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Abstract 
Climate change can exacerbate groundwater contamination via secondary effects like droughts, 

floods, and saltwater intrusion. This thesis analyzed the influence of climate change factors on 

metal contamination in groundwater using well water quality data from British Columbia, 

Canada. An exploratory data analysis characterized trends between metal contamination (arsenic, 

cadmium, lead, manganese, uranium), climate factors (temperature, precipitation), and aquifer 

types based on the B.C. aquifer classification system. Correlation analysis revealed relationships 

between metals weakened or remained consistent in floods but decoupled in droughts, indicating 

distinct geochemical shifts. Saltwater intrusion altered correlations between metals, suggesting 

changed redox conditions and ion competition. Factor analysis identified key influencing 

variables, including groundwater geochemistry/saltwater intrusion, redox reactions, climate, 

aquifer confinement, and anthropogenic sources. Drought intensified geochemical interactions 

while floods overwhelmed natural processes. Arsenic contamination related strongly to saltwater 

intrusion. Overall, this research provides an initial knowledge foundation to build predictive 

models assessing climate change risks on groundwater quality. Further spatial analysis is needed 

to differentiate anthropogenic from natural sources. Incorporating additional hydrogeological 

data would strengthen understanding of climate influences on metal mobilization. This work 

highlights the need to consider climate change in protecting groundwater resources and human 

health. 

  



  
 

xv 
 

List of Abbreviations and Symbols Used 
IPCC Intergovernmental Panel on Climate Change 

US EPA United States Environmental Protection Agency  

B.C. British Columbia 

USGS United States Geological Survey department 

DRASTIC Dimensionless index to assess groundwater vulnerability 

includes: Depth to water table, Recharge, Aquifer media, Soil 

media, Topography, Impact of vadose zone, Conductivity (Patel 

et al., 2022) 

RASTERs Matrix of pixels containing values that represent information.  

Often the raw form of data from satellites. 

SWI Saltwater Intrusion/Sea Water Intrusion 

PCIC  Pacific Climate Impact Consortium 

OBS  British Columbia Provincial Groundwater Observation Well 

Network  

BCDC  British Columbia Data Catalogue 

EMS ID Environmental monitoring station ID 

EC  Environmental Canada 

BCH  British Columbia Hydro   

CDWG  Canadian Drinking Water Guidelines/ Guidelines for Canadian 

Drinking Water Quality 

U, U--T Total Uranium of sample [mg/L] 

As, As-T Total Arsenic of sample [mg/L] 

Mn, Mn-T Total Manganese of sample [mg/L] 

Pb, Pb-T Total Lead of sample [mg/L] 

Cd, Cd-T Total Cadmium of sample [mg/L] 

Fe, Fe-T Total Iron of sample [mg/L] 

K, K—T Total Potassium of sample [mg/L] 

Mg, Mg-T Total Magnesium of sample [mg/L] 

Cl, Chloride, Chlrid:D  Dissolved Chloride of sample [mg/L] 



  
 

xvi 
 

Ca, Ca-T Total Calcium of sample [mg/L] 

Sulfate, Sulfat:D, Dissolved Sulfate of sample [mg/L] 

P, P--T Total phosphorous of sample [mg/L] 

Total Kjeldahl Nitrogen, 

N.Kjel:T, Nitrogen 

Nitrogen measured via Kjeldahl method.  This method is a good 

general measure of organically used nitrogen because it 

accounts for biological incorporated nitrogen [mg/L] 

total alkalinity at pH 4.5, 

Alkalinity Total 4.5, Alkalinity 

Buffering capacity or the amount of acid needed to bring the pH 

to a 4.2, which carbonate, and bicarbonate are assumed to be 

converted to carbonic acid [mg/L CaCO3] 

Hardness Amount of dissolved minerals (Calcium and Magnesium) in 

water [mg/L CaCO3] 

Specific Conductance, SC Measure of the water’s ability to conduce an electric current 

[µS/cm] 

Residue Filterable 1.0u Turbidity [mg/L] 

Minimum temperature, 

MIN_TEMP 

Mean monthly minimum temperature [°C] 

Maximum temperature, 

MAX_TEMP 

Mean monthly maximum temperature [°C] 

Flood Drought, FD Total monthly precipitation subtracted by simulated monthly 

precipitation/ climatology data simulation for the same location 

[cm] 

Heatwave, HW, GettingHotter Mean monthly maximum temperature subtracted by simulated 

monthly maximum temperature/ climatology data simulation for 

the same location [°C] 

MinTemp, MT Mean monthly minimum temperature subtracted by simulated 

monthly minimum temperature/ climatology data simulation for 

the same location [°C] 

Aquifer Group 1, AG1, 

Aquifer_1 

Unconfined aquifers with Aquifer subtype 1a, 1b, 1c, 2, 3 and 4a 

according by B.C. Aquifer subtype classification system 

Aquifer Group 2, AG2, 

Aquifer_2 

Confined aquifers with Aquifer subtype 4b and 4c according by 

B.C. Aquifer subtype classification system 



  
 

xvii 
 

Aquifer Group 3, AG3, 

Aquifer_3 

Bedrock/fractured aquifers with Aquifer subtype 5a, 6a and 6b 

according by B.C. Aquifer subtype classification system 

KDE Kernal Density Estimator 

One-hot encoding Method of converting categorical values to numerical 

representations via 1s and 0s 

KMO The Kaiser-Meyer-Olkin test/values.  Measures sampling 

adequacy for factor analyses.  

X Equivalent distance calculated by the haversine formula to 

account for latitude [m] 

Y Equivalent distance calculated by the haversine formula to 

account for longitude [m] 

Months_Since_First_Sample Numerical conversion to account for time in a factor analysis 

[Months] 

F1, F2, F3, F4, F5 Factor 1, Factor 2, Factor 3, Factor 4, and Factor 5 of the main 

factor analysis  

F1 As, F2 As, F3 As, F4 A, F5 As, F6 

As 

Factor 1, Factor 2, Factor 3, Factor 4, Factor 5 and Factor 6 with 

focus on Arsenic 

F1Mn, F2Mn, F3Mn, F4Mn, F5Mn, 

F6Mn 

Factor 1, Factor 2, Factor 3, Factor 4, Factor 5, and Factor 6 

with focus on Manganese 

F1Pb, F2Pb, F3Pb, F4Pb, F5Pb, F6Pb Factor 1, Factor 2, Factor 3, Factor 4, Factor 5 and Factor 6 with 

focus on lead. 

F1U, F2U, F3U, F4U, F5U, F6U Factor 1, Factor 2, Factor 3, Factor 4, Factor 5 and Factor 6 with 

focus on Uranium.  

F1D, F2D, F3D, F4D, F5D, F6D Factor 1, Factor 2, Factor 3, Factor 4, Factor 5 and Factor 6 of 

the drought factor analysis  

F1F, F2F, F3F, F4F, F5F, F6F, F7F Factor 1, Factor 2, Factor 3, Factor 4, Factor 5, Factor 6, and 

Factor 7 of the flood factor analysis 

 

  



  
 

xviii 
 

Acknowledgements 
I’d like to thank all those who supported me: 

- To my mother Anne and sister Avea, who spent countless hours per week helping me edit 

and type, so I didn’t have to “drop out”. 

- To Leili who helped me navigate campus and lab work while I had tumors in my 

shoulders, knees, arms, and spine; and took charge of communication when I went mute. 

- To my friend Matthew who stood by me throughout burnout, lack of accommodations, 

helped me overcome neurodiverse barriers and connect with people who got me back on 

track. 

- To Dale and the Neil Squire Society, who bought workplace accommodation technology 

and assisted me with disability technical support. 

- To Brishna who helped bring me food when I was bedridden due to tumors and was 

refused for more disability support. 

- To Chris and everyone who helped proofread my drafts 

- To Dr McBean at University of Guelph who helped me edit and refine ideas. 

- To my supervisor, Dr Gagnon at Dalhousie University.  

 



  
 

1 
 

Chapter 1:   Introduction  

1.1 Study Background 
 Climate change is one of the most pressing global challenges of the generation with severe 

primary and secondary consequences for both natural and human systems. Anthropogenic 

activities, especially fossil fuel burning and deforestation, have increased greenhouse gas 

emissions in the atmosphere resulting in changes to the earth’s climate system. Said changes 

have profound implications on various aspects of human lives including ecosystems, agricultural, 

public health and water resources. 

Numerous scientific studies since the Intergovernmental Panel on Climate Change (IPCC) have 

established knowledge on climate change, research priorities, policy discussions, and funding 

initiatives concerning the essential relationship with water resources. Most highlighted the need 

to address the impact of climate change; including impacts on water resources and water quality 

(Sýs et al., 2021). These studies and panels have provided evidence of rising sea levels, increased 

temperatures, altered precipitation patterns and more extreme intense weather events. Said 

studies linked these changes to human activities and further demonstrated the relationship 

between human activities and the destruction of the delicate balance of the planet's ecosystem. 

With the development of general circulation models for climate change and the inclusion of new 

knowledge on metal transportation, scientists can predict future climate scenarios along with the 

identification of emerging contaminants.  Recently, organisations are acknowledging the value of 

granting public access to their database thus allowing for more widespread analysis of models 

(Klein et al., 2017).  Environmental monitoring databases specifically focused on climate change 

are also starting to utilise groundwater data and groundwater quality data (Amanambu et al., 

2020; Water Protection & Sustainability Branch, 2024).   Previously, most climate change water 

models were focused on hydrological/overland flow with groundwater studies being a secondary 

priority.  Groundwater impact was analysed via localised studies for aquifer vulnerability like 

DRASTIC (Maqsoom et al., 2020).  Currently, hydrodynamical climate risk models are now 

attempting to incorporate soil and ecological tools and Modflow-style models to account for 

hydraulic connectivity and solute transport (Amanambu et al., 2020).   
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Artificial intelligence and machine learning has led to the tracking of secondary effects of 

climate change such as water contamination. These additions are now starting to be used to 

investigate the impact of climate change on water resources. With increasing droughts caused by 

climate change, aquifer vulnerability has started to include not just water quantity but the effect 

on water quality (Barbieri et al., 2023).  The effect of flooding on well water quality is starting to 

expand beyond biological contamination. Saltwater intrusion assessments have become a focus 

due to overpumping from droughts and rising sea levels. In addition, development of risk 

assessment frameworks such as US EPA risk assessment guidance have provided a structured 

approach to evaluating risks posed by metal contaminations in well water; inclusive of pathways, 

toxicity, and the potential impacts of climate change (Sýs et al., 2021).  

1.2 Rationale for the Study 
Well water is an essential source of drinking water, in both developed and developing countries 

throughout the world.  Approximately two thirds of the population of Nova Scotia currently rely 

on private well water (G. W. Kennedy & Drage, 2020). Though the primary effects of climate 

change on the groundwater level have been studied, critical analysis on the secondary effects of 

climate change such as metal contamination is relatively scarce.   This lack of data is important 

for assessing human health impacts as well as impacts on ecosystems and water resource 

management. 

This thesis contributes to the understanding of the impact of climate change on metal 

contamination of Arsenic, Lead, Manganese and Uranium in groundwater/well water in British 

Columbia.  Three critical trajectories were examined: saltwater intrusion, flooding, and drought.    

These three events can exaggerate natural or existing sources of metal contamination or 

introduce new passages for anthropogenic sources (Kumar, 2012).  Overpumping during drought 

seasons, rising sea levels and changing hydraulic patterns can lead to the intrusion of saltwater 

into aquifers and the alteration of the metal composition in well water.  More frequent flooding 

events can immediately transfer and disperse metal contaminants from various sources, such as 

agriculture or heavy industry; and can alter soil composition and allow for the mobility of metals 

into the well water source over time (Ciszewski & Grygar, 2016).  Rising temperatures can 

influence the mobility and release of metals from geological structures into well water 

(Hemmerle & Bayer, 2020).   
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Utilizing data from the Environmental Monitoring Stations from British Columbia, Canada, the 

resulting thesis research aims to discover relationships between metals such as uranium, arsenic, 

manganese and lead over a 40-year timeframe and climate change conditions.  This framework 

can be used to highlight the necessity of metal contamination testing in well water. This analysis 

will help create of a base of knowledge that can be used to build future predictive models for 

groundwater contamination with climate change effects. In addition, this thesis could further 

contribute towards ecosystem models and human health models to improve informed decision 

making and policy development.   Ultimately, the aim is to help build an understanding of how 

climate change will influence what is in groundwater. 

1.3 Research Objectives 
This study aims to gain an understanding on how climate change will influence what is in well 

water/groundwater. Biological contamination will not be a focus in this scope. The three main 

objectives are:  

1) To assess the variations in metal contamination levels in well water under different 

climate change-induced factors, including saltwater intrusion, flooding and drought 

events. 

2) To contribute to the existing knowledge based on the interactions between climate change 

and metal contamination in well water, providing insights for future predictive modelling 

that could influence policymaking, water resource management, and environmental 

planning. 

3) To assess the potential impact of climate change on the vulnerability and resilience of 

well water as a source of drinking water, considering the specific metal contamination 

risks. 

1.4 Hypotheses 
1) Increased saltwater intrusion due to climate change may lead to elevated levels of metal 

contamination in well water. 

2) Drought events resulting from climate change may result in higher concentrations of 

metals in well water via oxidation.  

3) Flooding may lead to a dilution effect on metals in well water. 
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Chapter 2: Literature Review 

2.1 Overview of Metal Contamination in Well Water 

2.1.1 Sources of Metal Contamination in Well Water 

2.1.1.1 Naturally Occurring/Geogenic Metals in Geological Formations  

Geological formations naturally contain minerals with heavy metals that can leach into 

groundwater depending on the mineral composition of the surrounding rocks and soil, the local 

hydrogeology, and the dual chemical aquifer characteristics (Earle, 2019a).  Said groundwater 

contamination is caused by processes such as volcanic eruptions, rock weathering and leaching 

into groundwater by the actions of water. Leaching occurs through geochemical interactions that 

dissolve present metals into groundwater. 

One of the examples of this is in sedimentary formations such as limestone, dolomite or shale in 

which the associated arsenic release via weathering is influenced by redox conditions, pH and 

other minerals present (Bradl, 2005). Iron and manganese are also commonly found in these rock 

formations and their release is promoted in conditions with high oxygen levels (Earle, 2019a). 

Manganese in Nova Scotia is associated with the Windsor Group limestone formation (G W 

Kennedy, 2021).  International examples of metal contamination include arsenic contamination 

in the Bengal delta in Bangladesh, in which sediments release levels of arsenic (Mukherjee & 

Bhattacharya, 2001). The High Plains Ogallala aquifer in the United States contains sedimentary 

rock formations associated with uranium and in reducing conditions, is leached into groundwater 

(Plumlee et al., 2004).  For a larger conceptual example, arsenic from sedimentary formations 

would be formed during diagenesis and related arsenic rock cycles in Figure 2.1.1.   

Igneous rock, formed from volcanic rock; and metamorphic rock, formed from rocks changed by 

heat and pressure underground can contain various trace metals, including uranium and radium 

either as composing or accessory minerals (Ulmer-Scholle et al., 2015). Examples of these are 

granite, syenite, basalt, gabbro, nepheline and andesite (Bradl, 2005).   Here, metal leaching 

depends on various groundwater chemical factors such as mineral solubility, rock-water 

interactions, and water infiltration from fractures or fissures.  Volcanic ash and lava flow contain 

heavy metals like lead, mercury and arsenic. These are released by volcanic activity and are 

transported into nearby soils and sediments. Afterwards, groundwater interacts with metal 

deposits resulting in metal leaching (Earle, 2019a). More international examples include arsenic 
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contamination in groundwater in the Andean region of Argentina and Chile; and manganese 

contamination from Basaltic formations in aquifers in India (Sujith et al., 2014; Tapia et al., 

2019).  Conceptually, these rock cycle processes for arsenic contamination are related to the 

metamorphism, volcanic emissions and hydrothermal activities in Figure 2.1.1.   

Further in-depth lithology is out of scope.  

 

Figure 2.1.1: Arsenic geologic cycle.  Digit in parenthesis gives the average concentrations of each geologic body. Purple and 
blue colored letters indicate the releasing and fixing mechanism of arsenic in the cycle. (Masuda, 2018). 

2.1.1.2 Anthropogenic sources of Metal Contamination 

Anthropogenic activities increase metal contamination in water sources, particularly 

groundwater, and subsequently well water. Emissions, effluence and waste disposal from mining 

smelting, manufacturing and other industrial activities can release various metals into the 

environment which enter groundwater systems via surface runoff, infiltration or direct 

contamination (A. Singh et al., 2022). In the Canadian context, mining activities are a significant 

source of contamination. For example, the mining operations from the Sudbury region in Ontario 

incur groundwater contamination from copper, nickel and cobalt (Vogels, 2014; Voutchkova et 

al., 2021). It is similar in the United States, where the Silver Valley region through Ohio and 

Idaho has groundwater affected by lead, zinc and other metal contamination due to mining 

operations (Snow, 2012). Additionally, groundwater can be contaminated by agricultural 

practices with the use of fertilizers, pesticides and animal waste via leaching and through 

groundwater recharge processes (P. Li et al., 2021). Climate change exaggerates the impact of 

these contamination sources by extreme weather events, erosion, and contaminant transportation. 
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Future research is required to fully understand how anthropogenic sources influence metal 

contamination. 

2.1.1.3 Corrosion of plumbing materials and well infrastructure as a source of metal 

contamination 

Another source of metal contamination in groundwater is due to the corrosion of piping materials 

and degradation of well infrastructure (Pieper et al., 2018). Critical components of a well such as 

pipes, fittings and pumps made of lead, copper and zinc; corrode over time and release metals 

into the water flow.  Climate change influences corrosion by altering water chemistry parameters 

such as pH and dissolved oxygen levels.  With increasing temperature fluctuations, this typically 

increases corrosion rates and leads to enhanced metal leaching (Staben et al., 2015).  

In addition, rusted iron oxides may reduce/remove some water contaminates like arsenic similar 

to soil processes (van Genuchten et al., 2020). 

The above considerations are beyond the scope of this thesis. 

2.1.2 Common Metals Found in Well Water 

The type of metal contamination found in well water/groundwater is dependent on geography, 

geology and water chemistry. In Nova Scotia, common contaminates are manganese, arsenic, 

magnesium, lead, uranium and fluoride due to the surrounding geography (G. Kennedy & Drage, 

2018).  Internationally, arsenic, cadmium, selenium, and copper are common (Khan et al., 2023).  

Lead contamination in ground and well water is a concern due to the health effects particularly in 

pregnant women and children (Brender et al., 2006). The contaminate source tends to be lead 

leaching from plumbing materials such as pipes and fittings in the plumbing system, aggravated 

by low pH and prolonged contact time (Subramanian et al., 1995).    

Galena, a lead sulfite material, is currently found in hydrothermal veins and mineral deposits (A. 

Singh et al., 2022). Groundwater interactions will cause lead-iron dissolution and subsequently 

cerussite, a lead carbonate mineral in oxidized lead deposits may contaminate groundwater flow 

(Jurgens et al., 2019).  Current lead contamination research is often focused on piping and 

drinking water systems and not geological formations. 

Zinc contamination is recognized in well water and drinking water systems, often leaching from 

corroded galvanized iron or zinc coated plumbing in low pH or acidic conditions (Oyem et al., 
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2015).  Zinc rich soils lead to groundwater contamination via erosion and deposition of zinc 

containing sediments with water infiltration into groundwater. Last, an additional source of zinc 

contamination can be via volcanic eruptions in volcanic regions (Oyem et al., 2015). 

Groundwater contamination in copper is again typically due to the corrosion of copper plumbing 

materials such as pipes, fittings and fixtures, releasing copper ions into the waterflow through the 

distribution system. This is aggravated by acidic water, high chlorine levels and prolonged 

contact time with piping surfaces (Staben et al., 2015). In specific geochemical conditions, 

copper contamination can be caused by groundwater percolation through natural occurring 

geological formations including chalcopyrite, a copper bearing mineral from hydrothermal veins, 

porphyry rock, malachite, azurite and other natural sources with depositions of copper 

(Voutchkova et al., 2021).  Cyprus and the Western United States (i.e. Arizona) have high natural 

copper contamination of groundwater due to these naturally occurring causes.  

Iron contamination is formed by both natural sources and corroded iron plumbing (Health 

Canada, 2022). It is more of an aesthetic concern than a health concern. 

Other contaminants are primarily caused by anthropogenic activities. For example, mercury 

contamination in groundwater arises from coal combustion, industrial discharges and mining via 

runoff and infiltration; or indirectly via deposition of atmospheric mercury onto land surfaces 

(Barringer et al., 2013). Natural geological sources of mercury can include certain mercury 

bearing minerals such as cinnabar, via volcanic eruptions which release elemental mercury 

vapor, and mercury sulfides (Herdianita & Priadi, 2008). Mercury contamination is particularly 

common around the Pacific Ring of Fire countries (Herdianita & Priadi, 2008).  Areas that have 

concerns around natural mercury contamination also include regions in Guizhou Province, China 

(Beckers & Rinklebe, 2017).  

Groundwater contamination with cadmium primarily arises from anthropogenic sources 

including mining, phosphate fertilizer production, improper waste disposal and industrial 

discharges (Butterman & Reston, 2004). Cadmium is relatively mobile in water and can leach 

into groundwater in areas that have high cadmium soil concentrations.  Though it is a trace 

mineral and not commonly associated with specific formations, the leaching process can be 

enhanced by the weathering and erosion of sphalerite and volcanic activity.  The Jinzu River 
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Basin and Toyama Bay, Japan contain cadmium rich sediments and have experienced natural 

contamination (Butterman & Reston, 2004).    

2.1.2.1 Uranium 

As stated previously, uranium can occur from anthropogenic pollution.  In addition, uranium is 

naturally associated with igneous and metamorphic geological formations (Earle, 2019a).  

Uranium sources can come from groundwater interactions of uranium bearing minerals such as 

uraninite (pitchblende, a primary mineral ore of uranium) or coffinite (Nolan & Weber, 2015).  

This occurs in the High Plains and Central Valley aquifers in the U.S. (Figure 2.1.2) and may be 

also added by biotic nitrate reduction.  Weathering of sedimentary deposits such as sandstones 

can also contain elevated levels of uranium. In Nova Scotia uranium is a significant risk in well 

water and is dominantly controlled by bedrock geology (G. Kennedy & Drage, 2018)(Figure 

2.1.3).  

Uranium is often released into groundwater through natural weathering and dissolution 

processes, dependent on pH redox factors (Alam & Cheng, 2014).  Mineral release is often the 

controlling factor for groundwater contamination.  De-adsorption from mineral surfaces along 

with respective reaction kinetics, oxidation conditions and thermodynamics also plays a role in 

uranium water contamination. Iron and magnesium oxide such as goethite, hermatite and 

ferrihydrite are known to absorb uranium ions and reduce their mobility and groundwater (Sato 

et al., 1997).  Reductive precipitation often immobilizes uranium (Alam & Cheng, 2014). Other 

substances enhance uranium transport such as organic matter such as humic and fulvic acids via 

uranium complexes and thus facilitate U movement throughout the subsurface (Smedley & 

Kinniburgh, 2023).  Carbonate minerals such as calcite or domate enhance the transportation of 

uranium by forming complexes with uranium ions and allowing them to be more mobile in 

water. 

 

Figure 2.1.2: A map of uranium (red) and nitrate (blue) concentrations for groundwater aquifers in the US (Nolan & Weber, 
2015). 
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Figure 2.1.3: Uranium in well water/groundwater for Nova Scotia (G. Kennedy & Drage, 2018). 

2.1.2.2 Arsenic  

Arsenic contamination can be caused by anthropogenic sources. Often it is linked to geological 

formations rich with arsenic-bearing minerals released into the surrounding soil and water via 

natural weathering processes; and groundwater interactions leading to leaching and subsequent 

groundwater contamination (Bradl, 2005).  Some recognized examples are arsenopyrite, an iron 

arsenic sulfide mineral found in hydrothermal mineral deposits, and Pyrite (Earle, 2019b).  

Arsenic is also naturally present in volcanic deposits and sedimentary deposits such as alluvial 

aquifers or deltaic environments (Mukherjee & Bhattacharya, 2001).   

In Nova Scotia, arsenic contamination is naturally occurring, and influenced by bedrock geology 

(G. Kennedy & Drage, 2017) (Figure 2.1.5).  Arsenic levels were more associated with drilled 

wells rather than dug or surface levels.  Similarly, USGS found that 7% of sampled wells 

exceeded 10 μg/L for arsenic particularly in the Southwest U.S. and in the Glacial aquifer system 

in the Northern U.S. (DeSimone et al., 2014).  The Pinemont Blue Ridge and Valley area in the 

Eastern Appalachian region, the Texas coastal upland aquifer system and the Mississippi River 

alluvial valley aquifer in the Southeastern U.S. are principal concerns for arsenic contamination 

(Figure 2.1.4).  In the Southwest U.S. basin-filled aquifers, arsenic is sourced from volcanic and 

granitic bedrock (DeSimone et al., 2014).  Groundwater residence time, high pH, arid climate 

and rock type contribute to the elevated concentrations.  Internationally, Bengal Delta, 

Bangladesh, and West Bengal, India are severely contaminated with arsenic derived from 

Himalayan sediments that has caused an arsenic contamination crisis affecting the lives of 

millions of people (Mukherjee & Bhattacharya, 2001). 
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Figure 2.1.4: Estimations of private well users in U.S. counties that are contaminated with arsenic (DeSimone et al., 2014). 

 

Figure 2.1.5: Arsenic risks in groundwater for Nova Scotia. (G. Kennedy & Drage, 2017) 

2.1.2.3 Manganese  

Manganese is naturally present in rocks and soils as it comprises 0.085% to 0.095% of the earth’s 

crust and often enters groundwater through the dissolution of manganese bearing minerals and 

natural weathering processes (Daughney, 2003).  

Manganese has multiple optimization states in the natural environment but is commonly found as 

the reduced water-soluble Mn(II) and the oxidized insoluble Mn(IV) (Z. Zhang et al., 2020).   

Common manganese oxides include pyrolusite (MnO2), manganite (Mn2O3-H2O), hausmannite 

(Mn3O4) and psilomelane.  Other minerals include manganese carbonates (e.g., rhodochrosite, 

MnCO3), manganese silicates (e.g., rhodonite, MnCa SiO4) and ferromagnesian silicates 

(hornblende, olivine)(Earle, 2019b).  In Nova Scotia, manganese contamination is related to 

sedimentary processes, replacement processes and vein processes (G W Kennedy, 2021). 

Said contamination can be more pronounced in areas with low oxygen levels or reducing 

conditions which favor the release of manganese from minerals (Ahmad, 2012). The oxidized 
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form of manganese has low solubility in near neutral conditions and thus was found to be 

invertedly related to pH, which suggested that manganese precipitants form at higher pH levels 

in the presence of oxygen or carbonate. Elevated manganese concentrations in groundwater are 

assumed to be associated with less complex or evolved groundwater chemistry, with higher 

manganese concentrations near shallow water tables (Rusydi et al., 2021). Other studies show an 

increase in manganese dissolution with increased contact via higher aquifer residence time and 

increasing with total dissolved solids in a floodplain (Matsunaga et al., 1993).  Pyrolusite, 

manganese oxide and rhodochrosite, a manganese carbonate mineral, are examples where these 

factors occur. 

In Nova Scotia, 22.5% of well water samples exceeded Health Canada's maximum allowance for 

manganese (G. W. Kennedy & Drage, 2020) (Figure 2.1.7). Unlike other contaminates such as 

uranium, manganese contamination is also a concern in both bedrock and superficial aquifers in 

the sedimentary bases due to the geochemistry (G. W. Kennedy & Drage, 2020).  The manganese 

deposits are associated with sedimentary processes hypogene originated, replacement and vein 

type processes.  The carboniferous strata, notably Windsor group limestone or infilling fissures 

of crystalline rock is associated with manganese ores. Northeastern United States has a similar 

problem with manganese contamination in groundwater and thus has similar concerns with 46% 

of well water samples exceeding maximum standards in New England, U.S. (McMahon et al., 

2019) (Figure 2.1.6). The province of Quebec, Canada, West Bengal State, India and Bangka 

Island, Indonesia also report a lot of manganese contamination (Federal-Provincial-Territorial 

Committee on Drinking Water, 2016; Sujith et al., 2014).  

 

Figure 2.1.6: Red areas are representative of highest population densities that may be consuming water from domestic wells with 
elevated manganese concentrations (McMahon et al., 2019). 
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Figure 2.1.7:  Mn contamination risk for Nova Scotia, Canada (G W Kennedy, 2021). 

2.2 Health Effects of Well Water/Groundwater Metal Contamination 

2.2.1 Adverse health effects of specific metals 

One major concern related to groundwater metal contamination is the detrimental health effects 

on drinking water consumers. This section focuses the health effects of well water metal 

contamination with specific emphasis on the metals mentioned above, and their long-term and 

short-term effects for vulnerable populations. 

Lead contamination in well water is a serious health concern.  When consumed, lead 

accumulates in the body over time and has a detrimental effect on the developing nervous 

systems of young infants, children and pregnant women (Levallois et al., 2018).  Higher levels of 

lead exposure can lead to neurotoxic effects such as cognitive function impairment, 

developmental delays, learning disabilities, decreased IQ and behavioral problems in children 

and adults. 

One of the more publicized examples of lead contamination is the Flint, Michigan Water Crisis 

from 2014 (Hanna-Attisha et al., 2016).  Due to lead contamination in the drinking water 

distribution system, the effect of widespread lead poisoning was studied with noticeable effects 

amongst young children. In the U.S., lead contamination in drinking water is classified as a 

prioritized public health issue with the Environmental Protection Agency proposing regulations 

to replace lead water pipes in U.S. cities within 10 years (US EPA, 2020). The total cost of lead 

contamination is substantial, as it includes healthcare expenses, structural changes, 

environmental regulatory changes, and the unmeasurable effects of the individuals affected by 
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developmental issues and loss of productivity in adulthood (Levallois et al., 2018). Consumption 

of high amounts of copper from copper contaminated water can lead to gastrointestinal 

symptoms such as nausea, vomiting and diarrhea (Bost et al., 2016). Prolonged exposure to 

elevated copper levels in water can result in long term health effects such as liver and kidney 

damage; the highest risk group being people with pre-existing liver and kidney conditions or 

genetic disorders that impair copper metabolism (Wilson’s disease) (Gerhardsson, 2022).  Infants 

and small children are considered to be high susceptibility to copper toxicity when they drink 

more water.   

Iron contamination of well water gives rise to an aesthetic effect where elevated levels of iron 

cause unpleasant tastes, a metallic odor and discoloration (Abbaspour et al., 2014; Health 

Canada, 2022).  Excessive intake of iron from contaminated water can cause gastrointestinal 

discomfort such as cramps, abdominal pain and diarrhea.   

Excessive zinc intake through contamination of drinking water results again in gastrointestinal 

disturbances including nausea, vomiting, and abdominal cramps (Rehman et al., 2018).  Over 

prolonged periods, higher levels of zinc in drinking water interferes with the absorption of other 

nutrients in the human body, leading to nutritional deficiencies in copper or iron. 

Cadmium contamination in drinking water causes kidney damage, including tubular dysfunction 

and renal failure on a short time scale (Bae et al., 2001). Long-term, cadmium is a classified 

carcinogen and prolonged exposures to high levels is associated with an increase of lung and 

prostate cancer.  Cadmium can accumulate in bones and lead to osteoporosis and weakening of 

skeletal systems of the human body (Agency for Toxic Substances and Disease Registry, 2004).  

2.2.1.1 Uranium 

The primary exposure route of uranium is estimated to be the direct ingestion of well water 

(Bjørklund et al., 2020).   According to the Environmental Protection Agency (EPA), uranium 

makes up 99% of the toxicological and radiological dose to human consumers (Corlin et al., 

2016). The EPA is concerned about potential toxicological and radiological risks to human 

drinking water consumers. Safe uranium content in water ranges is still being debated with 2.5 - 

38 × higher than the current uranium EPA limit of 30 μg/L as the conservative and protective 

restriction by the EPA regarding to kidney hazards under long-term continuous exposures (Corlin 

et al., 2016). 
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Uranium is primarily eliminated by the human body through the kidneys thus elevated and 

prolonged contamination of it in drinking water results in kidney damage (M. Ma et al., 2020).  

The damage is related to the nephrotoxicity of uranium directly damaging renal tubular cells and 

leading to impaired kidney function with decreased filtration and excretion of waste products 

electrolyte imbalances and chronic kidney disease.  This damage to the renal system occurs with 

accumulation of uranium in the kidneys resulting in inflammation oxidation stretch stress and 

alterations in cellular metabolism (M. Ma et al., 2020). The buildup leads to impaired kidney 

function and potential renal toxicity manifesting as Panera tubular dysfunction and acute kidney 

injuries. This is seen in Northern Sri Lanka where the hydro geochemistry has elevated uranium 

and cadmium levels and there is a higher prevalence of chronic kidney disease that consists of 

two to three percent of the population over eighteen years of age (Corlin et al., 2016).  

As uranium is a radioactive element, its decay emits ionizing radiation and damages DNA (M. 

Ma et al., 2020).  Uranium exposure is associated with an increase of certain cancers, due to 

DNA mutations promoting the development cancerous cells of leukemia, kidney and lung cancer.  

The exact mechanism is complex and often involves both direct DNA damage and indirect 

oxidation, stress and inflammation (Bjørklund et al., 2020).   

Evidence suggests that uranium has adverse effects on reproductive health (Wang et al., 2020).  

In men, uranium exposure has been associated with decreased sperm quality and altered hormone 

levels.  In women uranium exposure during pregnancy may pose risks to fetuses, potentially 

lower fetal growth, developmental abnormalities and a risk of premature birth (Wang et al., 

2020).  Uranium exposure has also been linked to an increase in birth rates of identical twins.   

