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Abstract 

In this research work, real-time performance of various spectral estimation techniques 
have been investigated to detect speed of an induction motor from rotor slot harmonics 
using motor current signature analysis. It has been demonstrated that novel methods 
Matrix-Pencil and Principle Component Auto-Regressive (PCAR) can be applied in real-
time for speed detection. Steady-state and dynamic performance of Matrix-Pencil, PCAR, 
FFT, and Covariance methods were compared. The experimental results obtained indicate 
that, using PCAR and Matrix-Pencil methods, it is possible to achieve 0.5 Hz resolution, 
accuracy ±1 to ±2 rpm and settling-time of about 0.25 to 0.3 seconds for fewer data sets. 
The results showed that PCAR or Matrix-Pencil method leads to speed detection 
inaccuracies, predominant at light loads, after certain small data samples number. The 
trade-offs between samples number, accuracy and order number, for both PCAR and 
Matrix-Pencil methods, are more predominant for smaller data-sets at light loads. 
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Chapter 1: Introduction 

1.1 Introduction to condition-based monitoring and motor current 
signature analysis 

Three-phase induction motors are the most widely used motors and are critical 

component in various industries [ 46]. In the context of reliable safe operation and 

preventive maintenance of an induction motor, root-cause analysis (RCA), reliability-

based maintenance (RBM) and condition-based maintenance (CBM) strategies have 

become integral parts of a modem maintenance management system. 

In order to monitor the health of an induction motor, various sensors are needed to 

measure stator voltages and currents, air-gap flux densities, rotor position, speed, output 

torque, temperature, vibration etc [10-12].These sensors, in addition to an initial high 

cost, require mounting, wiring and maintenance. The installation cost of these sensors on 

small to medium range horsepower induction motors is not justified. Further, 

maintenance of these sensors requires physical access to the motor and their reliability 

largely depends on the environmental conditions of the installed motor [10-12]. 

Induction motor faults are broadly categorized as bearing related faults, stator related 

faults, rotor related faults and others as shown in Figure 1.1 below [10]: 

Q) 
O> 

.19 30 
c: 
,.... 20 --
Q) 
a. 

10 

0 
Bearing Rotor Stator 

Types offaults 

Figure 1.1: Types of induction motor faults. 

Other 
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However, the presence of any of the above fault conditions in an induction motor affects 

the way rotor and stator flux interacts and, thus, creates an internal magnetic imbalance 

which is reflected in the stator line current spectral signature [11]. Different abnormal 

conditions result in frequency components being induced in the stator line current at 

:frequencies as given below [9-12]: 

1. Broken rotor bars: fsb =ft (1±2s) Hz. (1.1) 

11. Air-gap eccentricity: J _t; { ( R ± n, { 1 s J ± n } Hz. ( 1.2) 

m. Stator winding faults: f,, J, {; (I - s) ± k} Hz. (1.3) 

iv. Bearing faults: hmg =Ifs± mJ;,0 1 Hz. (1.4) 

N [ bd ] J; 0 =-fr 1±-cos/3 Hz. 
, 2 Pd 

Where, 

f,b =Twice slip frequency side - band due to broken rotor bars. 
fee =Frequency component due to air - gap eccentricity. 
fs1 =Frequency component due to shorted turns. 
fbng = Frequency component due to bearing faults. 

J;, 0 =Vibration frequency component due to bearing dimensions. 

J; =Supply frequency, Hz. 
s =Slip. 
p =Pole pairs. 
n = 1,2,3, ....... . 
k=l,3,5, ....... . 
R =Number of rotor slots. 
n{J)S = 1,3,5, 7, ......... . 

nd =±1 
/3 = Contact angle of the balls on the races. 
N =Number of rotor slots. 
f, = Mechanical rotor speed in hertz. 
b d = Ball diameter 
pd =Bearing pitch diameter. 
m=l,2,3, ... 

(1.5) 
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As noted in equations 1.1 to 1.5, speed is important in condition-based monitoring that 

needs to be measured accurately [13]. There are various other applications that include 

speed holding, speed matching, electronic gearboxes, speed regulation and speed control, 

in which accurate speed measurements are also required. 

Motor current signature analysis (MCSA) is an analysis technique of stator line current 

spectrum that is being used as a noninvasive on-line CBM tool. It allows monitoring the 

health of an induction motor remotely from a motor control centre without requiring 

access to the motor. Figure 1.2 shows a block diagram of a typical MCSA scheme [12] . 

. H Load I 3-Phase . Induction 
Source Motor 

Notch Anti-Aliasing AID r------ i--. t---Filter Filter Converter Stator Line 
Current 

,, 
Diagnostics 

Algorithm Signal Processing 
Fault Detection 

Figure 1.2: Simplified block diagram of MCSA technique. 

1.2 Speed sensor-less operation of an induction motor 
The use of conventional speed transducers reduces system robustness [32-35]. In a speed 

sensor-less system, state variables are derived from the motor terminal quantities in state 

observers and estimators. The performance reliability of these techniques relies heavily 

on the accuracy of machine model and motor parameter variations that lead to an increase 

in the speed measurement error at full-load [32-35]. 

Rotor slot harmonics (RSH) present in the stator line current provide a sensor-less speed 

measurement, utilizing spectral estimation techniques, which are independent of motor 

parameter variation [32-35]. There are numerous spectral estimation methods such as 

classical Fast Fourier Transform (FFT), Instantaneous Power FFT, Bispectrum, High-
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Resolution Spectral Analysis, Joint-Time Frequency Analysis, Kalman Filter, Neural 

Networks etc. that are being studied and can be applied [11]. The key issues in any 

method are accuracy, resolution and dynamic behavior under changing load conditions. 

These issues become more critical in the small or fractional horse power (F .H.P.) 

induction motor. In the small or F.H.P. induction motor, a RSH of small magnitude is 

induced into the stator line current thus, signal-to-noise ratio (SNR) is low [7]. 

In order to minimize the noise before sampling and to detect speed of the F .H.P. 

induction motor with accuracy, it is recommended to use high precision AID converter 

with no or minimized extra analog circuitry [7]. 

1.3 Research objective 
In recognition of the facts listed earlier, the research has been conducted aiming to 

investigate and analyze the performance of various MCSA based spectral estimation 

methods, in terms of accuracy, resolution and dynamic behavior with regards to different 

data record lengths and sampling frequencies for sensor-less speed detection of the F.H.P. 

induction motor in real-time. 

The outline of the thesis is as follows: 

1. Research background. 

11. Theoretical background - RSH and spectral estimation methods. 

m. Experimental set-up and data acquisition- off-line and on-line. 

iv. Real-time lab-view application and simulations. 

v. Experimental real-time results and discussions - off-line and on-line. 

v1. Conclusions and further work. 



Chapter 2: Background 

2.1 Rotor Slot Harmonics 
The stator line current spectrum of an induction motor contains various harmonics, due to 

airgap magneto-motive force (MMF) spatial distribution and air-gap permanence 

variation, which are broadly termed as stator and rotor magnetomotive force harmonics, 

stator and rotor slot permeance harmonics, airgap eccentricity permeance harmonics, and 

permeance harmonics introduced by saturation [31, 32]. The frequency and amplitude of 

these harmonics are exploited to use them as a condition-based monitoring tool, for 

sensor-less speed detection and for sensor-less vector control using MCSA technique [3, 

10-12, 45]. 

When the stator of a symmetrical three-phase induction motor is fed from symmetrical 

three-phase voltages, an air-gap field is established. These flux-density waves induce 

voltages in the rotor bars and in turn produce rotor MMF waves. The interaction of these 

MMF waves and the non-uniform air-gap permeance waves generates a new set of flux-

density waves which in turn induces new harmonic frequencies in the stator voltages and 

currents termed as rotor slot harmonics (RSH) [ 45]. The RSH frequencies depend on 

rotor speed. The amplitude of RSH is a function of the load, number of rotor slots, slot 

size and skew [ 45]. 

By Ampere's law, the air-gap magnetic induction expression, which is the product of an 

air- gap magnetic conductance and the magnetic potential difference between the rotor 

and stator, is given by [30]: 

B(B,t) = A(B,t).F(B,t) 

The expression for the new set of flux density waves is given by [32]: 

z 
B(B,t) = B1 cos(m0t - PB)+ Br1 cos[(P OJr + m0 )t - (P + Z)B +If/ rl] 

z + Br2 cos[(- mr - m0 )t - (P - Z)B +If/ r2 ] p 

Where, 

(} = mechanical angle 
t =time 
m0 = supply angular frequency 

5 

(2.1) 

(2.2) 



P = number of pole pairs 
OJr =rotor angular velocity 
If/ rl, If/ r2 =phase angles 
Z =Number of rotor slots 

6 

The above expression is mathematically equivalent to two oppositely traveling waves 

and induces corresponding harmonic frequencies in the stator line current [32]. The 

current in one phase is given by the expression [32]: 
2 

i 0 (t) = ,LAv cos(OJvf-lf/v) (2.3) 
v=O 

The angular frequencies, due to forward (+ve sign) and reverse (-ve sign) traveling 

waves, ofRSH are expressed as [32]: 

_z + OJ sh - p OJr - OJo 

The expression 2.4 for a non-sinusoidal supply is given by [32]: 

_z + OJ sh - p OJr - aOJo 

Where, a = time harmonic order. 

