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Abstract

In this research work, real-time performance of various spectral estimation techniques
have been investigated to detect speed of an induction motor from rotor slot harmonics
using motor current signature analysis. It has been demonstrated that novel methods
Matrix-Pencil and Principle Component Auto-Regressive (PCAR) can be applied in real-
time for speed detection. Steady-state and dynamic performance of Matrix-Pencil, PCAR,
FFT, and Covariance methods were compared. The experimental results obtained indicate
that, using PCAR and Matrix-Pencil methods, it is possible to achieve 0.5 Hz resolution,
accuracy +1 to 2 rpm and settling-time of about 0.25 to 0.3 seconds for fewer data sets.
The results showed that PCAR or Matrix-Pencil method leads to speed detection
inaccuracies, predominant at light loads, after certain small data samples number. The
trade-offs between samples number, accuracy and order number, for both PCAR and
Matrix-Pencil methods, are more predominant for smaller data-sets at light loads.
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Chapter 1: Introduction

1.1 Introduction to condition-based monitoring and motor current
signature analysis

Three-phase induction motors are the most widely used motors and are critical
component in various industries [46]. In the context of reliable safe operation and
preventive maintenance of an induction motor, root-cause analysis (RCA), reliability-
based maintenance (RBM) and condition-based maintenance (CBM) strategies have
become integral parts of a modern maintenance management system.

In order to monitor the health of an induction motor, various sensors are needed to
measure stator voltages and currents, air-gap flux densities, rotor position, speed, output
torque, temperature, vibration etc [10-12].These sensors, in addition to an initial high
cost, require mounting, wiring and maintenance. The installation cost of these sensors on
small to medium range horsepower induction motors is not justified. Further,
maintenance of these sensors requires physical access to the motor and their reliability
largely depends on the environmental conditions of the installed motor [10-12].

Induction motor faults are broadly categorized as bearing related faults, stator related

faults, rotor related faults and others as shown in Figure 1.1 below [10]:

50

B
o
]

Percentage
w
o
L

Bearing Rotor Stator Other
Types of faults

Figure 1.1: Types of induction motor faults.




However, the presence of any of the above fault conditions in an induction motor affects
the way rotor and stator flux interacts and, thus, creates an internal magnetic imbalance
which is reflected in the stator line current spectral signature [11]. Different abnormal
conditions result in frequency components being induced in the stator line current at
frequencies as given below [9-12]:

i.  Broken rotor bars: f,, = f,(1+2s)Hz. (1.1)

ii.  Air-gap eccentricity: f,, = f; {(R g )(l;s) + nm} Hz. (1.2)
p

iii.  Stator winding faults: £, = f {_n_ (-5 k} Hz. {1.3)
p
iv.  Bearing faults: f,,, =|f, £mf,,|Hz. (1.4)
Jio =—N—f,{1i—ll‘!~cosﬂ] Hz. (1.5)
2 b,

Where,

[, =Twice slip frequency side - band due to broken rotor bars.
f.. =Frequency component due to air - gap eccentricity.

f,, =Frequency component due to shorted turns.

Jng =Frequency component due to bearing faults.

[, = Vibration frequency component due to bearing dimensions.
Jf, =Supply frequency, Hz.

s = Slip.

p =Pole pairs.

L T T T —
n, =%1

B = Contact angle of the balls on the races.
N =Number of rotor slots.

f, =Mechanical rotor speed in hertz.

b, =Ball diameter

p, =Bearing pitch diameter.

m=1,2,3,...




As noted in equations 1.1 to 1.5, speed is important in condition-based monitoring that
needs to be measured accurately [13]. There are various other applications that include
speed holding, speed matching, electronic gearboxes, speed regulation and speed control,
in which accurate speed measurements are also required.

Motor current signature analysis (MCSA) is an analysis technique of stator line current
spectrum that is being used as a noninvasive on-line CBM tool. It allows monitoring the
health of an induction motor remotely from a motor control centre without requiring

access to the motor. Figure 1.2 shows a block diagram of a typical MCSA scheme [12].

3-Phase : Induction Load
Source "l Motor
Notch _| Anti-Aliasing .| AD
Stator Line Filter Filter Converter
Current
\ 4
. . Algorithm » Signal Processing
Diagnostics Fault Detection

Figure 1.2: Simplified block diagram of MCSA technique.

1.2 Speed sensor-less operation of an induction motor

The use of conventional speed transducers reduces system robustness [32-35]. In a speed
sensor-less system, state variables are derived from the motor terminal quantities in state
observers and estimators. The performance reliability of these techniques relies heavily
on the accuracy of machine model and motor parameter variations that lead to an increase
in the speed measurement error at full-load [32-35].

Rotor slot harmonics (RSH) present in the stator line current provide a sensor-less speed
measurement, utilizing spectral estimation techniques, which are independent of motor
parameter variation [32-35]. There are numerous spectral estimation methods such as

classical Fast Fourier Transform (FFT), Instantaneous Power FFT, Bispectrum, High-




Resolution Spectral Analysis, Joint-Time Frequency Analysis, Kalman Filter, Neural
Networks etc. that are being studied and can be applied [11]. The key issues in any
method are accuracy, resolution and dynamic behavior under changing load conditions.
These issues become more critical in the small or fractional horse power (F.H.P.)
induction motor. In the small or F.H.P. induction motor, a RSH of small magnitude is
induced into the stator line current thus, signal-to-noise ratio (SNR) is low [7].

In order to minimize the noise before sampling and to detect speed of the F.H.P.
induction motor with accuracy, it is recommended to use high precision A/D converter

with no or minimized extra analog circuitry [7].

1.3 Research objective
In recognition of the facts listed earlier, the research has been conducted aiming to
investigate and analyze the performance of various MCSA based spectral estimation
methods, in terms of accuracy, resolution and dynamic behavior with regards to different
data record lengths and sampling frequencies for sensor-less speed detection of the F.H.P.
induction motor in real-time.
The outline of the thesis is as follows:
i.  Research background.
ii.  Theoretical background — RSH and spectral estimation methods.
iii.  Experimental set-up and data acquisition — off-line and on-line.
iv.  Real-time lab-view application and simulations.
v.  Experimental real-time results and discussions — off-line and on-line.

vi.  Conclusions and further work.




