healthy controls and patients with AD. 

The low median power frequency threshold of 6 Hz was defined based on ROC (receiver 

operating characteristic) analysis to determine the parameters that best separated patients 

with AD from healthy age-matched controls. In this thesis, we wanted to replicate 

previously established methods using this definition of pathological PSWEs before 

introducing a novel approach that would complicate the interpretation of our results. 

Given the success of the initial characterisation, however, developing a more robust data-

driven method for detection of abnormal slow-wave events would be an advantageous 

next step.  

 One other potential methodological limitation of this work is that the inter-

stimulus interval (ISI) for the sensorimotor task data may not have been sufficient to 

allow movement-related signals to return to baseline prior to the onset of the subsequent 

trial. The CamCAN sensorimotor task was designed with varying ISIs ranging from 2 to 

26 seconds (Taylor et al., 2017). In the current work, trials with an ISI less than 3 seconds 
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were excluded to allow for a sufficient baseline. However, recent findings by Pakenham 

et al. (2020) suggest that post-movement beta rebound responses may take up to 10 

seconds to return to baseline following movement offset. This recent work used a force 

grip task with movement durations of 2, 5, and 10 seconds - much longer than the 

movement durations for our simple button-pressing task. Therefore, it is unclear whether 

this long duration beta rebound is present in the current data. The work by Pakenham et 

al. (2020) also demonstrated that beta rebound characteristics were modulated by task 

duration. Therefore, the rebound is likely different for the short ballistic movement 

performed in our work compared to the longer force grip movement. If the post-

movement rebound interval does extend into the following movement, however, this 

would have significant implications for our interpretation of the burst dynamics in the 

pre-movement interval. Thus, future work should examine the duration of the post-

movement beta rebound response in the long (e.g., >10 seconds) inter-stimulus intervals 

of the CamCAN sensorimotor task to elucidate the dynamics of the entire response.  

 Finally, this work is limited by the confounds of the CamCAN dataset. All the 

data analysed in this work was exclusively collected as part of the CamCAN initiative, 

and therefore consisted of a limited population of participants from a limited geographic 

region. While the CamCAN dataset has ideal demographics for studying cross-sectional 

ageing trends, it is unclear how generalizable the results are to a wider population. 

Therefore, future work attempting to replicate the findings of this thesis in other datasets 

would be welcome. In addition, because the data used in this work is cross-sectional, we 

can only infer age-related trends but cannot confirm that the effects are present across the 

lifespan of an individual. Cross-sectional studies in general are inherently limited because 

there are environmental and lifestyle factors that vary between age groups that may be 

unrelated to ageing. For example, medicine, nutrition, and hygiene practices have all 

changed significantly in the past 60-70 years, and differences in any of these variables 

could confound the age-related effects observed in this work. For this reason, longitudinal 

studies to validate the effects observed in this work would also be a useful future 

direction. Finally, a potential limitation of the dataset, as suggested by the finding of 

PSWEs in a subset of these participants, is that pathological brains (i.e., participants) may 

not have been adequately excluded from the dataset. This would confound our 
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interpretations about what constitutes “healthy” ageing. The results of this thesis should 

be interpreted with these confounds in mind and care should be taken not to generalize 

the findings beyond their relevant scope.  

5.8 Conclusion 
 The results of this thesis have important implications for the advancement of 

neuroimaging analysis methods as well as our understanding of the human brain. This 

work validates a set of novel analysis tools to detect and localize transient patterns of 

human brain activity that can be used by the broader neuroimaging community. These 

methods have been made publicly available through open-access publications and open-

source software platforms, allowing them to be widely used by other researchers in the 

field. Therefore, the methods presented in this thesis have the potential to aid 

neuroimaging analysis and expand our breadth of understanding of the human brain. 

Further, the results of the thesis provide direct insights into the neural mechanisms 

underlying human brain function and how these mechanisms change throughout normal 

ageing. In particular, insights into the spatial and temporal characteristics of transient 

bursts provide evidence of the cortical and network mechanisms at play in ageing. Source 

localization results provide evidence for generative sources of beta bursts in the pre- and 

post-central gyri, and data-driven burst analysis suggests that the rate of population 

bursting underlies age-related changes in alpha and beta power. Future work can explore 

the specifics of these mechanisms in greater detail using computational modelling, and 

eventually invasive studies to validate hypotheses. Finally, the findings from both the 

beta and slow wave event studies have potential clinical implications. The advanced 

understanding of beta burst mechanisms has implications in our understanding of motor 

disorders such as Parkinson’s disease for which beta bursts are implicated. The PSWE 

findings have potential implications in diagnostics and our understanding of the 

divergence of healthy and unhealthy neural mechanisms with ageing. This thesis has 

answered several important questions about the nature of human brain activity, but it has 

also inspired many new and exciting questions and areas for further exploration in the 

field. Going forward, I am excited to continue to explore this research area myself and 

witness how our understanding of the ageing brain continues to develop.  



 
 

 
 

144 

References 
 

Abeles, M. (2014). Revealing instances of coordination among multiple cortical areas. 
Biological Cybernetics, 108(5), 665–675. https://doi.org/10.1007/s00422-013-0574-2 

Adler, G., Bramesfeld, A., & Jajcevic, A. (1999). Mild Cognitive Impairment in Old-Age 
Depression Is Associated with Increased EEG Slow-Wave Power. 
Neuropsychobiology, 40(4), 218–222. https://doi.org/10.1159/000026623 

Allain, C., Gramfort, A., Moreau, T., & Preprint, A. (2021). DriPP: Driven Point 
Processes to Model Stimuli Induced Patterns in M/EEG Signals. arXiv:2112.06652 
[Cs, Eess, Math, Stat]. http://arxiv.org/abs/2112.06652 

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and imaging. 
Nature Neuroscience, 20(3), 327–339. https://doi.org/10.1038/nn.4504 

Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Probert Smith, P. J., 
& Woolrich, M. (2014). Fast transient networks in spontaneous human brain activity. 
eLife, 3, e01867. https://doi.org/10.7554/eLife.01867 

Bansal, N., Blum, A., & Chawla, S. (2004). Correlation Clustering. Machine Learning, 
56(1–3), 89–113. https://doi.org/10.1023/B:MACH.0000033116.57574.95 

Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid 
intelligence and working memory revealed by lesion mapping. Brain Structure and 
Function, 219(2), 485–494. https://doi.org/10.1007/s00429-013-0512-z 

Bardouille, T., & Bailey, L. (2019). Evidence for age-related changes in sensorimotor 
neuromagnetic responses during cued button pressing in a large open-access dataset. 
NeuroImage, 193, 25–34. https://doi.org/10.1016/j.neuroimage.2019.02.065 

Barth, D. S., Sutherling, W., Engel, J., & Beatty, J. (1982). Neuromagnetic Localization 
of Epileptiform Spike Activity in the Human Brain. Science, 218(4575), 891–894. 
https://doi.org/10.1126/science.6813968 

Becker, R., Vidaurre, D., Quinn, A. J., Abeysuriya, R. G., Parker Jones, O., Jbabdi, S., & 
Woolrich, M. W. (2020). Transient spectral events in resting state MEG predict 
individual task responses. NeuroImage, 215, 116818. 
https://doi.org/10.1016/j.neuroimage.2020.116818 

Bellot-Saez, A., Kékesi, O., Morley, J. W., & Buskila, Y. (2017). Astrocytic modulation of 
neuronal excitability through K + spatial buffering. Neuroscience & Biobehavioral 
Reviews, 77, 87–97. https://doi.org/10.1016/j.neubiorev.2017.03.002 

Benwell, C. S. Y., Davila-Pérez, P., Fried, P. J., Jones, R. N., Travison, T. G., 
Santarnecchi, E., Pascual-Leone, A., & Shafi, M. M. (2020). EEG spectral power 
abnormalities and their relationship with cognitive dysfunction in patients with 
Alzheimer’s disease and type 2 diabetes. Neurobiology of Aging, 85, 83–95. 
https://doi.org/10.1016/j.neurobiolaging.2019.10.004 

Berger, H. (1929). Über das elektroenkephalogramm des menschen. 87(527–70). 



 
 

 
 

145 

Bhattacharya, A., & De, R. K. (2008). Divisive Correlation Clustering Algorithm 
(DCCA) for grouping of genes: Detecting varying patterns in expression profiles. 
Bioinformatics, 24(11), 1359–1366. https://doi.org/10.1093/bioinformatics/btn133 

Bhattacharya, A., & De, R. K. (2010). Average correlation clustering algorithm (ACCA) 
for grouping of co-regulated genes with similar pattern of variation in their 
expression values. Journal of Biomedical Informatics, 43(4), 560–568. 
https://doi.org/10.1016/j.jbi.2010.02.001 

Blenkinsop, A., Anderson, S., & Gurney, K. (2017). Frequency and function in the basal 
ganglia: The origins of beta and gamma band activity: Frequency and function in the 
basal ganglia. The Journal of Physiology, 595(13), 4525–4548. 
https://doi.org/10.1113/JP273760 

Bonaiuto, J. J., Little, S., Neymotin, S. A., Jones, S. R., Barnes, G. R., & Bestmann, S. 
(2021). Laminar dynamics of high amplitude beta bursts in human motor cortex. 
NeuroImage, 242, 118479. https://doi.org/10.1016/j.neuroimage.2021.118479 

Boto, E., Meyer, S. S., Shah, V., Alem, O., Knappe, S., Kruger, P., Fromhold, T. M., Lim, 
M., Glover, P. M., Morris, P. G., Bowtell, R., Barnes, G. R., & Brookes, M. J. (2017). 
A new generation of magnetoencephalography: Room temperature measurements 
using optically-pumped magnetometers. NeuroImage, 149, 404–414. 
https://doi.org/10.1016/j.neuroimage.2017.01.034 

Bowyer, S. M., Moran, J. E., Weiland, B. J., Mason, K. M., Greenwald, M. L., Smith, B. 
J., Barkley, G. L., & Tepley, N. (2005). Language laterality determined by MEG 
mapping with MR-FOCUSS. Epilepsy & Behavior, 6(2), 235–241. 
https://doi.org/10.1016/j.yebeh.2004.12.002 

Brady, B., & Bardouille, T. (2022). Periodic/Aperiodic parameterization of transient 
oscillations (PAPTO)–Implications for healthy ageing. NeuroImage, 251, 118974. 
https://doi.org/10.1016/j.neuroimage.2022.118974 

Brady, B., Power, L., & Bardouille, T. (2020). Age-related trends in neuromagnetic 
transient beta burst characteristics during a sensorimotor task and rest in the Cam-
CAN open-access dataset. NeuroImage, 222, 117245. 
https://doi.org/10.1016/j.neuroimage.2020.117245 

Bragin, A., Jando, G., Nadasdy, Z., Hetke, J., Wise, K., & Buzsáki, G. (1995). Gamma 
(40-100 Hz) Oscillation in the Hippocampus of the Behaving Rat. 15(1), 47–60. 

