

Dense Reconstruction from Visual SLAM with Probabilistic

Multi-Sequence Merging

by

Hanxiang Zhang

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

December 2023

© Copyright by Hanxiang Zhang, 2023

i

Table of Contents

LIST OF TABLES .. ii

LIST OF FIGURES ... iii

ABSTRACT .. v

LIST OF ABBREVIATIONS .. vi

ACKNOWLEDGEMENTS .. vii

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Contributions .. 6

1.3 Organization ... 7

CHAPTER 2 LITERATURE REVIEW .. 8

2.1 RGB-D SLAM .. 8

2.2 ORB-SLAM Family ... 21

CHAPTER 3 SYSTEM ARCHITECTURE ... 30

3.1 Camera Model .. 33

3.2 Dense Reconstruction from RGB-D Camera .. 34

3.3 Dense Reconstruction from Stereo Camera .. 37

3.4 Octomap from Dense Point Cloud .. 39

3.5 Multi-Sequence Merging .. 42

CHAPTER 4 RESULTS AND DISCUSSION ... 46

4.1 RGB-D Dense Reconstruction .. 47

4.2 Stereo Dense Reconstruction .. 50

4.3 Multi-Sequence Merging .. 58

4.4 Octomap .. 63

4.5 Runtime Analysis ... 65

CHAPTER 5 CONCLUSION AND FUTURE WORK ... 69

5.1 Conclusion .. 69

5.2 Future Work .. 69

BIBLIOGRAPHY ... 71

ii

LIST OF TABLES

Table I: Example of SLAM Applications with Typical Sensors ... 1

Table II: Comparison of Three Feature Extraction and Matching Algorithms 28

Table III: Dataset Characteristics ... 46

Table IV: TUM Single Sequence RGB-D Reconstruction Performance Comparison 47

Table V: EuRoC Single Sequence Stereo Reconstruction 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) Comparison 54

Table VI: KITTI Single Sequence Stereo Reconstruction 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) Comparison 58

Table VII: EuRoC Multi-Sequence Merging 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) Summary .. 63

Table VIII: File Size (in Megabytes) for Different Leaf Size Configurations 64

Table IX: File Size (in Megabytes) of Dense Mapping Compared to Octomap 66

Table X: Running Time (in milliseconds) of Main Parts in the Proposed System Compared to

ORB-SLAM3, on TUM FR3_office, EuRoC V2_02, and KITTI 07 66

iii

LIST OF FIGURES

Figure 1: Example of Different Lidar and Camera Sensors ... 2

Figure 2: General Framework of SLAM System with RGB-D Camera .. 8

Figure 3: Schematic Overview of RGB-D SLAMv2 [22] ... 10

Figure 4: Image with Progressively Blur Scale [29] .. 11

Figure 5: Process of Calculating Gradient Magnitude and Orientation of a Keypoint [30] 14

Figure 6: Gaussian Filter (left) vs. Box Filter (right) [31] ... 16

Figure 7: SURF Descriptors against Three Intensity Patterns [30] .. 17

Figure 8: Schematic Overview of ORB-SLAM [15] ... 21

Figure 9: Schematic Overview of ORB-SLAM2 [16] ... 23

Figure 10: Schematic Overview of ORB-SLAM3 [19] ... 24

Figure 11: Features Extracted with FAST Algorithm .. 26

Figure 12: Architecture of the Proposed SLAM System ... 30

Figure 13: Algorithm 1 for RGB-D Point Cloud Generation... 34

Figure 14: Illustrative Diagram of RGB-D Camera Model ... 35

Figure 15: Algorithm 2 for Stereo Point Cloud Generation ... 37

Figure 16: Illustrative Diagram of Stereo Camera Model.. 39

Figure 17: Example of Point Cloud Updating .. 45

Figure 18: Dense Point Cloud (left) and Octomap (right) Reconstructed with RGB-D Camera from

Single Sequence in TUM Dataset ... 49

Figure 19: Dense Map (left) and Octomap (mid) Obtained from Pipes (right) in EuRoC 50

Figure 20: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from Single

Sequence in EuRoC MH_01 (top), MH_03 (mid), and MH_05 (bottom) 51

Figure 21: Sparse Map with Co-Visibility Obtained from EuRoC V1_01 .. 52

Figure 22: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from Single

Sequence in EuRoC V1_01 (top), V1_02 (mid), and V1_03 (bottom) 53

Figure 23: Recording Zone for KITTI Dataset [36] ... 55

Figure 24: Dense Map (left) and Octomap (mid) Obtained from Road (right) in KITTI 56

Figure 25: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from Single

Sequence in KITTI 00 (top), 02 (mid), and 09 (bottom) .. 57

Figure 26: Comparison of Trajectories between Single Sequence and Multi-Sequence Operation on

TUM FR2_large_no_loop with Ground Truth ... 59

iv

Figure 27: Comparison of Instantaneous and Cumulative 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 between Single and Multi-

Sequence Operation on TUM FR2_large_no_loop with Ground Truth 60

Figure 28: Dense (left) and Sparse (right) Map Generated from Multi-Sequence Merging of EuRoC

Sequences, the Latter Sequence Reuses Map from Previous Ones 61

Figure 29: Cross Dataset Co-Visibilities Estimated in EuRoC Multi-Sequence Merging 62

Figure 30: Laptop Mapped by Point Cloud, Sparse, Dense Mapping and Octomap 63

Figure 31: Octomap with Leaf Size 0.01m (top left), 0.02m (top right), 0.04m (bottom left), and 0.08m

(bottom right) from TUM FR1_room ... 65

v

ABSTRACT

This thesis presents a comprehensive visual SLAM system that extends the application of

ORB-SLAM3. Using it as a template, a supplementary and optional function of 3D dense

reconstruction is implemented for both RGB-D and stereo cameras. With conventional

datasets, TUM, EuRoC, and KITTI as benchmarks, we confirm the validity of proposed

system in both indoor and outdoor scenarios. Besides, the concept of Octree is integrated

into our system to generate Octomap. A compact mapping can be achieved as such, verified

by the fact that the size of each dense point cloud map is reduced to approximately one-

fifth after the conversion. Furthermore, a multi-sequence merging method is included in

our proposed system, formulating with a probabilistic-based optimizing algorithm and map

accessing functions from the original system. Multi-sequence experiments evince that the

tracking accuracy profits from the exploitation of a priori knowledge gathered through the

preceding sequences.

vi

LIST OF ABBREVIATIONS

SLAM Simultaneous Localization and Mapping

UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

AUV Autonomous Underwater Vehicle

LIDAR Light Detection and Ranging

RADAR Radio Detection and Ranging

SONAR Sound Navigation and Ranging

IMU Inertial Measurement Unit

GNSS Global Navigation Satellite System

RANSAC Random Sample Consensus

ICP Iterative Closest Point

SIFT Scale-Invariant Feature Transform

SURF Speeded-Up Robust Features

ORB Oriented FAST and rotated BRIEF

FAST Features from Accelerated Segment Test

BRIEF Binary Robust Independent Elementary Features

vii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor, Dr. Jason Gu, for

his invaluable guidance, unwavering corroboration, and insightful feedback throughout my

study.

I am very grateful to my peer Chang Xu. We worked as one.

I also appreciate my roommate Qiguang Chen for providing meticulous support to me

through all means.

I want to thank my parents as well. Their silent support has been the driving force behind

me.

Last but not least, I extend my appreciation to my committee, Dr. Ya-Jun Pan and Dr.

Kamal El-Sankary, for taking time out of a busy schedule to attend my defense and offer

their beneficial suggestions.

1

CHAPTER 1 INTRODUCTION

1.1 Background

As one of the most popular and intense research topics in the robotics field, the SLAM

algorithm capacitates mobile robots to localize themselves while exploring and mapping

an unknown environment. Being widely used in industry, SLAM algorithms can be

implemented to different types of robots, depending on the purpose of application,

including agriculture, healthcare, manufacturing, smart cities, etc. Studies have been

conducted during the past decades [1], resulting to the proposition of numerous SLAM

systems. Implementing heterogeneous sensors, applying various optimization techniques,

and picturing with different mapping methods, all the SLAM algorithms are aiming to

maintain the system robustness, enhance the tracking accuracy and achieve the real-time

performance.