Uranium accumulates in human bone tissue after prolonged exposure and about 90% of the 

contamination accumulated will remain long term in human bone tissue for about 1.5 years 

(Kurttio et al., 2005).  The effect of uranium accumulation in bone tissue is relatively unknown 

and requires further research.   

The cost of uranium contamination in vulnerable populations is significant, as it includes 

healthcare expenses related to the diagnosis, and the management of long-term conditions such 

as kidney disease and cancer.  Societal costs of uranium contamination include productivity 

losses due to illnesses, long term care for those with chronic conditions, and environmental 

remediation to mitigate and prevent further damage.   
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2.2.1.2 Arsenic  

Arsenic is a known carcinogen.  The genotoxic property of arsenic disrupts DNA repair 

mechanisms, leading to genetic alterations and the development of cancerous cells (Kapaj et al., 

2006).  Arsenic contamination leads to an increased risk of several types of cancer including 

skin, bladder, lung and kidney cancer.  Dermatology manifestations of high levels of arsenic 

exposure in drinking water are hyperpigmentation and skin lesions, known as arsenic induced 

dermatosis which presents as hyperkeratosis to more severe skin cancer (Hopenhayn, 2006).  

Arsenic can cross the blood-brain barrier to accumulate in the central nervous system leading to 

neurotoxic effects. Research suggests chronic arsenic exposure is related to an increased risk of 

cardiovascular disease, inclusive of the development of atherosclerosis, hypertension, heart 

attacks and strokes (Bae et al., 2001).   

Chronic arsenic exposure is also related to an increased risk of cardiovascular diseases ( Kapaj et 

al., 2006). Arsenic induces oxidative stress inflammation, endothelial dysfunction and 

contributes to the development of atherosclerosis hypertension.  This increases risks of heart 

attacks and strokes.  Arsenic related respiratory health effects have been observed via inhalation 

of arsenic containing particles/dust that leads to respiratory tract irritation and chronic respiratory 

conditions (Martinez et al., 2011).  

Arsenic is also associated with neurological and development impairments.  It can cross the 

blood-brain barrier and accumulated in central nervous system leading to neurotoxic effects 

(Argos et al., 2012). Prenatal exposure is linked to developmental issues such as impaired 

cognitive function and increased infant mortality (Rodrigues et al., 2015).  Further evidence 

suggests arsenic disrupts normal endocrine functioning as it interferes with hormone synthesis 

release and signaling pathways. This leads to the destruction of various hormonal systems 

including thyroid and reproductive systems. 

Even low levels of exposure over prolonged period causes significant health risks (KAPAJ et al., 

2006).   Inorganic compounds are more toxic than organo arsenical compounds and trivalent 

arsenide is more toxic than pentavalent arsenate.  

Meanwhile the cost of health damage related to diagnosis, treatment and management of arsenic 

related health conditions such as cancer and severe skin disorders, cardiovascular diseases and 

neurological impairment is quite substantial. The societal costs may encompass productivity 
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losses, long-term care for individuals with chronic conditions and public health interventions to 

address arsenic contamination and provide safe drinking water access. 

2.2.1.3 Manganese  

In lower doses, manganese is commonly associated with bad tastes, odor, and laundry clothing 

staining.  In fact, Manganese is essential to human health as it acts as a cofactor in the active 

centers of various enzymes for development maintenance of nerve and immune functions and 

regulation (Federal-Provincial-Territorial Committee on Drinking Water, 2016).   

However, prolonged exposure to elevated manganese levels leads to neurological effects, 

particularly in infants and children (Rodrigues et al., 2015).  Some potential effects include neuro 

behavioral changes, such as mood swings and irritability.  Other effects are more detrimental, 

including motor dysfunction, with movement and coordination difficulties; or with muscle 

rigidity, tremors, memory deficits and cognitive impairment resembling Parkinson's disease 

(Lucchini et al., 2014).   Inhalation of manganese containing droplets during everyday activities 

such as showering or irrigation can lead to respiratory problems, including respiratory tract 

irritation resulting in coughing, wheezing, and shortness of breath (Federal-Provincial-Territorial 

Committee on Drinking Water, 2016).  Studies show that chronic manganese exposure is 

associated with a hepatoxicity effect as manganese accumulates in the liver resulting in liver 

dysfunction and damage.  Other studies show an impact on pancreatic function resulting in 

diabetes like symptoms.   

Human and animal studies support the view that high levels of manganese taken internally 

significantly alters cardio functions by increasing heart rates (O’Neal & Zheng, 2015).  

Manganese exposure is assumed to inhibit myocardial contractions, dilate blood vessels and 

induce hypertension which also has a direct effect on mitochondrial functions.  

Young infants and children are susceptible to the developmental effects of manganese exposure 

(Rodrigues et al., 2015). Manganese contamination can cross the placenta and accumulate in 

developing brains and lead to decreased cognitive abilities motor deficits and behavioral issues 

in children. The elderly are another population of concern due to the large number of people who 

develop idiopathic Parkinson's symptoms due to Manganese exposure and may have subclinical 

pathology (Parmalee & Aschner, 2016).  Increased doses of manganese could push them past the 

point of no return. Gender and ethnicity and genetics and pre-existing conditions like chronic 
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liver disease also play a factor in manganese toxicity (O’Neal & Zheng, 2015). Manganese blood 

levels in a 2011 National Health and Nutrition Examination Survey (NHANES) of U.S. residents 

reported higher Mn blood concentration levels in women than men (Oulhote et al., 2014).  It was 

suggested that sex related metabolic differences may underlie the concentration discrepancy.  

This was supported by studies among Chinese, Korean, Italian and Canadian populations 

(Oulhote et al., 2014).  

Due to more understanding of the toxicity and biochemistry of manganese accumulation, 

manganese has started to become more of a governmental concern (Federal-Provincial-Territorial 

Committee on Drinking Water, 2016; O’Neal & Zheng, 2015). This is a concern in Nova Scotia 

and U.S., Korea, Italy and China. The cost of health damage associated with manganese varies 

on factors such as the concentration, duration of exposure, and individual susceptibility.  This 

includes Healthcare expenses related to diagnostic treatment and management in conditions, 

detoxification and care for those who are critically ill due to health effects. Societal costs also 

include productivity losses and public health interventions. 

2.2.2 Vulnerable Populations and Differential Health Impact 

As previously mentioned above, children are particularly vulnerable to the health implications of 

metal contamination in well water (Mohod & Dhote, 2013). Their developing bodies, 

neurological systems and organs make them more susceptible to adverse effects when exposed to 

heavy metal contamination such as lead, arsenic or manganese.   

Children may experience developmental effects as previously detailed, including neurological 

impairments. Lead and manganese adversely impact developing nervous systems and cause 

cognitive impairments, learning disabilities and behavioral problems that persist into adulthood 

affecting quality of life (Bae et al., 2001). Manganese exposure disrupts regular brain 

development and affects attention, memory and intellectual functioning (Rodrigues et al., 2015). 

Meanwhile, arsenic exposure during critical brain stage development leads to permanent 

neurological impairments such as decreased IQ, learning difficulties and behavioral issues.  

Metal contamination causes growth deformities and developmental delays in children (Rodrigues 

et al., 2015). Exposure during the critical stages of growth results in delays in motor skills, and 

overall growth parameters; along with malformed limbs and deformities. 
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Children are most vulnerable during infancy and early childhood (Hanna-Attisha et al., 2016).   

Young children between the ages six months to six years or more vulnerable to lead exposure due 

to the higher rate of hand to mouth behavior, and thus increasing the likelihood of ingesting lead.  

Developing brains are more susceptible to manganese exposure particularly in infancy and early 

childhood, in which contamination has long-lasting impact on cognitive function and behavior 

(Rodrigues et al., 2015). 

Pregnant women with developing fetuses are vulnerable to metal contamination in well water 

due to placental transfer, where metal contamination such as lead, arsenic and manganese can 

cross the placenta and reach the developing fetus (Rodrigues et al., 2015). This leads to 

implications such as birth defects for lead, arsenic, and mercury exposure that affects various 

organ system development and results in long-term health consequences for the unborn child. 

Arsenic interferes with the embryonic development and disrupts formation of essential organs 

and structures in developing fetuses (Brender et al., 2006).  Arsenic is also associated with birth 

defects such as neural tube defects, limb abnormalities, and other health defects. Fetal exposure 

to manganese through the placenta is associated with adverse birth outcomes, including lower 

birth weight, smaller head circumference and developmental delays (Rodrigues et al., 2015).   

During pregnancy, expectant mothers have physiological changes that increase absorption and 

distribution of metals throughout the body (Brender et al., 2006).  This includes an increase in 

blood volume and hormone level changes thus impacting the way metals are metabolized and 

transported throughout the body (Oulhote et al., 2014). Arsenic in particular causes an increased 

risk of pregnancy complications such as preterm birth and preeclampsia (Brender et al., 2006).  

Lead and arsenic destruct metabolic and hormone processes in maternal bodies leading to 

disturbances in glucose metabolism, thyroid, and other physiological processes.  Prolonged 

exposure to said metals during pregnancies also carry an increased risk of certain chronic 

diseases for the mother (Brender et al., 2006). 

The elderly and those with compromised immune systems and pre-existing health conditions are 

also more susceptible to metal contamination in well water (Mohod & Dhote, 2013).  

Vulnerability of the elderly seems to be widened by advanced age particularly for those above 

sixty-five years, due to age-related changes in bodily systems and decreased physiological 

resilience (Gavino-Lopez et al., 2022). Those from lower socioeconomic backgrounds also face 



  
 

19 
 

vulnerabilities due to lack of access to proper healthcare, inadequate housing and lack of 

alternative water remediation. Lead exposure can also further impact cognitive function in 

individuals with age-related cognitive decline (N. Singh et al., 2017). Manganese exposure 

exasperates said age-related cognitive decline and leads to further impairment, touching deficits 

and motor dysfunction (Parmalee & Aschner, 2016).  Arsenic exasperates cardiovascular disease 

is such as hypertension arthrosis and an increased heart attack and stroke risk (Argos et al., 

2012). 

Heavy metal exposure also exacerbates existing health conditions.  People with pre-existing 

cardiovascular conditions such as hypertension coronary art disease or congestive heart failure 

are more vulnerable to cardiovascular effects of metal contamination and thus said conditions are 

exaggerated by arsenic and lead and result in increased risk of heart attacks and strokes (Bae et 

al., 2001).  Those with pre-existing respiratory conditions like asthma, chronic obstructive 

pulmonary disease or bronchitis may also experience exaggerated symptoms when exposed to 

metal contaminants, such manganese and arsenic that irritate the respiratory tract (Agency for 

Toxic Substances and Disease Registry, 2004).  Those with pre-existing kidney diseases or 

impaired kidney functions are vulnerable to the effects of cadmium and arsenic contamination 

that further compromise kidney functions and worsen existing kidney damage, potentially 

leading to renal dysfunction and failure (Mohod & Dhote, 2013).  People with liver disease like 

cirrhosis or hepatitis are more susceptible to the hepatoxic effects of metal contamination like 

arsenic and manganese that contribute to liberal inflammation oxidative stress. Last, patients 

with compromised immune systems or undergoing immunosuppressive therapies are more 

vulnerable to the health effects of metal contamination as they have a reduced ability to mount an 

effective immune response thus have an increased susceptibility to infections and difficulties 

combating metal toxic effects (A. Singh et al., 2022).  

2.2.3 Health Effects of Metal Contamination in Well Water 

The toxicity effects of metal contamination in groundwater can be acute, chronic or cumulative. 

Acute toxicity refers to the immediate short-term health consequences that occur after a single 

high dose of a contamination (Rehman et al., 2018).  Exposure typically occurs over a relatively 

brief period ranging from minutes to hours and acute effects/symptoms, manifest quickly and 

have an immediate onset. Examples include gastrointestinal issues from sink water contaminated 

with its copper leading to nausea, vomiting, diarrhea and destructing normal digestive processes 
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or high levels of zinc which cause abdominal pain, nausea and diarrhea (Koller, 1980). Another 

acute effect is respiratory problems from metal contaminated water vapors when showering.  

Aluminum, for example, leads to wheezing coughing and respiratory distress (Wallace & Buha 

Djordjevic, 2020). 

Chronic toxicity is the long-term effects that develop over an extended period of continuous or 

repeated exposure to metal contamination (Mohod & Dhote, 2013). The time frame ranges from 

months to years depending on the substance and exposure duration. Said effects develop 

gradually and may become apparent after a significant duration of exposure.  A common 

symptom of this is organ damage.  Cadmium exposure leads to cadmium accumulations in 

kidneys and thus causes progressively renal damage (Alvarez et al., 2021). Hexavalent 

chromium damages the respiratory, liver and kidneys over time. 

Cumulative toxicity refers to the gradual accumulation of metal contamination in the body 

because of repeated and continuous prolonged exposure (Wallace & Buha Djordjevic, 2020). The 

body may not be able to eliminate or excrete certain metals thus they build up over time and lead 

to an increasing risk of chronic health conditions.   The primary root of exposure is often through 

ingestion (Mohod & Dhote, 2013). Metals are consumed, absorbed in the bloodstream through 

the gastrointestinal tract and distributed throughout the body. This buildup leads to increased 

health risks and potential development of chronic diseases. Some metals have affinities for 

certain organs and thus buildup of toxin levels occurs in specific tissues (Rehman et al., 2018). 

This buildup is known to cause carcinogenic effects, especially with arsenic, cadmium and 

chromium; and systematic effects over various body systems. 

2.2.4 Long-term Implications and Potential for Synergistic Effects 

Synergistic effects can occur with exposure to multiple metal contamination in well water.  In 

this, the combined toxicity is greater than the sum of individual metal exposures (N. Singh et al., 

2017). The interaction of different metals interacting within the body can have potential additive 

toxic effects as the presence of one metal may enhance the toxicity of another, leading to more 

severe health consequences.  

Synergistic effects occur through various mechanisms including increased absorptions, 

metabolism and enhanced cellular damage (Cedergreen, 2014). For example, lead and cadmium 

exposure have a synergistic effect on kidneys (Bae et al., 2001). Both metals do cause kidney 
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damage but together their toxic effects are amplified and lead to a higher risk of renal 

dysfunction and severe kidney damage. Arsenic and chromium exhibit synergistic effects on 

lungs as with exposure to both contaminants, the combined effect on lung tissue is greater than 

the additive effect of each metal alone and thus increases the likelihood of cancer (Bae et al., 

2001). 

There are multiple mechanisms to explain how synergistic metals effects increase health issues. 

One mechanism is via increased absorption and bioavailability enhancement of one metal via 

another metal contaminate (Cedergreen, 2014). An example of this is if one metal disrupts bodily 

protective barriers and enabling easier entry for another metal into tissues.  Another mechanism 

is by enhanced cellular damages as the presence of one metal can intensify damage caused by 

another's via mechanisms such as oxidative stress, DNA damage, destruction of cellular 

signaling pathways, or interference with enzyme functioning. Last, synergistic effects can be 

explained by certain metals affecting the metabolism and elimination of other metals and thus 

leading to accumulation in tissues and prolonged exposure which increases the toxic effects of 

the involved metals (N. Singh et al., 2017).  Synergistic effects often are very common in 

industrialized, mining or agriculture areas with multiple heavy metal pollutants and emissions 

occurring at once. 

Metal contamination can have both cumulative effects and synergistic effects in the body. 

Exposure to multiple metals may exhibit both the synergistic effects with combined toxicity 

greater than the sum of their individual effects and accumulative effects where the metals also 

accumulate in the body over time (Wallace & Buha Djordjevic, 2020). Thus, the presence of 

multiple metal contaminates both enhances individual toxic effects and contribute to a higher risk 

of long-term health problems due to cumulative buildup. An example is the lead and cadmium as 

previously mentioned (Bae et al., 2001). Not only is there a synergistic effect, both metals 

accumulate in the body over time leading to cumulative effects on overall health. The combined 

presence increases the severity of kidney damage and long-term metal accumulation in tissues. 

Other examples are arsenic and lead which exhibits synergistic effects on neurodevelopment in 

children and leads to more severe impairment (Bae et al., 2001).  
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2.3 Climate Change Impacts on Water Resources 
Climate change is a global phenomenon that is increasingly becoming a more pressing issue and 

is caused mainly by the release of anthropogenic greenhouse gases such as methane, water vapor, 

carbon dioxide and nitric acid oxide (Kumar, 2012). Climate change manifests in various ways 

such as rising temperature, altered precipitation patterns, rising sea level, and more frequent and 

extreme weather events. These changes have significant implications for water resources with 

both surface and groundwater systems being affected. Consideration of these risks and effects is 

critical for understanding potential risks to water availability and quality thus especially the 

subsequent contamination of well water. 

Global climate change disrupts the hydrological cycle that governs circulation and water 

distribution (Sýs et al., 2021). This includes increased evaporation from surface water bodies, 

soil and vegetation via higher temperatures accelerating water kinetic energy (Amanambu et al., 

2020). Evaporation increases reduces the water available for groundwater recharge, river flows 

and water sources that contribute to well water.  These effects then influence aquifer contaminate 

mobility (Peel et al., 2022). Figure 2.3.1 gives an overview of the watershed effects on a 

groundwater system including that of vegetation/stream (Riparian zones). 

Hydraulic cycle changes also impact water storage systems such as reservoirs and lakes, 

exaggerating water scarcity and forcing populations to rely on groundwater as an alternative 

source (Sýs et al., 2021). Rising temperatures also diminish snowpacks and glaciers which are a 

critical recharge source for many regions (Schilling et al., 2020). This reduces the availability of 

meltwater during the dry season.   

Another climate change disruption is the effect on precipitation patterns with timing, duration, 

and special distribution changes of rainfall (Sýs et al., 2021).  This results in more frequent 

rainfall events in some regions and prolonged drought in others. Altered participation patterns 

lead to changes in runoff dynamics (Ciszewski & Grygar, 2016).  With increased rainfall 

intensity comes rapid runoffs which cause erosion and sediment transport thus potential for 

contaminated sediments to enter into river and underground water sources (Basahi et al., 2018). 

Prolonged dry, reduced runoff results in a reduced recharge rate of water source (Fallahati et al., 

2019). This reduction diminishes dilution effects and increases the likelihood of metal 

contaminations concentrated in well water.  
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Climate change also affects soil moisture content, a factor that plays a vital role in groundwater 

recharge (Wossenyeleh et al., 2020). Dry, increased soil moisture deficits reduce results in 

changing aquifer properties especially vadose effects leading to a higher concentration of 

contaminants in remaining water sources.  

Sea level rise from meltwater can exacerbate the vulnerability of coastal regions, leading to 

saltwater intrusion into freshwater aquifers and jeopardize potable water sources (Basack et al., 

2022a).  This also is increased by coastal erosion and storm surges, which further degrade water 

quality, as salinized wall water infiltrates coastal aquifers. 

 

Figure 2.3.1: Conceptual model of groundwater geochemical evolution in saturated and unsaturated zones (Peel et al., 2022).  
This includes hydrogeochemical factors influencing contamination chemistry.  Lithologic boundaries are represented by dashed 
lines. 

2.3.1 Changes in Precipitation Patterns 

2.3.1.1 Increased frequency and intensity of extreme weather events 

Numerous studies have documented the increasing intensity and frequency of extreme weather 

events (Amanambu et al., 2020). This includes heavy rainfall, storms, hurricanes, and other 

intense precipitation events.  These have profound implications for water resources and 

hydrological systems due to disaster events and infiltration (Saeed & Attaullah, 2014).  In some 

areas, warmer temperatures increase atmospheric moisture content and the potential of more 

intense rainfalls. Excessive rainfall can overwhelm water treatment systems and lead to 

contamination infiltration into groundwater (Geris et al., 2022).   This is demonstrated by Figure 
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2.3.2.  Intense rainfall results in rapid runoff, soil erosion and flooding that pose risks to 

groundwater contamination of groundwater. 

Excessive rainfall contributes to increased erosion and sediment transport especially in areas 

with steep slopes and inadequate vegetation covers (Geris et al., 2022). The sediments enter 

water sources introducing sediment-bound metals into groundwater. The generalized increased 

sediment load also impacts water quality and creates more water treatment processes challenges 

(Santos et al., 2011a). 

More frequent and intense storms/hurricanes are also due to climate change. Warmer sea 

temperature provides more energy to fuel the weather systems resulting in more intense and 

destructive storms (Blake et al., 2003).  Storms and hurricanes bring heavy rainfall, strong winds, 

storm surges and increased sediment transfer all which impact water quality in the hydrological 

systems and increase contaminations of well water with sediments from surrounding areas. 

Urbanized areas with inadequate drainage and decreased potential for infiltration are more prone 

to be affected by flooding (Ciszewski & Grygar, 2016). Urban flooding leads to more runoff 

during heavy rainfall events and elevate the contamination risk via increases 

pollution/contaminates from urban areas into well sources. This type of flooding can 

compromise the integrity of well casing and allow contaminants to directly enter well water 

systems. 

 

Figure 2.3.2: Schematic to demonstrate the connection between source contamination in groundwater carried by flood 
events(Andrade et al., 2018) 
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2.3.1.2 Shifts in regional rainfall patterns 

Shifts with the distribution, timing, and quantity of rainfall in different areas another outcome of 

climate change.  These shifts significantly impact water resources including groundwater and 

influence contamination. 

Climate change can cause uneven distribution of rainfall as some regions experience increased 

rainfall while others experience drought (Barbieri et al., 2023). This results in water scarcity in 

areas with reduced with rainfall. Reduced precipitation impacts groundwater recharge which 

lowers water levels in aquifers and increases metal concentration. As the water table drops, 

previous untouched contamination zones may be exposed and released into groundwater 

(Appleyard et al., 2006). This also leads to special variations in groundwater distribution as set 

areas experience localized water scarcity. 

Altered poor precipitation patterns can lead to changes in aquifer storage capacity, permeability 

and porosity (Wossenyeleh et al., 2020). These changes affect the movement of water within the 

aquifer and the transport of metals to well water sources.  In addition, based on said geological 

characteristics, reduced rainfall and lower aquifer water levels might affect aquifer storage 

capacity (Wossenyeleh et al., 2020). 

2.3.1.3 Implications for water availability and distribution 

Precipitation pattern changes have widespread implications for water availability and 

distribution. Small changes in rainfall patterns lead to the direct impacts of the distribution 

quality and timing of water sources in both surface and groundwater. Water scarcity caused by 

reduced rainfall and prolonged dry, reduces the water availability for domestic agricultural and 

industrial needs (Fallahati et al., 2019). This might increase competition for limited surface water 

resources and require extensive alternatives such as groundwater. The reliance on groundwater 

and increased groundwater withdrawal heightens contamination risk due to changes in 

groundwater dynamics and untouched contamination zones (Fallahati et al., 2019). This results 

in the need for authorities to increase adaptive measures, water conservation efforts and monitor 

water quality. 
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2.3.2 Changes in Groundwater Resources 

2.3.2.1 Influence of climate change on groundwater recharge 

Groundwater recharge is the process which water infiltrates soil and replenishes aquifers. This is 

significantly influenced by climate change due to precipitation patterns, temperature and land 

surface conditions.   

Changes in regional precipitation patterns was discussed above.  Evapotranspiration is increased 

with warmer temperature and depletes soil moisture, thus reducing the amount of water for 

infiltration and decreased groundwater recharge (Figure 2.3.3) (Liu et al., 2020). Soil moisture 

content is reduced by prolonged dry thus further limiting water availability for infiltration and 

recharge.  

Land use practices such as urbanization, agricultural practices and deforestation alter the 

capacity of the soil and the natural flow of water into soil and aquifers (Geris et al., 2022).  

Infiltration capacity, combined with the effects of climate change leads to a decreased 

groundwater charge and lower groundwater levels. Regions dependent on seasonal snow melt 

have reduced recharge rates due to the diminished snow accumulation and accelerated glacier 

melting from climate change temperature rise (JR Williams, 1970). This also affects the timing 

and volume of water at least during melt season as snowpacks act as a natural reservoir that 

slowly releases water to recharge in the surface. 

Climate change into sea level rise also increases the risk of saltwater intrusion into coastal 

aquifers (Kumar, 2012) . With seawater infiltrating freshwater, the groundwater is contaminated, 

and usability is reduced. This leads to an increase in hydraulic pressure altering natural 

groundwater flow patterns and impeding freshwater infiltration (Nayak & Nandimandalam, 

2023). Freshwater and saltwater interfaces shifting in land also reduces the availability of space 

for recharge and limits freshwater replenishment. These hamper the natural processes that 

maintain the balance of fresh water in the aquifer. 
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Figure 2.3.3: Schematic of the interaction of groundwater systems with climate change(Amanambu et al., 2020).  Direct changes 
involve precipitation (form and timing), transpiration and evaporation.  Indirect changes involve water extraction.  

2.3.2.2 Effects of altered precipitation on aquifer levels 

As an expansion of previous paragraphs, the recharge and discharge dynamic of aquifers is 

directly influenced by changes in intensity, distribution and timing of precipitation.  Water use in 

times of drought can also drop groundwater levels.  

Recharge reduction is caused by prolonged dry periods and/or decreased rainfall. This limits the 

water available for infiltration and subsequent recharge due to multiple aquifer and soil 

interactions (Mosley et al., 2014). Soil moisture content decreases and becomes less permeable, 

which reduces infiltration rates. Intense rainfall events also limit subsequently infiltration and 

recharge as via an increase in runoff and surface flow, if the soil is too impermeable or 

compacted to absorb the excess water.  Vegetation dynamics caused by the impact of 

precipitation on vegetation growth and evaporative transportation also decreases recharge (T. Ma 

et al., 2020). Decreased plant growth and transpiration reduces the amount of water that is 

absorbed by the plants and subsequently released into the soil. 

Less frequent rainfalls or concentrated intense rainfalls in shorter time periods prolongs times 

between recharge events (Kumar, 2012). This delayed recharge leads to situations with 

extraction rates overcoming recharge rates and results in overdraft from groundwater over 

abstraction (Staben et al., 2015). Aquifer depletion, uncertainties in water availabilities caused by 

climate change, also encourages well water users abstracting groundwater excessively as a 

precautionary during reduced rainfall. This overextraction further depletes aquifers. This 

overextraction can cause an upwelling and a shift in age depth distribution where water is drawn 

from more contaminated aquifers (Levy et al., 2021) (Figure 2.3.4). 
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Figure 2.3.4:  Model of overdraft effects on hydraulic head Δh and water quality for a well during drought (Levy et al., 2021) 

Altered precipitation patterns also affect the seasonal variations in aquifer levels (Riches et al., 

2007). Regions that rely on rainfall for recharge find that precipitation patterns changes impact 

the seasonality of aquifer levels.  In dry seasons, less rainfall reduces the infiltration and recharge 

water amount, demand increases evaporation is increased due to higher temperatures and 

reduced soil moisture, and thus limits the water from reaching the aquifer (Levy et al., 2021). 

These interactions lead to lower aquifer levels. 

 Increased rainfalls can result in higher aquifer levels. Seasons or monsoons give opportunities 

for infiltration and recharge (Sahu et al., 2020). This along with reduced evapotranspiration rates 

reduced enhanced water aquifer recharge. Thus, aquifer levels may be higher during wet seasons 

(Riches et al., 2007).  A leg effect between participation precipitation and aquifer response will 

be seen due to the time required for water to infiltrate soil and reach groundwater (Wossenyeleh 

et al., 2020). Thus, aquifer levels may continue to rise even after the end of the wet season with 

this water movement. The inverse will happen during dry seasons - aquifer levels may continue 

to decline after dry season as water is continuously extracted from the aquifer (Wossenyeleh et 

al., 2020). 

Last, precipitation pattern changes affect the interactions between groundwater and surface water 

bodies. This can diminish the discharge of groundwater into streams lakes and rivers resulting in 

decreased base flow (Wei et al., 2016). Base flow is a sustained flow of water from groundwater 

into surface water bodies such as rivers lakes and streams and helps maintain surface water 

levels during dry periods. This provides a reliable water source for ecosystems and meeting 

water demands. In addition, surface water and groundwater are connected interconnected 

through exchanges that occur along the ground water-surface water interface (Lewandowski et 
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al., 2020). These may include movement of water from surface water into aquifers or upward 

movement of groundwater to surface water bodies. Participation pattern changes influence these 

exchanges through altering recharge/discharge dynamics. 

All the above processes have significant implications for the aquifer storage capacity and aquifer 

understanding aquifer levels. Understanding of these interactions with climate change is critical 

and necessary for new sustainable water resource management (Amanambu et al., 2020).  This 

includes monitoring aquifer levels assessing new recharge rates and implementing recharge 

enhancement strategies such as artificial recharge techniques and land management practices. 

Managing groundwater extraction rates along with promoting water conservation are critical for 

ensuring long-term sustainability and aquifer availability of groundwater with climate change. 

2.3.2.3 Increased risk of groundwater depletion and saltwater intrusion 

Increased water demand, rising temperatures, precipitation pattern changes and groundwater 

deletion depletion also can contribute to saltwater intrusion (Basack et al., 2022a). Saltwater 

intrusion occurs when saltwater infiltrates its freshwater aquifers and compromises its 

groundwater quality and usability.  

Salt water is held back from inland freshwater systems via hydraulic pressure. The transition 

zone is where the hydraulic pressure of both freshwater and salt water is equivalent. Said 

saltwater-freshwater interface is a dynamic mixing zone influenced by tides, pumping rates, 

aquifer characteristics, head gradients (Basack et al., 2022b). Its behavior is related to the density 

and salinity to the two water types. Homogenous aquifers will have a uniform transition zone 

that is a consistent distance from the coastline with a smooth transition of water salinity and 

well-defined mixing gradient. Heterogeneous aquifers have variations in permeability, porosity 

and geological structures that influence the transition zone to be more complex and irregular 

(Hussain et al., 2019). Confined heterogenous aquifers may also exhibit different hydraulic head 

distributions. 

In addition, there are multiple "modes" of saltwater intrusion (Figure 2.3.5). In some, denser 

saltwater found in coastal aquifers sinks to the bottom forming a saltwater wedge which 

infiltrates weaker inland freshwater (Basack et al., 2022b). Others such as upconing occur when 

saltwater rises below and intrudes into a freshwater aquifer, displacing it (Werner et al., 2013). 

This is observed with excessive pumping near the coastline – the withdrawal of freshwater 
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lessens the freshwater hydraulic head and creates a cone of depression, drawing saltwater 

towards the well.  

Storm surges, increased sea levels and lower freshwater recharges elevated hydraulic saltwater 

pressure and press seawater further inland, displacing freshwater (Werner et al., 2013). In 

addition, storm surges from extreme weather events can cause drive seawater further inland into 

areas that are not typically prone to intrusion and alter the natural groundwater flow. 

Saltwater intrusion makes potable water undrinkable and unsuitable for agricultural purposes due 

to the salinity level alone. However, it also causes increased corrosion and pitting of well 

structures that may result in introduced metal contamination (Tansel & Zhang, 2022). Similarly, 

the groundwater chemistry – pH, conductivity, and redox conditions changes. This in turn 

impacts the speciation and solubility of metals and can lead to the dissolution of metal 

contaminates already existing in soils and rock formations (Zhu et al., 2022a) 

 

 

Figure 2.3.5: Diagram of saltwater intrusion in an unconfined aquifer. A) saltwater wedge toe, b) circulation in the seawater 
zone driven by densities, (c) seawater upconing and cone of depression.  (Werner et al., 2013) 
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Chapter 3: Further Description of British Columbia 

 

Figure 2.3.1: Power BI Map of observation well stations in British Columbia.  

Figure 3.1 shows the observational wells (OBS wells) throughout British Columbia. The 

corresponding weather stations and maximized map of OBS well locations are seen in Appendix 

8.1. The well and weather stations have differing locations that will introduce some inaccuracy. 

Future research should evaluate this level of inaccuracy on QGIS or ArcGIS via kriging. 

Appendix 8.1 shows the map of aquifer regions along with the observed wells and aquifer 

characteristics.   Said mapping only extends to highly industrialized or highly populated areas. 

This indicates a lack of data that future modeling needs to consider with as it will influence of 

both groundwater hydraulic and water contamination.   

Time constraints meant that well data could not be spatially autocorrected. This is important as it 

differentiates between spatial influences (such as metals concentration due to a nearby mine) and 

general underlying patterns in bedrock and geology (Griffith, 1992). Future studies should utilize 

both Queens and Morran autocorrection as well as relevant kriging for more accurate numerical 

input. Likewise, spatial clustering algorithms such as DBScan could help further recognize any 

underlying patterns spatially (Hasana & Fitrianah, 2023).  Spatial-temporal clustering such as 

such a time space cube would enable pattern mining and thus detect heavy metal hotspots 

throughout time and space (D. Xu et al., 2021).  British Columbia is one of the most complex and 
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unique geological and hydrological provinces in Canada so utilizing satellite imaging research 

(especially using weather data) and geological RASTERs – especially that of lithology would 

add data to distinguish between better underlying patterns (Chouaib & Caissie, 2021; Fulton et 

al., 2004).The 100- and 10-year peak flows are shown in Appendix 8.1. The maximum monthly 

precipitation for each well given in Appendix 8.1.  Though not all the monthly precipitation will 

go into runoff, it does give an indicator that in a lot of cases the 10- and 100-Year Peak flows 

would have been exceeded at times. Despite different duration of peak flow charts and monthly 

precipitations, further indication of floods can be supported by comparing the time of the 

monthly maximum precipitation to the low flows timing in Appendix 8.1 (D. Allen & Gleeson, 

2023).  High monthly maximum precipitation values in low flow months especially in colder 

climates are more likely to be runoff.  

