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Abstract 
Feed efficiency is a key factor in the economic outcomes of mink production systems, as the cost 
of feed accounts for the largest portion of their variable expenses. So far, the Canadian mink 
industry has relied solely on phenotypic selection as its main method of selection. Phenotypic data 
from 1,038-2,288 American mink with growth and feed efficiency traits were recorded in two 
different farms. In chapter 3, phenotypic and genetic parameters for growth and feed efficiency 
traits were estimated. The moderate heritabilities of feed efficiency-related traits in American 
mink, coupled with high favorable genetic correlations among them, confirmed the potential 
inclusion of these traits in genetic/genomic selection programs to achieve significant genetic 
improvements. The other chapters aimed to display the genetic architecture underlying feed 
efficiency-related traits. To this end, all individuals were genotyped using Affymetrix Mink 70K 
single nucleotide polymorphism (SNP) array. In chapter 4, the characteristics of copy number 
variations (CNVs) within the genome of American mink were determined through the examination 
of whole-genome sequencing data of 100 individuals. Biological pathway analysis on candidate 
genes overlapped with identified CNV regions (CNVRs) revealed several pathways related to 
growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon 
guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid 
binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response 
(Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Further, chapter 
5 evaluated the association between CNVRs and 27 economically important traits in American 
mink. The findings revealed several significant CNVRs, which overlapped with genes reported to 
have impacts on growth and feed efficiency (ARID1B, APPL1, TOX, and GPC5), reproduction 
(GRM1, RNASE10, WNT3, WNT3A, and WNT9B), pelt quality (MYO10, and LIMS1), and Aleutian 
disease tests (IFNGR2, APEX1, UBE3A, and STX11). Similarly, chapters 6 and 7 aimed to identify 
runs of homozygosity (ROH) and their associations with growth and feed efficiency traits. The 
outcome suggested potential selection footprint in alignment with the breeding goals for mink, 
which include improving body length, reproductive performance, and fur quality. Furthermore, the 
results of the GWAS in Chapter 8 contributed to the identification of 153 potential candidate genes, 
some of which were known to have roles on the development of body size and feed efficiency, 
such as TUBB, CDKN1A, SRSF3, GPRC6A, RFX6, and KPNA5. Overall, the findings from this 
thesis provided useful information about the genetics of feed efficiency measurements for the mink 
industry, and identified potential candidate genes underlying feed efficiency traits, making them 
valuable as genetic markers in genomic breeding programs. 
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CHAPTER 1. Introduction 

1.1 Introduction 

American mink (Neogale vison) has long been considered as one of the most valuable 

sources of pelt in the fur industry. Yet, the current mink industry faces numerous 

challenges, notably the increasing costs of production and the emerging diseases, both of 

which impede the progress toward achieving sustainability in mink breeding (Karimi et al. 

2021a). An effective solution within the mink industry involves improving economically 

important traits like feed efficiency, growth, reproduction, and fur quality through breeding 

programs. 

The profitability of livestock production depends on minimizing costs without reducing 

quality or production. Providing feed for animals represents a significant portion of the 

variable costs in mink production programs (Berg and Lohi, 1992; Sørensen et al. 2003). 

Feed efficiency is described as the association between animal intake (input) and 

production (output). Currently, the Canadian mink industry selects their breeding animals 

only based on phenotypic performance (Karimi et al. 2019); however, the genetic 

component of feed efficiency traits has not yet been investigated. Therefore, enhancing 

feed efficiency is the optimal approach to efficiently utilize limited resources and promote 

sustainability within the mink industry. 

Before incorporating a novel trait into the breeding programs, the heritability of the trait 

and its genetic correlation with other breeding goal traits must be identified (Brito et al. 

2020). Heritability is defined as the ratio of genetic variation to overall phenotypic 
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variation, and in turn helps us determine the degree to which the potential trait is under 

genetic control (Visscher et al. 2008). Published studies indicated that feed efficiency-

related traits are moderately heritable traits, and there is a good potential for them to 

respond to selection (Arthur and Herd, 2005). Additionally, it is essential to understand the 

magnitude and direction of correlations between feed efficiency and other economically 

important traits for implementing a successful breeding program (Mu et al. 2016). Traits 

with high positive correlations tend to improve simultaneously, but high negative 

correlations between traits lead to the opposite direction of improvement. 

Further genetic advancements have become possible due to the introduction of molecular 

genetics techniques (Andersson and Georges, 2004). Several genomic markers were 

produced by the application of gene identification and quantitative trait loci (QTL) 

discoveries in livestock, which were integrated into selection programs in many species 

(Misztal, 2006). As a result of significant progress in developing single nucleotide 

polymorphism (SNP) arrays, along with the advances in statistical and computational 

approaches in livestock, there has been a surge in the ability to apply genome-wide 

association studies (GWAS) and genomic selection (Sharma et al. 2015). Detecting genetic 

variants that contribute to economically important traits is critical in animal genetics 

(Sharma et al. 2015). Copy number variants (CNVs) and other forms of structural variation 

like runs of homozygosity (ROH) are crucial in understanding of the genetic architecture 

of traits (Peripolli et al. 2017; Goshu et al. 2018). The CNV refers to a structural variation 

in an individual's genome that changes the number of copies of a genomic region (Zhang 

et al. 2009). Therefore, CNVs play significant roles as genetic variation sources 

complementary to SNP data. The ROH can reveal the level of inbreeding, the genetic 
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relationships between individuals, selection pressure, mating schemes and the age of 

inbreeding (Purfield et al. 2012; Zavarez et al. 2015; Mastrangelo et al. 2018). Detecting 

ROH can also assist scientists in uncovering the genetic selection footprint within the 

genome (Peripolli et al. 2017).  

Genomic selection can enhance the genetic gain for feed efficiency traits by reducing the 

generation interval and increasing the accuracy of selection (Brito et al. 2020). The 

information given within the genomic analyses will allow us to build a capable mapping 

tool for identifying extra loci underlying different biochemical pathways of feed efficiency 

traits in mink. Researchers have made several attempts to recognize genes that lead to the 

variation in these traits (Brito et al. 2020; Prakash et al. 2020). Moreover, integrating 

GWAS results with the genomic selection method enhances the power to identify genomic 

variation potentially useful in mink breeding. Although there has been significant 

development of genomic programs in other domestic animals, genomic methods have not 

yet been developed in mink breeding systems. 

1.2 Objectives 

The aim of this dissertation is to improve growth and feed efficiency traits in American 

mink. The specific objectives include: 

a) Providing appropriate feed efficiency indicators in American mink. 

b) Estimating heritability of feed efficiency traits in American mink. 

c) Estimating genetic and phenotypic correlation of feed efficiency traits with each 

other in American mink. 
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d) Investigating the distribution and pattern of chromosomal segments of mink 

genome such as ROH and CNV.  

e) Applying the CNV and ROH-based association studies with economically 

important traits in American mink. 

f) Performing the genome-wide association studies for growth and feed efficiency 

traits in American mink. 

g) Examining the potential impacts of CNV, ROH, SNP, and the overlapped genes on 

traits of economic interest for mink selection programs through in-depth functional 

annotation analyses. 
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CHAPTER 2. Literature review1  
 

2.1 Introduction 

Providing feed for an animal is one of the main input costs in any animal production 

system. The expenses associated with feed can account for 60-70% of total costs for mink 

production systems (Berg and Lohi, 1992; Sørensen et al. 2003). Feed efficiency (FE) can 

be defined as the association between feed intake (input) and production (output), and 

therefore, improving FE will reduce production costs. In order to relate feed intake to 

animal efficiency, it is necessary to apply comprehensive strategies for FE measurements. 

One of the most common measures of FE is feed conversion ratio (FCR) that is defined as 

the ratio of body weight gain to feed intake (Skinner-Noble and Teeter 2003). Another 

measure of FE is residual feed intake (RFI), as proposed by Koch et al. (1963). It is 

described as the difference between actual feed intake and expected intake based on an 

animal’s body size and maintenance over a time period.  

FE traits are economically important traits that are controlled by many genes and 

environmental factors. Several studies have been conducted to analyze these traits.  

Examples include,  evaluation of breeding values for selection candidates (Miar et al. 2015; 

Garrick, 2017) or identifying candidate genes for FE (Do et al. 2014; Fu et al. 2020). Some 

studies successfully identified quantitative trait loci (QTLs) that are related to feed 

efficiency in different livestock species (Andersson et al. 1994; Georges et al. 1995), 

 
1 A version of this chapter has been published in Frontiers in Genetics. Davoudi et al. 2022 
Application of genetic, genomic, and biological pathways in improvement of swine feed efficiency. 
13:903733.  doi: https://doi.org/10.3389/fgene.2022.903733 

https://doi.org/10.3389/fgene.2022.903733


6 
 

however, due to low resolution in QTL mapping analysis and complex genetic architecture 

in most QTLs, QTL mapping has not been very successful (Andersson, 2009). Genome-

wide association studies (GWAS) is a powerful tool for identification of causal genes or 

regulatory elements for economically important traits such as FE traits in livestock. GWAS 

has some benefits, e.g. the power to identify genetic variants and the practical approach to 

evaluate genetic architecture of complex traits (Kronenberg, 2008). Genomic data are 

extensively accessible in the livestock industry and supply a profitable means of estimating 

genetic merit. This is helpful for selection decisions that enhance genetic gains. Genomic 

selection is now a widely used animal breeding program approach since it enhances the 

selection for difficult and expensive traits to measure, such as FE and growth traits 

(Meuwissen et al. 2013). The objective of this chapter is to provide a summary of different 

measurements of FE, then present the state of the art for genetic and genomic studies for 

FE. This is followed by an overview of the genomics tools that can be applicable to detect 

genetic variations associated with FE traits. Finally, there is a discussion of current and 

future methods and technologies that could improve FE traits.  

2.2 Measures of feed efficiency  

Body weight gain per unit of feed consumed by an animal is a general measurement of FE 

in most studies (Patience et al. 2015). Although FE has conventionally been described as 

the ratio of feed consumed compared to the growth achieved by an animal, other FE 

indicators have been proposed recently (Crowley et al. 2010; Berry and Crowley, 2012). 

Despite the importance of FE as a critical parameter in breeding programs, there is little 

consensus regarding the optimized approach to achieve ideal FE (Gaines et al. 2012). 

Firstly, this lack of concensus might be due to the fact that a complex biological process 
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affects FE (Cantalapiedra-Hijar et al. 2018). Secondly, there is controversy surrounding 

how to define and measure FE traits (Patience et al. 2015). Finally, it should be noted that 

measuring FE is remarkably difficult to measure; compared to growth traits, which can 

easily be obtained by weighing the animals at specific periods in a lifetime (Hoque and 

Suzuki, 2009).  

2.2.1 Feed conversion ratio 

Feed conversion ratio (FCR; feed to body weight gain ratio) has traditionally been 

investigated as a simple and relatively common indicator of FE (Hoque and Suzuki, 2009). 

Although FCR is considered an essential part of the goal in breeding programs, there are 

some definite issues with FCR. Selection based on FCR can lead to large-sized animals at 

a mature age that might have high energy requirements for maintenance (Smith et al. 2010). 

In addition, high genetic correlations with FCR, growth, body size and body composition, 

cause the changes in component traits in future generations (Gunsett, 1984). Finally, 

animals with similar FCR might vary in growth rate and feed intake (Smith et al. 2010). 

Thus, there is a need to define an indicator that negates the effect of body weight on FE of 

each animal. 

2.2.2 Residual feed intake 

Residual feed intake (RFI) is another FE measurement proposed as an alternative to FCR. 

RFI is defined as the difference between the observed feed intake and the expected feed 

intake. This was first proposed by Koch et al. (1963). They suggested that feed intake could 

be adjusted for body weight and weight gain. Since RFI is independent of body weight and 

average daily gain (ADG), selection for RFI can alter the energy of maintenance 
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requirements without changing the body size and production level. In addition, due to the 

RFI's mathematical independence to animal production, this method is notably suitable to 

investigate the biological mechanisms underlying the FE variation in each individual 

(Berry and Crowley, 2013). However, RFI calculation might be dependent on the predicted 

feed requirement for production and maintenance  (Do et al. 2013), which might cause 

difficulty in comparing results of different studies. In addition, in the case where genetic 

correlation exists between FE and maintenance traits, the heritability estimation might be 

unreliable (Lu et al. 2015).  

2.2.3 Other feed efficiency indicators  

A wide variety of terms have been proposed to define FE, which can be applied as 

alternative measurement for FCR and RFI (Berry and Crowley, 2013). Kleiber ratio (KR), 

defined as growth rate/body mass0.75, was suggested as an indirect selection parameter for 

feed conversion (Kleiber, 1947). It is acknowledged that KR is a useful indicator in 

selection for growth efficiency since it does not require the calculation of individual intake 

and enables ranking of individuals with high growth efficiency relative to body size (Köster 

et al. 1994). Another indicator of FE is partial efficiency of growth (PEG), described as the 

ratio of ADG per unit of feed intake consumed for growth. Studies reported that PEG has 

some advantages over FCR since it has considerably lower genetic and phenotypic 

correlation with ADG compared to ADG and FCR (Arthur et al. 2001; Nkrumah et al. 

2004). Residual gain (RG) and residual feed intake and gain (RIG) are other alternative 

measures of FE (Crowley et al. 2010; Berry and Crowley, 2012). RG is defined as the 

difference between the actual ADG and the expected ADG and combines the 

measurements of growth and feed intake in a similar principle to RFI. However, for RFI, 
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feed intake is regressed on ADG and body weight, but in the calculation of RG, ADG is 

regressed on feed intake and body weight (Crowley et al. 2010). RIG, proposed by Berry 

and Crowley (2012), combines RFI and RG to identify efficient and fast-growing animals 

independent of their body weights. Therefore, the advantages of both reduced feed intake 

and greater ADG are represented in RIG.  

2.3 Genetics of feed efficiency 

2.3.1 Heritability  

Generally, estimated heritability of traits (defined as the ratio of genetic variation to the 

overall phenotypic variation) is used to determine the degree to which traits are under 

genetic control. In order to have an accurate estimate of heritability, a well-established 

measure of FE, as well as complete and precise pedigree information on many individuals 

are required.  

Although in few studies, heritability estimates for RFI in American mink have been 

reported within a range spanning from 0.13 to 0.49 (Shirali et al. 2015; Madsen et al. 2020). 

The diverse range of heritability estimates presented in the literature is due to evaluation 

of different populations, ages, diets, environments, and the number of animals in the study. 

A controversial subject related to RFI is that this term or other unspecified feed intake 

terms are referred to as FE. The residual might be associated with random errors, for 

example, prediction and measurement errors, inaccurate recording or feeding loss (Van der 

Werf, 2004). These errors can reflect the phenotypic variation, which might change the 

heritability of RFI. The heritability for FCR has not been reported in American mink, yet 

its mathematical inverse gain:feed ratio reported as 0.30 (Sørensen, 2002). The only 
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estimates of heritability reported in American mink for component traits (such as ADG and 

DFI) were 0.43 and 0.38 for ADG and DFI, respectively (Sørensen, 2002). It is well-

documented that FE-related traits are moderately heritable traits, and therefore, have good 

potential to respond to selection. 

2.3.2 Genetic correlation 

Although heritability can provide information about the candidates' genetic merit for traits 

of interest, understanding the magnitude and direction of correlations between FE traits 

and other economically important traits is essential to establish a successful breeding 

program (Brito et al. 2020). Traits with high positive genetic correlations tend to improve 

simultaneously, but high negative genetic correlations between traits cause the opposite 

direction of improvement.  

The FCR and RFI genetic improvement strategies are different and rely on their particular 

genetic correlations with other production traits. Although there is no study inverstigated 

the genetic correlation between FCR and RFI in American mink, the high and positive 

genetic correlation between FCR and RFI traits have been documented in other species, 

such as pig (Do et al. 2013), cattle (Brito et al. 2020), and chicken (Prakash et al. 2020). In 

mink, the genetic and phenotypic correlations of RFI and BW are relatively low and range 

between -0.08 to 0.12 (Madsen et al. 2020). Selection based on RFI is also associated with 

animal characteristics related to energy cost. Decreasing the maintenance energy 

requirements leads to decreased physical activity and reduced heat production, which could 

significantly contribute to higher energy efficiency (Gilbert et al. 2017). Therefore, low 

RFI individuals are desired since they spend less energy on feed consumption, interacting 

with others, heat production, and maintenance requirements (Gilbert et al. 2017). In mink, 
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RFI is reported to be highly correlated with DFI, indicating that selection against RFI can 

decrease DFI (Madsen et al. 2020). Nevertheless, it is important to consider differences in 

body weight of animals using in genetic parameter estimation, since animals with different 

weights might have different maintenance requirements, and thereby have an impact on the 

estimated parameters, genetic correlations and prediction of FE traits (Patience et al. 2015). 

2.4 Genomics applications 

Genetic variation is a fundamental factor that outlines the foundation of heritable traits. 

Therefore, to gain a comprehensive understanding of genes, it is essential to investigate the 

genetic variations present, and how these variations may impact on gene function, and 

thereby, how they can shape the phenotype (Barnes, 2010). Single nucleotide 

polymorphisms (SNPs) represent the predominant form of genetic variation among 

individuals within a specific species, arising from mutations that introduce base-pair 

differences between chromosome sequences (Leaché and Oaks, 2017). The desire 

characteristics of the SNPs, including their genome-wide distribution and their substantial 

prevalence, render them as valuable sources of genetic variation. 

Recently, a major scientific milestone in genomic analysis for American mink was 

achieved through the availability of the first chromosome-level genome assembly (Karimi 

et al. 2022). The high-quality mink reference genome assists in uncovering the genetic 

mechanisms within the American mink genome, ultimately enhancing genetic 

improvement through genomic breeding programs. In addition, it serves as the foundation 

for practical scientific advances for the SNP discovery and the design of SNP arrays, 

enabling researchers to conduct GWAS and implement genomic selection in American 

mink (Karimi et al. 2022). Notably, the use of SNP genotyping arrays to generate large 
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SNP data sets has become routine (Sharma et al. 2015). This method is widely applicable 

in diverse genomic studies, ranging from pinpointing the selection footprint, detecting the 

genetic variants associated with economically important traits to implementing genomic 

selection in livestock species (Kranis et al. 2013). To this end, our research group at 

Dalhousie University developed the first medium-density 70K SNP array for American 

mink, which in turn provided the basis of the genomic analyses for this species (Hu et al. 

2023). 

2.4.1 Copy number variation 

Copy number variation (CNV) is a genomic phenomenon characterized by differences in 

the number of copies of a particular DNA segment within an individual's genome (Zhang 

et al. 2009). Unlike SNPs, which involve changes in single DNA bases, CNVs involve 

changes in larger segments of the genetic code, varying in size from one kilobase to several 

megabases (Mills et al. 2011). Because of thier greater size, CNVs cover broader 

chromosomal regions in contrast to SNPs, and as a result, they have the potential to 

influence gene expression, modify gene dosage, and disrupting coding sequence, which 

could ultimately impact economically important phenotypes (Saitou and Gokcumen, 

2020). In the last decade, several studies attempted to map the CNVs in the genome of 

livestock species, including cattle (Lee et al. 2020), chicken (Wang et al. 2010), pig (Paudel 

et al. 2013), sheep (Fontanesi et al. 2011), and buffalo (Strillacci et al. 2021). It is well-

documented that the CNVs are associated with different economically important traits, 

such as growth (Li et al. 2022), feed efficiency (Xu et al. 2019), reproduction (Zhou et al. 

2018), and health traits (Estrada‐Reyes et al. 2022). Despite the potential impact on the 
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traits of interest, there has been no research conducted to characterize CNV in the American 

mink genome and their potential effects on economically important traits. 

2.4.2 Runs of homozygosity 

Runs of homozygosity (ROH) are consecutive segments of homozygous genotypes within 

an individual, arising from selection processes, where parents pass on identical haplotypes 

to their offspring (Ceballos et al. 2018). The distribution of ROH throughout a population's 

genome, often referred to as ROH islands, reveals specific genomic areas that are impacted 

by selection footprint (Peripolli et al. 2017). This, in turn, offers valuable insights into the 

genetic adaptations and evolutionary mechanisms contribute to the shaping of populations 

(Peripolli et al. 2017). Using whole-genome sequencing data, Karimi et al. (2021b) 

reported high abundance of short ROH segments, indicating distant inbreeding 

approximately over 50 generation ago in American mink. Despite the importance of ROH 

islands and the possibility of using ROH in association studies to detect homozygous 

genomic regions associated with complex traits in livestock, this approach has yet to be 

investigated in American mink. 

2.4.3 Genome-wide association analyses 

Detection of causative mutations underlying QTLs has always been challenging in 

domestic animals (Zhang et al. 2012). Compared to conventional QTL mapping methods, 

GWAS has the power to identify genetic variants with even modest effects (Hirschhorn 

and Daly, 2005). In livestock species, the advancement of  genomic technologies has 

enabled researchers to perform different GWAS to identify genomic regions and candidate 

genes associated with economically important traits, including meat quality and quantity, 
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reproductive traits, and FE traits. In several studies, numerous regions with minor effects 

have been detected for FE traits, indicating that feed efficiency is a polygenic characteristic 

(Onteru et al. 2013). Feeding is one of animals' most conserved activities, and a key 

mechanism for survival is to regulate feed intake (Bader et al. 2007). FE traits are 

quantitative traits with complex genetic architecture (Do et al. 2014). Therefore, an 

important field of research in livestock genetics and breeding is the discovery of candidate 

genes underlying these traits.  

2.5 Future perspectives and opportunities  

2.5.1 Phenotypic measures and genetic analyses  

To date, several ratio and residual traits have been developed as FE measures. Although 

ratio traits have some advantages, such as the ease of calculation and interpretation, their 

main drawback is the strong correlations between ratio traits and their component traits 

(Berry and Crowley, 2013). On the other hand, FE can be measured independently of 

production level using residual measurements like RFI, which are based on the 

mathematical model considering energy requirements for body maintenance and 

production over a specific production time period. As the model implies in RFI, the feed 

intake and production correlation is assumed to be constant at all production and feed 

intake levels. However, the true biological efficiency depends on the degree of production 

and feed intake, which means that the correlation of maintenance requirement, production 

and feed intake varies over the growth period (Van Der Werf, 2004). In this context, it is 

suggested to apply a random regression model as it considers the variation within animals 

between different growth period stages (Veerkamp and Thompson, 1999).  
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Over recent decades, many feeding strategies have been introduced by breeding companies 

to facilitate the measuring feeding process in a precise way to achieve accurate 

measurement of individual FE on a large scale that can increase the genetic gain and 

productivity.  Nowadays, a vast amount of data can be extracted from the state-of-the-art 

technologies such as sensors for precision feeding systems, machine vision sensors, 

infrared thermal imaging sensors, microphones, and radio frequency identification (RFID) 

tags. Introducing new traits for selection of FE can significantly improve the accuracy of 

prediction. Martinsen et al. (2015) introduced new FE traits like fat efficiency and lean 

meat efficiency. Their results indicated that these traits help breeders select animals with 

high genetic potential for efficient deposition of lean meat at low feed costs. Furthermore, 

measuring the components of FE such as net FE (digestibility, net energy, heat production, 

and methane energy output), activity and behaviour (feeding per day, total time spent eating 

per day, feed intake, and time spent eating per visit), and robustness, might help breeders 

select more efficient individuals in diverse breeding conditions. It was shown that there are 

positive phenotypic and genetic correlations between feeding behaviour and FE traits, 

indicating their possible role on selection of feed-efficient individuals (Von Felde et al. 

1996; Lu et al. 2017). A deep understanding of the feeding behaviour can help breeders to 

improve feeding strategies, and thus, increase the productivity (Andretta et al. 2016). 

2.5.2 Beyond genomics 

Although significant progress has been achieved in understanding the complexities of 

genetic control of FE traits, the breeders are always seeking ways to improve FE in their 

breeding programs to obtain greater genetic progress. One practical way to enhance genetic 

gain is to maintain genetic variation. Gene editing technology, which generates progeny 
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with selected mutations, can add variation to the population (Wang et al. 2015). 

Modification of genes might allow breeders to confer the desired phenotypes to improve 

production traits or disease resistance. Likewise, by focusing on modification in the mink 

genome, researchers have the potential to enhance mink feed efficiency in the future. In 

recent years, numerous “omics” technologies such as proteomics, transcriptomics, 

metabolomics, epigenomics, and metagenomics have generated valuable data in the 

research of FE. Over time, integrating such technologies can give us more accurate 

selection of animals with better FE. The integration, joint modeling, and analyses of 

different “omics” data through system genetics would increase the power of identifying 

causal genes, regulatory networks and pathways that might lead to improve economically 

important traits like FE. Ultimately, the information derived from the integration such as 

biomarkers and gene networks or causal genes and variants can be incorporated into 

genomic selection programs to achieve higher accuracy and genetic gain. 
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CHAPTER 3. Genetic and phenotypic parameters for 
feed efficiency and component traits in American 

mink1

3.1 Introduction 

The American mink (Neogale vison), a semi-aquatic species originated in North America, 

is one of the most widespread animals used in the fur industry. The domesticated farmed 

mink has been bred in fur farms in China, Russia, North Europe, and North America 

because of its high-quality fur, leading to a great economic profit for countries (Anistoroaei 

et al. 2009; Thirstrup et al. 2015). Recently, a large culling has been carried out in several 

countries due to spreading the Covid-19 pandemic in their infected farms (Oreshkova et al. 

2020; Aguiló-Gisbert et al. 2021; Boklund et al. 2021). Feed cost has been known as the 

single largest expense, up to 60-70% of the total cost in mink production (Berg and Lohi, 

1992; Sørensen et al. 2003). Therefore, efficiency in the use of feed resources of growing 

animals is a key criterion to improve economic sustainability in mink production.  

The FE can be measured by RFI, which is defined as the difference between actual feed 

intake and predicted feed intake required for maintenance and growth estimated through a 

regression model involving metabolic body weight (BW) and average daily gain (ADG) 

(Koch et al. 1963). As a linear trait, RFI has been reported to be independent of growth rate 

and body weight (Herd et al. 2003). Therefore, the advantage of identifying animals with 

low RFI values is to decrease feed intake without having adverse effects on animal growth 

 
1 A version of this chapter has been published in Journal of Animal Science. Davoudi et al. 2022. 
Genetic and phenotypic parameters for feed efficiency and component traits in American mink. 
13:903733. 100(8), skac216. doi: https://doi.org/10.1093/jas/skac216 

https://doi.org/10.1093/jas/skac216
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and size. Even though RFI might be a good FE indicator, it might lead to a lower profit, as 

slow-growing animals with relatively low feed intake will receive an excellent RFI value 

(Berry and Crowley, 2012). Residual gain (RG) was then introduced to adjust the ADG 

relative to feed intake (Koch et al. 1963). Animals with positive RG could have faster 

growth rates but are not associated with feed intake (Crowley et al. 2010). Alternatively, 

residual intake and gain (RIG) was proposed by (Berry and Crowley, 2012) to combine the 

desired characteristics of both RFI and RG. In other words, RIG can select fast-growing 

individuals with low feed intake, while still being independent of BW.  