Chapter 2: Background

2.1 Rotor Slot Harmonics

The stator line current spectrum of an induction motor contains various harmonics, due to
airgap magneto-motive force (MMF) spatial distribution and air-gap permanence
variation, which are broadly termed as stator and rotor magnetomotive force harmonics,
stator and rotor slot permeance harmonics, airgap eccentricity permeance harmonics, and
permeance harmonics introduced by saturation [31, 32]. The frequency and amplitude of
these harmonics are exploited to use them as a condition-based monitoring tool, for
sensor-less speed detection and for sensor-less vector control using MCSA technique [3,
10-12, 45].

When the stator of a symmetrical three-phase induction motor is fed from symmetrical
three-phase voltages, an air-gap field is established. These flux-density waves induce
voltages in the rotor bars and in turn produce rotor MMF waves. The interaction of these
MMF waves and the non-uniform air-gap permeance waves generates a new set of flux-
density waves which in turn induces new harmonic frequencies in the stator voltages and
currents termed as rotor slot harmonics (RSH) [45]. The RSH frequencies depend on
rotor speed. The amplitude of RSH is a function of the load, number of rotor slots, slot
size and skew [45].

By Ampere’s law, the air-gap magnetic induction expression, which is the product of an
air- gap magnetic conductance and the magnetic potential difference between the rotor
and stator, is given by [30]:

B(0,t) = A(6,t).F(6,1) 2.1)

The expression for the new set of flux density waves is given by [32]:

B(0,t) = B, cos(wyt — PO) + B, cos[(% o, +o )t -(P+2Z)0+y,]

. 2.2)
+B,, cos[(-}; o, -0 )t —(P-2)0+y,,]

Where,

0 = mechanical angle
t =time

@, =supply angular frequency




P =number of pole pairs
o, =rotor angular velocity
¥.,¥,, =phase angles

Z =Number of rotor slots

The above expression is mathematically equivalent to two oppositely traveling waves
and induces corresponding harmonic frequencies in the stator line current [32]. The

current in one phase is given by the expression [32]:
2

i,() =Y 4, cos(@,t —y,) 2.3)
v=0

The angular frequencies, due to forward (+ve sign) and reverse (-ve sign) traveling

waves, of RSH are expressed as [32]:

o, = —ﬁ(or tw, 24

The expression 2.4 for a non-sinusoidal supply is given by [32]:
D, = %a), taw, (2.5)

Where, « = time harmonic order.

2.1.1 Speed Detection from RSH

The synchronous speed of an induction motor is given by [32]:

Where, ng= synchronous speed in rpm.
fo = fundamental frequency in Hz.
P = Number of pole-pairs.

(2.6)

Frequency of rotor current, f, = sf 2.7

n,—n

Where, s = slip and is given by (2.8)

s

Combining equations 2.7 and 2.8,
Rotor rotational frequency, f,, =(1-s5)f, (2.9)

From equations 2.5 and 2.9,




Speed in rpm, n=—6-Zg(fs gl 8 (2.10)

Where,

n = speed in rpm

Z = number of rotor slots

fsn = rotor slot harmonic frequency in Hz.

fo = fundamental frequency in Hz.

Thus, using equation 2.11, rotor speed in rpm can be detected from RSH utilizing MCSA
technique [32].

2.2 Research Background

The conventional speed transducers such as encoders and tachogenerators require
mounting, wiring and maintenance and thus reduce system robustness. In early 1960°s an
attempt was made to replace the conventional speed transducers. In 1964, measuring
axial leakage flux using a search coil was used by Jordan to detect speed from motor
operation [33]. Speed information was also identified in motor current and voltages and
in 1975 an analog slip calculator was developed by Abbondanti and Brennen using motor
terminal quantities [33]. In 1979, Ishida et al. developed a new means of speed detection
using rotor slot harmonics present in the stator voltages [33]. In 1985, Beck and Naunin
measured rotor frequency using phase angle between voltage and current of the motor
stator. Later in 1987 and 1989 attempts were made to improve these techniques in
detecting speed by injecting a signal of constant frequency and by using phase locked
loop which required modifying the machine [33]. In 1990, Williams et al. proposed a
scheme to detect speed from rotor slot harmonics present in the stator line current [33].
Rotor slot harmonics present in the stator line current provide a means of detecting speed
remotely from the motor control center in a non-invasive and non-intrusive manner.
Since then research has been active and various spectral estimation techniques have been
applied and examined to detect speed from RSH using MCSA technique. The spectral
estimation techniques used in detecting speed from RSH can be broadly divided into

categories namely; classical FFT, Parametric and statistical techniques.




In the early 1990’s, most of the research focused on using FFT methods and to improve
its accuracy and resolution by windowing and interpolation. However the outcome of the
research was that the frequency resolution of the FFT can only be improved by increasing
the data record length [35]. The FFT remained suitable for steady-state operation where
longer data-records are available and there are no sudden changes in the load or speed
[35].

In 1992, Ferrah, Bradley, Asher, and Woolfson [32-35] investigated the performance of
FFT and various parametric methods to design a fast response speed detector. Their work
included Goertzel Algorithm (GAL), Maximum Entropy Method (MEM), and Auto-
Regressive (AR) techniques using least-mean square (LMS) algorithm. These methods
were tested on a 4-pole, 50 Hz, 37 kilowatt induction motor.

In 1994, Blasco [31] tested the dynamic performance of FFT method by interpolation
using batch and recursive algorithm on a 4 kilowatt induction motor in a vector controlled
drive. In that same year Beguenane [30] showed how steady-state speed detection from
RSH using FFT can be used in the identification of the rotor time constant of a 1.8
kilowatt induction motor. In his work, the stator current was amplified and low-pass
filtered and then high-pass filtered and current harmonic was sensed by phase-locked
loop (PLL) circuit. The output of PLL and high-pass filter was summed before digitizing
the stator current. Also in 1994, Hurst, Habetler, Griva, and Profumo [26, 27, 29]
proposed an application of speed detection from RSH using FFT in tuning the parameters
of a speed observer in field oriented control of a 7.5 kilowatt induction motor. In their
work, they applied decimation technique in order to improve the resolution and accuracy
of FFT method and also proposed an initialization routine in an algorithm so that it is not
dependent on knowledge of machine specific parameters, such as number of rotor slots.
Most research was focused on FFT methods for speed detection from RSH and its
application in speed control.