Peak flow lines indicate the severity of flooding.  100 Year Peak flow lines are higher 

magnitudes and may overwhelm flood protection barriers such as levees; and berms for 

wastewater lagoons and landfills, allowing more contamination to enter aquifers (Weiss et al., 

2008).   Larger peak flows enable contamination to be transported further laterally during 

overland flooding, exposing a broader area of subsurface to potential contamination (Hartmann 

et al., 2021). Recurrence intervals of the 10-year peak flow means that flooding is more frequent, 

so aquifers are exposed to contamination flooding more often, leading to a cumulative impact 

over time from less concentrated sources (Santos et al., 2011a).  Future research areas could be to 

relate peak flows, hydraulic connectivity to groundwater metal pollution during flooding for a 

better understanding of these dynamics.  

Maps of low flow zones and annual runoffs are in Appendix 8.1. British Columbia are divided 

into eight different low flow hydrology zones that are representative of the lowest flow rate 

during the corresponding driest seasons (Coulson & Obedkoff, 1998). These are broadly 

representative of water flow regimes, focused during drought, and based on average daily flow. 

These can coincide with decreased water table pressures, lower hydraulic pressure, and impacts 

the connected groundwater via reduced recharge (Mohan et al., 2023). Lower flow can affect 

shallow aquifers connected to intermittent streams or surface water via contamination infiltration 

during drought periods (Leyden et al., 2016). Reduced over bank flooding diminishes the 

flushing out of normal contaminates under regular flow conditions. 
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Figure 2.3.2: Map of B.C. hydrologic zones from  (B.C. Ministry of Environment and Climate Change Strategy, 2023) 

Figure 3.2 shows the previous British Columbia hydrologic zones while updated zones are 

shown in Appendix 8.1. Hydrologic zones are smaller defined zones have homogenous 

geomorphological and hydrologic characteristics that allow baseline assumptions to be made for 

hydrology within the same area (B.C. Ministry of Environment and Climate Change Strategy, 

2023). Likewise, said zones indicate if the aquifer is dependent on pluvial (rainfall), nival (snow) 

or mixed recharge (D. M. Allen et al., 2014). Most of the well stations are located in ten 

hydrologic zones in the south. The Fraser Plateau had braided outwash channels that transport 

sediments with contamination from mining over large distances (Larry D. Jones, 1990).  

Meanwhile, fractured basal causes in the Thompson region transport uranium and arsenic from 

mineral spread.  Appendix 8.1 shows an example of utilizing hydrogeologic boundaries along 

with B.C.’s stream maps to map and track the effect of mountain pine beetle on the watershed 

(Schnorbus et al., 2010).  It is necessary to spatially link flow streams and watershed basins to 

aquifer contamination for future studies. 



  
 

34 
 

 

Figure 2.3.3: Map of geological terranes of British Columbia (Ootes et al., 2017) . 

A geological map, geologic era of rock map and quaternity geology map of rock in British 

Columbia are in the Appendix 8.1.  

The geology map (Appendix 8.1) explains where sedimentary, volcanic, metaphoric and 

intrusive rocks are located and what their dominant underlying structure is along with the 

corresponding timeline. This can indicate where some places might have groundwater 

contamination. Due to the complexity of this map, the figures of the geologic ear of rock and 

quaternary geology (Appendix 8.1) and Figure 3.3 provide a better explanation.   

The geologic era (Appendix 8.1) represents the outward retreat of the coastline and plate tectonic 

processes during those time periods.    The geology of British Columbia is dependent on that, 

especially isostatic rebound (land elevation rising after glaciers), connection/formation of 

different terrains and orogeny (tectonic collision of two plates) (Earle, 2019b).   A very 

generalized overview of the Proterozoic era involved crust thinning and rifts suppressed by 

glaciers (Mossop & Shetsen, 1994).  The Precambrian era involved multiple rifts with a 

supercontinent breakup. The Mesozoic to Cenozoic involved subduction and continental 

collisions (Earle, 2019b).  The Mesozoic was characterized by terrain accretion and connecting 

of different continents.   Thus, the geological eras represent the different terrains (Figure 3.3) and 

often are similar to major mineral belts (Ministry of Natural Gas Development, 2016; Ootes et 

al., 2017).  Said terrains influences aquifers as it indicates dominant metals, trapped seawater 
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intrusion from previous eras, and formations of different aquifer heterogeneity (Ootes et al., 

2017). Figure 3.3 also illustrates the major fault lines which indicate slips and different 

geological processes influences influencing infiltration.  

Quaternary geology is the geology that happened from 2.58 million years ago to today (Fulton, 

1989). Quaternary geology is primarily influenced during the Quaternary, a period consisting of 

numerous interglacial cycles. A lot of this geology is dominated by the retreat of the Cordilleran 

ice sheet and Winstonian glaciation (Fulton et al., 2004). This again will affect groundwater due 

to mineral deposits left behind by the formation, movement and dynamics of different ice sheets.  

Appendix 8.1 reveals locations where dominant quaternary geology factors exist.  

 

 

Figure 2.3.4:  Soil parent materials in British Columbia (Lavkulich, 2021).  

Appendix 8.1 represents the soil groups as specified by the Canadian soil classification that are 

dominant in B.C.  (Lavkulich, 2021; Soil Classification Working Group, 1998).  These are often 

influence the transportation and mobilization of contamination into aquifers. 

The permeability of some soils, such as brunisolic soils and Orthic Humo-Ferric Podzols 

transport pollutants into bedrock aquifers while the acidic conditions of punzelic soil mobilize 

metals (Lavkulich, 2021). Gleysolic soils may act as aquatards but may as well transport 

contaminations within saturated lowland conditions (i.e. Saltspring Island Aquifier) (Santos et 
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al., 2011b).  Brunisolic soils have variable oxidative conditions to mobilize Mn naturally and 

podzolic soils have low pH that enhances metal migration (Weiss et al., 2008). Likewise in the 

Quesnel highland, uriniferous zones leach uranium into shallow dug wells that are partially 

controlled by the redox conditions in the brunisolic regolith (Larry D. Jones, 1990).     

 The parent materials of the resulting soil groups in British Columbia are shown in Figure 3.4.  

These again influence aquifer contamination as pollutant sources, and via 

transportation/mobilization.  

Alluvium/colluvium are highly permeable materials that rapidly transport contaminants if 

near/over contaminated sites and transport metals like Mn from mineralized outcrops into 

aquifers (Y. Yang et al., 2023).  Organic compounds such as bogs release dissolved organic 

compounds and leech metals like manganese under anaerobic conditions (Ciszewski & Grygar, 

2016). Meanwhile morainal (glacial drift) deposits containing heterogeneous mixtures of 

material that can provide multiple flow paths with coarse sediments, transport contaminants and 

fine sediment trapping plumes (Jia, 2015). With glacial fluvial outwash, for example sands and 

gravels can spread plumes over long distance especially in the Nelson region (Edwards et al., 

2022).  Residual soils can mean that weathering will mobilize arsenic in Central B.C. from 

mineralized bedrock (Lavkulich, 2021). Morainal parental materials are heterogeneous and thus 

delays flow, which controls contaminant mobility, traps contaminants through absorption, or 

facilitate plumes through preferential flow paths via course sediments such as kames or eskers 

(Ganoulis, 2009).  Saturation zones within moraines can also mobilize contamination and change 

redox conditions (Mosley et al., 2014). 

 



  
 

  37
 

 

Chapter 4: Exploratory Data Analysis  

4.1 Methodology for Data Sources, Storage and Management 

4.1.1 Water Quality Data  
Water quality sampling data was taken from the British Columbia Provincial Groundwater 

Observation Well Network (OBS) and Environmental Monitoring System (EMS) data repository 

via British Columbia Data Catalogue (BCDC) by contracting the related data curators(Data 

Catalogue, n.d.). Data was downloaded to a certain degree that the timeframe of samples 

collected were obtained from 02/01/1982 to 28/08/2022. 

The samples utilized were assembled using discrete grab sampling and the corresponding 

methods of analysis along with full descriptions of corresponding lab codes, and collection 

methods that can be found in the EMS Electronic Data Transfer support tables (Ministry of 

Environment and Climate Change Strategy, 2023).  Furthermore, sampling was done in 

accordance with the Manual of British Columbia Hydrometric Standards and Field Sampling 

Manual. 

The assembly of data included a list of EMS ID, location name including OBS well number, 

longitude, latitude, start date including sampling time, state description, class description, 

method description, upper depth, lower depth, parameter code, result letter, and results. 

Following data standards, storage, organization and management are assembled in BCDC 

Catalogue Standards and Guidelines, according to B.C.’s Open Information and Open Data 

Policy (bcgov, 2024).  Maps of the relevant aquifers and well stations are shown in Appendix 

8.1.  Moreover B.C. was chosen for analysis as it has an open data policy with more centralized 

access to water quality data, has a long-standing groundwater monitoring station system in place 

that frequently measures groundwater quality parameters and has other programs that assess 

multiple environmental parameters. B.C. also borders the coast allowing for potential saltwater 

intrusion analysis.  

The original dataset of concentration was transformed via python in Jupyter, to transpose it for 

viewing all contaminants measured at each observation well (OBS) number along with ‘start 

date’, EMS ID, latitude and longitude. The upper depth and lower depths were discarded as those 
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were found to have inconsistent recording in the source data. Furthermore, result letters were 

discarded to simplify the code and used henceforth. However, time constraints meant that both 

water temperature and water depth were removed as most values were not linked to the directly 

EMS dataset. 

The resulting dataset was then utilized to assess contents: 

(i)  Specifically, pesticides, silica, complex organic compounds, and complex toxins 

which were removed as they are considered unnecessary for the subsequent research 

analyses.   

(ii) Observation Well Stations (OBS) wells, that had no associated concentration data, 

were as well removed.   

(iii) Nitrogen measurement data except for Total Kjeldahl Nitrogen were removed due to 

lack of consistent data for nitrate/nitrate and to streamline the process as this method 

is a good general measure of organically used nitrogen because it accounts for 

biological incorporated nitrogen (Jones Jr., 1987).   

(iv) Dissolved oxygen, carbon oxygen demand, total organic carbon and other organic 

carbon parameters were also removed due to lack of data in the source information.  

(v) Total phosphorus has been used to account for phosphorus, including phosphate.  

(vi) Dissolved sulfate was used as the measure for sulfur as it was the most complete 

dataset, acts as quality control for sensing, has the potential for future groundwater 

source identification, adds insight to anthropogenic activities and helps understand 

redox conditions (Miao et al., 2012; Porowski et al., 2019) 

(vii) In addition, total alkalinity at pH 4.5 (Alkalinity Total 4.5) was used as a measure for 

alkalinity-based factors.   

(viii) Fluoride was excluded due to lack of consistent data.   

(ix) Total hardness was kept in the data assembly, along with Potassium and Calcium to 

facilitate future research potential.   

(x) Sodium was removed from the dataset to avoid redundancy as seawater intrusion was 

measured by other factors.   

(xi) Magnesium and calcium were also kept to potentially assist in filling in missing 

values. 
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(xii) Furthermore, the following were retained, namely, lead, manganese, uranium and 

cadmium were chosen as metals. Mn, and U are known to be naturally occurring and 

were investigated due to their use in future sensor research. Pb was retained despite 

having potential anthropogenic sources as Pb is required for future research. 

Furthermore, Cadmium was chosen due to potential future research for mining 

(although then later dropped after the exploratory data phase) (Butterman & Reston, 

2004).   

(xiii) Iron was chosen to help indicate any co-interactions between heavy metals and water 

contamination (Oyem et al., 2015).  Other metals were dropped due to lack of data 

and/or the potential that other metals were caused mostly by anthropogenic means. 

 

Additional data inclusion considerations consisted of: 

(i) Saltwater intrusion is measured by specific conductance, chloride, and occasionally 

turbidity.   

(ii) Residue Filterable 1.0u was used as a representation of color measure, residue 

measures and turbidity, as these constituents had the most complete datasets, which 

are often used as a turbidity indicator following (British Columbia Ministry of Forest, 

2016).   

(iii) pH as measured for grab samples was chosen over field values to maintain 

consistency with the other samples (Ministry of Environment and Climate Change 

Strategy, 2023).   

(iv) Laboratory specific conductance was utilized over field specific conductance, 

(v) “Cation Sum”, “Cation - Anion Balance percentage”, “Anion Sum” were deleted due 

to lack of data consistency.   

(vi) Dissolved chloride (“Chlorid:D") was kept as another seawater indicator.  

 

Missing values were filled by: 

i. The dissolved values of U, As, Cd, Fe, Mn, Pb, Ca, K, Mg, Hardness, N.Kjel:T, and 

P, were used to fill in any corresponding missing values of total concentration.  
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ii. Alkalinity pH 4.5/4.2 values were used to fill Alkalinity Total 4.5 values due to 

similarity within methods (Ministry of Environment and Climate Change Strategy, 

2023).  

iii. Missing hardness data values were calculated via the following equation: 

 Hardness = 2.497 (Ca) + 4.118 (Mg) (U.S. EPA Office of Water, 2021) 

iv. Further missing data was then filled by one-half of the lowest minimum detection 

limit for each element (Appendix 8.2). 

 Additionally, any missing values of pH were replaced by the pH mean using the closest 

monitoring system. 

4.1.2 Characterization of Aquifer Types 

 

Figure 4.1.1:  Diagram of B.C. Aquifer Subtype Classification in the Fraser Valley (Carmichael et al., 2008). 

The B.C. Aquifer subtype classification system was utilized to account for differences between 

unconfined with hydrologic connection, confined, karst and bedrock aquifers (Figure 4.1.1 and 

Appendix 8.2) by assigning each a different subtype (Mike Wei et al., 2009).  Following the 

aquifer subtypes were further grouped into “aquifer groups” – Aquifer Group 1 (AG1: 

unconfined with Aquifer subtype 1a, 1b, 1c, 2, 3 and 4a), Aquifer Group 2 (AG2: confined with 

Aquifer subtype 4b and 4c), Aquifer Group 3 (AG3: bedrock/fractured aquifers with Aquifer 

subtype 5a, 6a and 6b) and Aquifer Group 4 (AG4: karst based on Aquifer subtype 5b). This 

grouping is based on general aquifer similarity and similarities of hydraulic connection (Table 

3.1.1)(Mike Wei et al., 2009) . 
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Table 4.1.1:  B.C. preliminary framework for determining a hydraulic connection (Wei et al., 2016).  

 

Further in-depth lithology information was inaccessible due to database issues and therefore not 

incorporated. Furthermore, most well characteristics, including depth, water level, etc. were 

sparse and individually linked often on separate pdfs; therefore, other well characteristics were 

kept only to facilitate later research. Then well data were downloaded via “Well Search” from 

“The B.C. Groundwater Wells and Aquifers” portal with OBS well numbers, environmental 

monitoring station ID (EMS ID), corresponding aquifer ID number and well license number 

(Province of British Columbia, 2023). Aquifer data, including aquifer ID number, and 

corresponding aquifer type were downloaded via the “Aquifer Search” from “The B.C. 

Groundwater Wells and Aquifers”.  Following both datasets were ‘cleaned’ via Power BI, a 

business analytics software in Power Query and the aquifer data was merged with well ID data 

via aquifer ID.  

OBS wells that were missing EMS ID and aquifer IDs were mapped and both databases were 

manually checked to identify any information on corresponding aquifers and wells in those 

locations. For OBS with unknown aquifers, descriptions of well lithology and nearby aquifers 

were utilized to determine the potential aquifer type. Table 8.2.1 in Section 8.2 (Appendix) 

shows the missing OBS well data, indicating how aquifer types were determined, and 

assumptions made. Furthermore, the linked dataset was downloaded from Power BI and merged 

into corresponding concentrations via OBS well number in Jupyter and posted in GitHub.  
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4.1.3 Addition of Data Indicating Temperature and Precipitation  
Maximum daily temperature, minimum daily temperature and daily precipitation were 

downloaded from Pacific Climate Impacts Consortium’s “B.C. Station Data” portal for date 

ranges between 01-02-1985 to 31-08-2022, since these data corresponded to well sampling dates 

along with a weather station metadata file (Pacific Climate Impacts Consortium, 2024).  

I. Only stations that had corresponding climatology and observations were included in the 

assembly of temperature and precipitation. Soil temperature, soil liquid water contents, 

rainfall, rainfall 24-hour, rainfall 1 hour and 1 hour precipitation were excluded since 

there are very few data monitoring stations near the well stations.  Furthermore, future 

research exploration might consider how metal concentration may be affected by 1 and 

24-hour precipitation, as those conditions would be more representative of flooding 

(Mauclaire & Gibert, 1998). 

II. Datasets from the B.C. Ministry of Forest were also excluded due to poor matching 

format. This data seemed to be designed for the purpose of fire monitoring, therefore 

stations were operational eight months out of a year and had slightly different parameters.  

III. Snow-water equivalents and snowfall quantities were also excluded from the data set. 

This was due to the balance between flooding conditions, drought conditions and due to 

the difficulty in accounting for inconsistent measured data. Moreover, this acknowledged 

bias means that drought conditions may not be predicted as accurately as climate change 

reduces the water from spring runoffs and multiple classifications of droughts are based 

on said data (Ward et al., 2020). However future research studies could account for 

changes in snowfall to achieve better and more consistent results.  

A second python script with Jupyter notebooks was created to link weather data to water quality 

measures in the well data.  

I. The closest OBS well monitoring station was then matched with the closest weather 

station data that was operating during the sampling date via looping the station metadata 

with corresponding concentration station ID and OBS well data set. 

II.  Stations that have large gaps in operating time were removed from the original station 

metadata file and the loop was run again.  



  
 

  43
 

III. Afterwards, Linked station ID was extracted and merged again with a left join (one to 

many join) and extracted historic ID, operation network name, and other identifying data 

sets to form a third metadata file. 

IV. The downloaded files containing the individual weather station data sheets with 

unmatched weather stations were deleted to increase computational speed. In addition, 

the datasets kept were from BC Hydro (BCH) and Environmental Canada (EC).   

V. BCH data sheets had to be re-assessed using a power query and pivot table in excel as the 

timing of sampling switched from daily to multiple times per day throughout the data set. 

Therefore, collected results were merged to get “mean” daily temperatures and sum of 

daily precipitations.  Following, the resultant data BCH data sheets were inputting into a 

Python dataframe containing the weather data. 

VI. Both BCH and EC data were then being merged with their corresponding metadata. The 

data were furthermore concatenated into two dictionaries with the historic ID, station 

name, native ID, latitude and longitude from the third metadata file.  

VII. The following data, namely one day rain, snow and ambient air temperature data were 

removed, and both dictionaries were concatenated together.  

VIII. The monthly sum of one day precipitation, monthly mean of maximum temperature and 

the monthly mean of minimum temperature were established using Panda's date time. 

Then remerged with the third reference frame again. 

Similarly, the corresponding climatology data set was downloaded from Pacific Climate Impacts 

Consortium’s “BC Station Data” portal for date ranges and inputted to a Jupyter Pandas 

dataframe (Pacific Climate Impacts Consortium, 2024). 

.  

I. The resulting data frame was then merged with the precipitation climatology data set via 

the matching station and month, to create a working data set. 

II. Missing values for precipitation, minimum temperature and maximum temperature were 

then extracted, removed from the first weather station metadata and the process was run 

again.  

Figure 4.1.6 demonstrates the data model used. 
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Figure 4.1.2: Snowflake data schema model. 

4.2 Methodology for Preliminary Exploratory Data Analysis 

4.2.1 Metals Preliminary Exploratory Data Analysis 

Power BI was utilized for the initial exploratory data analyses due to its ability to rapidly explore 

data structures via ‘filters’ and ‘slicers’.  

I. Each metal of interest (Metals: As, Cd, Mn, Pb, and U) had their respective concentration 

magnitudes alongside the Guidelines for Canadian Drinking Water Quality limits plotted 

against “Other” corresponding factors that influence metal contamination. “Others” 

include Alkalinity, Fe, K, N, Ca, P, Sulfate, hardness and pH. This was to assess any 

influence of Others and was accomplished using scatter plots.  Numbers from previous 

missing values from missing value step IV in 4.1.1 were removed via a filter.  

II. In addition, each metal listed with the respective  Guidelines for Canadian Drinking 

Water Quality limits were plotted against the seawater intrusion factors (SWI: Chloride, 

Residual Non Filterable 1 ug, Specific Conductance) and the corresponding cut off for 

seawater intrusion (Chloride ≥ 150 mg/L, Specific Conductance ≥ 1000 µS/cm, residual 

non filterable ≥ 700 mg/L) in scatter plots (British Columbia Ministry of Forest, 2016). 

This was to understand the influence of saltwater intrusion on said metals.  Further 

discussion of this is in Appendix 8.2 and in Section 4.5. 

III. Each unfiltered variable of Others, SWI and metals were then plotted against its own 

count to characterize the distribution of the data. The data was heavily skewed right in 

most variables. 
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IV. Scatter plots of each concentration of others, metals and SWI against time (in years) were 

made as well to understand variations throughout time. Further discussion of this is in 

Appendix 8.2 and in Section 4.5.   

V. To further assess temporal variations, line graphs of metals and others, these were plotted 

against time in years with data summation set on “mean”. Further discussion of this is in 

Appendix 8.2 and in Section 4.5. SWI line graphs for time were created with data 

summation set on “max” as “mean” values do not account for wells with seawater 

intrusion. The average well does not have SWI and thus using mean instead of Max will 

not show anything. 

VI. Duplicate line graphs for others and metals vs time and drilled down to “month” to 

observe any potential seasonality differences. Further discussion of this is in Appendix 

8.2 and in Section 4.5.  

Both scatter and line graphs were then filtered by “aquifer groups” to observe the differences 

between different aquifer types. Further discussion of this is in Appendix 8.2 and in Section 4.5.  

Likewise, both scatter and line graph were filtered with the following (British Columbia Ministry 

of Forest, 2016): 

I. Chloride ≥ 150 mg/L,  

II. Specific Conductance ≥ 1000 µS/cm 

III. residual non filterable ≥ 700 mg/L 

IV. The metals of interest are ≥ the respective Guidelines for Canadian Drinking Water 

Quality limits(Canada, 2014). 

The results of these were discarded as the exploratory data analysis had better methods to 

characterize patterns. 

4.2.2 Second Preliminary Exploratory Data Analysis 

The final data set was further processed in Power BI’s Power Query.  

I. The time of sampling was split from the date of sampling, as linking done via sampling 

date was infrequent in the exact time.  

II. The precipitation monthly climatology was subtracted from actual precipitation monthly 

values to account for flooding/droughts (‘FD’).  
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III. The minimum temperature climatology was subtracted from the mean monthly minimum 

temperature to obtain a representation of increased minimum temperature due to climate 

change (“MT”). The maximum temperature climatology was subtracted from mean 

monthly maximum temperature to obtain a representative with the potential rising 

maximum temperatures via climate change (“HW”). Both minimum and maximum 

temperature were used because minimum temperatures seem to be asymmetrically more 

affected by climate change and the decrease in diurnal temperature range is indicative of 

climate change impacts (T. R. Karl et al., 1993). 

IV. Following a final star schema table was created by removing the dataset of most unused 

identification IDs for clarity.  

The climatology values used to indicate climate change effects were simulated for the year 2000 

despite global warming being far noticeable before then. This is due to PCBC’s climatology 

modeling. In further studies, there may be reasons to consider better simulated values. 

Furthermore, the method to account for precipitation and temperature was chosen because it was 

determined as the best way to include geography. However, the effect of one- or two-week heat 

waves is minimized using this procedure(T. R. Karl et al., 1993).  Future exploratory analyses 

should include more localized time series to better account for heat waves. In addition, future 

exploratory research may furthermore benefit by accounting for the more than month-long 

effects of droughts on wells and the groundwater system in general. 

Power BI was utilized to further extend the data analyses due to its ability to rapidly explore data 

structures via “filters” and “slicers”. Further discussion of the results is in Appendix 8.2 and in 

Section 4.5 

I. Other factors were graphed against precipitation, mean minimum monthly temperature 

(min temp), mean maximum monthly temperature (max temp), FD, MT and HW using 

scatter plots.  

II. Metals along with the corresponding Guidelines for Canadian Drinking Water Quality 

limits were graphed versus precipitation, mean minimum monthly temperature, mean 

maximum monthly temperature, FD, MT and HW, in scatter plots.  
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III. SWI factors along with corresponding seawater intrusion cut offs were graphed against 

precipitation, mean minimum monthly temperature, mean maximum monthly 

temperature, FD, MT and HW in scatter plots.  

IV. Scatter plots summarized by mean values and line plots summarized by mean values 

were made for precipitation, FD, MT, and minimum temperatures plotted against time.  

V. Scatter plots and line graphs with data summation set on ‘max’ were made for maximum 

temperature and HW, were then plotted against time to show the temperature effects of 

climate change over time.  

VI. The line graphs time for precipitation, FD, HW, MT, max temperature and min 

temperature which were changed to “month” to identify the presence of any potential 

seasonality patterns. 

VII.  Precipitation, FD, HW, MT, and minimum temperature were subsequently plotted 

against their own data count to view the data distribution. The data in this case was 

reasonably distributed.  

Both scatter and line graphs were then filtered by “aquifer groups” to observe the differences 

between different aquifer groups with climate change. Further discussion of this is in Appendix 

8.2 and in Section 4.5.  

Likewise, both scatter and line graph were filtered with the following (British Columbia Ministry 

of Forest, 2016),(Canada, 2014): 

I. Chloride ≥ 150 mg/L,  

II. Specific Conductance ≥ 1000 µS/cm 

III. residual non filterable ≥ 700 mg/L 

IV. The metals of interest are ≥ the respective Guidelines for Canadian Drinking Water 

Quality limit. 

The results of these were discarded as the exploratory data analysis had better methods to 

characterize patterns. 

4.3 Methodology for Exploratory Data Analysis 

4.3.1 Data Processing  

 The remainder of the exploratory data analyses were completed using Jupyter notebook via 

python libraries. Python was chosen over R due to the ease of optimizing the processing speed 



  
 

  48
 

and due to the seaborne library. Furthermore, aquifer subtype was classified into three aquifer 

groups described in 3.1. No observation wells were identified as being on karstic limestone 

aquifers. 

Summary statistics were calculated for the entire dataset. This meant, the mean, variance, 

standard deviation, maximum value, minimum value, skew, median and kurtosis, along with the 

10%, 50% and 90% percentiles for each variable dimension using both numpy and Pandas 

libraries were saved as a CSV.  

The summary statistics were then used in subsequent analyses to guide the scaling and data 

analysis techniques used. Following, percentiles of 10%, 50% and 90% elsewhere were chosen 

as previous Power BI analysis and forewarned of significant skewness, that in certain situations 

higher values were meaningful.   

In addition, lower values may be highly sensitive to database normalization while higher values 

of metal concentration indicate contamination that could be past Canada’s Drinking Water 

Guidelines. For example, uranium, due to the right skew, would have a large proportion of metal 

concentrations that are low. This is expected but influenced via detection limits and data 

gathering. Furthermore, to balance that issue while minimizing the effect of scale, extreme 

outliners needed to be replaced to maximum Canadian Drinking Water Guideline. In addition, 

the 90th percentile served as a check to see if it was above Canadian Drinking Water Guidelines.   

4.3.2 Outlier Removal 
Outliers were removed next before scaling as some columns/data dimensions (such as maximum 

temperature) had impossible values (9999) that indicated equipment failure and therefore called 

for removal. However, other values such as factors of saltwater intrusion were expected to be 

higher, and the structure needed to be preserved.  

Due to the data set being multidimensional and skewed with large differing scales, most outlier 

methods and removal methods including that of threshold multipliers and standard deviation 

were unsuitable. When used, threshold multipliers often remove large chunks of data in pH and 

similar columns due to the scale and skew of the full data set. Furthermore, the data set, reduced 

by threshold multipliers or standard deviation methods also indicated that there were no wells 

with saltwater intrusion. However, the previous Power BI analyses showed otherwise (Section 

8.2, Appendix).  
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The removal method of outliers that gave an appropriate data set was replacing the outliers with 

interquartile thresholds (IQR) (Qingkai Kong et al., 2020). This method removed impossible 

outliers such as temperature extremes while maintaining outliers of metal concentrations above 

CDWG limits and SWI values over cutoff limits as indicated by the calculated summary 

statistics. 

I. A function was created that calculated the 25th percentile and 75th percentile along with 

the IQR.  

II. The upper and lower thresholds were 1.5 * IQR of both quantiles.  

III. Anything above and below said thresholds was an outlier. Moreover, outliers were 

replaced with upper and lower thresholds instead of the means to preserve the data 

structure. This method covers 5% to 95% of the range and is far above the cutoffs for 

saltwater intrusion.   

IV. If the upper threshold was still below a metal of interest’s CDWG limit or SWI intrusion 

cutoff, it was not replaced. 

Potential bias may have occurred as this considers each dimension as a single dimension 

and some metal concentrations such as uranium may have already been affected due to the right 

skew given that only four samples were above the Canadian Drinking Water Guidelines while 

the dataset contained multiple missing (thus replaced with half the concentration detection point) 

and samples with low concentrations. 

4.3.3 Scaling and Normalization: 

The severe right skew of some dimensions is contrary to the assumptions of regular 

normalization methods(Hastie et al., 2009). Other dimensions were not as skewed but had a 

severe difference in scale. Originally, both log and square root transformations were tried, and 

summary statistics were calculated. However, the skew values of some dimensions increased and 

were still far above unity.   

In addition, monthly precipitation and minimum temperature had negative values. The scale 

needed to be similar to conserving computer processing time in most all data techniques. 

Therefore, the Yeo-Johnson Transformation was used for power transformation from Sklearn’s 

Library (Hastie et al., 2009). This transformation inflates low variance data and deflates high 

variance data and creates some additional normalized uniform data set. However, this method 
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also decreases the significance of one dimension over others and makes summary graphs more 

difficult to read.   

Summary statistics were further calculated and saved as CSV with said transformations 

producing the most appropriate skewness for each dimension/variable.  

4.3.4 Correlations  
The Pearson correlation coefficient matrix was calculated and saved as a CSV file to assess the 

linear relationship between variables. Likewise, the Kendall correlation matrix was calculated to 

identify the ranking of how each individual variable influences each other variable(Helsel et al., 

2020). Last, the Spearman rank correlation matrices were calculated and saved as a CSV to 

assess nonlinear increases/decreases between each variable. 

4.3.5 Mahalanobis Method for Multivariate Outliers 
To assess multivariant outliers, the Manhalanobis method utilized SciPy (Hastie et al., 

2009). Therefore, aquifer groups were encoded utilizing ‘one hot encoding’ method to account 

for non-ranking, categorical variables. Then the inverse of the covariance matrix and the data 

center was identified. Following, the data was regularized by adding a small constant to the day 

and the mean was identified.  

An empty list was then created to store the Manhalanobis distances and the distance for each row 

was calculated utilizing the Manhalanobis row means, and inverse coefficient. Said distances 

were added to the data frame and the 99% cut-off for two-tailed chi-square test was found.  

Outliers were then identified to be where the Manhalanobis distance was above said threshold. 

Without previous IQR outlier removal, this method removed over 50% of the data. With both 

previous transformation and previous outlier removal, 30 rows were removed which consisted of 

3% of the data set. These data values were left in the data for future analyses to avoid 

over fitting. 

Once the corresponding quantiles plot was plotted, with the Manhalanobis distances and then, 

calculated normal quantiles were given a normal distribution: Section 8.2 (Appendix) shows the 

resultant figure. This resulted in skewness and nonlinearity which could result in overfitting, 

therefore, was discarded. 
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4.3.6 Plot Generation 
Plots that were too difficult to quickly create in Power BI were then generated via Seaborn 

(Appendix 8.2 and Section 4.6).  

I. A graph was used to display the count of well samples per year and month for each 

aquifer group which was generated.  

II. The graph and the amount of well aquifer samples per each OBS well with each aquifer 

group was generated. 

III. A data frame called “metals total” which included As, Cd, Mn, Pb, U and aquifer 

group was created and a scatterplot (pairplot), histogram pairplot, and kernel density 

estimator (KDE) pairplots were generated.   

IV. Another data frame for Precipitation factors [Precipitation, Min_Temp, Max_Temp, MT, 

HW, FD, Aquifer Group], then a scatterplot pairplot, histogram pairplot and kernel 

density estimator (KDE) pairplots were generated.   

V. A data frame called OthersD was created with “Alkalinity Total 4.5”, “Ca-T”, chloride 

(“Chlorid:D"), “Fe-T”, “Mn-T”, “N.Kjel:T”, “P--T”, “Residue Filterable 1.0u”, “Specific 

Conductance”, “Sulfate:D", “pH”, “Hardness Total (T)”, “K--T”, and “Aquifer Group”. 

Then a scatterplot pairplot, histogram pairplot and kernel density estimator (KDE) 

pairplot were generated.  

VI. Boxplots of each metal in each aquifer group were generated as well utilizing the scaled 

and transformed data.  

VII. Scatter plots of each metal with the maximum limit for the Canadian Drinking Water 

Guideline over time was then generated from the unscaled data.  

VIII. The count of the total amount of well samples for each above the standard was then 

determined.  

IX. Sea water intrusion factors were graphed with the corresponding maximum for seawater 

intrusion throughout time in scatterplots from unscaled data.  

X. The count of the total number of well samples for each, above the seawater intrusion, was 

then determined. 

XI. Heatmaps of the maximum temperature per well over time in years, the minimum 

temperature per well over time in years, HW per well over time in years, MT per well 
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over time in years, nearby precipitation per well over time in years and FD per well over 

time in years were generated.  

XII. In addition, heatmaps for seawater intrusion per well over time were generated utilizing 

specific conductance, chloride and Residue Filterable 1.0u'. 

4.4 Methodology for Exploratory Data Analysis of Climate Change Factors 

4.4.1 Potential Flood, Drought and Temperature Increases 

Analyses of climate change factors were carried out in Python via the 4th Jupyter notebook.  

For flooding, rows were taken in which FD > zero.  

I. The number of wells above the Canadian Drinking Water Guideline limit were calculated 

for As, Mn, Pb and U (Section 4.2).  