2.1.1 Speed Detection from RSH 
The synchronous speed of an induction motor is given by [32]: 

60f0 n =--
s p 

Where, ns = synchronous speed in rpm. 

f0 = fundamental frequency in Hz. 

P =Number of pole-pairs. 

Frequency of rotor current, fr = sf0 

Where, s =slip and is given by ns -n 
ns 

Combining equations 2.7 and 2.8, 

Rotor rotational frequency, fro = (1- s)f0 

From equations 2.5 and 2.9, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 



Speed in rpm, n = 60 (fsh ± fo) z 
Where, 

n = speed in rpm 

Z = number of rotor slots 

fsh = rotor slot harmonic frequency in Hz. 

f0 = fundamental frequency in Hz. 

7 

(2.10) 

Thus, using equation 2.11, rotor speed in rpm can be detected from RSH utilizing MCSA 

technique [32]. 

2.2 Research Background 
The conventional speed transducers such as encoders and tachogenerators reqmre 

mounting, wiring and maintenance and thus reduce system robustness. In early 1960's an 

attempt was made to replace the conventional speed transducers. In 1964, measuring 

axial leakage flux using a search coil was used by Jordan to detect speed from motor 

operation [33]. Speed information was also identified in motor current and voltages and 

in 1975 an analog slip calculator was developed by Abbondanti and Brennen using motor 

terminal quantities [33]. In 1979, Ishida et al. developed a new means of speed detection 

using rotor slot harmonics present in the stator voltages [33]. In 1985, Beck and Naunin 

measured rotor frequency using phase angle between voltage and current of the motor 

stator. Later in 1987 and 1989 attempts were made to improve these techniques in 

detecting speed by injecting a signal of constant frequency and by using phase locked 

loop which required modifying the machine [33]. In 1990, Williams et al. proposed a 

scheme to detect speed from rotor slot harmonics present in the stator line current [33]. 

Rotor slot harmonics present in the stator line current provide a means of detecting speed 

remotely from the motor control center in a non-invasive and non-intrusive manner. 

Since then research has been active and various spectral estimation techniques have been 

applied and examined to detect speed from RSH using MCSA technique. The spectral 

estimation techniques used in detecting speed from RSH can be broadly divided into 

categories namely; classical FFT, Parametric and statistical techniques. 
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In the early 1990's, most of the research focused on using FFT methods and to improve 

its accuracy and resolution by windowing and interpolation. However the outcome of the 

research was that the frequency resolution of the FFT can only be improved by increasing 

the data record length [35] . The FFT remained suitable for steady-state operation where 

longer data-records are available and there are no sudden changes in the load or speed 

[35]. 

In 1992, Ferrah, Bradley, Asher, and Woolfson [32-35] investigated the performance of 

FFT and various parametric methods to design a fast response speed detector. Their work 

included Goertzel Algorithm (GAL), Maximum Entropy Method (MEM), and Auto-

Regressive (AR) techniques using least-mean square (LMS) algorithm. These methods 

were tested on a 4-pole, 50 Hz, 37 kilowatt induction motor. 

In 1994, Blasco [31] tested the dynamic performance of FFT method by interpolation 

using batch and recursive algorithm on a 4 kilowatt induction motor in a vector controlled 

drive. In that same year Beguenane [30] showed how steady-state speed detection from 

RSH using FFT can be used in the identification of the rotor time constant of a 1.8 

kilowatt induction motor. In his work, the stator current was amplified and low-pass 

filtered and then high-pass filtered and current harmonic was sensed by phase-locked 

loop (PLL) circuit. The output of PLL and high-pass filter was summed before digitizing 

the stator current. Also in 1994, Hurst, Habetler, Griva, and Profumo [26, 27, 29] 

proposed an application of speed detection from RSH using FFT in tuning the parameters 

of a speed observer in field oriented control of a 7.5 kilowatt induction motor. In their 

work, they applied decimation technique in order to improve the resolution and accuracy 

of FFT method and also proposed an initialization routine in an algorithm so that it is not 

dependent on knowledge of machine specific parameters, such as number of rotor slots. 

Most research was focused on FFT methods for speed detection from RSH and its 

application in speed control. 

In the mid 90's root-cause analysis (RCA), reliability-based maintenance (RBM), and 

condition-based monitoring (CBM) became integral parts of preventive maintenance 

strategies of electrical drives. Research was conducted to investigate and develop 

noninvasive and non-intrusive on-line sensor-less RCA, RBM and CBM tools. More 

focus was placed on utilizing MCSA technique as it allows remote monitoring of an 
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induction motor [10]. Due to the non-stationarity of the current spectrum focus of the 

research turned to non-traditional spectrum estimation methods [23]. In 1996, Pillay and 

Xu (25] developed a real-time application in Lab View for sensor-less speed detection by 

FFT method using MCSA 

In 1997, Hurst and Habetler [23] presented a detailed comparison of parametric and non-

parametric spectral estimation techniques for sensor-less speed detection of a 7.5 kilowatt 

induction motor. In their work they compare the performances of non-parametric 

methods such as periodogram and Blackman-Tukey methods and parametric methods 

such as auto-regressive (AR) and multiple signal classifier (MUSIC) methods and 

outlined the tradeoffs in accuracy, robustness and computation time [23]. 

In 1998, Restrepo et al. [18] studied the cross-term effects of Wigner-Ville Distribution 

(WVD), one of the joint time-frequency analysis methods, on detectability of slot 

harmonics. In this work, mathematical model of the motor was implemented in Matlab 

and analysis was not performed in real-time. 

In 2002, Aller et al. (8] proposed an algorithm for sensor-less speed detection of 3.7 

kilowatt induction motor using information from analytic wavelet transform by extracting 

ridges. Its performance was compared with short-time Fourier transform method under 

steady-state and dynamic conditions. Nutt et al. [7] outlined the problems with sensor-

less speed detection from RSH in small or fractional horse power motors, due to small 

size ofrotor slots that leads to small amplitude ofRSH and thus low signal-to-noise ratio. 

They recommended using minimum or no analog circuitry prior to data-acquisition and to 

use high-precision data-acquisition instead in order to improve the detectability of RSH. 

They proposed a fast orthogonal search (FOS) algorithm using fewer current samples to 

detect speed of the F .H.P. induction motor and compared its performance with that of 

FFT method. It was shown in their work that frequency a resolution of 1 Hz. can be 

achieved with FOS algorithm from fewer data-records. 

From the preceding literature review, it is observed that most of the research work in this 

area is either primarily focused on improving the FFT performance or applying high 

resolution or joint-time frequency spectral estimation techniques on larger motors or 

lacked the experimental results. The key issues, in all the literature reviewed, in detecting 

speed of an induction motor from RSH are accuracy, resolution and dynamic 
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performance under varying load conditions of various spectral estimation techniques. 

Due to these facts the present research is conducted. In this research experiment, stator 

line current is acquired using high-precision USB-2.0 data-acquisition module with built 

in signal-conditioning and isolation and thus, avoiding any extra analog circuitry [7] for 

signal-conditioning and to analyze the performance of spectral estimation techniques 

without using any analog anti-aliasing filter. For this reason, an algorithm from A. Ferrah 

et al. work [32-35] is selected due to its suitability to reject noise outside the frequency 

band of interest and simplicity. Ferrah et al. proposed this algorithm with FFT method to 

detect speed of a 35 kilowatt induction motor. In this research, the same algorithm is 

further extended to apply various spectral estimation techniques to detect speed of the 

F.H.P. induction motor and is implemented in real-time using LabView7.l in a PC-Based 

environment. This work is a further extension to the knowledgebase in this field with a 

significant contribution as outlined below: 

a. Analysis of various spectral estimation techniques in terms of accuracy, 

resolution, and dynamic behavior under varying load conditions with regard to 

different data-record lengths at different sampling frequencies for sensor-less 

speed detection of the F.H.P. induction motor, in real-time, using minimum 

external analog circuitry. 

b. Performance analysis of novel spectral estimation method Matrix-Pencil, in terms 

of speed detection, in real-time. 

c. Real-time PC-based application development, using LabView 7.1 software and its 

signal processing tool-set, that allows investigating the dynamic performance of 

applied spectral estimation techniques in one application, in real-time. 



Chapter 3: Spectral Estimation Methods 

3.1 Fast Fourier Transform 
The Fourier transform maps time domain functions into the frequency domain. The 

Fourier transform of a time function x (t) is given by [41, 47, 48]: 
+oo 

X(f) = F{x(t)} = fx(t)e-Jmfidt (3.1) 
-00 

where, X (f) is the Fourier transform. 

The discrete Fourier transform (DFT) maps discrete-time sequences into discrete-

frequency transformations. The expression for DFT is given by [41, 47, 48]: 
n-I 

X - """"' -j20ikln ,_._ k - 0 1 2 1 k - xie 1or - , , , ..... , n -
i=O 

where, x is the input sequence, 

Xis its DFT, and 

n is the number of samples. 

(3.2) 

The DFT requires approximately n2 complex operations. An algorithm used to solve the 

DFT in a computationally efficient way is known as fast Fourier transforms (FFT). It 

requires nlog2 (n) operations [47, 48]. 