In the mid 90’s root-cause analysis (RCA), reliability-based maintenance (RBM), and
condition-based monitoring (CBM) became integral parts of preventive maintenance
strategies of electrical drives. Research was conducted to investigate and develop
noninvasive and non-intrusive on-line sensor-less RCA, RBM and CBM tools. More

focus was placed on utilizing MCSA technique as it allows remote monitoring of an




induction motor [10]. Due to the non-stationarity of the current spectrum focus of the
research turned to non-traditional spectrum estimation methods [23]. In 1996, Pillay and
Xu [25] developed a real-time application in LabView for sensor-less speed detection by
FFT method using MCSA

In 1997, Hurst and Habetler [23] presented a detailed comparison of parametric and non-
parametric spectral estimation techniques for sensor-less speed detection of a 7.5 kilowatt
induction motor. In their work they compare the performances of non-parametric
methods such as periodogram and Blackman-Tukey methods and parametric methods
such as auto-regressive (AR) and multiple signal classifier (MUSIC) methods and
outlined the tradeoffs in accuracy, robustness and computation time [23].

In 1998, Restrepo et al. [18] studied the cross-term effects of Wigner-Ville Distribution
(WVD), one of the joint time-frequency analysis methods, on detectability of slot
harmonics. In this work, mathematical model of the motor was implemented in Matlab
and analysis was not performed in real-time.

In 2002, Aller et al. [8] proposed an algorithm for sensor-less speed detection of 3.7
kilowatt induction motor using information from analytic wavelet transform by extracting
ridges. Its performance was compared with short-time Fourier transform method under
steady-state and dynamic conditions. Nutt et al. [7] outlined the problems with sensor-
less speed detection from RSH in small or fractional horse power motors, due to small
size of rotor slots that leads to small amplitude of RSH and thus low signal-to-noise ratio.
They recommended using minimum or no analog circuitry prior to data-acquisition and to
use high-precision data-acquisition instead in order to improve the detectability of RSH.
They proposed a fast orthogonal search (FOS) algorithm using fewer current samples to
detect speed of the F.H.P. induction motor and compared its performance with that of
FFT method. It was shown in their work that frequency a resolution of 1 Hz. can be
achieved with FOS algorithm from fewer data-records.

From the preceding literature review, it is observed that most of the research work in this
area is either primarily focused on improving the FFT performance or applying high
resolution or joint-time frequency spectral estimation techniques on larger motors or
lacked the experimental results. The key issues, in all the literature reviewed, in detecting

speed of an induction motor from RSH are accuracy, resolution and dynamic
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performance under varying load conditions of various spectral estimation techniques.
Due to these facts the present research is conducted. In this research experiment, stator
line current is acquired using high-precision USB-2.0 data-acquisition module with built
in signal-conditioning and isolation and thus, avoiding any extra analog circuitry [7] for
signal-conditioning and to analyze the performance of spectral estimation techniques
without using any analog anti-aliasing filter. For this reason, an algorithm from A. Ferrah
et al. work [32-35] is selected due to its suitability to reject noise outside the frequency
band of interest and simplicity. Ferrah et al. proposed this algorithm with FFT method to
detect speed of a 35 kilowatt induction motor. In this research, the same algorithm is
further extended to apply various spectral estimation techniques to detect speed of the
F.H.P. induction motor and is implemented in real-time using LabView?7.1 in a PC-Based
environment. This work is a further extension to the knowledgebase in this field with a
significant contribution as outlined below:

a. Analysis of various spectral estimation techniques in terms of accuracy,
resolution, and dynamic behavior under varying load conditions with regard to
different data-record lengths at different sampling frequencies for sensor-less
speed detection of the F.H.P. induction motor, in real-time, using minimum
external analog circuitry.

b. Performance analysis of novel spectral estimation method Matrix-Pencil, in terms
of speed detection, in real-time.

c. Real-time PC-based application development, using LabView 7.1 software and its
signal processing tool-set, that allows investigating the dynamic performance of

applied spectral estimation techniques in one application, in real-time.




Chapter 3: Spectral Estimation Methods

3.1 Fast Fourier Transform
The Fourier transform maps time domain functions into the frequency domain. The

Fourier transform of a time function x (t) is given by [41, 47, 48]:
X()=Fix@©)} = [x()e™dt (3.1)

where, X (f) is the Fourier transform.
The discrete Fourier transform (DFT) maps discrete-time sequences into discrete-

frequency transformations. The expression for DFT is given by [41, 47, 48]:

X, = nZ_I:x,e*ﬂ“”"" fork =0,1,2,.....,n-1 (3.2)
i=0

where, x is the input sequence,

X is its DFT, and

n is the number of samples.
The DFT requires approximately n’ complex operations. An algorithm used to solve the
DFT in a computationally efficient way is known as fast Fourier transforms (FFT). It
requires nlog, (n) operations [47, 48].
The frequency resolution of the FFT depends on the length of the data-record. For a fixed
sampling frequency fs, the frequency resolution, in Hz. is [41, 47, 48]:

Af = —fNi , where, N is the number of samples. (3.3)
The FFT output is of complex form and is given by:
X(m) =X,y (m)+ jX e (M) 34

The magnitude of FFT is given by:
X g (1) = | X (1) = | X 0y (11)? + X (m)? (3.5)

The Power, P(s) is [47, 48] = [X (m) [* (3.6)

3.2 Model-Based Methods

As discussed in section 3.1, the frequency resolution of the FFT depends on the

11
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number of samples characterized by Af = i.e. more samples for a given sampling

%
N
frequency result in a better frequency resolution. In many practical applications it may
not be always possible to have a larger number of samples due to lack of data or to ensure
that the spectral characteristics of a signal is preserved and do not change over time
[37,41]. In these types of applications, model-based methods are better in performance
than FFT methods [37]. In model-based methods, assuming that the signal is modeled as
required, after computing the coefficients, missing data can be predicted from the finite
data set that improves the frequency resolution with a fewer numbers of data samples [23,
35, 37].