II. The total wells above seawater intrusion cut off limits were calculated for chloride, 

residue filterable 1.0u and specific conductance.  

III. Outliers from the data set were removed as explained above and data was scaled via Yeo 

Johnson method using power transformer.  

IV. Summary statistics, Pearson matrix, Kendall rank matrices, and Spearman correlation 

matrix were calculated and saved as CSV.  

V. Furthermore, similar scatter, histogram, and KDE pairplots for “Other, metals and 

precipitation factors” as previously described were generated.   

VI. Scatter Plots comparing each metal of interest with each variable/factor were generated 

via looping throughout the data set. 

The resultant plots for flooding are shown in Appendix 8.2 and discussed in Section 4.6.  

Furthermore, Spearmen correlation matrices and additional summary statistics were deemed 

redundant and excluded. 

A fifth Jupyter notebook which ran the same process was used where FD < 0 to analyze potential 

drought conditions. Alongside the effect of increasing temperature rise was analyzed by a sixth 

and seventh Jupyter notebook running the same process as above. The sixth notebook analyzed 

rows with HW > 0 to determine how the datetime temperature could influence potential 

contamination. The seventh notebook analyzed rows with MT > 0 to analyze any potential 

patterns between increasing nighttime temperature and other factors.  
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4.4.2 Exploratory Data Analysis for Sea Water Intrusion 

The eighth Jupyter script took rows with Residue Filterable 1.0u' > 750 mg/L to analysis the 

effect of it on different factors and to figure out how accurate of a predictor it is for seawater 

intrusion.  

I. The number of samples for As, Mn, Pb and U, that were above their respective Canadian 

Drinking Water Guidelines limit was calculated.  

II. The amount of additional saltwater intrusion factors such as chloride and specific 

conductance above the respective cut off values for saltwater intrusion were additionally 

calculated.  

III. Outliers were removed and the data set was transformed as previously described.  

IV. Following summary statistics, Pearson correlation matrices, Spearman's correlation 

matrix, and Kendall rank matrices were calculated and saved as CSVs.  

V. Scatter pairplots, histogram pairplots and KDE pairplots were calculated for metals [As, 

U, Pb, Mn, Cd, Aquifer Group],  

VI. Scatter pairplots, histogram pairplots and KDE pairplots were calculated for OthersD 

[OthersD: “Alkalinity Total 4.5”, “Ca-T”, “Fe-T”, “N.Kjel:T”, “P--T”, “Sulfate:D", “pH”, 

“Hardness Total (T)”, “K--T”, “Aquifer Group”]. 

VII. Scatter pairplots, histogram pairplots and KDE pairplots were calculated for sea water 

intrusion factors (SWI: “Chlorid:D", “Residue Filterable 1.0u”, “Specific Conductance”, 

“Aquifer Group”). 

VIII. Scatter pairplots, histogram pairplots and KDE pairplots were calculated for climate 

factors (Prep: “FD”, “HW”, “MT”, “Aquifer Group”, “PRECIPITATION”, 

“MAX_TEMP”, “MIN_TEMP”).  

IX. Scatter plot graphs of As, Mn, Pb, U against each variable/dimension were created.  

X. Then scatterplots of Cd, U, Pb, and Mn and respective drinking water standard limits 

were plotted against time for each aquifer group.  

XI. Chloride and specific conductance were as well plotted against time for the aquifer group 

to understand any potential change in variables in wells that already were consistent with 

saltwater intrusion.  

XII. The number of samples over the Canadian Drinking Water Guidelines limit for As, Mn, 

Pb and U and the number of samples of chloride and specific conductance that were 



  
 

  54
 

above the seawater intrusion cut off were calculated as a check to evaluate the effects of 

outlier removal.  

XIII. Heatmaps of specific conductance and chloride throughout the years per well were then 

generated to further visualize the effects of seawater intrusion.  

Additional Jupyter scripts ran similar analysis that focused on different combinations of sea 

water intrusion indicators: 

I. The ninth Jupyter script took rows with ‘chloride'> 150 to analyze the effect of it on 

different factors and to figure out how accurate of a predictor it is for seawater 

intrusion. The number of samples for As, Mn, Pb and U that were above their respective 

Canadian Drinking Water Guidelines limit was calculated. Then the amount of additional 

saltwater intrusion factors such as chloride and specific conductance above the respective 

cut off values for saltwater intrusion were also calculated. Scatterplots of Cd, U, Pb, and 

Mn and respective drinking water standard limits were plotted against time for each 

aquifer group.  

II. The same process as the 8th script was then repeated with Residue Filterable 1.0u 

replacing chloride in scatterplots and the heatmap. 

III. The tenth Jupyter script took rows with specific conductance > 1000 µS/cm to analyze 

the effect of it on different factors and to figure out how accurate of a predictor it is for 

seawater intrusion. It replaced specific conductance with chloride in the scatterplots and 

heatmaps. 

IV. Jupyter script eleven took rows with specific conductance > 1000 µS/cm or “chloride” > 

150 mg/L to analyze whether both factors should be considered.  

The key results are summarized in Section 4.7 and Appendix 8.2 focusing on IV. as other 

combinations were deemed to have an insufficient amount of data. 

“Jupyter script 12” was used to further identify the underlying data structures of multiple 

seawater intrusion factors/identifiers.  

I. Data rows in which all three seawater intrusion measures were above the respective 

seawater intrusion limit were filtered into a data frame (DataAll) and the number of 

samples with As, Mn, Pb or U over the respective limits were calculated.  
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II. A data frame with rows where both the chloride and residue filterable over their 

respective sea water intrusion cutoff was created and the number of samples with As, Mn, 

Pb or U over the respective limits were calculated.   

III. Another data frame consisting of the rows in which both specific conductance and 

residue filterable were over their seawater intrusion cut offs, was created and the number 

of samples with As, Mn, Pb or U over their respective limits, along with chloride were 

calculated.  

IV. Last, a data frame where both specific conductance and chloride were over their 

respective limits, (DataSCCl) was created and the number of samples with As, Mn, Pb or 

U over their respective drinking water limits along with residual filterable 1u were 

calculated. 

V. Outliers were removed as previously described and Pearson correlation matrices, Kendall 

rank matrices, and spearman's correlation matrices were calculated for both DataAll and 

DataSCCl script.  

VI. The script did not transform data due to the low amount of data set.  

VII. Scatter, Histogram, and KDE pairplots/pairwise plots were run for metals, Prep 

(precipitation variables), SWI factors and others as previously described from DataAll.  

VIII. Metals were then plotted in a scatter plot through time with the respective limit from the 

Canadian Drinking Water Guidelines for both DataAll and DataSCCl.   

IX. The concentration of metals over said limit was then recalculated to check on the effects 

of outlier removal.  

X. A heat map was then generated for concentration of manganese well throughout the year 

as it tended to exceed the drinking water standards limit more than the other metals.  

The key results are summarized in Section 4.7 and Appendix 8.2.  The heat maps and plots were 

deemed redundant due to having too few datapoints and hence omitted. 

4.5 Initial Exploratory Data Analysis Using Power BI 
The figures in Section 8.2, Appendix show the greatest degree for arsenic of its variable, filtered 

for Aquifer Group 1 (AG1). The wells that were above the Canadian Drinking Water Guidelines 

limit were turbid, more than those of sea water intrusion. However, the well samples did not have 

much chloride or specific conductance. Those samples all had high alkalinity (>150 
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mg/L)(Health Canada, 2015) but did not exhibit high levels of chloride, sulfate, or nitrogen. The 

graphs for Power BI show no specific pattern and incomplete data. Therefore, as a result the 

metal was discontinued for further analysis.  

As a background, inorganic arsenic is in groundwater in two oxidation states: arsenite (As+3) and 

arsenate (As+5) with the geological environment favoriting one form over another (Shankar et al., 

2014). Both forms exist at pH 6-9. While arsenate is favored thermodynamically in oxic water 

while arsenite is favored in anoxic, water with both states have been reported.   

The release and mobility of arsenic in groundwater is related to both iron and aluminum oxides 

in sediments along with indigenous metal reducing bacteria in anoxic conditions (Shankar et al., 

2014). This relationship was not seen due to the large spatial area of British Columbia.  As 

leaches from iron minerals in oxic and high pH (Kanel et al., 2023).   Low hydraulic gradients 

aquifers with higher residence time led to more dissolved arsenic (Kanel et al., 2023).  The 

majority of geogenic arsenic comes from recently deposited alluvial sediments.  Arsenic bearing 

sulfide minerals from geothermal deposits may also release arsenic into water via oxidation. A 

relatively diverse amount of micro-organisms have been discovered to utilize arsenic for energy 

generation via arsenite oxidation and arsenate reduction.  These processes are reported to occur 

simultaneously with geochemical processes and observed to have an effect on arsenic speciation 

(Kanel et al., 2023; Liao et al., 2011).  The primary microbial processes for arsenic 

transformation/mobilization are methylation, demethylation, oxidation, and reduction and are 

often tied to iron.  Given the lack of iron patterns, this could indicate that geochemical controls 

may be more dominant than microbial ones.  

Four possible ways of subsurface arsenic mobilization have been proposed by Oremland and 

Strolz: 1) As oxidation in pyrites, 2) iron oxide reduction leading to the release of As(V) via 

present allochthonous (indigenous) organic matter , 3) iron oxide reduction leading to the release 

of As(V) via present autochthonous (displaced) organic matter and 4) displacement of As(V) via 

phosphate (such as fertilizers) (Oremland & Stolz, 2003).   Given the high turbidity with arsenic 

over CDWG limits and assuming it is geogenic in nature, it’s likely that the sources were either 

2) or 3) which could coincide with areas in B.C. with high groundwater arsenic such as the 

Lower Fraser Valley (Wilson et al., 2008).  Otherwise, it could be due to previous mining 

runoffs.  
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B.C.’s alkalinity is predominantly a function of geology (Raudsepp et al., 2024). While 

Northeastern B.C. tends to have higher alkalinity over 200 mg/L due to carbonate rich bedrock 

such as limestone and dolostone while groundwater interacting with volcanic rocks 

in Southwestern B.C. is far lower (Earle, 2019b).   Localised natural dissolution of carbonate 

minerals without other major ions that influence specific conductance could explain the gap 

between alkalinity and specific conductance (Arciszewski & Roberts, 2022).    

Alkalinity represents the buffering capacity of alkalinity and buffers the water to the range which 

promotes arsenic dissolution (Shankar et al., 2014).  The more feasibly the common aquifer 

geology contains carbonate rich aquifer mineralogy that is conductive to arsenic release under 

more alkaline reducing conditions (Health Canada, 2015; Mushtaq et al., 2018).  Possible past 

flow paths might additionally have transported arsenic rich waters with alkalinity, which over 

time was isolated from other ionic sources (Q. Yang et al., 2015). Further research should view the 

relative ratios of chloride, sulfate and bromide to match that of seawater to analyse the effect of 

saltwater intrusion vs rock-water interactions (Saberimehr et al., 2017).    

Manganese over the CDWG of 0.02 mg/L against other factors are shown in Section 8.2, 

Appendix (Health Canada, 2015). In Aquifer Group 1, manganese levels all had high iron levels, 

low phosphate levels and high levels of water hardness. Furthermore, these levels had low 

turbidity and moderate specific conductance that was not at the cut off for seawater intrusion. 

The geochemistry of manganese and iron in groundwater is closely linked due to both existing in 

various redox states with groundwater chemistry and microbially mediation (Hamer et al., 2020).  

Low oxygen, reducing conditions indicate soluble Mn+2 and Fe+2 (ferrous), while Mn+4/Fe+3 

(ferric) form insoluble iron hydroxides in oxidizing conditions (Z. Zhang et al., 2020).   

Groundwater microbial interactions between the two are well studied and iron reducers tend to 

indirectly reduce manganese or vice versa (Gounot, 1994).  Flow stratification matters as vertical 

and horizontal water paths in the aquifer form a series of reductions to carry out both 

geochemical and biogeochemical reduction process (Appelo & Postma, 2004).  The observed 

linkage was expected, however as the coupling of iron and manganese is well known, however 

future research should consider aquifer and borehole properties as those may also affect the 

relationship (Hamer et al., 2020).  Removal of iron and manganese is also common as both 

absorb to or coat sentiment soil grains during oxygenated recharge areas (Ahmad, 2012). Further 
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sedimentary aquifers and those with volcanic deposits show elevated manganese and iron. 

Granitic and metamorphic terrains yield lower due to less contact time with manganese/iron 

bearing minerals (Appelo & Postma, 2004).  This is presumably the case for Aquifer Group 1.   

Manganese and iron also have been shown to absorb released phosphorus in similar types of 

aquifers (Huang et al., 2023).  

In addition, lead above the Canadian Drinking Water Guidelines of 5 μg/L against all other 

factors from Aquifer Group 1 are shown in Section 8.2, Appendix and follow a similar pattern to 

manganese (Health Canada, 2015). Low specific conductance, low turbidity and very low 

chloride levels were apparent patterns along with higher lead concentrations leading to limited 

extent of hardness.  

Higher lead concentrations in groundwater combined with low specific conductance, turbidity 

and chloride levels possibly indicate lead being mobilized from groundwater pipes and well 

fixtures instead of being leached from aquifer materials (Kampbell et al., 2003). However, 

corrosivity (calculated via the sulfate: chloride ratio) did not show any apparent patterns 

((Nguyen et al., 2011). While localized contamination plumes from past industrial use of leaded 

petroleum and mining waste may possibly be an explanation for the raised lead, although not for 

other specific parameters (Earle, 2019b).   

Meanwhile uranium had few levels above the Canadian Drinking Water Guidelines of 0.02 mg/L 

(Section 8.2, Appendix) (Health Canada, 2015). However, there was an apparent pattern when it 

came to, rising concentrations with rising specific conductance, hardness, calcium, dissolved 

sulfate, alkalinity, pH, and turbidity. 

Likewise, the relationship between higher uranium and rising specific conductivity, total 

hardness, calcium, alkalinity, pH and turbidity indicate that ions released are coupled to 

increasing rock-water interactions that are influenced by evolving ion geochemistry (Appelo & 

Postma, 2004; Smedley & Kinniburgh, 2023).  Uranium is soluble in water in its oxic state, 

uranium tetrafluoride (U(VI)) at neutral and alkaline pH (Alam & Cheng, 2014). Previous 

studies show calcium-carbonato-uranyl complexes promote uranium release (Skierszkan et al., 

2020).  In contrast to the scatterplot, sulfate reducing conditions are known to immobilize U as a 

precipitate or sorb it to mineral surfaces (Smedley & Kinniburgh, 2023).  Spatial autocorrection 

may bring further understanding of the reason behind this observation.  
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Thermodynamic controls, mineral dissolution and uranium desorption control uranium mobility 

(Alam & Cheng, 2014). Uranium adsorption is often observed with Fe-Mn hydroxide minerals 

and influenced by natural organic matter, clay minerals and phosphate.  The scatterplots may be 

indicative of de-absorption and weathering.  The specific conductance, hardness and turbidity 

increase due to the dissolution of the native materials and as reactions consume carbonate 

buffering over time (Smedley & Kinniburgh, 2023). This might as well indicate that intrusion of 

saline waters created more oxidizing conditions (Sahu et al., 2020).   

The line graphs of Aquifer Group 1 (Section 8.2, Appendix) show a downward trend of iron.  

Nonetheless it is difficult to tell if a yearly trend exists or if it is purely based on sampling 

frequency and distance. Future analysis would require de-seasonality and de-trending to verify 

any temporal patterns. Furthermore, lead goes down slightly as does arsenic, while there is a 

spike in uranium. The increase in uranium could be due to a growing interest in testing and lead 

decreasing due to a decrease in surface pollution. Moreover, seasonality is difficult to determine 

given that samples were taken in different places. However, specific conductance, turbidity and 

chloride show somewhat of a potential distinct seasonality pattern. In addition to the above 

analysis for saltwater intrusion, not enough data is available to make numerous or if any 

conclusions. 

Increased changes in runoff and rainfall patterns might alter groundwater flow gradients and 

changed geochemical conditions to that of oxidizing conditions, removing iron from the water 

(Ghazavi et al., 2012).  Specific conductance and chloride show seasonal patterns due to well 

pumping in aquifers that show saltwater intrusion (British Columbia Ministry of Forest, 2016). 

Likewise, turbidity would display a pattern due to seasonality, resulting soil and groundwater 

interactions (Sahu et al., 2020). 

Section 8.2, Appendix shows the different metals along with their Canadian Drinking Water 

Guidelines limit against precipitation for AG1. The samples above Canadian Drinking Water 

Guidelines for Cd, Pb, U and As had low precipitation. Manganese above the drinking water 

guidelines was slightly related to low precipitation but said relationship was not as strong as the 

previous mentioned metals. Furthermore, higher specific conductance, turbidity and chloride 

above the saltwater intrusion cut off were related to low precipitation. Hardness had a slight 
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relation to low precipitation.  Higher nitrogen, sulfate and alkalinity had lower precipitation 

levels. Meanwhile iron tended to slightly increase with higher precipitation.  

Arsenic is already typically found to be high in inland basins in arid and semi-arid climates 

(Appelo & Postma, 2004).  Pb, Mn and Cd above Canadian Drinking Water Guidelines could be 

due to the concentration effect via anthropogenic sources in more arid environments as well.  

Less precipitation provided it is not due to a severe drought could indicate that the water could 

be taken from deeper wells with longer flow paths, extended groundwater residence time, and 

less flushing for U (Alam & Cheng, 2014).  Iron is known to be reduced with more water 

(Appelo & Postma, 2004).  Drought effects reduces retention capacity for nitrogen on a wider 

scale and thus may be an explanation of the scatterplots (Winter et al., 2023).  

The climatology monthly precipitation values were subtracted from precipitation to get the 

difference between the actual and predicted values (‘FD’). Values > 0 were taken to be flooding 

conditions, while values <0 were taken to be drought conditions. For Aquifer Group 1, no pattern 

was observed for alkalinity, calcium, sulfate, Fe, PH, P and hardness. Considering most of the 

contaminates mentioned were associated with lower precipitation values, this might indicate that 

wells were an already dry area or a wet area for iron.   

Further uranium over the Canadian Drinking Water Guidelines demonstrated a higher 

relationship with drought conditions. The higher amount of uranium in drought conditions is 

expected as results of the concentration effects.  This also might be due to oxidation as drought 

conditions lead to a lowering of the groundwater table, exposing oxygen to uranium containing 

minerals in the unsaturated vadose zones (Z. Xu et al., 2022).  

Flooding conditions were more associated with nitrogen, Cd over CDWG, Mn over CDWG, 

turbidity, and surprisingly chloride.  Most of these are associated with overland contamination – 

nitrogen from fertilizer, cadmium from industrial activities, chloride from road salt and sea 

water, and turbidity from flooding sediment (Baborowski et al., 2004; Ciszewski & Grygar, 

2016; Mullaney et al., 2009).  Aquifer Group 1 are unconfined aquifers that consist of sand and 

gravel and often are influenced by overland water bodies and surface contaminates (Wei et al., 

2016).  This aquifer group has a high hydraulic connectivity thus the associations with those 

flooding and pollutants may be overland contamination brought in by floodwater (Ciszewski & 

Grygar, 2016).   Mn over CDWG may be due to the increase in water and thus increase in 
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reducing conditions in a specific spatial area (Appelo & Postma, 2004). However, as B.C.’s 

ministry of environment is still mapping aquifers and groundwater levels are not consistently 

linked to the concentration database, further analysis is needed to make a definitive conclusion. 

The time frames on the line graphs (Section 8.2, Appendix) indicates that there is a significant 

influence of geography as indicated by the variation of climatology, simulated values and 

seasonality in all temperature and precipitation factors. 

Aquifer Group 2 (AG2) consisted of around 330 data samples. Line and seasonality graphs of the 

data variables indicated significant sampling errors with calcium, alkalinity, and hardness 

(Section 8.2, Appendix). Sulfate, specific conductance, and dissolved chloride indicated 

significant seasonality. However, the rest was difficult to identify between an actual seasonal 

pattern verse sampling and distant effects. Specific conductance indicated a slight decrease 

throughout time. Moreover, TDS and sulfate involved a noticeable increase. 

Aquifer Group 2 is consistent of confined aquifers, thus not be as affected by seasonal effects.  

However multiple multi-aquifer wells can give induce seasonality effects in confined aquifers 

(Johnson et al., 2011).  Seasonal pumping changes allow for leakages from the unconfined 

aquifers above into the confined aquifers and thus increase contamination.  This could explain 

sulfate, specific conductance and chloride.  Specific conductance, chloride and sulfate patterns 

could also be due to saltwater intrusion via seasonal pumping (Basack et al., 2022a).    Likewise 

increase in sulfates and TDS might be due to overdrawing or contamination via pumping 

demands.  

Uranium for Aquifer Group 2 (Section 8.2, Appendix) did not have any concentrations above the 

CDWG guidelines. However, a similar but smaller trend observed in Aquifer Group 1 was 

observed. Following lead concentrations above the CDWG guidelines for Aquifer Group 2 was 

partially related to alkalinity, while other factors contained no supporting patterns. Manganese 

samples that were over the CDWG guidelines had high alkalinity, low phosphate, high 

potassium, and high hardness. With arsenic above the CDWG guidelines, against all other 

variables had high turbidity and no other indication of patterns for Aquifer Group 2. 

Lead is soluble in water as Pb+2 (Appelo & Postma, 2004).  However, it is easily sorpted on 

clays, calcites, Mn-oxides and iron oxyhydroxides at and above neutral pH (Appelo & Postma, 

2004).  The alkalinity is likely related to geologic properties while lead could be related to 
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anthropogenic contamination from pipes or disturbances to confining layers that expose aquifers 

to surface lead sources (Jurgens et al., 2019) 

High manganese levels with high iron, low turbidity, low phosphorus and high hardness 

potentially indicates aquifer materials that contain crystalline iron and manganese 

oxide/hydroxide minerals, under reducing conditions (Appelo & Postma, 2004). Potassium 

mineralogy weathering is a slower and more gradual process so the higher amounts coupled with 

lower turbidity may indicate a longer residence time (Appelo & Postma, 2004; Meyers et al., 

2021). Furthermore, hardness is dominated by calcium/magnesium ions from carbonate mineral 

weathering rather than manganese/iron oxides (Appelo & Postma, 2004). 

Precipitation for Aquifer Group 2 was graphed against all factors (Section 8.2, Appendix). Cd, 

Pb, As, and Mn along with CDWG limits and chloride, turbidity, and specific conductance above 

saltwater intrusion cut offs were associated with lower precipitation. Manganese above the 

CDWG limits was slightly associated with lower precipitation. Furthermore, the differences 

between actual monthly precipitation and simulated monthly precipitation was then compared to 

all other factors to simulate flood drought conditions. Drought like conditions were related to 

lead and arsenic above the CDWG guidelines. As well, flood like conditions were related to P 

and As below CDWG guidelines. 

Drought like conditions for lead, cadmium and arsenic could relate to the draw down from above 

unconfined aquifers (Johnson et al., 2011).   Confined aquifers in B.C. have high hydraulic 

diffusivity ranking, therefore drought stresses are able to propagate throughout the aquifers more 

rapidly (Gullacher et al., 2023).  This effect would influence the water residence time and thus 

rock-water interactions (Bakari et al., 2012). This could indicate a shift in redox chemistry that 

may be difficult to reverse with time.  Further studies would be required to understand said 

relationship between confined aquifers, geochemical drought shifts in confined aquifers and 

manganese.  Specific conductance, chloride and turbidity could indicate saltwater intrusion from 

underlying previous saltwater aquifers or current seawater due to overpumping (Meyer et al., 

2019). 

For flooding conditions – arsenic and phosphate could be related to iron (Appelo & Postma, 

2004).  The effects of flooding on groundwater geochemistry in confined aquifers is relatively 

understudied.  Yang and Tsai studied the relationship between shallow confined aquifers and 
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floods but focused mostly on anthropogenic contamination (S. Yang & Tsai, 2020).  Both arsenic 

and phosphate are common anthropogenic pollutants and could likely be due to wellhead 

contamination from connecting wells (Basahi et al., 2018).  

Chloride, uranium, and arsenic over Canadian Drinking Water Guidelines increased over time for 

Aquifer Group 2 with all factors indicating seasonality along with indications of the impact of 

geography.  Further researcher into recharge areas would be needed for a definite explanation. 

Aquifer Group 3 contained 300 samples. Arsenic above the Canadian Drinking Water Guidelines 

plotted against all other factors (Section 8.2, Appendix) had the low turbidity, low specific 

conductance and low chloride. Cadmium had no patterns again.  

Fractured bedrock contains conduits which streamline flow and creates spaces for rock-water 

interactions.  The main flow occurs around fissures while solute exchanges via diffusion occur 

with stagnant water in built rock (Appelo & Postma, 2004). Low permeability fractured flow 

with minimal rock-water interactions tend to produce clearer, lower ion concentrated 

groundwater. Furthermore, deep buried sediments in fractured sedimentary aquifers have 

undergone lithification, reducing fracture porosity and thus limiting rock-water interactions 

(Ofterdinger et al., 2019). Additionally phreatic zones are below the influences of most surface 

water processes (Wossenyeleh et al., 2020). 

Manganese above the Canadian Drinking Water Guidelines (Section 8.2, Appendix) for Aquifer 

Group 3 showed high alkalinity, calcium, iron, potassium and hardness, following a similar 

concentration pattern to Aquifer Group 1. Additionally, it showed lower specific conductance and 

turbidity. Lead samples above the Canadian Drinking Water Guidelines for Aquifer Group 3 

(Section 8.2, Appendix) were mostly alkaline while the specific conductivity followed a similar 

pattern to manganese.  Furthermore, uranium did not have many values above the Canadian 

Drinking Water Guidelines. However, a smaller similar pattern for Aquifer Group 3 was 

observed in Aquifer Group 2. 

Higher manganese, with higher alkalinity, calcium iron, potassium and hardness indicate an 

extended long rock-water interaction over long flow paths and stagnant water zones within the 

fracture network (Bakari et al., 2012).   Upwelling of the formations after circulation could bring 

the ions to surface (Ofterdinger et al., 2019). 
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Line graphs indicate many sampling errors in Aquifer Group 2 (Section 8.2, Appendix). 

Furthermore, chloride and specific conductance had a noticeable increase along with variations 

that suggested potential seasonality. 

Monthly precipitation was plotted against all other values for Aquifer Group 3 (Section 8.2, 

Appendix). Nitrogen, cadmium, and pH increased with increasing precipitation, while arsenic, 

uranium and iron increased with decreasing precipitation. Furthermore, the differences between 

simulated and actual monthly precipitation were also plotted against all other values. Flooding 

showed a similar pattern in Aquifer Group 2. Meanwhile, droughts showed an increase for Ca, 

specific conductance over the saltwater intrusion cut off, and Mn, As above the Canadian 

Drinking Water Guidelines limits. 

The increased precipitation from higher recharge and rising water tables expands the saturation 

zone and increases the height storage capacity (Ciszewski & Grygar, 2016). This may dilute to a 

certain amount above the concentration of dissolved iron by flushing and mixing (Santos et al., 

2011a).  

Meanwhile, droughts shift aquifers to a closed system and change the geochemistry through 

continued rock-water exchange without replenishment (Wossenyeleh et al., 2020). The increased 

recharge allows more oxygen exchange in the vadose zone and changed redox conditions that 

may be impacting solubility of iron. 

4.6 Descriptive and Summary Statistics 
Given that most values are scaled to be centered around zero and with minimal sizing 

differences, the coefficients of variance are quite large (Section 8.2, Appendix). Variance and 

standard deviation were also sizeable, which indicated that there is a large spread of data. This is 

expected due to some wells being over the contamination standards, while others were not, due 

to groundwater chemistry in different geology and other factors. 

The bar graph of aquifer samples (Section 8.2 Appendix) indicates that primarily well sampling 

was concentrated in Aquifer Group 1, with Aquifer Group 2 being secondary. Box plots (Section 

8.2 Appendix) demonstrate that for Cd, Pb, U, and Mn there is a large variation in Aquifer 

Groups 2 and 3. A moderate amount of variation was showing for As in Aquifer Groups 1, 2, and 

3 and for Mn in Aquifer Group 1. Uranium, lead and cadmium were usually low but had a lot of 
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extreme outliers indicating potential well contamination.  This could be further explained via a 

spatial analysis. 

Pearson, Kendall and Spearman correlations matrices were calculated for the entire dataset, 

drought dataset, flood dataset and seawater intrusion dataset.  Pearson and Kendall correlations 

were focused on as the first represents linear correlations and the second is similar to Spearman's 

representing nonparametric correlations but considered to be more stringent (Hastie et al., 2009). 

The full Kendall correlation for the entire data set is shown in the appendix (Section 8.2, 

Appendix).  Matrices did not take aquifer types into account and thus this may be an area for 

further study. 

Table 4.1 displays both the Kendall rank correlation and Pearson correlation for the entire data 

set, flood data set and drought data set with a cut off P >= 0.5. Heavy metals of interest were 

chosen as variables and well as nitrogen as it has been extensively studied in these types of 

conditions (Winter et al., 2023).  Both arsenic and nitrogen showed no significant correlation to 

any variables in all three data sets. This goes against previous studies in other areas which 

demonstrate both nitrogen and arsenic correlation (Appleyard et al., 2006; Winter et al., 2023). 

Said lack of correlation may also be due to lack of consistent sampling methods which is often 

demonstrated in large groundwater databases or spatial differences.  

Manganese had a weak relationship to iron in the normal data set which remained somewhat 

consistent in the flooded data set but deteriorated in drought conditions. In general, iron and 

manganese are both abundant in the earth’s crust and thus have a high co-occurrence (Hamer et 

al., 2020).  Both elements are soluble in their reduced forms and occur in more anoxic waters.  

During flood and normal conditions, the water table is consistent and higher, with widespread 

uniformly distributed reducing conditions, thus leading to the continuation of the geochemical 

redox reactions discussed previously (Ciszewski & Grygar, 2016).   Droughts led to a lowering 

of the water table and oxidizing condition thus in a stratified aquifer, only localized areas may 

have reducing conditions (Levy et al., 2021).  This spatial uncoupling could lead to a 

deterioration shown by the correlations. These shifts in redox conditions often cause the 

divergence of each concentration (Appelo & Postma, 2004). 

Lead had an extremely strong linear correlation with cadmium and a moderately nonparametric 

correlation with cadmium as well. Both these correlative relationships weakened in droughts.  In 
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floods however, the linear correlation decreased but the parametric relationship remained 

somewhat consistent. This combination is usually anthropogenic and probably influenced 

linearly by geochemistry (Ciszewski & Grygar, 2016).    

The Pearson coefficient for flood conditions is possibly due to sediment interactions and the 

difference in transport and deposition rates caused by said flooding (Santos et al., 2011a). 

Furthermore, sediment and depositional environments would indicate that there would be a 

varying and non-uniform contaminate that would delink the observed relationship in droughts. 

Lead and cadmium have a strong Pearson correlation and a moderate Kendall correlation. This 

relationship has various natural sources and therefore the relationship is difficult to determine as 

B.C. has various natural sources of cadmium and lead, variable aquifer lithology, and has high 

areas of both mining, industrial activity and petroleum mining (D. Allen & Gleeson, 2023; Larry D. 

Jones, 1990; Wilson et al., 2008). A cadmium-lead relationship is typically observed in well water 

fixtures (Gavino-Lopez et al., 2022). Given that the observation well stations are governmentally 

run and undergo regular periods of maintenance, such a strong correlation is unlikely solely due 

to well water fixtures and more due to existing anthropogenic and natural contamination. The 

Kootenay region has historical lead contamination due to the joint emissions from decades of 

anthropogenic activity (Earle, 2019b). Likewise, the Trail, B.C. operation smelter in Southern 

B.C. admitted both lead and cadmium into the surrounding air, soil and water for over a hundred 

years (John et al., 1976). Therefore, spatial auto correction is needed to reveal more about this 

relationship.  Moreover, the difference in Pearson is measured in linear correlations and is highly 

influenced by measurement errors while Kendall measures monotonic increase or decrease that 

could or possibly could not be linear (Helsel et al., 2020). This could account for the difference 

between the Kendall and Pearson relationship in cadmium and lead.   

Uranium had a weak relationship with hardness and calcium that deteriorated in flood conditions 

and further deteriorated in drought conditions. These relationships were more likely linear due to 

the lower Kendall values.  

There is a moderate linear relationship between uranium and calcium in the regular data. These 

relationships seem to be slightly weaker in the flooded data set and completely uncoupled in 

drought data sets.  This weak relationship could be due to aquifer geology as uranium commonly 

occurs with calcium bearing minerals (Larry D. Jones, 1990).   Rocks and minerals such as 
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limestone release uranium via weathering processes (Alam & Cheng, 2014). As well, BC has 

areas of carbonate bedrock (Larry D. Jones, 1990). Therefore, these two elements could be 

correlated due to geochemical reactions with longer groundwater residential times (Skierszkan et 

al., 2021).   

Furthermore, flooding could slightly weaken the relationship via increased erosion and runoff 

that transport uranium in pathways independent of calcium in groundwater (Smedley & 

Kinniburgh, 2023). This again will slightly decouple their concentration lowering the Pearson 

correlation. However, the drought correlation may indicate that the mobility of uranium and 

calcium are governed by distinct geochemical factors such as redox conditions, mineral 

equilibria and microbial activity (Appelo & Postma, 2004). Lowering water table would de-

couple them causing no statistical correlation to be observed. 

Table 4.6.1: Pearson (cutoff p ≥ 0.5) and kendall rank correlations for each element of interest (As, Mn, Pb, U) and N for the 
entire dataset, flood dataset and drought dataset. 