Although there might be a possibility to achieve a substantial genetic improvement for FE 

traits through genetic improvement, there is still a need to collect large-scale feed intake 

records for calculating the FE indicators. This is possible in other livestock industries such 

as cattle (Esfandyari and Jensen, 2021) and pigs (Santiago et al. 2021), but can be an issue 

for mink industry, as it requires the state-of-the-art technologies for recording the feed 

intake data introducing substantial cost to this industry. Alternatively, Kleiber ratio (KR), 

which is the ratio of weight gain to metabolic BW, can be an appropriate indicator for 

efficiency of feed conversion as it does not require individual intake to be measured and 

allows classification of animals with high efficiency of growth relative to body size 

(Kleiber, 1947). In addition, studies reported a high genetic correlation between KR with 

other FE traits and growth traits, and thereby, the selection for KR might lead to 

improvement of FE and growth traits (Abegaz et al. 2005). 

Feed efficiency in mink has been investigated in terms of gain:feed (Berg and Lohi, 1992), 

FCR (Nielsen et al. 2011; Nielsen et al. 2012), and RFI (Shirali et al. 2015; Madsen et al. 

2020). To incorporate FE in mink production, the magnitude of correlations between ratio 
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traits and BW, and the independence of FE traits with BW should be considered. On the 

one hand, the price of pelt has been reported to have strong correlations with BW and body 

length (BL), but on the other hand, BW and BL have negative correlations with litter size 

(Nielsen et al. 2011), and fur quality traits (Lagerkvist et al. 1994). Madsen et al. (2020) 

has already shown the possibility of selecting RFI in Danish brown mink with no negative 

effects on BW. However, to the best of our knowledge, there is no comprehensive study 

that examined different FE traits and their correlations with component traits in American 

mink. Therefore, the focus of this chapter was to model five different measures of FE traits 

including FCR, KR, RFI, RG, and RIG, and to estimate the phenotypic and genetic 

correlations among these FE measures, and six component traits, including FBW, FBL, 

harvest weight (HW), harvest length (HL), daily feed intake (DFI) and ADG in American 

mink.  

3.2 Materials and Methods 

The proposed work was approved by the Dalhousie University Animal Care and Use 

Committee (certification# 2018-009, and 2019-012), and mink used in the current chapter 

were cared for according to the Code of Practice for the Care and Handling of Farmed 

Mink (Turner et al. 2013) guidelines.  

3.2.1 Animals and traits 

In this experiment, 1,088 animals from the Canadian Centre for Fur Animal Research 

(CCFAR) at Dalhousie University, Faculty of Agriculture (Truro, NS, Canada), and 1,477 

animals from Millbank Fur Farm (Rockwood, ON, Canada), born in 2018 and 2019, were 

randomly selected for data collection. Mink were housed under standard farming 
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conditions, and diets were based on the by-products of human food production, which were 

adjusted according to animal requirements in each production period. The detail 

information regarding the feed ingredients, chemical composition, and metabolic energy 

of diet during the different time periods are provided by Do and Miar (2020). Each annual 

cycle of mink reproduction was started by mating between males and females at the 

beginning of March. Mink kits were born in late April or early May and weaned around 

the end of June. The experiment was designed during the growing-furring period, from 

August 1st to November 14th. In CCFAR farm, each animal was kept separately at different 

cages, and feed was distributed to each cage every day. Allocated feed to each cage was 

regulated up and down in case there was little or too much leftover in order to accurately 

meet the ad libitum access every day. Feed intake (FI) was then measured daily, subtracting 

the quantity of feed supplied by the amount of feed leftovers.  

All animals were weighed individually at the beginning of the test period (August 1st), at 

the final day of the test period (November 14th), and at the harvest day (December 10th). 

Body length was measured at the final test day (November 14th) and at harvest day 

(December 10th). For the commercial farm (Millbank Fur Farm), due to extensive laboring 

requirements for recording, only harvest weight and harvest length (December 10) were 

measured, and FI was recorded only for year 2019. After merging the data from the two 

farms, 2,288 records were available for harvest weight (HW) and harvest length (HL), and 

1,906 records for FI. Due to the lack of BW records on the test period for Millbank Fur 

Farm, the total number of calculated records for FE traits was limited to the number of BW 

and FI records from CCFAR farm.  
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Daily feed intake (DFI) was calculated based on the average FI values obtained during the 

test period. The average daily gain (ADG) was calculated as follows: 

𝐴𝐷𝐺 = !"#$%	'()*#"+"$%	'(
,-.

, 

where final BW is the BW at the final day of test period, Initial BW is the BW at the 

beginning of test period, and DOT is the number of days on the test.  

The feed conversion ratio (FCR) was calculated as: 

𝐹𝐶𝑅 =
𝐷𝐹𝐼
𝐴𝐷𝐺 

Mid-test metabolic BW (BW0.75) and Kleiber ratio (KR) were computed as: 

𝐵𝑊/.12 = +
𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝐵𝑊 + 𝐹𝑖𝑛𝑎𝑙	𝐵𝑊

2 4
/.12

 

𝐾𝑅 =
𝐴𝐷𝐺
𝐵𝑊/.12 

The following linear regression model was fitted to estimate the residual feed intake (RFI): 

𝐷𝐹𝐼 = 	𝛽/ +	𝛽3𝐴𝐷𝐺 +	𝛽4𝐵𝑊/.12 + 	ε, 

where β0 is the intercept, ε is RFI, and β1 and β2 are the partial regression coefficients of 

DFI on ADG and BW0.75, respectively.  

To estimate the residual gain (RG), the following linear regression model was fitted as:  

𝐴𝐷𝐺 = 	𝛽/ +	𝛽3𝐷𝐹𝐼 +	𝛽4𝐵𝑊/.12 + 	ε, 

where β0 is the intercept, ε is RG, and β1 and β2 are the partial regression coefficients of 

ADG on DFI and BW0.75, respectively.  
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Residual intake and gain (RIG) was calculated based on the method proposed by (Berry 

and Crowley, 2012) as follows: 

𝑅𝐼𝐺 = 8−1	 × < 5!*!
5!*"#

=> +	< 56!
56"#

=, 

where RFIi, is the RFI for the individual animal, RFIsd is the standard deviation of RFI for 

all animals, RGi is the residual gain of the individual animal, and RGsd is the standard 

deviation of RG for all animals. 

3.2.2 Statistical and genetic analyses 

For each trait, an optimal model was defined by testing the significance of fixed and 

random effects. The fixed effects were farm (CCFAR and Millbank Fur Farm), sex (male 

and female; 1~1 ratio), color-type (dark, demi, mahogany, pastel, and stardust), row-year 

(year: 2018 and 2019; row: 1, 4, 5, 7, 8, and 11), and age of animals (in days). The fixed 

effect of farm was tested for HW, HL, and DFI as the records were available for both farms. 

The fixed effects were statistically tested (P < 0.05) using univariate models in Asreml-R 

version 4 (Butler et al. 2018). The significance (P < 0.05) of random common litter effects 

was only tested for HW and HL, as repeated dams were used only for HW and HL in 

Millbank Fur Farm. The significance (P < 0.05) of different random effects for each trait 

was tested by comparing the full and reduced models as follows: 

−2	(𝑙𝑜𝑔𝐿789:;89	<=98% − 𝑙𝑜𝑔𝐿>:%%	<=98% 

~	𝑥9>	(>:%%	<=98%))9>(789:;89	<=98%)
4 , 

where logL and df are log-likelihood and degrees of freedom in each model, respectively. 



23 
 

The variance components were estimated for each trait using the following univariate 

model: 

𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝑺𝒄 +𝑾𝒎+ 𝒆, 

in which y is the vector of phenotypic observations, b is the vector of fixed effects, a is the 

vector of random additive genetic effects, c is the vector of random common litter effects, 

m is the vector of random maternal effects, and e is a vector of residual effects. The X, Z, 

S and W are the incidence matrices associating the phenotypic observations to fixed, 

random additive genetic, random common litter effects, and random maternal effects, 

respectively. It was assumed that random effects were independent and normally 

distributed: 
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where σF4, σG4 σH4 , and σI4 are the variances of random additive genetic, common litter, 

maternal, and residual effects, respectively; I is an identity matrix; and A is the numerator 

relationship matrix. Pedigree of phenotyped animals was traced back 16 generations 

comprising 25,041 individuals to construct the numerator relationship matrix. All analyses 

were performed using Asreml-R version 4 (Butler et al. 2018). 

The model applied for bivariate analyses between each pair of traits was: 

]
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where 𝒚𝟏 and 𝒚𝟐	are the vectors of observations for the first and second trait; 𝒃𝟏, 𝒃𝟐, 𝒂𝟏, 

𝒂𝟐, 𝒄𝟏, 𝒄𝟐,𝒎𝟏, 𝒎𝟐, 𝒆𝟏, and 𝒆𝟐 are the vectors of fixed, random additive genetic, common 

litter, maternal, and residual effects for traits 1 and 2, respectively; and 𝑿𝟏, 𝑿𝟐,	𝒁𝒂𝟏, 

𝒁𝒂𝟐,	𝒁𝒄𝟏, 𝒁𝒄𝟐, 𝒁𝒎𝟏, and 𝒁𝒎𝟐 are the incidence matrices associating observations to fixed, 

random additive genetic, common litter, and maternal effects for traits 1 and 2, respectively. 

The random effects were assumed to be normally distributed with a mean of zero and a 

(co)variance structure equal to: 

]
𝒂𝟏
𝒂𝟐^	~	8𝟎, 𝑨⊗	b

𝝈𝒂𝟏𝟐 𝝈𝒂𝟏𝒂𝟐
𝝈𝒂𝟏𝒂𝟐 𝝈𝒂𝟐𝟐

c	>, 

]
𝒄𝟏
𝒄𝟐^	~	8𝟎, 𝑰⊗	b

𝝈𝒄𝟏𝟐 𝝈𝒄𝟏𝒄𝟐
𝝈𝒄𝟏𝒄𝟐 𝝈𝒄𝟐𝟐

c	>, 
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𝒎𝟏
𝒎𝟐

^	~	8𝟎, 𝑨⊗	b
𝝈𝒎𝟏𝟐 𝝈𝒎𝟏𝒎𝟐
𝝈𝒎𝟏𝒎𝟐 𝝈𝒎𝟐𝟐

c	>, and 

]
𝒆𝟏
𝒆𝟐^	~	8𝟎, 𝑰⊗	b

𝝈𝒆𝟏𝟐 𝝈𝒆𝟏𝒆𝟐
𝝈𝒆𝟏𝒆𝟐 𝝈𝒆𝟐𝟐

c	>, 

where A is the numerator relationship matrix; I is an identity matrix; 𝜎$34 , 𝜎$44 , 𝜎;34 , 𝜎;44 , 

𝜎<34 , 𝜎<44 , 𝜎834 , and 𝜎844  are the variances of random additive genetic, common litter, 

maternal, and residual effects for traits 1 and 2, respectively; 𝜎'('), 𝜎*(*), 𝜎+(+), and 𝜎,(,) 

are the covariances of additive genetic, common litter, maternal, and residual effects 

between traits 1 and 2, respectively.  

The final reported heritability for each trait was calculated by the averages across the 

bivariate models. Phenotypic and genetic correlations among traits were estimated pairwise 
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in bivariate models. The significance of these estimates was tested using a Z-test with the 

null hypothesis that the estimates are equal to zero (α = 0.05). 

3.3 Results and discussion 

The aim of this chapter was to estimate the genetic and phenotypic parameters for different 

FE and component traits in American mink. The descriptive statistics for FE and 

component traits in American mink are presented in Table 3.1. During the test period, the 

average values for FCR and KR were 31 and 5.4, respectively, but the mean values of RFI, 

RG, and RIG were close to zero, as expected by their definitions. The average values of 

HW, HL, FBW, and FBL were consistent with the values reported in our previous studies 

(Do et al. 2021) because the current data set is extracted from those studies with focus on 

feed efficiency and component traits. The HW (2.2kg) and FBW (2.1kg) values falls within 

the range of estimates (1.9 in females, and 3.6 in males) reported by Shirali et al. (2015), 

and (1.9 in females, and 3.7 in males) reported by Thirstrup et al. (2017). 

3.3.1 Variance components estimation 

Relevant fixed and random effects for estimation of genetic and phenotypic parameters of 

studied traits are given in Table 3.2. It was observed that sex had significant effects (P < 

0.05) on all traits. Several studies reported that growth pattern varies between different 

gender in mink, with the slower growth and late mature for female (Sørensen et al. 2003; 

Do and Miar, 2020). It was indicated that the maintenance requirement is negatively 

associated with the animal weight in mink, thereby the difference in feed utilization 

between sexes is expected due to the differences in size between males and females 

(Burlacu et al. 1984). The effect of farm was significant (P < 0.05) for HW, HL and DFI, 
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but not tested for other traits as only one farm had data on all traits. Row-year also 

significantly (P < 0.05) affected most of the studied traits except for ADG, RG, and KR. 

Color-type had significant effects (P < 0.05) on FBL, DFI, FCR, RFI, and RIG. Several 

studies indicated the importance of color-type on reproductive performance and growth 

parameters in mink (Ślaska et al. 2009) Previous studies identified many candidate genes 

controlling the colors of mink (Song et al. 2017a; Manakhov et al. 2019). Therefore, the 

effect of color on FE traits might be due to the pleiotropic effects of genes controlling FE 

and colors in American mink. In addition, previous studies in mink showed high genetic 

differences among color types of farm mink (Belliveau et al. 2011; Thirstrup et al. 2015). 

The genetic differentiation between color types within each farm in the study of (Thirstrup 

et al. 2015) clearly suggested that mink from the same farm have been kept as separate 

(color) breeds, because specific color types at a given farm are selected in order to enhance 

fur quality and body size. (Do et al. 2021) reported a significant effect (P < 0.05) of color-

type on HW and HL, which is in contrast with our results. This discrepancy might be due 

to the inclusion of harvest records (n=1240) from the commercial mink farm with only one 

color-type (dark) in this chapter.  

The random common litter effect was significant (P < 0.05) for HW and HL, although it 

was not tested for other traits because common litter effect was not applicable for other 

traits as there were not repeated dams for other traits. The random maternal effect was 

significant (P < 0.05) for most of the studied traits except for HW and HL. These results 

were in agreement with previous studies that showed the importance of random maternal 

effects for different traits in mink, such as growth parameters (Do et al. 2021), reproduction 

traits (Karimi et al. 2018), and fur quality traits (Thirstrup et al. 2017). The estimates of 
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variance components, heritability, and proportion of variance explained by maternal and 

common litter effects for each trait obtained from univariate models are presented in Table 

3.3. 

3.3.2 Heritability estimates 

The heritability (±SE) estimated obtained from bivariate models for all studied traits are 

presented in the diagonal elements of Table 3.4. These values were similar to those obtained 

through univariate analyses and the minor differences between these estimates can be due 

to the missing records for some traits.  The estimated heritabilities (±SE) ranged from FCR 

(0.20±0.09) to HW and FBL (0.28±0.10). The heritability estimated for FE traits in the 

present chapter indicated that there might be a potential for their improvement using 

genetic/genomic selection.  

The range of heritability estimates for body weight and length traits (HW, HL, FBW, and 

FBL) in the current chapter were in general agreement with the previously reported 

estimates (Socha et al. 2008; Koivula et al. 2010; Do et al. 2021). The heritability estimates 

(±SE) for HW (0.28±0.06) and FBW (0.28±0.10) are slightly lower than those reported for 

BW in furring periods (0.35 to 0.46) by (Do et al. 2021). Although some parts of the data 

sets from both studies overlapped, different statistical models and sample size might cause 

such differences. Regarding the body length traits in mink, the heritability estimates (±SE) 

for HL (0.23±0.06) and FBL (0.28±0.10) were in accordance with the literature cited 

(Lagerkvist et al. 1993; Liu et al. 2017; Thirstrup et al. 2017; Do et al. 2021). However, 

there was a large variation in the heritability estimates for body length in mink, from 0.19 

to 0.53 (Hansen and Berg, 2008; Liu et al. 2017; Thirstrup et al. 2017; Do et al. 2021). This 

large variation might be due to the differences of breed, population or the differences in 
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model components, sample sizes, environmental factors, and also visual scoring of body 

length as it might be affected by the fatness of the animal (Koivula et al. 2010).   

The estimated heritability (±SE) for ADG (0.25±0.09) and DFI (0.26±0.09) were lower 

than the heritability estimates reported by Sørensen, (2002) in mink (0.38 for DFI and 0.43 

for ADG). This inconsistency may be due to the fact that they collected the data at the early 

growing period in mink as the chemical compositions and metabolic energy of mink diets 

were changed between different growing and furring periods (Do and Miar, 2020). In 

rabbits, (Piles and Sánchez, 2019) reported a heritability of 0.32 for DFI, and the estimated 

heritability for ADG ranged from 0.22 (Drouilhet et al. 2013) to 0.31 (Piles and Blasco, 

2010), which were in agreement with our estimate. In addition, (Kempe et al. 2010) 

estimated the heritability for DFI (0.23) and ADG (0.28) in blue fox, which were similar 

to our results.  

The heritability estimate (±SE) for FCR in this chapter was 0.20±0.09. To our knowledge, 

no study reported the heritability for FCR in American mink, though Sørensen (2002) 

reported a heritability of 0.30 for its mathematical inverse gain: feed ratio (G:F) in mink, 

which was higher than our estimate. This difference might be due to the fact that they 

estimated the heritability of G:F in the early growing period of mink. However, several 

studies found similar heritability of 0.19 (Drouilhet et al. 2013), 0.21 (Piles et al. 2004), 

and 0.22 (Garreau et al. 2016) for FCR in rabbits. The heritability (±SE) for RFI was 

0.23±0.09, which falls within the range of estimates (0.25 in males, and 0.13 in females) 

reported by Madsen et al. (2020) for furring periods in mink, but lower than estimates (0.43 

to 0.49 in males, and 0.39 to 0.46 in females) by Shirali et al. (2015). Different heritabilities 

have been reported previously in the literature for RFI in other livestock species, ranging 
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from 0.10 to 0.51 in pigs (Jiao et al. 2014; Hong et al. 2020c), 0.11 to 0.45 in sheep 

(Cammack et al. 2005; Tortereau et al. 2020), 0.10 to 0.49 in chickens (Pakdel et al. 2005; 

Begli et al. 2016), and 0.01 to 0.62 in cattle (Vallimont et al. 2011; Berry and Crowley, 

2013). The diverse range of heritabilities estimates presented in the literature is due to 

including different populations, age, diet, breeding environment, sample size, and trait 

definition (Miar et al. 2014a; Miar et al. 2014b).  

The heritability estimates for RG, RIG, and KR were 0.21±0.10, 0.25±0.10, and 0.26±0.10, 

respectively. To the best of our knowledge, this is the first estimated heritabilities presented 

for RG, RIG, and KR in American mink. (Berry and Crowley, 2013) applied a 

comprehensive meta-analysis for FE traits in dairy and beef cattle and reported a pooled 

heritability (±SE) of 0.28±0.03 for RG across all studies, which is similar to our estimate 

of 0.21. In addition, (Ndung’u et al. 2020) reported a pooled heritability of 0.30 for RG in 

indigenous chicken at 13 weeks of age among different studies, and considerably higher 

pooled heritability at younger ages (0.71 for 12 weeks of age, and 0.77 at 11 weeks of age). 

Our heritability estimate (±SE) for RIG (0.25±0.10) was lower than the estimated 

heritability of 0.36±0.06 reported by (Berry and Crowley, 2012) for the first time as an 

alternative index for FE trait in cattle. However, a wide range of heritabilities (±SE) were 

reported for RIG in livestock species, such as 0.13±0.06 in cattle (Novo et al. 2021), 

0.18±0.01 to 0.57±0.03 in pigs (Lu et al. 2017), and 0.23±0.03 in turkey (Willems et al. 

2013). These discrepancies are expected as RIG traits are linear combinations of the RFI 

and RG traits. Therefore, the trait definition might be different due to the different 

characteristics and adjustments for RFI and RG traits. The estimated heritability (±SE) of 

0.26±0.10 for KR in this chapter was lower than a pooled heritability (±SE) of 0.35±0.03 
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calculated for KR from different studies in cattle (Berry and Crowley, 2013). However, 

these discrepancies could be due to the differences in the genetic backgrounds of different 

species, sample sizes, and statistical models. 

3.3.3 Genetic correlations 

Genetic and phenotypic correlations between FE and component traits are shown in Table 

3.4. High genetic correlations (±SE) close to unity among HW and FBW (0.97±0.02) and 

HL and FBL (0.97±0.03) in this chapter were in agreement with most cited literature in 

mink (Shirali et al. 2015; Do et al. 2021). Do et al. (2021) reported high genetic correlations 

among BW traits in different time intervals in American mink, ranging from 0.72 to 0.98. 

Similarly, Shirali et al. (2015) reported moderate to high genetic correlations (from 0.39 to 

0.99) among BW traits during the growing-furring period in Danish mink. The results 

suggested that breeders can select mink based on BW in different time periods in order to 

have the desire BW at harvest time. In this chapter, strong positive genetic correlations 

(±SE) were estimated between HW and HL (0.73±0.10), and between FBW and FBL 

(0.79±0.13). Our results are consistent with the results of Do et al. (2021), who found strong 

genetic correlations between BW and HL in different time periods (0.70 to 0.88) in 

American mink. These strong positive genetic correlations confirm the idea that selection 

for higher BW might lead to higher animal body length, which in turn helps breeders to 

reach larger pelt size and more profit. Daily feed intake had high genetic correlations (±SE) 

with HW (0.68±0.10), HL (0.79±0.12), FBW (0.61±0.20), and FBL (0.78±0.15). Similar 

findings were obtained by (Kempe et al. 2010), who reported strong genetic correlations 

between DFI and growth traits (0.56 to 0.95) in Finnish blue fox. Our results indicated that 

selection solely on body length traits might lead to an undesirable increase in feed intake, 



31 
 

which in turn leads to higher production costs. Although pelt size is one of the main factors 

in determining the price of pelt, negative correlations between BL and BW with fertility 

and fur quality traits must be considered in selection programs (Lagerkvist et al. 1994). 

The FCR had high negative genetic correlations (±SE) with HW (-0.88±0.12), FBW (-

0.64±0.21), and ADG (-0.87±0.09). Sørensen (2002) found strong genetic correlations 

between FE (gain:feed) with BW (0.59) and ADG (0.85) in Danish mink. The reason we 

observed negative values in our experiment compared to positive values in their study may 

be due to the fact that gain:feed is the mathematical inverse of FCR. In rabbits, the genetic 

correlations between FCR and growth rate were lower, ranging from – 0.38 to – 0.49 (Piles 

et al. 2004; Drouilhet et al. 2013). However, the strong negative genetic correlation 

between FCR and ADG is well documented in livestock species such as pigs (Akanno et 

al. 2013), chicken (Mignon-Grasteau et al. 2004), and beef cattle (Arthur et al. 2001). Our 

results revealed that selection for better FCR will lead to faster-growing but heavier 

animals over time. Thus, it should be pointed out that direct selection for such ratio traits 

like FCR might cause undesirable changes in related component traits, since direct 

selection for FCR emphasizes more on the information in the numerator in spite of the 

distributional properties of the component, and thereby causes selection pressure to be 

placed nonlinearly on weight gain (Gunsett, 1984). In addition, the non-significant (P > 

0.05) genetic correlation of 0.29±0.39 between FCR and DFI in the current chapter 

indicated that improving the FCR has negligible impact on feed intake in American mink. 

However, selection for reducing FCR can be enhanced by selecting for BW and ADG and 

against feed intake in an optimum selection index weight (Kennedy et al. 1993; Quinton et 

al. 2007).  
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The genetic correlations (±SE) of RFI with ADG (-0.24±0.16), FBW (-0.20±0.30), and 

FBL (0.20±0.28) were low and non-significant (P > 0.05) in the current chapter. Madsen et 

al. (2020) reported low genetic correlation between RFI and BW (-0.08 to 0.12) across 

different gender in Danish mink population, which was in agreement with our results. 

Similar genetic correlations (±SE) were estimated between RFI and growth traits (-

0.09±0.22 with ADG, and 0.19±0.19 with slaughter weight) in rabbits (Larzul and De 

Rochambeau, 2005). The RFI had a strong genetic correlation (±SE) with DFI (0.80±0.11), 

which was higher than the estimated value in Danish mink (from 0.41 to 0.55) (M D 

Madsen et al. 2020). These discrepancies might be due to differences in sample size, 

population, and statistical models. However, our results were in accordance with the most 

cited literature in other livestock species, such as dairy cattle (Manzanilla-Pech et al. 2016), 

pigs (Do et al. 2013), and chickens (Yuan et al. 2015). The results indicated that selection 

against RFI will be beneficial to reduce feed intake in the Canadian mink populations 

without negative impacts on growth traits. Reduced DFI of efficient animals might be 

associated with lower maintenance requirements, reduced energy content of body weight 

gain, and increased efficiency of animals in utilizing the energy for weight gain. 

Consequently, efficient animals apply energy efficiently to gain weight, which in turn do 

not add extra cost due to their maintenance. However, selection solely based on RFI might 

lower growth rates (ADG and BW) since animals with a small amount of body weight will 

eat less feed, which in turn will get a more favorable rank for their RFI values (Berry and 

Crowley, 2013). Additionally, the issue of RFI is more pronounced when the feed is 

restricted, as variation of RFI among animals is substantially decreasing due to feed 

restriction (Pitchford et al. 2018). It was reported that selection for RFI is leading to 
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increased body fatness and lower activity (Hebart et al. 2021). Selection for RFI might 

come across with other physical issues such as decreased heat loss, and thereby being more 

affected by high temperature, and decreased reproductive rate (Pitchford, 2004), which can 

be important for the farmers as the production might decrease due to more susceptible 

animals with impaired reproductive performance. 

The RG had a moderate genetic correlation (±SE) with ADG (0.43±0.14) and non-

significant (P > 0.05) genetic correlations with FBW (0.12±0.31), FBL (0.27±0.36), and 

DFI (-0.38±0.32). The RIG showed non-significant (P > 0.05) genetic correlations (±SE) 

with FBW (0.14±0.31) and FBL (-0.15±0.31), but favorable strong genetic correlations 

(±SE) with ADG (0.58±0.21) and DFI (-0.62±0.24). Genetic correlations for RG and RIG 

have not been investigated in mink in the literature. (Berry and Crowley, 2012) reported 

nearly zero non-significant (P > 0.05) genetic correlations (±SE) between RG with 

metabolic BW (0.06±0.12) and feed intake (-0.03±0.13), and a positive high genetic 

correlation between RG and ADG (0.82±0.05). This chapter was the first to propose RIG 

as a new FE measurement, and reported a moderate favorable genetic correlation (±SE) 

between RIG and feed intake (-0.35±0.10), and ADG (0.47±0.10), and non-significant (P 

> 0.05) genetic correlation with metabolic BW (0.11±0.10), which were in agreement with 

our results. Our results revealed that applying RG into the selection program would result 

in faster-growing mink without any impact on improving the feed intake. Alternatively, our 

results suggested that RIG can be included in mink selection programs to enhance the 

growth rate and reduce requirement on feed intake since it guarantees the reduced DFI and 

increased ADG. However, it should be pointed out that calculating the residual traits is 
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more difficult than ratio traits as they cannot be estimated for a single individual and require 

other animals to be included in the regression model (Berry and Crowley, 2013).  

In this chapter, all residual traits had high genetic correlations (±SE) with HW (-0.50±0.23 

with RFI, 0.84±0.19 with RG, and 0.85±0.16 with RIG). These results were expected, as 

none of the residual traits in our chapter were adjusted for HW in their models. Residual 

traits would be uncorrelated with HW, if they were included in the model. Nevertheless, it 

was not applicable in this chapter as there were no complete records for HW to be adjusted 

in residual traits.  