Nonparametric methods estimate power spectral density from the signal itself. One such
method is periodogram, which is the magnitude squared of the FFT, as explained in the
section 3.1. Parametric methods use a linear process driven by white noise to estimate the
power spectrum. The output of this model is compared with the input to find a best match
with feedback adjustments on the parameters. The model types differ by the nature of
their transfer function [48]. The common model types are: autoregressive (AR), moving
average (MA) and autoregressive moving-average (ARMA) models [35, 48]. The transfer
function of an AR model has a polynomial in the denominator and is also referred as all-
pole model. The transfer function of moving average has a polynomial in the numerator
and is also referred to as all-zero model. ARMA model has polynomial both in numerator
and denominator and is also referred to as pole-zero model. The algorithms for MA and
ARMA involve more computation and may converge to the wrong solution [48]. There
are various techniques for estimating the AR modal coefficients and power spectrum.
Eigen-analysis spectral methods are particularly effective for sinusoidal, exponential, or
narrow-band processes [48]. They provide better resolution and frequency estimation at
high noise levels [48]. The eigenvector approach divides the data into two orthogonal
subspaces: a signal subspace and noise subspace [23, 48]. The Eigen-decomposition
produces Eigen-values of decreasing order. The size of the Eigen-values can determine
the signal subspace. The noise subspace is spanned by the minimum eigenvector [23, 48].
Principal component analysis belongs to statistics branch known as multivariate analysis

[48]. In multivariate analysis, multiple variables are represented by a single vector:
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T P11 £ W0 () N x, Of

Where, T stands for transposed and t = 1.......N. There are m variables of x representing N
observations of time samples [48]. The objective of multivariate analysis is to find
transformations of the multivariate data to reduce the dimensions of the data set. The
techniques in multivariate analysis differ in the way transformations are applied with a
common goal to reduce the dimensionality of the data. A technique to reduce the
covariance matrix into a diagonal matrix by multiplication with an orthonormal matrix is
[48] U'SU =D where S is a square covariance matrix, D is a diagonal matrix, and U is an
orthonormal matrix. This rotation produces a new covariance matrix, D with zero
covariance. The diagonal elements of D are the variances of a new data. These variances
can be used to determine principle components. The Eigen-values or roots are solved by
the determinant det |[S - Al = 0, where I is the identity matrix. This technique is
computationally intensive for longer data-sets [48]. Another technique uses singular
value decomposition of data matrix. When singular value decomposition is used, the
Eigen-values are ordered by size from which significant modes can be determined and
dimensionality of the data set can be reduced [48]. This technique is computationally
efficient [28].

3.2.1 Autoregressive and Moving-average (ARMA) models
ARMA model of data samples x[n] is given by [23, 35-37, 48]:
y4 q9
x[n] =—Zakx[n—k]+2bmw[m—n] 0<n<N 3.7
k=1 n=0
Where, bp=1 and w[n] is white noise with zero mean and variance o> .
For a;=0 for all k in equation 3.7, the equation reduces to:

x[n] = Zq:bmw[n —m] forO<n<N (3.9)

m=0
Equation 3.8 is called moving-average (MA) model [35-37, 48].
For by=0 for m>0, the ARMA model in equation 3.7 becomes

x[n] = —Zp: a, x[n—k]+wn] for0O<n< N 3.9
k=1

This is called auto-regressive (AR) model [35-37, 48].
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From the above equation, future data is predicted with error win], from past but known
data. The predicted data is given by [35-37, 48]:

b
Hnl= —Zakx[n - k] p<n<N
k=1

or (3.10)
- Ja] r.

x[p-1] x[p-2]-.cccveeee. x[0] X p]

x[p]  xX[p-1]eeeeernenns x[1] a, x[p+1]

| X[N - 2] x[N -1]........... x[N-p+1]]a, | XN -1]

The above equation is known as forward prediction [35-37, 48].

The backward prediction is given by the following expression [35-37, 48]:

fc[n]=—iak*x[n+k] 0<n<N (3.11)
k=1
or
(1] X[2 oo xip] Ta | [#o]
S MW cssirmsmioninsiel x[p+1]| a,” *1]

| X[N-p] x[N-p+1]......... x[N-1] g *| [*[N-p-1]]

For an AR model, the power spectrum is obtained by taking the reciprocal of the FFT of

the computer coefficients ax and is given by the expression [35-37, 48]:

P(f)=

- (3.12)

3.2.2 Covariance Method

S
The mean of a data set X is; X ==L |
n
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The two data sets having the same mean may be quite different in how the data is spread
[48]. The Standard Deviation, average distance from the mean of the data set to a point, is
a measure of spread of the data.

z (X i X )2
i=l
(n-1)

Variance, the standard deviation squared, is another measure of the spread of data in a

The Standard Deviation: s =

n

Z(Xi __‘)?)2

n-1)

Standard deviation and variance are useful only for functions of one dimension.

data set and is given by: s* =

Covariance is measured between two dimensions [48]. It is a measure to find out how
much the dimensions vary with respect to each other from the mean. Covariance between
one dimension and itself is variance. The covariance between two functions is given by
[48]:
M

Cov=o0,, = ;[y(k) — y1[x(k) - X1/(n—1)

The rows in a multivariate data matrix are the waveform time samples and the columns
are different observations of a signal [48]. The diagonals in covariance matrix are the
variance of the columns of the data matrix and off-diagonals are the covariance between

columns. The Covariance matrix is given by [48]:

Ty Oy e OLn
Dy s i T iy
S =
| Ony Onp  weo On,w |

The covariance matrix is square and is symmetrical about the main diagonal.

The covariance method for AR spectral estimation is based on minimizing the forward
prediction error in the least squares manner [37]. It computes the coefficient such that the
error between sampled data x[n] and predicted data x[#] is minimized as following [37]:

N-1 2
min, " |x[n]-%[x]

n=p
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For N samples of x[n], Covariance method minimizes the error between x[n] and x{r] for

N-p points where, p <n <N. Therefore, it is sensitive to noise [35-37].

3.2.3 Principle Component Auto-Regressive (PCAR) Method
In the PCAR method, a linear system is expressed as follows [37]:

Xila_ | %
£

/8

X, and X,are the right sides of the forward and backward prediction. X¢and Xy are the

left sides of the forward and backward prediction.

The optimal coefficients are obtained using following expression [37]:

L
= Z%\ZETXTJ'E (3.14)

i=l 7%

Where,

X X
X=|"7| and %= __f
X, Xb
A, = L largest eigenvalues of the matrix X.

¥ =L corresponding eigenvectors.

L represents number of complex sinusoids.

The PCAR method uses both forward and backward prediction, therefore, it has more
data points to average and is less sensitive to noise as compared to the Covariance
method [37].