The frequency resolution of the FFT depends on the length of the data-record. For a fixed 

sampling frequency fs, the frequency resolution, in Hz. is [41, 47, 48]: 

8/ = fs , where, N is the number of samples. (3.3) 
N 

The FFT output is of complex form and is given by: 

X(m) = Xrea1(m) + jXimag(m) 

The magnitude of FFT is given by: 

xmag(m) = IX(m)I = + ximag(m)2 

The Power, P(s) is [47, 48] =IX (m) 12 

3.2 Model-Based Methods 

(3.4) 

(3.5) 

(3.6) 

As discussed in section 3.1, the frequency resolution of the FFT depends on the 

11 
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number of samples characterized by t:.f = Is i.e. more samples for a given sampling 
N 

frequency result in a better frequency resolution. In many practical applications it may 

not be always possible to have a larger number of samples due to lack of data or to ensure 

that the spectral characteristics of a signal is preserved and do not change over time 

[37,41]. In these types of applications, model-based methods are better in performance 

than FFT methods [37]. In model-based methods, assuming that the signal is modeled as 

required, after computing the coefficients, missing data can be predicted from the finite 

data set that improves the frequency resolution with a fewer numbers of data samples [23, 

35,37]. 

Nonparametric methods estimate power spectral density from the signal itself. One such 

method is periodogram, which is the magnitude squared of the FFT, as explained in the 

section 3.1. Parametric methods use a linear process driven by white noise to estimate the 

power spectrum. The output of this model is compared with the input to find a best match 

with feedback adjustments on the parameters. The model types differ by the nature of 

their transfer function [48]. The common model types are: autoregressive (AR), moving 

average (MA) and autoregressive moving-average (ARMA) models [35, 48]. The transfer 

function of an AR model has a polynomial in the denominator and is also referred as all-

pole model. The transfer function of moving average has a polynomial in the numerator 

and is also referred to as all-zero model. ARMA model has polynomial both in numerator 

and denominator and is also referred to as pole-zero model. The algorithms for MA and 

ARMA involve more computation and may converge to the wrong solution [ 48]. There 

are various techniques for estimating the AR modal coefficients and power spectrum. 

Eigen-analysis spectral methods are particularly effective for sinusoidal, exponential, or 

narrow-band processes [48]. They provide better resolution and frequency estimation at 

high noise levels [48]. The eigenvector approach divides the data into two orthogonal 

subspaces: a signal subspace and noise subspace [23, 48]. The Eigen-decomposition 

produces Eigen-values of decreasing order. The size of the Eigen-values can determine 

the signal subspace. The noise subspace is spanned by the minimum eigenvector [23, 48]. 

Principal component analysis belongs to statistics branch known as multivariate analysis 

[ 48]. In multivariate analysis, multiple variables are represented by a single vector: 
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x = [x1 (t), x 2 (t), X 3 (t) ........................ xm (t) Y 
Where, T stands for transposed and t = l.. ..... N. There are m variables of x representing N 

observations of time samples [48]. The objective of multivariate analysis is to find 

transformations of the multivariate data to reduce the dimensions of the data set. The 

techniques in multivariate analysis differ in the way transformations are applied with a 

common goal to reduce the dimensionality of the data. A technique to reduce the 

covariance matrix into a diagonal matrix by multiplication with an orthonormal matrix is 

[ 48] UT SU = D where S is a square covariance matrix, D is a diagonal matrix, and U is an 

orthonormal matrix. This rotation produces a new covariance matrix, D with zero 

covariance. The diagonal elements of D are the variances of a new data. These variances 

can be used to determine principle components. The Eigen-values or roots are solved by 

the determinant det IS - A.II = 0, where I is the identity matrix. This technique is 

computationally intensive for longer data-sets [ 48]. Another technique uses singular 

value decomposition of data matrix. When singular value decomposition is used, the 

Eigen-values are ordered by size from which significant modes can be determined and 

dimensionality of the data set can be reduced [ 48]. This technique is computationally 

efficient [28]. 

3.2.1 Autoregressive and Moving-average (ARMA) models 
ARMA model of data samples x[n] is given by [23, 35-37, 48]: 

p q 

x[n] = -l:akx[n-k] + Lhmw[m-n] 0 5' n 5' N (3.7) 
k=I n=O 

Where, bo=l and w[n] is white noise with zero mean and variance(J 2 • 

For ak=O for all kin equation 3.7, the equation reduces to: 
q 

x[n] = Lhmw[n-m] forO 5'n < N 
m=O 

Equation 3.8 is called moving-average (MA) model [35-37, 48]. 

For bm=O for m>O, the ARMA model in equation 3.7 becomes 
p 

x[n] = - l:akx[n-k] + w[n] forO 5' n < N 
k=I 

This is called auto-regressive (AR) model [35-37, 48]. 

(3.8) 

(3.9) 



From the above equation, future data is predicted with error w[n], from past but known 

data. The predicted data is given by [35-37, 48]: 
p 

x[nl = -Iakx[n-kJ 
k=I 

or 

x[p-1] x[p- 2) .............. x[O] 
x[p] x[p-1 ] ............... x[l] 

x[N-2] x[N-1] ........... x[N -p + 1] aP 

= 

x[p] 
x[p + 11 

x[N-l] 

The above equation is known as forward prediction [35-37, 48]. 

(3.10) 

The backward prediction is given by the following expression [35-37, 48] : 
p 

x[nJ = -Iak * x[n + kJ (3.11) 
k=I 

or 

x[l] x[2] ........................... x[p] x[O] 
x[2]x[3] .............. ............. x[p+l] a2* x[l] 

= 

x[N-p] x[N -p + 1] ......... x[N -1] x[N- p-1] 

14 

For an AR model, the power spectrum is obtained by taking the reciprocal of the FFT of 

the computer coefficients ak and is given by the expression [35-37, 48]: 

(j'2 
P(f) = __ p ___ 2 

1 + Iake-2n.fk 
k=I 

3.2.2 Covariance Method 
n Ixi 

The mean of a data set X is: X = _.!::!.___ • 
n 

(3.12) 
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The two data sets having the same mean may be quite different in how the data is spread 

[48]. The Standard Deviation, average distance from the mean of the data set to a point, is 

a measure of spread of the data. 

The Standard Deviation: s = i=l 

(n-1) 

Variance, the standard deviation squared, is another measure of the spread of data in a 
n 

-X)2 

data set and is given by: s 2 = _;=_l ___ _ 
(n-1) 

Standard deviation and variance are useful only for functions of one dimension. 

Covariance is measured between two dimensions [48]. It is a measure to find out how 

much the dimensions vary with respect to each other from the mean. Covariance between 

one dimension and itself is variance. The covariance between two functions is given by 

[48]: 
M 

Cov = ax,y = y][x(k)-x]/(n-1) 
k=l 

The rows in a multivariate data matrix are the waveform time samples and the columns 

are different observations of a signal [ 48]. The diagonals in covariance matrix are the 

variance of the columns of the data matrix and off-diagonals are the covariance between 

columns. The Covariance matrix is given by [ 48]: 

0"1,1 

0"2,i 

S= 

0-N,1 

0"1,2 

o-2,2 

0-N,2 

0-1,N 

0-2,N 

The covariance matrix is square and is symmetrical about the main diagonal. 

The covariance method for AR spectral estimation is based on minimizing the forward 

prediction error in the least squares manner [37]. It computes the coefficient such that the 

error between sampled data x[n] and predicted data.X[n] is minimized as following [37]: 

N-1 2 

min 0 k :Llx[n] - .X[nll 
n=p 
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For N samples ofx[n], Covariance method minimizes the error between x[n] and x[n] for 

N-p points where, p :Sn< N. Therefore, it is sensitive to noise [35-37]. 

3.2.3 Principle Component Auto-Regressive (PCAR) Method 
In the PCAR method, a linear system is expressed as follows [37]: 

(3.13) 

Where, a is a data vector and is given by the following expression [37]: 

a= [al a2········apf 

x 1 and xb are the right sides of the forward and backward prediction. Xr and Xb are the 

left sides of the forward and backward prediction. 

The optimal coefficients are obtained using following expression [37]: 

- l --TxT-a = L.J-V;V; X 
i =I A; 

(3.14) 

Where, 

A; = L largest eigenvalues of the matrix X. 

v = L corresponding eigenvectors. 

L represents number of complex sinusoids. 

The PCAR method uses both forward and backward prediction, therefore, it has more 

data points to average and is less sensitive to noise as compared to the Covariance 

method [3 7]. 

3.2.4 Matrix-Pencil (M.P.) Method 
The Matrix-Pencil method is a relatively new method and is being used in areas such as 

ultrasonic field, electromagnetic, acoustic, wireless transmission propagation, wire-less 

adhoc sensor network and in computer aided control system [28]. It estimates complex 

resonant frequencies and gives a discrete spectrum [28]. 
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The M.P. method approximates the signal by weighted sum of complex exponentials. 