In this chapter, KR was strongly and positively correlated with (±SE) HW (0.86±0.09), HL 

(0.76±0.19), FBL (0.68±0.17), FBW (0.88±0.11), and ADG (0.97±0.02), but had a non-

significant (P > 0.05) genetic correlation with DFI (0.23±0.30). These reported correlations 

were in agreement with the correlations reported in other livestock species. For example, 

high genetic correlations (±SE) of 0.91±0.02 (Steyn et al. 2014) and 0.75±0.06 (Crowley 

et al. 2010) in cattle, and 0.91±0.03 (Mandal et al. 2015) in sheep were reported between 

KR and ADG. Berry and Crowley, (2013) reported a non-significant pooled genetic 

correlation (±SE) of -0.04±0.03 between KR and DFI, which was in accordance with our 

result. The results in the current chapter suggested that selection based on KR may increase 

the growth traits in American mink, but with no improvement in feed intake. Direct 

selection for FE traits might be difficult and expensive as measuring and recording 

individual feed intake is required, even when the animal is raised in groups. This may be 

applicable for livestock species such as pigs and cattle, due to their state-of-the-art 

recording feeding systems. However, the high cost of collecting such data will limit the 

number of feed intake records for breeding programs in American mink, as most mink 
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farms come from a rural condition with lack of automatic feed recording systems. 

Interestingly, KR might be an ideal trait to be included in mink breeding programs since it 

does not require the observations on feed intake, which in turn substantially reduces the 

cost. However, like FCR, as a ratio trait, KR must be included in the selection programs 

using a proper selection index with other component traits. The negative correlation among 

some FE traits is an artifact of the definition of the trait, as for some traits like RFI and 

FCR, the lower and negative values are preferable, while for other traits like RG, RIG, and 

KR, the positive values are more desirable.  

The reported high genetic correlation (±SE) of 0.75±0.20 between RFI and FCR in the 

current chapter was in agreement with the estimated genetic correlation of 0.96±0.03 in 

rabbits (Drouilhet et al. 2013). As expected, RIG showed strong and favorable genetic 

correlations (±SE) with RFI (-0.84±0.12) and RG (0.92±0.06), because RIG was a linear 

combination of RFI and RG. The results were similar to the values reported by (Berry and 

Crowley, 2012), who reported high genetic correlations between RIG with RFI (-

0.87±0.03), and RG (0.83±0.04). The KR showed high and favorable genetic correlations 

(±SE) with RG (0.74±0.14), RIG (0.80±0.12), and FCR (-0.93±0.05). Although KR is not 

a direct FE indicator as it does not include feed intake in its calculation (Berry and Crowley, 

2013), the strong genetic correlations with other FE traits makes it an appealing 

measurement, that can lead to improvement of other traits, if implemented in mink breeding 

programs. 

3.4 Conclusions 

In conclusion, the current chapter evaluated the genetic and phenotypic parameters among 

FE and component traits in American mink. There is evidence of non-significant genetic 
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correlation between RFI and growth traits and of high genetic correlation between RFI and 

feed intake. This fact makes the trait applicable for selection for higher feed efficiency, 

with negligible effects on the animal growth. The RIG is recommended to be a robust 

measure of feed efficiency and can be included in the selection programs as it will improve 

the growth rate and reduce the feed intake, as well as avoid any negative effects on growth 

traits. The KR trait also appears to be a good indirect FE trait as it has positive genetic 

correlations with other component traits, and there is no need for collecting the feed intake 

records to calculate this trait. Overall, our results suggest that the estimates of genetic and 

phenotypic parameters of FE traits can be applied in American mink to develop an index 

for selection of feed-efficient mink and consequently reduce the cost of mink production. 
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Table 3.1 Descriptive statistics for feed efficiency and component traits in American mink. abbreviations, units, number of animals 
per trait, means, standard deviations (SD), minimum (Min), maximum (Max), and coefficient variation values. 

Traits Abbreviation Unit Numbers Mean SD Min Max CV (%) 
Harvest weight HW kg 2,288 2.2 0.7 0.7 4.1 33.3 
Harvest length HL cm 2,288 45.4 5 33 59 11 
Final Body length  FBL cm 1,046 37.6 4 29 47 10.6 
Final Body weight FBW kg 1,046 2.1 0.6 1 3.8 31.1 
Average daily gain ADG g/d 1,046 8.3 3.8 1.2 19.6 45.6 
Daily feed intake DFI g 1,906 212.4 52 49 366.8 24.5 
Feed conversion ratio FCR - 1,038 31 11.3 11 78.2 36.5 
Residual feed intake RFI g/d 1,044 0 36.6 -86.5 169.4 - 
Residual gain RG g/d 1,042 0 1.3 -5.7 5.3 - 
Residual intake and gain RIG g/d 1,043 0 1.5 -5.6 5 - 
Kleiber ratio KR - 1,046 5.4 1.5 1.1 9.7 28.6 
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Table 3.2 Significance of fixed and random effects included in the univariate models for analyses of feed efficiency and component 
traits in American mink. 

   Fixed effects Random effects 
Traits  Farm  Sex Color-type Row-Year Age of animal (days)  Animal Maternal Common litter 

Harvest weight *  * NS1 * NS P NS * 
Harvest length  *  * NS * * P NS * 
Final Body length   NT2  * * * NS P * NT 
Final Body weight  NT  * NS * NS P * NT 
Average daily gain  NT  * NS NS * P * NT 
Daily feed intake  *  * * * NS P * NT 
Feed conversion ratio  NT  * * * * P * NT 
Residual feed intake  NT  * * * NS P * NT 
Residual gain  NT  * NS NS * P * NT 
Residual intake and gain  NT  * * * * P * NT 
Kleiber ratio  NT  * NS NS * P * NT 

1 NS = Non-significant.  
2 NT = Not tested.  

* P < 0.05. 
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Table 3.3 Variance components and heritability estimates (±SE) for feed efficiency and component traits in American mink. 

   Parameters1     
Traits2 σ2 a σ2m σ2c σ2e Heritability c2m c2c 
HW 2.31E-02±6.29E-03 NE3 1.05E-02±2.91E-03 6.01E-02±3.95E-03 0.25±0.06 NE 0.11± 0.03 
HL 1.05 ±0.32 NE 1.05±0.32 3.52±0.21 0.21± 0.09 NE 0.11± 0.03 

FBL 0.93±0.39 0.43±0.17 NE 2.12±0.23 0.27±0.13 0.12±0.04 NE 
FBW 1.97E-02±9.05E-03 1.27E-02±4.21E-03 NE 4.40E-02±5.17E-03 0.26±0.11 0.17±0.05 NE 
ADG 1.00±0.43 0.60±0.21 NE 2.64±0.26 0.24±0.11 0.14± 0.04 NE 
DFI 296.09±11.39 168.37±50.80 NE 653.91±63.78 0.26±0.10 0.15± 0.04 NE 
FCR 12.62±6.53 6.20±3.01 NE 46.80±4.14 0.19±0.06 0.08±0.04 NE 
RFI 104.73±43.55 40.10±20.29 NE 313.81±28.07 0.23± 0.07 0.09±0.04 NE 
RG 0.37±0.18 0.38±0.10 NE 0.95±0.10 0.22± 0.11 0.22± 0.05 NE 
RIG 0.37±0.18 0.31±0.09 NE 0.90±0.10 0.24± 0.11 0.19± 0.05 NE 
KR 0.27±0.11 0.18±0.05 NE 0.65±0.07 0.25± 0.11 0.16± 0.04 NE 

        
1σ2 a = Additive genetic variance; σ2m = Maternal genetic variance; σ2c = Common litter genetic variance; σ2e = Residual variance; c2m = 
Proportion of variance explained by maternal effects; c2c = Proportion of variance explained by common litter effects. 
2HW = Harvest weight; HL = Harvest length; FBL = Final body length; FBW = Final body weight; ADG = Average daily gain; DFI = 
Daily feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR 
= Kleiber ratio.  

3NE: not estimated. 

 

 

 



40 
 

 Table 3.4 Estimates of heritabilities (diagonal), genetic correlations (above diagonal), and phenotypic correlations (below diagonal) 
and their SE for feed efficiency and component traits in American mink. 

1HW = Harvest weight; HL = Harvest length; FBL = Final body length; FBW = Final body weight; ADG = Average daily gain; DFI = 
Daily feed intake; FCR = Feed conversion ratio; RFI = Residual feed intake; RG = Residual gain; RIG = Residual intake and gain; KR 
= Kleiber ratio.  

Trait1 HW HL FBL FBW ADG DFI FCR RFI RG RIG KR 
HW 0.28±0.06 0.73±0.10 0.85±0.11 0.97±0.02 0.96±0.04 0.68±0.10 -0.88±0.12  -0.50±0.23 0.84±0.19 0.85±0.16 0.86±0.09 
HL 0.56±0.02 0.23±0.06 0.97±0.03 0.93±0.07 0.94±0.04 0.79±0.12 -0.68±0.22  -0.02±0.27 0.07±0.28 0.12±0.29 0.76±0.19 
FBL 0.38±0.03 0.56±0.05 0.28±0.10 0.79±0.13  0.65±0.21 0.78±0.15 -0.38±0.17  0.20±0.28 0.27±0.36 -0.15±0.31 0.68±0.17 
FBW 0.79±0.01 0.50±0.03 0.51±0.03 0.27±0.11 0.90±0.06 0.61±0.20 -0.64±0.21  -0.20±0.30 0.12±0.31 0.14±0.31 0.88±0.11 
ADG 0.70±0.02 0.38±0.03 0.36±0.03 0.89±0.01 0.25±0.09 0.37±0.26 -0.87±0.09  -0.24±0.16 0.43±0.14 0.58±0.21 0.97±0.02 
DFI 0.32±0.03 0.27±0.03 0.42±0.03 0.65±0.02 0.54±0.03 0.26±0.09 0.29±0.39 0.80±0.11 -0.38±0.32 -0.62±0.24 0.23±0.30 
FCR  -0.50±0.03  -0.24±0.04 -0.18±0.04  -0.59±0.02  -0.72±0.02 -0.08±0.04 0.20±0.09 0.75±0.20 -0.74±0.18 -0.81±0.15 -0.93±0.05 
RFI  -0.22±0.04  -0.05±0.04 0.01±0.04 -0.18±0.04  -0.24±0.04 0.77±0.02 0.47±0.03 0.23±0.09 -0.59±0.23 -0.84±0.12 -0.53±0.24 
RG 0.33±0.03 0.02±0.04  -0.02±0.04 0.37±0.04 0.73±0.02 0.05±0.04 -0.63±0.02  -0.37±0.03 0.21±0.10 0.92±0.06 0.74±0.14 
RIG 0.37±0.04 0.04±0.04 -0.04±0.04 0.36±0.04 0.66±0.02  -0.29±0.04 -0.69±0.02 -0.71±0.02 0.90±0.01 0.25±0.10 0.80±0.12 
KR 0.58±0.03 0.28±0.04 0.22±0.04 0.72±0.02 0.94±0.01 0.43±0.04 -0.82±0.01 -0.25±0.04 0.85±0.01 0.76±0.02 0.26±0.10 
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CHAPTER 4. Genome-wide detection of copy number 
variation in American mink using whole-genome 

sequencing1 

 

4.1 Introduction  

Copy number variations (CNVs), mainly refer to deletion or duplication of DNA segments, are a 

particular form of genomic structural variation ranging from 50 bp to several megabases (Mb) (Mills 

et al. 2011). Although CNVs are less frequent compared to single nucleotide polymorphisms, due to 

their greater size, they might have large effects as a result of altering gene dosage, disrupting coding 

sequence and modifyng gene expression (Saitou and Gokcumen, 2020), leading to significant impacts 

on phenotypes of economic interest (Liu and Bickhart, 2012; Wang et al. 2012; Bickhart and Liu, 

2014). In addition, CNVs are associated with disease susceptibility (Henrichsen et al. 2009; Zhang et 

al. 2009; Long et al. 2013; Kendall et al. 2019; Warland et al. 2019; Sahajpal et al. 2022), and might 

contribute to substantial part of missing heritability (Manolio et al. 2009). It was shown that CNVs 

play a critical role in regulating several complex diseases in human including autism (Zhang et al. 

2009), breast cancer (Long et al. 2013), schizophrenia (Warland et al. 2019), depression (Kendall et 

al. 2019), and susceptibility to Coronavirus (Sahajpal et al. 2022). Similarly, CNVs have been 

suggested to be responsible for traits and diseases in domesticated animals, such as polled intersex 

syndrome in goats (Pailhoux et al. 2001), susceptibility to melanoma in horses (Rosengren Pielberg 

et al. 2008), osteopetrosis in cattle (Meyers et al. 2010), and dominant white color in pigs (Giuffra et 

al. 2002).  

 
1 A version of this chapter has been published in BMC Genomics. Davoudi et al. 2022. Genome-wide detection 
of copy number variation in American mink using whole-genome sequencing. 23:649. doi: 
https://doi.org/10.1186/s12864-022-08874-1 

https://doi.org/10.1186/s12864-022-08874-1
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The decreasing costs of whole-genome sequencing (WGS) have made it feasible to map CNV with 

high resolution and accuracy (Zhao et al. 2013). Multiple approaches have been developed for WGS-

based CNV detection, which use paired-end mapping, read-depth, and split-read (Zhao et al. 2013). 

The paired-end mapping method is applicable to paired-end reads and performs better in detection of 

CNVs in low-complexity regions (Zhao et al. 2013). On the other hand, the read-depth method relies 

on the depth of coverage in genomic regions and utilizes the changes in read depth to detect the CNV 

(Abyzov et al. 2011), and can identify large CNVs in complex genomic regions (Yoon et al. 2009). 

The split-read method refers to sequences that map to the reference genome only at one end, with 

other partially or unmapped reads providing the location of the breakpoint (Zhao et al. 2013).  

Characterisation of CNV has been widely studied in livestock species such as cattle (Letaief et al. 

2017; Strillacci et al. 2018; Butty et al. 2020), sheep (Salehian-Dehkordi et al. 2021; Yuan et al. 2021; 

Ladeira et al. 2022), goat (Guo et al. 2020; Guan et al. 2021; Nandolo et al. 2021), pig (Bovo et al. 

2020; Zheng et al. 2020; Qiu et al. 2021), chicken (Strillacci et al. 2017; Lin et al. 2018; Seol et al. 

2019), turkey (Strillacci et al. 2019; Maria Giuseppina Strillacci et al. 2021), buffalo (Maria G. 

Strillacci et al. 2021), yak (Zhang et al. 2016; H. Wang et al. 2019), and rabbit (Fontanesi et al. 2012), 

indicating that CNVs might have significant impacts on the economically important traits (Fontanesi 

et al. 2011; Upadhyay et al. 2017; Stafuzza et al. 2019; Feng et al. 2020). However, to our knowledge, 

there is no genome-wide CNV study in American mink. Therefore, the objectives of the current 

chapter were to: 1) provide the first large-scale CNV map in American mink using whole-genome 

sequence data; 2) define sets of high confidence CNV regions (CNVR) by incorporating multiple 

approaches; and 3) examine the potential impacts of CNVR and their overlapped genes on traits of 

economic interest for mink selection programs through in-depth functional annotation analyses.  
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4.2 Methods 

4.2.1 Animals and sampling 

All procedures applied in this chapter were approved by the Dalhousie University Animal Care and 

Use Committee (certification# 2018-009, and 2019-012), and mink used were cared for according to 

the Code of Practice for the Care and Handling of Farmed Mink guidelines (Turner et al. 2013).  

All individuals were raised through standard farming condition and were euthanized in December 

2018 (Do and Miar, 2019). Tongue samples were collected from two different farms, the Canadian 

Center for Fur Animal Research (CCFAR) at Dalhousie Faculty of Agriculture (Truro, NS, Canada) 

and Millbank Fur Farm (Rockwood, ON, Canada). All mink from Millbank Fur Farm were Black in 

color (n = 15), and individuals from CCFAR varied in color types, including Demi (n = 32), 

Mahogany (n = 20), Black (n = 16), Pastel (n = 10), and Stardust (n = 7). To keep the relationship 

between individuals low, we checked the pedigree information and selected individuals with the 

lowest degree of kinship for the further analyses (median = 0.015; 1st–3rd quantile of relatedness = 

0.008–0.039). More details were provided about the studied individuals by Karimi et al. (2021a).  

4.2.2 Quality control and read alignment  

Using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany), we extracted genomic DNA 

from tongue tissue samples in accordance with the manufacturer’s protocol. Sequencing (100 bp pair-

end reads) was performed by BGISEQ-500 platform at Beijing Genomics Institute (BGI, Guangdong, 

China). Low-quality reads and adapter sequences were removed by using the SOAPnuke software 

version 2.1.5 (Chen et al. 2018). Then, high-quality reads were aligned to the latest American mink 

reference genome (Karimi et al. 2022) using Burrows-Wheeler Aligner version 0.7.17 (Li, 2013) with 

default parameters. The conversion of aligned files to binary alignment map (BAM) format and 

subsequent sorting was performed with SAMtools version 1.11 (Li et al. 2009). Duplicates were then 

removed using the MarkDuplicates command tool of Picard version 2.0.1 (Toolkit, 2019). Finally, 

the BAM files were indexed by SAMtools software version 1.15 (Li et al. 2009). 
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4.2.3 Identification of CNV 

To increase the accuracy of CNV detection, we employed three software programs, including 

CNVpytor version 1.2.1 (Suvakov et al. 2021), DELLY version 0.9.1  (Rausch et al. 2012), and Manta 

1.6.0 (Chen et al. 2016). The CNVpytor software applies a read-depth approach, and both DELLY 

and Manta use paired-end and split-read methods. For each individual, the sorted BAM file was 

processed by CNVpytor (Suvakov et al. 2021), which is a Python version of its ancestor CNVnator 

(Abyzov et al. 2011). Although both perform the same procedures, we applied CNVpytor as it is 

considerably faster in computational time (Suvakov et al. 2021). The CNV calling was carried out by 

setting a bin size of 100 bp, following the recommendation of Abyzov et al. (2011). For improving 

the CNV detection accuracy, the following criteria were set to filter false positive candidates: the 

CNV calls with P-value<0.01, sizes greater than 1 kb, fraction of mapped reads with zero quality 

(q0) > 50%, fraction of N bases (i.e., unassembled reference genome) within call region (pN) > 5%, 

and the distance to nearest gap in reference genome (dG) > 100,000. In the current chapter, we 

removed CNVs smaller than 1 kb to avoid noises, since most of the CNVs calling algorithms had low 

accuracy for small CNVs. DELLY (Rausch et al. 2012) and Manta (Chen et al. 2016) were performed 

with default parameters. The calls were filtered by removing the following 1) calls that were flagged 

IMPRECISE, 2) calls that did not pass the quality filters as suggested by DELLY and Manta (flag 

PASS), and 3) calls that had sizes smaller than 1 kb. Although DELLY and Manta had the ability to 

detect translocations and inversions events, we only considered deletions and duplications to have 

comparable results with the CNVpytor software. Only deletions and duplications were kept for further 

analyses. To generate a high-confident consensus call from different software, we implemented 

SURVIVOR version 1.0.3 (Jeffares et al. 2017) with default parameters, which merged the calls 

together with a maximum allowed distance of 1 kb, and CNVs with at least two out of three callers 

were kept for further analyses. This procedure cut down the false positive rate, yet without 

significantly reducing the sensitivity (Jeffares et al. 2017).  
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4.2.4 Determination of CNVR 

The CNVR were obtained by the CNVruler software version 1.2, merging CNVs among individuals 

with at least 50% reciprocal overlap in their genomic coordinates. For instance, considering two 

CNVs, CNV1 starts at position X and ends at position Y, and CNV2 from Z to W, with X < Z < Y < 

W. Then if the reciprocal overlap between the two CNVs is at least 50%, the software merges them 

as a CNVR that runs from X to W on the genome. To reduce the false positive rate, only the CNVR 

found in more than two samples were considered for further analyses (Pierce et al. 2018). The CNVR 

were categorized as gain or loss. The overlapping “loss” and “gain” CNVR were merged into single 

regions and called “mixed” CVNRs. 

4.2.5 Functional enrichment analysis of candidate genes overlapped with CNVR 

A list of genes in the mink genome was downloaded from the NCBI website and Bedtools version 

2.30.0 (function:intersect) (Quinlan and Hall, 2010) and was used to catalogue genes in corresponding 

regions. The Gene Ontology (GO) terms for molecular function, biological process, and cellular 

component, as well as metabolic pathway analyses, were conducted using the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database by the g:Profiler (Raudvere et al. 2019). Analyses were 

performed using R packages including gprofiler2 version 0.2.1 (Peterson et al. 2020), clusterProfiler 

version 3.0.4 (Yu et al. 2012), enrichplot version 1.16.1 (Yu, 2022), and org.Hs.eg.db version 2.7.1 

(Carlson, 2019). All enrichment functions were selected through false discovery rate corrections and 

pathways with adjusted P-values<0.05 were considered to be significant. 

4.3 Results 

4.3.1 Detection of CNVs  

We employed different software including CNVpytor, DELLY, and Manta to detect CNVs in 100 

American mink using WGS data. After merging the results of these methods, we retrieved a total of 

164,733 CNV events (including 144,517 deletion and 20,216 duplication events) (Table 4.1), with an 

average number of 1,647.3 per animal. The length size of identified CNVs ranged from 1 kb to 4255 
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kb with an average size of 7.4 kb. The CNVs were distributed over 14 autosomes with varying 

numbers in each autosome (Figure 4.1).  

4.3.2 Number and distribution of CNVR 

A total of 5,378 CNVR were obtained by merging overlapping CNVs across all individuals that 

covered 47.3 Mb of mink genome corresponding to 1.9% of autosomal genome sequence (Table 4.2). 

The CNVR included 4,073 losses, 625 gains, and 680 mixed (loss and gain) events (Figure 4.2). To 

achieve high-confident CNVR, we only considered CNVR identified in two or more samples. The 

size of CNVR varied from 1 to 3171.5 kb with an average of 8.9 kb. The largest number of CNVR 

were on chromosome 1 (683) and the lowest number were observed on chromosome 14 (82), which 

is in accordance with chromosome lengths.  

In total, 4,103 out of 5,378 CNVR (76.3%) had sizes within 1–5 kb interval, following by 1,060 

(19.71%) within 5–10 kb, 91 (1.69%) within 10–20 kb, 56 (1.04%) within 20–50 kb, and 68 (1.26%) 

greater than 50 kb in length (Figure 4.3). 

The number of individuals supporting the CNVR varied from 2 to 98 out of 100 individuals, 

concentrating at 40.2% with 2-10 individuals, and only 5.6% of detected CNVR were observed in 

more than 90 individuals. Furthermore, the physical locations of CNVR across the mink genome are 

presented in Figure 4.4. 

4.3.3 Functional annotation and gene enrichment analyses 

Analysis of the CNVR gene content revealed 1,391 genes within or partially overlapped with 1,878 

(34.9%) detected CNVR. The enrichment analyses revealed 279 significant Gene Ontology (GO) 

terms and 21 significant pathways using KEGG. The results of GO analysis revealed that CNVR were 

significantly enriched (P-value<0.05) in different biological functions e.g., axon guidance, 

phospholipid binding, Fc receptor signaling pathway, and GTPase regulator activity. The top ten 

significant GO terms enriched in CNVR-harbored genes were listed in the following GO categories 

(biological process, cellular component, molecular function) as depicted in Figure 4.5.  
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In addition, the pathway analysis using KEGG revealed 21 significantly enriched pathways (Figure 

4.6). These genes are mainly related to the axon guidance, glutamatergic synapse, regulation of actin 

cytoskeleton, cAMP signaling pathway, sphingolipid metabolism, and regulation of lipolysis in 

adipocytes (Figure 4.6). The results of GO enrichment and pathway analysis using KEGG revealed 

the biological functions of several genes associated with fur characteristics and development 

(MYO5A, RAB27B, FGF12, SLC7A11, and EXOC2), and immune system processes (SWAP70, FYN, 

ORAI1, TRPM2, and FOXO3).  

4.4 Discussion 

American mink (Neogale vison) is well-known as one of the most important sources of fur across the 

world (Karimi et al. 2020). It is essential for the mink industry to implement highly efficient breeding 

plans to meet sustainable production requirements (Karimi et al. 2021a). Genome-wide identification 

of CNVs can provide new insights into genomic variations, which can assist in developing genomic 

breeding strategies for American mink. Numerous studies have been performed to identify CNVR in 

other species e.g., cattle (Strillacci et al. 2018), pig (Stafuzza et al. 2019), goat (Guo et al. 2020), 

sheep (Yuan et al. 2021), chicken (Zhao et al. 2013), and buffalo (Strillacci et al. 2021). Several 

studies indicated that CNVs could be highly associated with economically important traits in these 

species (Da Silva et al. 2016; Liu et al. 2020; Fernandes et al. 2021; Qiu et al. 2021). To our 

knowledge, the current chapter provides the first genome-wide CNV detection in American mink.   

We performed CNV analyses on mink genome using WGS data. In total, we identified 164,733 CNV 

events (144,517 deletions and 20,216 duplications) with the average number of 1,647.3 per mink. 

Similar results were reported in other livestock species e.g., dairy cattle (182,823 CNVs) (Hu et al. 

2020), yak (98,441 CNVs) (Zhang et al. 2016), Nellore cattle (195,873 CNVs) (Antunes et al. 2018), 

and goat (208,649 CNVs) (Guo et al. 2020). Some other studies reported a wide range of CNVs from 

12 CNVs in chicken (Griffin et al. 2008) to 1,747,604 CNVs in sheep (Yuan et al. 2021). This 

discrepancy might be due to the differences in the sample size, algorithms used for CNV calling, and 
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sequencing technology (Locke et al. 2015). A considerable number of detected CNVs were deletions 

(88.7%) in our chapter, which was expected because of the limited ability of the current algorithms 

in detection of insertions (Teo et al. 2012). In addition, the detection of insertion is more diffucult in 

end mapping methods, since they only detect the duplications when mapped reads are shorter than 

the fragmented length (Teo et al. 2012).  

The results showed that 5,378 CNVR covered around 47.3 Mb (1.9%) of the mink genome, which 

falls within the range of several studies reported in other species, such as pig (1.72%) (Wang et al. 

2015), cattle (2.5%) (Upadhyay et al. 2017), chicken (1%) (Strillacci et al. 2017), quail (1.6-1.9%) 

(Khatri et al. 2019), horse (1.3%) (Ghosh et al. 2014), and buffalo (2%) (Strillacci et al. 2021). The 

CNVR covered the genome in different ranges in other species, including cat (0.3%) (Genova et al. 

2018), pig (0.9%) (Keel et al. 2019), yak (6.2%) (Wang et al. 2019), goat (10.8%) (Guo et al. 2020), 

chicken (12.8%) (Fernandes et al. 2021), and cattle (13%) (Antunes et al. 2018). Several reasons 

might affect the quantity of CNVR detection such as the detection algorithm, population size, genetic 

background, the quality of applied technology, and the differences in genome size (Redon et al. 2006; 

Locke et al. 2015).  