3.2.4 Matrix-Pencil (M.P.) Method

The Matrix-Pencil method is a relatively new method and is being used in areas such as
ultrasonic field, electromagnetic, acoustic, wireless transmission propagation, wire-less
adhoc sensor network and in computer aided control system [28]. It estimates complex

resonant frequencies and gives a discrete spectrum [28].
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The M.P. method approximates the signal by weighted sum of complex exponentials.
Any harmonics can be retrieved from the following equation [28]:

L
Akl=> ae” +n[k] , where, k=0, 1...N-1 (3.15)

I=1
Where, x [k] and n[k] are the measured samples and noise samples, a and o, are
unknown amplitudes and frequencies. The Hankel matrix X, where off-diagonal entries
are equal, is constructed from the measured samples. The two L rank matrices Y1 and Y2
can be constructed from X by deleting first and last d rows. Choosing d >1 improves
resolution and yields smaller variance estimates [48]. By combining Y1 and Y2, the data

matrix [Y] can be given as [28]:

y(0) 71V NORE ¢ 4 T
y(@D) y2) ... yL+]
[Y]= . . . . (3.16)
YN=L=1) Y(N=-L) e YN=D]y 0

Where, L is the pencil parameter and is chosen between N/3 to N/2. For these values
variance is minimum [28]. Singular value decomposition of the matrix [Y] is:

[Y]=[U] [D] [V]"

Where, [U] and [V] are unitary matrices containing eigenvectors of [Y][Y]" and [Y]"[Y]
respectively. [D] is a diagonal matrix containing singular values of [Y]:

[UT*[Y][V] = [D]. From the ratio of singular values to the largest one, the choice of
significant modes M is done. Next, matrix [V'], containing M dominant right-singular
vectors, is constructed:

[V1=[vi, va...vm]

The right-singular vectors from M+1 to L, corresponding to the small singular values are
discarded [28].

[Y1]=[UI[D ]V, 1" and [Y2] = [U][D ][V 1"

Where, [V ] and [V, ] are obtained from deleting the last row and first row of [V]
respectively. [D] is obtained from M columns of [D] corresponding to the M dominant
singular values [28]. The roots (desired frequencies) may be found as the generalized

Eigen values of the matrix pencil pair from [Y1]'[Y2] - AL
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3.3 Joint Time-Frequen cy Analysis (JTFA) methods
In the FFT and mMOode]-haced methods. a signal is analyzed in the frequency domain only.

JTFA methods alloy, analyzing the signal both in time and frequency domain
simultaneously [16, 17, 37]. JTFA methods are more useful for applications where it is
important to observe a change of power spectru over time. It gives the instantaneous
spectrum [16, 17, 37. The simplest approach to obtain frequency as a function of time is
to divide the data sepjeq in overlapping blocks by using a window and then apply the
Fourier transform to each block. This technique i gnown as short-time Fourier transform
(STFT) [16, 17, 37], The frequency and time resolution depends upon the size of
window. A small Window gives better time resolution and a wide window gives better
frequency resolution which is more commonly termed as window effect [16, 17, 37].
According to Heiseppe, ¢ uncertainty prin ciples an optimal joint time-frequency
resolution can be achjeyeq by using a Gaussia® window. To over-come the window
effect, a Wigner-Vijjje Distribution (WVD) methOd was developed. It gives better
frequency resolution p it has the disadvantage of cross-term interference [16, 17, 37].
To overcome CrOSS~term interference, the Gabor spectrogram or Adaptive spectrogram

can be used. For any of the above methods, there are always trade-offs between

resolution and COMputing time or complexity [37}-

3.3.1 Short-time Foyigr Transform (STFT)

In STFT, time'freq“ency information is spread i
obtained by translating , window g in time and frequency s given below [16, 37]:

atoms known as Gabor atoms that are
. ift

8. =8(t—ue

STFT correlates a Signa] x (t) with window as:

S; &)= [x(8(t~ yypiet

The discrete represepniation of STFT-based Spectrogram is given by the following

expression [37]:

2

S[mAM ,n] = Zx[i]g[i _ mAM]e—jZHni/N
i=0
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Where, N denotes the number of frequency bins and AM denotes the time sampling

interval.

3.3.2 Gabor Spectrogram
In the Gabor expansion method, the signal x[i] is represented by a weighted sum of time-
shifted and frequency-modulated function h[i] and is expressed as [16, 17, 37]:
N-1 .
Hil=Y.> C, hli —mAM]e/ >N
m n=0

Where, C,, , are Gabor coefficients and are computed by the STFT as shown below [16,
3¢ M |
Cm’n = STFT[mAM ,n] = Zx[i]y* [i— mAM]e—jZI'Ini/N

i=0

Where, N denotes the number of frequency bins and AM denotes a sampling interval.
The function y[i] is dual function of h[i]. The Gabor spectrogram is given by the
following equation [16, 17, 37]:
GS,li,k] = | |Z|: cim,,,cm.,n. WD, ,.[i,k]

m—m'|+|n-n'|<D

Where, WVD, .[i,k] denotes the cross-WVD of two frequency-modulated Gaussian
function [37]. Wigner-Ville distribution (WVD) is given by [37]:

L/2
WVD [i, k] = ZR[z‘, mle/2#m/L

m=-L/2

Where, R [i, m] = z [i+m] 7 [i-m] and z[i] is the analytical form of the signal x[i].

3.3.3 Cone-Shaped Distribution (CSD)
Applying 2D filtering to the Wigner-Ville distribution to reduce the cross-term
interference yields the equation given below [16, 17, 37]:

L/2

Cli,kl= > Y ¢ln,mIR[i —n,mle >

m=-L/2 n

Where, ¢[n,m]denotes the kernel function. In CSD, the kernel function is defined by [16,
371
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amz

gli,ml=1e ° fori < m|
0, otherwise

Where, c is a constant and by adjusting a, trade-off between cross-term interference and

time-frequency resolution can be achieved [37].

3.3.4 Adaptive Spectrogram
The adaptive transform represents the signal x[i] as a weighted sum of adaptive Gaussian

function and is given by the expression [16, 17, 37]:

D-1
x[i]= Y 4.kl

k=0
Where, h,[i] is the adaptive Gaussian function 4,[i] and is given by the expression [16,
17. 37}

+ -0.25 [i—ik]2 . e
Ry [i] = (2, 1) exp —T+J(2H9k[l~lk])

k

The adaptive spectrogram is given by the equation [16, 17, 37]:

ot 2 [i—i, ]
AS[i,n]=2) |4, exp{-— a" —ak[n—Hk]}
k=0

k

The analytical details of the expressions for the above methods and their derivations are
given in [16], [17], [23], [28], [35-37], [41], [47] and [48].