Element 
of 
Interest 

Related 
Element 

Normal Flood Drought 

Pearson  Kendall  Pearson  Kendall  Pearson  Kendall  
As - - - - - - - 
Mn Fe 0.5168 0.4111 0.5175 0.4092 - - 
N - - - - - - - 
Pb  Cd 0.9534 0.5630 0.7089 0.5768 0.6691 0.4870 
U Ca 0.5670 0.3620 0.4978 - - - 
 Hardness 0.5610 0.3977 - - - - 

 

Kendall and Pearson correlation for normal and seawater intrusion data sets, As, Mn, N, Pb and 

U are shown in Table 4.2. Arsenic and nitrogen have no correlations. The correlation of lead with 

cadmium drops to a somewhat strong linear correlation, but the parametric correlation in the 

saltwater intrusion data set is similar to that of drought in the saltwater intrusion data set.  

The relationship between iron and manganese is completely decoupled in saltwater intrusion. 

This could be due to different geochemical controls such as competing ions from seawater that 

interfere with the manganese/iron binding behaviors, weakening of the dissolution-precipitation 

of ferrihydrite or redox shifts from oxygenated seawater (Appelo & Postma, 2004; Zhu et al., 

2022b).  Kinetic factors as intrusion relatively to groundwater flow could affect the degree of 

geochemical distribution via the shifts in the equilibrium (Snyder et al., 2004). 
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The weaken interrelationship between lead and cadmium in saltwater intrusion could be due to 

multiple factors. Saltwater intrusion would disrupt the groundwater geochemical relationship and 

change the underlying redox interactions.  In addition, the mixing of saltwater and freshwater 

would introduce different turbulence and flows into the aquifer (Meyer et al., 2019).  Saltwater 

intrusion is known to corrode iron which in turn theoretically should dissolve lead (Basack et al., 

2022a; Trueman et al., 2017). Likewise, legacy sources of lead may be mobilized via saltwater 

intrusion (Nai et al., 2019). Iron and lead contamination could also be brought in via intruding 

seawater.   Further research on this coupling is needed to reach a definite conclusion.  

Uranium in saltwater intrusion had weak linear and parametric correlations – positive potassium, 

hardness and alkalinity and negative chloride and lead. Firstly, these relationships could be due 

to location or sampling biases. Future research should utilize a larger dataset and spatial 

autocorrection. The relationship between uranium and potassium, chloride, and hardness seemed 

to be more linear based then nonparametric increase or decrease due to the lower-than-expected 

Kendall correlation.  Due to lack of research and undetermined studies, the discussion of 

uranium geochemistry is based on few aquifer studies and general saltwater and marine 

sediments.   

The positive correlation between uranium and calcium disappeared in saltwater intrusion.  This 

previously seemed to be due to groundwater geochemistry.  A common groundwater 

geochemical effect is the cation exchange of calcium with sodium (Appelo & Postma, 2004; 

Mora et al., 2020).  Sodium has been utilized to displace uranium in uranium ore extraction and 

thus a smaller similar process may be occurring in the water (Seidel, 2007).  The negative 

relationship between chloride and uranium contrast with other studies and what would be 

expected as uranium chloride is a water soluble solution (S. Singh et al., 2003).  One possible 

explanation could be due to the rapid chromatographic transformation of the solute front 

commonly seen in saltwater intrusion (Appelo & Postma, 2004).  

A weak negative relationship between lead and uranium was revealed in the saltwater intrusion 

data set.  This could have had parametric or additional complexities due to the similarity in 

Kendall scores. This again could be partially due to the changing redox conditions by saline 

metals from previous legacy sources (Smedley & Kinniburgh, 2023). Normally lead and uranium 

coexist in rocks concurrently which forms the bases of lead isotope rock dating (L. Zhang et al., 
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2022).  Few studies have observed the geochemical behavior of uranium and lead with seawater 

intrusion.  However, a possible explanation could be cation competition after both are re-

suspended in the intruding saltwater. Additionally, under more stable freshwater conditions 

without geochemical/transport perturbation, subtle factors controlling uranium’s association 

would be outweighed by intrinsic noise. 

The relationship between uranium and calcium in the main dataset seem to be replaced by a 

similar relationship between uranium and potassium. Hardness remained nearly 

unchanged.  Alkalinity showed weak correlation in the saltwater intrusion data set.  In general, 

previous areas had positive correlations between uranium and potassium, hardness and alkalinity 

so this may be due to spatial influences (S. Singh et al., 2003).  Potassium ratios are utilized in 

saltwater intrusion research and are common in seawater so this relationship could be due to 

environmental factors (Sudaryanto & Naily, 2018). 

The hardness relationship heavily mimics that of flooding conditions.  This could specify that the 

same issues of sediment disposal and redox conditions could remain despite the addition of 

different ions with magnesium from seawater replacing calcium (Sudaryanto & Naily, 2018).  

Future research could evaluate the influence of magnesium with uranium with intruding 

saltwater.  Competition effects from magnesium/sodium does influence and displace calcium 

(Appelo & Postma, 2004). 

Alkalinity is influenced by bicarbonate and carbonate ions which buffer pH changes. Sodium 

displaces calcium at a higher rate and slightly raises pH through ion exchange and carbonate 

mineral dissolution (Appelo & Postma, 2004).  In turn this could push more release of 

bicarbonate and carbonate ions.  The higher alkalinity and higher pH favor increased aqueous 

complexions of UO2
+2 (Smedley & Kinniburgh, 2023). Cation exchange is less sensitive to small 

variations in alkalinity and pH in regular water compared to sea water mixing (Appelo & 

Postma, 2004).  In addition, sampling issues might be an influence due to the small amount of 

saltwater intrusion data. 

 

 



  
 

  70
 

Table 4.6.2:  Pearson (cutoff p ≥ 0.5) and Kendall rank correlations for each element of interest (As, Mn, Pb, U) and N for the 
entire dataset, and with noticeable sea water intrusion. 

Element of 
Interest 

Related 
Element 

Normal Sea Water Intrusion 
Pearson  Kendal  Pearson  Kendal  

As - - - - - 
Mn Fe 0.5168 0.4111 - - 
N - - - - - 
Pb  Cd .9534 .5630 0.7810 0.4870 

Fe - - 0.5940 0.4338 
U - - -0.5228 -0.4382 

U Ca .5670 .3620 - - 
Cl - - -0.5538 -0.3452 
Pb - - -0.5128 -0.4382 
K - - 0.5514 0.3521 
Hardness 0.5610 0.3977 0.5536 0.3399 
Alkalinity  - - 0.6212 0.3873 

 

Table 4.4 shows the amount of well samples with metals of interest that are above the limits set 

by the Canadian Drinking Water Guidelines in addition to saltwater intrusion factors above the 

respective cutoffs (British Columbia Ministry of Forest, 2016; Health Canada, 2022). 

Uranium above cut-offs is scarce mainly as testing for it seems to be more recent and this might 

also be the reason why most of it is associated with droughts. Uranium above Canadian Drinking 

Water Guidelines had few values so it could not be determined if the there was an underlying 

general relationship or if it was due to spatial factors. Manganese above Canadian Drinking 

Water Guidelines was seen in both drought and flood likely due to underlying geology.  The 

slight increase in manganese contamination for droughts may be due to draw down from more 

contaminated aquifers above or from older deeper aquifers (Levy et al., 2021; Ying et al., 2017).   

 Arsenic above Canadian Drinking Water Guidelines limits seem to have no clear pattern as it 

occurs in both flood and drought data sets. This might be due to anthropogenic means in 

combination with geochemical effects (Appelo & Postma, 2004). Lead above Canadian Drinking 

Water Guidelines limits was found in 289 samples and could be spatially influenced by 

anthropogenic sources due to inland mining and industrial activities (Ootes et al., 2017). 

Manganese had the most samples above recommended guidelines of 344. Most of those data 

points occurred in droughts. Potential lead and arsenic relationships with droughts are discussed 

in the previous section. 
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Turbidity, specific conductance and chloride over SWI cutoffs had a higher occurrence in 

drought conditions. This makes sense as those increase demand on vulnerable aquifers and thus 

lead to overpumping (Basack et al., 2022a).  

Table 4.6.3:  Metals of interest that are above the limits set by the Canadian Drinking Water Guidelines in addition to saltwater 
intrusion factors above their respective cutoffs for the full, drought, flood and saltwater intrusion datasets. 

 

 

Figure 4.6.1:  A) From left to right: A) pairplot, B) hisplot and C) KDE plots of the relationship between metals of interest for the 
full dataset. 

 Figure 4.7 shows the pair plot, histogram, and kernel density estimator (KDE)All the metals of 

Interest. Uranium's relationship with cadmium is seen on both the pair plot and 

KDE.  Manganese and arsenic show no apparent pattern.  A slight relationship between cadmium 

and lead is observed in the KDE plot and histogram plots along with manganese and cadmium. 
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Relationships of precipitation factors and other variables seem to display similar relationships to 

that showing with the correlation plots (Section 8.2, Appendix).  There are no notable differences 

between the drought or flood in comparison to the entire data set.   Lesser or greater variations of 

the same pattern are shown.  Heat maps show somewhat decreasing precipitation/precipitation 

differences and increasing turbidity over the years per well location (Section 8.2 Appendix). 
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4.7 Saltwater Intrusion Exploratory Data Analysis 
Section 8.2, Appendix shows various combinations of different saltwater intrusion cutoffs 

and the resultant data points, Metals of Interest and saltwater intrusion factors.  From this, the 

best data set can be found by using the cutoff for chloride of 150 μg/L or a specific conductance 

of 1,000 S/cm (British Columbia Ministry of Forest, 2016). This gives a data set of 106 points 

that has no uranium over limits, few manganese over limit and few lead over limit.  However, 71 

of 81 samples of arsenic in the total data set also appeared in the saltwater intrusion dataset with 

these criteria.   

Table 8.2.3 (Section 8.2, Appendix) shows the metals above Canadian Drinking Water 

Guidelines limits with saltwater intrusion. A high amount of arsenic above Canadian Drinking 

Water Guidelines occurs in the data set with chloride or specific conductance over saltwater 

intrusion limits, but not in the data set with both specific conductance over the saltwater intrusion 

cutoff.  Arsenic is highly influenced by saltwater intrusion which causes competitive desorption 

and favors the biochemical reduction of arsenic (Yuan et al., 2023). The lack of Kendall or 

Pearson correlation previously may be due to the smaller dataset.   

 

 

 

 

 

 

Figure 4.7.1:  A) From Left to right: A) pairplot, B) hisplot and C) KDE plots of the relationship between metals of interest for 
SWI dataset where specfic conductance ≥ 1000 or chloride ≥ 150 μg/L. 

Figure 4.8 shows the relationship between different metals with saltwater intrusion for each 

aquifer group. Some of the weak previous correlations are shown between uranium and lead.  It 

also illustrates that a lot of the aquifer types with saltwater intrusion are Aquifer Group 2. This 

could be due to previous trapped seawater or other rock-water interactions (Saberimehr et al., 

2017).  Figures in the Appendix show expected or undetermined relationships for seawater 

A) B) C) 



  
 

  74
 

intrusion variables, temperature and precipitation variables and all other variables (Section 8.2, 

Appendix) 
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Chapter 5: Factor Analysis 

5.1 Factor Analysis Methodology  

5.1.1 Data Processing  

The analyses were done via python on a Jupyter notebook.  The libraries Factor Analyzer and 

Pingouin’ were installed via pip. Data was then processed similar to that previously done in 

Power BI. In addition:  

I. Climatology data was dropped from the dataset to avoid too many correlations. 

II. Latitude and longitude were accounted for via equivalent distances calculated by the 

haversine formula (Rapp, 1991). A reference latitude and longitude were the means.  Both 

latitude and longitude were converted into radians and the ‘x’ and ‘y’ distance in 

kilometers were calculated from the reference coordinates. Longitude and latitude were 

then dropped from the data frame. 

III. Aquifer groups were converted into columns via one-hot encoding.  

IV. Date was converted into numerical form (“Months_Since_First_Sample”) by the months 

between each sample and the first sample taken. 

Outliers were removed via IQR method and replaced threshold values (Hastie et al., 2009). Only 

lower outliers of uranium were removed to account for potential contamination above drinking 

water standards. Data was scaled via Yeo-Johnson method via Sklearn. 

5.1.2 Initial Factor Analysis Setup  

Multiple functions were created, the first function was called “analyze_continous_data” to check 

the suitability of the data for factor analysis and utilized “calculate_kmo and 

calculate_Bartlett_sphericity from factor_analyzer”. This calculated the p and chi square and 

calculates the value which should be zero and tests if said the corresponding correlation matrix is 

an identity matrix with unique variables (Mulaik, 2009). Due to a larger dataset this outcome was 

expected but still run as a check.  Then the Kaiser-Meyer-Olkin (KMO) values would be 

calculated for all variables. Furthermore, the overall KMO is printed as is the KMO for each 

sampling variables. The KMO is a measure of sampling adequacy and answers closer to one are 

ideal (Lorenzo-Seva & Ferrando, 2021). 

The second function, “perform_factor_analysis” did the first step of factor analysis. It 

specifically fits factor analyzer to the data and calculates eigenvalues. Following, it then prints 
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the number of eigenvalues greater than one and the ratio of the sum of eigenvalues greater than 1 

to the total sum of eigenvalues to represent how much of the data said factor will cover (Hair et 

al., 2019).  Last, it prints a scree plot of the data.  This function covered two main methods of 

finding the number of factors to use - the number of eigenvalues greater than 1 and the number 

of factors that corresponds to the greatest drop on the scree plot.    

5.1.3 Preliminary Factor Analysis  

For the first step of the primary factor analysis, the function “perform_factor_analysis_and_plot” 

was created.  

I. This was essentially an intermediate factor analysis utilizing factor analyzer and 

“varimax” rotation (an orthogonal rotation used to maximize each variance between 

factor loadings, hence simplifying the analysis).  

II. A heatmap was generated between the factors and the variables.  

III. This function would then combine the calculated uniqueness and communality for each 

variable in a data frame, along with the proportional and cumulative variance for each 

factor/variable and would save as a CSV. This was designed as to allow for quicker factor 

elimination via excel column sorting.   

IV. Last, a heatmap of each variable’s uniqueness and communality was generated along with 

the total variance as a check (communality + uniqueness = 1) (Mulaik, 2009). Said figure 

was designed to allow for a visual representation to determine which variables could 

potentially be eliminated.  

The function “analyze_continuous_data” was run on the primary dataset.  A KMO result of .72 

indicated that factor analysis was somewhat suitable for said dataset.  “Perform_factor_analysis” 

with n_factors = 28 (data columns) showed 9 eigenvalues greater than 1 which composed of 

75.5% of the total sum.  The scree plot showed that anywhere between 7-9 was 

appropriate. Afterwards “perform_factor_analysis_and_plot” with 9 factors was run on the 

dataset.   

FD and Hardness were eliminated regardless of the above results for the fact they have already 

been composed partially of other factors and led to the process being run with better fitting KMO 

scores and factors.   
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The CSV generated was opened. Any variable with < |.40| (above is strong correlation (Hair et 

al., 2019)) for no factor was considered a candidate for elimination. Further visual analysis was 

that two factors might potentially be eliminated due to none of them having a high enough 

correlation value. Last the difference between community and uniqueness was inspected. 

Variables with high uniqueness and low community could be elimination candidates based on 

factor scores alone, K, Fe, P, N, pH, y, and precipitation were eliminated.  The results are 

discussed in Section 5 and Appendix 8.3. 

5.1.4 Primary Factor Analysis  

The “perform_factor_analysis_and_plotpro” function was made to perform second step of the 

primary factor analysis. This followed the same steps as “perform_factor_analysis_and_plot” 

except using the Promax method of rotation. Said rotation is oblique and allows for factors to be 

correlated and often better represents real world data( Mulaik, 2009).  However, it does require 

previous orthogonal processing to be legible.  

The variables in the data frame were not raised to any exponential power as doing so dropped the 

KMO value to an unsuitable score. The functions “analyze_continuous_data” and 

“perform_factor_analysis with n_factors = 16” were run again. Both the eigenvalue method and 

the scree plot indicated anywhere between 5 to 6 factors being 

appropriate. “Perform_factor_analysis_and_plotpro” was then run. The CSV generated was 

opened and variables >|.4| for each factor were put in a separate data frame. 

A residue matrix was then calculated with the residues from the observed and predicted 

correlations from factor analysis with Promax rotation as a check.  

The library pingouin furthermore, was utilized to calculate the Cronbach alpha for factors that 

only had positive correlations (F1 and F3).  All results are discussed in Section 6 and Appendix 

8.3. 

5.1.5 Factor Analysis Focused on Metals of Interest 

 The function, “perform_factor_analysis_and_plotOBS” was created to directly analyze different 

conditions of wells. Said function is the same as the previous two except uses oblique rotational 

methods. An oblique rotation method that allows for correlation, but furthermore is used to 

maximize differences between factors (Mulaik, 2009). It is a balance between representing the 

realistic data structure and interpretability. 
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Additionally, four data frames for As, Mn, Pb and U were created to focus on which factors may 

potentially influence each metal. The variables FD and Hardness were dropped to avoid 

correlation along with the three metals not in focus. For each data frame, 

“analyze_continous_data” was performed and had a KMO value around ~.70 signaled that it was 

okay to proceed. Afterwards “perform_factor_analysis” was run for each, with n_factors 

specified as 21 (number of columns) to get the number of factors for use in the next step which 

was chosen as the number of eigenvalues greater than 1. Then 

“perform_factor_analysis_and_plotOBS” was run for each data frame.  Resultant values are 

discussed in Section 6 and Appendix 8.3. 

5.1.6 Factor Analysis Focused on Climate Change Variables 

Two data frames were created to look at further analyzation in the effect of climate change 

factors on the entire dataset - one specifically was with the metals, nitrogen, aquifer groups, 

temperatures, distances, months and precipitation. While the second involved metals, nitrogen, 

saltwater intrusion factors, distances, months and aquifer groups. The function 

“analyze_continuous_data” was run on both, however the KMO score was too low to justify 

further analysis.  

5.1.7 Factor Analysis Focused on Climate Change Events 

Three additional data frames were created to analyze the effect of climate change effects on data 

sets with determined climate events. 

-  DatatSWI took any row where the chloride concentration was above 150 mg/L or where 

the specific conductance was above 1,000 uS/cm and was created to specifically analyses 

factors where wells had seawater intrusion. 

-  Then data drought took rows where FD < 0. 

- data flood took rows with FD > 0 to analyse the effects of precipitation. 

Furthermore, the functions “analyze_continuous_data, perform_factor_analysis” with 

n_factors=24, and “analyze_continuous_data” with the factors found from the previous function 

was then run on all 5 datasets. Figures and values obtained are discussed in Section 6 and 

Appendix 8.3. 

As this is an exploratory factor analysis and not confirmatory, further calculation of Cronbach’s 

alpha was deemed unnecessary.  
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5.2 Primary Factor Analysis   
Exploratory factor analysis can identify important predictor variables, elucidate underlying 

processes and guide future predictive model structures (Briz-Kishore & Murali, 1992).  It can 

also highlight sampling needs or where more data needs to be collected. This is a step above both 

Kendall and Pearson correlations because correlations generally measure the strength and 

direction of linear relationships between two variables while factor analysis looks at all the 

variables simultaneously (Mulaik, 2009). Moreover, Kendall is a pairwise relationship while 

measuring rank nonparametric statistics.  As this data is non normal, it is better to follow with a 

deeper factor analysis to see the underlying multivariate structure (Hair et al., 2019). Factor 

loading represents the original correlation between the original variable and underlying factors 

while major correlation matrices only show the original correlations directly.  Factor analysis 

looks at common underlying variables and multicollinearity.  

Section 8.3, (Appendix) shows the original Bartlett and tests homoscedasticity. Due to the 

sample size, P values were expected to be 0 and the chi squared value to be extremely large 

(Mulaik, 2009). Hardness and climatology data were removed from the data set so to prevent 

further bias. The Kaiser-Meyer-Olkin (KMO) for the data set was 0.7526, which is average and 

acceptable for exploratory factor analysis but not as stringent for modeling (Hair et al., 2019). 

This indicates an average strength of partial correlations. 

Sections in the appendix (Section 8.3, Appendix) show the results of the initial factor analysis 

with varimax rotation.  Kaiser's rule was generally used to determine the number of factors. 

Variables that did not have any factor loading ≤ .4 of a factor were removed (Mulaik, 2009). This 

eliminated precipitation and arsenic. Likewise, variables that were .4 ≤ and ≤ .7 were then 

evaluated and those with high uniqueness/low community were removed (Hair et al., 2019). This 

eliminated both distance factors. The primary data set had 16 variables and a KMO = 0.7481.  

Five factors were identified (Section 8.3, Appendix). The secondary factor analysis performed 

via promax rotation had a cumulative variance of .70. 
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The first factor (F1) composed 24.4% of the proportional variance and seemed to be that of 

saltwater intrusion and rock geochemistry (Section 8.3, Appendix). The largest variables were 

specific conductance [loading = 0.9167], residue filterable [0 .8647], Ca [0.7572], alkalinity 

(alkalinity total 4.5) [0.75720], and sulfate [0.7530]. Uranium and chloride had a weaker makeup 

of said factor. 

Specific conductance, residue filterable, calcium, alkalinity and sulfate could suggest a 

representation of saltwater intrusion or previously buried saltwater intrusion from different 

coastlines at different geological ages or rock-water geochemistry (Bethke & Marshak, 1990; 

Chen et al., 2018).  Saltwater intrusion along with groundwater chemistry typically makes up the 

largest factor in previous groundwater factor analysis (Chen et al., 2018; Farnham et al., 2003; 

Kuppusamy & Giridhar, 2006). Specific conductance indicates potential groundwater chemistry.   

Potential other reasons for high levels of specific conductance would be geological factors 

including coastal sedimentary rocks like limestone, past seawater intrusion during periods of 

high sea level rises and buried residual salts along with saline fossil groundwater (Appelo & 

Postma, 2004). Even in the Northern British Columbia region a similar pattern with deeper wells 

is demonstrated due to past seawater intrusion and upward migration of older saline basal brines 

(VanGulck, 2016). 

The specific parameters loading strongly suggest ion exchange, saline intrusion or diffusion as 

possible processes, but this content will need to be fully evaluated with more geological and 

Figure 5.2.1: Final promax factor analysis on the complete dataset. 
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hydrological factors to further determine more underlying relationships (Appelo & Postma, 

2004).  Silica would need to be added to determine the difference between types of mineral 

weathering vs carbonate dissolution along with sulphide, and nitrite.  To understand the 

underlying driving mechanisms, future research should correlate scores to pumping rates, 

distance to the coastline, recharge rates and overlay scores with aquifer properties and surface 

maps (Kuppusamy & Giridhar, 2006).  Better accuracy might be obtained by separating 

hydraulic zones and geoclimatic zones as well as more geological factors such as carbonate and 

evaporate deposits (Belkhiri & Narany, 2015).  Factor 1 may be influenced by evaporate 

deposits, carbonate rock, superficial geology, and structural geology as faults connects as 

conduits which bring up deeper saline fluids from subsurface evaporate deposits (Dalton & 

Upchurch, 1978).  Future research should look at these specific lithological features as well as 

incorporate better spatial clustering. 

Factor 2 (F2) consisted of Pb [0. 8249], Fe [0.7101] and a negative relationship to time 

(Months_Since_First_Sample) [-0.7700].  There was also a weak proponent of Mn. 

Factors 2 is about 13.63% of the proportional variance.  Time loads of very strongly negative 

correlation suggests some temporal changes in water quality over time in B.C.  Metals such as 

Mn, Fe and Pb were positive loading and are often associated with redox reactions that can 

change with the biogeochemical conditions over time (Appelo & Postma, 2004). This might 

indicate a temporal component involving redox conditions.  In general, groundwater 

geochemistry is known to evolve over time (Appelo & Postma, 2004).  It is uncertain however if 

geochemical changes could endemically happen within the span of forty years or a shift could be 

due to climate change factors such as pumping or pollution. Previous changes in aquifer 

geochemistry have been documented with manganese in a large-scale study in the United States 

(Ayotte et al., 2015).  Likewise, groundwater resident time would play a role in geochemical 

interactions – perhaps shorter time could indicate more interactions with manganese bearing 

rocks that are closer to the subsurface (Poeter et al., 2020). 

Another possible explanation could be anthropogenic means, as lead and iron are common 

pollutants in well water fixtures and of mining pollution (Witkowski et al., 2020). Manganese 

has been known to be influenced via groundwater depth and well depths in shallow aquifers 
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(Hamer et al., 2020).  Inclusion of these factors would be beneficial for future understanding.  

Spatial auto-corrections and comparison to other redox sensitive variables like nitrite and sulfide 

along with linking it underlying geology could help validate or understand said underlying 

suppose conditions (Appelo & Postma, 2004).  Furthermore, bootstrap resampling methods 

would be able to generate competent intervals around trends to test stability (Biglari et al., 2018).  

Factor 3 (F3) is 11.5 % of the proportional variance and has minimum and maximum average 

monthly temperature as the major proponents. This is the factor likely for climate change effects. 

Maximum temperature is >1.0 indicating that it is highly correlated with minimum temperature.  

The Factor 3 loadings indicate a very large temperature effect. Lack of research indicates that F3 

loadings cannot be directly confirmed and could indicate just the fluctuations of temperature 

alone (Riedel, 2019).   Temperature effect on groundwater has been debated with some studies 

reporting a .1-.4 °C raise in groundwater temperature per decade for climate change, others 

saying it has slight effects on shallower aquifers while others stating reporting minuscule effects 

due to groundwater depth (Benz et al., 2017; R. Li, 2016; Neidhardt & Shao, 2023).   Most 

research of climate changed induced temperature change for water is done on for geothermal and 

gas (Hemmerle & Bayer, 2020).  Other research has been conducted in northern climates with 

permafrost playing a crucial role in dictating geotechnical properties and groundwater flow 

patterns (Gruber & Haeberli, 2007; JR Williams, 1970).   

Due to Yeo-Johnson scaling, pure temperatures alone might be unlikely, and may indicate 

interannual variations in groundwater heat driven by surface temperature fluctuations due to 

seasonality (Noetzli & Gruber, 2009).  Minimum and maximum temperatures are tightly paired 

and indicate the obvious common driver which may be climate change.  Minimum (nighttime) 

and maximum temperature (daytime) do not increase at consistent rate (T. R. Karl et al., 1993).   

Climate change causes minimum temperature to rise at a greater rate than maximum temperature 

especially in the northern hemisphere.  The fluctuation between the two-temperature difference 

basically indicates optimal seasonal conditions for redox reaction (Noetzli & Gruber, 2009; Sahu 

et al., 2020).  Meteorologists often indicate that the difference between the two temperatures 

could better indicates the influence of climate change effects and perhaps should be analysed in 

future patterns (T. Karl et al., 1993). Few studies have included temperature effects in water 
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factor analysis. Future research should include well depth and perhaps the temperature 

differences between both expected and actual minimum and maximum temperature. 

Factor 4 (F4) and Factor 5 (F5) relate to the aquifer groups and therefore represent a combination 

of hydraulic connection and geology or geography. These two factors compose about 20% of the 

proportional variance. The loadings represent three groups of groundwater hydraulic connections 

and flow rates.  

For F4: Aquifer Group 1 encompasses unconfined aquifers often involving sand and gravel and 

that often have hydraulic connections to surface water (Wei et al., 2016). Unconfined aquifer 

types likely experience more oxygenated modern recharge from the and dilution effects thus pull 

a negative loading (Orecchia et al., 2022). Groundwater recharge and hydraulic connection has 

previously seen to have a similar effect on other studies (Ballukraya & Ravi, 1999; Briz-Kishore 

& Murali, 1992).  Recharge times also play an important role.  Meanwhile Aquifer Group 2 

represents confined aquifers including some with glacial marine influence near the coast (Wei et 

al., 2016).  Meanwhile confined aquifer types interact less with the surface and retain older 

alternative chemistry and result in positive loading (Skierszkan et al., 2021). A lot of deeper 

wells are confined and therefore assumably part of Aquifer Group 2 (Cabrera et al., 2017).  

Deeper wells often have longer groundwater residence times, greater hydrological age and thus 

more reducing conditions with different geochemistry (Bakari et al., 2012). 

This factor differentiates between geochemical signatures of unconfined aquifers with a likely 

surface influences vs combined/deeper aquifer types with older set groundwater.  In addition, this 

factor could appear to capture distinction between shallow and uncombined deeper aquifers 

based on divergent geochemical imprints. This is seen in further factor analysis studies as 

confined and unconfined aquifers have different properties (Chung et al., 2020). 

For F5:  Aquifer Group 3 loads extremely negatively and represent primarily fractured aquifers 

especially those in crystalline bedrock. Aquifer Group 1 loads positively and represents those 

with hydraulic connectivity and shallow sand and gravel. 

This could be representative of two scenarios.  One being the distinguishment between 

geochemical signatures of shallow alluvial aquifers versus deeper fractured crystalline bedrock 

aquifers.  



  
 

  84
 

The second representing the difference both diffusion and groundwater flow (Appelo & Postma, 

2004).  With Aquifer Group 1 in gravel and sand types, flow has a moderate surface area for 

groundwater interaction.  Percolation through the vadose zone is relatively straightforward 

(Wossenyeleh et al., 2020).  Fractured bedrock, however, has conduits where groundwater can 

quickly flow through (Appelo & Postma, 2004).  As previously mentioned, the main flow occurs 

in faults or fissure while diffusion occurs in the stagnant bulk rock.  This would mean less 

opportunities for rock-water interaction and an effect on contaminate transport.  

There was inadequate sampling to look solely at both metals of interest and either the saltwater 

intrusion variables or the precipitation and temperature variables as KMO was < .7 (Mulaik, 

2009).  The dataset for saltwater intrusion also had inadequate sampling.   

5.3 Factor Analysis for Each Individual Metal of Focus  
To understand how each metal of interest is affected by the data set, other metals of interest were 

removed and an oblimin factor analysis was performed.   

Figures and tables for the factor analysis focusing on arsenic can be found in Section 8.3 

(Appendix). Figure 5.2 shows the final factor results with six factors (F1 As , F2 As, F3 As, F4 As, F5 

As, F6 As) and a cumulative variance of 57%. Given the factor analysis focused on arsenic covered 

0.5736 cumulative variance thus can be used for generalizations but any findings should be 

confirmed with more data (Mulaik, 2009). Arsenic was not a heavy underlying loading in any of 

the factors. 

F1As represented about 20% of the cumulative variance and consisted of saltwater intrusion and 

groundwater chemistry variables.  It was influenced strongly by Specific Conductance [0.9453], 

Residue Filterable [0.8944], Alkalinity [0.7637], Sulfate [0.7223] and Ca-T [0.7038] while 

having a weak influence of chloride and K.  The cumulative variance and makeup of F1As 

remains somewhat consistent to Factor 1 in the main factor analysis but without uranium and 

with the addition of potassium.  Potassium can be correlated with the overall mineralization but 

may indicate some unique influences beyond dissolved solids (Fulton et al., 2004). British 

Columbia is too diverse for potassium to be defined as a characteristic of a hydro chemical 

facies.  Uranium and arsenic have been known to co-exist (Katsoyiannis et al., 2007; Skierszkan 

et al., 2020).  These differences are likely due to spatial influence and geographical geology and 
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implies that arsenic contamination is likely spatially localised. Thus, future research should 

utilize spatial autocorrection. 

F2 As, F3 As, and F4 As are equivalent to F3, F5, and F4 of the main factor analysis with their 

proportional variances differing due to the removal of other metals of focus. F2As consisted of 

maximum temperature and minimum temperature.  Temperature is discussed previously in the 

main factor analysis.  Temperature effects have been shown to mobilize arsenic in geothermal 

groundwater studies, however it often required a larger temperature change and was 

overshadowed by desorption and weathering (Bonte et al., 2013; Xing et al., 2023). 

F3 As, and F4 As consisted of aquifer groups and were respectively equivalent to F5 and F4 of the 

main factor analysis.  The variances indicated that fracture/flows were more important than 

hydraulic conductivity/confinement.  This is in contrast to the assumption that anthropogenic 

arsenic would be more influenced by shallow unconfined aquifers (Khan et al., 2023).   A 

possible explanation could be spatial location – perhaps mining activities and geogenic arsenic 

sources occur in places with more fractured bedrock (Earle, 2019b). 

F5 As had a strong relationship with iron [0.7581], and an inverse relationship with time.  F5  As of 

the factor was equivalent to that of F2 of the main factor analysis - with the removal of 

manganese and lead and perhaps indicates weathering (Appelo & Postma, 2004).  Iron is still 

important but is also endemic in minerals especially minerals associated with arsenic 

(Fakhreddine et al., 2021).  The proportional variance indicated that time was slightly less 

important as compared to the main factor analysis.  Further research is needed to understand the 

reasons behind that.     

While F6As had a weak inverse relationship with chloride. F6As is equivalent to F6D of the 

drought data without uranium or distance (latitude).   This is likely still related to geographical 

location. 

The factor analysis focused on manganese is shown in Figure 5.2 and Section 8.3 (Appendix). It 

had 6 factors (F1Mn , F2Mn, F3Mn, F4Mn, F5Mn, F6Mn). Again, said factor analysis only covered 

0.5783 cumulative variance therefore can be used for generalizations, but any findings should be 

confirmed with more data (Mulaik, 2009).   F1Mn, F2Mn, F3Mn, and F4Mn had a similar trend to F1 

As, F2 As, F4 As, and F3 As.   
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In F1Mn, chloride was more important while alkalinity was less important.  This runs counter to 

what was assumed, as manganese is well associated with mineral weathering (Appelo & Postma, 

2004).  The low proportional variance could be an explanation for this result.   

F3Mn is similar to F3 of the main factor analysis while F4Mn is similar to F4 of the main factor 

analysis.  This runs inverse to what is seen with arsenic.  This could state that manganese relies 

more on longer residence times in confined slower moving aquifers as this combination of 

variable seem to maximize rock-water interactions (Appelo & Postma, 2004). 