SLAM algorithms can read from sensors including, but not limited to, camera, lidar, radar,

IMU, and GNSS. Table I below provides an example of categorizing some typical sensors

used by SLAM algorithms based on its application.

Table I: Example of SLAM Applications with Typical Sensors

SLAM Application Typical Sensors

UGV Camera Lidar IMU

UAV Lidar IMU GPS

AUV Sonar Camera IMU

2

Choosing appropriate sensors is of utmost importance for the SLAM application. In terms

of UGVs, Lidar SLAM and Visual SLAM are considered together as the two mainstreams.

They are named by the main sensor used in the algorithms: Lidar SLAM utilizes 2D or 3D

lidars. Visual SLAM adopts monocular camera, stereo camera, and sometimes RGB-D

camera – a hybrid sensor that also collects depth information. Figure 1 examples each of

these sensors.

(a) LS01B1 Rotating 2D LIDAR [24] (b) Ultra Puck 3D Lidar [25]

(c) C270 HD Monocular Camera [26] (d) RealSense™ D405 RGB-D Camera [27]

Figure 1: Example of Different Lidar and Camera Sensors

Lidar-based algorithms are developed in earlier years and are considered as a mature

technology nowadays. The highly reliable and accurate maps can be later used by path

planning algorithms. The lidar-based algorithms are, nonetheless, too expensive as a

solution when building products like a robot vacuum cleaner. It is common that the price

of a lidar sensor, varying by its accuracy, can reach thousands of dollars, and even beyond.

3

During the past years, many approved Lidar SLAM algorithms have been published,

including Gmapping [2], Hector-SLAM [3], LOAM [4], LIO-SAM [5], etc.

Of these two branches, the latter uses cameras as its main sensor to estimate the robot pose.

It has not been wide-ranging discussed, in-depth studied and high-speed evolved until the

late 2000s, due to limiting factors such as the undersupply of computing resources. Thanks

to the development of computer technology, more computing resources are accessible to

the researchers in recent years. Being able to handle the high workload from image

processing, the vision-based algorithms become a trend of research.

Unlike the lidar-based algorithms that provide accurate point clouds without cumulative

error, a vision-based SLAM algorithm has to extract the key features from each image

captured by the camera, and match across multiple images to determine the relative

changes on both pose and position of the camera. This usually gives extremely inaccurate

results. The main contributing factors include the defect of manufacturing, noises of sensor,

and cumulative errors. Therefore, additional optimization algorithms are required to

produce credible results.

The early-stage Visual SLAM algorithms are mostly filter-based. MonoSLAM [6] is

acknowledged as the first real-time monocular solution, making use of the extended

Kalmen filter (EKF) algorithm [7]. However, implementing EKF causes consistency issue

during linearization. [8] improves this with unscented Kalmen filter (UKF) [9], and

UFastSLAM [10] overcomes this drawback by introducing Rao-Blackwell particle filter

(RBPF) [11] to SLAM system.

Some other Visual SLAM systems rely on keyframes. PTAM [12], as a representative

algorithm, shows an ingenious process using two parallel threads. It separates the tracking

4

and mapping tasks, obtaining comparable results at a lower computing cost; nonetheless,

PTAM is constrained by the adequacy of feature matching. Direct registration algorithms

avoid this issue by making direct operations to the intensity of pixels in lieu of feature

extractions. DTAM [13] constructs a depth map with all pixels in an RGB image,

promoting a more robust and accurate tracking when suffering from feature deficits. In

contrast, the real-time operation of DTAM cannot be accomplished without considerable

GPU resources. LSD-SLAM [14] alters the selection of pixels, adapting it for larger-scale

scenarios. Instead of all the pixels, only those within high-gradient regions are selected for

computation. However, as a direct method, which is formed on the gray-scale invariant

assumption, its robustness and accuracy can be undermined by unmodelled behaviors like

lens vignetting and drastic changes of illumination.

ORB-SLAM [15] is a monocular feature-based SLAM system that has been divided into

three threads: tracking, local mapping and loop closing. It uses oriented FAST and rotated

BRIEF (ORB) features [31] to achieve a real-time operation without GPU. Essential Graph

is first introduced for speedier loop closing. The successor ORB-SLAM2 [16] extends the

original work to be compatible with stereo camera and RGB-D camera. A place recognition

module is established on DBoW2 [17], and being applied to the system for relocalization,

reinitialization and loop detection. The accuracy is further improved by implementing the

EPnP [18] algorithm. ORB-SLAM3 [19] is a state-of-the-art algorithm published recently.

Monocular-inertial and stereo-inertial options are integrated with its previous work,

providing this SLAM system with additional robustness and accuracy. The refinement of

place recognition algorithm increases the recall rate significantly, preserving the system

5

from getting lost in low-textured scenes. It also uses a multi-map sub-system that underlies

ORBSLAM-Atlas [20].

Despite the fact that ORB-SLAM3 is one of the most powerful and valuable visual SLAM

systems, the output semi-dense map confines its range of application. On the other hand,

this algorithm does not trim, nor release any past landmarks – meaning all the landmarks

are stored cumulatively until the end of program. Tested with a large-scale dataset, the time

efficiency suffers after processing hundreds of keyframes.

Novel research aiming to enhance the system accuracy are being continually proposed to

this day. SOFT2 [37] makes significant improvement on solving the epipolar geometry and

kinematics, bringing resilience to object depth uncertainty. CT-ICP [38], although working

with the LiDAR configuration, demonstrates a state-of-the-art loop detection method,

achieving minor pose error in the validation with benchmark datasets. [39] reports their

work on obtaining more precise front-end estimations. 𝑂𝑉2𝑆𝐿𝐴𝑀 [40] utilizes a multi-

threaded architecture for a robust and precise system. [41] describes progress on motion

estimations using an innovative technique to integrate information from multiple stereo

camera configurations, named joint forward-backward visual odometry with multiple

cameras and feedback mechanism. RT-SLAM [42] processes visual information with

semantic algorithm to achieve accurate motion estimations. Dynam-SLAM [43] presents a

stereo visual-inertial SLAM system to survive under dynamic environments by defining

virtual landmarks. D3VIL-SLAM [44] applies fusion of cameras with both LiDAR and

inertial measurements, and an enhancement on robot pose estimations is validated through

the benchmark dataset.

6

1.2 Contributions

In this thesis, we propose an accurate visual SLAM system with dense point cloud

reconstruction and probabilistic multi-sequence merging. The contributions are listed

below:

A dense mapping approach is inspired by the RGB-D SLAM [21][22] and embedded to

the original system as an optional feature. It reconstructs the maps in a more detailed level

that enriches the robot scene understanding and perception. We offer this implementation

with either stereo camera or RGB-D camera. Sensing through a stereo camera not only

reduce the hardware complexity but also demonstrates enhanced performance in texturally

rich environment leveraging its reliance on feature matching across plentiful stereo pairs.

The utilization of an RGB-D camera is also kept since it is considered to remain superior

functionality facing occlusions due to the nature of having a direct depth measurement.

Moreover, an Octomap [23] is integrated to the original system, aiming to enhance the

mapping with finer texture and shading with improved memory efficiency and real-time

updates. It expands the system to be used by further robotic applications, especially those

demanding accurate 3D spatial understanding, such as mobile manipulation and navigation.

Last but not least, the proposed system includes a multi-sequence merging method that

fetches the knowledge of one sequence with the next and conducts a probabilistic-based

optimization to those redundant map points. Multiple benchmark datasets have been tested

to validate its beneficial impact on facilitating precise estimations of the camera pose.

7

1.3 Organization

This section contains a sequence of the thesis chapters, and also a brief description of each，

shown as follows:

Chapter 1: This chapter includes an introduction to SLAM, reveals the challenges that

researchers have experienced and those are experiencing, and describes the motivation of

my thesis.

Chapter 2: This chapter contains a literature review on related SLAM systems, and explains

the principles used by them.

Chapter 3: This chapter exhibits the system architecture of my proposed SLAM system,

and explicates the improvements made to the original SLAM system.

Chapter 4: This chapter evinces the feasibility of the proposed SLAM system by comparing

it with previous work. Results obtained from multiple sets of experiments are analyzed and

discussed to prove the enhancement on system performance.