The results showed that 1,391 genes in the mink genome were harbored within the detected CNVRs 

(34.9% of the total detected CNVRs). The GO and pathway analysis using KEGG enrichment results 

suggested that the CNVs might contribute to various biological processes related to growth 

(regulation of actin cytoskeleton, and cAMP signaling pathway), lipid metabolism (phospholipid 

binding, sphingolipid metabolism, and regulation of lipolysis in adipocytes), behavior (axon 

guidance, circadian entrainment, and glutamatergic synapse), and immune response (Wnt signaling 

pathway, Fc receptor signaling pathway, and GTPase regulator activity). For instance, the most 

significantly enriched GO terms and pathway analysis using KEGG results were related to axon 

guidance known as the key step in the formation of the neuronal network (Negishi et al. 2005). 

Interestingly, it was reported that CNVs might contribute to axonal growth, which has been connected 

with autism spectrum disorders (McFadden and Minshew, 2013). The enrichment of several pathways 
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related to lipid metabolism implied that CNVs might contribute to the fur growth and quality as fat 

metabolism is an important process during furring (Ding et al. 2019). Circadian entrainment is an 

essential part of behavior and adaptation since it plays a fundamental role to assists organisms in 

adapting to daily environmental cycles (Emerson et al. 2008). Several studies demonstrated that the 

annual reproductive cycle in mink is under photoperiodic control, and is initiated by decreasing the 

daylength (Martinet et al. 1992; Jallageas and Mas, 1996). It is well-documented that photoregulation 

of reproductive activity is associated with the circadian rhythm of photosensitivity, leading to a proper 

photoperiodic response in mink (Boissin-Agasse et al. 1982; Boissin-Agasse and Boissin, 1985). 

Boissin-Agasse et al. (1982) identified that seasonal testis activity in mink initiated in the Fall when 

the daily light period is decreasing and exposure to light at this period inhibited testicular 

development. Zschille et al. ( 2010) reported different circadian activity rhythm in male and female 

mink, and observed active males during the night, and females with high activity during the day. 

Gender differences in circadian activity rhythms of wild American mink increases the female hunting 

successes as it allows females to be in a patch in different time than males to avoid the competitive 

pressure from the males (Zschille et al. 2010). In addition, several studies in mink have shown that 

decreasing the photoperiod in the Fall initiates winter fur growth and starting the hair growth in 

summer is associated with increasing photoperiod in spring (Rose et al. 1984; Rose et al. 1987; 

Martinet et al. 2011). Recently, Nandolo et al. (2021) reported enrichment of circadian entrainment 

pathway among genes detected across the CNVs in African goats, supporting the importance of 

circadian entrainment in goats during the adaptation to unstable environment. Notably, it is well-

documented that Wnt signaling pathway plays a key role in hair growth and development of hair 

follicles (Millar et al. 1999; Rishikaysh et al. 2014). The maintenance of Wnt signaling pathway is a 

critical part to hair-inducing activity of dermal papilla through regulating the β-catenin pathway, and 

thereby required for follicle regeneration and growth of the hair shaft (Kishimoto et al. 2000; Shimizu 

and Morgan, 2004). Interestingly, Yuan et al. (2021) demonstrated the contribution of Wnt signaling 
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pathway to the hair follicle development process in Alpine Merino sheep by identifying Wnt-related 

signaling pathways associated with CNVR-harboring genes (Yuan et al. 2021).   

In addition, GO enrichment and pathway analysis using KEGG analyses identified several key genes 

(MYO5A, RAB27B, FGF12, SLC7A11, and EXOC2) participating in a wide range of pathways 

associated with fur characteristics and development. In this chapter, the MYO5A gene 

(CNVR_Chr13:75.88–75.89 Mb), a class of actin-based motor proteins, was enriched in several 

pathways such as actin filament organization, actin-based cell projection, calmodulin binding, actin 

binding, and cytoskeletal motor activity. The MYO5A gene is found in pigment-producing cells, 

which produce melanin and eventually provides the pigment required for normal color of hair, skin, 

and eye (Mermall et al. 1998). It has been suggested that MYO5A gene plays a key role in the 

industrial Silverblue coat color in American mink (Manakhov et al. 2019). Several studies reported 

that the MYO5A gene can cause diluted (grey) coat color phenotype in different species, e.g., rabbit 

(Fontanesi et al. 2012), horse (Bierman et al. 2010), dog (Christen et al. 2021), and mice (Zhang et 

al. 2021). The RAB27B, which overlapped with CNVR_Chr3:143.66–143.67 Mb, is part of the small 

GTPase Ras-associated binding family that regulates the membrane trafficking and secretion of 

exosomes. It was indicated that RAB27B and its paralogue (the RAB27A), played some roles in the 

transport of melanosomes, and the knockout of this gene might cause silvery gray hair (Chen et al. 

2002; Ménasché et al. 2003; Westbroek et al. 2004). Recently, Ku et al. (2020) reported that 

RAB27A/B played a regulating role for hair growth during the hair cycle in human. The FGF12 gene 

overlapped with CNVR (Chr6:114.36–114.37 Mb), was related to hair growth development. 

Fibroblast growth factors (FGF) are a family of growth factors that are involved in the regulation of 

hair morphogenesis and cycle hair growth (Lin et al. 2015; Ornitz and Itoh, 2015). Lv et al. (2020) 

reported a regulating role of FGF12 gene in the sheep hair follicle development process. In addition, 

our finding supported by Wang et al. (Wang et al. 2021) study that reported the role of FGF12 gene 

in hair follicle development in cashmere goats. The SLC7A11 gene (CNVR_Chr7:73.54–73.57 Mb) 

is an amino acid transporter which mediates the extracellular cysteine in exchange for glutamate 
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(Jyotsana et al. 2022). It is well documented that the SLC7A11 gene plays a critical role in changing 

the fur and skin color formation in animals through regulating the production of pheomelanin pigment 

(He et al. 2012; Tian et al. 2015; Chen et al. 2019; Wang et al. 2019). The amino acid cysteine is 

necessary for the formation of disulfide bonds and crosslinking between cysteines in the keratins and 

hair keratin-associated proteins is proved to be as an important step in forming the fineness, length, 

flexibility and other physical properties of hair and wool fibers (Deb-Choudhury, 2018). Thus, it was 

shown that the differences in the cysteine content leads to various structure of the hair fiber among 

species (Shimomura and Ito, 2005). Cysteine is an integral part of the pheomelanin synthesis to 

construct yellow or red hair color in humans and animals as it regulates the conversion of dopaquinone 

to pheomelanin in hair follicle melanocytes (Granholm et al. 1996; Ito and Wakamatsu, 2003). 

Chintala et al. (Chintala et al. 2005) found that the subtle gray mouse pigmentation mutant is under 

the genetic control of a mutation form of SLC7A11 gene as it affects the rate of extracellular cystine 

transport into melanocytes, which reduces pheomelanin production and consequently, the loss of 

yellow pigment. Moreover, Song et al. (2017b) identified the SLC7A11 gene as one of the key genes 

associated with the development of black and white coat color in farmed mink. The EXOC2 gene 

(CNVR_Chr1:123.59–123.60 Mb) has been previously found to be associated with pigmentary 

phenotypes such as hair color and skin pigmentation (Han et al. 2008; Li et al. 2017; Guo et al. 2018). 

Our results suggested that these CNVR-harboring genes might be the potential candidate genes for 

fur characteristics and development in American mink. 

Our results also revealed several CNVR-harbored genes related to the immune system process 

(SWAP70, FYN, ORAI1, TRPM2, and FOXO3). The SWAP70 gene (CNVR_Chr11:157.8–157.9 Mb), 

is essential for normal B-cell migration that immobilizes F-actin filaments on phagosomes, 

contributing to immune regulation such as maturation and differentiation of immune cells (Baranov 

et al. 2016; Qian et al. 2021). Interestingly, Karimi et al. (2021a) reported the SWAP70 gene as a 

potential candidate gene for response to Aleutian mink disease virus infection. The FYN gene 

(CNVR_Chr1:20.84–20.85 Mb), which is involved in various signaling pathways, plays a critical role 
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in apoptosis and immune response by regulating neuronal development and signaling in T and B cells 

(Picard et al. 2002; Comba et al. 2020). Zanella et al. (2015) suggested the FYN gene as a functional 

candidate gene associating with immune response to vaccinated pigs against influenza virus. The 

ORAI1 gene (CNVR_Chr3:234.70–234.71 Mb) was the other gene associated with immune response, 

which is an important signaling component required for T cell activation and function (Feske et al. 

2010). The ORAI1 gene plays a role in maintaining a tick resistance status during the cattle tick 

infection (Bagnall et al. 2009). Recently, Xue et al. (2022) reported that the ORAI1 might have 

regulating functions in the immune response, exacerbates inflammation and endoplasmic reticulum 

stress in bovine hepatocytes. 

The TRPM2 gene (CNVR_Chr6:1.82–1.83 Mb), which is a Ca2+-permeable cation channel, is highly 

expressed in immune cells, primarily polymorphonuclear leukocytes, monocytes/macrophages, and 

T-cells (Beck et al. 2006; Yamamoto et al. 2008). It was revealed that TRPM2-deficient mice were 

highly susceptible to listeriosis infection, showing an ineffective innate immune response (Knowles 

et al. 2011). The FOXO3 gene (CNVR_Chr1:23.49–23.50 Mb), which significantly enriched in Wnt 

signaling pathway, has been found to have therapeutic potential in chronic and autoimmune diseases 

(Hartwig et al. 2021). Aleutian mink disease virus causes autoimmune disorders in mink, stimulating 

the immune responses to provide antibodies, and consequently forming the immune complexes 

(Jepsen et al. 2009; Karimi et al. 2021b). Taking into account that most of mink farms are challenged 

by Aleutian mink disease virus, the most prevalence disease in the worldwide mink industry, 

suggesting that these genes, and related pathways, might substantially contribute to the modulation 

of immune responses to Aleutian mink disease virus infection. Nevertheless, the above functional 

inference of CNVs is based on enrichment analyses of their annotated genes and mostly based on the 

results from studies in other species, therefore, further functional validation of these CNVs is required 

to confirm their functions in mink.  
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4.5 Conclusions 

In this chapter, we present the first CNV map of American mink using WGS data. We identified 

5,378 CNVR covering 1.9% of the mink autosome. Functional annotation revealed CNVR enriched 

for genes related to natural behavior, lipid metabolism, and immune response. Our results revealed 

several CNVR that harbor genes related to fur quality (MYO5A, RAB27B, FGF12, SLC7A11, and 

EXOC2), and immune system response (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). Overall, the 

results of the current chapter may facilitate our further understanding of the genetic control of 

different characteristics of fur in American mink and immune responses to Aleutian mink disease 

virus infection, which is the most prevalence disease in the worldwide mink industry. 
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Table 4.1 Descriptive statistics of CNVs detected in American mink genome. 

CNV    Length (bp)  

  Number Mean Minimum Maximum 

Deletion  144,517 6,432.2 1,000 3,171,151 

Duplication  20,216 14,655.3 1,003 4,254,987 

Overall  164,733 7,441.3 1,000 4,254,987 
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Table 4.2 Distribution of CNVR across autosomal chromosomes of American mink genome. 

Chromosome Chromosome 

length (bp) 

CNVR 

count 

Length of 

CNVR (bp) 

Coverage 

(%) 

Max size 

(bp) 

Average 

(bp) 

Min size 

(bp) 

1 317,036,279 683 4,071,099 1.3 371,616 5,960.6 1,003 

2 240,416,976 522 4,470,485 1.9 858,878 8,564.1 1,016 

3 235,645,773 508 3,550,404 1.5 1,786,562 6,988.9 1,003 

4 231,359,643 433 2,209,544 1 234,143 5,102.9 1,003 

5 167,246,402 324 4,406,049 2.6 3,171,454 13,598.9 1,019 

6 224,559,537 543 2,456,160 1.1 150,398 4,523.3 1,004 

7 207,076,058 417 2,699,685 1.3 664,002 6,474.1 1,012 

8 144,012,018 273 2,135,038 1.4 955,355 7,820.7 1,009 

9 101,698,841 224 1,068,011 1.1 229,614 4,767.9 1,004 

10 75,573,270 189 2,509,561 3.3 1,866,663 13,278.1 1,005 

11 220,349,319 569 11,245,345 5.1 2,939,814 19,763.4 1,003 

12 148,690,698 319 1,804,339 1.2 652,086 5,656.2 1,003 

13 152,771,447 292 4,030,656 2.6 1,986,383 13,803.7 1,004 

14 46,742,321 82 633,928 1.4 367,849 7,730.9 1,018 

Overall 2,513,178,582 5,378 47,290,304 1.9 3,171,454 8859.5 1003 
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Figure 4-1 Numbers of CNVs identified across autosomal chromosomes of American mink. 
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Figure 4-2 Distribution of CNVR types in American mink. 

 



58 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 Distribution of CNVR sizes in American mink. 



59 
 

 

 

 

 

 

 

Figure 4-4 Genomic landscape of CNVR in American mink. 
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Figure 4-5 The top ten significant Gene Ontology terms enriched in CNVR-harbor genes in the three main GO categories 
(biological process (blue), cellular component (red), molecular function (green)). 



61 
 

 

Figure 4-6 The metabolic pathways using KEGG enriched in CNVR-harbor genes. 
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CHAPTER 5. Genome-wide association studies for 
economically important traits in mink using copy 

number variation1  

 

5.1 Introduction 

American mink (Neogale vison) is one of the most important animals in the global fur industry, 

yet requires highly efficient breeding programs to deal with challenges faced in mink 

production systems (Karimi et al. 2022). Several studies have been carried out to discern the 

genetics of complex traits affecting the sustainability of mink production, including growth 

(Madsen et al. 2020; Do et al. 2021), feed efficiency (Shirali et al. 2015; Davoudi et al. 2022a), 

disease resistance (Farid et al. 2018; Hu et al. 2021; Karimi et al. 2021a; Hu et al. 2022a), pelt 

quality (Thirstrup et al. 2017; Valipour et al. 2022a; Valipour et al. 2022b), and reproduction 

traits (Hansen et al. 2010; Kołodziejczyk and Socha, 2011; Karimi et al. 2018). Understanding 

the genetic architecture underlying such traits using genome-wide association studies (GWAS) 

might contribute to expediting the genetic progress through selection, and therefore enhance 

the production efficiency of the mink industry. 

Copy number variations (CNVs) refer to frequently observed structural variations in the form 

of deletions or duplications greater than 50 base pairs (Mills et al. 2011), which cover more of 

the genome (total bases) and have a higher mutation rate than single nucleotide polymorphisms 

(SNPs) (Geistlinger et al. 2018). Similar to SNPs, CNVs can be applied to detect associations 

with traits of economic interest in livestock species, and therefore, are considered 

complementary sources to explain genetic variation contributing to differences in phenotypes 

(Hay et al. 2018). Over the past decade, multiple studies have been carried out to examine the 

 
1 A version of this chapter has been submitted to the Scientific Reports by Davoudi et al. 2023. Genome-
wide association studies for economically important traits in mink using copy number variation. 
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association between CNVs with several important phenotypes in livestock species, such as 

reproduction (Liu et al. 2019c; Zheng et al. 2020), health (Schurink et al. 2018; Butty et al. 

2021; Berton et al. 2022), feed efficiency and growth (Zhou et al. 2018; Wang et al. 2020; Li 

et al. 2022), and performance traits (Fernandes et al. 2021; Yang et al. 2021; Ding et al. 2022).  

The availability of a high-quality chromosome-based genome assembly (Karimi et al. 2022) 

and a genome-wide SNP array for American mink facilitates the identification of genetic 

variations underlying economically important traits. Recently, Davoudi et al. (2022a) 

characterized the CNVs in American mink using whole-genome sequencing data. However, up 

to now, the CNV-based GWAS with economically important traits has not been reported in 

mink. Therefore, this chapter aimed to identify CNV in a large sample of genotyped mink and 

perform CNV-based GWAS analyses for Aleutian disease tests, growth and feed efficiency, 

reproduction and pelt quality traits. In addition, we performed functional annotation of the 

associated CNV regions (CNVRs) to identify the potential candidate genes for these key traits. 

5.2 Materials and Methods 

All procedures applied for this chapter were approved by the Dalhousie University Animal 

Care and Use Committee, and we adhered to the Code of Practice for the Care and Handling 

of Farmed Mink guidelines (Turner et al. 2013) throughout all phases of the research. 

Initially, the Axiom™ Analysis Suite (Affymetrix®) was applied to perform quality control of 

raw intensity files and filter genotypes based on dish QC (DQC) values less than 0.82, and a 

minimum call rate of 97%, following the ‘Best Genotyping Practices’ Workflow described in 

Axiom™ Genotyping Solution Data Analysis Guide (Thermofisher Scientific, 2017). The 

SNPs in sex chromosomes were excluded and only those that passed the quality control were 

kept for further analyses. The final data set contained 47,644 SNPs that were located on 

autosomal chromosomes. 
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The CNV detection was performed with PennCNV v.1.0.5 software (Wang et al. 2007), using 

the signal intensity ratios (Log R Ratio, LRR) and allelic frequencies (B Allele Frequency, 

BAF) obtained from the Axiom® CNV Summary Tool software (Affymetrix®). Then, the PFB 

(Population Frequency of B allele) file was compiled based on the BAF of each marker in the 

whole population, using the PennCNV ‘compile_pfb.pl’ function. The GC content around each 

SNP marker is known to affect the signal strength through the potential interference of genomic 

waves (Marioni et al. 2007). Therefore, we first estimated the percentage of GC content of 1-

Mb genomic regions surrounding each marker (500 kb on each side) using faToTwoBit and 

hgGcPercent tools provided by UCSC Genome Browser (Kuhn et al. 2013) and the FASTA 

information of the American mink genome assembly (Karimi et al. 2022). Next, the GC content 

file was implemented in PennCNV by ‘-gcmodel’ function, which applies a regression model 

for adjusting the high GC content and recovers samples affected by genomic waves (Diskin et 

al. 2008). To achieve high-confidence CNV calls, quality control was applied with the 

following criteria: standard deviations for LRR<0.35, BAF drift<0.01, and waviness factor 

value between −0.05 and 0.05. We only retained those CNVs longer than 1 kb in length 

including at least three consecutive SNPs located on autosomal chromosomes. Finally, 2,063 

high-quality samples were kept for subsequent analyses. 

5.2.1 Phenotypic and deregressed EBV values 

The deregressed estimated breeding values (dEBVs) were calculated for 27 economically 

important traits, including 11 growth and feed efficiency traits, eight reproduction traits, five 

pelt quality traits, and three Aleutian disease tests. The growth and feed efficiency traits include 

harvest weight (HW), harvest length (HL), final body weight (FBW), final body length (FBL), 

daily feed intake (DFI), average daily gain (ADG), feed conversion ratio (FCR), residual feed 

intake (RFI), residual gain (RG), residual intake and gain (RIG), and Kleiber ratio (KR). The 

reproduction traits include gestation length (GL), total number of kits born (TB), number of 
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kits alive at birth (LB), number of kits alive at weaning (LW), survival rate at birth (SB), 

average kit weight per litter at birth (AWB), average kit weight per litter at weaning (AWW), 

and survival rate at weaning (SW). The pelt quality traits include dried pelt size (DPS), overall 

quality of dried pelt (DQU), dried pelt nap size (DNAP), live grading overall quality of fur 

(LQU), and live grading nap size (LNAP). The Aleutian disease tests include 

counterimmunoelectrophoresis (CIEP), the Aleutian mink disease virus (AMDV) capsid 

protein-based enzyme-linked immunosorbent assay (ELISA-P), and the AMDV antigen-based 

enzyme-linked immunosorbent assay (ELISA-G). Breeding values were estimated for all 

individuals using different animal models for growth and feed efficiency described in detail by 

(Davoudi et al. 2022a), for reproduction traits described in detail by (Karimi et al. 2018), for 

pelt quality traits described in detail by (Valipour et al. 2022a), and for Aleutian disease tests 

described in detail by (Hu et al. 2021).  

The EBV reliabilities were calculated using the following formula: 

 

𝐸𝐵𝑉	𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠	 = 1 −	
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑒𝑟𝑟𝑜𝑟	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒	𝑔𝑒𝑛𝑒𝑡𝑖𝑐	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑟𝑎𝑖𝑡 

 

Next, the EBV reliabilities were applied to calculate the dEBVs using the method proposed by 

(Garrick et al. 2009). The calculations were performed by the ‘wideDRP’ function in DRP 

package (Lopes, 2017) in the R environment (R Core Team, 2022), by setting the estimated 

heritability and the default value of 0.5 for the c parameter, which indicates the proportion of 

genetic variance not explained by markers. The descriptive statistics of the dEBVs for all traits 

are summarized in Table 5.1. We removed the animals with dEBV reliability lower than 0.20. 

The dEBVs were used as the pseudo-phenotype for the association analyses. 
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5.2.2 CNV association analysis 

ParseCNV2 software (Glessner et al. 2022), which integrates PLINK (Chang et al. 2015) for 

association analyses, was used to detect the association between CNV and dEBVs of the 

studied traits. ParseCNV2 software converts the CNV events into probe-based statistics for 

individual CNVs (Glessner et al. 2022). Since CNV boundaries differ among individuals, it 

may be difficult to determine the exact start and end points of CNVs, which makes it 

challenging to classify different CNVs. Therefore, the CNV association tests were conducted 

for deletions or duplications separately at the probe level. The following model was applied for 

association testing: 

𝒚 = 𝑿𝒃 + 𝒆, 

where 𝒚 is the vector of dEBVs, 𝑿 is the design matrix relating dEBVs to fixed effect of one 

CNV at a time, 𝒃 is the fixed effect of CNV, and 𝒆 is the vector of random residual effects. The 

association test output was used to merge neighboring SNPs in proximity (less than 1 Mb apart) 

with comparable association significance (±1 log P-value) into CNV regions (CNVRs), which 

constitute a genomic span of at least two consecutive probes. The local lowest P-value for 

identified probes was chosen to indicate the significant level of the whole CNVRs. To consider 

multiple testing correction, a threshold less than 5×10−4 was applied to consider a CNVR 

significantly associated with the phenotypes, as proposed by the ParseCNV2 developers 

(Glessner et al. 2013; Glessner et al. 2022).  

5.2.3 Gene annotation 

The list of genes in the latest American mink reference genome (ASM_NN_V1) (Karimi et al. 

2022) was downloaded from the NCBI and the ‘intersect’ function in Bedtools (Quinlan and 

Hall 2010) was used to detect the genes that overlapped with significant CNV regions. Finally, 

an extensive review of the literature was performed to investigate the biological function of 

identified candidate genes. 
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5.3 Results 

5.3.1 CNV identification and distribution 

Using the PennCNV software based on the Hidden Markov Model method (Wang et al. 2007), 

a total of 10,137 CNV events were identified from 2,063 individuals that passed the quality 

control criteria. While PennCNV is extensively utilized for CNV detection in genotyping array 

data, it is essential to note its limitations. The internal HMM model applied in the software 

specifically considers successive SNPs at each step, making it particularly sensitive to local 

noise. This sensitivity often results in false positives, over-segmentation (where a true CNV is 

incorrectly divided into smaller segments), and generally imprecise boundaries in the 

PennCNV calls (Montalbano et al. 2022). Among the total identified CNVs, 6,968 (68.74%) 

were duplications and 3,169 (31.26%) were deletions, with a deletions/duplications CNV ratio 

of 0.45. The length of the CNV events ranged from 1.05 to 6,148.34 kb, with an average size 

of 109.69 kb. Table 5.2 presents the descriptive statistics of the identified CNVs in the 

American mink genome. Analysis of the distribution of CNV size showed that approximately 

half of the CNVs ranged from 1 to 50 kb, with relatively rare CNV events (3.97%) larger than 

500 kb (Figure 5.1a). The number of CNVs on each chromosome and the chromosome length 

showed a strong positive linear correlation (Figure 5.1c, r=0.78), such that 1,282 CNVs were 

identified for the largest chromosome (Chromosome 1) and 225 CNVs for the smallest 

chromosome (chromosome 14; Figure 5.1b). 

5.3.2 Association analyses 

In order to explore the effect of CNVs on the complex phenotypes, CNV-based association 

analyses were carried out for the 27 economically important traits in American mink. 

Association analyses revealed that 250 CNVRs (71 deletions and 179 duplications) were 

significantly associated with at least one of the studied traits (P<0.0005). Manhattan plots for 

significant CNVRs across the autosomes associated with all studied traits are shown in Figures 
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5.2-5.5. These significant regions were identified across all 14 autosomes, while chromosome 

one showed the largest number (n=53).  

The overview of the top significant CNVRs associated with each studied trait is shown in Table 

5.3. The highest number of significant CNVRs (n=27) were associated with TB, compromising 

the most significant region (ID: CNVR54) with a P-value of 3.58×10-14. In addition, the average 

length of significant CNVRs was 66.2 kb, ranging from 1.23 to 444.54 kb. 

5.3.3 Candidate genes within the significant CNVR 

We further investigated the candidate genes encompassing the significant CNVRs. The results 

revealed that a total of 320 potential candidate genes overlapped with significant CNVRs based 

on the annotation of the American mink genome. The duplication CNVR on chromosome 7 

(ID: CNVR143) overlapped with the highest number of genes (n=13) while no genes identified 

within 80 significant CNVRs.  

Using the information from the GeneCards database and an extensive literature review, several 

candidate genes were found to be related to growth and feed efficiency traits (ARID1B, APPL1, 

TOX, and GPC5), reproduction traits (GRM1, RNASE10, WNT3, WNT3A, and WNT9B), pelt 

quality traits (MYO10, and LIMS1), and Aleutian disease tests (IFNGR2, APEX1, UBE3A, and 

STX11). 

5.4 Discussion  

Genome-wide association studies using SNP markers have been instrumental in unraveling the 

underpinning of complex traits (Abdellaoui et al. 2023). In recent years, CNVs have gained 

widespread utilization as a supplementary tool in association studies, adding in the 

identification of genetic variants associated with economically important traits and shedding 

light on the elucidating the genetic basis of these traits across different livestock species (Xu 

et al. 2019; Fernandes et al. 2021; Salehian-Dehkordi et al. 2021; Ladeira et al. 2022; 
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Taghizadeh et al. 2022). To the best of our knowledge, there is no prior research had delved 

into the realm of CNV associations with diverse phenotypes in American mink. 

We conducted the CNV-based association studies using Affymetrix Mink 70K SNP array to 

identify potential genetic variants associated with dEBVs of 27 different traits such as growth 

and feed efficiency, reproduction, Aleutian disease tests, and pelt quality traits. In total, 10,137 

CNVs were identified, with an average number of five CNVs per sample. Although the average 

number of detected CNVs per individual is substantially less than our previous chapter using 

whole-genome sequencing data (average number of 1,647.3), it is in agreement with the results 

of other studies that used SNP genotyping data with a similar marker density (Liu et al. 2019d; 

Butty et al. 2021; Qiu et al. 2021; Wang et al. 2021). It is well-known that the SNP genotyping 

density affects the number and length of the identified CNVs (Butty et al. 2021). The average 

length of identified CNVs (109.69 kb) is much longer than our previous chapter with an average 

size of 7.4 kb, showing differences in resolution and coverage of genome between SNP array 

and whole-genome sequencing data, yet falls within the range of other studies using 

comparable SNP array data sets (Butty et al. 2020; Strillacci et al. 2021). A total of 250 

significant CNVRs were associated with at least one of the studied traits (P<0.0005), 

overlapping with 320 potential candidate genes.  

For growth and feed efficiency traits, we identified 86 CNVRs associated with eleven traits. 

Within these significant CNV segments, we identified ARID1B, APPL1, TOX, and GPC5 

genes, which might have large impacts on growth rate and feed efficiency in American mink. 