Chapter 4: Experimental-Setup and PC-Based Implementation

4.1 RSH Calculations and Speed Measurements

The identification of the speed-related slot harmonics, described in the previous chapter,
was carried out using an experimental test rig. The rig consists of a Lab-Volt three phase
power supply, supplying a three-phase wound rotor induction motor coupled to an
electrodynamometer used for loading the motor. The induction motor is a 208volts, 4-
pole, 60Hz, three-phase, 175 watt wound rotor machine. There are 24 rotor slots. For

experiment, its stator was connected in wye and its rotor terminals were shorted.

Table 4.1: F.H.P Induction Motor Specifications.

Power 175 watts

Voltage 208 volts

Current 1.3 amps.

Speed 1800 rpm

Frequency | 60 Hz

Stator 3 phase, wye-connected, 4-poles

Rotor Wound rotor, 24 slots, terminals shorted.

The speed was measured at different loads using digital tachometer, and rotor slot

harmonics were calculated using the expressionz = 6% (fs £ /o) [32, 33]. The speed

measurements and rotor slot harmonic calculations are tabulated below in table 4.2. From
the above calculations, two rotor slot harmonics are identified. For analysis and spectral
estimation only the first harmonic will be considered. The other RSH is caused by the
reverse rotating field due to asymmetry and voltage unbalance and there is uncertainty of
its strength [45]. For the 24-rotor slot, 4-pole test machine, the first speed-related slot
harmonic (RSH1) is found to be confined to an interval [9fy 11fy], where f; is the
fundamental frequency component at 60 Hz. As the load increases, the slot harmonic

frequencies decrease with the increasing load.

21
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Table 4.2: Measured speed and calculated RSH at different loads.

S.No. Load Measured Slip Calculated | Calculated
Torque | Speed (rpm) (%) RSH1 (Hz.) | RSH2 (Hz.)
(N-m)

1. 12 1543 143 3572 677.2

2. 1.0 1586 11.9 5744 694.4

4 0.8 1628 9.6 591.2 2

4. 0.6 1667 7.4 606.8 726.8

3, 0.4 1700 5.8 620 740

6. 0.2 1730 39 632 752

T 0.1 1746 3 638.4 758.4

8. 0.06 1752 2.6 640.8 760.8

4.2 Off-Line Identification of RSH

The stator line current was captured on a Hewlett Packard oscilloscope using a 2 ohm
shunt resistor. Communication between the host computer and oscilloscope was carried
via RS-232 interface using HP BenchLink XL 54600 scope toolbar. Real-time data
records were collected at 1752, 1746, 1730, 1700, 1667, 1628, 1586 and 1543 rpm and at
a load level of about 1.2 Nm. full load decreasing gradually, in 8 steps, to near zero-load
level. The speed at different load levels was measured by using a digital tachometer. The

current is sampled at sample interval of 500 ms. with data record length of 2000 samples
at a sampling frequency f, = % = 200% g = 4kHz. The discrete values of time and

amplitude were stored in excel files which were retrieved into Matlab software for offline
processing and identification of RSH. The Hanning window was applied in time domain
before taking the 2048-point FFT of the discretized current signal to reduce spectral
leakage [32]. Figure 4.1 shows a picture of experimental set-up for off-line. Figure 4.2
shows a typical stator line current signal at 60 Hz before and after hanning window is
applied in time domain. Figure 4.3 shows a frequency spectrum of stator line current at

load torque of 1.2, 0.4, and 0.06 Nm respectively.
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Figue 4.1: Ewae’rimentél-Setup for identification of RSH and off-line processiﬁg.

Stator current signal at 60 Hz

TR AR AR,

Amplitude

3 B

NIRRRRRARRARRARRRRRRRARR M V |

Amplitude
ju]

=1+ =
2} i '] ll J ]
_3 1 1 1 1 1 u L 1 1 (]

n] 200 400 600 800 1000 1200 1400 1600 1800 2000

Samples

Figure 4.2: Stator line current signal before and after hanning window is applied.
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Frequency spectrum of stator current
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Figure 4.3: FFT of stator line current at load torque of 1.2, 0.4 and 0.06 Nm.

respectively.
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From the previous calculations and frequency spectrum analysis, two rotor slot harmonics
are identified. From Figure 4.3 it is observed that as the load increases, the slot harmonic
frequencies decrease with the rotor speed and its amplitude increases with the load. After
applying Hanning window to the stator current, the 8-th order Butterworth band pass
filter, having a band pass interval of [S50Hz 650Hz], is then applied to eliminate all
spectral harmonics outside the range containing the expected slot harmonics [32]. The
band passed signal is then used in simulations to estimate rotor slot harmonics and thus to
detect rotor speed by using different frequency estimation techniques as explained in the
next chapter. Figure 4.4 shows a band passed stator current signal and a frequency
spectrum of the band passed signal. As seen in the frequency spectrum below the speed
related harmonic has a maximum peak in the given frequency band. Therefore, the

frequency corresponding to the maximum peak is the rotor slot harmonic [32-35].
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Figure 4.4: Band-pass filtered stator line current signal and it's FFT.
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4.3 Experimental Set-up for On-line Speed Detection

The experimental set-up for on-line speed detection consisted of a Lab-Volt three phase
variable power supply supplying a three-phase wound rotor induction motor coupled to
an electrodynamometer, as explained in section 4.1. Figure 4.5 shows a picture of on-line

experimental set-up.

Figure 4.5: Experimental set-up for on-line speed detection.

4.3.1 Data-Acquisition

The data acquisition system used in the experimental set-up was National Instruments NI-
USB 9215, 4-channel, = 10V DC, 16-bit simultaneous sampling analog input module.
The NI USB-9215 data acquisition module provides a USB-2.0 interface for four
channels of 16-bit simultaneous sampling analog inputs [38]. It consists of two
components a Crio-9215 module and a USB-9161 carrier and has an integrated signal
conditioning. The driver software for this module is NI-DAQmx Base [38]. It has 10-
terminal detachable screw-terminal connector to provide connections for the four analog
input channels and a common terminal, COM, which is internally connected to the

isolated ground reference of the module [38]. The common ground is isolated from the
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chassis and the host computer. Each channel has built in over-voltage protection. Before
the signal is sampled by a 16-bit ADC, it is buffered and conditioned by the
instrumentation amplifier [38]. Each channel has independent track and hold amplifiers
[38]. Figure 4.6 shows a picture of the NI USB-9215 data acquisition module as

connected in the on-line experiment.