Chapter 5: This chapter concludes the work of this thesis and advises the future orientation.

8

CHAPTER 2 LITERATURE REVIEW

RGB-D SLAM [21][22] and ORB-SLAM family are introduced in this section. The former

allows to construct colored 3D models from camera. Having the same mapping method as

our proposed system, it is included in this thesis to make a fair comparison, evincing the

system performance. This is detailed in the fourth chapter. On the other hand, ORB-SLAM

family consists of three generations. Evolving in the past decade, it has been acknowledged

to be one of the most powerful visual SLAM algorithms. An introduction to all the

generations in ORB-SLAM family is presented in this section since our system is built on

the basis of its latest generation, ORB-SLAM3.

2.1 RGB-D SLAM

Figure 2: General Framework of SLAM System with RGB-D Camera

9

Figure 2 demonstrates the general framework for SLAM system with an RGB-D camera

as the input sensor. The process is explained as following: The sensor data from an RGB-

D camera works together with the global map in the front end. They are used to for the

image preprocess and pose estimation. With the preprocessed image and the estimated

camera pose, the back end of this system updates the local map and optimizes it. A loop

closing pipeline containing loop detection, correction utilizes the local map to optimize and

update the global map. This updated map is stored for the succeeding data.

RGB-D SLAM [21] and its second version named RGB-D SLAMv2 [22] were proposed

by Felix Endres et al. This section focuses on reviewing the latest version since it covers

most work of its ancestor as well as sharing a similar system structure. A schematic

overview of RGB-D SLAMv2 is excerpted as in Figure 3 [22].

This system extracts SIFT [30], SURF [31] or ORB [32] features from the color image and

matches them across adjacent images. The depth information directly obtained from

camera helps to locate the sensor in 3D space. Random Sample Consensus (RANSAC)

algorithm is used to robustly filter out the outliers among the camera pose estimations.

Only those inliers are left to compute a refined transformation, generating an edge in the

backend pose graph. On the other hand, Iterative Closest Point (ICP) algorithm aims to

estimate the best transformations in point clouds generated from motions defined by the

Lie parameterization 𝑆𝐸(3). The last step of this system provides an effective nonlinear

optimization on the pose graph, where a minimization problem is solved on an error

function. The following part in this section details this process.

10

Figure 3: Schematic Overview of RGB-D SLAMv2 [22]

First, some commonly used feature extraction and matching algorithms are introduced,

including SIFT, SURF and ORB. The concepts of RANSAC and ICP are explained

afterwards. This section ends with the error function and optimizations that RGB-D SLAM

uses.

SIFT stands for scale-invariant feature transform. The SIFT algorithm provides scale-

invariant to the feature extraction process. This starts with blurring an input image. The

image is minified to multiple octaves and blurred progressively, creating a scale space, also

called a Gaussian pyramid. Representing with math, the blurred images 𝐿(𝑥, 𝑦; 𝜎) can be

calculated with the convolution of the original image 𝐼(𝑥, 𝑦) and a Gaussian blur operator

𝐺:

𝐿(𝑥, 𝑦; 𝜎) = 𝐺(𝑥, 𝑦; 𝜎) ∗ 𝐼(𝑥, 𝑦) (1)

where 𝜎 is the Gaussian blur factor.

The operator is defined as:

𝐺(𝑥, 𝑦; 𝜎) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 (2)

11

A Difference of Gaussian (DoG) kernel is established afterwards by comparing the

difference of adjacent images with different blur factors, for instance: 𝜎 and 𝑘𝜎. It is said

to have a higher accuracy of finding keypoints in the input image. This is completed for all

octaves in the Gaussian pyramid. Therefore, if there are 𝑛 layers in an octave of the

pyramid, the DoG will contain 𝑛 − 1 layers for each octave. Figure 4 [29] below shows a

set of progressively blurred images, with blur factor 𝜎 = 0.5, 1, 2, 4, 8, 16, respectively.

Figure 4: Image with Progressively Blur Scale [29]

DoG is defined as:

𝐷𝜎,𝑘(𝑥, 𝑦) = 𝐿(𝑥, 𝑦; 𝜎) − 𝐿(𝑥, 𝑦; 𝑘𝜎), 𝑘 > 1 (3)

Calculating the Laplacian of Gaussian (LoG) approximations is the following step. It is

essential for having the scale invariant property. The idea is to compare each pixel in an

12

image with its 8 neighbors, as well as the 9 pixels in both the previous and next octave of

different blur scale. If the current pixel is a local extremum compared to its 26 neighbors,

it will be treated as a potential keypoint.

LoG can be calculated by:

∇2𝐺𝜎(𝑥, 𝑦) ≈
𝐺𝑘𝜎(𝑥, 𝑦) − 𝐺𝜎(𝑥, 𝑦)

(𝑘 − 1)𝜎2
(4)

The DoG representation in equation (3) is commonly used as an approximation of LoG in

equation (5) due to its time-efficiency. The scale factor 𝑘 = 1.6 is preferred.

However, the previous step gives more than necessary number of extrema. Those lies along

an edge and those without enough contrast are removed. The latter is checked with the

intensity of pixel and the earlier is performed by calculating its principal curvature with a

2 × 2 Hessian matrix 𝑯. Representing with math, a potential keypoint is determined to be

rejected and discarded if having:

{

|𝐷(𝑥, 𝑦)| < 0.03
𝛼

𝛽
< 10

(5)

where

𝛼, 𝛽 = eigen(𝑯), |𝛼| ≥ |𝛽|; 𝑯(𝑥, 𝑦) = [
𝐷𝑥𝑥(𝑥, 𝑦) 𝐷𝑥𝑦(𝑥, 𝑦)

𝐷𝑦𝑥(𝑥, 𝑦) 𝐷𝑦𝑦(𝑥, 𝑦)
] (6)

where 𝐷𝑥𝑦 is the second order difference quotient of DoG with respect to 𝑥 first and 𝑦 next.

The other three terms are following the same rule. Equations below examples the

calculations of the first and second order difference quotients:

𝐷𝑥(𝑥, 𝑦) = 𝐿(𝑥 + 0.5, 𝑦) − 𝐿(𝑥 − 0.5, 𝑦) (7)

13

𝐷𝑥𝑥(𝑥, 𝑦) = 𝐷𝑥(𝑥 + 0.5, 𝑦) − 𝐷𝑥(𝑥 − 0.5, 𝑦) =

𝐿(𝑥 + 1, 𝑦) + 𝐿(𝑥 − 1, 𝑦) − 2𝐿(𝑥, 𝑦) (8)

The two eigenvalues of the Hessian matrix of a feature point indicate the corresponding

shape around this point: When 𝛼 and 𝛽 both have large magnitudes, a corner is detected.

When 𝛼 is far larger than 𝛽, it is recognized as an edge, which is one of the two cases that

the potential keypoints should be rejected. The last case is for having small values of both

𝛼 and 𝛽. In this case, it is a low-contrast region that should also be rejected.

The legitimate keypoints obtained from previous steps are proven to be stable and scale

invariant. The succeeding step called orientation assignment provides SIFT algorithm

rotation invariance. The gradient magnitude 𝑚(𝑥, 𝑦) and direction 𝜃(𝑥, 𝑦) are calculated

for each point in an orientation collection region around the keypoint 𝐿(𝑥, 𝑦). They can be

calculated by:

{
𝑚(𝑥, 𝑦) = √[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]2 + [𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]2

𝜃(𝑥, 𝑦) = arctan
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)

(9)

An orientation histogram is used as a compilation of each keypoint. The horizontal axis

contains sectors that cover all 360 degrees. Configurations can be set manually depending

on the accuracy required. For examples, 10 sectors (36 degrees each), and 8 sectors (45

degrees each) can be used. The vertical axis is for the cumulative intensities for all pixels

in the orientation collection region. The highest peak in the histogram marks the orientation

of the keypoint.

Figure 5 [30] visualizes the process of determining the orientation of a keypoint. The blue

circle indicates the orientation collection region. As can be seen that each pixel around the

14

keypoint at the center are marked with a gradient with a black arrow, representing its

magnitude and orientation. The right part of this figure shows a detailed gradient within

each pixel.