Brenner, R. P., Ulrich, R. F., Spiker, D. G., Sclabassi, R. J., Reynolds, C. F., Marin, R. S., 
& Boller, F. (1986). Computerized EEG spectral analysis in elderly normal, 
demented and depressed subjects. Electroencephalography and Clinical 
Neurophysiology, 64(6), 483–492. https://doi.org/10.1016/0013-4694(86)90184-7 

Briley, P. M., Liddle, E. B., Simmonite, M., Jansen, M., White, T. P., Balain, V., 
Palaniyappan, L., Bowtell, R., Mullinger, K. J., & Liddle, P. F. (2021). Regional 
Brain Correlates of Beta Bursts in Health and Psychosis: A Concurrent 
Electroencephalography and Functional Magnetic Resonance Imaging Study. 
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(12), 1145–
1156. https://doi.org/10.1016/j.bpsc.2020.10.018 



 
 

 
 

146 

Britton, J., Frey, L., & Hopp, J. (2016). The normal EEG. In E. St Louis & L. Frey (Eds.), 
Electroencephalography (EEG): An Introductory Text and Atlas of Normal and 
Abnormal Findings in Adults, Children, and Infants. American Epilepsy Society. 

Brockmeier, A. J., & Principe, J. C. (2016). Learning Recurrent Waveforms Within EEGs. 
IEEE Transactions on Biomedical Engineering, 63(1), 43–54. 
https://doi.org/10.1109/TBME.2015.2499241 

Brovelli, A., Battaglini, P. P., Naranjo, J. R., & Budai, R. (2002). Medium-Range 
Oscillatory Network and the 20-Hz Sensorimotor Induced Potential. NeuroImage, 
16(1), 130–141. https://doi.org/10.1006/nimg.2002.1058 

Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., & Bressler, S. L. (2004). 
Beta oscillations in a large-scale sensorimotor cortical network: Directional 
influences revealed by Granger causality. Proceedings of the National Academy of 
Sciences, 101(26), 9849–9854. https://doi.org/10.1073/pnas.0308538101 

Buskila, Y., Bellot-Saez, A., & Morley, J. W. (2019). Generating Brain Waves, the Power 
of Astrocytes. Frontiers in Neuroscience, 13, 1125. 
https://doi.org/10.3389/fnins.2019.01125 

Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of Gamma Oscillations. Annual Review 
of Neuroscience, 35(1), 203–225. https://doi.org/10.1146/annurev-neuro-062111-
150444 

Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging 
Gracefully: Compensatory Brain Activity in High-Performing Older Adults. 
NeuroImage, 17(3), 1394–1402. https://doi.org/10.1006/nimg.2002.1280 

Caplan, J. B., Bottomley, M., Kang, P., & Dixon, R. A. (2015). Distinguishing rhythmic 
from non-rhythmic brain activity during rest in healthy neurocognitive aging. 
NeuroImage, 112, 341–352. https://doi.org/10.1016/j.neuroimage.2015.03.001 

Caplan, J. B., Madsen, J. R., Raghavachari, S., & Kahana, M. J. (2001). Distinct Patterns 
of Brain Oscillations Underlie Two Basic Parameters of Human Maze Learning. 
Journal of Neurophysiology, 86(1), 368–380. 
https://doi.org/10.1152/jn.2001.86.1.368 

Cesnaite, E., Steinfath, P., Jamshidi Idaji, M., Stephani, T., Kumral, D., Haufe, S., Sander, 
C., Hensch, T., Hegerl, U., Riedel-Heller, S., Röhr, S., Schroeter, M. L., Witte, A., 
Villringer, A., & Nikulin, V. V. (2023). Alterations in rhythmic and non‐rhythmic 
resting‐state EEG activity and their link to cognition in older age. NeuroImage, 268, 
119810. https://doi.org/10.1016/j.neuroimage.2022.119810 

Cheyne, D. O. (2013). MEG studies of sensorimotor rhythms: A review. Experimental 
Neurology, 245, 27–39. https://doi.org/10.1016/j.expneurol.2012.08.030 

Chiang, A. K. I., Rennie, C. J., Robinson, P. A., Van Albada, S. J., & Kerr, C. C. (2011). 
Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical 
Neurophysiology, 122(8), 1505–1517. https://doi.org/10.1016/j.clinph.2011.01.040 



 
 

 
 

147 

Cleeland, C., Pipingas, A., Scholey, A., & White, D. (2019). Neurochemical changes in 
the aging brain: A systematic review. Neuroscience & Biobehavioral Reviews, 98, 
306–319. https://doi.org/10.1016/j.neubiorev.2019.01.003 

Cohen, D. (1968). Magnetoencephalography: Evidence of Magnetic Fields Produced by 
Alpha-Rhythm Currents. Science, 161(3843), 784–786. 
https://doi.org/10.1126/science.161.3843.784 

Cohen, D. (1972). Magnetoencephalography: Detection of the Brain’s Electrical Activity 
with a Superconducting Magnetometer. Science, 175(4022), 664–666. 
https://doi.org/10.1126/science.175.4022.664 

Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. Journal of 
Neurophysiology, 122(2), 849–861. https://doi.org/10.1152/jn.00273.2019 

Connor, J. R., Menzies, S. L., Martin, S. M. St., & Mufson, E. J. (1990). Cellular 
distribution of transferrin, ferritin, and iron in normal and aged human brains. 
Journal of Neuroscience Research, 27(4), 595–611. 
https://doi.org/10.1002/jnr.490270421 

Coquelet, N., De Tiège, X., Roshchupkina, L., Peigneux, P., Goldman, S., Woolrich, M., 
& Wens, V. (2022). Microstates and power envelope hidden Markov modeling probe 
bursting brain activity at different timescales. NeuroImage, 247, 118850. 
https://doi.org/10.1016/j.neuroimage.2021.118850 

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical Surface-Based Analysis: I. 
Segmentation and Surface Reconstruction. NeuroImage, 9(2), 179–194. 
https://doi.org/10.1006/nimg. 1998.0395 

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & 
Halgren, E. (2000). Dynamic Statistical Parametric Mapping. Neuron, 26(1), 55–67. 
https://doi.org/10.1016/S0896-6273(00)81138-1 

Deary, I. J., Corley, J., Gow, A. J., Harris, S. E., Houlihan, L. M., Marioni, R. E., Penke, 
L., Rafnsson, S. B., & Starr, J. M. (2009). Age-associated cognitive decline. British 
Medical Bulletin, 92(1), 135–152. https://doi.org/10.1093/bmb/ldp033 

Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human 
intelligence. Human Genetics, 126(1), 215–232. https://doi.org/10.1007/s00439-009-
0655-4 

Deary, I. J., Wright, A. F., Harris, S. E., Whalley, L. J., & Starr, J. M. (2004). Searching 
for genetic influences on normal cognitive ageing. Trends in Cognitive Sciences, 
8(4), 178–184. https://doi.org/10.1016/j.tics.2004.02.008 

Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG 
data using higher-order statistics and independent component analysis. NeuroImage, 
34(4), 1443–1449. https://doi.org/10.1016/j.neuroimage.2006.11.004 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., 
Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, 
R. J. (2006). An automated labeling system for subdividing the human cerebral 



 
 

 
 

148 

cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–
980. https://doi.org/10.1016/j.neuroimage.2006.01.021 

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of 
human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 
53(1), 1–15. https://doi.org/10.1016/j.neuroimage.2010.06.010 

Dupré la Tour, T., Moreau, T., Jas, M., & Gramfort, A. (2018). Multivariate 
Convolutional Sparse Coding for Electromagnetic Brain Signals. NeurIPS, Montréal, 
Canada. 

Emek-Savaş, D. D., Güntekin, B., Yener, G. G., & Başar, E. (2016). Decrease of delta 
oscillatory responses is associated with increased age in healthy elderly. 
International Journal of Psychophysiology, 103, 103–109. 
https://doi.org/10.1016/j.ijpsycho.2015.02.006 

Engel, A. K., & Fries, P. (2010). Beta-band oscillations—Signalling the status quo? 
Current Opinion in Neurobiology, 20(2), 156–165. 
https://doi.org/10.1016/j.conb.2010.02.015 

Errington, S. P., Woodman, G. F., & Schall, J. D. (2020). Dissociation of Medial Frontal 
β-Bursts and Executive Control. The Journal of Neuroscience, 40(48), 9272–9282. 
https://doi.org/10.1523/JNEUROSCI.2072-20.2020 

Esiri, M. (2007). Ageing and the brain. The Journal of Pathology, 211(2), 181–187. 
https://doi.org/10.1002/path.2089 

Fabus, M. S., Quinn, A. J., Warnaby, C. E., & Woolrich, M. W. (2021). Automatic 
decomposition of electrophysiological data into distinct nonsinusoidal oscillatory 
modes. Journal of Neurophysiology, 126(5), 1670–1684. 
https://doi.org/10.1152/jn.00315.2021 

Feingold, J., Gibson, D. J., DePasquale, B., & Graybiel, A. M. (2015). Bursts of beta 
oscillation differentiate postperformance activity in the striatum and motor cortex of 
monkeys performing movement tasks. Proceedings of the National Academy of 
Sciences, 112(44), 13687–13692. https://doi.org/10.1073/pnas.1517629112 

Fischl, B., Liu, A., & Dale, A. M. (2001). Automated manifold surgery: Constructing 
geometrically accurate and topologically correct models of the human cerebral 
cortex. IEEE Transactions on Medical Imaging, 20(1), 70–80. 
https://doi.org/10.1109/42.906426 

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der 
Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., 
Rosen, B., & Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3), 341–
355. https://doi.org/10.1016/S0896-6273(02)00569-X 

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical Surface-Based Analysis. 
NeuroImage, 9(2), 195–207. https://doi.org/10.1006/nimg.1998.0396 

Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999). High-resolution 
intersubject averaging and a coordinate system for the cortical surface. Human Brain 



 
 

 
 