Any harmonics can be retrieved from the following equation [28]: 
L 

x[k] = :La1e1k1111 +n[k] , where, k=O, l. ... N-1 
l=l 

(3.15) 

Where, x [k] and n[k] are the measured samples and noise samples, a, and ro1 are 

unknown amplitudes and frequencies. The Hartke! matrix X, where off-diagonal entries 

are equal, is constructed from the measured samples. The two L rartk matrices Yl and Y2 

can be constructed from X by deleting first and last d rows. Choosing d > 1 improves 

resolution and yields smaller variance estimates [48]. By combining Yl and Y2, the data 

matrix [Y] can be given as [28]: 

y(O) y(l) y(L) 
y(l) y(2) y(L + 1) 

[Y]= (3.16) 

y(N-L-l) Y(N - L) y(N - l) (N-L)x(L+I) 

Where, L is the pencil parameter and is chosen between N/3 to N/2. For these values 

variance is minimum [28]. Singular value decomposition of the matrix [Y] is: 

[Y] = [U] [D] [V] H 

Where, [U] and [V] are unitary matrices containing eigenvectors of [Y] [Y]H and [Y]8[Y] 

respectively. [D] is a diagonal matrix containing singular values of [Y]: 

[U]8 [Y][V] = [D]. From the ratio of singular values to the largest one, the choice of 

significant modes M is done. Next, matrix [V'], containing M dominant right-singular 

vectors, is constructed: 

[V'] = [v1, V2 ............ ... .VM] 

The right-singular vectors from M+ 1 to L, corresponding to the small singular values are 

discarded [28]. 

[Yl] = [U][D'][v1']H and [Y2] = [U][D'][V2']H 

Where, [V1'] and [V2'] are obtained from deleting the last row and first row of [V'] 

respectively. [D'] is obtained from M columns of [D] corresponding to the M dominant 

singular values [28]. The roots (desired frequencies) may be found as the generalized 

Eigenvalues of the matrix pencil pair from [Ylr1[Y2] -A.I. 
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3.3 Joint Time-Frequency Analysis (JTFA) l\lfethods 
In the FFT and model b d th d . al. ,.rialyzed in the frequency domain only. ase me o s, a sign 1s "' 
JTF A methods aU0 ,., 1 . th . 1 i..oth in time and frequency domain 

•v ana yzmg e s1gna v 

simultaneously [16, 17, 371. JTFA methods are rriore useful for applications where it is 

important to observe a change of power spectrutll over time. It gives the instantaneous 

spectrum [16, 17, 37]. The simplest approach to obtain frequency as a function of time is 

to divide the data series in overlapping blocks b)' using a window and then apply the 

Fourier transform to each block. This technique is ]_{nown as short-time Fourier transform 

(STFT) [16, 17, 37]. The frequency and time resolution depends upon the size of 

window. A small Window gives better time resolittion and a wide window gives better 

frequency resolution Which is more commonly termed as window effect [16, 17, 37]. 

According to Heisenberg uncertainty principle, an optimal joint time-frequency 

resolution can be achieved by using a Gaussiat:l window. To over-come the window 

effect, a Wigner-Ville Distribution (WVD) rnethod was developed. It gives better 

frequency resolution but it has the disadvantage of cross-term interference [16, 17, 37]. 

To overcome interference, the Gabor spectrogram or Adaptive spectrogram 

can be used. For any of the above methods, there are always trade-offs between 

resolution and computing time or complexity [37]. 

3·3· 1 Short-time F=ourier Transform (STFT) 
In STFT, time-frequen .nfi 1. . d 1·ri atoms known as Gabor atoms that are cy 1 orma ion 1s sprea .. 
obtained by translating . d · t. d fr"'quency as given below [16, 37]: a wm ow gm 1me an ..., 
g = g(t-u)e;qi u,q 

STFT correlates a signal x (t) with window as: 
+ao 

S1 (u,i;) = Jx(t)g(t-u)eiqt 
-ao 

The discrete representation of STFT-based spectrogram 1s given by the following 

expression [3 7]: 

2 

S[mLiM,n] = LX[i]g[i-m.LiM]e-JWnitN 
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Where, N denotes the number of frequency bins and denotes the time sampling 

interval. 

3.3.2 Gabor Spectrogram 
In the Gabor expansion method, the signal x[i] is represented by a weighted sum of time-

shifted and frequency-modulated function h[i] and is expressed as [16, 17, 37]: 
N-1 

x[i]= "'"'"'"'c h[i-mLlM]e1rnnitN L.JL.J m,n 
m n=O 

Where, C are Gabor coefficients and are computed by the STFT as shown below [16, m,n 

17, 37]: 

Cm,n = STFT[mLlM,n] = Lx[i]y*[i-mLlM]e-12nnitN 

i=O 

Where, N denotes the number of frequency bins and LlM denotes a sampling interval. 

The function y[i] is dual function of h[i]. The Gabor spectrogram is given by the 

following equation [16, 17, 37]: 

GS0 [i,k] = LCm,nCm',n'WVDh,h.[i,k] 
lm-m'l+-n'ls:D 

Where, WVDh,h' [i, k] denotes the cross-WVD of two frequency-modulated Gaussian 

function [37]. Wigner-Ville distribution (WVD) is given by [37]: 
L/2 

WVD (i, k] = LR[i,m]e-127lkmtL 

m=-L/2 

Where, R [i, m] = z [i+m] z*[i-m] and z[i] is the analytical form of the signal x[i]. 

3.3.3 Cone-Shaped Distribution (CSD) 
Applying 2D filtering to the Wigner-Ville distribution to reduce the cross-term 

interference yields the equation given below (16, 17, 37]: 
L/2 

C[i,k] = L L¢[n,m]R[i-n,m]e-j2trkmtL 

m=-L/2 n 

Where, ¢[n,m] denotes the kernel function. In CSD, the kernel function is defined by (16, 

17, 37]: 
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{ 

am1 

¢[i,m]= e c fori<lml 
0, otherwise 

Where, c is a constant and by adjusting a, trade-off between cross-term interference and 

time-frequency resolution can be achieved [37]. 

3.3.4 Adaptive Spectrogram 
The adaptive transform represents the signal x[i] as a weighted sum of adaptive Gaussian 

function and is given by the expression [16, 17, 37]: 
D- 1 

x[i] = 2: Ak hk [i] 
k=O 

Where, hk [i] is the adaptive Gaussian function hk [i] and is given by the expression [ 16, 

17, 37]: 

hk[i] = (akrrr0·25 exp{-[i - id2 + j(2I1Bk[i-ik])} 
2ak 

The adaptive spectrogram is given by the equation [16, 17, 37]: 

AS[i,n] ex+ [i -a,[n- 0.J} 

The analytical details of the expressions for the above methods and their derivations are 

given in [16], [17], [23], [28], [35-37], [41], [47] and [48]. 



Chapter 4: Experimental-Setup and PC-Based Implementation 

4.1 RSH Calculations and Speed Measurements 
The identification of the speed-related slot harmonics, described in the previous chapter, 

was carried out using an experimental test rig. The rig consists of a Lab-Volt three phase 

power supply, supplying a three-phase wound rotor induction motor coupled to an 

electrodynamometer used for loading the motor. The induction motor is a 208volts, 4-

pole, 60Hz, three-phase, 175 watt wound rotor machine. There are 24 rotor slots. For 

experiment, its stator was connected in wye and its rotor terminals were shorted. 

Table 4.1: F.H.P Induction Motor Specifications. 
Power 175 watts 

Voltage 208 volts 

Current 1.3 amps. 

Speed 1800 rpm 

Frequency 60Hz 

Stator 3 phase, wye-connected, 4-poles 

Rotor Wound rotor, 24 slots, terminals shorted. 

The speed was measured at different loads using digital tachometer, and rotor slot 

harmonics were calculated using the expression n = 6% (fsh ± / 0 ) [3 2, 3 3]. The speed 

measurements and rotor slot harmonic calculations are tabulated below in table 4.2. From 

the above calculations, two rotor slot harmonics are identified. For analysis and spectral 

estimation only the first harmonic will be considered. The other RSH is caused by the 

reverse rotating field due to asymmetry and voltage unbalance and there is uncertainty of 

its strength [45]. For the 24-rotor slot, 4-pole test machine, the first speed-related slot 

harmonic (RSHl) is found to be confined to an interval [9fo 1 lfo], where fo is the 

fundamental frequency component at 60 Hz. As the load increases, the slot harmonic 

frequencies decrease with the increasing load. 

21 
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Table 4.2: Measured speed and calculated RSH at different loads. 

S.No. Load Measured Slip Calculated Calculated 

Torque Speed (rpm) (%) RSHl (Hz.) RSH2 (Hz.) 