Figure 5: Process of Calculating Gradient Magnitude and Orientation of a Keypoint [30]

So far, the location, scale, and orientation of all keypoints have been determined. A

distinctive and invariant descriptor is going to be assigned to each keypoint. During this

step, 4 × 4 blocks are windowed around the keypoint, which can be further combined into

16 × 16 sub-blocks. For each block, gradient in 8 sectors are calculated with similar steps

as previous. Therefore, a 128-dimentional (4 × 4 × 8) array can be used as the descriptor

of a keyframe.

At the end, in order to match the same feature across different images, the Euclidean

distance between keypoints in both images is calculated. The less distance they have, the

better they are matched.

Another feature extraction algorithm is SURF (Speeded-Up Robust Features) [30], it is

developed to increase to computing speed of SIFT. Instead of Gaussian filter for SIFT,

SURF utilizes box filters, enabling it for real-time applications.

15

The integral image 𝐼Σ(𝒙) at 𝒙 = (𝑥, 𝑦)𝑇 shows the summation of all pixels inside a

rectangular region formed by 𝒙 and the origin. It can be calculated by:

𝐼Σ(𝒙) = ∑ ∑ 𝐼(𝑖, 𝑗)

𝑗≤𝑦

𝑗=0

𝑖≤𝑥

𝑖=0

(10)

The main benefit of using integral image is to accelerate the computation of approximate

second order Gaussian derivatives, independently of size. Furthermore, instead of using a

LoG approximation as previously introduced in the SIFT algorithm, SURF calculates both

the approximation for convolution and for the second order derivative in a more effective

way. Given that:

𝑯(𝒙; 𝜎) = [
𝐿𝑥𝑥(𝒙; 𝜎) 𝐿𝑥𝑦(𝒙; 𝜎)

𝐿𝑦𝑥(𝒙; 𝜎) 𝐿𝑦𝑦(𝒙; 𝜎)
] (11)

Figure 6 [31] compares the Gaussian second order partial derivatives in 𝑦-direction (top-

left) and 𝑥𝑦-direction (bottom-left) with the box filter approximations. A 9 × 9 box filter

is used to estimate the Gaussian second order derivatives with blur factor 𝜎 = 1.2.

In this case, the determinant of Hessian matrix can be calculated by:

det(𝑯𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (𝜀𝐷𝑥𝑦)
2

(12)

Where 𝜀 is a relative weight that manually balanced, determined by the Frobenius norms:

𝜀 =
|𝐿𝑥𝑦(1.2)|

𝐹
|𝐷𝑥𝑥(9)|𝐹

|𝐿𝑥𝑥(1.2)|𝐹|𝐷𝑥𝑦(9)|
𝐹

≈ 0.912 (13)

16

Figure 6: Gaussian Filter (left) vs. Box Filter (right) [31]

The scale space for SURF is also slightly different from SIFT: Instead of reducing the

image size repeatedly, the size of box filter can be increased iteratively to analyze the scale

space. For instance, a 9 × 9 box filter is exampled in the last step to form a layer of the

pyramid. 15 × 15, 21 × 21, and 27 × 27 filters can be used to set the other layers. Note

that when a bigger mask of the box filter is used, the blur scale 𝜎 should also be magnified

by the same ratio. For example, the 27 × 27 filter should have 𝜎 =
27

9
× 1.2 = 3.6. The

advantage of this is that with the relative weight is remained constant since Frobenius

norms are scale normalized. Therefore, only one calculation is required among all layers

of the filter, which significantly boosts the computation of scale space.

The keypoint localization is similar to what SIFT does, the 26 neighbors of an interest point

are used for the comparison to localize the keypoint. Those with weak contrast and on an

edge are, again, eliminated to reduce the total number of keypoints.

17

In terms of the orientation, the Haar wavelet responses of a keypoint are calculated in both

𝑥 and 𝑦 direction, denoted 𝑑𝑥 and 𝑑𝑦. Same as SIFT, an orientation collection region of

4 × 4 is used. The responses within this region are summed up to ensure the uniqueness of

descriptors. Furthermore, considering the polarity change among intensities, the magnitude

of 𝑑𝑥 and 𝑑𝑦 are also used to make the descriptors recognizable. Figure 7 [30] examples

these four indicators Σ𝑑𝑥, Σ𝑑𝑦, Σ|𝑑𝑥| and Σ|𝑑𝑦| over three typical intensity patterns.

Figure 7: SURF Descriptors against Three Intensity Patterns [30]

To establish a descriptor for each keypoint, a 64-dimensional array (4 × 4 × 4) is generated.

This also explains the higher efficiency that SURF holds compared to the SIFT algorithm.

For the feature matching, the Euclidean distance is computed, which is following the same

rule as in the SIFT algorithm. Besides, SURF calculates the trace of Hessian matrix: When

these two keypoints being compared have both trace of same sign, no matter positive or

negative, these two features are considered to have their contrasts varying in the same

direction.

ORB (Oriented FAST and rotated BRIEF) [32] algorithm can also be used to extract

features from an input image and create unique descriptors for them, which can be further

18

used for applications such as image identification. This will be discussed in the later section

of ORB-SLAM family. A comparison among all the three algorithms of feature extraction

and matching will come in that section as well.

To filter out the outliers among the results computed directly from the camera

measurements, the RANSAC algorithm is implemented in the RGB-D SLAM.

Unlike the canonical data fitting method least square, which takes all data points into

account, RANSAC is famous for its ability to figure out the inliers and outliers. This is

extremely important for the point cloud segmentation of a SLAM system. Although it is

not mentioned in RGB-D SLAM, some modern SLAM systems extract objects from the

input point clouds, utilizing the a priori knowledge such as the shape, color, and sometimes

texture. For example, a desktop on the office desk is very likely to be a block shaped object.

The percentage of the numbers of inliers among all data points is defined as

𝑊 =
𝑛𝑢𝑚𝑖𝑛𝑙𝑖𝑒𝑟

𝑛𝑢𝑚𝑖𝑛𝑙𝑖𝑒𝑟 + 𝑛𝑢𝑚𝑜𝑢𝑡𝑙𝑖𝑒𝑟

(14)

Selecting 𝑛 points from the point set, the probability of having at least one outlier in each

time of 𝑘 iteration is (1 − 𝑊𝑛)𝑘.

Thus, the probability of having a correct prediction of model, which means that all points

selected are inliers, can be defined as

𝑃 = 1 − (1 − 𝑊𝑛)𝑘 (15)

The number of iterations can therefore be calculated by the following equation.

19

𝑘 =
log(1 − 𝑃)

log(1 − 𝑊𝑛)
(16)

The values of 𝑃, 𝑊, and 𝑛 are set based on experience. For example, having 300 data

points selected with inlier rate of 98%, the expected numbers of iterations required to obtain

a prediction with 99% correctness is around 2000.

However, RANSAC is limited for single model scenario. If more than one model can be

found among data points, Hough transform, or PEARL should be considered.

The iterative closest point (ICP) method is used to estimate the motions by aligning

consecutive point clouds and depth frames in RGB-D SLAM. Only point-to-point, i.e. the

original version of ICP used in RGB-D SLAM is discussed in this section. The improved

versions such as point-to-plane ICP and projective ICP will be included in the later section

of ORB-SLAM.

The question is mathematically defined as: given point cloud 𝑷 = {𝒑1, 𝒑2, … , 𝒑𝑛} and its

consecutive point cloud 𝑸 = {𝒒1, 𝒒2, … , 𝒒𝑛} and solve for the camera rotation matrix 𝑹

and translation matrix 𝒕 in the following equation.

𝒒𝑖 = 𝑹𝒑𝑖 + 𝒕 (17)

This equation does not hold all the time due to sensor noises and possible errors in data

association process. In this case, this is an optimization problem with object function:

1

2
∑‖𝒒𝑖 − 𝑹𝒑𝑖 − 𝒕‖2

𝑛

𝑖=1

(18)

A common way of solving this problem is singular value decomposition (SVD).