F5Mn had a weak inverse relationship with time and manganese in addition a strong relationship 

to iron [0.9201].  The relationship between Mn-Fe was already discussed in the exploratory data 

analysis.  Meanwhile the inverse relationship with time is similar to that in the main factor 

analysis.  

F6Mn showed a weak inverse relationship to chloride, a weak relationship to pH and X.  Those 

variable loadings suggested both a localised anthropogenic effect.  The influence of pH along 

with chloride in this case would work for both anthropogenic as mining/industrial activities 

(Bradl, 2005).  The centroid of which the X equivalent of latitude is calculated for would land no 

more eastward than Kamloops.  The West Coast of B.C. has a history of industrial activities and 

is highly populated (Earle, 2019b).  
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Figure 5.3.1:  A) Factor analysis with oblimin rotation on a dataset with only As as the metal of interest.  
Community, Uniqueness and Total Variance are also graphed. 
 B) Factor analysis with oblimin rotation on a dataset with only Mn as the metal of interest.  Community, 
Uniqueness and Total Variance are also graphed. 
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Figure 5.3 and Section 8.3 (Appendix) shows the factor analysis performed focused on lead data 

consisting of six factors (F1Pb, F2Pb, F3Pb, F4Pb, F5Pb, F6Pb ) and made up 61% of cumulative 

variances.  Thus, it has an acceptable variance to demonstrate some underlying structural patterns 

(Mulaik, 2009). 

F1Pb, F3Pb, F4Pb, and F5Pb are similar to F1Mn, F2Mn, F3Mn and F4Mn.   F1Pb followed a similar 

pattern to the previous metals and indicated saltwater intrusion/groundwater chemistry 

variables that were strongly influenced by specific conductance, residue filterable, alkalinity and 

sulfate while being weakly influenced by potassium, chloride and calcium.  F1Pb places a lesser 

loading on calcium and greater loading on alkalinity then F1Mn.  This might be due to the 

buffering capacity of bicarbonate ions (Arciszewski & Roberts, 2022).      

F2Pb presented 10% of the proportional variance and was strongly influenced by Pb [0.9200], 

strongly inversely influenced by time and weekly influenced by iron. The position of the 

proportional variance is similar to that of F2 in main factor analysis and indicates that 

groundwater geochemical conditions play an important role in lead speciation and transport.  

Iron and lead are commonly found together and inverse relationship to time indicates that lead 

could possibly be anthropogenic (Jurgens et al., 2019).  Previous factor analyses in groundwater 

have found similar relationships of lead and iron (Love et al., 2004). 

F3Pb, F4Pb, and F5Pb followed a similar relationship to the F2Mn F3Mn, F4Mn profiles stating the 

importance of groundwater age and confinement. F6Pb showed a weak inverse relationship to 

Chloride and a weak relationship to X.  This is similar to F6Mn but without pH.  Lead can be 

highly corrosive, but it was unlikely a sample reached the pH level that would be required to 

leach lead (Appelo & Postma, 2004).  Most pH samples hovered around 7, thus it could be an 

unnecessary consideration.  

The underlying factor analysis focusing on uranium is shown in Figure 5.3 and Section 8.3 

(Appendix).  This factor analysis produced six factors (F1U, F2U, F3U, F4U, F5U, F6U) and only 

covered 0.5783 cumulative variance.  Therefore, it can be used for generalizations, but any 

findings also should be confirmed with more data (Mulaik, 2009).   

F1U, F2U, F3U, and F4U are similar to F1Mn, F2Mn, F3Mn, and F4Mn.  This could indicate that the 

underlying dominates variables affect the concentration of both metals in a similar manner.  F1U 

represented saltwater intrusion factors and rock geochemistry with about 19% of the cumulative 
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variance.  Compared to F1Mn, F1U was influenced more by chloride then sulfate and influenced 

by calcium instead of potassium.  This could represent different groundwater geochemistry from 

uranium bearing minerals (Larry D. Jones, 1990).  Weak positive correlations have been found 

between uranium and chloride in groundwater studies (Selvi et al., 2016).  Calcium also would 

be due to how uranium is found in rock and the formation of uranyl−calcium−carbonato 

complexes that dominate aqueous speciation (Skierszkan et al., 2021; Stewart et al., 2010).  

Uranium also had a weak influence in F1 of main factor analysis but did not appear in F1U 

perhaps likely due to lack of sampling data.   Through the fundamental rock-water interactions 

govern major ion geochemistry, uranium seems to be more sensitive to saltwater intrusion factors 

given that all three saltwater intrusion factors have significant loadings.  This again is in contrast 

to other studies which have not determined the sensitivity of uranium to saltwater intrusion 

(Smedley & Kinniburgh, 2023).     

F2U, F3U and F4U were similar to F2Mn, F3Mn and F4Mn evidencing that the underlying variables 

and effects could be similar to both metal contaminates.  

F5U mimics that of F6D (Drought) - weakly inversely related to chloride and weakly related to X 

and U.  Chloride and uranium are both anthropogenic contaminates (Bradl, 2005).  It is also 

indicated this factor is highly based on geography as the centroid of X is also near a more 

industrialized and populated area of B.C.  The placement of this factor also may indicate that 

anthropogenic sources of uranium are slightly more common than geogenic sources.  

F6U had a strong relationship to time (0.7409), a weak relationship to uranium and an inverse 

weak relationship to Fe. With these combinations, F6U may represent geogenic weathering/redox 

reactions for uranium along with the temporal relationships representing groundwater chemistry.  

(Appelo & Postma, 2004; Skierszkan et al., 2021).    

F6u was similar to F2 of the main factor analysis or F5Mn but without Pb and/or Mn. However, 

unlike both the previous factor analysis, F6U has a moderate negative relationship/loading to iron 

while time takes a strong positive relationship.  In permafrost areas, geogenic uranium 

mobilization is driven by sorption–desorption of rock and oxidation is often driven via 

weathering of calcium carbonate mineral weathering (Alam & Cheng, 2014; Skierszkan et al., 

2021). Uranyl–calcium–carbonate complexes provide resilience to reduction for U(IV) even 

below that of Fe(III) reduction.  Longer residence time means more increased reactions and thus 
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more desorption (Appelo & Postma, 2004).  In addition, iron can reduce uranium and cause it to 

precipitate (Smedley & Kinniburgh, 2023).     

 

Figure 5.3.2:  A) Factor analysis with oblimin rotation on a dataset with only Pb as the metal of interest.  Community, 
Uniqueness and Total Variance are also graphed.  
B) Factor analysis with oblimin rotation on a dataset with only U as the metal of interest.  Community, Uniqueness and Total 
Variance are also graphed. 
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5.4 Factor Analysis with Climate Change Conditions  
 Datasets to represent drought and flood were created as in a similar way to the exploratory data 

analysis. Oblique rotation was used to balance an understanding of a correlated data set with 

analysis (Mulaik, 2009).   

The supplementary data for the drought dataset is in Section 8.3 (Appendix). The factor analysis 

for drought resulted in six factors (F1D, F2D, F3D, F4D, F5D, F6D) that made up 57% of the total 

proportional variance.  This is below the acceptable cut off of 0.60, the observations provide 

useful information of the underlying structure of the relationship, but still need more data to be a 

guiding influence for future protective models (Mulaik, 2009).  British Columbia has complex 

geology and hydrogeology patterns across different regions and thus a cumulative variance of 

58% might be moderate but could indicate some reasonable interconnectivity between variation 

and some dominant underlying insights (Earle, 2019b).  In addition, different factor methods or 

spatial influences could account for the difference between the main factor analysis and drought. 

F1D to F3D capture the dominate natural influence of geology/hydrogeology, temporal water 

quality changes and climate/meteorology.   

F1D again was indicative of saltwater intrusion and rock geochemistry.  It made up for 19% of 

the entire cumulative variance. F1D consisted of specific conductance (0.9592), residue filterable 

1.0u (0.8999), alkalinity (0.7639), sulfate (0.7152) with a weak relationship of chloride and 

calcium.  This is indicative of both saltwater intrusion and groundwater geochemistry (Appelo & 

Postma, 2004; British Columbia Ministry of Forest, 2016). This is further indicted as total 

dissolved solids/conductivities are primary natural factors influencing groundwater composition. 

F1D shows similar variables to that of the main data except with stronger loadings.  Geochemical 

droughts reduce recharge and intensify geochemical reactions via additional oxidation, 

concentration effects and localised groundwater retention time (Kampbell et al., 2003; Meyers et 

al., 2021).  Unlike F1 in the main factor analysis, uranium was not a variable in F1D, while Ca 

was weaker, and chloride was stronger.   Uranium has been previously linked to drought (Nolan 

& Weber, 2015).  A possible explanation of this is that evapotranspiration may transport uranium 

to the soil surface where it precipitates as evaporite (Noel, 2022).  In addition, uranium often 

utilizes nitrate for oxidation and droughts decrease the catchment’s nitrogen retention (Nolan & 

Weber, 2015; Winter et al., 2023). 
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Saltwater intrusion increases with increased pumping during drought which might explain the 

stronger effect of chloride (British Columbia Ministry of Forest, 2016).  Calcium is also replaced 

by Na (Appelo & Postma, 2004).  This type of relationship has been similarly observed in 

previous factor analysis in the Chitravati river basin during a drought (Briz-Kishore & Murali, 

1992).  Potassium is missing in F1D despite it being part of the first factor in most of the metal 

analysis.  This may indicate a potential groundwater geochemical shift.  

F2D had a strong negative correlation for time (-0.8908), a positive relation for lead (0.9083) and 

a weak relation for iron.  It consisted of a 9% proportional loading.  F2D is indicative of temporal 

influence of water quality and water geochemical processes.  

F2D is similar to F2 in the main factor analysis but with a weaker factor loading of iron and 

without manganese.  Manganese for this factor is also part of the metals factor analysis.  

Manganese had a weak relationship in F2 of the main factor analysis and regularly was linked to 

Fe (Hu et al., 2022).  From the exploratory data analysis, drought breaks that correlation.  The 

Mn-Fe relationship deteriorated with drought as other unmeasured factors started to influence 

geochemistry (Hamer et al., 2020).  Timewise, the negative variable suggests a shorter residual 

time with less mobilization of contamination (Meyers et al., 2021).  This makes sense given the 

geochemical capacity reduction that comes with aquifers undergoing droughts (Winter et al., 

2023; Wossenyeleh et al., 2020).  

F3D was about 9% of the proportional loading and indicated climate change variables.  It was 

strongly composed of min_temp (0.9420), max_temp (0.9793) and weakly inversely related to 

precipitation.  Negative loading of precipitation implies a greater influence of meteorological 

conditions during drier climatic periods with less water recharge.  The rapid addition of rain and 

recovery of the aquifer will change the dominate geochemical processes.  Longstanding droughts 

often influence soil and aquifer capacity and have a time lag of up to fifteen years in shallow 

aquifers to recovery (Schreiner-McGraw & Ajami, 2021). 

F4D represented aquifer types – particularly aquifer confinement and hydraulic connectivity. F4D 

has a stronger inverse loading for Aquifer Group 1 and a weaker positive loading for Aquifer 

Group 2 in comparison to F4 of the main factor analysis and the relevant factors of the analyses 

focused on specific metals.  Aquifer Group 1 consists of unconfined aquifers especially 

unconfined aquifers with a strong hydraulic connection.  A drought and lowering of the water 
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table would dry out the pores, affect geochemistry and compromise the vadose zone effects, thus 

leading to a stronger negative loading (Riches et al., 2007; Wossenyeleh et al., 2020).  Confined 

aquifers are not prone to evaporation effects and often have to worry about pumping (Gullacher 

et al., 2023). 

Meanwhile F5D consisted of 7% of the proportional variant.  It had weaker loading of Aquifer 

Group 2, Mn and K with a moderate inverse loading for Aquifer Group 3.  F5D is similar to F5 in 

the main factor analysis and F4U, F5Pb, F4Mn, or F3As in the factor analyses focusing on 

individual metals.  However, in F5D, Mn and K are variables, the effect of Aquifer Group 3 is 

weaker and Aquifer Group 1 is replaced by Aquifer Group 2.   During droughts, streamflow is 

affected in fractured bedrock due to the lowering of the groundwater table and water pumping 

(Nicholas et al., 1996).  Aquifer Group 1 would have a similar effect.  However, in confined 

aquifers, groundwater is often isolated from the effects other than pumping, allow for diffusion 

and thus would have a positive loading (Orecchia et al., 2022).  Manganese and Potassium could 

be due to the geochemical properties of the confined aquifers.   

F6D made up 5% the proportional variance and was composed of weak relationships to X, U 

and inversely chloride. X is the distance equivalent calculation for latitude. The main factor 

analysis utilized an extremely stringent variable selection and thus it is not shown due to 

methodological differences (Mulaik, 2009).  These variables are similar to the summation of the 

equivalent factors in the factor analyses on the metals of focus. This could indicate 

anthropogenic or land uses on the groundwater composition, as road salts and agriculture 

fertilizers (P. Li et al., 2021). 

Supporting factor analysis for flooded data are shown in Section 8.3 (Appendix) and consistent 

of 60% of the cumulative variance and seven factors (F1F, F2F, F3F, F4F, F5F, F6F, F7F).  

F1F again seemed to indicate groundwater chemistry and saltwater intrusion variables.  In 

comparison to F1 of the main factor analysis and the metals factor analyses, F1F has a greater 

influence of chloride, and less of an influence of alkalinity, sulfate and calcium.  This is likely 

due to the dilution effect and floods often bring in chloride from the surface (Basahi et al., 2018; 

Ghazavi et al., 2012).  F1F also had a greater influence of chloride in comparison to F1D.  

Flooding effects can overwhelm most geogenic processes (Crawford et al., 2022). 
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F2F demonstrated a similar relationship with F2D of drought with a stronger relation for Pb 

(0.9527) but a slightly less inverse relationship to time.  Manganese had no significant influence 

while iron only had weaker influences.  Again, flooding would overwhelm most geogenic 

processes and prevent geochemical interactions with high flow rates (Masoud et al., 2018).  Lead 

can be transported via flood waters (Ciszewski & Grygar, 2016). 

F3F is like that of F4D and F4 of the main factor analysis.  It is strongly inversely influenced by 

Aquifer Group 1 and strongly influenced by Aquifer Group 2.   Similar to the main factor 

analysis and the factor analysis for the metals of focus and in contrast to F4D, both aquifer groups 

have strong loadings.  Aquifer Group 1 is unconfined and often hydraulically connected with the 

surface. This allows for a quicker dilution response and flow especially in flood like scenarios 

(Wei et al., 2016).  Confined aquifers are not as affected by overland flood and thus can maintain 

constant geochemical conditions (Chung et al., 2020).  As temperature isn’t as relevant to floods 

compared to aquifer confinement of flows, F3F has a greater proportional variance then 

temperature/direct climate change factors (Geris et al., 2022). 

F4F is similar to that of F3D and F3 of the main factor analysis.  This was previously explained 

above.  

F5F and F6F consisted of weaker loadings and would likely have been eliminated for a more 

conservative factor analysis (Mulaik, 2009).   F5F consisted of weak relationships with X 

(distance version of latitude), y (distance version of longitude), U and was inversely related to 

precipitation.  This is the equivalent to F6D or F6As, F6Mn, F6Pb, or F6U in the analysis focused on 

metals.  Hence, it is likely to be anthropogenic.  Chloride was not a variable perhaps due to 

overland flooding diluting it.  Precipitation had a negative loading as it can dilute anthropogenic 

pollution (Hervai et al., 2020).  Due to the locations of the wells, both the Y and X center is still 

down more in Southwestern B.C. where there is a history of mining and pollution (Earle, 2019b).  

Overland anthropogenic pollution would also cause more variability in a flood (Ghazavi et al., 

2012). 

F6F had weak relationships of manganese and iron along with an inverse weak relationship to 

Aquifer Group 3.  It made up 0.0588 of the proportional variances and is the equivalent of F5D, 

Factor 5 in the main factor analyses and F3As, F4Mn, F5Pb, or F4U in the analyses focused on 

metals.  Unlike the other analyses, the loading of Aquifer Group 3 was far weaker while K, 
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Aquifer Group 2 and Aquifer Group 1 were not variables.  Saturated soil/sand and confined 

aquifers may not have an effect on groundwater in a flood (Orecchia et al., 2022; Wossenyeleh et 

al., 2020).  In addition, saturated soil loses the vadose effects.  Iron and manganese often co-

linked and thus it is plausible to them both to be variables (Santos et al., 2011a). 

Factor 7 (F7F), which made up 5% of proportional variance had a strong relationship to arsenic 

(.8069) and a weak relationship to phosphorus.  F7F is unique to flooded data and has the 

moderate variable loadings for phosphorus and strong loadings for arsenic. Both these can be 

natural or anthropogenic contamination sources as they are both used in land and industrial use 

(P. Li et al., 2021; Peel et al., 2022).  However, this paring only appearing during flooding 

indicates anthropogenic perhaps via flooding sediments over natural contamination as there 

would be some apparent relationship in the main factor analysis or metals factor analysis if the 

sources were geogenic. Arsenic and phosphorus have previously been found to be driving 

anthropogenic variables in other factor analyses of groundwater (Ayotte et al., 2015; Kuppusamy 

& Giridhar, 2006).  
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Chapter 6: Conclusion  
This thesis took the initial steps to help create a knowledge foundation on which to build future 

predictive models and policies for protecting human health and the environment from 

groundwater metal contamination in the face of climate change.  This is one of the few specific 

sources that compile research/trends for groundwater contamination and analyses, widespread 

data for the relationship between groundwater metal contamination and climate change 

influences. However, these analyses did have restrictions – lack of data especially that of 

geology, aquifer, groundwater residence time, water table depth, well depth, and inclusion of 

snowmelt limited the definite conclusions that could be made.  It is indicative that future research 

needs to focus on spatial auto correction to further determine whether the influences of metals 

are in part due to different geoclimatic zones or localized anthropogenic influences.  The Power 

BI indicated some potential seasonality when it came to specific contaminants. Detrending and 

de-seasonalizing would be indicative for future research to determine how vulnerable 

groundwater to metal contamination caused by secondary climate change effects and to 

understand more of risks and resiliencies. Moreover, incorporating GIS would account for 

temperature and climactic zones while utilizing time space cubes would differentiate spatial-

temporal changes. Future research could utilize this to account for topography and better link 

aquifer lithology. 

Initial exploratory data analysis indicated that groundwater contamination was influenced by 

aquifer and groundwater chemistry, adsorption, and redox reactions, given influence of alkalinity 

influences on most metal, lower turbidity, and the correlations between manganese and iron. 

Incorporating groundwater levels would be a necessity for future models due to the significance 

of understanding the differences in oxidation states.  Confined aquifers and fractured aquifers 

were influenced differently than unconfined aquifers that often had a hydraulic connection to 

overland water bodies – especially when it came to seasonality and time effects.  Lead 

geochemistry did not have much of a relationship with corrosivity.  Furthermore, low 

precipitation seems to demonstrate a concentration effect or perhaps a change in redox chemistry. 

In addition, flooding often resulted in a dilution effect in a lot of metal contamination. “Drought” 

conditions had a stronger relationship with uranium, but the concentrations remained below the 

Canadian Drinking Water Guidelines.  As expected, arsenic was very influenced by less 

precipitation and oxidating conditions and Fe-Mn was highly related to reducing conditions.  
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However surprisingly, soluble uranium seemed to persist in reducing conditions.  This might be 

due to the complex’s uranium forms with calcium.  The effect of older water seemed to be more 

significant than previously predicted.  

Furthermore, rising specific conductance and chloride indicates that there is a likely link to 

saltwater intrusion and elevated metals especially with uranium, manganese and arsenic in 

groundwater.  This study is more exploratory, definite conclusions will require more validation 

with a larger data.  

The description and summary statistical analysis the Kendall and Pearson correlations between 

different metals in different climate change scenarios.  In the regular dataset, the relationship 

between Mn-Fe and U-Ca was likely due to groundwater geochemistry as those are common 

geochemical relationships.  The correlation between Pb-Cd was more likely anthropogenic due to 

B.C.’s history of pollution.   

The correlations between the contaminates lessened or remained consistent in flooding 

conditions, which could be due to flooding keeping the same spread of plumes and groundwater 

geochemistry consistent.  Flooding would raise the water table and keep a reducing environment 

that most contaminates remain soluble in.  An increase in iron was indicative in the scatterplots 

was also observed during flooding conditions.  Future studies might want to look at the influx of 

sediment and remobilization of contaminates and account for different aquifer types in the 

correlations. 

Meanwhile, drought led to a decoupling of a lot of correlations between contaminates.  This 

includes that of uranium and Mn-Fe.  This could be due to the lowering of the water table due to 

drought that causes more oxidation, and only spatial localised areas for geochemical reactions.  

Pb-Cd still had a relationship due to potential anthropogenic sources.   Surprisingly, arsenic or 

nitrogen did not have any correlations despite previous studies showing otherwise.  This might 

be due to the spatial location of arsenic or nitrogen.  More research is needed to tell if there is a 

definite deterioration or concentration effect.  Ideally these observations should be verified 

against the hydraulic and low flow zones of B.C. preferably with kriging, and Queens and Moran 

autocorrection. 

Saltwater intrusion was best characterized by using the sample cut off above 1,000 µS/cm for 

specific conductance or above 150 mg/L for chloride.  The saltwater intrusion dataset showed a 
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high number of samples with arsenic above Canadian Drinking Water Guidelines which 

potentially indicate changing geochemistry but will require more research to verify. Moreover, 

saltwater intrusion changed the correlations between metals.  The Fe-Mn correlation was 

completely decoupled.  Lead had a somewhat lower correlation with cadmium in addition to a 

weak correlation to iron and negative weak correlation to uranium.  This might be due turbulent 

mixing, corrosion byproducts and changing redox conditions with previous legacy sources.   

 As expected with saltwater intrusion, the correlation between calcium and uranium deteriorated, 

as calcium is commonly replaced by sodium in the process.  The additional correlations between 

uranium and chloride, potassium and hardness were unexpected as uranium geochemistry in 

saltwater intrusion is not well understood.  However, potassium and chloride can be potentially 

explained by their effects from saltwater intrusion.  Hardness remained consistent indicating that 

calcium must also be replaced by magnesium.    

Exploratory factor analysis was performed to identify potential predictor variables and elucidate 

underlying processes.  The primary factor analysis had an acceptable KMO of 0.753 for 

exploratory analysis.  More data along with other variables should be included in any 

confirmatory factor analyses. The first factor was had the largest proportional variance and 

indicative of groundwater geochemistry, especially weathering and saltwater intrusion.  This was 

due to the variable loadings of specific conductance, residual filterable, calcium, alkalinity, 

sulfate, chloride and uranium.  This was similar to previous studies. As it was composed of 

saltwater intrusion variables, it indicates that sea water intrusion does have an impact on the 

overall data set and on metal contamination.  Further studies especially with a confirmatory 

factor analysis is needed to verify this and also to determine how this influences risk of uranium 

contamination. The second factor involved redox factors perhaps with groundwater residence 

time while the third factor involved direct climatology such as temperatures.  The fourth factor 

was composed of aquifer groups and likely represented aquifer confinement and 

recharge/hydraulic connectivity.  The fifth factor may represent fractures, flow and diffusion.  

The first, fourth and fifth factors were expected.  Unexpectedly, what may be residence time was 

a variable while direct arsenic was not. Hydraulic connectivity and other aquifer characteristics 

had a stronger influence than pure precipitation which did not show up as a variable for any of 

the factors and thus any secondary effects might need a more specific analysis such as non-
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negative factorization to determine further vulnerability and distinguish pure climate change 

effects. Future models should incorporate more in-depth spatial factor analyses methods.  

In addition, factor analyses were conducted focusing on arsenic, manganese, lead and uranium.  

These factor analyses were largely affected by lack of data and smaller sampling sizes. There 

was a large indication that other variables should be included.  However, the core factors 

remained somewhat consistent, thought the proportional variances of each changed and key 

variable loadings could differ.  This indicated that there each metal was affected by some 

different underlying geochemical processes.   In addition, there was often a sixth factor 

representing anthropogenic contamination.   

Future research should incorporate larger data sets especially when it comes to analyzing the data 

sets for climate change effects. A factor analysis for saltwater intrusion should be done as future 

research as the current data set did not have enough samples. With droughts, there is indication 

that the groundwater chemistry slightly shifts with longer resident times for localized rock-water 

interactions.  Variable loadings of groundwater geochemistry were stronger with a weaker 

relationship of calcium but stronger relationship for chloride.  This is consistent with drought 

geochemistry.  The relationship with uranium disappeared for this.  The factor representing 

groundwater resident time and redox had weaker relationships as compared to the main factor 

analysis and manganese was not a variable.  This makes sense as droughts result in more 

pumping, decreased aquifer capacity and the lowering of water tables.  The climatology factor 

also included a weak inverse relationship to direct precipitation. 

Meanwhile, the factor for confinement and direct recharge had a stronger relationship to 

unconfined aquifers and weaker to confined aquifers.   Again, confined aquifers would be 

affected only by pumping and not overland water loss. This may indicate a higher vulnerability 

to groundwater contamination. Further research is still required to understand the differences of 

hydraulic connections and generalized groundwater. The fifth factor representing diffusions and 

flow for drought had a weaker relationship of confined aquifers, stronger inverse relationship to 

fractured aquifers and a weak relationship to potassium and manganese.  In the drought dataset, 

confined aquifers replace unconfined aquifers as a variable likely since confined still maintain 

more capacity to carry out diffusion reactions.  
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Drought also seems to be more influenced by anthropogenic activity affecting groundwater 

contamination.  A sixth factor, likely representing anthropogenic contamination with latitudinal 

distance, uranium and chloride was identified.  Further spatial analyses are needed to determine 

if these lead to a concentration effect in well water.  

The factor for saltwater intrusion and groundwater geochemistry for the flooding factor analysis 

was composed of slightly different variable proportions indicating flooding does have some 

influence on groundwater geochemistry.   Chloride had a stronger influence while alkalinity, 

sulfate and calcium had less of one.  This may indicate a dilution effect accompanied by the 

influx of surface contamination. Future studies should overlay these results with the different 

hydrological zones, low flow zones or any indication of peak flows to fully assess the 

generalized vulnerability of groundwater with flooding.   

For the second factor, groundwater residence time had a weaker inverse relationship, lead had a 

stronger and iron had a weak influence.  Again, flooding would overwhelm most geogenic 

processes – bringing in sediments and preventing geochemical interactions due to the influx of 

additional water.   The factor representing aquifer confinement and potential recharge was the 

third factor and unlike drought or the main factor analysis, had more of an effect on floods then 

climatology.  The variable relationships were like the main factor analysis.  Overland flow from 

unconfined and often hydraulically connected aquifers would lead to a dilution effect. 

Meanwhile the fourth factor representing climatology was similar to the climatology factor of the 

main factor analysis. 

The fifth factor of flooding was the anthropogenic one similar to that of drought.  It consisted of 

latitudinal distance, longitudinal distance, and uranium without chloride.  It also had an inverse 

relationship to precipitation.  This is indicative of anthropogenic influences and the proportional 

variance indicates that groundwater contamination may be more of a risk for floods then 

droughts.  The sixth factor of flooding represented flow/diffusion and weakly composed of 

fractured aquifers.   Both K, confined and unconfined variables were not variables.  This is likely 

due to confined aquifers would not have much influence from overland flooding and saturated 

soil/sand in unconfined aquifers lose vadose effects.   

Last, the flood factor analysis had a unique seventh factor which may represent additional 

anthropogenic contamination.  It consisted of strong relationship with arsenic and weak 
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relationship with phosphorus.  Future studies should consider how flooded sediments may affect 

metal contamination in groundwater.    
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Appendix  

8.1 Description of British Columbia  

 

Figure 8.1.1: Power BI map of the corresponding linked weather station labelled with Native ID. 

 

Figure 8.1.2: Zoomed Power BI map of OBS well stations. 
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Figure 8.1.3: Observation wells of British Columbia with mapped aquifer regions (iMapBC, n.d.).  

 

Figure 8.1.4: Hydrological 10 and 100 year peak flow lines for British Columbia (iMapBC, n.d.). 

 

Figure 8.1.5: Hydroclimatic variability across British Columbia for the months with low flow (D. Allen & Gleeson, 2023) 
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Table 8.1.1: Maximum monthly precipitation of each well.                                                                                                                                                                                                        

OBSWELL Max of 
PRECIPITATION 

LOCATION 

2 340  ABBOTSFORD (AIRPORT; HUNTINGDON RD W OF 
CLEARBROOK RD) 

8 340  ABBOTSFORD  (VYE RD E OF MCCALLUM RD) 
12 150.7  LANGLEY (2145 200 ST) 
13 150.7  LANGLEY (19659 36TH AVE) 
14 256.4  ABBOTSFORD (FRASER VALLEY TROUT HATCHERY; VYE 

RD) 
15 340  ABBOTSFORD (FRASER VALLEY TROUT HATCHERY; VYE 

RD) 
35 68.8  STUMP LAKE (HWY 5A & OLD KAMLOOPS ROAD) 
45 118.8  WESTWOLD (STATION ROAD) 
54 58.8  CARRS LANDING (JERSEY ROAD) 
57 40.2  WINFIELD 
58 119.4  NORTH SAANICH  (MAINWARING RD.) 
59 29.2  NORTH SAANICH 
60 29.2  NORTH SAANICH  (LITTLEWOOD RD.) 
61 119.4  SOUTH SAANICH (GLIDDON ROAD) 
62 24.4  NORTH SAANICH (WAIN ROAD) 
63 19.2  NORTH SAANICH 
64 74.4  NORTH SAANICH 
65 149  SIDNEY (VICTORIA INTERNATIONAL AIRPORT) 
66 110.4  NORTH SAANICH  (WAIN ROAD) 
67 4.4  NORTH SAANICH 
69 22.4  NORTH SAANICH 
70 5.2  NORTH SAANICH 
71 170.8  SAANICH (CORDOVA BAY ROAD) 
75 43.8  KEREMEOS (6TH AVE & 5TH ST.) 
76 55.2  KEREMEOS   (9TH AVE & 3RD ST.) 
77 0  KEREMEOS (MORRISON RD.) 
78 60.6  LONE BUTTE NEAR RAIL STATION 
80 52  CLINTON (RODEO GROUNDS CARIBOO HWY 97N) 
81 98.6  83 MILE (CARIBOO HWY 97N) 
82 139.7  BARKERVILLE (LOWER) 
87 6.8  OLIVER 
88 72.6  WILLIAMS LAKE - SCOUT ISLAND 
89 132.4  SMITHERS  CORNER POWELL & LUND 
96 64.6  OSOYOOS (WREN PLACE) 
101 28.2  OSOYOOS (160TH AVE & HWY 97) 
117 17.8  ARMSTRONG (OTTER LAKE CROSS RD.) 
118 70.5  ARMSTRONG 
119 60.5  ARMSTRONG (PLEASANT VALLEY RD.) 
122 150.5  ENDERBY (HWY 97A) 
124 48  CHARLIE LAKE 
125 81.2  MAYNE ISLAND (HORTON BAY RD.) 
126 32  MAYNE ISLAND (GEORGINA POINT RD.) 
127 75.4  MAYNE ISLAND 
128 141.3  MAYNE ISLAND (SKANA GATE ROAD) 
153 36.2  SUMMERLAND 
154 0  SUMMERLAND (HWY 97 & THORNNBER ST.) 
162 54.6  OYAMA  (TREWHITT ROAD) 
172 58.8  OYAMA (SAWMILL RD.) 
173 54.6  OYAMA (SAWMILL RD.) 
174 54.6  OYAMA (OYAMA RD.) 
175 54.6  KALAWOODS 
176 10.4  OYAMA (BROADWATER RD.) 
177 11.4  KALAWOODS SOUTH  OF WOOD LAKE 
180 65.6  ARMSTRONG (SPALLUMCHEEN WAY & CROZIER RD.) 
183 25.6  MARYSVILLE 
185 109  SALMON RIVER (SALMON RIVER ROAD; SALMON ARM) 
194 85   GABRIOLA ISLAND (HWYS YARD; NORTH RD.) 
196 103.5  GABRIOLA ISLAND (BUTTERCUP RD.) 
197 141.7  GABRIOLA  ISLAND - (NORTH ROAD) 
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199 61.6  VANDERHOOF 
200 74.6  DEASE LAKE 
201 281.4  ALERT BAY (FIR ST.) 
202 98.8  ALERT BAY AIRPORT 
203 47.1  CAWSTON (BARCELO RD.) 
204 290.2  DUNCAN (DUNCAN RV PARK NORTH; BOYS RD.) 
205 18  DUNCAN (DUNCAN RV PARK SOUTH; BOYS RD.) 
208 0.6  DUNCAN 
211 18  DUNCAN (MARINE HARVEST CANADA (BOYS RD.) 
212 116.9  NORTH SAANICH (MAPLE RD.) 
217 89.6  GRAND FORKS (RICHMOND AVE.) 
220 73.8  PRINCETON 
228 130.9  CASSIDY  (TIMBERLANDS RD.) 
232 70.8  LANTZVILLE  (HARBY RD.) 
233 517.4  COWICHAN BAY (VEE ROAD) 
235 57.6  QUALICUM 
236 54.9  RUTLAND (TIMRICK COURT) 
240 116.9  NORTH SAANICH (CARNOUSITE CR.) 
255 315.3  CHILLIWACK (4035 ECKERT ST; YARROW) 
256 27.6  MILL BAY 
258 49  GALIANO ISLAND (SHOPLAND RD.) 
259 472.6  MAPLE RIDGE (272 ST & 110 AVE; WHONNOCK) 
260 58.3  QUESNEL RED BLUFF (MAPLE DRIVE & BORREGARD 