149 

Mapping, 8(4), 272–284. https://doi.org/10.1002/(SICI)1097-
0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, 
E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & 
Dale, A. M. (2004). Automatically Parcellating the Human Cerebral Cortex. Cerebral 
Cortex, 14(1), 11–22. https://doi.org/10.1093/cercor/bhg087 

Fjell, A. M., & Walhovd, K. B. (2010). Structural Brain Changes in Aging: Courses, 
Causes and Cognitive Consequences. Reviews in the Neurosciences, 21(3). 
https://doi.org/10.1515/REVNEURO.2010.21.3.187 

Fjell, A. M., Walhovd, K. B., Reinvang, I., Lundervold, A., Salat, D., Quinn, B. T., Fischl, 
B., & Dale, A. M. (2006). Selective increase of cortical thickness in high-performing 
elderly—Structural indices of optimal cognitive aging. NeuroImage, 29(3), 984–994. 
https://doi.org/10.1016/j.neuroimage.2005.08.007 

Foxe, J. J., & Snyder, A. C. (2011). The Role of Alpha-Band Brain Oscillations as a 
Sensory Suppression Mechanism during Selective Attention. Frontiers in 
Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00154 

Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated 
lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343–
353. https://doi.org/10.1016/S1474-4422(04)00767-7 

Gaetz, W., Edgar, J. C., Wang, D. J., & Roberts, T. P. L. (2011a). Relating MEG measured 
motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration. 
NeuroImage, 55(2), 616–621. https://doi.org/10.1016/j.neuroimage.2010.12.077 

Gaetz, W., Edgar, J. C., Wang, D. J., & Roberts, T. P. L. (2011b). Relating MEG measured 
motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration. 
NeuroImage, 55(2), 616–621. https://doi.org/10.1016/j.neuroimage.2010.12.077 

Ganguli, M., Bilt, J. V., Saxton, J. A., Shen, C., & Dodge, H. H. (2005). Alcohol 
consumption and cognitive function in late life: A longitudinal community study. 
Neurology, 65(8), 1210–1217. https://doi.org/10.1212/01.wnl.0000180520.35181.24 

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., 
Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during 
childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 
861–863. https://doi.org/10.1038/13158 

Gips, B., Bahramisharif, A., Lowet, E., Roberts, M. J., de Weerd, P., Jensen, O., & van 
der Eerden, J. (2017). Discovering recurring patterns in electrophysiological 
recordings. Journal of Neuroscience Methods, 275, 66–79. 
https://doi.org/10.1016/j.jneumeth.2016.11.001 

Gómez, C., M Pérez-Macías, J., Poza, J., Fernández, A., & Hornero, R. (2013). Spectral 
changes in spontaneous MEG activity across the lifespan. Journal of Neural 
Engineering, 10(6), 066006. https://doi.org/10.1088/1741-2560/10/6/066006 

Gramfort, A. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in 
Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00267 



 
 

 
 

150 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., 
Parkkonen, L., & Hämäläinen, M. S. (2014). MNE software for processing MEG and 
EEG data. NeuroImage, 86, 446–460. 
https://doi.org/10.1016/j.neuroimage.2013.10.027 

Gray, C. M. (1994). Synchronous oscillations in neuronal systems: Mechanisms and 
functions. 1, 11–38. 

Gray, C. M., König, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat 
visual cortex exhibit inter-columnar synchronization which reflects global stimulus 
properties. Nature, 338(6213), 334–337. https://doi.org/10.1038/338334a0 

Green, E., Bennett, H., Brayne, C., & Matthews, F. E. (2018). Exploring patterns of 
response across the lifespan: The Cambridge Centre for Ageing and Neuroscience 
(Cam-CAN) study. BMC Public Health, 18(1), 760. https://doi.org/10.1186/s12889-
018-5663-7 

Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., & Salmelin, R. 
(2001). Dynamic imaging of coherent sources: Studying neural interactions in the 
human brain. Proceedings of the National Academy of Sciences, 98(2), 694–699. 
https://doi.org/10.1073/pnas.98.2.694 

Grosse, R., Raina, R., Kwong, H., & Ng, A. Y. (2007). Shift-invariance sparse coding for 
audio classification. 23rd Conference on Uncertainty in Artificial Intelligence. 

Halder, T., Talwar, S., Jaiswal, A. K., & Banerjee, A. (2019). Quantitative Evaluation in 
Estimating Sources Underlying Brain Oscillations Using Current Source Density 
Methods and Beamformer Approaches. Eneuro, 6(4), ENEURO.0170-19.2019. 
https://doi.org/10.1523/ENEURO.0170-19.2019 

Hall, E. L., Robson, S. E., Morris, P. G., & Brookes, M. J. (2014). The relationship 
between MEG and fMRI. NeuroImage, 102, 80–91. 
https://doi.org/10.1016/j.neuroimage.2013.11.005 

Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). 
Magnetoencephalography—Theory, instrumentation, and applications to noninvasive 
studies of the working human brain. Reviews of Modern Physics, 65(2), 413–497. 
https://doi.org/10.1103/RevModPhys.65.413 

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: 
Minimum norm estimates. Medical & Biological Engineering & Computing, 32(1), 
35–42. https://doi.org/10.1007/BF02512476 

Hämäläinen, M. S., & Sarvas, J. (1989). Realistic conductivity geometry model of the 
human head for interpretation of neuromagnetic data. IEEE Transactions on 
Biomedical Engineering, 36(2), 165–171. https://doi.org/10.1109/10.16463 

Hansen, P. C., Kringelbach, M. L., & Salmelin, R. (Eds.). (2010). MEG: An introduction 
to methods. Oxford University Press. 

Hari, R., & Salmelin, R. (1997). Human cortical oscillations: A neuromagnetic view 
through the skull. Trends in Neurosciences, 20(1), 44–49. 
https://doi.org/10.1016/S0166-2236(96)10065-5 



 
 

 
 

151 

Hasselmo, M. E. (2005). What is the function of hippocampal theta rhythm?—Linking 
behavioral data to phasic properties of field potential and unit recording data. 
Hippocampus, 15(7), 936–949. https://doi.org/10.1002/hipo.20116 

Hauk, O., Wakeman, D. G., & Henson, R. (2011). Comparison of noise-normalized 
minimum norm estimates for MEG analysis using multiple resolution metrics. 
NeuroImage, 54(3), 1966–1974. https://doi.org/10.1016/j.neuroimage.2010.09.053 

He, S., Everest-Phillips, C., Clouter, A., Brown, P., & Tan, H. (2020). Neurofeedback-
Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy 
Motor Control: A Double-Blind Sham-Controlled Study. The Journal of 
Neuroscience, 40(20), 4021–4032. https://doi.org/10.1523/JNEUROSCI.0208-
20.2020 

Hebert, R., & Lehmann, D. (1977). Theta bursts: An EEG pattern in normal subjects 
practising the transcendental meditation technique. Electroencephalography and 
Clinical Neurophysiology, 42(3), 397–405. https://doi.org/10.1016/0013-
4694(77)90176-6 

Hedden, T., & Gabrieli, J. D. E. (2004). Insights into the ageing mind: A view from 
cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 87–96. 
https://doi.org/10.1038/nrn1323 

Hedman, A. M., Van Haren, N. E. M., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. 
(2012). Human brain changes across the life span: A review of 56 longitudinal 
magnetic resonance imaging studies. Human Brain Mapping, 33(8), 1987–2002. 
https://doi.org/10.1002/hbm.21334 

Heinrichs-Graham, E., Kurz, M. J., Becker, K. M., Santamaria, P. M., Gendelman, H. E., 
& Wilson, T. W. (2014). Hypersynchrony despite pathologically reduced beta 
oscillations in patients with Parkinson’s disease: A pharmaco-
magnetoencephalography study. Journal of Neurophysiology, 112(7), 1739–1747. 
https://doi.org/10.1152/jn.00383.2014 

Hier, D. B., Mangone, C. A., Ganellen, R., Warach, J. D., Van Egeren, R., Perlik, S. J., & 
Gorelick, P. B. (1991). Quantitative Measurement of Delta Activity in Alzheimer’s 
Disease. Clinical Electroencephalography, 22(3), 178–182. 
https://doi.org/10.1177/155005949102200309 

Himberg, J., Hyvärinen, A., & Esposito, F. (2004). Validating the independent 
components of neuroimaging time series via clustering and visualization. 
NeuroImage, 22(3), 1214–1222. https://doi.org/10.1016/j.neuroimage.2004.03.027 

Hindriks, R., Van Putten, M. J. A. M., & Deco, G. (2014). Intra-cortical propagation of 
EEG alpha oscillations. NeuroImage, 103, 444–453. 
https://doi.org/10.1016/j.neuroimage.2014.08.027 

Hitziger, S., Clerc, M., Saillet, S., Benar, C., & Papadopoulo, T. (2017). Adaptive 
Waveform Learning: A Framework for Modeling Variability in Neurophysiological 
Signals. IEEE Transactions on Signal Processing, 65(16), 4324–4338. 
https://doi.org/10.1109/TSP.2017.2698415 



 
 

 
 

152 

Hochstenbach, J., Mulder, T., van Limbeek, J., Donders, R., & Schoonderwaldt, H. 
(1998). Cognitive Decline Following Stroke: A Comprehensive Study of Cognitive 
Decline Following Stroke*. Journal of Clinical and Experimental Neuropsychology, 
20(4), 503–517. https://doi.org/10.1076/jcen.20.4.503.1471 

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, 
C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert 
spectrum for nonlinear and non-stationary time series analysis. Proceedings of the 
Royal Society of London. Series A: Mathematical, Physical and Engineering 
Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193 

Hughes, S. W., & Crunelli, V. (2005). Thalamic Mechanisms of EEG Alpha Rhythms and 
Their Pathological Implications. The Neuroscientist, 11(4), 357–372. 
https://doi.org/10.1177/1073858405277450 

Hutchinson, S. (2002). Age-Related Differences in Movement Representation. 
NeuroImage, 17(4), 1720–1728. https://doi.org/10.1006/nimg.2002.1309 

Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and 
applications. Neural Networks, 13(4–5), 411–430. https://doi.org/10.1016/S0893-
6080(00)00026-5 

Jafarian, A., Zeidman, P., Wykes, Rob. C., Walker, M., & Friston, K. J. (2021). Adiabatic 
dynamic causal modelling. NeuroImage, 238, 118243. 
https://doi.org/10.1016/j.neuroimage.2021.118243 