Figure 4.6: NI USB-9215 data acquisition module as connected in the
experiment.

4.3.2 Current Signal Acquisition and Conditioning

The signal of interest for this experiment is the motor stator line current. The signal
conditioning device must convert this to voltage. Regardless of the type of sensor or
transducer, the general signal conditioning requirements are amplification, attenuation,
filtering, isolation, multiplexing, simultaneous sampling, digital signal conditioning etc.
[38]. Any real-world signal contains frequency components greater than the Nyquist
frequency aliased to the signal. This introduces an error in the measurement. To prevent
this either a sampling frequency is set to 5 to 10 times the maximum frequency
component in the signal or analog low-pass filter, which is essentially an anti-aliasing
filter, is used before analog-to-digital (ADC) converter [36,38]. Due to these facts, a
typical MCSA scheme used in most of the references cited is shown below in Figure 4.7.

Essentially, in a MCSA scheme the stator line current is notch filtered to remove
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fundamental component, scaled and then is supplied to an analog anti-aliased filter before
it is fed to the ADC [9-13].

A 4

. 5 ADC
— /— Scaling E >

Stator Line| Notch Filter Anti-Aliasing
Current Filter

Figure 4.7: Conventional data-acquisition of stator line current.

Since, the objective of the research is to use minimum or no analog circuitry for the
F.H.P. induction motor, due to the reasons as explained in chapter 1 and chapter 2, the
high-precision 16-bit NI USB-9215 DAQ module which has integrated signal
conditioning and isolation, as explained in section 4.3.1 of this chapter, is selected for this
experiment. To convert a current signal to a voltage signal a 2 ohm shunt resistor is used.
The voltage drop across the resistor for a motor of this rating is 2 volts at full-load. It is
recommended to amplify the signal to meet the dynamic range of DAQ module which is
+10V for the selected DAQ module [39, 40]. It can be accomplished either by using high
value of resistance or by using an analog amplifier to amplify the signal. As the increase
in resistance value will increase the thermal noise and use of analog amplifier will
amplify the noise also [39, 40]. Therefore, 2 ohm shunt resistor is used. Also, to reduce
analog circuitry [6], no notch filter or anti-aliasing filter is used before a signal is fed to
ADC. Figure 4.8 shows the DAQ scheme used in the experiment. Since, neither of the
output from a shunt resistor is referenced to a system ground, input to the DAQ module is
a floating differential signal. As practical devices have limited capability to reject
common-mode voltage [38], therefore, to keep the signal with-in the common-mode
range, both the +ve and —ve leads of the signal are connected to an isolated COM

terminal through one mega ohm resistors [38] as shown in the Figure 4.8.




29

+ve >O Ch 0+
e i Voltage across shunt
Stator -ve 3 ’O Ch 0-
- S Flpatmg -
Current.  Resistor | 2 oicrontial USB-2.0
Connection DAQ
A A 4 .
z Terminals.
1 MQ resistors
‘ ¥ () com

Figure 4.8: DAQ scheme for the on-line experimental set-up.

4.4 Block Diagram: Sensor-Less Speed Detection
Figure 4.9 shows a simplified block diagram for both off-line and on-line sensor-less

speed detection utilizing MCSA technique [32-35]:
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Figure 4.9: Simplified block-diagram for sensor-less speed detection algorithm.
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4.5 PC-Based Implementation

The sensor-less speed detection algorithm described above was implemented in real-time
using LabView 7.1 software and its advanced signal processing toolset for both off-line
and on-line speed detection with the following assumptions:
i.  Only harmonics due to slotting and saturation are considered. Winding and
distribution factors are neglected.

ii.  Inverter harmonics are neglected.

iii. Fundamental frequency is fixed at 60 Hz.

iv.  Motor is operating under its rated slip range and number of rotor slots is known.
LabView is an application development software which uses a graphical programming
language, also known as G programming to write codes known as block diagrams. It has
all the logic features and capabilities of any other programming language such as C or
Matlab [25]. But, in LabView, the application is developed by using built in VIs known
as icons or blocks. LabView has a graphical user interface which is known as the front
panel, in which various controls, indicators, knobs, dials, graphs and many other features
can be incorporated with ease to make the application user friendly and to display useful
results for analysis. LabView also has various built in libraries, VIs for data-acquisition,
signal processing, statistics, waveform generation and monitoring, analysis, mathematics,
logical etc. to name a few. LabView software is specifically useful for applications which
require data-acquisition or instrument control and to develop real-time applications [25,
36]. The application files developed in LabView are saved with a VI extension, also
known as virtual instrument. The real-time application developed using LabView for this
research allows investigating dynamic behavior of all the applied spectral estimation
techniques in one application. The graphical user interface (GUI) of the application
allows controlling various parameters in run-time to study its effect on the performance
in real-time. The PC on which this application is run in real-time is PentiumIV with
512MB RAM.

4.5.1 Off-line LabView Implementation
The data-records are collected as explained in section 4.2. The data text files are retrieved

in LabView using “ReadFromSpreadsheetFile.vi”. The time and amplitude values of
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stator line current are stored in two sub-set arrays. The output of the sub-set arrays is read
in a “For Loop” and within the “For Loop” Hanning window and Butterworth band-pass
filter sub-routine is applied in the time domain to the stator line current signal. The
stacked ring-type case-structures are used to implement spectral estimation sub-routines.
The output of the Butterworth band-pass filter is passed to the case structures to obtain
the spectrum. The peak of the spectrum is obtained by using “Max-MinArray.vi”. The
equation from section 4.1 to detect the speed value is solved using “FormulaNode.vi”.
The output of the formula node is passed to the indicators in the front panel. Figures 4.10-
4.12 shows the partial view of the block-diagram as explained above.

:
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Figure 4.10: Partial view of block-diagram to read data files.
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Figure 4.11: Partial view of block-diagram showing window and band-pass filter
sub-routines within main “For-Loop”.
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Figure 4.12: Partial view of block-diagram showing nested ring-type case-
structures to implement spectral estimation sub-routines with in the “For-Loop”.