(N-m) 

1. 1.2 1543 14.3 557.2 677.2 

2. 1.0 1586 11.9 574.4 694.4 

3. 0.8 1628 9.6 591.2 711.2 

4. 0.6 1667 7.4 606.8 726.8 

5. 0.4 1700 5.8 620 740 

6. 0.2 1730 3.9 632 752 

7. 0.1 1746 3 638.4 758.4 

8. 0.06 1752 2.6 640.8 760.8 

4.2 Off-Line Identification of RSH 
The stator line current was captured on a Hewlett Packard oscilloscope using a 2 ohm 

shunt resistor. Communication between the host computer and oscilloscope was carried 

via RS-232 interface using HP BenchLink XL 54600 scope toolbar. Real-time data 

records were collected at 1752, 1746, 1730, 1700, 1667, 1628, 1586 and 1543 rpm and at 

a load level of about 1.2 Nm. full load decreasing gradually, in 8 steps, to near zero-load 

level. The speed at different load levels was measured by using a digital tachometer. The 

current is sampled at sample interval of 500 ms. with data record length of 2000 samples 

at a sampling frequency fs = o/r = 200%.s = 4 kHz. The discrete values of time and 

amplitude were stored in excel files which were retrieved into Matlab software for offline 

processing and identification of RSH. The Hanning window was applied in time domain 

before taking the 2048-point FFT of the discretized current signal to reduce spectral 

leakage [32]. Figure 4.1 shows a picture of experimental set-up for off-line. Figure 4.2 

shows a typical stator line current signal at 60 Hz before and after hanning window is 

applied in time domain. Figure 4.3 shows a frequency spectrum of stator line current at 

load torque of 1.2, 0.4, and 0.06 Nm respectively. 
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Figure 4.1: Experimental-Setup for identification of RSH and off-line processing. 
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Figure 4.2: Stator line current signal before and after hanning window is applied. 
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From the previous calculations and frequency spectrum analysis, two rotor slot harmonics 

are identified. From Figure 4.3 it is observed that as the load increases, the slot harmonic 

frequencies decrease with the rotor speed and its amplitude increases with the load. After 

applying Hanning window to the stator current, the 8-th order Butterworth band pass 

filter, having a band pass interval of [550Hz 650Hz], is then applied to eliminate all 

spectral harmonics outside the range containing the expected slot harmonics [32]. The 

band passed signal is then used in simulations to estimate rotor slot harmonics and thus to 

detect rotor speed by using different frequency estimation techniques as explained in the 

next chapter. Figure 4.4 shows a band passed stator current signal and a frequency 

spectrum of the band passed signal. As seen in the frequency spectrum below the speed 

related harmonic has a maximum peak in the given frequency band. Therefore, the 

frequency corresponding to the maximum peak is the rotor slot harmonic [32-35]. 

Bandpassed stator curren t signal 
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Figure 4.4: Band-pass filtered stator line current signal and it's FFT. 
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4.3 Experimental Set-up for On-line Speed Detection 
The experimental set-up for on-line speed detection consisted of a Lab-Volt three phase 

variable power supply supplying a three-phase wound rotor induction motor coupled to 

an electrodynamometer, as explained in section 4.1. Figure 4.5 shows a picture of on-line 

experimental set-up. 

Figure 4.5: Experimental set-up for on-line speed detection. 

4.3.1 Data-Acquisition 
The data acquisition system used in the experimental set-up was National Instruments NI-

USB 9215, 4-channel, ± lOV DC, 16-bit simultaneous sampling analog input module. 

The NI USB-9215 data acquisition module provides a USB-2.0 interface for four 

channels of 16-bit simultaneous sampling analog inputs (38]. It consists of two 

components a Crio-9215 module and a USB-9161 carrier and has an integrated signal 

conditioning. The driver software for this module is NI-DAQmx Base (38]. It has 10-

terminal detachable screw-terminal connector to provide connections for the four analog 

input channels and a common terminal, COM, which is internally connected to the 

isolated ground reference of the module (38]. The common ground is isolated from the 
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chassis and the host computer. Each channel has built in over-voltage protection. Before 

the signal is sampled by a 16-bit ADC, it is buffered and conditioned by the 

instrumentation amplifier [38]. Each channel has independent track and hold amplifiers 

[38]. Figure 4.6 shows a picture of the NI USB-9215 data acquisition module as 

connected in the on-line experiment. 

Figure 4.6: NI USB-9215 data acquisition module as connected in the 
experiment. 

4.3.2 Current Signal Acquisition and Conditioning 
The signal of interest for this experiment is the motor stator line current. The signal 

conditioning device must convert this to voltage. Regardless of the type of sensor or 

transducer, the general signal conditioning requirements are amplification, attenuation, 

filtering, isolation, multiplexing, simultaneous sampling, digital signal conditioning etc. 

[38]. Any real-world signal contains frequency components greater than the Nyquist 

frequency aliased to the signal. This introduces an error in the measurement. To prevent 

this either a sampling frequency is set to 5 to 10 times the maximum frequency 

component in the signal or analog low-pass filter, which is essentially an anti-aliasing 

filter, is used before analog-to-digital (ADC) converter [36,38]. Due to these facts, a 

typical MCSA scheme used in most of the references cited is shown below in Figure 4.7. 

Essentially, in a MCSA scheme the stator line current is notch filtered to remove 
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fundamental component, scaled and then is supplied to an analog anti-aliased filter before 
it is fed to the ADC [9-13]. 

bL r--. ----... ADC 
Scaling 

Stator Line Notch Filter Anti-Aliasing 
Current Filter 

Figure 4.7: Conventional data-acquisition of stator line current. 

Since, the objective of the research is to use minimum or no analog circuitry for the 

F.H.P. induction motor, due to the reasons as explained in chapter 1 and chapter 2, the 

high-precision 16-bit NI USB-9215 DAQ module which has integrated signal 

conditioning and isolation, as explained in section 4.3.1 of this chapter, is selected for this 

experiment. To convert a current signal to a voltage signal a 2 ohm shunt resistor is used. 

The voltage drop across the resistor for a motor of this rating is 2 volts at full-load. It is 

recommended to amplify the signal to meet the dynamic range of DAQ module which is 

±lOV for the selected DAQ module [39, 40]. It can be accomplished either by using high 

value of resistance or by using an analog amplifier to amplify the signal. As the increase 

in resistance value will increase the thermal noise and use of analog amplifier will 

amplify the noise also [39, 40]. Therefore, 2 ohm shunt resistor is used. Also, to reduce 

analog circuitry [6], no notch filter or anti-aliasing filter is used before a signal is fed to 

ADC. Figure 4.8 shows the DAQ scheme used in the experiment. Since, neither of the 

output from a shunt resistor is referenced to a system ground, input to the DAQ module is 

a floating differential signal. As practical devices have limited capability to reject 

common-mode voltage [38], therefore, to keep the signal with-in the common-mode 

range, both the +ve and -ve leads of the signal are connected to an isolated COM 

terminal through one mega ohm resistors [38] as shown in the Figure 4.8. 
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+ve ChO+ 
Voltage across shunt 

Stator -ve ChO-
Line 2ohm 

Floating 
Current. Differential USB-2.0 Resistor Connection DAQ 

Terminals. 

1 MO resistors 
COM 

Figure 4.8: DAQ scheme for the on-line experimental set-up. 

4.4 Block Diagram: Sensor-Less Speed Detection 

Figure 4.9 shows a simplified block diagram for both off-line and on-line sensor-less 

speed detection utilizing MCSA technique [32-35]: 

3-Phase Supply FFT 

Window Measured rotor speed (rpm) SRSA 

Band pass 
1--- Filter ------.!----

PCAR 
Matrix-Pencil 
Covariance Sampled Stator 

Current 

Detected Speed (rpm) 
Algorithm 

-----i RSH Detection. 

Fundamental 
Factor Frequency 

JTFA 

STFT 
Gabor Transform 

CSD 
Adaptive Spectrogram 

Figure 4.9: Simplified block-diagram for sensor-less speed detection algorithm. 
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4.5 PC-Based Implementation 

The sensor-less speed detection algorithm described above was implemented in real-time 

using Lab View 7 .1 software and its advanced signal processing toolset for both off-line 

and on-line speed detection with the following assumptions: 

i. Only harmonics due to slotting and saturation are considered. Winding and 

distribution factors are neglected. 

11. Inverter harmonics are neglected. 

111. Fundamental frequency is fixed at 60 Hz. 

iv. Motor is operating under its rated slip range and number of rotor slots is known. 

Lab View is an application development software which uses a graphical programming 

language, also known as G programming to write codes known as block diagrams. It has 

all the logic features and capabilities of any other programming language such as C or 

Matlab [25]. But, in Lab View, the application is developed by using built in Vis known 

as icons or blocks. Lab View has a graphical user interface which is known as the front 

panel, in which various controls, indicators, knobs, dials, graphs and many other features 

can be incorporated with ease to make the application user friendly and to display useful 

results for analysis. Lab View also has various built in libraries, Vis for data-acquisition, 

signal processing, statistics, waveform generation and monitoring, analysis, mathematics, 

logical etc. to name a few. Lab View software is specifically useful for applications which 

require data-acquisition or instrument control and to develop real-time applications [25, 

36]. The application files developed in LabView are saved with a VI extension, also 

known as virtual instrument. The real-time application developed using Lab View for this 

research allows investigating dynamic behavior of all the applied spectral estimation 

techniques in one application. The graphical user interface (GUI) of the application 

allows controlling various parameters in run-time to study its effect on the performance 

in real-time. The PC on which this application is run in real-time is PentiumIV with 

512MBRAM. 

4.5.1 Off-line LabView Implementation 

The data-records are collected as explained in section 4.2. The data text files are retrieved 

in LabView using "ReadFromSpreadsheetFile.vi". The time and amplitude values of 
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stator line current are stored in two sub-set arrays. The output of the sub-set arrays is read 

in a "For Loop" and within the "For Loop" Hanning window and Butterworth band-pass 

filter sub-routine is applied in the time domain to the stator line current signal. The 

stacked ring-type case-structures are used to implement spectral estimation sub-routines. 