Jas, M., La Tour, T. D., Şimşekli, U., & Gramfort, A. (2017). Learning the Morphology of 
Brain Signals Using Alpha-Stable Convolutional Sparse Coding. arXiv:1705.08006 
[q-Bio, Stat]. http://arxiv.org/abs/1705.08006 

Jenkinson, N., & Brown, P. (2011). New insights into the relationship between dopamine, 
beta oscillations and motor function. Trends in Neurosciences, 34(12), 611–618. 
https://doi.org/10.1016/j.tins.2011.09.003 

Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha 
Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4. 
https://doi.org/10.3389/fnhum.2010.00186 

Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical 
Neurophysiology, 115(7), 1490–1505. https://doi.org/10.1016/j.clinph.2004.01.001 

Jones, S. R. (2016). When brain rhythms aren’t ‘rhythmic’: Implication for their 
mechanisms and meaning. Current Opinion in Neurobiology, 40, 72–80. 
https://doi.org/10.1016/j.conb.2016.06.010 

Jost, P., Vandergheynst, P., Lesage, S., & Gribonval, R. (2006). MoTIF: An Efficient 
Algorithm for Learning Translation Invariant Dictionaries. 2006 IEEE International 
Conference on Acoustics Speed and Signal Processing Proceedings, 5, V-857-V–860. 
https://doi.org/10.1109/ICASSP.2006.1661411 

Judd, C. M., & Kenny, D. A. (1981). Process Analysis: Estimating Mediation in 
Treatment Evaluations. Evaluation Review, 5(5), 602–619. 
https://doi.org/10.1177/0193841X8100500502 



 
 

 
 

153 

Jurkiewicz, M. T., Gaetz, W. C., Bostan, A. C., & Cheyne, D. (2006). Post-movement 
beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings. 
NeuroImage, 32(3), 1281–1289. https://doi.org/10.1016/j.neuroimage.2006.06.005 

Kachiwala, S. J., Harris, S. E., Wright, A. F., Hayward, C., Starr, J. M., Whalley, L. J., & 
Deary, I. J. (2005). Genetic influences on oxidative stress and their association with 
normal cognitive ageing. Neuroscience Letters, 386(2), 116–120. 
https://doi.org/10.1016/j.neulet.2005.05.067 

Kadala, A., Verdier, D., Morquette, P., & Kolta, A. (2015). Ion Homeostasis in 
Rhythmogenesis: The Interplay Between Neurons and Astroglia. Physiology, 30(5), 
371–388. https://doi.org/10.1152/physiol.00023.2014 

Karvat, G., Schneider, A., Alyahyay, M., Steenbergen, F., Tangermann, M., & Diester, I. 
(2020). Real-time detection of neural oscillation bursts allows behaviourally relevant 
neurofeedback. Communications Biology, 3(1), 72. https://doi.org/10.1038/s42003-
020-0801-z 

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The 
inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–88. 
https://doi.org/10.1016/j.brainresrev.2006.06.003 

Knappe, S., Sander, T., & Trahms, L. (2014). Optically-Pumped Magnetometers for 
MEG. In S. Supek & C. J. Aine (Eds.), Magnetoencephalography (pp. 993–999). 
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_49 

Kosciessa, J. Q., Grandy, T. H., Garrett, D. D., & Werkle-Bergner, M. (2020). Single-trial 
characterization of neural rhythms: Potential and challenges. NeuroImage, 206, 
116331. https://doi.org/10.1016/j.neuroimage.2019.116331 

Kramer, M. A., Roopun, A. K., Carracedo, L. M., Traub, R. D., Whittington, M. A., & 
Kopell, N. J. (2008). Rhythm Generation through Period Concatenation in Rat 
Somatosensory Cortex. PLoS Computational Biology, 4(9), e1000169. 
https://doi.org/10.1371/journal.pcbi.1000169 

Kühn, A. A., Williams, D., Kupsch, A., Limousin, P., Hariz, M., Schneider, G., Yarrow, 
K., & Brown, P. (2004). Event‐related beta desynchronization in human subthalamic 
nucleus correlates with motor performance. Brain, 127(4), 735–746. 
https://doi.org/10.1093/brain/awh106 

Lakatos, P., Szilágyi, N., Pincze, Z., Rajkai, C., Ulbert, I., & Karmos, G. (2004). 
Attention and arousal related modulation of spontaneous gamma-activity in the 
auditory cortex of the cat. Cognitive Brain Research, 19(1), 1–9. 
https://doi.org/10.1016/j.cogbrainres.2003.10.023 

Leirer, V. M., Wienbruch, C., Kolassa, S., Schlee, W., Elbert, T., & Kolassa, I.-T. (2011). 
Changes in cortical slow wave activity in healthy aging. Brain Imaging and 
Behavior, 5(3), 222–228. https://doi.org/10.1007/s11682-011-9126-3 

Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. 
(2002). Dependence of subthalamic nucleus oscillations on movement and dopamine 
in Parkinson’s disease. Brain, 125(6), 1196–1209. 
https://doi.org/10.1093/brain/awf128 



 
 

 
 

154 

Lipski, W. J., Wozny, T. A., Alhourani, A., Kondylis, E. D., Turner, R. S., Crammond, D. 
J., & Richardson, R. M. (2017). Dynamics of human subthalamic neuron phase-
locking to motor and sensory cortical oscillations during movement. Journal of 
Neurophysiology, 118(3), 1472–1487. https://doi.org/10.1152/jn.00964.2016 

Little, B., Bonaiuto, J., Barnes, G., & Bestmann, S. (2019). Human motor cortical beta 
bursts relate to movement planning and response errors. PLOS Biology, 17(10), 
e3000479. https://doi.org/10.1371/journal.pbio.3000479 

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 
453(7197), 869–878. https://doi.org/10.1038/nature06976 

Loomis, A. L., Harvey, E. N., & Hobart, G. (1935). Potential Rhythms of the Cerebral 
Cortex During Sleep. Science, 81(2111), 597–598. 
https://doi.org/10.1126/science.81.2111.597 

Lopes Da Silva, F. (1991). Neural mechanisms underlying brain waves: From neural 
membranes to networks. Electroencephalography and Clinical Neurophysiology, 
79(2), 81–93. https://doi.org/10.1016/0013-4694(91)90044-5 

Lozano-Soldevilla, D. (2018). On the Physiological Modulation and Potential 
Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Frontiers in 
Computational Neuroscience, 12, 23. https://doi.org/10.3389/fncom.2018.00023 

Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. 
(2016). Gamma and Beta Bursts Underlie Working Memory. Neuron, 90(1), 152–
164. https://doi.org/10.1016/j.neuron.2016.02.028 

Marsden, J. F., Limousin-Dowsey, P., Ashby, P., Pollak, P., & Brown, P. (2001). 
Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in 
Parkinson’s disease. Brain, 124(2), 378–388. https://doi.org/10.1093/brain/124.2.378 

Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Das, S., Callicott, J. H., & Weinberger, 
D. R. (2002). Neurophysiological correlates of age-related changes in human motor 
function. Neurology, 58(4), 630–635. https://doi.org/10.1212/WNL.58.4.630 

McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X., & Kopell, N. 
(2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. 
Proceedings of the National Academy of Sciences, 108(28), 11620–11625. 
https://doi.org/10.1073/pnas.1107748108 

McCormick, D. A., McGinley, M. J., & Salkoff, D. B. (2015). Brain state dependent 
activity in the cortex and thalamus. Current Opinion in Neurobiology, 31, 133–140. 
https://doi.org/10.1016/j.conb.2014.10.003 

McIntosh, A. R., Vakorin, V., Kovacevic, N., Wang, H., Diaconescu, A., & Protzner, A. B. 
(2014). Spatiotemporal Dependency of Age-Related Changes in Brain Signal 
Variability. Cerebral Cortex, 24(7), 1806–1817. 
https://doi.org/10.1093/cercor/bht030 

Meghdadi, A. H., Stevanović Karić, M., McConnell, M., Rupp, G., Richard, C., 
Hamilton, J., Salat, D., & Berka, C. (2021). Resting state EEG biomarkers of 
cognitive decline associated with Alzheimer’s disease and mild cognitive 



 
 

 
 

155 

impairment. PLOS ONE, 16(2), e0244180. 
https://doi.org/10.1371/journal.pone.0244180 

Michel, C. M., & Koenig, T. (2018). EEG microstates as a tool for studying the temporal 
dynamics of whole-brain neuronal networks: A review. NeuroImage, 180, 577–593. 
https://doi.org/10.1016/j.neuroimage.2017.11.062 

Milikovsky, D. Z., Ofer, J., Senatorov, V. V., Friedman, A. R., Prager, O., Sheintuch, L., 
Elazari, N., Veksler, R., Zelig, D., Weissberg, I., Bar-Klein, G., Swissa, E., Hanael, 
E., Ben-Arie, G., Schefenbauer, O., Kamintsky, L., Saar-Ashkenazy, R., Shelef, I., 
Shamir, M. H., … Friedman, A. (2019). Paroxysmal slow cortical activity in 
Alzheimer’s disease and epilepsy is associated with blood-brain barrier dysfunction. 
Science Translational Medicine, 11(521), eaaw8954. 
https://doi.org/10.1126/scitranslmed.aaw8954 

Milikovsky, D. Z., Weissberg, I., Kamintsky, L., Lippmann, K., Schefenbauer, O., 
Frigerio, F., Rizzi, M., Sheintuch, L., Zelig, D., Ofer, J., Vezzani, A., & Friedman, A. 
(2017). Electrocorticographic Dynamics as a Novel Biomarker in Five Models of 
Epileptogenesis. The Journal of Neuroscience, 37(17), 4450–4461. 
https://doi.org/10.1523/JNEUROSCI.2446-16.2017 

Miljković, M., Chernenko, T., Romeo, M. J., Bird, B., Matthäus, C., & Diem, M. (2010). 
Label-free imaging of human cells: Algorithms for image reconstruction of Raman 
hyperspectral datasets. The Analyst, 135(8), 2002. 
https://doi.org/10.1039/c0an00042f 

Mirzaei, A., Kumar, A., Leventhal, D., Mallet, N., Aertsen, A., Berke, J., & Schmidt, R. 
(2017). Sensorimotor Processing in the Basal Ganglia Leads to Transient Beta 
Oscillations during Behavior. The Journal of Neuroscience, 37(46), 11220–11232. 
https://doi.org/10.1523/JNEUROSCI.1289-17.2017 