The ARID1B gene is overlapped with the duplication CNVR1 (Chr1:10,430,780–10,527,641), 

which was significantly associated with traits such as FBW, ADG, FCR, KR, and RIG. The 

ARID1B gene, which plays a key role in controlling the maturation of neurons during brain 

development (Ka et al. 2016), is the commonly mutated gene in Coffin-Siris syndrome, a 

genetic disorder characterized by intellectual disability, developmental delay, and growth 
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impairment (Tsurusaki et al. 2012; Celen et al. 2017). Yu et al. (2015) reported that the ARID1B 

gene overlapped with identified CNVs in patients with short stature and developmental 

disorder, indicating the critical function of ARID1B mutations in human height regulation. 

Interestingly, Bovo et al. (2020) detected a region being targeted by selection pressure, 

harboring the ARID1B gene in different pig breeds that grouped by their size, supporting the 

effect of this gene on body size. The APPL1 gene located on duplication CNVR125 

(Chr6:198,790,330–198,804,380) interacts with several proteins such as adiponectin receptors, 

AMPK, and Rab5 (a small GTPase downstream of APPL1) to regulate apoptosis, cell 

proliferation, metabolism and insulin sensitivity in energy homeostasis, resulting in increased 

glucose uptake and fatty acid oxidation (Deepa and Dong, 2009). Schweer et al. (2018) reported 

that the APPL1 gene is associated with feed efficiency traits in beef cattle through the 

regulation of glucose. 

The TOX gene, located in the duplication CNVR75 (Chr4:75,332,844,330–75,473,471), which 

overlapped with the identified CNVR in chapter 4 (Davoudi et al. 2022c), was significantly 

associated with FBW and ADG. The TOX gene is a family member of high‐mobility group box 

proteins and serves as a regulator of gene expression, mostly through modifying the density of 

the chromatin structure (Wilkinson et al. 2002). In cattle, numerous studies demonstrated that 

the TOX gene is associated with feed efficiency (Seabury et al. 2017), growth (Martínez, 2014), 

carcass traits (Lee et al. 2013; Bhuiyan et al. 2018; De Las Heras-Saldana et al. 2020), and 

development of puberty (Fortes et al. 2012). Furthermore, it is shown that the TOX gene is 

associated with weight gain, obesity, and metabolic syndrome-related phenotypes in humans 

(Li et al. 2017). The GPC5 gene, which mediates several functions in the control of cell division 

and growth regulation (Baranzini et al. 2009), is found within a deletion CNVR96 

(Chr5:149,166,233– 149,199,404), associating with ADG, RIG, and KR. Congruent with these 

findings, GPC5 was reported as a candidate gene located within a significant SNP with a 
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pleiotropic effect on RIG, RFI, and efficiency of intake in beef cattle (Serão et al. 2013). 

Moreover, other GWAS indicated the association of the GPC5 gene with human height (Lango 

et al. 2010), body mass index (Wang et al. 2012), and body size/body weight in chicken (Gu et 

al. 2011; Wang et al. 2016). 

Regarding the female reproduction traits, we found 168 significant CNVRs, overlapping with 

several functional genes, among which GRM1, RNASE10, WNT3, WNT3A, and WNT9B might 

be the candidate genes related to female reproduction in mink. The GRM1 gene, which was 

previously identified in a CNV study in American mink (Davoudi et al. 2022c), was located 

within the duplication CNVR15 (Chr1: 56,870,177–56,925,961), associated with AWB trait. 

The GRM1 was a gene of interest reported in several studies to be associated with female 

reproduction in different livestock species, such as seasonal reproduction in sheep (Zhu et al. 

2022a), litter size in goats (Dong et al. 2023), number of teats and litter traits in pig (Verardo 

et al. 2015), and fertility-related traits in cattle (Tahir et al. 2021). Interestingly, it was reported 

that the GRM1 gene located within structural variations and runs of homozygosity regions 

associated with litter traits in pigs (Liu et al. 2019a; Chen et al. 2022), highlighting the 

hypothesis that this gene might be a candidate gene for female reproduction in American mink. 

It was suggested that RNASE10 gene action in the proximal epididymis is vital for the 

acquisition of spermatozoa adhesiveness, eventually affecting the mode of sperm transport in 

the female reproductive tract (Krutskikh et al. 2012).  

In the current chapter, several WNT family genes were identified to be associated with 

reproduction traits in American mink, including WNT3 and WNT9B (both found within the 

duplication CNVR118), and WNT3A (overlapped with the deletion CNVR23). It is well-

documented that the expression of WNT3 during the early pregnancy mediates the stromal cell 

proliferation and trophoblast invasion, eventually affecting the embryonic development 

(Kaloğlu et al. 2020). Comparably, the WNT9B gene has been reported as one of the key genes 
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associated with inducing the gonadotropin-releasing hormone secretion during follicular 

development in sheep (Chen et al. 2021). Another gene, WNT3A, is known as the main 

regulator of reproductive behavior and follicular activity associated with estrus, which in turn 

may contribute to the reproductive efficiency in cattle (Aloqaily et al. 2018). 

The gene annotation within significant CNVRs for pelt quality traits identified some functional 

candidate genes affecting fur characteristics, such as MYO10 and LIMS1. The MYO10 gene is 

an integral member of the myosin family, which is involved in various cellular processes such 

as dynamic actin remodeling, cell migration and adhesion, and filopodia formation (Bohil et 

al. 2006; Mattila and Lappalainen, 2008). Our findings are in accordance with previous studies 

indicating that the MYO10 gene plays a key role in mediating skin pigmentation through 

regulating melanosome transportation in the skin (Singh et al. 2010; Heimsath et al. 2017; 

Tokuo et al. 2018). It was demonstrated that the melanocytes present in the skin control the 

quantity and types of melanosomes, ultimately determining the coat color (Hirobe 2011). 

Notably, it was shown that the MYO10 gene mutation altered the coat color pigmentation 

pattern in mice, further supporting its role in facilitating melanoblast migration (Liakath‐Ali et 

al. 2019). Interestingly, another member of the myosin superfamily, the MYO5A gene, has been 

widely documented for its impact on coat color phenotype in different species (Bierman et al. 

2010; Fontanesi et al. 2012; Christen et al. 2021), and specifically in American mink 

(Manakhov et al. 2019; Davoudi et al. 2022c). The LIMS1 gene is located within the duplication 

CNVR170 (Chr8: 65,501,492–65,735,953), associated with the DQU trait.  

The LIMS1 gene involved in the control of cell signaling, adhesion, migration, proliferation, 

and survival (Kovalevich et al. 2011). Several studies demonstrated that the LIMS1 gene 

regulates cell adhesion and spreading through the ternary protein complex of integrin-linked 

kinase (ILK), PINCH, and parvin (Legate et al. 2006). To this end, ILK has been reported as a 

crucial factor for hair morphogenesis (Lorenz et al. 2007). Interestingly, Endo et al. (2018) 
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reported that the LIMS1 gene was associated with hair morphology and density in East Asians. 

Furthermore, it was shown that the loss of LIMS1 gene expression from mouse keratinocytes 

resulted in impaired hair follicle growth (Karaköse et al. 2015), supporting the importance of 

this gene on fur development in mink.  

Aleutian mink disease virus causes autoimmune disorders in mink by stimulating their immune 

response to produce antibodies and form immune complexes (Jepsen et al. 2009; Karimi et al. 

2021a). For CIEP, ELISA-P, and ELISA-G, we identified 9, 12, and 22 significant CNVRs, 

respectively, which overlapped with several immune-related genes such as IFNGR2, APEX1, 

UBE3A, and STX11. The IFNGR2 gene encodes IFNγR2, which is part of the IFN-γ receptor 

complex that is overexpressed in an inflammatory environment (Regis et al. 2006). It is well 

established that IFNGR2 is an important regulator for IFN-γ-STAT1 signaling in T cells 

(Schroder et al. 2004), in turn, the dysregulation of the IFNGR2 gene is associated with a 

variety of autoimmune diseases (Holzer et al. 2013). The APEX1 and UBE3A genes overlapped 

with the duplication CNVR236 (Chr13: 96,258,171–96,346,188) and the deletion CNVR237 

(Chr13: 125,264,701–125,304,748), respectively, both associated with ELISA_G, GL and 

AWB traits. In agreement with our results, Hu et al. (2021) indicated a favorable genetic 

correlation between Aleutian disease test and reproduction traits in American mink, which 

suggested the potential for genetic selection of Aleutian disease test traits to alleviate the 

adverse impact caused by Aleutian disease in mink farms.  

The APEX1 gene (also called APE1) encodes a multifunctional protein that regulates the DNA 

base excision repair and redox activities, the latter demonstrated to be involved in mediating 

the T helper cell 1 (Th1) response (Akhter et al. 2016). In addition, it is well-documented that 

the APEX1 gene plays a proinflammatory function in stimulating cytokine and chemokine 

expression, eventually contributing to innate and adaptive immunity processes (Oliveira et al. 

2022). It has been confirmed that the UBE3A gene, present in both glutamatergic and 
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GABAergic neurons in the brain, functions as a transcriptional regulator of the immune system 

within the brain (Furumai et al. 2019). Recently, Zhang et al. (2022) revealed that the UBE3A 

gene within a deletion CNV is associated with the enrichment levels of immune signaling 

pathways, eventually enhancing antitumor immunity and immunogenicity. The STX11 gene, 

which is a member of the SNARE family, is highly expressed in immune tissues such as the 

thymus, spleen, and lymph nodes, regulating the IFN-γ secretion from natural killer cells, 

consequently mediating the immune cell function (Prekeris et al. 2000; D'Orlando et al. 2013). 

5.5 Conclusion 

For the first time in American mink, the CNV-based GWAS were applied for economically 

important traits using the Affymetrix Mink 70K SNP array. We identified 10,137 CNVs, 

including 6,968 duplications and 3,169 deletions, among which 250 CNVRs were significantly 

associated with at least one trait. From this, we identified several candidate genes contributing 

to the growth and feed efficiency (ARID1B, APPL1, TOX, and GPC5), reproduction (GRM1, 

RNASE10, WNT3, WNT3A, and WNT9B), pelt quality (MYO10, and LIMS1), and Aleutian 

disease tests (IFNGR2, APEX1, UBE3A, and STX11). Overall, the associated CNVRs and 

respective candidate genes in the current chapter supply additional information, 

complementary to GWAS analyses solely based on SNP markers, further helping reveal the 

genetic basis of traits of economic interest in American mink. 
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Table 5.1 Descriptive statistics of the deregressed EBV (dEBVs) for growth, feed efficiency, 
Aleutian disease tests, pelt quality and reproduction traits in American mink. 

Trait 
Abbreviati

ons 
Numbers   dEBVs  

Mean SD Min. Max. 
Harvest weight HW 1985 -0.01 0.30 -1.82 1.92 
Harvest length HL 1921 0.10 2.03 -7.92 9.91 
Final body weight FBW 1037 0.00 0.30 -1.15 1.37 
Final body length FBL 1038 -0.08 1.98 -6.59 5.83 
Daily feed intake DFI 1872 0.01 0.07 -0.15 0.23 
Average daily gain ADG 1044 -0.02 2.19 -10.14 9.18 
Feed conversion ratio FCR 1036 0.34 8.60 -23.39 61.52 
Residual feed intake RFI 1044 0.00 0.02 -0.12 0.14 
Residual gain RG 1042 -0.04 1.51 -7.19 5.70 
Residual intake and gain RIG 1043 -0.04 1.48 -6.76 6.43 
Kleiber ratio KR 1044 -0.01 1.15 -6.05 4.64 
Counterimmunoelectrophoresis test CIEP 1356 0.00 0.12 -0.63 0.34 
VP2 based enzyme-linked immunosorbent assay test ELISA-P 1356 0.04 2.12 -5.16 10.34 
AMDV-G based enzyme-linked immunosorbent assay test ELISA-G 1356 -0.10 2.23 -6.39 10.83 
Gestation length GL 1321 -0.44 2.74 -29.01 25.43 
Total number of kits born TB 1321 0.25 1.37 -6.51 11.10 
Number of kits alive at birth LB 1319 0.35 1.26 -5.15 9.14 
Number of kits alive at weaning LW 1314 -0.04 1.20 -8.51 7.39 
Survival rate at birth SB 1169 2.39 7.77 -61.69 46.51 
Average kit weight per litter at birth AWB 1168 0.01 0.83 -4.90 5.98 
Average kit weight per litter at weaning AWW 1167 0.95 23.02 -168.37 132.25 
Survival rate at weaning SW 1166 -0.27 14.26 -86.29 51.27 
Dried pelt size DPS 1169 0.02 0.70 -7.20 8.24 
Overall quality of dried pelt DQU 1148 -0.01 0.56 -3.92 2.17 
Dried pelt nap size DNAP 1159 0.17 1.10 -4.91 4.94 
Live grading overall quality of fur LQU 1260 0.05 0.56 -3.96 3.79 
Live grading nap size LNAP 1260 0.14 0.79 -3.84 3.60 
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Table 5.2 Descriptive statistics of CNVs detected in American mink genome. 

CNV  Number  Length (bp)  
  Mean Minimum Maximum 

Deletion  3,169 98,984.12 1,049 2,956,427 
Duplication  6,968 114,555.32 1,128 6,148,335 
Overall  10,137 109,687.54 1,049 6,148,335 
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Table 5.3 Overview of the top significant CNVRs associated with all studied traits in American mink. 
CNVR ID Type Chromosome Start position End position Length (bp) Associated traits1 P-value Candidate genes 
CNVR54 Duplication 2 76,047,394 76,080,498 33,104 TB 3.58E-14 - 
CNVR112 Deletion 5 45,720,950 45,756,856 35,906 DPS 1.26E-13 ITGA3, LOC122907723 
CNVR203 Duplication 11 119,613,197 119,626,953 13,756 AWW 1.44E-13 LOC122890709, LOC122889431 
CNVR126 Duplication 6 143,324,461 143,377,043 52,582 HW 3.48E-13 - 
CNVR1 Duplication 1 10,430,780 10,527,641 96,861 FCR 5.35E-13 ARID1B 
CNVR113 Deletion 5 158,304,905 158,351,587 46,682 DQU 6.26E-13 METTL21C, BIVM, CCDC168 
CNVR200 Duplication 11 208,363,505 208,379,126 15,621 AWB 2.24E-12 DLGAP2 
CNVR56 Duplication 2 51,828,542 51,834,524 5,982 LW 2.95E-12 - 
CNVR20 Duplication 1 48,882,466 48,894,690 12,224 GL 3.08E-12 BCKDHB 
CNVR54 Duplication 2 76,047,394 76,080,498 33,104 LQU 8.35E-12 - 
CNVR216 Deletion 11 71,374,870 71,389,512 14,642 SW 5.42E-10 TBC1D9 
CNVR90 Duplication 4 201,592,245 201,635,594 43,349 SB 1.71E-09 KCND2 
CNVR238 Duplication 13 139,238,384 139,379,378 140,994 RFI 7.32E-09 - 
CNVR235 Duplication 13 26,765,710 26,829,160 63,450 CIEP 1.98E-07 - 
CNVR40 Duplication 2 237,951,459 238,012,681 61,222 ELISA_G 5.81E-07 - 
CNVR159 Deletion 7 130,788,259 130,823,564 35,305 LNAP 1.9E-06 PIWIL4 
CNVR2 Duplication 1 133,977,608 134,011,851 34,243 KR 2.64E-06 SYCP2L 
CNVR13 Duplication 1 75,139,496 75,250,132 110,636 RIG 3.97E-06 - 
CNVR1 Duplication 1 10,430,780 10,527,641 96,861 ADG 6.29E-06 ARID1B 
CNVR179 Duplication 9 12,654,424 12,657,997 3,573 DNAP 6.66E-06 TTLL11 
CNVR70 Duplication 3 46,223,063 46,323,843 100,780 LB 7.80E-06 NDUFA10 
CNVR9 Duplication 1 282,031,840 282,086,441 54,601 HL 9.33E-06 - 
CNVR192 Duplication 11 56,914,479 56,922,804 8,325 ELISA_P 4.19E-05 LOC122890225 
CNVR4 Duplication 1 119,299,899 119,337,598 37,699 DFI 1.53E-04 HSD17B8, SLC39A7, RXRB, 

COL11A2 
CNVR75 Duplication 4 75,332,844 75,473,471 140,627 FBW 1.81E-04 TOX 
CNVR12 Duplication 1 11,780,319 11,833,194 52,875 RG 2.84E-04 NOX3 
CNVR125 Duplication 6 198,790,330 198,804,380 14,050 FBL 4.27E-04 ASB14, DNAH12, APPL1 

1 TB: Total number of kits born, DPS: Dried pelt size, AWW: Average kit weight per litter at weaning, HW: Harvest weight, FCR: Feed conversion ratio, DQU: 
Overall quality of dried pelt, AWB: Average kit weight per litter at birth, LW: Number of kits alive at weaning, GL: Gestation length, LQU: Live grading overall 
quality of fur, SW: Survival rate at weaning, SB: Survival rate at birth, RFI: Residual feed intake, CIEP: Counterimmunoelectrophoresis test, ELISA_G: AMDV-
G based enzyme-linked immunosorbent assay test, LNAP: Live grading nap size, KR: Kleiber ratio, RIG: Residual intake and gain, ADG: Average daily gain, 
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DNAP: Dried pelt nap size, LB: Number of kits alive at birth, HL: Harvest length, ELISA_P: VP2 based enzyme-linked immunosorbent assay test, DFI: Daily 
feed intake, FBW: Final body weight, RG: Residual gain, FBL: Final body length.
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Figure 5-1 Graphical representation of identified CNVs. A) Distribution of CNV sizes B) Numbers 
of CNVs identified across autosomal chromosomes C) Correlation between CNV numbers and 
chromosome length. 
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Figure 5-2 Manhattan plots for CNV regions across the 14 autosomal chromosomes associated with feed 
efficiency and growth traits. The horizontal line in each plot represents the threshold for significance (P< 
0.0005) suggested by ParseCNV developers. HW: Harvest weight; HL: Harvest length; FBW: Final body 
weight; FBL: Final body length; ADG: Average daily gain; DFI: Daily feed intake; FCR: Feed conversion 
ratio; KR: Kleiber ratio; RFI: Residual feed intake; RG: Residual gain; RIG: Residual intake and gain. 
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Figure 5-3 Manhattan plots for CNV regions across the 14 autosomal chromosomes associated with 
reproduction traits. The horizontal line in each plot represents the threshold for significance ( P< 0.0005) 
suggested by ParseCNV developers. GL: Gestation length; TB: Total number of kits born; LB: Number of 
kits alive at birth; LW: Number of kits alive at weaning; SB: Survival rate at birth; AWB: Average kit weight 
per litter at birth; AWW: Average kit weight per litter at weaning; SW: Survival rate at weaning. 
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Figure 5-4 Manhattan plots for CNV regions across the 14 autosomal chromosomes associated with pelt quality 
traits. The horizontal line in each plot represents the threshold for significance (P< 0.0005) suggested by ParseCNV 
developers. DPS: Dried pelt size; DQU: Overall quality of dried pelt; DNAP: Dried pelt nap size; LQU: Live grading 
overall quality 
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Figure 5-5 Manhattan plots for CNV regions across the 14 autosomal chromosomes associated with Aleutian 
disease tests. The horizontal line in each plot represents the threshold for significance (P< 0.0005) suggested by 
ParseCNV developers. CIEP: Counterimmunoelectrophoresis test; ELISA-P: VP2 based enzyme-linked 
immunosorbent assay test; ELISA-G: AMDV-G based enzyme-linked immunosorbent assay test. 
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CHAPTER 6. Characterization of runs of homozygosity 
islands in American mink using whole-genome 

sequencing data1 
 

6.1 Introduction 

With the advancements in whole-genome sequencing and analysis methods, there has been 

a growing scientific interest in discerning selection signatures in different farm animals 

species, such as cattle (Huang et al. 2023), pigs (Zhong et al. 2023), sheep (Dzomba et al. 

2023), goats (Manunza et al. 2023), horse (Han et al. 2023), buffalo (Chen et al. 2023), 

rabbit (Ballan et al. 2022), and American mink (Karimi et al. 2021a; Valipour et al. 2022b). 

Runs of homozygosity (ROH) refer to contiguous segments of the genome where an 

individual inherits identical haplotypes from both parents due to shared ancestry (Ceballos 

et al. 2018). As its initial application, the ROH can be employed as a practical tool for 

estimating inbreeding (Curik et al. 2014). However, investigation of the occurrence of 

ROH across the genome of a population (i.e. ROH islands) displays the genomic regions 

subjected to selection pressure, which in turn provides valuable insights into the genetic 

adaptations and evolutionary processes shaping populations (Peripolli et al. 2017). 

Therefore, the identification of ROH islands can serve as a complementary approach to 

genome-wide association studies when aiming to detect population-specific major genes 

in animals (Gorssen et al. 2021).  

 
1 A version of this chapter has been submitted to the Journal of Animal Breeding and Genetics by 
Davoudi et al. 2023. Characterization of runs of homozygosity islands in American mink using 
whole-genome sequencing data. 
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Compared to major farm animals species, fewer genomic studies in mink have been 

perfomed to investigate selection footprint. Using genotyping by sequencing (GBS) data 

from 225 experimental black American mink, Karimi et al. (2021b) investigated the 

signatures of selection for response to Aleutian mink disease virus infection in American 

mink. Their findings revealed several potential candidate genes associated with immune 

response, liver development, and reproduction process, which provided a new insight into 

genetic mechanisms underlying the Aleutian disease phenotypes. Recently, Valipour et al. 

(2022b) reported the putative selection signals associated with fur characteristics, 

providing numerous regions possibly subjected to selection in American mink genome. In 

addition, Zhang et al. (2023) reported candidate genes with selection signatures enriched 

in pigmentation and melanogenesis, supporting the idea that improving fur characteristics 

was a direct target of selection in mink farming. In other species, several studies 

investigated the selection signals through examining the ROH islands; yet no studies aimed 

to reveal the potential candidate regions related to complex traits based on ROH islands 

detection. Therefore, the current chapter aimed to detect ROH patterns, ROH islands, and 

perform functional annotation analyses to detect the gene content and pathways involved 

in the candidate regions using whole-genome sequencing data of 100 American mink. 

6.2 Materials and Methods 

6.2.1 Ethics approval 

All procedures used for the current chapter were approved by the Dalhousie University 

Animal Care and Use Committee, and all methods were carried out in line with the Code 

of Practice for the Care and Handling of Farmed Mink guidelines (Turner et al. 2013).  
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6.2.2 Sample collection 

All individuals were reared under standard farming conditions and euthanized in December 

2018. Tongue samples were collected from two distinct farms: the Canadian Center for Fur 

Animal Research (CCFAR) at Dalhousie Faculty of Agriculture in Truro, NS, Canada, and 

Millbank Fur Farm in Rockwood, ON, Canada. To ensure genetic diversity among the 

individuals, we carefully examined the pedigree information and selected individuals with 

the least amount of kinship for further analysis (median = 0.015; 1st–3rd quantile of 

relatedness = 0.008–0.039). More detailed information regarding the studied individuals 

can be found in the previous studies by Karimi et al. (2021b) and Davoudi et al. (2022c).  

6.2.3 Whole-genome sequencing, reads alignment and variant calling 

The whole-genome sequencing (WGS) data of 100 American mink is provided from 

chapter 4 (Davoudi et al. (2022c). A total of 8,373,854 bi-allelic variants from 100 

individuals were retained, forming the final whole-genome single-nucleotide 

polymorphisms (SNPs) for subsequent analyses.  

6.2.4 Detections of runs of homozygosity 

The PLINK 1.9 (Purcell et al. 2007) with the ‘--homozyg’ command was applied for the 

detection of ROH on the autosomes. The following setting were used to define ROH: 

a) The minimum number of 50 SNP required to consider a ROH (--homozyg-snp 

50); 

b) The minimum length of 300 kb for a ROH segment (--homozyg-kb 300); 

c) The maximum gap between consecutive SNPs could not be higher than 1000 

kb (--homozyg-gap 1000); 
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d) Sliding windows of 50 SNPs (--homozyg-window-snp 50); 

e) The minimum SNP density of one SNP per 50 kb (--homozyg-density 50); 

f) Three heterozygous SNPs allowed in a ROH (--homozyg-window-het 3); 

g) Five missing calls allowed in a ROH (--homozyg-window-missing 5); and 

h) The rate in which a SNP was included in the sliding windows was at least 0.05 

(--homozyg-window-threshold 0.05). 

The identified ROH were specified according to the physical length into four categories: 

0.3–1 Mb, 1–4 Mb, 4–8 Mb and above 8 Mb. 

6.2.5 Runs of Homozygosity Islands  

In order to determine the genomic regions that contained common ROH among the 

population, we employed the detectRUN (Biscarini et al. 2018) R package version 4.3.1 

(R Core Team 2022) to calculate the percentage of the occurrences of a SNP in ROH by 

counting the number of times the SNP was identified in those ROH across individuals. 

Finally, we merged the genomic regions with the highest SNP occurrences, comprising the 

top 1% as a threshold to define ‘ROH islands’ (Yuan et al. 2022). 

6.2.6 Functional Annotation 

To gain insights into the biological mechanisms associated with complex traits, functional 

analysis was conducted to identify genes annotated within the detected ROH islands. To 

this end, the overlapped genes located within ROH islands were annotated from the 

American mink reference genome annotation file (Karimi et al. 2022) by ‘intersect’ 

function in Bedtools version 2.30.0 (Quinlan and Hall, 2010). To display the functions of 

candidate genes, the Gene Ontology (GO) terms for molecular function, biological process, 
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and cellular component, as well as metabolic pathway analyses, were conducted using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database by the KOBAS 3.0 (Bu et 

al. 2021), and the significance of genes associated with each term was determined by 

applying a threshold of an FDR-corrected P-value<0.05. 

6.3 Results 

6.3.1 Runs of homozygosity 

Using the whole-genome sequencing (WGS) data of 100 American mink with sliding 

window method in PLINK 1.9 software (Purcell et al. 2007), we have identified 34,652 

ROH in the genome. Table 6.1 shows the summary of all ROH detected per chromosome 

and length classes. The results indicated that the average number of ROH segments per 

individual was 346.52, and the length of ROH segments ranged from 300 to 24,040.5 kb, 

with an average of 751.3 kb. In terms of the distribution of ROH lengths, the vast majority 

of the lengths were short (0.3–1 Mb), as they accounted for 84.39% of the total ROH length, 

while ROH segments longer than 8 Mb only accounted for 0.28% of the total length. The 

ROH density for different chromosomes across all individuals is shown in Figure 6.1. The 

number of ROH segments differed among chromosomes, with chromosome 1 had the 

highest count (n=4,807) while the chromosome 14 had the lowest count (n=617). 

6.3.2 Runs of homozygosity islands 

To identify the ROH islands, the top 1% SNPs, representing more than 38% of the samples, 

were selected. The Manhattan plot with the ROH islands over the 14 autosomes is 

presented in Figure 6.2. In total, 63 islands were detected among autosomes 1, 2, 4, 6, 8, 9, 
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11, 12, 13, and 14, of which autosome 1 and 11 showed the highest numbers of islands 

(n=17).  

6.3.3 Functional Annotation 

Table 6.2 shows the position of each ROH islands, along with the number of SNPs per 

ROH and their annotated genes. Within all of the ROH islands reported in the current 

chapter, 156 potential candidate genes were annotated. The ROH with length of 2.98 Mb 

and coordinate of 86,244,268–89,225,369 bp on chromosome 11 harbored the highest 

number of annotated genes (n=18).  