The output of the Butterworth band-pass filter is passed to the case structures to obtain 

the spectrum. The peak of the spectrum is obtained by using "Max-MinArray.vi". The 

equation from section 4.1 to detect the speed value is solved using "FormulaNode.vi". 

The output of the formula node is passed to the indicators in the front panel. Figures 4.10-

4.12 shows the partial view of the block-diagram as explained above. 

Figure 4.10: Partial view of block-diagram to read data files. 

N lvI - Off-line Sensorless Speed Destectior 

Hanning 
Window.vi 

[!Sampling frequency I > 

I t .------ -
ftigh cutoff fregl n2 : 

I • 
ow cutoff fre 

Butterworth 
Filter.v i 

![llDl• - ·_j ____ 

Figure 4.11: Partial view of block-diagram showing window and band-pass filter 
sub-routines within main "For-Loop". 
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§ -- .. ., 

Figure 4.12: Partial view of block-diagram showing nested ring-type case-
structures to implement spectral estimation sub-routines with in the "For-Loop". 

4.5.2 On-Line LabView Implementation 
To analyze the results as the current signal is being acquired and to prevent data from 

being overwritten, the circular buffer technique is employed in data-acquisition VI by 

using DAQmx Base Vis. The current data from the buffer is read in a main "While-

Loop". Within the main "While-Loop" the block diagram is developed in a similar 

manner as explained in section 4.5.1. The NI USB-9215 DAQ module uses DAQmx Base 

driver software. Channels and tasks are two important concepts in Nl-DAQmx Base [36, 

38]. A physical channel is one which is used to make measurements. The virtual channels 

are used to encapsulate physical channels with specific information to format the data. A 

task represents a measurement to be performed. A task is a collection of one or more 

channels, timing, triggering and other properties [36, 38]. The sub-routines used for 

continuous data-acquisition are "DAQmx Base Create Task.vi", which creates a task, 

"DAQmx Base Create Virtual Channel.vi" which creates a virtual channel and add tasks 

to the virtual channel, "DAQmx Base Timing.vi" which configures the sampling rate and 

creates a buffer when needed and sets the continuous or finite samples acquisition mode, 
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"DAQmx Base Start Task.vi" which starts the task to begin the measurements, "DAQmx 

Base Read.vi" which reads the task and specifies the number of samples to read for each 

channel, "DAQmx Base Stop Task.vi" which stops the task and brings it back to the state 

before start task, "DAQmx Clear Task.vi" which clears the task and releases any 

resources reserved by the task, and "Config Input Buffer.vi", which is used to overwrite 

the default buffer size. The data-acquisition VI acquires continuous data using the DAQ 

device internal clock. The application reads the first half of the data from the buffer while 

the second half of the buffer is written with new data. The channels in NI-DAQmx Base 

are identified as aiO, ail, ai2, ai3, and so on. Channel 0 is used to acquire the current 

signal and the naming convention is used as Devl/aiO, i.e. device name and a slash 

followed by channel identifier. Figure 4.13 shows a partial view of the on-line block 

diagram for data-acquisition. The rest of the on-line block diagram is essentially the same 

as for off-line except that in on-line application block diagram the "For-Loop" is replaced 

by "While-Loop". 

Data Ac uistion - Continuous 

Minimum t'--1 

Maximum Vaklel11EY1.!l I 
ChanneU IJZQ:i 1 I 

II 

lVI- Online Sensor! 

!I 
jJ I 
q " 

:.__::;-'. __ -=.:JI 

Figure 4.13: Partial view of the on-line block diagram showing continuous data-
acquisition VI. 
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4.5.3 LabView Application Front-Panel 

The front-panel for both off-line and on-line application has an interactive user interface. 

It enables the user to input the values of fundamental frequency, number of poles, number 

of rotor slots specific to an induction motor. It displays the plots of the measurement from 

a current transducer. It also displays windowed and band-pass filtered signal. The GUI 

interface of this application allows a user to select the type of spectral estimation method 

desired and displays the corresponding spectrum. It has dial and numeric indicators that 

display rotor speed and RSH frequency. It enables the user to see changes in the above 

parameters in real-time as the load is being varied. In addition to that, it has control for 

buffer size, sampling rate, and number of samples to read. It also has control for band-

pass filter to select filter order and band-pass frequencies. The GUI of the application has 

controls for parameters specific to the spectral estimation technique that enables the user 

to vary different parameters to study the effect on performance in real-time. This 

application allows investigating the dynamic behavior of the applied techniques in real-

time. Figure 4.14 shows a view of the front-panel common to both off-line and on-line 

application. 
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Figure 4.14: Front-panel view common to both off-line and on-line application. 



Chapter 5: Experimental Results and Discussion 

5.1 Off-Line Simulations and Results 
The motor was run at different loads to acquire stator line current 30 cycle data-records at 

a sampling frequency of 4 kHz. and 6 cycle data-records at a sampling frequency of 10 

kHz. at load torque of 0.06, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 Nm, in real-time, for off-

line speed detection. Figure 5.1 to Figure 5.7 show spectra of band-passed signals using 

various spectrum estimation techniques at a light load of 0.06 Nm and full load of 1.2 

Nm. At light load, the calculated RSH is equal to 641Hz. and the full load calculated 

RSH is 557 Hz. In a similar manner, spectra were obtained at all the above values ofload. 

Figures 5.8 to 5.10 show results and plots of measured speed vs. off-line detected speed 

in rpm at different levels of load for FFT, Model-Based methods and JTFA methods 

respectively for 30 cycle data at a sampling frequency of 4 kHz. Figure 5.11 shows 

results and a plot of measured speed vs. off-line detected speed in rpm at various load 

levels for model-based methods for 6 cycle data at a sampling frequency of 10 kHz. 

5.2 On-Line Experimental Results 
The motor was run and a stator line current signal was acquired as explained in chapter 4, 

section 4.5.2 to obtain the experimental results of various applied spectral estimation 

techniques in real-time. The experiment was performed for on-line analysis. Accuracy in 

rpm, the difference between measured and detected speed, was measured by comparing 

the values of measured speed with a digital tachometer and detected speed from RSH at 

different loads for all applied spectral estimation methods. Similarly, resolution in Hz that 

determines the minimum change in speed which can be detected was observed by varying 

the load and thus speed, very gradually in very short steps for the entire range of its rated 

slip, for each of the spectral estimation methods. And finally, settling time which 

determines the time for an algorithm to stabilize was recorded by varying the load 

suddenly from no-load to full-load or from full-load to no-load and also in the 

intermediate ranges for each of the spectral estimation methods. All the above readings 

were taken for different numbers of cycles at various sampling frequencies to determine 

35 
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which technique works best under what conditions. 

The number of cycles, at various sampling frequencies, is determined and governed by 

the following relation: 

Number of samples Number of cycles= x 60, where 60 = fundamental frequency. 
Samples per second 

The table 5.1 shows the numbers of data-samples required to get the desired number of 

cycles for each sampling frequency, as used in this experiment. 

Table 5.1: Number of data-samples required to get the desired number of cycles 
at different sampling frequencies. 

Sampling Frequency 2kHz. 4kHz. 8kHz. 

Number of cycles 

6 cycles 200 400 800 

9 cycles 300 500 1200 

15 cycles 500 1000 2000 

30 cycles 1000 2000 4000 

60 cycles 2000 4000 8000 

120 cycles 4000 8000 16,000 

The on-line experimental results and plots are shown in Figure 5.12 to 5.21 in terms of 

accuracy, resolution and settling time with regard to different data record lengths at 

various sampling frequencies. As seen from off-line results in Figure 5.10, JTF A methods 

performed poorly in terms of accuracy with accuracy error in the range of 35 to 45 rpm, 

therefore, only some results in terms of resolution and an estimated settling time were 