Montagne, A., Barnes, S. R., Sweeney, M. D., Halliday, M. R., Sagare, A. P., Zhao, Z., 
Toga, A. W., Jacobs, R. E., Liu, C. Y., Amezcua, L., Harrington, M. G., Chui, H. C., 
Law, M., & Zlokovic, B. V. (2015). Blood-Brain Barrier Breakdown in the Aging 
Human Hippocampus. Neuron, 85(2), 296–302. 
https://doi.org/10.1016/j.neuron.2014.12.032 

Moreau, T., & Gramfort, A. (2022). DiCoDiLe: Distributed Convolutional Dictionary 
Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5), 
2426–2437. https://doi.org/10.1109/TPAMI.2020.3039215 

Morrison, J. H., & Hof, P. R. (1997). Life and Death of Neurons in the Aging Brain. 
Science, 278(5337), 412–419. https://doi.org/10.1126/science.278.5337.412 

Muller, L., Chavane, F., Reynolds, J., & Sejnowski, T. J. (2018). Cortical travelling 
waves: Mechanisms and computational principles. Nature Reviews Neuroscience, 
19(5), 255–268. https://doi.org/10.1038/nrn.2018.20 

Murman, D. (2015). The Impact of Age on Cognition. Seminars in Hearing, 36(03), 111–
121. https://doi.org/10.1055/s-0035-1555115 



 
 

 
 

156 

Murthy, V. N., & Fetz, E. E. (1996). Synchronization of neurons during local field 
potential oscillations in sensorimotor cortex of awake monkeys. Journal of 
Neurophysiology, 76(6), 3968–3982. https://doi.org/10.1152/jn.1996.76.6.3968 

Musaeus, C. S., Engedal, K., Høgh, P., Jelic, V., Mørup, M., Naik, M., Oeksengaard, A.-
R., Snaedal, J., Wahlund, L.-O., Waldemar, G., & Andersen, B. B. (2018). EEG Theta 
Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer’s 
Disease. Journal of Alzheimer’s Disease, 64(4), 1359–1371. 
https://doi.org/10.3233/JAD-180300 

Muthukumaraswamy, S. D., Myers, J. F. M., Wilson, S. J., Nutt, D. J., Lingford-Hughes, 
A., Singh, K. D., & Hamandi, K. (2013). The effects of elevated endogenous GABA 
levels on movement-related network oscillations. NeuroImage, 66, 36–41. 
https://doi.org/10.1016/j.neuroimage.2012.10.054 

Neuper, C., Wörtz, M., & Pfurtscheller, G. (2006). ERD/ERS patterns reflecting 
sensorimotor activation and deactivation. In Progress in Brain Research (Vol. 159, 
pp. 211–222). Elsevier. https://doi.org/10.1016/S0079-6123(06)59014-4 

Newman, A. (2019). Research Methods for Cognitive Neuroscience. 
Neymotin, S. A., Daniels, D. S., Caldwell, B., McDougal, R. A., Carnevale, N. T., Jas, 

M., Moore, C. I., Hines, M. L., Hämäläinen, M., & Jones, S. R. (2020). Human 
Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and 
network origin of human MEG/EEG data. eLife, 9, e51214. 
https://doi.org/10.7554/eLife.51214 

Nooyens, A. C. J., van Gelder, B. M., & Verschuren, W. M. M. (2008). Smoking and 
Cognitive Decline Among Middle-Aged Men and Women: The Doetinchem Cohort 
Study. American Journal of Public Health, 98(12), 2244–2250. 
https://doi.org/10.2105/AJPH.2007.130294 

Oja, E. & Zhijian Yuan. (2006). The FastICA Algorithm Revisited: Convergence 
Analysis. IEEE Transactions on Neural Networks, 17(6), 1370–1381. 
https://doi.org/10.1109/TNN.2006.880980 

Ossadtchi, A., Shamaeva, T., Okorokova, E., Moiseeva, V., & Lebedev, M. A. (2017). 
Neurofeedback learning modifies the incidence rate of alpha spindles, but not their 
duration and amplitude. Scientific Reports, 7(1), 3772. 
https://doi.org/10.1038/s41598-017-04012-0 

Özbek, Y., Fide, E., & Yener, G. G. (2021). Resting-state EEG alpha/theta power ratio 
discriminates early-onset Alzheimer’s disease from healthy controls. Clinical 
Neurophysiology, 132(9), 2019–2031. https://doi.org/10.1016/j.clinph.2021.05.012 

Pakenham, D. O., Quinn, A. J., Fry, A., Francis, S. T., Woolrich, M. W., Brookes, M. J., & 
Mullinger, K. J. (2020). Post-stimulus beta responses are modulated by task duration. 
NeuroImage, 206, 116288. https://doi.org/10.1016/j.neuroimage.2019.116288 

Papanicolaou, A. C., Castillo, E. M., Billingsley‐Marshall, R., Pataraia, E., & Simos, P. 
G. (2005). A Review of Clinical Applications of Magnetoencephalography. In 
International Review of Neurobiology (Vol. 68, pp. 223–247). Elsevier. 
https://doi.org/10.1016/S0074-7742(05)68009-9 



 
 

 
 

157 

Park, D. C., & Reuter-Lorenz, P. (2009). The Adaptive Brain: Aging and Neurocognitive 
Scaffolding. Annual Review of Psychology, 60(1), 173–196. 
https://doi.org/10.1146/annurev.psych.59.103006.093656 

Pascual-Marqui, R. D. (2002). Standardized low resolution brain electromagnetic 
tomography (sLORETA): Technical details. Clinical Pharmacology. 

Penttilä, M., Partanen, J. V., Soininen, H., & Riekkinen, P. J. (1985). Quantitative analysis 
of occipital EEG in different stages of Alzheimer’s disease. Electroencephalography 
and Clinical Neurophysiology, 60(1), 1–6. https://doi.org/10.1016/0013-
4694(85)90942-3 

Penttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain 
oscillators. Thalamus and Related Systems, 2(02), 145. 
https://doi.org/10.1017/S1472928803000074 

Pfurtscheller, G., & Lopes Da Silva, F. H. (1999). Event-related EEG/MEG 
synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 
110(11), 1842–1857. https://doi.org/10.1016/S1388-2457(99)00141-8 

Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu 
rhythms. International Journal of Psychophysiology, 26(1–3), 121–135. 
https://doi.org/10.1016/S0167-8760(97)00760-5 

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996a). Post-movement beta 
synchronization. A correlate of an idling motor area? Electroencephalography and 
Clinical Neurophysiology, 98(4), 281–293. https://doi.org/10.1016/0013-
4694(95)00258-8 

Pfurtscheller, G., Stancák, A., & Neuper, C. (1996b). Post-movement beta 
synchronization. A correlate of an idling motor area? Electroencephalography and 
Clinical Neurophysiology, 98(4), 281–293. https://doi.org/10.1016/0013-
4694(95)00258-8 

Popescu, B. O., Toescu, E. C., Popescu, L. M., Bajenaru, O., Muresanu, D. F., 
Schultzberg, M., & Bogdanovic, N. (2009). Blood-brain barrier alterations in ageing 
and dementia. Journal of the Neurological Sciences, 283(1–2), 99–106. 
https://doi.org/10.1016/j.jns.2009.02.321 

Power, L., Allain, C., Moreau, T., Gramfort, A., & Bardouille, T. (2023). Using 
convolutional dictionary learning to detect task-related neuromagnetic transients and 
ageing trends in a large open-access dataset. NeuroImage, 267, 119809. 
https://doi.org/10.1016/j.neuroimage.2022.119809 

Power, L., & Bardouille, T. (2021). Age‐related trends in the cortical sources of transient 
beta bursts during a sensorimotor task and rest. NeuroImage, 245, 118670. 
https://doi.org/10.1016/j.neuroimage.2021.118670 

Power, L., Friedman, A., & Bardouille, T. (2024). Atypical paroxysmal slow cortical 
activity in healthy adults: Relationship to age and cognitive performance. 
Neurobiology of Aging, 136, 44–57. 
https://doi.org/10.1016/j.neurobiolaging.2024.01.009 



 
 

 
 

158 

Quinn, A. J., Lopes-dos-Santos, V., Huang, N., Liang, W.-K., Juan, C.-H., Yeh, J.-R., 
Nobre, A. C., Dupret, D., & Woolrich, M. W. (2021). Within-cycle instantaneous 
frequency profiles report oscillatory waveform dynamics. Journal of 
Neurophysiology, 126(4), 1190–1208. https://doi.org/10.1152/jn.00201.2021 

Quinn, A. J., Vidaurre, D., Abeysuriya, R., Becker, R., Nobre, A. C., & Woolrich, M. W. 
(2018). Task-Evoked Dynamic Network Analysis Through Hidden Markov 
Modeling. Frontiers in Neuroscience, 12, 603. 
https://doi.org/10.3389/fnins.2018.00603 

R Core Team. (2021). R: A language and environment for statistical computing. R 
Foundation for Statistical Computing. https://www.R-project.org/ 

Rafnsson, S. B., Deary, I. J., & Fowkes, F. (2009). Peripheral arterial disease and 
cognitive function. Vascular Medicine, 14(1), 51–61. 
https://doi.org/10.1177/1358863X08095027 

Rafnsson, S. B., Deary, I. J., Smith, F. B., Whiteman, M. C., & Fowkes, F. G. R. (2007). 
Cardiovascular Diseases and Decline in Cognitive Function in an Elderly 
Community Population: The Edinburgh Artery Study. Psychosomatic Medicine, 
69(5), 425–434. https://doi.org/10.1097/psy.0b013e318068fce4 

Rayson, H., Debnath, R., Alavizadeh, S., Fox, N., Ferrari, P. F., & Bonaiuto, J. J. (2022). 
Detection and analysis of cortical beta bursts in developmental EEG data. 
Developmental Cognitive Neuroscience, 54, 101069. 
https://doi.org/10.1016/j.dcn.2022.101069 

Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive 
correlates and modifiers. Neuroscience & Biobehavioral Reviews, 30(6), 730–748. 
https://doi.org/10.1016/j.neubiorev.2006.07.001 

Robinson, P. A., Rennie, C. J., Wright, J. J., Bahramali, H., Gordon, E., & Rowe, D. L. 
(2001). Prediction of electroencephalographic spectra from neurophysiology. 
Physical Review E, 63(2), 021903. https://doi.org/10.1103/PhysRevE.63.021903 

Robinson, S. E., & Vrba, J. (1999). Functional neuroimaging by synthetic aperture 
tomography (SAM). Recent Advances in Biomagnetism, 302–305. 

Roopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E. N., Bibbig, A., 
Whittington, M. A., & Traub, R. D. (2006). A beta2-frequency (20–30 Hz) oscillation 
in nonsynaptic networks of somatosensory cortex. Proceedings of the National 
Academy of Sciences, 103(42), 15646–15650. 
https://doi.org/10.1073/pnas.0607443103 

Rossini, P. M., Rossi, S., Babiloni, C., & Polich, J. (2007). Clinical neurophysiology of 
aging brain: From normal aging to neurodegeneration. Progress in Neurobiology, 
83(6), 375–400. https://doi.org/10.1016/j.pneurobio.2007.07.010 

Rubino, D., Robbins, K. A., & Hatsopoulos, N. G. (2006). Propagating waves mediate 
information transfer in the motor cortex. Nature Neuroscience, 9(12), 1549–1557. 
https://doi.org/10.1038/nn1802 



 
 

 
 

159 

Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic 
inverse problem. Physics in Medicine and Biology, 32(1), 11–22. 
https://doi.org/10.1088/0031-9155/32/1/004 

Seedat, Z. A., Quinn, A. J., Vidaurre, D., Liuzzi, L., Gascoyne, L. E., Hunt, B. A. E., 
O’Neill, G. C., Pakenham, D. O., Mullinger, K. J., Morris, P. G., Woolrich, M. W., & 
Brookes, M. J. (2020). The role of transient spectral ‘bursts’ in functional 
connectivity: A magnetoencephalography study. NeuroImage, 209, 116537. 
https://doi.org/10.1016/j.neuroimage.2020.116537 

Senatorov, V. V., Friedman, A. R., Milikovsky, D. Z., Ofer, J., Saar-Ashkenazy, R., 
Charbash, A., Jahan, N., Chin, G., MIhaly, E., Lin, J. M., Ramsay, H. J., Moghbel, 
A., Preininger, M. K., Eddings, C. R., Harrison, H. V., Patel, R., Shen, Y., Ghanim, 
H., Sheng, H., … Kaufer, D. (2019). Blood-brain barrier dysfunction in aging 
induces hyperactivation of TGF-beta signaling and chronic yet reversible neural 
dysfunction. SCIENCE TRANSLATIONAL MEDICINE, 11, 15. 

Shafto, M. A., Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder, A. 
J., Marslen-Wilson, W. D., Duncan, J., Dalgleish, T., Henson, R. N., Brayne, C., 
Cam-CAN, & Matthews, F., E. (2014). The Cambridge Centre for Ageing and 
Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, 
multidisciplinary examination of healthy cognitive ageing. BMC Neurology, 14(1), 
204. https://doi.org/10.1186/s12883-014-0204-1 

Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hämäläinen, M. S., Moore, 
C. I., & Jones, S. R. (2016). Neural mechanisms of transient neocortical beta 
rhythms: Converging evidence from humans, computational modeling, monkeys, and 
mice. Proceedings of the National Academy of Sciences, 113(33). 
https://doi.org/10.1073/pnas.1604135113 

Shimamoto, S. A., Ryapolova-Webb, E. S., Ostrem, J. L., Galifianakis, N. B., Miller, K. 
J., & Starr, P. A. (2013). Subthalamic Nucleus Neurons Are Synchronized to Primary 
Motor Cortex Local Field Potentials in Parkinson’s Disease. The Journal of 
Neuroscience, 33(17), 7220–7233. https://doi.org/10.1523/JNEUROSCI.4676-
12.2013 

Shin, H., Law, R., Tsutsui, S., Moore, C. I., & Jones, S. R. (2017). The rate of transient 
beta frequency events predicts behavior across tasks and species. eLife, 6, e29086. 
https://doi.org/10.7554/eLife.29086 

Soininen, H., Reinikainen, K. J., Partanen, J., Helkala, E.-L., Paljärvi, L., & Riekkinen, P. 
J. (1992). Slowing of electroencephalogram and choline acetyltransferase activity in 
post mortem frontal cortex in definite Alzheimer’s disease. Neuroscience, 49(3), 
529–535. https://doi.org/10.1016/0306-4522(92)90223-O 

Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In 
vivo evidence for post-adolescent brain maturation in frontal and striatal regions. 
Nature Neuroscience, 2(10), 859–861. https://doi.org/10.1038/13154 

Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping 
Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal 
Cortex: Inverse Relationships during Postadolescent Brain Maturation. The Journal 



 
 

 
 

160 

of Neuroscience, 21(22), 8819–8829. https://doi.org/10.1523/JNEUROSCI.21-22-
08819.2001 

Statistics Canada. (2021). A portrait of Canada’s growing population aged 85 and older 
from the 2021 Census. 98. 

Statistics Canada. (2022). In the midst of high job vacancies and historically low 
unemployment, Canada faces record retirements from an aging labour force: Number 
of seniors aged 65 and older grows six times faster than children 0-14. 11. 

Steriade, M. (2004). Acetylcholine systems and rhythmic activities during the waking–
sleep cycle. In Progress in Brain Research (Vol. 145, pp. 179–196). Elsevier. 
https://doi.org/10.1016/S0079-6123(03)45013-9 

Steriade, M., & Timofeev, I. (2003). Networks during Sleep and Waking Oscillations. 
37(563–576). 

Sweeney, M. D., Sagare, A. P., & Zlokovic, B. V. (2018). Blood–brain barrier breakdown 
in Alzheimer disease and other neurodegenerative disorders. Nature Reviews 
Neurology, 14(3), 133–150. https://doi.org/10.1038/nrneurol.2017.188 

Takahashi, K., Saleh, M., Penn, R. D., & Hatsopoulos, N. G. (2011). Propagating Waves 
in Human Motor Cortex. Frontiers Human Neuroscience, 5. 
https://doi.org/10.3389/fnhum.2011.00040 

Taki, Y., Kinomura, S., Sato, K., Goto, R., Kawashima, R., & Fukuda, H. (2011). A 
longitudinal study of gray matter volume decline with age and modifying factors. 
Neurobiology of Aging, 32(5), 907–915. 
https://doi.org/10.1016/j.neurobiolaging.2009.05.003 

Tal, I., & Abeles, M. (2016). Temporal accuracy of human cortico-cortical interactions. 
Journal of Neurophysiology, 115(4), 1810–1820. 
https://doi.org/10.1152/jn.00956.2015 

Tal, I., & Abeles, M. (2018). Imaging the Spatiotemporal Dynamics of Cognitive 
Processes at High Temporal Resolution. Neural Computation, 30(3), 610–630. 
https://doi.org/10.1162/neco_a_01054 

Tal, I., Neymotin, S., Bickel, S., Lakatos, P., & Schroeder, C. E. (2020). Oscillatory 
Bursting as a Mechanism for Temporal Coupling and Information Coding. Frontiers 
in Computational Neuroscience, 14, 82. https://doi.org/10.3389/fncom.2020.00082 

Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for 
rejecting nearby interference in MEG measurements. Physics in Medicine and 
Biology, 51(7), 1759–1768. https://doi.org/10.1088/0031-9155/51/7/008 

Taylor, J. R., Williams, N., Cusack, R., Auer, T., Shafto, M. A., Dixon, M., Tyler, L. K., 
Cam-CAN, & Henson, R. N. (2017). The Cambridge Centre for Ageing and 
Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and 
cognitive data from a cross-sectional adult lifespan sample. NeuroImage, 144, 262–
269. https://doi.org/10.1016/j.neuroimage.2015.09.018 

Tierney, T. M., Holmes, N., Mellor, S., López, J. D., Roberts, G., Hill, R. M., Boto, E., 
Leggett, J., Shah, V., Brookes, M. J., Bowtell, R., & Barnes, G. R. (2019). Optically 



 
 

 
 

161 

pumped magnetometers: From quantum origins to multi-channel 
magnetoencephalography. NeuroImage, 199, 598–608. 
https://doi.org/10.1016/j.neuroimage.2019.05.063 

Timofeev, I., Bazhenov, M., Seigneur, J., & Sejnowski, T. (2012). Neuronal 
Synchronization and Thalamocortical Rhythms in Sleep, Wake and Epilepsy. 
Jasper’s Basic Mechanisms of the Epilepsies. 

Toornvliet, R., Vanberckel, B., Luurtsema, G., Lubberink, M., Geldof, A., Bosch, T., 
Oerlemans, R., Lammertsma, A., & Franssen, E. (2006). Effect of age on functional 
P-glycoprotein in the blood-brain barrier measured by use of (R)-[11C]verapamil and 
positron emission tomography. Clinical Pharmacology & Therapeutics, 79(6), 540–
548. https://doi.org/10.1016/j.clpt.2006.02.004 

Vallesi, A., McIntosh, A. R., Kovacevic, N., Chan, S. C. C., & Stuss, D. T. (2010). Age 
effects on the asymmetry of the motor system: Evidence from cortical oscillatory 
activity. Biological Psychology, 85(2), 213–218. 
https://doi.org/10.1016/j.biopsycho.2010.07.003 

van de Haar, H. J., Burgmans, S., Jansen, J. F. A., van Osch, M. J. P., van Buchem, M. A., 
Muller, M., Hofman, P. A. M., Verhey, F. R. J., & Backes, W. H. (2016). Blood-Brain 
Barrier Leakage in Patients with Early Alzheimer Disease. Radiology, 281(2), 527–
535. https://doi.org/10.1148/radiol.2016152244 

van Ede, F., Quinn, A. J., Woolrich, M. W., & Nobre, A. C. (2018). Neural Oscillations: 
Sustained Rhythms or Transient Burst-Events? Trends in Neurosciences, 41(7), 415–
417. https://doi.org/10.1016/j.tins.2018.04.004 

Van Veen, B. D., Van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997). Localization of 
brain electrical activity via linearly constrained minimum variance spatial filtering. 
IEEE Transactions on Biomedical Engineering, 44(9), 867–880. 
https://doi.org/10.1109/10.623056 

Vidaurre, D., Quinn, A. J., Baker, A. P., Dupret, D., Tejero-Cantero, A., & Woolrich, M. 
W. (2016). Spectrally resolved fast transient brain states in electrophysiological data. 
NeuroImage, 126, 81–95. https://doi.org/10.1016/j.neuroimage.2015.11.047 

Vigário, R., Jousmäki, V., Hämäläinen, M., Hari, R., & Oja, E. (1998). Independent 
Component Analysis for Identification of Artifacts in Magnetoencephalographic 
Recordings. 7. 