The genes overlapped within ROH islands were associated with fur quality (EDNRA, 

FGF2, FOXA2, and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS, and 

PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2, and TNIP3), and 

reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2, and HSPA4L). The enriched 

annotation terms resulting from the ROH islands analysis were linked to diverse molecular 

functions, biological processes, and cellular components. Of interest, the GO (Figure 6.3) 

and pathway analysis using KEGG (Table 6.3) enrichment analyses revealed multiple 

significant terms (FDR-corrected P-value<0.05), among which cGMP-PKG signaling 

pathway, regulation of actin cytoskeleton, and calcium signaling pathway were highlighted 

due to their functional roles in growth and fur characteristics. 

6.4 Discussion 

Due to of its significant economic impact, American mink has been selectively raised for 

its valuable fur for several decades in North America (Bowman et al. 2017). Analyzing 

ROH islands might be valuable in identifying genomic regions undergone natural/artificial 
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selection, serving as a preliminary step to detect candidate genes associated with complex 

traits (Gorssen et al. 2021). In this chapter, the mean number of ROH per individual was 

reported as 346.52, which was higher than the mean number of 82 by Karimi et al. (2021b) 

and 102 per individuals by Karimi et al. (2022). However, such differences were expected 

as they set a threshold of 1000 kb and the current chapter applied a minimum ROH length 

of 300 kb in order to include the shorter ROH. The threshold of 300 kb was set considering 

that WGS data enable us to detect ROH with smaller sizes when compared to SNP array 

data due to their higher resolution (Almeida et al. 2019), which was demonstrated in other 

livestock species such as cattle (Zhang et al. 2015), sheep (Yang et al. 2016), and goat (Sun 

et al. 2022). The findings revealed 63 ROH islands, of which 156 genes were located within 

the identified ROH islands in the mink genome.  

Enhancing fur quality stands out as the foremost breeding objective in mink farming 

(Thirstrup et al. 2017). In light of this, it was expected to detect multiple genes embedded 

in ROH islands, including EDNRA, FGF2, FOXA2, and SLC24A4, which were known to 

play essential roles in shaping fur characteristics. The EDNRA gene was located within the 

ROH islands on chromosome 11 (145,553,259-145,688,821 bp), which is encoding the 

endothelin A receptor, involved diverse biological processes such as branchial arch 

development, fetal muscle development and melanocyte functions (Sato et al. 2008; Menzi 

et al. 2016). Several studies demonstrated that EDNRA gene is associated with 

pigmentation, and in turn the coat color in several species such as goat (Menzi et al. 2016; 

Kumar et al. 2018; Wan et al. 2023), cattle (Dlamini et al. 2022), chicken (Liu et al. 2019b), 

and rabbit (Ballan et al. 2022). In a similar fashion, the FGF2 gene has been reported to 

have regulatory roles on pigment cell proliferation and melanocyte (Zhang et al. 1997; 
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Dong et al. 2012). It was indicated that FGF2 gene plays a crucial role in the extended 

cultivation of dermal papilla cells and the formation of spheres, which serves as a partial 

model representing an intact dermal papilla, and ultimately leading to hair follicle induction 

(Osada et al. 2007; Yamauchi and Kurosaka, 2009). The FOXA2 gene (Chr8: 47,773,192-

47,859,393 bp) known to be involved in numerous biological functions, through which it 

regulates the hair-inductive activity in hair follicles (Bak et al. 2020). Several lines of 

evidence implicate that the SLC24A4 gene, which overlapped with ROH (Chr8: 

44,072,167-44,396,621) bp, is a promising candidate associated with pigmentation, and 

thereby affecting the hair color (Sulem et al. 2007; Han et al. 2008; Meyer et al. 2020). 

Mink farmers select animals that demonstrate superior growth features as they have direct 

impact on the value of the pelts (Do et al. 2022). Our results revealed that several candidate 

genes overlapped with ROH islands were associated with body size/weight such as 

MYLK4, PRIM2, FABP2, EYS, and PHF3. The MYLK4 gene (Chr1: 126,022,318-

126,118,167 bp), a member of the myosin light-chain kinase family, has been well-

described to have a potential function for growth in various species, such as cattle (Zheng 

et al. 2019; Aytekin et al. 2020), pig (Fontanesi et al. 2014), goat (Shi et al. 2020b; Yang 

et al. 2022), sheep (Ibrahim et al. 2023), chicken (Yin et al. 2021), and goose (Tang et al. 

2023). Similarly, the PRIM2 gene was a gene of interest reported in a literature as a strong 

candidate gene related to body size and body weight in livestock species (Wang et al. 2014; 

An et al. 2020; Yin et al. 2023). The FABP2 gene, which is highly expressed in intestinal 

epithelial cells, serves a strong regulatory function in the absorption and transportation of 

long chain fatty acids in small intestine, and ultimately mediates lipid metabolism (Huang 

et al. 2022). Shah et al. (2019) indicated up-regulation of FABP2 in jejunum of feed-
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efficient chickens, suggesting the role of this gene on proper energy utilization in the 

intestinal lumen through improving the transport of fatty acids. Interestingly, the EYS and 

PHF3 genes, located in the ROH region on Chr1: 105,733,995-106,128,124 bp, have been 

recently reported as potential candidate genes involved in the signatures of selection for 

both body weight and body size in American mink (Do et al. 2022).  

Among annotated candidate genes, we found several genes related to immune capacity, 

including IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2, and TNIP3. The IL2 gene (Chr8: 

86,244,268-89,225,369 bp) is an essential factor in activating of T-cell-mediated immune 

responses, leading to the regulation and homeostasis of T- and natural killer cells (Chawla 

et al. 2020). Similarly, the IL21 gene (located within the same ROH island as IL2 gene), is 

widely known to play regulatory roles in the maturation and differentiation of B cells, along 

with its influence on the functionality of dendritic cells, affecting to both innate and 

adaptive immune responses (Spolski and Leonard, 2008). It was demonstrated that the 

PTP4A1 gene is crucial for enhancing the innate immune response (Shirasaki et al. 2022). 

The SEMA4C gene, which is highly expressed in the regulatory and memory B cells, plays 

diverse roles in the regulation of migration of neural and immune cells, and ultimately 

contributing to the proper immune response (Maier et al. 2011; Yan et al. 2017). The JAK2 

gene is identified as an essential modulator of dendritic cells differentiation, maturation, 

and secretion of inflammatory cytokines (Hu et al. 2022b). It is notable, in this regard, that 

increasing the expression of JAK2 was associated with the inflammation in autoimmune 

diseases (Li et al. 2013). Several studies have shown that the polymorphisms in JAK2 gene 

are associated with mastitis resistance in dairy cattle (Usman et al. 2014; Khan et al. 2019; 

Ali et al. 2020). The CCNA2 gene, recognized as a main positive regulator of the cell cycle 
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and DNA replication, has been frequently reported as a significant gene associated with 

immune infiltrating cells and cytokines, and thereby to be overexpressed in different 

cancers (Gao et al. 2014; Yang et al. 2016; Zhang et al. 2020). Evidence has shown that 

the TNIP3 gene deficiency deteriorated the liver damage and inflammatory response during 

hepatic injury, rendering TNIP3 gene as a strong candidate for inflammatory and immune 

events (Zhou et al. 2021).  

Reproduction is a critically important trait in American mink as the economic success of 

mink production largely relies on their reproductive performance (Karimi et al. 2018). In 

the current chapter, numerous reproduction-related genes were identified such as ADAD1, 

KHDRBS2, INSL6, PGRMC2, and HSPA4L. It is well-documented that the ADAD1 gene 

(Chr11: 86,244,268-89,225,369 bp), which is highly expressed in the testis, is essential for 

spermatogenesis and ultimately male fertility (Snyder et al. 2020; Dai et al. 2023). Of 

interest, several studies reported selection signals encompassing ADAD1, suggesting this 

gene as a potential candidate gene for reproduction in various livestock species, such as 

cattle (Zinovieva et al. 2020), pigs (Wang et al. 2022), and sheep (Nosrati et al. 2019). 

Several studies have identified that KHDRBS2 gene (overlapped with three different ROH 

islands on chromosome 1) might affect different reproduction traits, such as pregnancy 

status in cattle (Reverter et al. 2016), teats number in pigs (Verardo et al. 2016), and litter 

size in goat (Islam et al. 2020). In addition, Macciotta et al. (2021) reported that KHDRBS2 

gene mapped to the ROH island in river and swamp buffalo, reinforcing this gene could be 

involved in biology of reproduction. The INSL6 gene, which is highly expressed in germ 

cells of the testis, plays a key role in mediating the process of spermatogenesis (Burnicka-

Turek et al. 2009). It was demonstrated that the insufficiency of INSL6 can lead to different 
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degrees of male infertility (Lok et al. 2000; Ivell and Grutzner, 2009). It has been confirmed 

that the PGRMC2 gene has a crucial function in the formation and development of ovarian 

follicle, and thereby in female fertility (Griffin et al. 2014; Wu et al. 2019). Another gene 

involved in reproduction, the HSPA4L gene, is highly expressed in testis and plays an 

essential role in the regulation of male fertility and sperm motility (Held et al. 2006; Liu, 

Wang and Liu, 2019). 

We also found 56 significantly over-represented GO terms and nine significant pathways 

using KEGG (FDR-corrected P-value<0.05), among which cGMP-PKG signaling 

pathway, regulation of actin cytoskeleton, and calcium signaling pathway were associated 

with growth and fur characteristics. Notably, it is well-documented that the cGMP-PKG 

signaling pathway involves in the mechanism of melanogenesis by upregulating the 

expression of tyrosinase (Choi et al. 2012). Moreover, it was demonstrated that the cGMP-

PKG signaling pathway can impede the flow of Ca2+ currents, resulting in an accumulation 

of intracellular Ca2+, which ultimately leads to the pigment aggregation (Aspengren et al. 

2003; Sandoval et al. 2017). Interestingly, our results in chapter 4 (Davoudi et al. (2022c) 

reported that the copy number variations involved in regulation of actin cytoskeleton, 

suggesting its impact on biological processes related to growth in American mink. It is well 

established that the calcium signaling pathway was significantly associated with several 

economically important traits in livestock species, such as average daily gain in cattle (Rolf 

et al. 2012), feed efficiency in pig (Xu et al. 2021), and abdominal fat percentage in chicken 

(Zhu et al. 2022b).  



95 
 

6.5 Conclusion 

In conclusion, the current chapter identified a total of 34,652 ROH segments across all 

individuals, with shorter segments (0.3–1 Mb) being notably abundant, constituting 

approximately 84.39% of all ROH. Within all segments, we detected 63 distinct ROH 

islands that housed 156 annotated genes associated with various important traits. 

Specifically, these genes were associated with fur quality (EDNRA, FGF2, FOXA2, and 

SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS, and PHF3), immune capacity 

(IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2, and TNIP3), and reproduction (ADAD1, 

KHDRBS2, INSL6, PGRMC2, and HSPA4L). Our study further employed Gene Ontology 

and pathway analysis using KEGG, which revealed multiple statistically significant terms 

(P ≤ 0.05), among which the cGMP-PKG signaling pathway, regulation of actin 

cytoskeleton, and calcium signaling pathway being particularly noteworthy due to their 

roles in growth and fur characteristics. This chapter presents the first ROH islands study in 

American mink, highlighting the candidate genes within these regions and their potential 

implications as signatures of selection in response to targeted breeding objectives, such as 

improving body length, reproductive performance, and fur quality. These findings 

significantly contribute to our understanding of the genetics of American mink, offering 

complementary information to the implementation of breeding strategies aiming at genetic 

improvement in this species. 
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Table 6.1 Summary of all runs of homozygosity (ROH) identified from whole-genome 
sequencing of 100 American mink per chromosome and length classes. 

 ROH 
Number Percentage 

(%) 
Average size 

(Kb) 
Standard 

deviation (Kb) 
[A] 

Chromosome 
    

1 4807 13.87 738.70 901.46 
2 3373 9.73 600.32 470.43 
3 2572 7.42 694.28 764.73 
4 3326 9.60 620.93 530.57 
5 2180 6.29 722.33 1028.08 
6 3408 9.83 710.19 865.22 
7 2371 6.84 770.03 992.44 
8 2269 6.56 773.32 686.44 
9 1168 3.37 656.44 575.98 
10 739 2.13 579.08 698.23 
11 3454 9.97 1024.6 1778.95 
12 2303 6.65 1037.59 1319.03 
13 2065 5.96 703.41 705.83 
14 617 1.78 738.49 601.55 
     

[B] Class     
0.3-1 Mb 292.44 84.39 490 170 
1-4 Mb 49.29 14.22 1713.88 703.78 
4-8 Mb 3.83 1.11 5354.04 1068.47 
>8 Mb 0.96 0.28 12325.36 4171.74 
Total 34652 100 751.29 974.62 
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Table 6.2 Characterization of runs of homozygosity (ROH) islands and their annotated genes 
found in different chromosomes of American mink genome. 

Chromosome Start End Length 
(bp) 

Number 
of SNPs 

Annotated genes 

1 104721319 104741618 20299 60 KHDRBS2 
1 125896255 125948082 51827 81 LOC122907237 
1 126022318 126118167 95849 188 MYLK4 
1 28753136 28826253 73117 288 - 
1 106890674 107116623 225949 307 LOC122918972, LOC122898288, LOC122909514, EYS 
1 102756600 102935491 178891 601 LOC122909378, LOC122909368, BEND6, ZNF451, DST 
1 107242257 107340292 98035 626 EYS 
1 104343810 104548862 205052 691 KHDRBS2 
1 107116665 107241813 125148 772 EYS 
1 105733995 106128124 394129 874 PTP4A1, TRNAK-CUU, PHF3, EYS 
1 99942603 100273514 330911 883 LOC122902495, LOC122909213 
1 104795572 105154995 359423 972 LOC122899742, LOC122902762, KHDRBS2 
1 106317032 106883424 566392 1497 LOC122909508, EYS 
1 108983646 109335972 352326 1539 LOC122897603, LOC122899762, LOC122902965 
1 108257708 108558822 301114 1592 - 
1 103129335 103506916 377581 2233 LOC122898299, LOC122917650, PRIM2 
1 107341441 108027021 685580 2249 LOC122896847, LOC122909519, LOC122902880, EYS 
2 170508861 170822055 313194 1437 LOC122899240 
4 106439178 106768850 329672 23 - 
4 106910978 107027350 116372 71 - 
4 121888060 121956365 68305 198 - 
4 107650342 108000740 350398 254 - 
4 121957416 122350026 392610 854 - 
4 113212606 113559379 346773 2690 LOC122905573 
4 95449787 95782006 332219 4596 - 
6 101923587 101989857 66270 165 LOC122910106 
6 101815982 101923575 107593 468 - 
6 102042097 102169954 127857 582 KCNMB2 
8 68467318 69091604 624286 74 FAM178B, SEMA4C, LOC122916438, LOC122915420, LOC122916439 
8 44041151 44067425 26274 77 SLC24A3 
8 47773192 47859393 86201 143 FOXA2, LOC122915650 
8 44072167 44396621 324454 669 SLC24A3 
8 47204756 47728796 524040 1263 TRNAS-GCU_9, LOC122915398 
9 96449058 96771900 322842 778 LOC122916790, RLN1, LOC122917852, INSL6, CD274, PLGRKT, 

JAK2 
11 137897822 137973307 75485 80 - 
11 127172488 127210155 37667 122 PDGFC 
11 141280013 141328732 48719 252 - 
11 145553259 145688821 135562 290 PRMT9, TMEM184C, LOC122889604, EDNRA 
11 137122705 137208822 86117 366 SPOCK3 
11 90176799 90329411 152612 400 MAD2L1, LOC122889186 
11 127222314 127471326 249012 443 PDGFC, GLRB 
11 81294671 81859772 565101 791 LOC122890258 
11 82380955 82926255 545300 1450 LOC122890636, PGRMC2, LARP1B 
11 137410953 137851916 440963 2157 LOC122919090, LOC122919093 
11 89225480 90176675 951195 2348 LOC122890692, LOC122890748, NDNF, TNIP3, PRDM5 
11 84032476 85046239 1013763 3464 LOC122890680 
11 82929120 84032284 1103164 3653 LOC122889111, MFSD8, PLK4, HSPA4L, SLC25A31, ABHD18, INTU 
11 85046496 86032038 985542 3967 LOC122890261, FAT4 
11 90329439 92600878 2271439 6331 LOC122890142, C11H4ORF3, FABP2, USP53, MYOZ2 

SEC24D, METTL14, LOC122890146, PDE5A, SYNPO2, PRSS12, 
NDST3 

11 86244268 89225369 2981101 9463 LOC122890682, SPRY1, IL2, NUDT6, IL21 
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ADAD1, BBS7, CCNA2, EXOSC9, ANXA5, LOC122890264, QRFPR, 
SPATA5, FGF2, BBS12, KIAA1109, TRPC3, SMIM43 

11 92601129 96863025 4261896 12098 TRAM1L1, LOC122890266, ARSJ, UGT8, CAMK2D, ANK2 
12 34225236 34271197 45961 182 LOC122892700, TSPAN19 
12 37963657 38164038 200381 645 ACSS3, LIN7A 
12 113548876 114497008 948132 1198 LOC122892058, FZD8, GJD4, CCNY 
12 81625544 81971351 345807 1353 DBX2, LOC122890943, ANO6, LOC122892277 
12 76289632 76632724 343092 1539 LOC122892767, LOC122891569, ABCD2, KIF21A 
12 38308621 39287802 979181 3562 LOC122892788, PAWR, PTPRQ, OTOGL, PPP1R12A 
13 130126142 130548999 422857 66 - 
13 31798228 32068184 269956 1599 CCDC177 
13 30674647 31009999 335352 1654 SLC24A4, RIN3 
14 30841280 31167018 325738 1092 UMOD, PDILT, ACSM5, ACSM1, GP2, LOC122895515 
14 30349873 30820417 470544 1956 LOC122896111, KNOP1, VPS35L, GPRC5B, GPR139, IQCK 
14 27095071 27491338 396267 1985 LOC122895388, NTAN1, BFAR, RRN3, PDXDC1, PARN 
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Table 6.3 Significantly enriched (adjusted P-value<0.05) KEGG pathways in genes localized 
within ROH islands. 

Term Pathway 
ID 

Adjusted P-value N. of 
genes 

Gene symbols 

     
cGMP-PKG signaling pathway hsa04022 0.035 6 KCNMB, MYLK4, SLC25A31, PPP1R12A, 

EDNRA, PDE5A 
Proteoglycans in cancer hsa05205 0.024 5 FZD8, CAMK2D, ANK2, FGF2, PPP1R12A 
Vascular smooth muscle contraction hsa04270 0.030 4 EDNRA, MYLK4, KCNMB2, PPP1R12A 
EGFR tyrosine kinase inhibitor resistance hsa01521 0.037 3 PDGFC, JAK2, FGF2 
Calcium signaling pathway hsa04020 0.020 4 CAMK2D, EDNRA, MYLK4, SLC25A31 
Regulation of actin cytoskeleton hsa04810 0.018 4 MYLK4, PDGFC, FGF2, PPP1R12A 
Pathways in cancer hsa05200 0.011 6 FZD8, IL2, CAMK2D, JAK2, EDNRA, FGF2 
Human T-cell leukemia virus 1 infection hsa05166 0.018 4 SLC25A31, MAD2L1, CCNA2, IL2 
Th17 cell differentiation hsa04659 0.028 3 IL21, IL2, JAK2 
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Figure 6-1 Genome-wide runs of homozygosity (ROH) density among all individuals within 1 Mb 
window size. The color gradient has been changed according to the ROH density, which is 
illustrated in the figure legend. 
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Figure 6-2 Manhattan plot of genome-wide frequency of SNPs occurrence into runs of 
homozygosity (ROH) identified in American mink. The red lines indicate the 1% SNPs with the 
highest occurrence in ROH, which represent the thresholds for identification of ROH islands.  
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Figure 6-3 Top ten Gene Ontology terms under biological process, cellular components and 
molecular function enriched among the annotated genes overlapped with runs of homozygosity 
(ROH) islands. 
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CHAPTER 7. Identification of consensus homozygous 
regions and their associations with growth and feed 

efficiency traits in American mink1 

 

7.1 Introduction 

American mink breeding is entering the genomic era through the availability of a high-quality 

chromosome-based genome assembly (Karimi et al. 2022) and a genome-wide single-nucleotide 

polymorphisms (SNPs) array. Such technologies have paved the way for precise identification of 

homozygous segments in livestock species (Peripolli et al. 2017). Runs of homozygosity (ROH) 

are long homozygous regions, which are composed of two identical haplotypes inherited from a 

common ancestor (Ceballos et al. 2018). Characteristics of ROH in a population can be used as an 

indicator for estimation of inbreeding level in different species, such as cattle (Eriksson et al. 2023; 

Falchi et al. 2023), pigs (Jiang et al. 2022; Wu et al. 2022), chicken (Yuan et al. 2022; Wang et al. 

2023), sheep (Ghoreishifar et al. 2019; Abdoli et al. 2023), goat (Manunza et al. 2023; Ziegler et 

al. 2023), and buffalo (Ghoreishifar et al. 2020; Liu et al. 2022). 

Groups of several ROH within a specific region of the genome in a population are known as ROH 

islands (Nothnagel et al. 2010). It was reported that the analysis of ROH islands might reveal 

genomic regions under selection pressure, which in turn helps to identify candidate genes 

associated with traits of economic interest (Xie et al. 2019; Rocha et al. 2023). Furthermore, 

several studies have suggested the feasibility of performing association analyses using ROH to 

 
1 A version of this chapter has been submitted to PLOS One by Davoudi et al. 2023. Identification of 
consensus homozygous regions and their associations with growth and feed efficiency traits in American 
mink. 
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detect homozygous genomic regions associated with complex traits in livestock (Pryce et al. 2014). 

Sanglard et al. (2021) identified several regions of ROH significantly associated with antibody 

response to porcine reproductive and respiratory syndrome virus vaccination in pigs. In cattle, 

substantial numbers of ROH regions are reported to be associated with milk yield (Martikainen et 

al. 2020; Cesarani et al. 2021), fertility (Nani and Peñagaricano, 2020; Ghoreishifar et al. 2023), 

and production traits (Zhao et al. 2021), suggesting a complementary role of ROH in elucidating 

the genetic mechanisms underlying economically important traits.  

Feed cost is the largest expense for mink production systems, and thereby, improving feed 

efficiency holds significant potential for increasing the profitability of mink farming through 

strategic breeding programs (Davoudi et al. 2022a). Several studies have reported moderate to high 

heritability for growth (Liu et al. 2017; Do et al. 2021) and feed efficiency traits (Shirali et al. 

2015; Madsen et al. 2020; Davoudi et al. 2022a) in American mink, which highlighted a substantial 

genetic basis and presents opportunities for improvement by genetic and genomic breeding 

programs. 

To the best of our knowledge, there is no study that examined homozygous segments in the 

American mink genome and their potential association with growth and feed efficiency traits. 

Therefore, the main objectives of this chapter were to 1) reveal the distribution and pattern of ROH 

within the genome of American mink; 2) identify highly frequent consensus ROH (ROH islands) 

and investigate the candidate genes within these regions; and 3) assess their associations with 

growth and feed efficiency traits.   
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7.2 Materials and Methods 

7.2.1 Ethics approval 

All animal procedures applied in this chapter were approved by the Dalhousie University Animal 

Care and Use Committee, and all methods were carried out in accordance with the Code of Practice 

for the Care and Handling of Farmed Mink guidelines (Turner et al. 2013).   

7.2.2 Animals and traits 

A detailed description of the phenotypic data used in this chapter can be found in Davoudi et al. 

(2022a). Briefly, a total of 2,288 American mink with growth and feed efficiency records were 

available. These traits were collected according to Davoudi et al. (2022a): final body weight 

(FBW), final body length (FBL), harvest weight (HW), harvest length (HL), daily feed intake 

(DFI), average daily gain (ADG), feed conversion ratio (FCR), Kleiber ratio (KR), residual feed 

intake (RFI), residual gain (RG), and residual intake and gain (RIG).  

7.2.3 SNP genotyping and quality control 

All mink were genotyped using the Affymetrix Mink 70K SNP array (Neogen, Lincoln, Nebraska, 

United States). Genotypes were pruned by PLINK 1.9 software based on the proportion of missing 

genotypes (>0.95), individual call rate (>0.90), and Hardy-Weinberg equilibrium (P>10-6). In 

addition, SNPs located on sex chromosomes were removed, resulting in a final data set of 49,268 

SNPs for further analyses.  

7.2.4 Assessment of runs of homozygosity 

We used PLINK 1.9 software (Purcell et al. 2007) to identify homozygous segments across 

autosomes of each individual’s genome. The ROH were discovered based on the sliding window 

approach with the following parameters: (1) sliding window of 50 SNPs across the genome; (2) a 
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minimum ROH length of 1,000 kb; (3) the minimum SNP density was set to 50 kb/SNP; (4) 

maximum gap between consecutive homozygous SNPs was 1,000 kb; (5) only one heterozygous 

and one missing genotype were allowed; and (6) a minimum of 57 consecutive SNPs were included 

in an ROH, which was determined according to the formula proposed by Lencz et al. (2007), to 

control the false positive rate of the identified ROH: 

𝑇ℎ𝑒	𝑚𝑖𝑛𝑖𝑚𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑁𝑃𝑠	𝑖𝑛	𝑎𝑛	𝑅𝑂𝐻 =
%=K$

%
&'&"

%=K$(3)L8+)
	, 

where 𝛼 is the percentage of false positive ROH (set to 0.05), 𝑛M is the number of genotyped SNPs 

per individual, 𝑛$ is the number of individuals, and ℎ𝑒𝑡 is the proportion of heterozygosity across 

all SNPs.  

7.2.5 Consensus regions and ROH islands  

The ‘homozyg-group’ function of the PLINK 1.9 software (Purcell et al. 2007) was applied to 

merge the individual ROH into different ROH groups in a pool containing the overlapping regions 

between all the individual ROH in the group i.e. the consensus homozygous region (Ku et al. 2011; 

Zhao et al. 2021). We retained the consensus ROH with a minimum of five SNPs and frequency 

of more than 5% for association analyses. In addition, to investigate the genomic regions with high 

frequency of ROH in the population (ROH islands), the threshold of higher than 80% was defined 

for consensus ROH (Signer-Hasler et al. 2022). The overlapped genes within ROH islands were 

annotated from the American mink reference genome annotation file (Karimi et al. 2022) through 

the ‘intersect’ function in Bedtools version 2.30.0 (Quinlan and Hall 2010). 