obtained for JTF A methods to overview the performance. 
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Figure 5.1: FFT spectrum of band-passed current signal at a light load torque of 
0.06 Nm (top) and a full load torque of 1.2Nm (bottom). 
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Figure 5.2: Covariance spectrum of band-passed current signal at a light load 
torque of 0.06 Nm (top) and a full load torque of 1.2Nm (bottom). 
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Figure 5.4: STFT spectrogram of band-passed current signal at a light load 
torque of 0.06 Nm (top) and a full load torque of 1.2Nm (bottom). 
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Figure 5.5: Gabor spectrogram of band-passed current signal at a light load 
torque of 0.06 Nm (top) and a full load torque of 1.2Nm (bottom). 
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Figure 5.6: CSD spectrogram of band-passed current signal at a light load torque 
of 0.06 Nm (top) and a full load torque of 1.2Nm (bottom). 
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Figure 5.7: Adaptive spectrogram of band-passed current signal at a light load 
torque of 0.06 Nm (top) and a full load torque of 1.2Nm (bottom). 
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Figure 5.8: Results and plot of measured speed and off-line detected speed in 
rpm vs. load torque in Nm. - FFT method, 30 cycle data, and sampling frequency 
4 kHz. 
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Figure 5.9: Results and plot of measured speed and off-line detected speed in 
rpm vs. load torque in Nm. - model-based methods, 6 cycle data, and sampling 
frequency 10 kHz. 
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Figure 5.13: On-line results and plots of error in rpm for 30, 15, 9 and 6 cycles of 
current data at sampling frequencies of 2, 4, and 8 kHz. - Model-Based methods 
(PCAR, M.P. and Covariance). 
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Figure 5.14: On-line results and plots of resolution in Hz. for 30, 15, 9 and 6 
cycles of current data at sampling frequencies of 2, 4, and 8 kHz. - Model-Based 
methods (PCAR, M.P. and Covariance). 
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Figure 5.15: On-line results and plots of settling-time in seconds for 30, 15, 9, 
and 6 cycles of current data at sampling frequencies of 2, 4, and 8 kHz. - Model-
Based methods (PCAR, M.P. and Covariance). 
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Figure 5.16: On-line results and plots of settling-time in seconds and resolution in 
Hz. for 15, 30, 60 and 120 cycles of current data at sampling frequencies of 2, 4 
and 8 kHz. - STFT method, window length = 200. 
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Figure 5.16: On-line results and plots of settling-time in seconds and resolution in 
Hz. for 15, 30, 60 and 120 cycles of current data at sampling frequencies of 2, 4 
and 8 kHz. - STFT method, window length= 200. 
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Figure 5.18: On-line results and plots of settling-time in seconds and resolution in 
Hz. for 30, 60 and 120 cycles of current data at sampling frequencies of 2, 4, and 
8 kHz. - Gabor Transform, order= 2. 
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Figure 5.19: On-line results and plots of settling-time in minutes for 30, 60 and 
120 cycles of current data at a sampling frequency of 2 kHz. - Gabor Transform, 
order= 10. 
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Figure 5.20: On-line results and plots of settling-time in seconds and resolution in 
Hz. for 30, 60 and 120 cycles of current data at sampling frequencies of 2, 4, and 
8 kHz. - Cone-shaped Distribution, alpha = 1 E-6. 
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Figure 5.21: On-line results and plots of settling-time in seconds and resolution in 
Hz. for 30, 60 and 120 cycles of current data at sampling frequencies of 2, 4, and 
8 kHz. - Adaptive Spectrogram, term = 2 and window length = 500. 
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Figure 5.22: Settling-Time response for sudden rise in speed (rpm) from full load 
to no-load: MP, PCAR, and Covariance methods (top to bottom), 30 cycles data 
at 2 kHz sampling frequency. 
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Figure 5.23: Settling-Time response for sudden rise in speed from full-load to no-
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frequency. 
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5.3 Discussion 

5.3.1 FFT Method 
On-line test results were obtained for 30, 60 and 120 cycles of data at various sampling 

frequencies of 2, 4, and 8 kHz. The results are shown in Figure 5.12. As seen from the 

plot of Figure 5 .12, there is a trade-off between resolution and settling-time as the 

number of data samples is increased at any given sampling frequency. The resolution of 

the FFT is limited by the relation, = Sampling Frequency . As seen in Figure 5 .12, the 
Number of Samples 

settling-time increases but the resolution is improved with an increase in number of 

cycles for all of the sampling frequencies. FFT did not perform well for 15 cycles of data 

at any of the sampling frequencies. Accuracy did not vary much with an increase in the 

number of cycles or sampling frequencies and is limited to ±1 and ±2 rpm. The minimum 

value of the resolution achieved by FFT is 0.5 Hz at 120 cycles of data with a settling-

time of about 2 seconds. The minimum value of resolution to compare the performances 

of spectral techniques was restricted to 0.5 Hz due to digits of precision setting in the 

software. 

5.3.2 Model-Based Methods 
Experimental results were obtained for 30, 15, 9 and 6 cycles of data for each of the 

sampling frequencies at 2, 4, and 8 kHz and results and plots are shown in figures 5.13 to 

5.15. The Covariance method worked only for 30 cycles of data at a sampling frequency 

of 2 kHz and for 30 and 15 cycles of data at sampling frequencies of 4 kHz and 8 kHz. It 

failed for 9 and 6 cycles of data, therefore, results for them are not shown in the figures 

5.13 to 5.15. As seen in figure 5.13, under these conditions the accuracy of the 

Covariance method is ±2 rpm with a relatively poor frequency resolution of 2 Hz for 30 

cycles at sampling frequency of 2, 4 and 8 kHz and 4 Hz for 15 cycles at a sampling 

frequency of 4 and 8 kHz. This method is unstable for fewer numbers of data samples 

due to the fact that the Covariance method only uses forward or backward prediction to 

minimize the error between known data and predicted data. Since, the PCAR method 

uses both forward and backward prediction to minimize the error, thus it has more data 
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points for even less number of cycles to average out an error and in the case of the M.P. 

method it has good statistical properties and lower variance of the estimated parameters 

[28], therefore it is quite accurate to extract data from fewer number of cycles data. Due 

to these reasons, as seen in Figure 5.14, it was possible to obtain a resolution of 0.5 Hz 

for both PCAR and M.P. methods, accuracy within the limit of ± 1 and ±2 rpm with a 

settling time of about less than half second under certain conditions as explained below. 

The M.P. method achieved a frequency resolution of 0.5 Hz, accuracy ±1 rpm and a 

settling time of about 0.25 seconds for 500 samples of data at a sampling frequency of 2 

kHz. With the PCAR method it was possible to obtain the same frequency resolution and 

accuracy with a settling time of about 0.5 seconds for 500 samples data at a sampling 

frequency of 2 kHz. To achieve these results, the order number was selected to be 50 for 

both the M.P. and PCAR methods. The selection of order number for a given number of 

data-samples is critical for both PCAR and M.P. methods to achieve accuracy, in 

particular for a smaller number of data samples, at near-zero or light loads. Since, the 

optimal performance for this application was obtained at a sampling frequency of 2 kHz, 

further analysis is performed at this particular sampling frequency. As shown in Figure 

5.24, selection of order number equal to ten for M.P. method leads to an averaged 

inaccuracy within 10 to 15 rpm near light loads for 200 data samples. The accuracy is 

improved to the range of 5 to 7 rpm by increasing the order number to 50 and 130. In 

Figure 5.25, for 300 samples accuracy is within 5- 7 rpm for order number equal to ten 

which is improved to the range of 1 to 2 rpm by selecting an order number equal to 50. 

Similarly for 500 samples, as seen in Figure 5.26, accuracy is improved to ±1 rpm with 

an order number equal to 50. As the number of data samples decreases the order number 

has to be increased to improve accuracy. Figure 5.27 shows the effect of the number of 

data samples on the selection of an order number at near-zero or light loads. For 4000 and 

2000 samples, the order number equal to two provides speed accuracy within ± 1 rpm. By 

selecting an order number equal to 10 and 50 for 1000 and 500 samples respectively, 

accuracy is within ±1 rpm and for 300 samples, with an order number equal to 50, 

accuracy is within 2 to 3 rpm. At 200 data samples, even at higher order number, M.P. 

method tends to inaccuracies which are more predominant near zero or light loads. Figure 

5.28 shows the oscillations for 200 samples at various load levels for an order number 
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equal to 10 (top) and for an order number equal to 50 (bottom) which are more 

predominant at light loads. 

Similarly, for PCAR method Figures 5.29 to 5.31 shows the effect of order number on the 

speed accuracy near zero or light load levels for various data samples. As seen in figure 

5.29, order number equal to 10 gives averaged accuracy within the range of 10 to 15 rpm 

for 200 data samples and is improved to the range of 5-7 rpm by increasing an order 

number to 50 and 100. For 300 samples, in Figure 5.30, by increasing an order number 

from 10 to 20 improves accuracy within the range of 2 to 3 rpm. For 1000 samples, in 

Figure 5 .31, accuracy is within the range of 10 rpm for an order number 2, 8 to 10 rpm for 

an order number 6, and 3 to 4 rpm and ±1 rpm for an order number equal to 10 and 20 

respectively. Similar to M.P. method, for 200 data samples PCAR method tends to 

inaccuracies which are predominant at near zero or light loads. Figure 5.32 shows how 

the number of data samples influences the selection of an order number for PCAR 

method. As seen, order number is 50 for 200, 300, and 500 samples and 10 for 1000, 

2000 and 4000 samples. It is seen from Figure 5.31, by increasing the order number to 

20, accuracy can be further improved for longer data-sets as compared to that of order 

number equal to 10. Figure 5.33 shows the oscillations for 200 data samples at order 

number 50. As seen from the figure, oscillations are more predominant at near zero or 

light loads. Based on the above analysis, an optimal value of an order number is selected 

and further comparison of Matrix-Pencil method is performed with FFT, Covariance and 

PCAR methods for 1000, 2000 and 4000 samples at a sampling frequency of 2 kHz. 