4.5.2 On-Line LabView Implementation

To analyze the results as the current signal is being acquired and to prevent data from
being overwritten, the circular buffer technique is employed in data-acquisition VI by
using DAQmx Base VIs. The current data from the buffer is read in a main “While-
Loop”. Within the main “While-Loop” the block diagram is developed in a similar
manner as explained in section 4.5.1. The NI USB-9215 DAQ module uses DAQmx Base
driver software. Channels and tasks are two important concepts in NI-DAQmx Base [36,
38]. A physical channel is one which is used to make measurements. The virtual channels
are used to encapsulate physical channels with specific information to format the data. A
task represents a measurement to be performed. A task is a collection of one or more
channels, timing, triggering and other properties [36, 38]. The sub-routines used for
continuous data-acquisition are “DAQmx Base Create Task.vi”, which creates a task,
“DAQmx Base Create Virtual Channel.vi” which creates a virtual channel and add tasks
to the virtual channel, “DAQmx Base Timing.vi” which configures the sampling rate and

creates a buffer when needed and sets the continuous or finite samples acquisition mode,
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“DAQmx Base Start Task.vi” which starts the task to begin the measurements, “DAQmx
Base Read.vi” which reads the task and specifies the number of samples to read for each
channel, “DAQmx Base Stop Task.vi” which stops the task and brings it back to the state
before start task, “DAQmx Clear Task.vi” which clears the task and releases any
resources reserved by the task, and “Config Input Buffer.vi”, which is used to overwrite
the default buffer size. The data-acquisition VI acquires continuous data using the DAQ
device internal clock. The application reads the first half of the data from the buffer while
the second half of the buffer is written with new data. The channels in NI-DAQmx Base
are identified as ai0, ail, ai2, ai3, and so on. Channel 0 is used to acquire the current
signal and the naming convention is used as Devl/ai0, i.e. device name and a slash
followed by channel identifier. Figure 4.13 shows a partial view of the on-line block
diagram for data-acquisition. The rest of the on-line block diagram is essentially the same
as for off-line except that in on-line application block diagram the “For-Loop” is replaced
by “While-Loop™.
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Figure 4.13: Partial view of the on-line block diagram showing continuous data-
acquisition VI.
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4.5.3 LabView Application Front-Panel

The front-panel for both off-line and on-line application has an interactive user interface.
It enables the user to input the values of fundamental frequency, number of poles, number
of rotor slots specific to an induction motor. It displays the plots of the measurement from
a current transducer. It also displays windowed and band-pass filtered signal. The GUI
interface of this application allows a user to select the type of spectral estimation method
desired and displays the corresponding spectrum. It has dial and numeric indicators that
display rotor speed and RSH frequency. It enables the user to see changes in the above
parameters in real-time as the load is being varied. In addition to that, it has control for
buffer size, sampling rate, and number of samples to read. It also has control for band-
pass filter to select filter order and band-pass frequencies. The GUI of the application has
controls for parameters specific to the spectral estimation technique that enables the user
to vary different parameters to study the effect on performance in real-time. This
application allows investigating the dynamic behavior of the applied techniques in real-
time. Figure 4.14 shows a view of the front-panel common to both off-line and on-line

application.
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Figure 4.14: Front-panel view common to both off-line and on-line application.
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Chapter 5: Experimental Results and Discussion

5.1 Off-Line Simulations and Results

The motor was run at different loads to acquire stator line current 30 cycle data-records at
a sampling frequency of 4 kHz. and 6 cycle data-records at a sampling frequency of 10
kHz. at load torque of 0.06, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2 Nm, in real-time, for off-
line speed detection. Figure 5.1 to Figure 5.7 show spectra of band-passed signals using
various spectrum estimation techniques at a light load of 0.06 Nm and full load of 1.2
Nm. At light load, the calculated RSH is equal to 641Hz. and the full load calculated
RSH is 557 Hz. In a similar manner, spectra were obtained at all the above values of load.
Figures 5.8 to 5.10 show results and plots of measured speed vs. off-line detected speed
in rpm at different levels of load for FFT, Model-Based methods and JTFA methods
respectively for 30 cycle data at a sampling frequency of 4 kHz. Figure 5.11 shows
results and a plot of measured speed vs. off-line detected speed in rpm at various load

levels for model-based methods for 6 cycle data at a sampling frequency of 10 kHz.

5.2 On-Line Experimental Results

The motor was run and a stator line current signal was acquired as explained in chapter 4,
section 4.5.2 to obtain the experimental results of various applied spectral estimation
techniques in real-time. The experiment was performed for on-line analysis. Accuracy in
rpm, the difference between measured and detected speed, was measured by comparing
the values of measured speed with a digital tachometer and detected speed from RSH at
different loads for all applied spectral estimation methods. Similarly, resolution in Hz that
determines the minimum change in speed which can be detected was observed by varying
the load and thus speed, very gradually in very short steps for the entire range of its rated
slip, for each of the spectral estimation methods. And finally, settling time which
determines the time for an algorithm to stabilize was recorded by varying the load
suddenly from no-load to full-load or from full-load to no-load and also in the
intermediate ranges for each of the spectral estimation methods. All the above readings

were taken for different numbers of cycles at various sampling frequencies to determine

35
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which technique works best under what conditions.
The number of cycles, at various sampling frequencies, is determined and governed by
the following relation:

Nuberof oyeles= Number of samples

x 60, where 60 = fundamental frequency.
Samples per second

The table 5.1 shows the numbers of data-samples required to get the desired number of

cycles for each sampling frequency, as used in this experiment.

Table 5.1: Number of data-samples required to get the desired number of cycles
at different sampling frequencies.

Sampling Frequency 2 kHz. 4 kHz. 8 kHz.
Number of cycles

6 cycles 200 400 800

9 cycles 300 500 1200
15 cycles 500 1000 2000
30 cycles 1000 2000 4000
60 cycles 2000 4000 8000
120 cycles 4000 8000 16,000

The on-line experimental results and plots are shown in Figure 5.12 to 5.21 in terms of
accuracy, resolution and settling time with regard to different data record lengths at
various sampling frequencies. As seen from off-line results in Figure 5.10, JTFA methods
performed poorly in terms of accuracy with accuracy error in the range of 35 to 45 rpm,
therefore, only some results in terms of resolution and an estimated settling time were

obtained for JTFA methods to overview the performance.
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Figure 5.1: FFT spectrum of band-passed current signal at a light load torque of
0.06 Nm (top) and a full loa