7.2.6 Association analyses between consensus ROH and phenotypes 

According to the model described by Sanglard et al. (2021), we evaluated the association between 

consensus ROH with growth and feed efficiency traits using the linear model as follows: 
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𝑦 = 𝜇 + 𝑋𝑏 + 𝑍𝑢 + 𝑒, 

where 𝒚 is the vector of phenotypic observation, 𝜇 is the grand mean, 𝒃 is the vector of fixed 

effects, 𝑿 and 𝒁 are the incidence matrices that relate the fixed and random effects with the 

dependent variable, respectively; 𝒖 is the vector of random animal genetic effects and e is the 

vector of random residual effects. The random effects 𝒖 and 𝒆 were distributed as: 𝒖	~	𝑁(0, 𝑮𝜎:4) 

and 𝒆	~	𝑁(0, 𝑰𝜎84), where 𝜎:4 and 𝜎84 are the additive genetic and residual variances, respectively, 

G is the genomic relationship matrix, which was constructed by ASRgenomics package (Gezan et 

al. 2021) using the VanRaden equation (VanRaden 2008), and	𝑰	is an identity matrix. The 

consensus ROH (n=196) were simultaneously fitted in the model as categorical fixed effects, 

coding as “yes” if the individual contained the ROH segment, or “no” otherwise. The other fixed 

effects, as described by (Davoudi et al. 2022a), were farm (two farms), sex (male and female), 

color type (dark, demi, mahogany, pastel, and stardust), row-year (year: 2018 and 2019; row: 1, 4, 

5, 7, 8, and 11). The age of animals (in days) was included as a covariate in the model. The 

associations between each consensus ROH and studied traits were tested through linear mixed 

model analysis in ASReml 4.0 (Butler et al. 2017) with a statistical significance level (P<0.01). 

7.3 Results 

7.3.1 Assessment of runs of homozygosity 

A total of 298,313 runs of homozygosity (ROH) were identified in the entire mink population 

studied. The results showed that the average number of ROH segments per individual was 99.90, 

spanning from 30 to 134, respectively, and the length of ROH segments ranged from 1.02 to 55.44 

Mb, with an average of 4.16 Mb (Table 7.1). We classified ROH segments into five different length 

categories, including 1–2 Mb, 2–4 Mb, 4–8 Mb, 8–16 Mb, and >16 Mb (Figure 7.1A). The majority 

of detected ROH were classified as 2-4 Mb, representing 46.99% of all ROH (n=140,178), 
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followed by the length of 4–8 Mb and 1–2 Mb with 26.3% (n=78,451) and 17.42% (n=51,967), 

respectively. The percentage of ROH segments higher than 16 Mb were only 1.08% of all detected 

ROH (n=3,236). The distribution of ROH lengths across the genome is represented in Figure 7.1B.  

The largest ROH was located on chromosome 1 (55.44 Mb with 1563 SNPs), and the shortest 

ROH was identified on chromosome 3 (1.02 Mb with 79 SNPs). Further, the number of ROH 

segments varied across chromosomes, ranging from the lowest in chromosome 9 (n=5,728) to the 

highest in chromosome 1 (n=52,311). As shown in Figure 7.1C, the total length of the genome 

covered by ROH among individuals ranged from 84.78 Mb to 683.16 Mb, with an average of 

414.81 Mb. 

7.3.2 Consensus regions and ROH islands  

To provide the shared homozygous regions for the association analyses, initially 6,980 consensus 

groups were formed using ‘–homozyg-group’ function in PLINK 1.9 software, of which a total of 

196 consensus ROH fulfilled the criteria of presenting in more than 5% individuals with a 

minimum of five SNPs. The chromosomal distribution map of identified ROH across mink 

autosomes and consensus ROH shared amoung individuals is shown in Figure 7.2. 

The ROH islands were determined as regions where the consensus ROH presented in more than 

80% of animals, with the aim of pinpointing the genes they encompass. The implementation of 

this approach resulted in the detection of ten ROH islands spanning 14 autosomes, most of which 

were located on chromosome six with seven ROH islands. These specific regions harbored 12 

annotated genes, some with known effects on immune systems processes such as DTX3L, PARP9, 

PARP14, CD86, and HCLS1 (Table 7.2). Notably, the three ROH islands on other chromosomes 

did not contain any known annotated genes. 
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7.3.3 Association analyses between consensus ROH and phenotypes 

The association analysis revealed 13 consensus regions that were significantly (P<0.01) associated 

with growth and feed efficiency traits, of which four pleiotropic ROH affected more than one trait. 

The physical position of significant consensus ROH across the mink autosomes are shown in 

Figure 7.3. The frequency of the associated consensus regions ranged from 6.6 to 81.9% across all 

individuals. The average length of significant consensus ROH was 147.46 kb, ranging from 8.62 

to 327.85 kb. Chromosome one exhibited the highest number of significant regions (n=5), followed 

by two significant regions on chromosome 13, and one significant region on chromosomes 2, 4, 5, 

8, and 9. Detailed information regarding the consensus ROH significantly associated (P<0.01) with 

the studied traits, along with their annotated candidate genes can be found in Table 7.3. Notably, 

these significant consensus ROH encompassed 26 genes, including well-known candidates like 

MEF2A, ADAMTS17, POU3F2, and TYRO3 which are recognized for their roles in growth and 

body size development. 

7.4 Discussion 

In this chapter, the mean number of ROH per individual was 99.9, which was in agreement with 

Karimi et al. (2022) who reported an average of 102 per animal using whole-genome sequencing 

data of 100 American mink. Yet, both studies reported higher numbers of ROH counts compared 

to the study of Karimi et al. (2021b), which identified 82 ROH segments per individual solely 

based on scaffolds. This discrepancy indicates that the recent chromosome-based reference 

genome in American mink has facilitated our capacity to detect homozygous segments. The 

distribution of detected ROH revealed that approximately more than 90% of ROH were shorter 

than 8 Mb, which was consistent with the results reported in other species, such as cattle (Mulim 

et al. 2022; Rocha et al. 2023), pigs (Shi et al. 2020a; Jiang et al. 2022), chicken (Marchesi et al. 
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2018; Cendron et al. 2020), sheep (Purfield et al. 2017; Signer‐Hasler et al. 2019), and buffalo 

(Ghoreishifar et al. 2020; Macciotta et al. 2021). It is well-established that the large ROH (~10 

Mb) represents recent inbreeding (up to five generations ago), whereas short ROH (~1 Mb) 

indicates more distant ancestral effects (up to 50 generations ago) (Howrigan et al. 2011; Keller et 

al. 2011). Considering the predominant of ROH with the length of 1 to 8 Mb, it is reasonable to 

hypothesize that the inbreeding events in American mink occurred approximately 5 to 50 

generations ago. This timeline corresponds with the findings of Hu et al. (2023), who reported the 

rapid decline in the effective population size in American mink from 5 to 50 generations ago.  

In recent years, the identification  of ROH islands across the genome has gained popularity due to  

their capacity to reveal selection footprint in livestock species (Gorssen et al. 2021). The Aleutian 

disease, the most  significant health concern for global mink farming, is an immune complex 

disease that causes autoimmune disorders in mink (Farid et al. 2022). Despite efforts to detect and 

eliminate infected animals using various immunological tests, these strategies have largely failed 

due to the high persistence nature of Aleutian disease in the breeding environment (Farid et al. 

2012; Prieto et al. 2017). Intriguingly, our chapter uncovered several genes within ROH islands 

known to affect immune system processes, including DTX3L, PARP9, PARP14, CD86, and 

HCLS1. This implies that natural selection plausibly acts on immune-related genes in American 

mink. 

The DTX3L gene, also known as BBAP (B-lymphoma and BAL-associated protein), plays 

regulatory functions on DNA damage signaling, tumor cell growth, and IFN signaling and antiviral 

response (Yan et al. 2013; Shen et al. 2017; Lo et al. 2018). Interestingly, Hong et al. (2020b) 

reported that inhibiting the DTX3L gene restrained the cell invasion and secretion of inflammatory 

factors, suggesting its potential as a therapeutic target for rheumatoid arthritis, a complex 



111 
 

autoimmune disease characterized by chronic synovitis of the joints in humans. The PARP9 and 

PARP14 genes, located within the ROH island on chromosome 6 (121,883,426:122,139,161 bp), 

belong to the PARP superfamily that regulate diverse biological processes such as DNA damage 

repair, cellular stress response, and antiviral innate immunity (Zhu and Zheng 2021). Research has 

demonstrated that PARP9 gene, highly expressed in glioma, is correlated with checkpoint 

molecules involved in inflammatory and immune responses (Xu et al. 2020). Moreover, study has 

shown that knockdown of PARP9 gene in human or mouse dendritic cells and macrophages 

resulted in substantial reduction of type I IFN production (IFN-α and IFN-β), highlighting its 

critical role in the antiviral immunity system (Xing et al. 2021). Similarly, PARP14 knockout has 

shown therapeutic effects on tumors and allergic inflammation through mediating T-cell 

differentiation and action of cytokines (Cho et al. 2013; Mehrotra et al. 2013). Other genes of 

interest were CD86 and HCLS1 located within two different ROH islands on chromosome six 

(122,500,609:122,510,002 bp and 122,908,246:122,958,392 bp, respectively). Several lines of 

evidence indicated that CD86, which is one of the essential co-stimulatory molecules expressed 

on antigen presenting cells, plays a regulatory role in the immune response by mediating the 

activation of T-cells, B-lymphocytes, and macrophages (Nishimura et al. 2000; Liu et al. 2010). It 

was indicated that the HCLS1 gene, which is expressed only in cells with lymphohematopoietic 

origin, plays a functional role in the regulation of T-cell immune synapses (Gomez et al. 2006). 

It is well-documented that American mink is one of the most highly susceptible non-human species 

to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, leading to massive 

culls of many millions of mink across the world (Enserink, 2020; Koopmans, 2021; Adney et al. 

2022). Intriguingly, most of the aforementioned genes, one way or another, have been reported to 

be associated with SARS-CoV-2, the virus that causes coronavirus disease-2019 (COVID‐19). It 
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was indicated that in SARS-CoV-2 infection, the activation of macrodomain-sensitive ADP-

ribosylation signal is mediated by PARP9/DTX3L complex, suggesting their critical role in 

interferon-mediated antiviral defence (Russo et al. 2021). Similarly, it was reported that the 

PARP14 gene is essential for the optimal IFN expression, supporting the suggestion that PARP14 

is involved in antiviral immune response in CoV-infected cells (Grunewald et al. 2019). Several 

studies have shown that the expression of CD86 on monocytes and dendritic cells was substantially 

decreased in patients with severe COVID-19 (Arunachalam et al. 2020; Wang et al. 2020; Zhou et 

al. 2020; Winheim et al. 2021). These findings merit further exploration of the functional role of 

the ROH islands-harbored genes revealed in the current chapter on Aleutian mink disease virus 

and COVID-19 infection in American mink. 

In the present chapter, gene discovery performed on the 13 consensus regions that were 

significantly (P<0.01) associated with growth and feed efficiency traits, highlighted several 

candidate genes (i.e. MEF2A, ADAMTS17, POU3F2, and TYRO3) with potential impacts on 

growth rate and feed efficiency as reported in previous studies. The MEF2A and ADAMTS17 were 

located within the consensus ROH on chromosome 13 (134,704,541:135,003,083 bp), which was 

significantly (P<0.01) associated with RFI. The MEF2A gene, which plays an important role in 

vertebrate skeletal muscle development and differentiation by activation of numerous muscle-

specific and growth factor-induced genes (Wang et al. 2018), is known to be the candidate gene 

for muscle development and body growth in livestock species (Chen et al. 2010; Zhou et al. 2010; 

Juszczuk-Kubiak et al. 2012). Remarkably, a research conducted by Foroutan et al. (2021) revealed 

that MEF2A showed higher expression levels across all tested tissues (liver, muscle, and testis) in 

the offspring of low-RFI Angus bulls, as opposed to their high-RFI counterparts. The ADAMTS17 

gene, which is a member of ADAMTS proteins with numerous biological functions (Le Goff and 



113 
 

Cormier-Daire, 2011), has been previously reported as one of the height-associated variants in 

several species, such as horse (Metzger et al. 2018), cattle (Lee et al. 2020), dog (Hoopes et al. 

2012; Bannasch et al. 2020), and human (Gudbjartsson et al. 2008; Lettre et al. 2008; Van 

Duyvenvoorde et al. 2014). Interestingly, the ADAMTS17 gene was reported as a selective signal 

associated with animal height in the Shetland pony (Frischknecht et al. 2016), and Brazilian locally 

adapted taurine cattle (Peripolli et al. 2020), highlighting the potential impacts of ADAMTS17 gene 

on body size.  

The POU3F2 gene located within a pleiotropic ROH on chromosome 11 (32,128,510: 32,316,405 

bp), is associated with HW and FBW traits. The POU3F2 gene, which is widely expressed in the 

central nervous system, has been well-described to play a key role in diverse neuronal functions 

and hormonal regulation (Lin et al. 2018; Westphal et al. 2018). Notably, Schönauer et al. (2023) 

reported a negative correlation of POU3F2 gene expression with body mass index in human, 

suggesting the critical role of POU3F2 in hyperphagic obesity in human. The TYRO3 gene was 

found within the consensus ROH on chromosome 13 (85,787,981: 86,060,018 bp), significantly 

associated with KR trait. The TYRO3 gene, which is expressed in neurons of the central nervous 

system, plays regulatory roles in cell proliferation and differentiation, associating with adipocyte 

size in moderately obese individuals (Rizkalla et al. 2012). A GWAS analysis by Sun et al. (2013) 

reported that TYRO3 gene was associated with intramuscular fat content in the breast muscle of 

chicken. Interestingly, it was revealed that TYRO3 was significantly differentially expressed in 

muscle between low and high RFI pigs, indicating that TYRO3 might affect the body fat, and 

consequently increase feed efficiency in pigs (Vigors et al. 2019). 
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7.5 Conclusion 

We characterized the distribution of ROH and ROH islands, and the association between the 

consensus ROH with growth and feed efficiency traits in American mink. In total, we identified 

13 consensus regions significantly associated with the studied traits, harboring several candidate 

genes that are known to be associated with growth and body size development, such as MEF2A, 

ADAMTS17, POU3F2, and TYRO3. In addition, ten ROH islands were identified across the 

genome, harboring genes related to immune systems processes such as DTX3L, PARP9, PARP14, 

CD86, and HCLS1. Overall, the results revealed the impact of homozygosity in the mink genome 

on growth and efficiency traits. These findings have import implications for the evaluation and 

selection of American mink in genetic improvement programs, offering valuable insights for 

enhancing the breeding and sustainability of this species. 
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Table 7.1 Descriptive statistics of runs of homozygosity (ROH) number and length by ROH 
length class. 

Class  Number Percentage 
(%) 

Average size 
(Mb) 

Standard Deviation 
(Mb) 

1-2 Mb  51,967 17.42 1.59 0.28 
2-4Mb  140,178 46.99 2.89 0.56 
4-8 Mb  78,451 26.3 5.44 1.14 
8-16 Mb  24,481 8.21 10.49 2.02 
>16 Mb  3,236 1.08 21.03 4.87 
Total  298,313 100 4.16 3.12 
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Table 7.2 Characterization of consensus ROH shared by more than 80% of the mink population 
and the annotated genes in the corresponding regions. 

Chr Start End Length (bp) Frequency (%)a No. SNPs Annotated genes 
6 122,500,609 122,510,002 9,394 86.24 5 CD86 
6 122,846,667 122,881,153 34,487 84.63 6 GOLGB1 
6 122,908,246 122,958,392 50,147 84.33 5 FBXO40; GOLGB1; HCLS1 
6 100,386,881 100,611,871 224,991 82.92 14 - 
6 121,883,426 122,139,161 255,736 82.02 6 SLC49A4; PARP9; DTX3L; 

LOC122908877; PARP14; 
HSPBAP1; LOC122911033 

2 45,138,611 45,265,052 126,442 81.92 19 - 
2 45,100,650 45,130,801 30,152 81.88 6 - 
6 120,478,852 120,531,357 52,506 81.41 6 KALRN 
6 120,546,042 120,564,621 18,580 81.41 5 KALRN 
1 217,785,451 217,894,574 109,124 80.17 5 LOC122897674 

       
a Percentage of the population presented this ROH. 
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Table 7.3 Regions of runs of homozygosity (ROH) significantly associated with growth and feed efficiency traits in American mink. 

Chr Start End Length (bp) Associated traits P-valuea Frequency (%)b No. SNPs Candidate genes 
1 233,051,034 233,378,886 327,853 RFI 0.0038 47.9 20 PPP2R2B 
1 84,492,422 84,643,650 151,229 RG; RIG 0.0094; 0.0084 69.6 5 MDGA1 
1 268,594,555 268,631,729 37,175 HW 0.0064 39.3 7 THG1L 
4 20,9695,778 209,720,164 24,387 FBL 0.00027 66.6 5 COPG2 
2 45,138,611 45,265,052 126,442 FBL; FBW; RFI 0.0014; 0.0016; 0.0065 81.9 19 - 
5 42,989,622 43,198,887 209,266 FBL 0.0063 20.8 5 - 
1 32,128,510 32,316,405 187,896 FBW; HW 0.0034; 0.0051 16.1 11 POU3F2; FBXL4; LOC122913962 
5 130,209,831 130,237,085 27,255 DFI 0.0069 15.1 5 KLHL1 
13 85,787,981 86,060,018 272,038 KR 0.0066 10.9 5 MGA; OIP5; NUSAP1; RTF1; LTK; 

RPAP1; NDUFAF1; ITPKA; TYRO3; 
LOC122894302; LOC122894795; 
LOC122894805; LOC122894585 

9 10,609,898 10,786,369 176,472 RG 0.0023 10.9 6 LHX2 
13 134,704,541 13,500,3083 298,543 RFI 0.0034 9.9 6 LYSMD4; ADAMTS17; MEF2A 
8 134,262,073 134,331,827 69,755 HW 0.0062 6.6 5 - 
1 69,893,506 69,902,125 8,620 HW; ADG 0.0047; 0.0065 55.1 7 AKAP7 

a P-value<0.01.  
b Percentage of the population presented this ROH. 
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Figure 7-1 Characteristics of runs of homozygosity in American mink. (A) Frequency distribution of the average 
number of ROH in different length classes (Mb) in each chromosome. (B) Length distribution of ROH. X-axis 
shows the length of ROH (Mb) using a base-10 log scale. (C) Relationship between ROH number per animal and 
total length of the genome covered by them. Each point represents one individual. 
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Figure 7-2 Chromosome ideograms showing the position of identified ROH and consensus ROH shared 
between individuals. The color scale within each chromosome represents the number of identified ROH, 
changing the gradient with more ROH detected in an area. The position of consensus ROH is marked with 
the green triangle next to the chromosome. 
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Figure 7-3 Physical position of significant consensus ROH across the mink autosomes. 
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CHAPTER 8. Genome-wide association studies for growth 
and feed efficiency traits in American mink1 

 

8.1 Introduction 

While American mink (Neogale vison) has served as a prominent species within the fur industry 

due to its remarkable fur characteristics, it is critical to recognize the existence of challenges such 

as increasing cost of production and emerging diseases, which hinder the achievement of 

sustainability in mink breeding (Karimi et al. 2021b). One of the methods to alleviate these 

challenges is to improve feed efficiency (FE), given that the expenses related to feed constitute a 

significant portion, accounting for around 60% to 70% of the overall expenses in mink production 

(Berg and Lohi, 1992; Sørensen et al. 2003). Consequently, the primary goals could revolve around 

the selection of animals with an enhanced ability to utilize feed resources.  

The FE has been reported in American mink in the form of feed conversion ratio (FCR) (Nielsen 

et al. 2011), residual feed intake (RFI) (Shirali et al. 2015; Madsen et al. 2020), and more recently, 

residual gain (RG), residual intake and gain (RIG), and Kleiber ratio (KR) (Davoudi et al. 2022a). 

The FCR, a commonly used indicator for evaluating FE in several livestock species (Berry and 

Crowley, 2013; Prakash et al. 2020; Davoudi et al. 2022b), can be described as the amount of feed 

consumed per unit of body weight increase, and is a composite trait encompassing initial and final 

body weight and feed intake (Skinner-Noble and Teeter, 2003). The RFI is defined as the 

difference between the actual daily feed intake (DFI) of an individual and the expected DFI needed 

 
1 A version of this chapter has been submitted to Canadian Journal of Animal Science by Davoudi et al. 
2023. Genome-wide association studies for growth and feed efficiency traits in American mink.  
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to attain an average daily gain (ADG) and the body weight (BW) (Koch et al. 1963). The RG is 

the other FE indicator that has been proposed to identify differences in feed use among growing 

animals, defining as the residual from a multiple regression of ADG on BW and DFI, which aids 

in pinpointing the individuals with the highest rate of weight gain (Crowley et al. 2010). The RIG 

indicator is suggested to combine the RFI and RG, allowing for the identification of efficient and 

fast-growing animals independent of their body weights. In addition, KR is another ratio 

measurement, which can be as desirable alternative to other FE traits as it does not require 

individual intake to be measured, showing the high KR values as individuals with efficient users 

of feed (Ghafouri-Kesbi et al. 2011). 

Several studies have documented moderate heritabilities for FE traits in American mink (Shirali 

et al. 2015; Madsen et al. 2020; Davoudi et al. 2022a), indicating a significant genetic basis that 

holds the potential for improvement through genetic and genomic breeding programs. Genome-

wide association studies (GWAS) are applied to uncover genomic regions associated with 

economically important traits as it is well-known that the genetic variants identified from GWAS 

might increase the accuracy of genomic prediction (Van den Berg et al. 2016). Over the years, 

GWAS have assisted scientists to identify numerous single nucleotide polymorphisms (SNPs) and 

candidate genes associated with FE traits in different species, such as cattle (Seabury et al. 2017), 

pigs (Do et al. 2014), chicken (Mebratie et al. 2019), and rabbit (Sánchez et al. 2020). 

The recent advancement of chromosome-based genome assembly (Karimi et al. 2022) and 70K 

SNP array in American mink have opened up the possibilities to detection of genetic variants 

associated with traits of interest in this species, yet no association studies have been performed to 

evaluate the genetic architecture of FE traits in American mink. Therefore, the aim of this chapter 

was to identify the genomic regions associated with eight growth and feed efficiency traits in 
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American mink, including BW, ADG, DFI, FCR, RFI, RG, RIG, and KR. In addition, we applied 

functional annotation and gene enrichment analyses to understand the biological meaning 

underlying the identified regions/genes. 

8.2 Materials and Methods 

8.2.1 Ethics approval 

All procedures used for the current chapter were approved by the Dalhousie University Animal 

Care and Use Committee, and all methods were performed in accordance with the Code of Practice 

for the Care and Handling of Farmed Mink guidelines (Turner et al. 2013). 

8.2.2 Phenotypic and deregressed EBV values 

In this chapter, the deregressed estimated breeding values (dEBVs) were calculated for eight 

growth and feed efficiency traits, including BW, ADG, DFI, FCR, RFI, RG, RIG, and KR. A 

detailed description regarding the phenotypic data and animal models utilized to obtain dEBVs in 

the current chapter is available in the work by Davoudi et al. (2022a). According to the trait, an 

optimal model with specific fixed and random effects were fit to calculate the EBVs, which is 

comprehensively explained in the chapter 5 (Davoudi et al. 2022a). The reliabilities of EBVs for 

each phenotype were calculated as follows: 

Reliability = 1 − NOP
Q'(

, 

where PEV is the prediction error variance; and 𝜎')	is the additive genetic variance of the trait. We 

used the ‘wideDRP’ function in the DRP package (Lopes 2017), which applies the EBV 

reliabilities following the method described by Garrick et al. (2009) to calculate the dEBVs. 
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Finally, the dEBVs were applied as the pseudo-phenotype for association analyses. Table 8.1 

shows the descriptive statistics of the dEBVs for the studied traits.  

8.2.3 SNP genotyping and Quality Control 

Genomic DNA of 1,872 mink with feed intake measurement were genotyped using Affymetrix 

Mink 70K SNP array. The quality control of genotypic data was performed using PLINK 1.9 

software (Purcell et al. 2007) as follows: minor allele frequency smaller than 0.01, a call rate lower 

than 90%, individuals with a call rate lower than 90%, and SNPs with significant deviation from 

Hardy-Weinberg equilibrium (p<10−5) were excluded. In total, 25,793 autosomal SNPs remained 

for further analyses. 

8.2.4 Genome-wide association studies 

GCTA software (Yang et al. 2011) was used to perform the mixed linear model (MLM) to detect 

the association between each SNP and pseudo-phenotypes, including polygenic effects to account 

for the shared genetic effects of related individuals. Additionally, to control for the potential 

confounding effect of population structure, the first five principal components computed by the 

GCTA software (Yang et al. 2011) and were included as covariates in the association models (Price 

et al. 2006). The statistical model was as follows: 

𝒚 = 𝟏µ +𝑾𝜶+ 	𝑿𝒃 + 𝒁𝒖 + 𝒆, 

where 𝒚 is the vector of dEBVs for each growth and feed efficiency traits; µ is the overall mean 

and 1 is a vector of ones; 𝑾 is a matrix containing the top five eigenvectors of principal 

components analyses and included as covariates; 𝜶 is the vector of corresponding coefficients with 

the intercept; 𝑿 represents the vector of all marker genotypes, with coded 0, 1, 2 for genotypes 

AA, AB and BB, respectively; 𝒃 stands for the corresponding effect size of the SNP; 𝒖 is a vector 
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of additive polygenic effect with a normal distribution (𝒖	~	𝑁	(0, 𝑮𝜎:4), in which 𝜎:4 is the 

additive polygenic variance, and G is the genomic-based relationship matrix (GRM); 𝒁 is an 

incidence matrix associating the dEBVs to the corresponding random polygenic effects; and 𝒆 is 

the random residual effect, following a normal distribution as 𝒆	~	𝑁	(0, 𝑰𝜎84), in which 𝜎84 is the 

residual variance and 𝑰 is the identity matrix of appropriate dimension. Because the Bonferroni 

correction sets an extremely stringent threshold for multiple testing (Johnson et al. 2010), false 

discovery rate (FDR) was used to determine the threshold P-values (Benjamini and Hochberg, 

1995). The FDR was set as 0.01, and the threshold P-value was calculated as follows: 

𝑝 = 𝐹𝐷𝑅	 ×	 #
<

, 

where n shows the number of SNPs with p<0.01 in the GWAS results, and m is the number of 

SNPs qualified from the population. The estimations of phenotypic variance explained (PVE) by 

each significant SNP were performed using the GCTA software (Yang et al. 2011). 

8.2.5 Annotation of candidate genes, Gene Ontology and pathway analysis 

The annotated genes overlapped between the 0.5 Mb downstream and upstream region harboring 

significant SNPs were identified by using the American mink reference genome annotation file 

(Karimi et al. 2022) and Bedtools version 2.30.0 (Quinlan and Hall, 2010). The Gene Ontology 

(GO) terms for molecular function, biological process, and cellular component, as well as 

metabolic pathway analyses, were conducted using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database by the ClueGO plug-in (Bindea et al. 2009) using Cytoscape 3.1.0 

(Kohl et al. 2011). The ClueGO cut-off for the statistical assessment of the enriched terms was 

through false discovery rate corrections (FDR<0.05). 
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8.3 Results 

8.3.1 Genome-wide association studies 

The quantile-quantile (Q–Q) plots assessed the impact of population structure on GWAS, 

indicating no deviation from the observed -log10 P-values of the MLM to the expected -log10 P-

values, and therefore, no evidence of any systematic bias in the current chapter (Figure 8.1). 

Considering all growth and feed efficiency traits, the empirical P-values of a multiple testing for 

BW, DFI, ADG, FCR, RFI, RG, RIG, and KR were 8.20×10−5, 9.67×10−5, 8.74×10−5, 9.46×10−5, 

7.47×10−5, 8.62×10−5, 8.47×10−5, 9.88×10−5, respectively.  