Vinding, M. C., Tsitsi, P., Waldthaler, J., Oostenveld, R., Ingvar, M., Svenningsson, P., & 
Lundqvist, D. (2020). Reduction of spontaneous cortical beta bursts in Parkinson’s 
disease is linked to symptom severity. Brain Communications, 2(1), fcaa052. 
https://doi.org/10.1093/braincomms/fcaa052 

Vlahou, E. L., Thurm, F., Kolassa, I.-T., & Schlee, W. (2015). Resting-state slow wave 
power, healthy aging and cognitive performance. Scientific Reports, 4(1), 5101. 
https://doi.org/10.1038/srep05101 

Wang, X.-J. (2010). Neurophysiological and Computational Principles of Cortical 
Rhythms in Cognition. Physiological Reviews, 90(3), 1195–1268. 
https://doi.org/10.1152/physrev.00035.2008 



 
 

 
 

162 

Weiner, H., & Schuster, D. B. (1956). The electroencephalogram in dementia. —Some 
preliminary observations and correlations. Electroencephalography and Clinical 
Neurophysiology, 8(3), 479–488. https://doi.org/10.1016/0013-4694(56)90014-1 

Wendling, F., Benquet, P., Bartolomei, F., & Jirsa, V. (2016). Computational models of 
epileptiform activity. Journal of Neuroscience Methods, 260, 233–251. 
https://doi.org/10.1016/j.jneumeth.2015.03.027 

Wessel, J. R. (2020). β-Bursts Reveal the Trial-to-Trial Dynamics of Movement Initiation 
and Cancellation. The Journal of Neuroscience, 40(2), 411–423. 
https://doi.org/10.1523/JNEUROSCI.1887-19.2019 

West, T. O., Berthouze, L., Halliday, D. M., Litvak, V., Sharott, A., Magill, P. J., & 
Farmer, S. F. (2018). Propagation of beta/gamma rhythms in the cortico-basal ganglia 
circuits of the parkinsonian rat. Journal of Neurophysiology, 119(5), 1608–1628. 
https://doi.org/10.1152/jn.00629.2017 

Whitten, T. A., Hughes, A. M., Dickson, C. T., & Caplan, J. B. (2011). A better oscillation 
detection method robustly extracts EEG rhythms across brain state changes: The 
human alpha rhythm as a test case. NeuroImage, 54(2), 860–874. 
https://doi.org/10.1016/j.neuroimage.2010.08.064 

Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). 
Inhibition-based rhythms: Experimental and mathematical observations on network 
dynamics. International Journal of Psychophysiology, 38(3), 315–336. 
https://doi.org/10.1016/S0167-8760(00)00173-2 

Wiesman, A. I., Murman, D. L., Losh, R. A., Schantell, M., Christopher-Hayes, N. J., 
Johnson, H. J., Willett, M. P., Wolfson, S. L., Losh, K. L., Johnson, C. M., May, P. E., 
& Wilson, T. W. (2022). Spatially resolved neural slowing predicts impairment and 
amyloid burden in Alzheimer’s disease. Brain, 145(6), 2177–2189. 
https://doi.org/10.1093/brain/awab430 

Williamson, S. J., & Kaufman, L. (1981). Biomagnetism. Journal of Magnetism and 
Magnetic Materials, 22(2), 129–201. https://doi.org/10.1016/0304-8853(81)90078-0 

Wilson, T. W., Slason, E., Asherin, R., Kronberg, E., Reite, M. L., Teale, P. D., & Rojas, 
D. C. (2010). An extended motor network generates beta and gamma oscillatory 
perturbations during development. Brain and Cognition, 73(2), 75–84. 
https://doi.org/10.1016/j.bandc.2010.03.001 

Winkler, I., Debener, S., Muller, K.-R., & Tangermann, M. (2015). On the influence of 
high-pass filtering on ICA-based artifact reduction in EEG-ERP. 2015 37th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), 4101–4105. https://doi.org/10.1109/EMBC.2015.7319296 

Wisniewski, M. G., Joyner, C. N., Zakrzewski, A. C., & Makeig, S. (2024). Finding tau 
rhythms in EEG: An independent component analysis approach. Human Brain 
Mapping, 45(2), e26572. https://doi.org/10.1002/hbm.26572 

Yamawaki, N., Stanford, I. M., Hall, S. D., & Woodhall, G. L. (2008). Pharmacologically 
induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary 



 
 

 
 

163 

motor cortex in vitro. Neuroscience, 151(2), 386–395. 
https://doi.org/10.1016/j.neuroscience.2007.10.021 

Zelig, D., Goldberg, I., Shor, O., Ben Dor, S., Yaniv‐Rosenfeld, A., Milikovsky, D. Z., 
Ofer, J., Imtiaz, H., Friedman, A., & Benninger, F. (2022). Paroxysmal slow wave 
events predict epilepsy following a first seizure. Epilepsia, 63(1), 190–198. 
https://doi.org/10.1111/epi.17110 

 
  



 
 

 
 

164 

Appendices 

Appendix A: Chapter 2 Supplementary Material 
DICS Beamformer Analysis Figures 

Figure A.1 Average source estimation patterns for 561 healthy participants as estimated 
by the DICS beamformer source estimation method. Source estimation patterns are 
shown during resting state (top) pre-movement (middle), and post-movement (bottom) 
conditions, for bursts detected at left (contralateral) and right (ipsilateral) sensors. The 
left, dorsal and right views of the 3-dimensional head model are shown for each 
condition. The colour bar values represent the relative power between the active and 
baseline intervals as calculated in equation 2.1. Note that the scales are different for each 
condition to reflect the full range of relative power values for each condition.  
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Figure A.2 Average source estimation patterns as estimated by the DICS beamformer 
estimation method for 5, 14-year spanning age groups of healthy participants during 
resting state (top), pre-movement (middle) and post-movement (bottom) conditions, for 
bursts detected at left (contralateral) and right (ipsilateral) sensors. Dorsal views are 
shown for each age group, condition, and sensor. The colour bar values represent the 
relative power between the active and baseline intervals as calculated in equation 2.1. 
Note that the scales are different between conditions in order to maximize the contrast but 
are kept consistent across age groups within the same condition to allow for direct 
comparison between ages.  
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Figure A.3 The best-fit regression models for each of 12 anatomical regions of interest. 
The average beta burst power values detected by the DICS beamformer source estimation 
method for each region of interest are plotted against age along with the best-fit 
regression model (linear: blue; quadratic: green). The t-statistics associated with the 
chosen models are plotted using a colour bar on the dorsal view of the 3-dimensional 
head model. Data is shown from 561 healthy participants during (A) resting state, (B) 
pre-movement, and (C) post-movement from the left and right sensors.  
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Figure A.4 Significant trends in peak location with age. Peak location of transient beta 
bursts detected by the DICS beamformer method at the left (contralateral) sensor during 
the post-movement condition. Points on the 3-dimensional average brain model (left) 
show the peak location for each participant, with colour representing the age of the 
participant. Pictured here is a section of the left central brain region, enlarged to show the 
shift in peak position in this region. “A” and “P” labels indicate the anterior and posterior 
ends of the section. Non-significant conditions are not shown in this figure. 
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Figure A.5 T-statistics computed by conducting paired samples t-tests between the 
average source power maps of all 2-year age groups for bursts detected by the left 
(contralateral) and right (ipsilateral) sensors. The colour bar represents the t-statistic with 
purple representing low values (similar maps) and yellow representing high values 
(dissimilar maps). Note the differences in scale between conditions. Data is shown for 
resting state (top), pre-movement (middle) and post-movement (bottom) conditions.   
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Supplementary MNE Figures  
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Figure A.6 The best-fit regression models for each of 12 anatomical regions of interest. 
The average beta burst power values detected by the MNE source estimation method for 
each region of interest are plotted against age along with the best-fit regression model 
(linear: blue; quadratic: green). The t-statistics associated with the chosen models are 
plotted using a colour bar on the dorsal view of the 3-dimensional head model. Data is 
shown from 561 healthy participants during (A) resting state and (B) pre-movement from 
the left and right sensors.  
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Appendix B: Chapter 3 Supplementary Material 
Supplementary Equations 
 
Multivariate CSC (Grosse et al., 2007) consists of solving the following optimization 
problem:  
 
Equation B.1 𝐦𝐢𝐧

𝑫𝒌,𝒛𝒌
𝒏
∑ 𝟏

𝟐
5𝑿𝒏 − ∑ 𝒛𝒌𝒏 ∗ 𝑫𝒌

𝑲
𝒌>𝟏 5

𝟐
𝟐 + 𝝀∑ ‖𝒛𝒌𝒏‖𝟏,𝑲

𝒌>𝟏
𝑵
𝒏>𝟏  

𝒔. 𝒕. ‖𝑫𝒌‖𝟐𝟐 ≤ 𝟏	𝒂𝒏𝒅	𝒛𝒌𝒏 ≥ 𝟎 
 
Where: 
 
{𝑿𝒏}𝒏>𝟏𝑵 ⊂ ℝ𝑷×𝑻 are the observed signals, 
 
{𝑫𝒌}𝒌>𝟏𝑲 ⊂ ℝ𝑷×𝑳 are the spatiotemporal atoms, 
 
{𝒛𝒌𝒏}𝒌>𝟏𝑲 ⊂ ℝ𝑻C are the sparse activation vectors associated with 𝑋D, 𝑇P = 𝑇 − 𝐿 + 1, 
 
𝝀 > 𝟎 is the regularization parameter 
 
 
Multivariate CSC with rank-1 constraint (Dupré la Tour et al., 2018) consists of 
minimizing the following objective function, where here the atoms are formed by the 
outer product between a topography 𝑢E and the temporal waveform 𝑣E,  
i.e., 𝐷E = 𝑢E𝑣E⊺ ∈ ℝ2×G 
 
Equation B.2 𝐦𝐢𝐧

𝒖𝒌,𝒗𝒌,𝒛𝒌
𝒏
∑ 𝟏

𝟐
5𝑿𝒏 − ∑ 𝒛𝒌𝒏 ∗ (𝒖𝒌𝒗𝒌⊺)𝑲

𝒌>𝟏 5
𝟐
𝟐 + 𝝀∑ ‖𝒛𝒌𝒏‖𝟏,𝑲

𝒌>𝟏
𝑵
𝒏>𝟏  

𝒔. 𝒕. ‖𝒖𝒌‖𝟐𝟐 ≤ 𝟏, ‖𝒗𝒌‖𝟐𝟐 ≤ 𝟏	𝒂𝒏𝒅	𝒛𝒌𝒏 ≥ 𝟎 
 

Where 𝑢E ∈ ℝ2 is the pattern over channels (sensors) and 𝑣E ∈ ℝG is the pattern over 
time. 
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Supplementary Tables  

Table B.1 

Summary table of subjects excluded as they do not show enough variety in their extracted 
atoms as described in Section 3.4.3. 