20

Giving center of mass for each point clouds, 𝝁𝑝 =
1

𝑛
∑ 𝒑𝑖

𝑛
𝑖=1 and 𝝁𝑞 =

1

𝑛
∑ 𝒒𝑖

𝑛
𝑖=1 , the

displacement of each data point to the center of mass is defined as 𝒑𝑖
′ = 𝒑𝑖 − 𝝁𝑝 and 𝒒𝑖

′ =

𝒒𝑖 − 𝝁𝑞, the object function in equation (18) can be rewritten as

1

2
∑ (‖𝒒𝑖′ − 𝑹𝒑𝑖′‖

2 + ‖𝝁𝑞 − 𝑹𝝁𝑝 − 𝒕‖
2

)

𝑛

𝑖=1

(19)

The optimized solution is solved as

𝑹∗ = argmin
𝑹

∑ −𝒒𝑖
′𝑇𝑹𝒑𝑖′

𝑛

𝑖=1

(20)

𝒕∗ = 𝝁𝑞 − 𝑹𝝁𝑝 (21)

To simplify the rotation matrix, let 𝑾 = ∑ 𝒒𝑖
′𝒑𝑖

′𝑇𝒏
𝒊=𝟏 .

From SVD, for a full rank matrix 𝑾 = 𝑼𝚺𝑽𝑇, where 𝚺 is a square diagonal matrix, the

combination of 𝑼 and 𝑽 matrices exists and is unique. Therefore, the optimized rotation

matrix in equation (20) can be rewritten as

𝑹∗ = 𝑼𝑽𝑇 (22)

21

2.2 ORB-SLAM Family

ORB-SLAM family includes three generations and has now become one of the most

accurate real-time visual SLAM systems without the adoption of deep learning methods.

Inspired by PTAM [12], the first generation ORB-SLAM [15] enhanced efficient real-time

operation in large-scale environment. It is the first SLAM system utilizes ORB features for

extraction and matching. Dividing the SLAM task into tracking, local mapping, global

relocalization and loop closing, ORB-SLAM enables efficient computation without GPU

acceleration. Besides, the system robustness is significantly enhanced by its unique

initialization process, map creation method, and keyframe selection policy.

A schematic overview of ORB-SLAM is included below as Figure 8.

Figure 8: Schematic Overview of ORB-SLAM [15]

As a beginning version, ORB-SLAM also has its limitations. First, implemented with only

monocular camera configuration, the depth estimations could be challenging compared to

22

the other systems using RGB-D or stereo configurations. Besides, the loop closing method

at that time can still become struggling under certain conditions. This is said to happen

more frequently in complex and repetitive environments. Lastly, the computational cost is

relatively high due to the nature of ORB features.

Considering of all the deficiencies, ORB-SLAM2 [16] was proposed by the same group of

researchers after two years. Comparing to their previous work, improvements are made

from multiple aspects. First of all, ROS platform becomes optional, the SLAM system can

be performed and visualized by Pangolin package instead. Secondly, not only monocular

but also stereo and RGB-D cameras are supported in its framework. And as the result, the

initialization process is redesigned as preprocessing since the depth information can be

either directly obtained from an RGB-D camera or calculated through disparities from a

stereo camera. The scale information of objects, in this case, is calculated from rigid

transformation instead of similarities therefore being more accurate. This also fixes failures

from the drifting as well as during rotations, caused by the nature of monocular cameras.

Moreover, a full bundle adjustment is implemented to ORB-SLAM2 after its loop detection

for enhanced mapping accuracy. Lastly, a localization mode is implemented to the SLAM

system. Other than the normal operation which creates a map while localizing the robot

simultaneously, it is capable for operations in a known environment where a map has

already been generated and can be loaded as input of the system. It is introduced that the

local mapping and loop closing threads of the system are suspended under this situation;

the relocalization thread is processed alone. The tracking of robot acts similar as a visual

odometry system at this moment.

A schematic overview of ORB-SLAM2 is included below as Figure 9.

23

Figure 9: Schematic Overview of ORB-SLAM2 [16]

ORB-SLAM2 also has limitations compared to the other SLAM algorithms during the

same period. One of the principal concerns raised by researchers is the lack of sensor fusion.

There are multiple algorithms proposed at that time adopting information from multiple

sensors. Lidar, GPS, and IMU sensors are frequently used as compensations for the camera

in challenging situations to improve the system robustness in complex environment.

ORB-SLAM3 [19], the latest generation of this family, introduces multiple improvements

based on the inadequacy explained earlier. Firstly, it supports IMU, the inertial sensor as

an optional input to enhance the robustness. It is said that the system accuracy is also

improved relying on Maximum-a-Posteriori (MAP) estimations. Besides, an advanced

place recognition algorithm is proposed in ORB-SLAM3 to provide better system accuracy

24

with a slightly increased computational cost. Furthermore, integrating ORB-SLAM Atlas

[20], ORB-SLAM3 has become a comprehensive multi-map SLAM system.

A schematic overview of ORB-SLAM3 is included below as Figure 10.

Figure 10: Schematic Overview of ORB-SLAM3 [19]

The following part in this section will explain how ORB features can be extracted and

matched. The pros and cons of ORB feature alongside the two other feature extraction and

matching methods discussed in the previous section will be summarized in this part as well.

25

ORB (Oriented FAST and rotated BRIEF) [32] is a combination and upgrade of a feature

extraction algorithm FAST (Features from Accelerated Segment Test) and a feature

descriptor BRIEF (Binary Robust Independent Elementary Features).

FAST takes 16 pixels around the interested pixel, also called a patch of interest: one pixel

that are 2 pixels away along each of the intercardinal directions (a total of 4), and one pixel

that is approximately 3 pixels distance along each of the cardinal directions (a total of 4),

and the two pixels next to the ones in the cardinal directions (a total of 8). These 16 pixels

form a circle around the interested point, also known as a Bresenham’s circle of radius 3.

If more than half of these pixels have intensities 𝑙𝑖 (𝑖 ≤ 16, 𝑖 ∈ ℤ+) are beyond a threshold

(𝑙𝑖 ≥ 𝑙𝑝 + ℎ or 𝑙𝑖 ≤ 𝑙𝑝 − ℎ, where ℎ is the preset threshold), the interest point of intensity

𝑙𝑝 is considered as a keypoint.

FAST further improves this step by only comparing the four pixels in the cardinal

directions. It is discovered that only if two or more pixels among these four satisfy the

previously mentioned criteria, that the interest point is possible to be a keypoint. This

reduces the process time significantly, to approximately one fourth.

To detect those interest points in adjacent locations and determine which one suits better,

a non-maximal suppression is applied. It is explained that a score function will be computed

in this case:

𝑉 = ∑|𝑙𝑝 − 𝑙𝑖|

𝑖≤16

𝑖=1

(23)

The interest point with lesser score is eliminated.

26

Different from SIFT and SURF algorithms, FAST detects the regions with rapid contrast

change, which typically indicates an edge. The green marks in Figure 11 below represents

part of the features detected. It can be seen that the keypoints are aligned with the joints of

pipes, a ladder, and the frames of baffle boards.

Figure 11: Features Extracted with FAST Algorithm

ORB further apply an orientation assignment to FAST, named oriented FAST. It assigns a

direction for each keypoint, depending on the intensities of neighbor pixels. A vector is

established pointing from the geometric center, which is the location of the keypoint itself,

to the intensity center of its neighbors. The location of the intensity center as well as this

orientation can be calculated with the moment of this patch.

In terms of the BREIF descriptor, it starts from blurring the image, using the Gaussian

kernel to prevent the descriptor being sensitive to noises, same as SIFT. After that, a pair

of pixels is selected randomly among these neighbors. The first point of the pairs is selected

from a Gaussian distribution centered around the keypoint with a standard deviation of 𝜎.

27

The second point is selected within a standard deviation of 𝜎/2 centered around the first

point. It has been proven that this will increase the feature matching rate. The intensities of

these two points are compared to determine a binary value, which is used as one digit of

the descriptor. Representing with math:

𝜏(𝒑; 𝒙, 𝒚) = {
1 ∶ 𝒑(𝒙) ≤ 𝑝(𝒚)

0 ∶ 𝒑(𝒙) > 𝑝(𝒚)
(24)

where 𝒑(𝒙) and 𝒑(𝒚) are the intensities of the first and second point, respectively. 𝒙 and

𝒚 are the pixels selected, defined by the image coordinates 𝒙 = (𝑢, 𝑣)𝑇.