The Manhattan plots of GWAS for the studied traits are illustrated in Figure 8.2. A total of five, 

nine, six, 12, four, and six SNPs were significantly associated with BW, DFI, ADG, FCR, RG, and 

KR, and correspondingly explained 0.40, 1.47, 0.34, 0.92, 0.48, and 0.35% of the additive genetic 

variances, respectively. Notably, there were no significant associations for RFI and RIG traits. It 

is worth noting that six SNPs on chromosomes 1, 6, 8, and 13 were identified with pleiotropic 

effects on BW, ADG, FCR, and KR, respectively.  

8.3.2 Candidate genes and functional enrichments 

The information of significant SNPs associated with growth and feed efficiency traits and their 

annotated candidate genes within 1 Mb interval is provided in Table 8.2. A total of 153 functional 

genes located within 1 Mb surrounding the most significant SNPs were identified based on the 

latest American mink genome assembly. Among which, several candidate genes have been 

previously reported to have functional roles on growth and feed efficiency, such as TUBB, 

CDKN1A, SRSF3, GPRC6A, RFX6, and KPNA5. In order to gain a more comprehensive 

understanding of the candidate genes associated with pathways and biological functions, we 
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utilized these genes to perform an analysis of pathway analysis using KEGG and GO. The findings 

from these analyses pointed towards the primary involvement of the candidate genes in lipid 

metabolism (glycerophospholipid metabolism, ether lipid metabolism, arachidonic acid 

metabolism), hormone signaling and regulation (GnRH signaling pathway, type B pancreatic cell 

differentiation, and endocrine pancreas development), and muscle development (actin filament 

depolymerization, actin filament capping, and regulation of muscle cell apoptotic process) (Figure 

8.3). 

8.4 Discussions  

Growth and feed efficiency have been considered as traits of interests in American mink as they 

directly related to the economic profit of the mink industry because of two main reasons: better 

growth might reach to larger pelt size and in turn higher profit (Thirstrup et al. 2017; Do et al. 

2021), and also the feed is the largest cost for the mink production (Shirali et al. 2015; Madsen et 

al. 2020). It is well-known that the identification of genetic markers associated with growth and 

feed efficiency traits would assist to unveil the genetic basis underlying these traits, and therefore 

their inclusion in genomic breeding strategies (Higgins et al. 2018). To this end, numerous GWAS 

have detected SNPs that significantly associated with growth and feed efficiency traits (Sell-

Kubiak et al. 2017; Brito et al. 2020; Davoudi et al. 2022b). To the best of our knowledge, the 

currents chapter performed the first GWAS on growth and feed efficiency traits in American mink. 

In this chapter, we performed GWAS for growth and feed efficiency traits in American mink using 

the MLM approach, which resulted in identification of 42 significant genetic markers, of which 

six SNPs had pleiotropic effects. 

The AX-647632532 (at 122.7 Mb of chromosome 1) is the marker with the highest pleiotropic 

effect, associated with ADG, BW, FCR, and KR. The highest number of genes (n=26) were 
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annotated from 1-Mb flanking of this SNP, among which the TUBB gene was highlighted as a 

promising candidate gene affecting the growth and feed efficiency in American mink. It was 

reported that the expression of TUBB gene was higher in rumen tissue of low RFI (feed efficient) 

beef cattle, which supports the impact of this gene on feed efficiency traits (Kong et al. 2016; 

Lindholm-Perry et al. 2022). The AX-647628511 (at 83.1 Mb of chromosome 1) was another SNP 

of interest that was significantly associated with FCR. Several genes with known effects on growth 

and feed efficiency were annotated in 0.5 Mb upstream and downstream of this SNP, such as 

CDKN1A, SRSF3, GPRC6A, RFX6, and KPNA5. The CDKN1A gene, which encodes a cyclin-

dependent kinase inhibitor 1A, plays functional roles on cell motility, DNA repair, and muscle cell 

proliferation and differentiation (Semenova et al. 2022; Ticli et al. 2022). It has been confirmed 

that CDKN1A was associated with FCR (Miao et al. 2021), ADG (Fontanesi et al. 2014), and 

intramuscular fat content (Martínez-Montes et al. 2017) in pigs, carcass traits in beef cattle (Karisa 

et al. 2013), and obesity in human (Liu et al. 2021). Using GWAS, it was reported that the SRSF3 

gene was significantly associated with FCR and carcass length in pigs (Guo et al. 2015; Falker-

Gieske et al. 2019). In a similar fashion, it was revealed that the GPRC6A, RFX6, and KPNA5 

genes were associated with dry matter intake in cattle (Olivieri et al. 2016). Using copy number 

variation-based association studies, Fernandes et al. (2021) indicated the association between 

GPRC6A gene and body weight gain in broilers. In addition, other work has shown that RFX6, and 

KPNA5 genes were strongly associated with feed efficiency (the inverse of FCR) and RIG traits 

(Brunes et al. 2021), supporting these genes as strong candidate genes for growth and feed 

efficiency in American mink. 

The GO and pathway analysis using KEGG analyses revealed several biological processes that are 

significantly enriched among the candidate genes, involving in lipid metabolism 
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(glycerophospholipid metabolism, ether lipid metabolism, arachidonic acid metabolism), hormone 

signaling and regulation (GnRH signaling pathway, type B pancreatic cell differentiation, and 

endocrine pancreas development), and muscle development (actin filament depolymerization, 

actin filament capping, and regulation of muscle cell apoptotic process), and in turn leading to 

have impacts on growth and feed efficiency in American mink. The importance of lipid 

metabolism for growth and feed efficiency has been indicated by several studies in farmed animals 

(Fu et al. 2020; Mota et al. 2022; He et al. 2023). Of interest, the phospholipase A family 

(PLA2G4B, PLA2G4D, PLA2G4E, and PLA2G4F) acted in most of the enriched pathways. 

Because of their phospholipase A2 activity, these genes are known to be involved in regulating 

phospholipid and arachidonate metabolism (Long and Cravatt, 2011). It is notable, in this regard, 

that the PLA2G4B gene was reported as strong candidate gene affecting the intramuscular fat in 

domestic rabbit (Sosa-Madrid et al. 2020). In addition, it was shown that the PLA2G4B gene, along 

with other detected genes from this family (PLA2G4D, PLA2G4E, and PLA2G4F), was associated 

with growth traits in cattle (Grigoletto et al. 2019) and pigs (Hong et al. 2020a). Congruent with 

these findings, Davoudi et al. (2022c), in a copy number variation discovery, indicated many 

biological pathways related to lipid metabolism, which reinforce the physiological connection 

between lipid metabolism and growth and feed efficiency in American mink.  

Other interesting biological pathways enriched in the current chapter were related to hormone 

secretion. Several studies have demonstrated the potential association of hormone secretion with 

feed efficiency in livestock species (Do et al. 2014; Ding et al. 2018; Taussat et al. 2020). It was 

shown that the GnRH signaling pathway plays a key role in the characterization of various growth 

phases in cattle (Widmann et al. 2013). Similarly, the GnRH signaling pathway was associated 

with RG, FCR, and RFI traits in cattle (Rolf et al. 2012; Taussat et al. 2020), rendering the 
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importance of this pathway in growth and feed efficiency regulation. The synthesis, storage, and 

secretion of insulin are key functions of type B pancreatic cells (Beck, 2006), which in turn might 

impact the feed efficiency of animals by maintaining glucose homeostasis in the body (Taussat et 

al. 2020). It is well-known that the proper working of actin filament, along with myosin in the 

myofilaments is essential for muscle cells to enhance their mobility and dynamics (Gokhin and 

Fowler, 2011; Mancin et al. 2022). Using proteomic analysis of high-FE and low-FE pigs, Wu et 

al. (2020) indicated that differentially expressed proteins between two FE divergent groups were 

mostly enriched in actin filament-based process, which supports the importance of actin filament 

pathways as a regulator of feed efficiency. Therefore, the enrichment of numerous actin pathways 

in the current chapter indicated its critical role on cytoskeleton and muscle development, which 

ultimately leads to better growth in American mink.  

8.5  Conclusion  

In conclusion, we performed the first genome-wide associations between SNPs and growth and 

feed efficiency traits in American mink. The GWAS results identified 42 SNPs reaching statistical 

significance (FDR<0.01), of which six were pleiotropic with effects on more than one trait. The 

annotation of genes surrounding significant SNPs identified 153 genes, some of which were known 

to have roles on growth and feed efficiency, such as TUBB, CDKN1A, SRSF3, GPRC6A, RFX6, 

and KPNA5. In addition, the enrichment analyses showed that pathways were mostly involved in 

lipid metabolism, hormone regulation and muscle development, which ultimately might lead to 

better growth in American mink. Overall, our results identified multiple genes involved in 

regulating growth and feed efficiency traits in mink, that can be implemented in genomic selection 

programs to select more efficient mink.   
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Table 8.1 Descriptive statistics of the deregressed EBV (dEBV) for growth and feed efficiency 
traits in American mink. 

Trait 
    dEBVs  

Abbreviations Numbers Mean SD Min. Max. 
Final body weight FBW 1037 0.00 0.30 -1.15 1.37 
Daily feed intake DFI 1872 0.01 0.07 -0.15 0.23 
Average daily gain ADG 1044 -0.02 2.19 -10.14 9.18 
Feed conversion ratio FCR 1036 0.34 8.60 -23.39 61.52 
Residual feed intake RFI 1044 0.00 0.02 -0.12 0.14 
Residual gain RG 1042 -0.04 1.51 -7.19 5.70 
Residual intake and gain RIG 1043 -0.04 1.48 -6.76 6.43 
Kleiber ratio KR 1044 -0.01 1.15 -6.05 4.64 

 
  
 
 
 
 

 

 

 

 

 

 

 

 

 



132 
 

Table 8.2 Significant SNPs and positional candidate genes for growth and feed efficiency traits in American mink. 
Traits1 Chr2 SNPs3 Position Beta4 P-value PVE (%)5 Candidate genes 
ADG 1 AX-647631147 108686101 -0.89 3.14E-05 0.03 - 

 1 AX-647632532 122729223 -0.90 2.76E-06 0.09 POU5F1, PSORS1C2, CDSN, C1H6ORF15, MUC21, SFTA2, GTF2H4, IER3, TUBB, MDC1, 
NRM, PPP1R18, C1H6orf136, MRPS18B, GNL1, RPP21, TCF19, CCHCR1, VARS2, DHX16, 

ATAT1, PPP1R10, PRR3, FLOT1, ABCF1, DDR1 
 4 AX-647741010 206936126 -0.85 3.36E-05 0.09 GCC1, ARF5, FSCN3, ZNF800, PAX4, GRM8, SND1 
 8 AX-647794228 130312171 -0.55 3.15E-05 0.03 OSR1, RDH14, NT5C1B 
 13 AX-647683777 85473817 0.55 4.15E-05 0.03 JMJD7, TYRO3, ITPKA, ZNF106, GANC, VPS39, PLA2G4F, PLA2G4E,  SPTBN5, PLA2G4B, 

RPAP1, LTK, RTF1, CAPN3, TMEM87A, PLA2G4D, EHD4, MAPKBP1, MGA 
 13 AX-647686472 123955159 0.50 1.59E-05 0.08 MKRN3, NDN, MAGEL2 

BW 1 AX-647631147 108686101 -0.17 4.53E-09 0.19 - 
 1 AX-647632532 122729223 -0.13 1.39E-06 0.10 POU5F1, PSORS1C2, CDSN, C1H6orf15, MUC21, SFTA2, GTF2H4, IER3, TUBB, MDC1, NRM, 

PPP1R18, C1H6orf136, MRPS18B, GNL1, RPP21, TCF19, CCHCR1, VARS2, DHX16, ATAT1, 
PPP1R10, PRR3, FLOT1, ABCF1, DDR1 

 8 AX-647794228 130312171 -0.08 1.64E-05 0.03 OSR1, RDH14, NT5C1B 
 13 AX-647683777 85473817 0.08 2.56E-05 0.04 JMJD7, TYRO3, ITPKA, ZNF106, GANC, VPS39, PLA2G4F, PLA2G4E,  SPTBN5, PLA2G4B, 

RPAP1, LTK, RTF1, CAPN3, TMEM87A, PLA2G4D, EHD4, MAPKBP1, MGA 
 13 AX-647686472 123955159 0.07 1.53E-05 0.04 MKRN3, NDN, MAGEL2 

DFI 5 AX-647754701 155604252 0.01 8.90E-05 0.03 GPR18, ZIC5, ZIC2, GPR183, UBAC2, TM9SF2, CLYBL, DOCK9 
 5 AX-647754738 155838880 0.01 2.76E-06 0.04 GPR18, ZIC5, ZIC2, GPR183, UBAC2, TM9SF2, CLYBL, DOCK9, PCCA 
 6 AX-647756101 5748971 -0.02 7.53E-05 0.28 B3GALT5, HMGN1, PSMG1, PCP4, IGSF5, LCA5L, GET1, BRWD1, DSCAM 
 6 AX-647756105 5765827 -0.02 4.91E-05 0.30 B3GALT5, HMGN1, PSMG1, PCP4, IGSF5, LCA5L, GET1, BRWD1, DSCAM 
 6 AX-647756116 6005779 -0.02 4.27E-05 0.33 B3GALT5, HMGN1, PSMG1, IGSF5, LCA5L, ETS2, BRWD1 
 6 AX-647756120 6011312 -0.02 4.27E-05 0.33 B3GALT5, HMGN1, PSMG1, IGSF5, LCA5L, GET1, ETS2, BRWD1 
 6 AX-647769366 187090448 -0.01 6.06E-05 0.05 MDFIC2, MITF, FRMD4B 
 10 AX-647647582 44029128 0.02 4.96E-05 0.07 FAM71A, BATF3, DTL, PPP2R5A, NENF, ATF3, NSL1, TATDN3, FLVCR1, VASH2, INTS7, 

PACC1, SPATA45, ANGEL2, RPS6KC1 
 11 AX-647664634 198100038 -0.01 7.30E-05 0.04 TRAPPC11, RWDD4, ING2, ENPP6, STOX2, WWC2 

FCR 1 AX-647628511 83111136 3.62 1.60E-05 0.11 SRSF3, CDKN1A, GPRC6A, KPNA5, ZUP1, RSPH4A, RWDD1, CALHM4, KCTD20, STK38, 
FAM162B, PXT1, RFX6 

 1 AX-647631147 108686101 3.70 6.94E-06 0.12 - 
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 1 AX-647632532 122729223 3.45 2.55E-06 0.10 POU5F1, PSORS1C2, CDSN, C1H6ORF15, MUC21, SFTA2, GTF2H4, IER3, TUBB, MDC1, 
NRM, PPP1R18, C1H6orf136, MRPS18B, GNL1, RPP21, TCF19, CCHCR1, VARS2, DHX16, 

ATAT1, PPP1R10, PRR3, FLOT1, ABCF1, DDR1 
 6 AX-647758743 32817838 2.54 1.18E-05 0.05 ROBO1 
 6 AX-647764338 70252701 3.60 3.25E-05 0.11 DIPK2A, SLC9A9 
 6 AX-647765320 89892337 3.41 1.33E-05 0.10 SLITRK3, SI 
 6 AX-647773071 200544009 2.42 5.96E-06 0.05 WNT5A, LRTM1, ERC2, CACNA2D3 
 8 AX-647790363 98284517 -2.19 1.38E-05 0.04 - 
 8 AX-647794228 130312171 2.73 5.98E-08 0.06 OSR1, RDH14, NT5C1B 
 9 AX-647798852 33147281 2.85 3.23E-06 0.07 FOXE1, ALDH1B1, NANS, ANP32B, TRMO, XPA, TSTD2, TDRD7, IGFBPL1, TRIM14, HEMGN, 

NCBP1, TMOD1, CCDC180 
 12 AX-647669973 21729074 2.85 7.11E-05 0.07 FAM71C, UHRF1BP1L, ANKS1B 
 13 AX-647686472 123955159 -2.19 7.38E-07 0.04 MKRN3, NDN, MAGEL2 

KR 1 AX-647631147 108686101 -0.44 8.16E-05 0.08 - 
 1 AX-647632532 122729223 -0.52 2.70E-07 0.11 POU5F1, PSORS1C2, CDSN, C1H6orf15, MUC21, SFTA2, GTF2H4, IER3, TUBB, MDC1, NRM, 

PPP1R18, C1H6orf136, MRPS18B, GNL1, RPP21, TCF19, CCHCR1, VARS2, DHX16, ATAT1, 
PPP1R10, PRR3, FLOT1, ABCF1, DDR1 

 2 AX-647704560 169992751 -0.31 6.96E-06 0.04 PCDH15 
 6 AX-647758743 32817838 -0.33 4.10E-05 0.05 ROBO1 
 8 AX-647794228 130312171 -0.30 1.20E-05 0.04 OSR1, RDH14, NT5C1B 
 13 AX-647686472 123955159 0.28 3.88E-06 0.03 MKRN3, NDN, MAGEL2 

RG 4 AX-647741874 214079096 -0.64 3.37E-05 0.12 AGBL3, TMEM140, CYREN, WDR91, STRA8, NUP205, STMP1, FAM180A, CNOT4, SLC13A4, 
MTPN 

 4 AX-647741879 214083831 -0.63 3.54E-05 0.12 TMEM140, CYREN, WDR91, STRA8, NUP205, STMP1, FAM180A, CNOT4, SLC13A4, MTPN 
 4 AX-647741887 214162040 -0.64 3.47E-05 0.12 TRNAC-GCA, STRA8, NUP205, STMP1, FAM180A, CNOT4, SLC13A4, MTPN 
 4 AX-647741891 214170873 -0.63 3.54E-05 0.12 TRNAC-GCA, STRA8, NUP205, STMP1, FAM180A, CNOT4, SLC13A4, MTPN 

 
1 BW: Body weight, ADG: Average daily gain, DFI: Daily feed intake, FCR: Feed conversion ratio, KR: Kleiber ratio, RG: Residual gain. 
2 Chr: Chromosome. 
3 SNP ID in boldface represents the SNP with pleiotropic effects on growth and feed efficiency traits. 
4 The allele substitution effect (beta). 
5 Percentage of phenotypic variation explained. 
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Figure 8-1 Q-Q plots for growth and feed efficiency traits using MLM model. BW: Body weight, ADG: 
Average daily gain, DFI: Daily feed intake, FCR: Feed conversion ratio, KR: Kleiber ratio, RFI: Residual 
feed intake, RG: Residual gain, RIG: Residual intake and gain. 
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Figure 8-2 Manhattan plots of genome-wide association studies for growth and feed efficiency traits. BW: 
Body weight, ADG: Average daily gain, DFI: Daily feed intake, FCR: Feed conversion ratio, KR: Kleiber 
ratio, RFI: Residual feed intake, RG: Residual gain, RIG: Residual intake and gain. 



136 
 

Figure 8-3 The Gene Ontology and metabolic pathways using KEGG enriched for the candidate genes surrounding the significant 
SNPs. 
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CHAPTER 9. General discussion and conclusion 

 

9.1 Summary and general discussion 

Improving feed efficiency in American mink is of utmost importance since it offers 

significant cost-saving potential for mink production systems, which primarily revolve 

around feed expenses. Until now, the Canadian mink industry has exclusively utilized 

phenotypic selection as their primary selection method, and it is important to highlight that 

feed efficiency has not been incorporated into their selection programs. The literature 

review, as discussed in chapter 2, showed that feed efficiency-related traits are moderately 

heritable traits, suggesting a significant genetic basis, which in turn, opens the door to 

potential enhancements through genetic and genomic breeding programs. In addition, 

chapter 2 elaborates on the progress achieved through the development of a chromosome-

based reference genome and the creation of a 70K SNP array for the American mink. These 

advancements were crucial for genomic analyses of this species, essentially providing the 

infrastructure for the completion of this thesis. 

9.1.1 Genetic parameters 

The objectives of the first study in chapter 3 were to estimate 1) heritabilities for different 

feed efficiency and component traits, and 2) phenotypic and genetic correlations among 

these traits. The chapter introduced novel discoveries by providing the knowledge of the 

genetic parameters for feed efficiency and its component traits in American mink. The 

estimates of heritabilities (±SE) for feed efficiency and component traits were moderate, 

including 0.28±0.06, 0.23±0.06, 0.28±0.10, 0.27±0.11, 0.25±0.09, 0.26±0.09, 0.20±0.09, 
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0.23±0.09, 0.21±0.10, 0.25±0.10, and 0.26±0.10 for HW, HL, FBL, FBW, ADG, DFI, FCR, 

RFI, RG, RIG, and KR, respectively. The findings revealed non-significant genetic 

correlations between RFI and growth traits (-0.24±0.16 with ADG, and -0.20±0.30 with 

FBW), yet high genetic correlation with feed intake (0.80±0.11), showing the possibility 

of including RFI in the selection program for higher feed efficiency, with negligible effects 

on the animal growth. Another recommended feed efficiency measurement was RIG, since 

it enhances the growth rate and reduces the feed intake. According to the results, KR can 

be a desirable indicator trait for feed efficiency in the mink industry, given that it eliminates 

the necessity of recording feed intake data for its calculation.  

9.1.2 Copy number variation 

The main objective of the chapters 4 and 5 was to assess the potential of genome-wide 

CNVs as complementary genetic markers for the analysis of economically important traits 

in American mink. In chapter 4, the distribution and pattern of CNV in the American mink 

genome were mapped using whole-genome sequencing data of 100 individuals. This 

characterization involved a variant calling process, along with the use of several 

complementary software to detect CNV events. The results of this chapter revealed a total 

of 5,378 CNVR (4,073 losses, 625 gains, and 680 mixed events) covering 1.9% of the mink 

autosomes. Notably, the identified CNVRs overlapped with numerous annotated genes 

with known effects on fur characteristics and development, and immune system processes. 

In addition, the functional annotation analyses confirmed the genes involved in pathways 

were related to growth, behavior, lipid metabolism, and immune response. For instance, it 

is well-known that circadian entrainment is a crucial aspect of behavior and adaptation, as 

it plays a fundamental role in helping organisms adjust to daily environmental cycles. 
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Similarly, the identification of enriched immune response pathways in this chapter 

confirms the role of immune response modulation in Aleutian mink disease virus infection, 

a prevalent disease within the global mink industry. 

Expanding upon the insights gained in chapter 4, chapter 5 delved into the examination of 

the association between CNVs and complex traits in American mink. Notably, this chapter 

involved a much larger, but different genomic data set, comprising 2,986 American mink 

genotyped with the Affymetrix Mink 70K SNP array. To perform the association analyses, 

the deregressed estimated breeding values of 27 economically important traits were 

included in the model as pseudophenotypes. Several significant CNVRs overlapped with 

genes reported to have impacts on growth and feed efficiency traits, reproduction, Aleutian 

disease, and pelt quality traits. In summary, these findings offer new tools for examining 

the mink genome and stand as a reference for forthcoming investigations that involve the 

presence of genomic structural variations. 

9.1.3 Runs of homozygosity 

In chapter 6, as the first study of ROH, we aimed to investigate the 1) genome-wide patterns 

of homozygosity, 2) ROH islands, and 3) annotated genes from those candidate regions 

using whole-genome sequencing data of 100 American mink. After performing quality 

control on the whole-genome sequencing data in chapter 4, we identified 8,373,854 bi-

allelic variants retained for ROH analyses. A total of 34,652 ROH segments were identified 

in all individuals, among which shorter segments (0.3–1 Mb) were abundant throughout 

the genome, approximately accounting for 84.4% of all ROH. In this chapter, we were able 

to identify higher mean number of ROH per individual (n=346.5) in comparison to the 

means of 82 and 102 per individual reported in the studies by Karimi et al. (2021b; 2022), 
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respectively. The higher detection of ROH segments resulted from the improved resolution 

of whole-genome sequencing data, which allowed for the identification of smaller ROH 

sizes.  

The genome-wide analysis of ROH islands can be an effective strategy to detect the 

variants shared among the individuals of a population, and thereby to reveal important 

genomic regions for complex traits. The Gene Ontology and pathway analysis using KEGG 

revealed several pathways with key roles on growth and fur characteristics, such as cGMP-

PKG signaling pathway, regulation of actin cytoskeleton, and calcium signaling pathway. 

It is worth noting that the prior chapter demonstrated significant enrichment in the 

regulation of the actin cytoskeleton, highlighting its influence on biological processes 

associated with growth in American mink. The candidate genes from ROH islands and 

functional enrichment analysis suggest the possible signatures of selection in response to 

the mink breeding targets, such as increased body length, reproductive performance and 

fur quality. 

The second study of ROH (chapter 7) aimed to evaluate the association between consensus 

ROH with growth and feed efficiency traits in American mink. To this end, the ROH-based 

association studies were carried out with linear mixed models for 11 growth and feed 

efficiency traits, which ultimately resulted in identification of 13 consensus ROH regions 

significantly associated with these complex traits. These regions were overlapped with 

several candidate genes with known functions on growth and body size development. 
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9.1.4 Genome-wide association studies 

Lastly, in chapter 8, we aimed to identify potential genetic variants and positional candidate 

genes associated with growth and feed efficiency traits in American mink. To this end, 

GWAS were performed using deregressed estimated breeding values of 1,037-1,872 mink 

(as pseudophenotypes), genotyped with the Affymetrix Mink 70K SNP array. Association 

analyses were performed using the mixed linear model in GCTA software, resulted in 

finding 42 SNPs located on 11 different chromosomes significantly associated with six 

growth and feed efficiency traits, among which six SNPs had pleiotropic effects on at least 

two analyzed traits. The functional analyses of the annotated genes revealed that these 

genes were involved in lipid metabolism (glycerophospholipid metabolism, ether lipid 

metabolism, arachidonic acid metabolism), hormone signaling and regulation (GnRH 

signaling pathway, type B pancreatic cell differentiation, and endocrine pancreas 

development), and muscle development (actin filament depolymerization, actin filament 

capping, and regulation of muscle cell apoptotic process). In this chapter, the detection of 

a large number of SNPs, despite capturing only a small proportion of additive genetic 

variance, suggested a polygenic architecture of growth and feed efficiency in American 

mink. 

9.2 Conclusion 

In conclusion, the research conducted for this thesis successfully provided appropriate feed 

efficiency measurements in American mink, and the estimates of genetic and phenotypic 

parameters indicated the possibility of including these traits in mink breeding programs to 

develop an index for selection of feed-efficient mink and consequently reduce the cost of 

mink production. To the best of our knowledge, our findings offered the first genomic 
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analyses to identify genetic variants and biological mechanisms underlying growth and 

feed efficiency traits in American mink, which in turn provided a biological foundation for 

improving these traits using genomic selection programs to select more efficient mink.   

9.3 General recommendations 

In light of the findings in this thesis, there are several steps that need to be taken in the 

future to support the improvement of feed efficiency traits in American mink: 

a) Future investigations on genetic parameters of feed efficiency in mink could benefit 

from the inclusion of diverse mink populations from various farms in order to 

increase the accuracy of genetic evaluation.  

b) To address the limitations of custom SNP arrays, such as their limited capacity to 

capture a significant portion of heritability, it is recommended that future research 

employ a substantial number of individuals with whole-genome sequencing or 

imputation to the whole genome level. In the future, it is foreseeable that it will 

become economically viable to directly acquire all genetic variants from sequence-

level data for all animals within a large population. 

c) The significant regions and candidate genes associated with economically 

important traits in this thesis can be validated through fine mapping, thereby 

confirming the impact of these genes on these key traits in mink. 

d) It is advisable that future studies include additional multi-omics approaches, such 

as transcriptomics and metabolomics, to identify biomarkers for economically 

important traits in mink, as their capacity to enhance genetic progress in complex 

traits has been demonstrated in other farm animals. 
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