 

Subject ID Age Sex Number of 
Clusters  

CC110037 18 Male 12 

CC110182 18 Female 12 

CC121397 27 Male 10 

CC121428 26 Female 8 

CC220506 35  Female 8 

CC220610 32 Female 10 

CC221209 29 Female 12 

CC320850 47 Female 11 

CC322186 47 Male 12 

CC410325 54 Female 11 

CC420061 57 Male 10 

CC420167 51 Female 9 

CC420261 54 Female 9 

CC420348 57 Female 7 

CC420396 53 Male 9 

CC510043 58 Male 12 

CC520517 65 Male 12 

CC521040 63 Female 11 

CC610052 77 Male 9 

CC610292 72 Female 12 

CC610469 73 Female 12 

CC620129 75 Male 12 
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Subject ID Age Sex Number of 
Clusters  

CC620490 74 Female 8 

CC621642 73 Male 11 

CC720497 80 Female 12 

 

 

Table B.2 

Summary of the attributes of each cluster. 

 

Cluster 
Number 
of 

Atoms 

Number of 
Participants 

Peak 
Frequency 
(Hz) 

ECD Position 
(mm) 

ECD Orientation 
Unit Vector  

LO_alpha 366 210 10.5 (0.52,-2.7,6.6) (0.23,0.67,0.71) 

RO_alpha 311 183 10.0 (-0.017,-
3.1,6.6) (-0.26,0.60,0.76) 

MOP_alpha 324 171 9.4 (0.19,-1.9,8.0) (0.00011,0.81,0.58) 

RC_mu 305 194 10.5 (4.1,2.1,8.3) (-0.40,0.90,0.18) 

LT_alpha 230 168 9.4 (-4.0,-0.51,4.2) (-0.065,0.50,0.86) 

LPreC_beta 243 146 17.6 (-3.0,0.20,8.7) (0.30,0.95,-0.072) 

LPostC_beta 219 144 16.4 (-3.5,0.26,7.7) (0.34,0.82,0.47) 
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Supplementary Figures 

 

Figure B.1 Spatial and temporal representation of the 20 atoms extracted from the 
subject CC121428, that obtained 7 clusters. Framed atoms are part of a single intra-
subject cluster. One can observe the low variability in the atoms obtained from the CDL 
step, showing the prevalence of artifacts in the recording. 
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Figure B.2 Spatial and temporal representation of the 20 atoms extracted from the 
subject CC723395, that obtained 20 clusters. One can observe the high variability in the 
atoms. 
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Figure B.3 Histograms showing the distribution of the number of groups per participant 
as the correlation coefficient is increased for the single subject clustering methods. 
Thresholds of 0.2 to 0.5 show approximately normal distributions with a single mode that 
shifts to a higher number of clusters as the threshold increases. Thresholds of 0.6 and 
above begin to show a left-skewed distribution. Thresholds of 0.8 and 0.9 show abnormal 
behaviour in the tail of the distribution such that a second small peak emerges that likely 
represents those participants with abnormal data that should be excluded. 
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Figure B.4 The mean value (mu) and the standard deviation (sigma) of the distribution of 
activation values for each atom as a function of age for the pre-movement interval (top) 
and the post-movement interval (bottom). Mu and Sigma values were regressed against 
age. Blue plots represent those that were modelled by a linear fit and green plots were 
modelled by a quadratic fit. Asterisks indicate clusters and intervals for which the best fit 
regression was significant (Bonferroni corrected alpha < 0.007). 
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Figure B.5 Results of linear and quadratic regression of several burst characteristics with 
age. Blue plots represent those that were modelled by a linear fit and green plots were 
modelled by a quadratic fit. Asterisks indicate clusters and intervals for which the best fit 
regression was significant (Bonferroni corrected alpha < 0.007). 

 

Figure B.6 Histogram of the cooccurrence rate of task-related atoms for all participants. 
The median cooccurrence rate across participants was 0.37. 
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Supplementary Analysis 

 While large cluster sizes were necessary for the current work to assess cross-

sectional ageing trends, other applications of CDL and the associated clustering methods 

may not require this. An alternative method for presenting CDL cluster results is thus 

described below. This approach may be preferred for smaller datasets or in cases where 

you wish to appreciate more of the variability between atom clusters.  

 Following global clustering as described in Section 3.4.3, all detected clusters 

underwent task-based filtering as described in Section 3.4.4 resulting in a total of 79 task-

related clusters. In this case no top cluster criteria was imposed to dictate a minimum 

cluster size. A representative atom was then generated for each of the 79 task-related 

clusters using the procedure described in Section 3.4.5 The representative atoms for each 

of the task-related clusters then underwent an additional round of clustering, using the 

methods described in Section 3.4.3 to roughly group clusters into sets based on similarity. 

This resulted in several sets of clusters each associated with a different class of brain 

activity (e.g., "left central beta", "occipital alpha", etc.) We could then select sets of 

interest and analyse all clusters within those sets to appreciate additional inter-subject 

variability in the atoms. The results from 3 sets identified by this method (right-central 

beta, left-central beta, and occipito-temporal alpha) are shown in Figure B.7. 

 Here, the frequency, activation strength, and age distribution of each cluster can 

be compared within a set. The age distribution in the Cam-CAN dataset is approximately 

flat, therefore investigating deviations from the flat age distribution provides meaningful 

information about age dynamics within clusters. This type of analysis allows for between-

cluster comparison and can provide insight into the characteristics of participants who 

tend to have certain variations of atoms. 

 

 



 
 

 
 

182 

Figure B.7 Cluster sets identified resembling (A) right central beta, (B) left central beta, 
and (C) occipito-temporal alpha activity. For each set, representative atoms (spatial 
topographies and temporal waveforms) are shown for each cluster within the set. Box 
plots show the distribution of frequencies of the atoms composing each cluster. Bar plots 
show the summed activation in the pre-movement (blue), movement (orange), and post-
movement (green) phases for each cluster. Finally, to facilitate demographic comparisons, 
the age distribution of each cluster is shown. 
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Appendix C: Chapter 4 Supplementary Material 
Supplementary Figures  

 
Figure C.1 The MEG channels included in each of the 8 spatial regions. Note that 
frontal, temporal, and parietal regions include 13 sets of channels (1 magnetometer and 2 
gradiometers), while the occipital regions include 12 sets of channels.  
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Figure C.2 The relationship between PSWE spread and participant age and aggregate 
cognitive score. (A) The distribution of number of channels before and after applying a 
log transform to the data. The histogram shows the actual values, and the black line 
shows a best fit curve. Dashed lines indicate the locations of modes and local minima for 
each distribution. (B) Results of a multiple linear regression relating age and cognitive 
performance to the log-transformed number of channels values. Each point represents a 
single person, and the greyscale color of the point indicates their cognitive score. The 
solid black line is the best fit regression for this data. (C) Ages of participants with no 
channels (light grey), less channels (medium grey), and more channels (dark grey). Violin 
plots (top) show age distribution and bar plots (bottom) show mean and standard error 
(error bars) of participant age for each group. (D) Cognitive scores for participants in 
each PSWE spread group. Asterisks indicate a significant effect. 
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Supplementary Analysis 

 To contextualize the PSWE findings in relation to traditional metrics, model 

comparisons between linear models of 1-6 Hz average power, 1-6 Hz root mean square 

(RMS), and time in events with age were conducted. Linear models were constructed 

using the entire CamCAN cohort (N=623). Average power and RMS were calculated and 

analysed separately for magnetometers and gradiometers.  
 This analysis revealed that time in PSWEs explained the most variance in age (see 

Figure C.3, Table C.1). This finding suggests that the time in PSWEs metric is more 

sensitive to age-related effects than other traditional metrics, and thus provides novel and 

valuable information about age-related brain activity. 

 

Figure C.3 Linear regression plots showing the relationship between 1-6 Hz 
magnetometer and gradiometer power, 1-6 Hz magnetometer and gradiometer root mean 
squares (RMS), and time in PSWEs. Significant effects are indicated by an asterisk. All 
Cam-CAN participants (N=623) are included in this analysis.  
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Table C.1 

Model comparison between linear models of power, RMS, and time in PSWEs with age 
for all Cam-CAN participants. 

 

Model R F-statistic P-value AIC 

Grad Power x Age -0.0282 0.505 0.478 5406.49 

Mag Power x Age -0.0316 0.374 0.541 5406.62 

Grad RMS x Age 0.0375 1.88 0.171 5405.11 

Mag RMS x Age 0.0731 4.34 0.0377* 5402.65 

Time in PSWEs x Age 0.180 21.8 3.69e-6* 5385.49 

 
 PSWEs were localized using the methods for transient event source localization 

described in Power et al., (2021). Briefly, a source estimate was computed in the 1-6 Hz 

frequency band using minimum norm estimation. Then, for each PSWE, source power 

during the first 5 seconds of the event was compared to a 5 second baseline interval 

preceding the event using the formula: log2(active/baseline). A 20484-vertex map was 

created for each participant with detectable PSWEs using the participant’s T1-weighted 

MRI from the Cam-CAN dataset. To create summary maps across participants, the 

number of participants who had voxel activation surpassing the 75th percentile was 

counted at each voxel.  

  Although source estimation was attempted, these results were not included in the 

main body due to lack of confidence in the reliability of these findings. The source 

estimation resulted in high activity primarily in ventral regions of the cortex. MEG source 

estimation generally has low accuracy for the ventral and/or deep sources and therefore 

we were not confident in the accuracy of these activation maps. This, combined with our 

sensor-level spatial findings that suggested that PSWEs could be simultaneously recorded 

from distant sensors, caused us to question the validity of these source localization 

results. As such, these results should be interpreted with caution.  
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Figure C.4 Conjunction maps of PSWE source activity for 127 participants with PSWEs. 
Colour represents the count of participants with high (>75th percentile) activation. 
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Appendix D: Copyright Statement 
 

Chapters 2, 3, and 4, as well as Figure 1.3 are reproduced from previously published 

content. All of these works were published open access in Elsevier journals. Based on 

Elsevier’s copyright policy, as an author of these articles, I have the right to include them 

in my thesis. Letters of copyright permission are not required. Information regarding 

Elsevier’s copyright policies for authors is available at: 
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