This intensity test is performed repeatedly for 𝑛 pairs of random points, typically 𝑛 =

128, 256 𝑜𝑟 512, so that these binary values form up a unique bitstring 𝑓(𝑛)of the set

length, that is the BRIEF descriptor. Representing with math:

𝑓(𝑛) = ∑ 2𝑛−1 𝜏(𝒑; 𝒙𝒊, 𝒚𝒊)

1<𝑖<𝑛

(25)

ORB algorithm also endows the BRIEF descriptor with rotation invariance, named rotated

BRIEF. Instead of rotating the entire patch around each keypoint, only the selected BRIEF

pairs are rotated, so that the computation cost is reduced. The location of selected pairs can

be represented by:

𝑺 = [
𝒙𝟏 … 𝒙𝒏

𝒚𝟏 … 𝒚𝒏
] (26)

The location of rotation invariant pairs can be represented by:

𝑺𝜽 = 𝑹𝜽𝑺 (27)

28

where 𝜃 comes from the orientation assignments, indicating the direction from geometric

center to the intensity center of the patch. 𝑹𝜽 is the rotation matrix relating the original

direction with the orientation of intensity center.

By this way, the location of the detected pairs can always be transformed into a normalized

direction before comparing with the location of another set of random pairs that are in the

same direction. Thus, the rotation invariance of the descriptor can be ensured.

Table II below exhibits a comparison of the performances among these three algorithms

mentioned in this section.

Table II: Comparison of Three Feature Extraction and Matching Algorithms

Algorithm Name SIFT SURF ORB

Computation Efficiency + ++ +++

Rotation Robustness +++ ++ ++

Scale Robustness +++ ++ +

It can be concluded that when the application demands high real-time performance, the

ORB algorithm is preferred. However, it only provides partial scale invariance, indicating

that the images are preferred to be taken from the right in front of the objects in order to

achieve its best performance. The SURF algorithm not only solves this scale invariance

problem but also makes progress on the rotation robustness. Besides, as an improved

version of the SIFT algorithm, SURF computes the features in a more time efficiency way,

contributed by its operational simplicity explained earlier. Although SIFT is the most time-

29

consuming algorithm, it has the best rotation and scale robustness. It is better to be applied

to those demand high accuracy but without the need of real-time operation.

ORB-SLAM3 also has state-of-the-art optimization methods, including pose graph

optimization, bundle adjustment, and loop closure optimization. One of the most critical

keys to build an accurate SLAM system is the bundle adjustment. Therefore, a brief

summary of the bundle adjustment method is included below.

Bundle adjustment aims to optimize the camera pose estimations and the coordinates of

keypoints. The core issue is to solve a problem minimizing the reprojection error, which

can also be considered as a nonlinear least square problem, defined as:

min ∑ ∑[𝑢𝑖𝑗 − 𝜋(𝐶𝑗 − 𝑋𝑖)]
2

𝑚

𝑗=1

𝑛

𝑖=1

(28)

where 𝑢𝑖𝑗 is the pixel coordinate of observed 𝑖th point 𝑋𝑖 by 𝑗th camera 𝐶𝑗 , 𝜋(∙) is the

reprojection function, which is nonlinear.

There are multiple ways to solve this problem. The old-fashioned ways are based on

gradient descent and Newton’s method. However, gradient descent method cannot achieve

fast converging; Newton’s requires to calculate the computing expensive Hessian matrix

and cannot ensure a steady descent of gradient. Gauss-Newton improves the solving to

some extent. The calculation of Hessian matrix is avoided but the descent of gradient can

still not be guaranteed. A powerful tool commonly used today is called Levenberg-

Marquardt method, which is developed by combining gradient descent with Gauss-Newton.

This method ensures a fast convergence with descending gradient by tuning a parameter 𝜆.

30

CHAPTER 3 SYSTEM ARCHITECTURE

The proposed system is built on ORB-SLAM3 [19]. Figure 12 dissects the main system

components, that a new working thread named Dense Reconstruction is created beyond the

original system, circled by the red dashed box.

Figure 12: Architecture of the Proposed SLAM System

Dense Reconstruction thread takes two inputs. The first one is keyframes, decided by the

tracking thread. This frame can be a combination of color image and depth image, provided

by an RGB-D camera; or it can be two images from both views of a stereo camera. The

following working process differs depending on the type of camera.

31

The second input is optional. Leveraging the Atlas subsystem and configure by user, when

enabling the multi-sequence merging mode, a dense point cloud from the previous

sequence(s) is expected to be input, carrying the keyframes, map points, as well as their

connections.

The following stage generates a depth map and a color map for each keyframe. Our purpose

is to obtain the red, green, and blue intensity of each pixel along with its distance to camera;

therefore, the pixel can be converted to a map point in the dense point cloud. This is

straightforward when using an RGB-D camera as all the information can be read directly

from the image captured.

For a stereo camera, yet, we have to take additional considerations. To obtain the depth

from corresponding left and right views of a keyframe, we first compute a disparity map.

However, it is quickly discovered that not all pixels, even in keyframes, brings useful

information. For example, some pixels can be too obscure to give reliable calculations, and

some can have beyond reasonable distances. These outliers introduce perceptible errors

when converting their disparities to depths. These pixels are mostly located on the

periphery of the image; hence, a region of interest is chosen, and only those pixels within

are used to compute the disparity.

In terms of creating a color map from stereo images, limited by the size of dataset, many

stereo images are provided grayscale. This is not sufficient enough to generate a

recognizable 3D scene. The demand of better visualization necessitates a color assignment

based on depth.

Since the system is designed to process multiple sequences of the same scene, it is revealed

that the same feature can be repeatedly detected, during one dataset and, specifically, cross-

32

datasets. The same map point can, therefore, be assigned to the point cloud for multiple

times. However, a later estimation does not mean it is inevitably more accurate. For

example, a map point corresponding to a center pixel of the image was detected at a

distance of 1 meter from the camera and was then added to the point cloud. After 20

seconds, the same point is detected again, but now from 5 meters away, and the

corresponding pixel is located at the periphery of the interest region in the image. We are

cognizant of the fact that the latter presence, in this case, should be treated as less accurate,

in accordance with the epipolar geometry.

With regard to this, we register a probability to each map point in the dense point cloud as

its confidence. It is initialized when a map point is being added to the dense point cloud. A

modified sigmoid function is used to assign this probability. The less depth a map point

has, the higher confidence on its accuracy we can have. This probability is updated only

when two map points are merged with the following rule: when a map point is being added

to the dense map, if another map point already exists within a preset spatial distance, then

they are treated as the same point. Accordingly, the pending map point combines with the

existing one, and being replaced by a new map point at a location calculated from their

probabilities of confidence. This prevents those inaccurate latter estimations from ruining

the previous trust-worthy point cloud map.

To demonstrate the real-time reconstruction, we further process the dense point cloud to a

voxel grid filter before visualization. The redundant points in the dense point cloud are

removed. The point cloud is sparsified at a user-configurable resolution such that only

desired number of points are preserved in the map, thereby reducing the CPU workload.

The dense point cloud is also converted to an Octomap, which represents the scene with a

33

compact 3D model. Both the dense point cloud map and the Octomap are saved before

exiting for potential uses afterwards.

The following sections in this chapter will detail the improvements mentioned above.

3.1 Camera Model

As discussed in the literature review, ORB-SLAM3 efficiently identifies the ORB features

and accurately produces a semi-dense map in real-time. We further utilize these keyframes

determined by the original system to provide an additional function of constructing dense

point cloud maps with either RGB-D or stereo images. Furthermore, this dense point cloud

is converted into an Octomap for possible subsequent operations. A pinhole camera model

is assumed during the reconstruction for simplicity.

For a point 𝑃(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) in the world coordinate system, its projection onto the image

coordinate system, denoted as (𝑢, 𝑣), can be calculated with a homogeneous expression:

𝑧𝑐 [
𝑢
𝑣
1

] = 𝑲 [
𝑹3×3 𝒕3×1

0 1
] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (29)

where 𝑧𝑐 is the distance of the point from image; 𝑹 and 𝒕 are the rotation and translation

matrices that form up the camera extrinsic. 𝑲 is the camera intrinsic matrix defined with

the focal length, 𝑓𝑥, 𝑓𝑦, the principal point offset 𝑐𝑥, 𝑐𝑦, horizontally and vertically, and the

axis skew coefficient 𝑠. These camera parameters are directly input to the system from a

configuration file.