ROAD) 
261 101.6  WILLIAMS LAKE (DOG CREEK ROAD) 
262 54.9  KELOWNA (MCCLULLOCH RD. & KLO RD.) 
265 119.5  NORTH SAANICH (GLENEG ROAD) 
268 463.8  DENMAN ISLAND (DENMAN ROAD) 
272 340  ABBOTSFORD (34288 FARMER RD) 
273 331  ABBOTSFORD (FARMER RD) 
274 75.1  ABBOTSFORD (VYE RD) 
275 214.9  SURREY  (36TH AVE NEAR 194TH ST) 
276 18.7  SALTSPRING ISLAND 
279 61.2  REVELSTOKE (SIMPSON ST.) 
280 34.8  COMOX 
281 120.4  SALTSPRING ISLAND (LONG HARBOUR RD.) 
282 45.6  WILLOWBROOK/MEYERS FLATS (MEYERS RD.) 
283 94.2  PENDER ISLAND (PAISLEY ROAD) 
284 94.2  PENDER ISLAND (PIRATES ROAD) 
285 17.1  COMOX 
286 48.5  TUMBLER RIDGE 
287 185.8  COOMBS (BURGOYNE ROAD) 
288 144.5  HORNBY ISLAND (CENTRAL RD. AT SANDPIPER RD.) 
289 124.7  WILLIAMS LAKE (PINE VALLEY SUBDIVIDSION) 
290 41.2  SATURNA ISLAND (EAST POINT RD. AT GAINES RD.) 
291 37.2  CRANBROOK  (GOLD CREEK RD. & 42ND AVE.) 
292 238.8  POWELL RIVER (VICTORY RD) 
293 71  FERGUSON LAKE N. KELLY RD. 
294 150.5  LUMBY (WHITEVALE RD. & HORNER  RD.) 
295 151  QUALICUM BEACH (BERWICK ROAD) 
296 62.8  MERRITT (GARCIA ROAD; AT LIBRARY) 
297 131.2  COWICHAN BAY 
299 300.4  ABBOTSFORD (MT LEHMAN RD N OF MARSHALL RD 

EXTENSION) 
301 310  ABBOTSFORD (KING RD W OF BRADNER RD) 
302 110.8  MALAKWA (LOFTUS ROAD) 
303 151  QUALICUM BEACH (YAMBURY RD.) 
304 99  PARKSVILLE (DESPARD RD. AT SPRINGWOOD PARK) 
306 39.2  BEAVERDELL (HWY 33 & 42ND AVE.) 
308 43.2  GOLDEN  (RIVER ST.) 
309 116  GOLDEN (HIGHWAY 95 & ALMBERG RD.) 
310 463.8  BOWSER (DEEP BAY NORTH AT GAINSBURG RD.) 
311 74.5  VERNON (KEDDLESTON RD.) BX CREEK 
312 208.8  CASSIDY (HASLAM CREEK ON T-BRIDGE RD.) 
314 151  PARKSVILLE (SPRINGHILL RD.) 
315 36  LADYSMITH (YELLOWPOINT ROAD) 
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316 29.8  GABRIOLA ISLAND (OYSTER WAY) 
317 34.3  GABRIOLA ISLAND (WILD CHERRY TERRACE) 
318 166.4  DUNCAN FISH HATCHERY (WHARNCLIFFE RD.) 
319 116.6  SATURNA ISLAND  (TUMBO CHANNEL RD.) 
320 118.2  COBBLE HILL (BRAITHWAITE ESTATES) 
321 405.6  QUALICUM (LEEWARD WAY) 
322 54  VERNON (FALCON RD.) SILVER STAR MTN 
323 24.8  HORNBY ISLAND (WHALING STATION BAY) 
326 97.9  GALIANO ISLAND (STURDIES BAY RD.) 
327 97.9  GALIANO ISLAND (COMMUNITY SCHOOL) 
329 498.6  UCLUELET (HWYS YARD) 
330 112.6  CASSIDY  (NANAIMO RIVER AT HARMAC) 
331 38.8  BOWSER (DEEP BAY SOUTH) 
332 12.6  OLIVER (87TH ST.) 
333 156.2  CENTRAL SAANICH 
335 315.3  COLUMBIA VALLEY (800 COLUMBIA VALLEY RD) 
337 267.8  LADYSMITH (WOODLEY RANGE) 
338 157.4  CENTRAL SAANICH (SEABROOK RD.) 
340 80  LANTZVILLE (VALMAR ROAD) 
342 105.9  PRINCE GEORGE FISH TRAP ISLAND 
343 61.7  CENTRAL SAANICH (MT NEWTON X ROAD) 
344 42.5  CACHE CREEK (JACKSON PARK; VALLEYVIEW DRIVE) 
345 44  COBBLE HILL (ARBUTUS RIDGE) 
346 42.5  CACHE CREEK (JACKSON PARK; VALLEYVIEW DRIVE) 
347 79.9  QUESNEL (RED BLUFF 638 FIR ST.) 
349 288.8  BELCARRA (3400-BLOCK MAIN AVE) 
351 148  COMOX (GREENWOOD RD.) 
352 210.6  WHISTLER (LAKESHORE DR) 
353 214.6  LANGLEY (19638 36 AVE) 
354 310  LANGLEY (238 ST NEAR 50 AVE) 
355 170.6  CHEMAINUS (MT SICKER RD.) 
356 39.4  WINFIELD (JIM BAILEY RD.) 
357 312  ABBOTSFORD (30244 TAYLOR RD) 
358 124.9  LANGLEY (22317 16TH AVE) 
359 246.3  LANGLEY (3364 240 ST) 
360 180.8  LANGLEY (2145 200 ST) 
361 340  LANGLEY (26B AVE; ALDERGROVE) 
363 102.8  WASA (HWY 93) 
364 73.8  QUESNEL  - 2 MILE FLATS (PINECREST ROAD) 
365 87.6  SHUSWAP LAKE PARK DEEP (SQUILAX - ANGLEMONT 

ROAD) 
365 51.6  SHUSWAP LAKE PARK SHALLOW (SQUILAX - 

ANGLEMONT ROAD) 
366 31.6  SUMMERLAND (BATHVILLE RD.) 
367 38.6  SUMMERLAND (BATHVILLE RD. PR-15274; WW-1; E229670) 
368 267.1  BLACK CREEK GRAVEL PIT - OYSTER R. BEDROCK 
369 267.1  BLACK CREEK GRAVEL PIT - OYSTER R. 

UNCONSOLIDATED 
371 523.2  T`SABLE RIVER (HWY 19A) 
372 95  DISTRICT OF HIGHLANDS - GOWLLAND TOD PARK 
373 185.6  SALT SPRING ISLAND (MT BELCHER HEIGHTS) 
374 35.5  108 MILE SUBDIVISION 
375 134.6  BLUE RIVER (MURTLE LAKE ROAD) 
376 37.2  JUNCTION SHEEP RANGE PARK 
378 54.1  PRINCE GEORGE AT 5TH AND OSPIKA 
381 93.8  CANOE CREEK SHALLOW (SALMON ARM - GRINDROD 

HWY 97B) 
383 104.2  QUADRA ISLAND (HERIOT BAY RD.) 
464 93.8  CANOE CREEK DEEP (SALMON ARM - GRINDROD HWY 

97B) 
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Figure 8.1.6: Low flow zones and annual average runoff for British Columbia (iMapBC, n.d.). 

 

Figure 8.1.7: Example of water boundary/streamflow mapping that can be done on iMAP B.C. (Schnorbus et al., 2010) 

 

 

Figure 8.1.8: Updated hydrologic zones (iMapBC, n.d.). 
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Figure 8.1.9: Geological map of British Columbia. (P. Erdmer & Y. Cui, 2009) 

 

 

Figure 8.1.10: Geologic era of rock in British Columbia. (Fulton et al., 2004). 

 



  
 

  146
 

 

Figure 8.1.11: Quaternary geology of rock in British Columbia (iMapBC, n.d.).   

 

 

Figure 8.1.12: Soil great groups in British Columbia. (Science, 2021). 
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8.2 Exploratory Data Analysis  

8.2.1 Methodology  
Table 8.2.1:  Aquifer type determination for unlinked wells. 

OBS Well 
Tag 

EMS 
ID 

Aquifer 
# 

Notes and Link 

082 20904 1401079 NA Link: https://apps.nrs.gov.bc.ca/gwells/well/85742  

Closest aquifer is 4b.  Most lithology missing.  Assuming 
Aquifer type 4b due to glaciation  

276   1143 Most nearby are 6a bedrock 

286 52975 E264141 635 Under different EMS ID 
Link: https://apps.nrs.gov.bc.ca/gwells/well/52975  

369 83157 E262078 NA Oyster river surficial well; approximately 20 feet south 
east 
Link: https://apps.nrs.gov.bc.ca/gwells/well/83157  

Lithology:  Mostly gravel and sand.  Assuming Aquifer 
type 2 

367 85742 E229670 NA Bedrock 6b.   Map overlay 
358 
 
 

17459 1401023 50 Known as 004:  Not in records so used location.  Only 
well at said location 
Link: https://apps.nrs.gov.bc.ca/gwells/well/17459 

6a bedrock 
 

Table 8.2.2: Element, lowest detected limit in dataset and maximum concentration limits from Guidelines for Canadian Drinking 
Water Quality (Health Canada, 2022). 

Element Lowest Detected 
Limit in Dataset 
[mg/L] 

Half Value  of 
Lower Limit  [mg/L] 

Canadian Drinking 
Water  Guideline 
Maximum [μg/L] 

As 0.00002 0.00001 0.010 
Ca 0.05 0.025  
Cd 0.000005 0.0000025 0.007 
Chloride  0.5  0.25  
Fe 0.001 0.0005  
Mg 0.005 0.0025  
Mn 0.000008 0.000004 0.12 
P 0.002 0.001  
Pb 0.000005 0.0000025 0.005 
K 0.05 0.025  
U 0.000002 0.000001 0.02 
Na 0.05 0.025  
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N:Kjel 0.01 0.005  
Residue Filterable 
1.0u 

10 5  

Specific 
conductance 

1 0.5  

Sulfat:D 0.3 0.15  
Alkalinity 4.5 0.5 0.25  
Hardness .5 .25  

 

Table 8.2.3: B.C. Aquifer Subtype Code(Ministry of Environment and Climate Change Strategy, n.d.) 

Aquifer Subtype 
Code Description 
1a Predominantly unconfined fluvial or glacio-fluvial sand and gravel 

Aquifers found along major rivers of higher stream order with the potential 
to be hydraulically influenced by the river.  

1b Predominantly unconfined fluvial or glacio-fluvial sand and gravel 
Aquifers found along rivers of moderate stream order with the potential to 
be hydraulically influenced by the river.  

1c Predominantly unconfined fluvial or glacio-fluvial sand and gravel 
Aquifers found along lower order (< 3-4) streams in confined valleys with 
relatively undeveloped floodplains, where aquifer thickness and lateral 
extent are more limited. 

2 Predominantly unconfined deltaic sand and gravel aquifers are commonly 
found in deltas where a stream or smaller river flows into a standing body 
of water. 

3 Alluvial or colluvial fan sand and gravel aquifers typically occur at or near 
the base of mountain slopes, either along the side of valley bottoms, or if 
formed during the last period of glaciation, raised above the valley bottoms. 

4a Unconfined glacio-fluvial outwash or ice contact sand and gravel aquifers 
generally formed near or at the end of the last period of glaciation. 

4b Confined Glacio-fluvial sand and gravel aquifers underneath till, in 
between till layers, or underlying glacio-lacustrine deposits. 

4c Confined sand and gravel aquifer associated with glacio-marine 
environments near the coast. 

5a Fractured sedimentary rock aquifers primarily found in association 
with old sedimentary basins. 

5b  Karstic limestone aquifers  
6a Crystalline bedrock aquifers associated with flat-lying to gently-

dipping volcanic flows. 
6b Fractured crystalline (igneous intrusive or metamorphic, meta-

sedimentary, meta-volcanic, volcanic) rock aquifers  
UNK Unknown 
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Figure 8.2.1: Quantile-Quantile plot of Mahalanobis distances.  Plotting against scaled F-distribution would have been more 
accurate instead of linear quantiles due to the left data skew. 

8.2.2 Exploratory Data Analysis Graphs 

 

 

Figure 8.2.2: A) Well sampling per aquifer group throughout time.  
B) Well sampling per aquifer group for related observation well station number (OBSWELL). 
  

A) B) 
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Figure 8.2.3:  A) From left to right:  pairplot, hisplot and KDE plots of the relationship between metals of interest for full dataset. 
B) From left to right:  pairplot, hisplot and KDE plots of the relationship between metals of interest for drought dataset. 
C) From left to right:  pairplot, hisplot and KDE plots of the relationship between metals of interest for Flood dataset. 
D) From left to right:  pairplot, hisplot and KDE plots of the relationship between metals of interest for dataset with rising 
minimum temperatures. 
E) From left to right:  pairplot, hisplot and KDE plots of the relationship between metals of interest for dataset with rising 
maximum temperatures. 

 

Figure 8.2.4:  A) From left to right:  pairplot, hisplot and KDE plots of the relationship between precepitation /temperature for 
full dataset. 
B) From left to right:  pairplot, hisplot and KDE plots of the relationship between precepitation /temperature for drought dataset. 
C) From left to right:  pairplot, hisplot and KDE plots of the relationship between precepitation/temperature for flood dataset. 
D) From left to right:  pairplot, hisplot and KDE plots of the relationship between precepitation /temperature for dataset with 
rising minimum temperatures. 
E) From left to right:  pairplot, hisplot and KDE plots of the relationship between precepitation /temperature for dataset with 
rising maximum temperatures. 
 

A) 

B) 

C) 

A) 
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Figure 8.2.5:  A) From left to right: pairplot and hisplot plots of the relationship between other variables for full dataset. 
B) From left to right: pairplot and hisplot plots of the relationship between other variables for drought dataset. 
C) From left to right: pairplot and hisplot plots of the relationship between other variables for flood dataset. 
D) From left to right: pairplot and hisplot plots of the relationship between other variables for dataset with rising minimum 
temperatures. 
E) From left to right: pairplot and hisplot plots of the relationship between other variables for dataset with rising maximum 
temperatures. 

 

Figure 8.2.6:  KDE plots of the relationship between other variables for full dataset 
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Figure 8.2.7: Box plots of the metals of interest per aquifer group for the scaled data.  
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Figure 8.2.8:  A) Heatmap of monthly preciptation nearby wells (OBSWELL) through the years.  
 B) Heatmap of the difference between measured monthly preciptation and sitmulated monthly monthly preciptation nearby wells 
(OBSWELL) through the years. 
 

 
Figure 8.2.9: Heatmap of Residue Filterable 1.0u (a sea water intrusion indicator) in wells (OBSWELL) through the years. 

 

8.2.3 Saltwater Intrusion Exploratory Analysis 
Table 8.2.4:  Summary of the datapoints resultant from combinations of different sea water intrusion factors (British Columbia 
Ministry of Forest, 2016) 

Dataset 
Based on 
SWI over 
Limit 

As 
Above 
Limit 

Pb 
Above 
Limit 

Mn 
Above 
Limit 

U 
Above 
Limit  

Specific 
Conductance 
over cutoff 

Residue 
Filterable 
1.0u over 
cutoff 

Chloride 
over 
cutoff 

Total 
data 
points 

Normal  81 289 344 6 107 79 52 1147 
Residue 
Filterable 
1.0u 

5 17 26 0 70 - 32 71 

Chloride 2 13 13 0 38 31 - 45 
Specific 
Conductance 

7 22 38 0 - 70 32 98 

Chloride + 
Specific 
Conductance 

2 9 10 0 - 24 - 37 

A) B) 
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Residue 
Filterable 
1.0u + 
Specific 
Conductance 

5 17 26 0 - - 24 70 

Chloride + 
Residue 
Filterable 
1.0u 

2 9 10 0 24 - - 31 

Chloride or 
Specific 
Conductance 

71 26 41 0 99 70 47 106 

All 2 9 10 0 - - - 24 
 

 

Figure 8.2.10:  A) Pairplot, B) Hisplot and C) KDE plots of the relationship between temperature/precepitation variables for SWI 
dataset where specfic conductance ≥ 1000 or chloride ≥ 150 μg/L 

 

Figure 8.2.11:  A) Pairplot, B) Hisplot and C) KDE plots of the relationship between seawater intrusion variables for SWI 
dataset where specfic conductance ≥ 1000 or chloride ≥ 150 μg/L. 

A) B) C) 

A) B) C) 
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Figure 8.2.12:  A) Pairplot, B) Hisplot and C) KDE plots of the relationship between metals of interest for SWI dataset where 
specfic conductance ≥ 1000 or chloride ≥ 150 μg/L. 
 

 

Figure 8.2.13:  A) Pairplot, B) Hisplot and C) KDE plots of the relationship between other variables for SWI dataset where 
specfic conductance ≥ 1000 or chloride ≥ 150 μg/L. 

A) B) C) 

A) B) C) 
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8.2.4 Power BI Analysis 

 
 

 

 

 
Figure 8.2.15:  A) Scatterplot of well samples with Arsenic and the Guidelines for Canadian Drinking Water Quality maximum limit (red line) against other factors including sea 
water intrusion factors and cutoffs (yellow line) for Aquifer Group 1.   
B) Scatterplot of well samples with Manganese against other factors including sea water intrusion factors and cutoffs (yellow line).   

A) B) 

A) B) 

Figure 8.2.14:  A) Scatterplot of well samples with Lead and the Canadian Water Drinking Standards maximum limit (red line) against other factors including sea 
water intrusion factors and cutoffs (yellow line) for Aquifer Group 1.   
B) Scatterplot of well samples with Uranium against other factors including sea water intrusion factors and cutoffs (yellow line).   156 
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Figure 8.2.16:  A) Scatterplots per year, line graphs of mean concentration per year, and line graphs of mean concentration per year, line graphs of mean concentration per year 
and month to indicate seasonality of various metals for Aquifer Group 1 and any corresponding Guidelines for Canadian Drinking Water Quality maximum limits (red line) per 
year in Power BI.  
B) Mean concentration line graphs per month and year to indicate seasonality of different corresponding compounds in Aquifer Group 1 
 

 

Figure 8.2.17:  Histograms of all metals in Power BI (count by concentration) in all aquifer groups. 

A) B) 

157 
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Figure 8.2.18:  A) Line graphs of mean concentration per year and month to indicate seasonality of different corresponding compounds in Aquifer Group 2.  
B) line graphs of mean concentration per year of different corresponding compounds in Aquifer Group 2. 
C) Scatter plots of concentration per year, line graphs of mean concentration per year, line graphs of mean concentration per year and month to indicate seasonality of various 
metals for Aquifer Group 2 and any corresponding Guidelines for Canadian Drinking Water Quality maximum limits (red line) per year in Power BI.   
 

 

Figure 8.2.19:  A) Scatterplots of well samples with Manganese and the Guidelines for Canadian Drinking Water Quality maximum limit (red line) against other factors including 
sea water intrusion factors and cutoffs (yellow line) for Aquifer Group 3 in Power BI.  
 B) Scatterplot of well samples with Uranium in Aquifer Group 3 against other factors including sea water intrusion factors and cutoffs (yellow line).

A) B) C) 

A) B) 

158 
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Figure 8.2.20: A) Power BI Scatterplots of nearby precipitation values against the average of all variables - the Guidelines for 
Canadian Drinking Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion 
factors (blue dashed line) for Aquifer Group 1.  
 B) ‘FloodDrought’ is the expected simulated monthly precipitation subtracted from the actual precipitation.  Power BI 
scatterplots of it against the average of all variables - the Guidelines for Canadian Drinking Water Quality maximum limit (blue 
dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) for Aquifer Group 1.   
 

  
 
 
Figure 8.2.21: A) Power BI Scatterplots of nearby mean monthly maximum temperature values against the average of all 
variables - the Guidelines for Canadian Drinking Water Quality maximum limit (blue dashed line) is shown for metals and 
cutoffs for sea water intrusion factors (blue dashed line) for Aquifer Group 1.   
B) ‘Heat wave’ is the expected simulated mean monthly maximum temperature from the actual mean monthly maximum 
temperature.  Power BI scatterplots of it against the average of all variables - the Guidelines for Canadian Drinking Water 
Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) for 
Aquifer Group 1. 

A) B

A) B) 
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Figure 8.2.22: A) ‘GettingHotter’ is the expected simulated mean monthly minimum temperature from the actual mean monthly 
minimum temperature.  Power BI scatterplots of it against the average of all variables - the Guidelines for Canadian Drinking 
Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) 
for Aquifer Group 1.  
 B) Power BI Scatterplots of nearby mean monthly minimum temperature values against the average of all variables - the 
Guidelines for Canadian Drinking Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water 
intrusion factors (blue dashed line) for Aquifer Group 1.   
 

 

Figure 8.2.23: A) Power BI Scatterplots of nearby precipitation values against the average of all variables - the Guidelines for 
Canadian Drinking Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion 
factors (blue dashed line) for Aquifer Group 2.   
B) ‘FloodDrought’ is the expected simulated monthly precipitation subtracted from the actual precipitation.  Power BI 
scatterplots of it against the average of all variables – the Guidelines for Canadian Drinking Water Quality maximum limit (blue 
dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) for Aquifer Group 2. 
 

 

A B) 

A) B) 
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Figure 8.2.24: A) ‘GettingHotter’ is the expected simulated mean monthly minimum temperature from the actual mean monthly 
minimum temperature.  Power BI scatterplots of it against the average of all variables - the Guidelines for Canadian Drinking 
Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) 
for Aquifer Group 2.   
B) ‘Heat wave is the expected simulated mean monthly maximum temperature from the actual mean monthly maximum 
temperature.  Power BI scatterplots of it against the average of all variables - the Guidelines for Canadian Drinking Water 
Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) for 
Aquifer Group 2.   
C) Power BI Scatterplots of nearby mean monthly minimum temperature values against the average of all variables - the 
Guidelines for Canadian Drinking Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water 
intrusion factors (blue dashed line) for Aquifer Group 2. 
   

  

Figure 8.2.25: A) ‘GettingHotter’ is the expected simulated mean monthly minimum temperature from the actual mean monthly 
minimum temperature.  Power BI scatterplots of it against the average of all variables - the Guidelines for Canadian Drinking 
Water Quality maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion factors (blue dashed line) 
for Aquifer Group 3.  
 B) Power BI Scatterplots of nearby mean monthly minimum temperature values against the average of all variables - the 
Canadian Water Drinking Standards maximum limit (blue dashed line) is shown for metals and cutoffs for sea water intrusion 
factors (blue dashed line) for Aquifer Group 3.   
 

A) B) 

C) 

A) B) 
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8.2.5 Exploratory Data Analysis Tables 
Table 8.2.5: Unscaled, log scaled and yeo Johnson scaled skew for each variable per aquifer group. 

Aquife
r group 

Scale  Alkalinit
y Total 
4.5 

As-T Ca-T Cd-T Chlrid:
D 

Fe-T Mn-T N.Kjel:
T 

P--T Pb-T Residue 
Filterabl
e 1.0u 

Specific 
Conductanc
e 

Sulfat:
D 

pH Hardnes
s Total 
(T) 

K--T U--T PRECIPITATIO
N 

MIN_TEM
P 

MAX_TEM
P 

Precip_Climatolog
y 

Tn_Climatolog
y 

Tx_Climatolog
y 

FD HW MT 

1 No 
Scaling 

-0.272 8.723 0.076 7.247 0.612 1.645 4.282 3.085 6.606 9.200 -0.769 -2.474 0.068 -1.023 -0.042 0.695 7.492 1.283 -0.468 0.042 0.822 -0.135 0.140 -0.167 0.165 -0.294 

1 Log -0.272 8.723 0.076 7.247 0.612 1.645 4.282 3.085 6.606 9.200 -0.769 -2.474 0.068 -1.023 -0.042 0.695 7.492 1.283 -0.468 0.042 0.822 -0.135 0.140 -0.167 0.165 -0.294 
1 Yeo-

Johnso
n 

0.552 0.779 0.443 1.718 -0.160 0.135 0.348 0.327 0.672 1.505 -0.753 -1.031 -0.217 -0.084 0.339 -0.179 1.202 1.283 -0.468 0.042 0.822 -0.135 0.140 -0.167 0.165 -0.294 

2 No 
Scaling 

-1.476 6.041 -0.146 7.996 1.009 1.501 3.575 4.004 6.524 14.44
5 

-0.147 -1.613 0.591 -1.169 -0.092 0.470 4.687 2.146 -0.731 -0.253 1.405 -0.607 -0.336 -0.058 -0.010 -0.349 

2 Log 1.456 5.425 1.426 7.968 6.910 6.854 7.517 7.565 10.92
9 

16.11
9 

2.042 1.783 3.834 -0.776 1.939 4.140 4.330 2.070 -0.759 -0.220 1.448 -0.604 -0.315 1.028 0.053 -0.330 

2 Yeo-
Johnso
n 

-0.407 0.102 0.084 0.970 0.195 -0.058 -0.258 -0.164 -0.286 0.890 -0.138 -0.474 0.419 -0.303 0.227 -0.422 0.500 2.146 -0.731 -0.253 1.405 -0.607 -0.336 -0.058 -0.010 -0.349 

3 No 
Scaling 

-2.177 4.788 -0.196 2.108 0.196 1.937 2.278 3.815 4.310 4.053 -0.244 -1.829 0.134 -0.607 -0.295 1.113 2.240 2.060 -0.706 -0.424 1.455 -0.671 -0.498 -0.138 -0.169 -0.229 

3 Log 1.222 6.733 4.725 2.169 5.731 3.773 3.130 12.728 5.346 5.392 6.496 5.690 9.684 -0.222 2.216 2.289 2.056 1.964 -0.739 -0.431 1.645 -0.743 -0.603 1.312 -0.163 -0.214 
3 Yeo-

Johnso
n 

-1.224 0.691 0.068 0.678 -0.689 0.664 0.405 0.207 0.060 0.630 -0.226 -0.409 -0.219 0.006 -0.055 0.473 0.582 2.060 -0.706 -0.424 1.455 -0.671 -0.498 -0.138 -0.169 -0.229 

 

Table 8.2.6: Final summary statistics for each variable per aquifer group in the entire dataset  

Aquife
r 
Group 

 
Alkalinit
y Total 
4.5 

As-T Ca-T Cd-T Chlrid:
D 

Fe-T Mn-T N.Kjel:
T 

P--T Pb-T Residue 
Filterabl
e 1.0u 

Specific 
Conductanc
e 

Sulfat:D pH Hardnes
s Total 
(T) 

K--T U--T PRECIPITATIO
N 

MIN_TEM
P 

MAX_TEM
P 

Precip_Climatolog
y 

Tn_Climatolog
y 

Tx_Climatolog
y 

FD HW MT 

1 mean -0.368 -0.166 0.037 -0.136 -0.073 0.029 -0.143 -0.120 -0.278 -0.131 -0.316 -0.341 0.000 -0.382 -0.043 -0.085 -0.153 0.158 -0.078 -0.048 0.216 -0.104 -0.051 -1.403 0.493 0.804 
1 var 0.623 1.048 0.651 0.818 0.678 0.994 0.837 0.864 0.841 0.851 0.716 0.664 0.734 0.788 0.592 0.712 0.851 1.020 0.920 0.989 0.990 0.920 0.991 3288.99

8 2.638 1.833 

1 std 0.789 1.024 0.807 0.905 0.823 0.997 0.915 0.930 0.917 0.923 0.846 0.815 0.857 0.888 0.769 0.844 0.922 1.010 0.959 0.995 0.995 0.959 0.996 57.350 1.624 1.354 
1 min -3.157 -1.116 -2.527 -0.735 -1.825 -1.135 -1.194 -1.199 -1.132 -0.644 -2.903 -4.371 -1.738 -2.783 -2.702 -2.103 -0.766 -2.333 -2.489 -2.748 -2.035 -2.481 -2.179 -

255.883 -4.491 -6.314 

1 max 1.818 1.677 1.782 1.678 1.517 1.525 1.639 1.622 1.750 1.729 1.693 1.714 1.545 2.774 1.675 1.681 1.684 1.838 2.308 2.142 1.988 2.179 2.047 230.800 6.630 5.464 
1 skew 0.889 0.786 0.228 1.396 0.063 0.321 0.624 0.579 0.768 1.445 -0.027 -0.036 -0.140 0.161 0.353 0.015 1.243 -0.324 -0.004 0.056 -0.354 0.099 0.093 0.271 0.217 -0.377 
1 median -0.520 -0.827 -0.024 -0.581 -0.010 -0.198 -0.435 -0.379 -0.786 -0.635 -0.360 -0.426 0.115 -0.315 -0.147 -0.101 -0.698 0.309 -0.154 -0.219 0.299 -0.176 -0.125 1.000 0.308 0.918 
1 kurt 0.663 -1.027 -0.165 0.143 -0.242 -1.479 -0.936 -0.924 -0.958 0.183 0.805 2.013 -0.753 0.147 0.080 0.128 -0.227 -0.604 -0.731 -1.005 -1.134 -0.787 -1.120 1.942 0.664 2.023 
1 10.0% 

percentil
e 

-1.196 -1.052 -0.988 -0.735 -1.208 -1.114 -1.128 -1.199 -1.095 -0.644 -1.392 -1.335 -1.283 -1.624 -1.044 -0.916 -0.766 -1.189 -1.319 -1.254 -1.184 -1.196 -1.212 -77.804 -1.552 -0.875 

1 50.0% 
percentil
e 

-0.520 -0.827 -0.024 -0.581 -0.010 -0.198 -0.435 -0.379 -0.786 -0.635 -0.360 -0.426 0.115 -0.315 -0.147 -0.101 -0.698 0.309 -0.154 -0.219 0.299 -0.176 -0.125 1.000 0.308 0.918 

1 90.0% 
percentil
e 

0.908 1.612 1.167 1.678 1.272 1.525 1.374 1.544 0.970 1.729 0.670 0.708 1.126 0.631 1.093 1.173 1.684 1.379 1.168 1.292 1.321 1.294 1.240 60.071 2.527 2.331 

1 cv -2.145 -6.159 21.65
5 -6.674 -11.233 34.81

2 -6.402 -7.756 -3.300 -7.050 -2.676 -2.393 3756.48
7 -2.326 -17.957 -9.884 -6.024 6.406 -12.229 -20.694 4.609 -9.256 -19.450 -40.863 3.291 1.684 

2 mean 0.318 0.362 -0.013 0.043 -0.345 0.169 0.308 0.217 0.419 0.071 0.045 0.092 -0.146 0.357 0.193 0.486 0.147 -0.050 -0.081 -0.028 -0.121 -0.076 -0.025 3.969 0.457 0.654 
2 var 0.931 0.897 1.019 1.120 0.944 0.971 0.965 1.110 1.054 1.079 1.138 1.109 1.528 0.859 1.088 1.107 1.105 0.871 1.146 1.215 0.879 1.164 1.239 3495.61

8 2.365 2.070 

2 std 0.965 0.947 1.009 1.058 0.971 0.985 0.982 1.054 1.027 1.039 1.067 1.053 1.236 0.927 1.043 1.052 1.051 0.933 1.071 1.102 0.937 1.079 1.113 59.124 1.538 1.439 
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2 min -3.239 -1.116 -2.539 -0.735 -2.139 -1.133 -1.194 -1.199 -1.132 -0.644 -2.903 -2.013 -1.738 -2.783 -2.765 -2.103 -0.766 -2.333 -2.489 -2.944 -1.780 -2.481 -2.832 -
345.500 -4.491 -6.314 

2 max 1.818 1.677 1.782 1.678 1.517 1.525 1.639 1.622 1.750 1.729 1.693 1.714 1.545 2.774 1.675 1.681 1.684 1.838 2.565 2.413 1.988 1.934 2.062 302.800 4.300 4.533 
2 skew -0.099 0.112 0.179 0.844 0.418 0.191 -0.093 -0.023 -0.094 0.910 0.012 0.096 0.230 -0.510 0.047 -0.568 0.521 0.241 -0.161 -0.199 0.276 -0.207 -0.289 1.028 0.053 -0.330 
2 median 0.295 0.110 -0.244 -0.666 -0.374 -0.022 0.313 0.260 0.541 -0.620 -0.056 0.007 -0.382 0.514 0.004 0.627 -0.643 -0.182 -0.055 -0.058 -0.400 -0.041 -0.066 -2.800 0.219 0.624 
2 kurt -0.609 -1.361 -0.913 -1.214 -0.765 -1.484 -1.361 -1.519 -1.556 -1.124 -0.536 -1.064 -1.592 0.948 -0.995 -0.542 -1.536 -0.577 -0.686 -0.744 -1.088 -0.732 -0.763 10.817 0.005 1.861 
2 10.0% 

percentil
e 

-0.820 -0.915 -1.266 -0.735 -1.505 -1.092 -1.082 -1.199 -0.953 -0.643 -1.226 -1.201 -1.569 -0.972 -1.013 -0.993 -0.766 -1.073 -1.395 -1.404 -1.303 -1.363 -1.560 -47.162 -1.295 -1.040 

2 50.0% 
percentil
e 

0.295 0.110 -0.244 -0.666 -0.374 -0.022 0.313 0.260 0.541 -0.620 -0.056 0.007 -0.382 0.514 0.004 0.627 -0.643 -0.182 -0.055 -0.058 -0.400 -0.041 -0.066 -2.800 0.219 0.624 

2 90.0% 
percentil
e 

1.626 1.677 1.481 1.678 1.313 1.525 1.639 1.622 1.750 1.729 1.693 1.714 1.545 1.183 1.675 1.681 1.684 1.322 1.240 1.292 1.263 1.364 1.240 59.100 2.499 2.441 

2 cv 
3.031 2.618 

-
76.61
8 

24.47
0 -2.813 5.844 3.190 4.847 2.453 14.60

7 23.956 11.474 -8.490 2.599 5.418 2.163 7.173 -18.787 -13.162 -38.758 -7.754 -14.115 -45.159 14.898 3.364 2.201 

3 mean 0.440 -0.052 -0.066 0.247 0.558 -0.257 -0.041 0.013 0.127 0.205 0.641 0.640 0.167 0.426 -0.128 -0.372 0.167 -0.288 0.265 0.138 -0.334 0.315 0.140 -3.085 0.508 0.497 
3 var 1.312 0.811 1.750 1.171 1.323 0.959 1.256 1.098 0.912 1.163 0.844 0.948 0.938 0.991 1.745 1.094 1.115 0.977 0.928 0.764 0.945 0.870 0.730 1830.33

3 2.165 1.572 

3 std 1.145 0.901 1.323 1.082 1.150 0.979 1.121 1.048 0.955 1.079 0.919 0.974 0.968 0.996 1.321 1.046 1.056 0.989 0.963 0.874 0.972 0.933 0.855 42.782 1.472 1.254 
3 min -3.239 -1.116 -2.382 -0.735 -2.139 -1.135 -1.194 -1.199 -1.132 -0.644 -2.552 -3.999 -1.738 -2.783 -2.559 -2.103 -0.766 -2.333 -2.386 -2.036 -2.070 -2.105 -2.124 -

176.100 -6.025 -3.538 

3 max 1.818 1.677 1.782 1.678 1.517 1.525 1.639 1.622 1.750 1.729 1.693 1.714 1.545 2.774 1.675 1.681 1.684 1.838 2.118 1.937 1.975 2.179 1.836 281.500 4.668 3.631 
3 skew -1.366 0.788 -0.201 0.464 -0.994 0.796 0.508 0.337 0.251 0.632 -0.678 -0.978 -0.280 -0.129 -0.214 0.458 0.531 0.111 -0.461 -0.418 0.579 -0.481 -0.587 1.312 -0.163 -0.214 
3 median 0.610 -0.308 0.191 -0.497 0.927 -0.775 -0.534 -0.291 -0.028 -0.585 0.702 0.708 0.190 0.414 0.025 -0.561 -0.443 -0.367 0.506 0.365 -0.615 0.601 0.437 -8.700 0.465 0.416 
3 kurt 2.393 -0.566 -1.422 -1.685 -0.319 -0.982 -1.456 -1.414 -1.311 -1.568 -0.135 1.402 -0.736 0.833 -1.333 -0.553 -1.571 -0.555 -0.475 -0.565 -0.771 -0.413 -0.525 9.770 1.905 0.646 
3 10.0% 

percentil
e 

-0.858 -0.975 -1.889 -0.735 -1.463 -1.122 -1.151 -1.199 -1.032 -0.643 -0.930 -0.920 -1.363 -0.809 -1.986 -1.719 -0.766 -1.663 -1.013 -1.072 -1.301 -0.900 -1.015 -39.324 -1.151 -0.979 

3 50.0% 
percentil
e 

0.610 -0.308 0.191 -0.497 0.927 -0.775 -0.534 -0.291 -0.028 -0.585 0.702 0.708 0.190 0.414 0.025 -0.561 -0.443 -0.367 0.506 0.365 -0.615 0.601 0.437 -8.700 0.465 0.416 

3 90.0% 
percentil
e 

1.818 1.677 1.638 1.678 1.517 1.525 1.639 1.622 1.667 1.729 1.693 1.714 1.545 1.688 1.675 1.296 1.684 0.991 1.390 1.151 1.182 1.397 1.006 37.867 2.249 2.203 

3 cv 
2.606 

-
17.25
9 

-
19.90
8 

4.379 2.063 -3.818 
-
27.24
7 

83.783 7.525 5.269 1.433 1.521 5.802 2.339 -10.356 -2.808 6.334 -3.432 3.630 6.339 -2.915 2.963 6.086 -13.868 2.895 2.524 

 

Table 8.2.7: Kendall rank correlation for each variable per aquifer group in the entire dataset. 
 