Figure 5.34 shows the results of the comparison. To obtain these results, an order number 

equal to 2 was selected for Matrix-Pencil method for 2000 and 4000 samples and 10 for 

1000 samples. Similarly, based on the above analysis, order number equal to 20 was 

selected in the case of PCAR method for 1000, 2000 and 4000 samples. Figure 5.34 and 

Figure 5.35 shows the effect of data samples number on averaged accuracy (rpm) at near-

zero and medium load for PCAR and MP method respectively. As seen in the figures, 

accuracy is 6 to 7 rpm at 200 data samples, 2 rpm at 300 data samples and is improved to 

1 rpm for 500 and 1000 data samples, for both PCAR and MP method. Accuracy is 

within the range of 1 rpm at all the data samples at medium load for both PCAR and MP 

method. Figure 5.36 shows the effect of data samples number on settling-time for PCAR, 
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MP, Covariance and FFT methods. MP method performs better, in terms of settling time, 

as compared to PCAR method near longer data-sets. 
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Figure 5.28: Oscillations at 200 data samples near light loads, Fs = 2 kHz: MP 
method, order number 10 and 50 (top to bottom). 
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Figure 5.29: Effect of order number on accuracy at near-zero load torque: PCAR 
method, 200 samples, Fs = 2 kHz (Measured speed = 1762-1763 rpm). 
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Effect of order number on accuracy near-zero load torque: PCAR method, 
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Figure 5.31: Effect of order number on accuracy at near-zero load torque: PCAR 
method, 1000 samples, Fs = 2 kHz (Measured speed= 1762-1763 rpm). 
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Figure 5.33: Oscillations at 200 data samples near light loads, Fs = 2 kHz: PCAR 
method, order number 50. 
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Figure 5.35: Effect of data samples number on accuracy (rpm) with regard to light 
and medium load: MP method, Fs = 2 kHz. 
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5.3.3 JTFA Methods 
The literature suggests that for the STFT method, there is a trade-off between time and 

frequency resolution depending upon the duration of the sliding analysis window. A 

wider window provides a narrow bandwidth and thus better frequency resolution. There 

is also a trade-off between the settling-time, resolution and the number of data samples. 

More data-samples result in higher settling-time. As seen in Figure 5.12, STFT with 

window length equal to 200 is able to provide a frequency resolution of 0.5 Hz for certain 

combinations of data cycles and sampling frequencies. At a sampling frequency of 2 kHz, 

a frequency resolution of 0.5 Hz is achieved for 60 and 120 cycles of data with an 

estimated settling time of about 1 and 1.5 seconds respectively. The settling time is 

reduced to about 0.5 seconds for 30 cycles of data but at the expense of frequency 

resolution which is equal to 1 Hz. By increasing the window length to 800, as shown in 

Figure 5.17, the frequency resolution is improved to 0.5 Hz for 15, 30, 60 and 120 cycles 

of data at sampling frequencies of 2 and 4 kHz. Settling-time results were the same as 

that of with a window length equal to 200. To overcome this window effect, the Gabor 

spectrogram method can be applied [37]. Gabor spectrogram as seen in Figure 5.5, 

suffers from cross-term effects. Higher order number increases the settling-time [37]. As 

seen in Figure 5.18, an estimated settling-time is 5 seconds at a sampling frequency of 2 

kHz, for 120 cycles of data with a frequency resolution of 0.5 Hz. Settling-time is also 

increased as the number of data samples is increased. From Figure 5.19, by increasing the 

order to be equal to ten, settling time is increased to 1 and 2 minutes for 60 and 120 

cycles of data at a sampling frequency of 2 kHz. For CSD with alpha equal to lE-6, as 

seen in Figure 5.20, for 30 cycles of data at sampling frequency of 8 kHz settling-time is 

about 15 seconds respectively. As the number of data samples is increased, the settling-

time is increased. In the case of Adaptive spectrogram, term =2 and window = 500, as 

seen in Figure 5.21, frequency resolution of 0.5 Hz with an estimated settling time within 

1 and 2 seconds is achieved for 30, 60 and 120 cycles of data at a sampling frequency of 

2 kHz. More experimental tests are needed to fully determine the performance of JTF A 

methods. 
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Chapter 6: Conclusions 

6.1 Conclusions 
In this research experiment, it has been shown that various spectral estimation techniques 

can be applied to detect speed of the F.H.P. induction motor, with minimum analog 

circuitry, from RSH using MCSA. Experiment was performed for off-line and on-line 

analysis of FFT, model-based and JTFA methods. A real-time application was developed 

in PC-based environment using Lab View 7 .1 software and its signal processing tool-set. 

A successful attempt has been made to acquire stator line current using high precision 

USB-2.0 data-acquisition module and thus avoiding any external analog circuitry 

required for signal-conditioning and anti-aliasing filtering. 

This research work has demonstrated that novel methods such as the Matrix-Pencil and 

PCAR can be applied in real-time to detect speed of an induction motor. Performance of 

Matrix-Pencil and PCAR methods was compared with that of the FFT and Covariance 

methods. Advantages and limitations for both Matrix-Pencil and PCAR methods were 

outlined.The experimental results obtained indicate that, using both Matrix-Pencil and 

PCAR methods, it is possible to achieve a frequency resolution of 0.5 Hz, accuracy with 

in ±1 to ±2 rpm with a settling time of about 0.25 to 0.5 seconds for 500 data samples at a 

sampling frequency of 2 kHz. Matrix-Pencil performance was similar to that of PCAR 

method, in terms of accuracy and resolution and it performed better in terms of settling-

time. Both MP and PCAR methods performed better than Covariance method in terms of 

accuracy and resolution. Covariance method was unstable for smaller data-sets. 

The Matrix-Pencil method also performed well for longer data sets and a frequency 

resolution of 0.5 Hz was obtained for 1000 and 2000 samples, at a sampling frequency of 

2 kHz, as compared to that of 2 Hz and 1 Hz with FFT method. Settling time for both 

Matrix-Pencil and FFT methods were about 0.5 second to 1 second with an averaged 

accuracy of ±1 rpm. The results indicate that, for 300 data samples, both PCAR and 

Matrix-Pencil method had inaccuracies at near zero or light loads and can be improved by 

selecting an optimal order number. For 200 data samples inaccuracies predominated at 

near-zero or light loads. Using PCAR or Matrix-Pencil methods for very small data-sets 

may lead to speed detection inaccuracies which are more predominant at near-zero or 
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light loads. Selecting an optimal order number, to achieve desired accuracy, for any given 

number of data samples is critical for both PCAR and MP methods. There are trade-offs 

between data samples number, order number and accuracy. These trade-offs are more 

predominant for smaller data-sets at near-zero or light loads. Table 6.1 outlines the 

optimal performance obtained, under certain conditions, for Matrix-Pencil, PCAR, 

Covariance and FFT methods. 

Table 6.1: Optimal performance of spectral estimation methods, in terms of 
accuracy, resolution and settling-time. 

Methods Resolution Settling- Accuracy Sampling Number of 

(Hz.) Time (rpm) Frequency Data-

(Secs.) (kHz.) Samples. 

FFT 0.5 2 ±1 2 4000 

PCAR (order = 0.5 0.5 ± 1 2 500 
50) 
M.P. (order = 50) 0.5 0.25 ±1 2 500 

Covariance 2 0.5 ±1 2 1000 

This research work extended the existing knowledgebase in this field with significant 

contributions as outlined below: 

a. Real-time performance analysis of novel signal processing methods including 

Matrix-Pencil and Principle component auto-regressive algorithms, in terms of 

accuracy, resolution and dynamic behavior under changing load conditions with 

regard to different data-record lengths at different sampling frequencies, for 

sensor-less speed detection of an induction motor using minimum analog 

circuitry. Strengths and limitations of both methods are outlined. While these 

algorithms have been used in other areas the author is not aware of them being 

used in motor applications. 

b. PC-based application development, using Lab View 7 .1 software and its signal 

processing tool-set, that allows investigating the steady-state and dynamic 

performance of various spectral estimation techniques in one application, in real-
time. 
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c. This research work contributes in assisting the drive and CBM tool designer 

formulate important rules for optimizing data-acquisition and signal processing 

parameters in MCSA applications. 

6.2 Implications of an algorithm 
The present speed detection algorithm is implemented and tested on the F.H.P. induction 

motor operating under the following conditions: 

I. Fundamental frequency is fixed at 60 Hz. 

II. Motor is operating under rated slip range of 0 < s < 14% and is supplied from a 

three-phase source without using an inverter. 

This algorithm operates satisfactorily under the above conditions. By setting threshold 

levels, the same algorithm can be used to detect motor internal faults such as broken rotor 

bars and to determine load conditions. It requires only one input i.e. digitized stator line 

current and a priori knowledge of the number of rotor slots. Presently, fundamental 

frequency and filter cut-off frequencies are not auto-tunable. Accuracy is not affected 

under unloaded or light load conditions under certain conditions. In this particular 

experimental set-up, RSH component does not coincide with any harmonic component. 

While using certain drives or an inverter it may coincide depending upon the switching 

strategy of an inverter. In a speed control application such as vector control, the minimum 

frequency of an inverter can be as low as 2 Hz. This algorithm is yet to be tested for its 

ability to operate at low frequencies and thus to track small slip changes with a narrow 

bandwidth or in the presence of narrowband noise. 

6.3 Future Work 

The present research work can be further extended to test the performance of the applied 

spectral estimation methods across a wide range of inverter frequencies. This algorithm 

can be modified to determine machine specific parameters and auto tuning of filter cut-

off frequencies so that it can be applied to virtually any induction motor. Further, this 

application can be extended, with necessary modifications, to be used as an on-line 

sensor-less noninvasive CBM tool to diagnose motor faults. 
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