Reconstruction of map points, which is detailed below, reverses the calculation of equation

(29). The processes using RGB-D and stereo camera, however, differ significantly since

34

the depth 𝑧𝑐 cannot be obtained directly from stereo images. For this reason, they are

discussed separately in their respective sections.

3.2 Dense Reconstruction from RGB-D Camera

Generating a point cloud from RGB-D camera is relatively simple. This process is formally

presented in Algorithm 1.

Figure 13: Algorithm 1 for RGB-D Point Cloud Generation

35

The set of input frames are bijective with either the set of color images or the depth images.

Therefore, the frame ID, 𝑛, can be used to access all these three sets, 𝕊𝑓 , 𝕊𝑐 and 𝕊𝑑 .

Therefore, if a frame is determined as keyframe in the Tracking thread, a correlated pair of

color image and depth image is added to queue. The decision of keyframe is made,

according to certain rules that have been introduced in the original system. On the other

hand, the Dense Reconstruction thread pops out from the front of the queue with a first

come first serve manner. The world position for each pixel is calculated with the pinhole

model, illustrated in Figure 14.

Figure 14: Illustrative Diagram of RGB-D Camera Model

Assume a point 𝑃(𝑃𝑋 , 𝑃𝑌, 𝑃𝑍) — in the camera coordinate system, with origin at the focal

point 𝑂 — is projected to the image plane at 𝑝(𝑝𝑥, 𝑝𝑦, 𝑝𝑧), where 𝑃𝑍 is its distance to the

camera, from 𝐶 to 𝑂. Using an RGB-D camera, this can be directly measured, so being

36

used as line 13 in Algorithm 1. 𝑝𝑧 is also a known value, which is the distance from 𝑐 to

𝑂. It measures from the image plane to the focal point, which is the focal length 𝑓. The 𝑥

and 𝑦 coordinate of this point can be calculated separately, each with a pair of similar

triangles. Horizontally, the first triangle is formed by 𝑂 , 𝑐 and the point where 𝑝𝑥 is

marked in the figure; and the second triangle is within 𝑂, 𝐶 and the point where 𝑃𝑋 is

marked. They are filled with light and dark blue, respectively. Likewise, another pair of

triangles is formed vertically. These pair of triangles are in green. From these similarities,

the equations in line 14 and 15 are established.

Concurrently, color in blue, green, and red intensities are extracted from 𝑴𝑐 and assigned

to each point. This process iterates whenever the image queue is not empty and ends by the

end of program when thread is killed. Line 19 stores the converted map points of a single

keyframe to ℙ𝑐, that is in camera coordinate system. Line 21 converts these points to world

coordinate system with a transformation matrix 𝑻𝑤
𝑐 calculated and optimized by the

original system, then updates the dense point cloud 𝕊𝑃 with all nonexistent points.

These map points are recorded in the form of voxels. For a 640 by 480 image, more than

300,000 voxels are generated, causing unnecessary computational burden if all of them

are stored into the dense map. A reasonable solution to this issue is to use a voxel filter,

which sieves the close voxels and replaces them with only one voxel. This filter can operate

at a preset resolution. In order to ensure real-time performance most of the time in the

experiments, more than 90% of the voxels are removed. They are stored into a .pcd file for

reuse purpose as well as the Octomap conversion, which will be discussed in the latter

section.

37

3.3 Dense Reconstruction from Stereo Camera

Generating a point cloud from stereo camera requires extra steps compared to the previous

discussed RGB-D reconstruction. This process is formally presented in Algorithm 2.

Figure 15: Algorithm 2 for Stereo Point Cloud Generation

38

Unlike the RGB-D camera which can obtain the depth directly, the concept of disparity,

which is introduced in epipolar geometry, is required to calculate depth from a stereo

camera. However, we need to rectify both views in advance. In this step, functions in the

OpenCV [28] library are used to undistort, calibrate, and crop the image: the epipolar is

moved to infinity, the same pixels are aligned horizontally as much as possible, and invalid

regions are removed. This is done in line 4 of Algorithm 2, where 𝑅𝑂𝐼 stands for the region

of interest, which consists of the upper and lower bounds of the image in both horizontal

and vertical directions.

Disparity indicates the distance of a point 𝑃 between the left and right views, in the unit of

pixels. As shown in Figure 16, the point 𝑃 is projected onto the left image plane at 𝑝𝐿,

having horizontal coordinate of 𝑝𝐿
𝑥; and for the right image plane, 𝑝𝑅

𝑥. As aforementioned,

only horizontal disparity 𝑝𝐿
𝑥 − 𝑝𝑅

𝑥 needs to be considered after calibration. In line 11 of the

algorithm, disparities are calculated for all pixels with the calibration matrices 𝑴𝑐𝑙 and

𝑴𝑐𝑟. They are stored in consistent with the input image in 𝒅, which is a matrix of the same

size as image.

The next step is to convert the disparity to depth with geometric similarity. Note that after

the calibration, the two “curves” 𝑂𝐿𝑂𝑅 and 𝑝𝐿
𝑥𝑝𝑅

𝑥 in blue are line segments, they seem to

be curves due to one-point perspective. The length of baseline is defined as 𝑏; the distance

between the two points marked 𝑝𝐿
𝑥 and 𝑝𝑅

𝑥 is 𝑏 – 𝑝𝐿
𝑥𝑐𝐿 + 𝑝𝑅

𝑥𝑐𝑅 , since 𝑂𝐿 and 𝑂𝑅 are

projected at the center of each image. The two triangles formed by the point marked 𝑃𝐿
𝑋

and each of the two segments are similar. Thus, the equation in line 17 can be applied to

find the length of the blue line segment perpendicular to baseline, which is the depth of

point 𝑃.

39

Figure 16: Illustrative Diagram of Stereo Camera Model

As for colors, the grayscale images have same intensities for all three channels: red, green,

and blue. For better visualization, line 12 assigns all pixels with colors based on their depths.

The colorization is coded as an optional function intentionally. The alternative option

assigns all map points with a single solid color, defined by user before the program starts.

Having this option benefits the visualization when running multiple sequences in the same

scene.

3.4 Octomap from Dense Point Cloud

The previous section outlines the process of generating a dense point cloud map. This

section introduces an alternative mapping method, Octomap, its necessity and

implementation.

One major limit for the dense point cloud map is that too much space is consumed after

mapping for a sizable dataset, even after those redundant points being filtered. Depending

40

on the application, these dense maps can sometimes be needlessly detailed in textures and

shadings. On contrary, Octomap have its storage cost prominently reduced by using Octree,

a tree structure, which partitions the space into multiple cubic voxels. Each of them, being

considered as a parent node, can be further divided into eight child nodes, halving in all

three directions.

This step is repeated for multiple times until a satisfactory resolution is reached. The tiniest

voxels after division, called leaf nodes, are assigned with float numbers to represent the

probabilities of their positions being occupied. This probability is initialized with 0.5 and

always in the [0,1] interval. The larger this number is, a higher degree of certainty we have

that this voxel has already been occupied. To visualize the map, all unoccupied and

undetermined leaf nodes are rendered in fully transparent while those occupied are

rendered with colors to form the 3D model. Different from the dense point cloud, Octomap

has a compact structure, so that it can be directly used by mobile manipulation, navigation,

and other robotic applications.

Furthermore, this tree structure guarantees an outstanding computing efficiency and

demands less space for storing. To be more specific, all eight child nodes under a parent

node are pruned if they are assigned with same states, i.e., "unoccupied", "undetermined"

or "occupied", since the parent node itself is sufficient enough to describe this volumetric

space. The map structure is greatly simplified in such manner.