Alkalinity 
Total 4.5

As-T Ca-T Cd-T Chlrid:DFe-T Mn-T N.Kjel:TP--T Pb-T Residue 
Filterable 
1.0u 

Specific 
Conductance

Sulfat:DpH Hardness 
Total (T)

K--T U--T PRECIPITATIO
N 

MIN_TEMPMAX_TEMPPrecip_Climatolog
y 

Tn_ClimatologyTx_ClimatologyFD HW MT 

Alkalinity Total 4.51.0000 0.2859 0.4113 -0.10020.2360 -0.07820.0787 0.0983 0.1310 0.0275 0.6316 0.6830 0.3806 0.4533 0.5083 0.3038 0.3283 -0.2204 -0.0050 0.0872 -0.2678 0.0018 0.0848 -0.0151 0.0328 -0.0024
As-T 0.2859 1.0000 0.1762 0.0651 -0.0077 0.1267 0.2156 0.0058 0.2742 0.1863 0.2001 0.2036 0.1552 0.2348 0.2146 0.2540 0.0414 -0.0796 -0.0200 0.0326 -0.0862 -0.0065 0.0365 -0.0099 -0.0066 -0.0459
Ca-T 0.4113 0.1762 1.0000 -0.07200.1786 -0.10580.0762 0.0600 0.0271 -0.05020.5269 0.5360 0.4687 0.0908 0.8359 0.2383 0.3977 -0.1543 -0.0779 0.0215 -0.1801 -0.0795 0.0203 -0.0281 0.0168 0.0214 
Cd-T -0.1002 0.0651 -0.0720 1.0000 0.0946 0.3724 0.1678 0.0077 0.1010 0.5632 0.0032 -0.0114 -0.0911 -0.0960-0.0462 -0.0636 -0.4427 -0.0419 0.0160 0.0134 -0.0400 0.0370 0.0188 0.0010 -0.0395 -0.0991
Chlrid:D 0.2360 -0.00770.1786 0.0946 1.0000 0.0420 0.0657 0.1126 -0.03680.0406 0.3940 0.4019 0.2121 0.0107 0.1836 0.0204 0.0417 -0.0578 0.0623 0.0417 -0.0799 0.0546 0.0307 -0.0116 0.0378 0.0468 
Fe-T -0.0782 0.1267 -0.1058 0.3724 0.0420 1.0000 0.4111 0.0734 0.0970 0.3749 -0.0667 -0.0737 -0.0973 -0.1104 -0.0560 0.0619 -0.2901 0.0257 -0.0053 -0.0028 0.0260 -0.0074 -0.0003 0.0128 -0.0135 -0.0149
Mn-T 0.0787 0.2156 0.0762 0.1678 0.0657 0.4111 1.0000 0.1564 0.1005 0.1604 0.0503 0.0648 0.0272 -0.00600.1156 0.1414 -0.1260 -0.0086 -0.0046 -0.0059 -0.0166 -0.0024 -0.0128 0.0187 0.0046 -0.0381
N.Kjel:T 0.0983 0.0058 0.0600 0.0077 0.1126 0.0734 0.1564 1.0000 -0.0165-0.00920.1519 0.1665 0.0853 0.0518 0.0883 0.1691 0.0284 -0.0613 0.0076 0.0393 -0.0685 0.0181 0.0443 0.0127 -0.0134 -0.0492
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P--T 0.1310 0.2742 0.0271 0.1010 -0.0368 0.0970 0.1005 -0.0165 1.0000 0.1419 0.0998 0.0925 -0.0061 0.1514 0.0392 0.2030 0.0040 0.0283 -0.0471 -0.0245 0.0125 -0.0411 -0.0285 0.0362 0.0133 -0.0011 
Pb-T 0.0275 0.1863 -0.0502 0.5632 0.0406 0.3749 0.1604 -0.0092 0.1419 1.0000 0.0515 0.0397 -0.0774 0.0665 -0.0200 -0.0103 -0.3152 -0.1433 0.0368 0.0623 -0.1481 0.0588 0.0594 -0.0353 0.0171 -0.0769
Residue Filterable 
1.0u 0.6316 0.2001 0.5269 0.0032 0.3940 -0.06670.0503 0.1519 0.0998 0.0515 1.0000 0.8749 0.4913 0.2861 0.5943 0.2463 0.2919 -0.1908 0.0066 0.0764 -0.2296 0.0052 0.0694 -0.0223 0.0409 0.0245 

Specific 
Conductance 0.6830 0.2036 0.5360 -0.0114 0.4019 -0.07370.0648 0.1665 0.0925 0.0397 0.8749 1.0000 0.4943 0.3262 0.6196 0.2795 0.3165 -0.2126 -0.0095 0.0672 -0.2518 -0.0096 0.0614 -0.0270 0.0421 0.0137 

Sulfat:D 0.3806 0.1552 0.4687 -0.0911 0.2121 -0.09730.0272 0.0853 -0.0061-0.07740.4913 0.4943 1.0000 0.1340 0.4697 0.2278 0.3450 -0.1230 -0.0358 0.0189 -0.1263 -0.0434 0.0125 -0.0409 0.0252 0.0271 
pH 0.4533 0.2348 0.0908 -0.09600.0107 -0.1104 -0.00600.0518 0.1514 0.0665 0.2861 0.3262 0.1340 1.0000 0.1723 0.2818 0.1832 -0.1614 0.0252 0.0917 -0.1907 0.0406 0.0919 -0.0082 0.0343 -0.0324
Hardness Total (T)0.5083 0.2146 0.8359 -0.04620.1836 -0.05600.1156 0.0883 0.0392 -0.02000.5943 0.6196 0.4697 0.1723 1.0000 0.3187 0.3624 -0.1877 -0.0696 0.0497 -0.2157 -0.0734 0.0477 -0.0306 0.0198 0.0232 
K--T 0.3038 0.2540 0.2383 -0.06360.0204 0.0619 0.1414 0.1691 0.2030 -0.01030.2463 0.2795 0.2278 0.2818 0.3187 1.0000 0.2347 -0.0911 -0.1096 -0.0077 -0.1069 -0.1202 -0.0104 -0.0016 0.0163 0.0297 
U--T 0.3283 0.0414 0.3977 -0.44270.0417 -0.2901-0.12600.0284 0.0040 -0.31520.2919 0.3165 0.3450 0.1832 0.3624 0.2347 1.0000 -0.0741 -0.1004 -0.0429 -0.0757 -0.1225 -0.0543 -0.0309 0.0612 0.1054 
PRECIPITATION-0.2204 -0.0796-0.1543 -0.0419-0.0578 0.0257 -0.0086-0.0613 0.0283 -0.1433-0.1908 -0.2126 -0.1230 -0.1614-0.1877 -0.0911 -0.0741 1.0000 -0.1994 -0.3195 0.5823 -0.2340 -0.2882 0.4212 -0.1841 0.0868 
MIN_TEMP -0.0050 -0.0200-0.0779 0.0160 0.0623 -0.0053-0.00460.0076 -0.04710.0368 0.0066 -0.0095 -0.0358 0.0252 -0.0696 -0.1096 -0.1004 -0.1994 1.0000 0.7097 -0.2887 0.8332 0.6806 0.0474 0.1553 0.1241 
MAX_TEMP 0.0872 0.0326 0.0215 0.0134 0.0417 -0.0028-0.00590.0393 -0.02450.0623 0.0764 0.0672 0.0189 0.0917 0.0497 -0.0077 -0.0429 -0.3195 0.7097 1.0000 -0.3805 0.7025 0.8587 -0.0255 0.1964 0.0419 
Precip_Climatolog
y -0.2678 -0.0862-0.1801 -0.0400-0.0799 0.0260 -0.0166-0.0685 0.0125 -0.1481-0.2296 -0.2518 -0.1263 -0.1907-0.2157 -0.1069 -0.0757 0.5823 -0.2887 -0.3805 1.0000 -0.3084 -0.3899 0.0015 -0.0713 -0.0023

Tn_Climatology 0.0018 -0.0065-0.0795 0.0370 0.0546 -0.0074-0.00240.0181 -0.0411 0.0588 0.0052 -0.0096 -0.0434 0.0406 -0.0734 -0.1202 -0.1225 -0.2340 0.8332 0.7025 -0.3084 1.0000 0.7221 0.0131 0.0684 -0.0473
Tx_Climatology 0.0848 0.0365 0.0203 0.0188 0.0307 -0.0003-0.01280.0443 -0.02850.0594 0.0694 0.0614 0.0125 0.0919 0.0477 -0.0104 -0.0543 -0.2882 0.6806 0.8587 -0.3899 0.7221 1.0000 0.0138 0.0518 -0.0326
FD -0.0151 -0.0099-0.0281 0.0010 -0.0116 0.0128 0.0187 0.0127 0.0362 -0.0353-0.0223 -0.0270 -0.0409 -0.0082-0.0306 -0.0016 -0.0309 0.4212 0.0474 -0.0255 0.0015 0.0131 0.0138 1.0000 -0.1707 0.1376 
HW 0.0328 -0.00660.0168 -0.03950.0378 -0.01350.0046 -0.0134 0.0133 0.0171 0.0409 0.0421 0.0252 0.0343 0.0198 0.0163 0.0612 -0.1841 0.1553 0.1964 -0.0713 0.0684 0.0518 -0.1707 1.0000 0.3690 
MT -0.00243-0.045880.021386-0.099080.046778-0.01494-0.03814-0.04918-0.00107-0.076860.0244980.013654 0.027068-0.032430.0232460.0297420.1053750.086835 0.124069 0.041896 -0.00227 -0.0473 -0.03263 0.1376150.3689761 
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8.3 Factor Analysis 

8.3.1 Initial Factor Analysis Data 
Table 8.3.1:  Barlett’s sphericity and Kaiser’s test results. 

Dataset Bartlett's  KMO Data Points 
 Chi-square value P-value Overall MSA  
DataHotTP 4474.7157 0 0.5434  
DataHotSWI 4758.4707 0 0.6489  
DatatSWIHot 1545.1009 7.5840e-202 0.5901 106 
DatatDroughtHot 6841.2284 0 0.7574 530 
DatatFloodHot 5553.4703 0 0.7340 433 
DatatHWHot 7255.0378 0 0.7662 611 
DatatMTHot 8790.9545 0.0 0.7560  
DatatHotAs 9243.17432 0 0.7383 985 
DatatHotMn 9352.7581 0 0.7289 985 
DatatHotPb 10171.7002 0 0.7296 985 
DatatHotU 9727.2657 0 0.7601 985 
DatatHotNoBias 12030.6319 0 0.7526 985 
DatatHotNoBiasP2 8758.1577 0 0.7481 985 

 

Table 8.3.2:  Information regarding Kaiser’s test to determine number of factors necessary. 

Dataset Eigenvalues> 1 ∑ Eigenvalues> 1 ∑Eigenvalues> 1/ ∑Eigenvalues 
DatatDroughtHot 6 16.3616 0.6817 
DatatFloodHot 7 17.5539 0.7314 
DatatHWHot 7 17.3239 0.7218 
DatatMTHot 7 17.3162 0.7215 
DatatHotAs 7-6 15.3774 0.7323 
DatatHotMn 6 14.4536 0.6883 
DatatHotPb 6 14.7770 0.7037 
DatatHotU 6 14.6479 0.6975 
DatatHotNoBias 7 17.2115 0.7171 
DatatHotNoBiasP2 5 12.3570 0.7724 

 

Table 8.3.3:  Mean squared amount of each metal of focus in the factor analysis for metals. 

Element 
Alone 

MSA 

As-T 0.7156 
Mn-T 0.5670 
Pb-T 0.5881 
U--T 0.8479 
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8.3.2 Main Factor Analysis 

 

Figure 8.3.1:  Scree plot of resultant eigenvalues and factors of the total dataset before factor analysis with varimax rotation. 

 

Figure 8.3.2:  Factor analysis with varimax rotation on the full dataset against each variable.  Community, Uniqueness and Total 
Variance are also graphed below. 
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Figure 8.3.3:  Scree plot of resultant eigenvalues and factors of the total dataset, after removal of previous variables and before 
factor analysis with promax rotation. 

 

Figure 8.3.4:  Residual matrix heatmap of each variable of the full dataset after factor analysis.   

Table 8.3.4:  Factor analysis of the total dataset after promax rotation.  Cutoff p >0.40 (Hair et al., 2019). 

Factor 1  Factor 2  Factor 3  
Chlrid:D 0.4804 Months_Since_First_Sam

ple 
-0.7700 MIN_TE

MP 
0.9116 

U--T 0.5178 
Mn-T 0.4511 

MAX_TE
MP 

1.0015 

Sulfat:D 0.7530 Fe-T 0.7101   
Alkalinity Total 
4.5 

0.7572 
Pb-T 0.8249 

  

Ca-T 0.7577     
Residue Filterable 
1.0u 

0.8647     

Specific 
Conductance 

0.9167     
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Factor 4  Factor 5    
Aquifer_1 -0.7567 Aquifer_3 -0.9000   
Aquifer_2 0.9726 Aquifer_1 0.6588   

 

Table 8.3.5:  Communality and Uniqueness for important variables (p>40) using factor analysis of the total dataset after promax 
rotation. 
 

Communality Uniqueness 
Aquifer_3 0.8404 0.1596 
Chlrid:D 0.3416 0.6584 
Specific Conductance 0.8827 0.1173 
Residue Filterable 1.0u 0.7888 0.2112 
Pb-T 0.6985 0.3015 
Alkalinity Total 4.5 0.6245 0.3755 
MIN_TEMP 0.8387 0.1613 
U--T 0.4443 0.5557 
MAX_TEMP 1.0222 -0.0222 
Sulfat:D 0.5980 0.4020 
Months_Since_First_Sample 0.6375 0.3625 
Mn-T 0.2810 0.7190 
Fe-T 0.5378 0.4622 
Aquifer_2 1.0021 -0.0021 
Ca-T 0.6411 0.3589 
Aquifer_1 1.0074 -0.0074 

 

Table 8.3.6:  Factor loadings, proportional variance and cumulative variance for each factor using factor analysis of the total 
dataset after promax rotation. 

 SS 
Loadings 

Proportional 
Variance 

Cumulative 
Variance 

Factor 1 3.9052 0.2441 0.2441 
Factor 2 2.1807 0.1363 0.3804 
Factor 3 1.8433 0.1152 0.4956 
Factor 4 1.6742 0.1046 0.6002 
Factor 5 1.5834 0.0990 0.6992 
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8.3.3 As Factor Analysis  

 

Figure 8.3.5:  Scree plot of resultant eigenvalues and factors of the total dataset with As as the only metal of focus.  

Table 8.3.7:  Factor analysis of the total dataset with As as the only metal of focus with Oblimin rotation.  Cutoff p >0.40 (Hair et 
al., 2019). 

Factor 1   Factor 2  Factor 3  Factor 4  
K--T 0.4937 MIN_TE

MP 
0.8921 Aquifer_3 -0.9074 Aquifer_1 -0.6451 

Chlrid:D 0.5813 MAX_TE
MP 

1.0033 
Aquifer_1 0.6110 Aquifer_2 0.9753 

Ca-T 0.7038       
Sulfat:D 0.7223       
Alkalinity Total 4.5 0.7637       
Residue Filterable 1.0u 0.8944       
Specific Conductance 0.9453       
Factor 5  Factor 6      
Months_Since_First_Samp
le 

-0.6442 Chlrid:D -0.5683     

Fe-T 0.7581       
 

Table 8.3.8:  Communality and Uniqueness for important variables (p>40) with factor analysis using Oblimin rotation of the 
total dataset with As as the only metal of focus. 
 

Communality Uniqueness 
Chlrid:D 0.6814 0.3186 
MIN_TEMP 0.8262 0.1738 
Months_Since_First_Sample 0.4974 0.5026 
Residue Filterable 1.0u 0.8218 0.1782 
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Fe-T 0.6082 0.3918 
Aquifer_3 0.8813 0.1187 
Specific Conductance 0.9134 0.0866 
Aquifer_1 0.7974 0.2026 
Aquifer_2 0.9886 0.0114 
Sulfat:D 0.5770 0.4230 
Ca-T 0.5926 0.4074 
MAX_TEMP 1.0200 -0.0200 
Alkalinity Total 4.5 0.6538 0.3462 
K--T 0.4649 0.5351 

 
Table 8.3.9:  Factor loadings, proportional variance and cumulative variance for each factor in a factor analysis with Oblimin 
rotation of the total dataset with As as the only metal of focus. 

 SS Loadings Proportional Variance Cumulative Variance 
Factor 1 4.3658 0.2079 0.2079 
Factor 2 1.9960 0.0950 0.3029 
Factor 3 1.7243 0.0821 0.3851 
Factor 4 1.6937 0.0807 0.4657 
Factor 5 1.2098 0.0576 0.5233 
Factor 6 1.0558 0.0503 0.5736 
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8.3.4 Mn Factor Analysis Data 

 

Figure 8.3.6:  Scree plot of resultant eigenvalues and factors of the total dataset with Mn as the only metal of focus.  

Table 8.3.10:  Factor analysis of the total dataset with Mn as the only metal of focus with Oblimin rotation.  Cutoff p >0.40 (Hair 
et al., 2019). 

Factor 1  Factor 2  Factor 3  Factor 4  
K--T 0.4003 MIN_TEMP 0.9118 Aquifer_1 -0.6557 Aquifer_3 -0.8653 
Chlrid:D 0.6305 MAX_TEM

P 
0.9967 

Aquifer_2 0.9566 Aquifer_1 0.5945 
Alkalinity Total 4.5 0.7084       
Ca-T 0.7183       
Sulfat:D 0.7283       
Residue Filterable 1.0u 0.8901       
Specific Conductance 0.9300       
Factor 5  Factor 6      
Months_Since_First_S
ample 

-0.5116 Chlrid:D -0.4255     

Mn-T 0.5394 pH 0.4438     
Fe-T 0.9201 x 0.5253     
 
Table 8.3.11:  Communality and Uniqueness for important variables (p>40) with factor analysis using Oblimin rotation of the 
total dataset with Mn as the only metal of focus. 
 

Communality Uniqueness 
Chlrid:D 0.6192 0.3808 
MIN_TEMP 0.8598 0.1402 
Months_Since_First_Sample 0.4089 0.5911 
Mn-T 0.3875 0.6125 
Aquifer_3 0.8146 0.1854 
Residue Filterable 1.0u 0.8085 0.1915 
Fe-T 0.8500 0.1500 
Aquifer_2 0.9527 0.0473 
Aquifer_1 0.7932 0.2068 
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Sulfat:D 0.5866 0.4134 
Specific Conductance 0.8880 0.1120 
Ca-T 0.6244 0.3756 
MAX_TEMP 1.0095 -0.0095 
Alkalinity Total 4.5 0.5989 0.4011 
K--T 0.4136 0.5864 
pH 0.3917 0.6083 
x 0.4217 0.5783 

 

Table 8.3.12:  Factor loadings, proportional variance and cumulative variance for each factor in a factor analysis with Oblimin 
rotation of the total dataset with Mn as the only metal of focus. 

 SS Loadings Proportional Variance Cumulative Variance 
Factor 1 4.112 0.1958 0.1958 
Factor 2 2.002 0.0953 0.2911 
Factor 3 1.743 0.0830 0.3741 
Factor 4 1.681 0.0800 0.4542 
Factor 5 1.522 0.0725 0.5267 
Factor 6 1.084 0.0516 0.5783 
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8.3.5 Pb Factor Analysis Data 

 

Figure 8.3.7:  Scree plot of resultant eigenvalues and factors of the total dataset with Pb as the only metal of focus.  

Table 8.3.13:  Factor analysis of the total dataset with Pb as the only metal of focus with Oblimin rotation.  Cutoff p >0.40 (Hair 
et al., 2019). 

Factor 1  Factor 2  Factor 3  
K--T 0.5030 Months_Since_First_Sample -

0.8820 
MIN_TEMP 0.9175 

Chlrid:D 0.5760 Fe-T 0.5728 MAX_TEMP 0.9941 
Ca-T 0.6876 Pb-T 0.9200   
Sulfat:D 0.7070     
Alkalinity Total 
4.5 

0.7685     

Residue Filterable 
1.0u 

0.8951     

Specific 
Conductance 

0.9490     

Factor 4  Factor 5  Factor 6  
Aquifer_1 -0.7596 Aquifer_3 -

0.9129 
Chlrid:D -

0.5748 
Aquifer_2 0.8864 Aquifer_1 0.4833 x 0.4404 

 

Table 8.3.14:  Communality and Uniqueness for important variables (p>40) with factor analysis using Oblimin rotation of the 
total dataset with Pb as the only metal of focus. 
 

Communality Uniqueness 
Chlrid:D 0.6810 0.3190 
Fe-T 0.4658 0.5342 
MIN_TEMP 0.8740 0.1260 
Residue Filterable 1.0u 0.8220 0.1780 
Specific Conductance 0.9189 0.0811 



  
 

  174
 

Aquifer_3 0.8557 0.1443 
Months_Since_First_Sample 0.7932 0.2068 
Aquifer_1 0.8202 0.1798 
Aquifer_2 0.8856 0.1144 
Pb-T 0.8527 0.1473 
Sulfat:D 0.5592 0.4408 
MAX_TEMP 1.0043 -0.0043 
Ca-T 0.5588 0.4412 
Alkalinity Total 4.5 0.6562 0.3438 
K--T 0.4706 0.5294 
x 0.4253 0.5747 

 

Table 8.3.15:  Factor loadings, proportional variance and cumulative variance for each factor in a factor analysis with Oblimin 
rotation of the total dataset with Pb as the only metal of focus. 

 SS Loadings Proportional Variance Cumulative Variance 
Factor 1 4.3040 0.2050 0.2050 
Factor 2 2.0352 0.0969 0.3019 
Factor 3 2.0015 0.0953 0.3972 
Factor 4 1.8317 0.0872 0.4844 
Factor 5 1.6009 0.0762 0.5606 
Factor 6 0.9745 0.0464 0.6070 
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8.3.6 U Factor Analysis Data 

 

Figure  8.3.8:  Scree plot of resultant eigenvalues and factors of the total dataset with U as the only metal of focus.  

Table 8.3.16:  Factor analysis of the total dataset with U as the only metal of focus with Oblimin rotation.  Cutoff p >0.40 (Hair 
et al., 2019). 

Factor 1  Factor 2  Factor 3  

Ca-T 0.5968 

MIN_TEMP 0.909
5 

Aquifer_1 -
0.760
5 

Sulfat:D 0.6445 
MAX_TEM
P 

0.997
3 Aquifer_2 

0.910
0 

Alkalinity Total 
4.5 0.6839 

    

Chlrid:D 0.7431     
Residue Filterable 
1.0u 

0.8917     

Specific 
Conductance 

0.9274     

Factor 4  Factor 5  Factor 6  
Aquifer_3 -0.9658 Chlrid:D -

0.475
9 

Fe-T -
0.670
9 

Aquifer_1 0.4926 U--T 
0.483
2 U--T 

0.463
5 

  x 
0.533
9 

Months_Since_First_Sampl
e 

0.740
9 
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Table 8.3.17:  Communality and Uniqueness for important variables (p>40) with factor analysis using Oblimin rotation of the 
total dataset with U as the only metal of focus. 
 

Communality Uniqueness 
Fe-T 0.5023 0.4977 
Chlrid:D 0.8046 0.1954 
x 0.4128 0.5872 
MAX_TEMP 1.0115 -0.0115 
Aquifer_2 0.9259 0.0741 
Aquifer_3 0.9507 0.0493 
Aquifer_1 0.8292 0.1708 
Specific Conductance 0.8779 0.1221 
Residue Filterable 1.0u 0.8056 0.1944 
MIN_TEMP 0.8569 0.1431 
Alkalinity Total 4.5 0.5662 0.4338 
Sulfat:D 0.4979 0.5021 
Ca-T 0.4936 0.5064 
U--T 0.5095 0.4905 
Months_Since_First_Sample 0.5951 0.4049 

 

Table 8.3.18:  Factor loadings, proportional variance and cumulative variance for each factor in a factor analysis with Oblimin 
rotation of the total dataset with U as the only metal of focus. 

 SS Loadings Proportional Variance Cumulative Variance 
Factor 1 3.8896 0.1852 0.1852 
Factor 2 2.0008 0.0953 0.2805 
Factor 3 1.8523 0.0882 0.3687 
Factor 4 1.6231 0.0773 0.4460 
Factor 5 1.4023 0.0668 0.5128 
Factor 6 1.3737 0.0654 0.5782 
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8.3.7 Drought Dataset Factor Analysis 
Table 8.3.19:  Factor analysis for drought dataset with Oblimin rotation.  Cutoff >0.40 (Hair et al., 2019) 

 

Table 8.3.20:  Factor loadings, proportional variance and cumulative variance for each factor in a factor analysis with Oblimin 
rotation with drought dataset 

 
SS 
Loadings 

Proportional 
Variance 

Cumulative 
Variance 

Factor 1 4.6660 0.1944 0.1944 
Factor 2 2.2683 0.0945 0.2889 
Factor 3 2.1034 0.0876 0.3766 
Factor 4 1.9089 0.0795 0.4561 
Factor 5 1.7085 0.07120 0.5273 
Factor 6 1.2118 0.05049 0.5778 

 

 

Factor 1  Factor 2   Factor 3  

Chlrid:D 0.6574 Months_Since_First_Sample -

0.8908 

PRECIPITATION -0.4580 

Ca-T 0.6622 Fe-T 0.5335 MIN_TEMP 0.9420 

Sulfat:D 0.7152 Pb-T 0.9083 MAX_TEMP 0.9420 

Alkalinity Total 4.5 0.7639     

Residue Filterable 

1.0u 

0.8999     

Specific 

Conductance 

0.9592     

Factor 4  Factor 5  Factor 6  

Aquifer_1 -

0.9078 

Aquifer_3 -

0.6996 

Chlrid:D -0.5008 

Aquifer_2 0.5639 Mn-T 0.4201 U--T 0.4459 

  K--T 0.4673 x 0.4965 

  Aquifer_2 0.5668   
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Table 8.3.21:  Communality and Uniqueness for important variables (p>40) with factor analysis using Oblimin rotation for 
drought dataset. 
 

CommunalityUniqueness
‘Chlrid:D 0.7202 0.2798 
‘Mn-T 0.3972 0.6028 
‘PRECIPITATION 0.3845 0.6155 
‘Fe-T 0.5154 0.4847 
‘MIN_TEMP 0.9148 0.08517 
‘Aquifer_3 0.6810 0.3190 
‘Residue Filterable 1.0u 0.8227 0.1773 
‘Months_Since_First_Sample0.8134 0.1866 
Specific Conductance 0.9333 0.06666 
Aquifer_1 0.8456 0.1544 
Aquifer_2 0.6529 0.3471 
Pb-T 0.8336 0.1664 
MAX_TEMP 0.9729 0.02708 
Sulfat:D 0.5616 0.4384 
Alkalinity Total 4.5 0.6429 0.3571 
Ca-T 0.5323 0.4677 
K--T 0.5084 0.4916 
U--T 0.4939 0.5061 
x 0.4706 0.5294 
 

 

Figure 8.3.9:  Scree plot of resultant eigenvalues and factors using drought (FD<0) dataset.  
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8.3.8 Flood Dataset Factor Analysis 

 

Figure 8.3.10:  Scree plot of resultant eigenvalues and factors using Flood (FD>0) dataset.  

Table 8.3.22:  Factor analysis for flood dataset with Oblimin rotation.  Cutoff >0.40 (Hair et al., 2019). 

Factor 1   Factor 2   Factor 3  Factor 4   
Ca-T 0.532

1 
Months_Since_Firs
t_Sample 

-0.8346 Aquifer_1 -0.9084 MAX_TEM
P 

0.9337 

Sulfat:D 0.566
8 

Fe-T 0.5478 pH 0.3791 MIN_TEM
P 

0.9854 

Alkalinity Total 4.5 0.569
5 

Pb-T 0.9527 Aquifer_2 0.7827   

Chlrid:D 0.740
2 

      

Residue Filterable 
1.0u 

0.853
6 

      

Specific 
Conductance 

0.866
5 

      

Factor 5  Factor 6  Factor 7    
PRECIPITATION -

0.632
2 

Aquifer_3 -0.6475 As-T 0.8069   

U--T 0.457
1 

Mn-T 0.4574 P--T 0.4451   

y 0.486
5 

Fe-T 0.5002     

x 0.648
4 
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Table 8.3.23:  Communality and Uniqueness for important variables (p>40) with factor analysis using Oblimin rotation for flood 
dataset. 
 

CommunalityUniqueness
As-T 0.6967 0.3033 
Sulfat:D 0.5106 0.4894 
Ca-T 0.5237 0.4763 
Alkalinity Total 4.5 0.5028 0.4972 
U--T 0.4417 0.5583 
pH 0.3171 0.6829 
Mn-T 0.4446 0.5554 
PRECIPITATION 0.5353 0.4647 
Residue Filterable 1.0u 0.7478 0.2522 
Aquifer_2 0.7976 0.2024 
Specific Conductance 0.7849 0.2151 
Pb-T 0.9204 0.07958 
MIN_TEMP 0.9915 0.008498 
MAX_TEMP 0.9064 0.09357 
Aquifer_1 0.8966 0.1034 
Fe-T 0.5943 0.4057 
y 0.3757 0.6243 
x 0.4950 0.5050 
Aquifer_3 0.6230 0.3770 
Months_Since_First_Sample0.7388 0.2612 
Chlrid:D 0.7026 0.2974 
 

Table 8.3.24:  Factor loadings, proportional variance and cumulative variance for each factor in a factor analysis with Oblimin 
rotation with flood dataset 

 SS Loadings Proportional Variance Cumulative Variance 
Factor 1 3.5170 0.1465 0.1465 
Factor 2 2.3533 0.0981 0.2446 
Factor 3 2.0974 0.0874 0.3320 
Factor 4 1.9757 0.0823 0.4143 
Factor 5 1.8906 0.0788 0.4931 
Factor 6 1.4109 0.0588 0.5519 
Factor 7 1.2473 0.0520 0.6038 

 

 