Introduced by the author in [23], 𝑃(𝑛|𝑧1:𝑡), the probability that a leaf node 𝑛 has been

occupied at time 𝑡, with the sensor measurements 𝑧1:𝑡 given, is updated by:

𝑃(𝑛|𝑧1:𝑡) = [1 +
1 − 𝑃(𝑛|𝑧𝑡)

𝑃(𝑛|𝑧𝑡)

1 − 𝑃(𝑛|𝑧1:𝑡−1)

𝑃(𝑛|𝑧1:𝑡−1)

𝑃(𝑛)

1 − 𝑃(𝑛)
]

−1

(30)

41

The 𝑙𝑜𝑔𝑖𝑡 function maps the probabilities from 𝑃(𝑛) ∈ (0,1) to α(𝑛) ∈ 𝑅 . When a

probability is above 0.5 , it is mapped to a positive number, and vice versa. The

transformation is defined as:

α = 𝑙𝑜𝑔𝑖𝑡(𝑃) = ln (
𝑃

1 − 𝑃
) (31)

The inverse function of 𝑙𝑜𝑔𝑖𝑡 is 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, defined as:

𝑃 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(α) = 𝑙𝑜𝑔𝑖𝑡−1(α) =
1

1 + e−α
(32)

To avoid the calculations with astronomical numbers, upper and lower limits, 𝑙𝑚𝑎𝑥 and

𝑙𝑚𝑖𝑛, for the 𝑙𝑜𝑔𝑖𝑡 transformation are defined. Applying equation (32) to equation (31)

results:

𝐿(𝑛|𝑧1:𝑡) = max(min(𝐿(𝑛|𝑧1:𝑡−1) + 𝐿(𝑛|𝑧𝑡), 𝑙𝑚𝑎𝑥) , 𝑙𝑚𝑖𝑛) (33)

where 𝐿(𝑛|𝑧) = ln (
𝑃(𝑛|𝑧)

1−𝑃(𝑛|𝑧)
).

This equation dissects the update of probability at leaf node 𝑛 after receiving a new

observation 𝑧𝑡, showing the fact that the update is based on accumulations. The current

probability is mapped with equation (31) to make it accumulative, before adding it to the

existing previous probabilities. To concludes the update, the probability is mapped back to

the [0,1] interval with equation (32). For instance, if a point has been regularly measured

to be unoccupied, its estimations are correspondingly to be negative. The initial estimation

at zero, mapped from a probability of 0.5, is added with these negative estimations and

becomes more negative before the minimum limit is reached. This negative number with

42

huge magnitude, at the end, maps to a near-zero probability, indicating this voxel is very

likely to be unoccupied.

This approach is implemented to the proposed system utilizing some predefined functions

in the Octomap library that calculates and generates the Octomap with the dense point

cloud.

3.5 Multi-Sequence Merging

The demands for additional computing resources have been recognized when constructing

a 3D dense point cloud. This cannot be avoided due to the nature of dense reconstruction,

computing pixel-wise always takes longer. To minimizing the negative impact, we would

like to have the function of reutilizing the map and point cloud. As a result of this, we are

able to fragment a huge sequence; Regaining the full view by merging multiple tinier

sequences have become possible. This function is designed as optional since not in all cases

that it is required.

The map saving and loading functions in the proposed system is refined so that all data can

be accessed across datasets. With this approach, it is able to run multiple partially

overlapping sequences in the same scene and provide probabilistic updates to map points

in the dense point cloud, therefore, constructing a reliable map to enhance the tracking

accuracy. In the previous section, we briefly mentioned that when a map point is added to

the dense point cloud, its position is corrected according to a probability of confidence.

This section explains this approach exhaustively.

43

As mentioned earlier, one of the key steps when generating the dense point cloud map is

to obtain the depths of all map points. These depths are then transformed into world

positions by multiplications with the transformation matrices. Regardless of the RGB-D

camera that can directly obtain the depth, when using a stereo camera, the calculated depths

are obviously not fully accurate since they are based primarily on the camera model and

the epipolar geometry, both of which have made assumptions for simplicity.

For stereopsis vision, each increment of the disparity suggests a closer corresponding

position in space. However, it is discovered from line 17 of Algorithm 2 that the

relationship between disparity and depth of a map point is not linear but inversely

proportional, implying that the possible values of depth are denser for those points closer

to the camera. This fact provokes the idea that measurements should not be treated as equals.

The sparse depth values, for those map points at far, can lead to increased measurement

error. Observations closer to the camera should thus be considered more credible.

The closest and farthest depth, 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 , establish an acceptable range for map

points. Any map point within this acceptable range will be assigned with a probability, 𝑃,

before joining the dense point cloud map. This probability represents the level of

confidence we have to its sensor measurement. From a practical point of view, assigning

full confidence to a map point at the minimum distance is witless, resulting it no longer

updatable. Conversely, setting zero trust to a point at the maximum distance is also

imprudent, exerting insufficient effect on the map update. Since the ideal values of 𝑑𝑚𝑖𝑛

and 𝑑𝑚𝑎𝑥 differ from datasets, they are predefined in a configuration file. The highest 𝑃𝑚𝑎𝑥

and lowest 𝑃𝑚𝑖𝑛 probabilities a map point can possess when locating at distance 𝑑𝑚𝑖𝑛 and

𝑑𝑚𝑎𝑥, respectively, are also set in accordance with the surrounding conditions. A modified

44

version of the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function is used to register probability 𝑃 to a map point 𝑐 with its

depth 𝑑, as follows:

𝑃(𝑑) = 1 −
1

1 + e−𝑘(𝑑−𝑑0)
(34)

where 𝑘 = 2 ln(𝑃𝑚𝑎𝑥
−1 − 1) /(𝑑𝑚𝑖𝑛 − 𝑑𝑚𝑎𝑥); 𝑑0 = (𝑑𝑚𝑖𝑛 + 𝑑𝑚𝑎𝑥)/2; 𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥.

This function retains the characteristic of the original function, having descending

gradients when reaching its saturation. Moreover, it is ensured that the points (𝑑𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥)

and (𝑑𝑚𝑎𝑥, 𝑃𝑚𝑖𝑛) are passed through. Due to the symmetry property of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function,

this function has the properties: 𝑃𝑚𝑖𝑛 + 𝑃𝑚𝑎𝑥 = 1 and 𝑃(𝑑0) = 0.5.

Since the same map point can be detected time after time, whether in the same dataset or

across different datasets, a probabilistic-based optimization is made to estimate its position

when it is added to the dense point cloud map repeatedly. The probabilities of confidence

for both times are calculated by equation (34) and used jointly to find a weighted average.

For a newly added map point 𝑐1, the spatial distance from its closest point existing in the

point cloud, 𝑐2 , is calculated by two-norm. If this is less than a certain value, that is

converted from the preset resolution, these two map points will be considered as the same

point, and be replaced with a new map point, 𝑐3. We define the update as:

𝑆(𝑐3) =
𝑃(𝑑1)

𝑃(𝑑1) + 𝑃(𝑑2)
𝑆(𝑐1) +

𝑃(𝑑2)

𝑃(𝑑1) + 𝑃(𝑑2)
𝑆(𝑐2) (35)

where 𝑆(𝑐𝑖) = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖, 𝑑𝑖], representing the Cartesian coordinates of map point 𝑐𝑖 in the

world reference frame and its distance from the camera.

45

The probability, 𝑃3, is then calculated by equation (35). As such, 𝑐3 becomes the latest map

point that another searching and replacing process is applied to. This is iterated as many

times as necessary until no map point can be found within the minimum spacing. Figure

17 exemplify the update in 2D.

Figure 17: Example of Point Cloud Updating

Each black dot represents a map point that already exists in the dense point cloud. The red

dot indicates the newest inserted map point and the red circle filled with light yellow

describes the searching space around a map point. The blue dot shows a new position for

the map point which is estimated by combining the two previous probabilities. Those map

points that have been removed from the map are drawn in orange.

For the instance in this figure, two rounds of selection, searching and replacing procedure

have occurred. At the end, the six initially map points in the point cloud is eliminated to

four, with an accepted distance between any two of them.

In conclusion, using the update rule introduced in this section, we are able to achieve more

accurate map point estimations; meanwhile, the redundant map points are banished from

the point cloud to reduce the computation workload.

46

CHAPTER 4 RESULTS AND DISCUSSION

We verify the performance of our proposed system with the following two sets of

evaluations:

• 3D dense reconstruction: with benchmark dataset TUM [33] for RGB-D camera; and

indoor dataset EuRoC [34], outdoor dataset KITTI [35] for stereo camera configuration.

• Multi-sequence merging in all datasets.

All experimental results are produced in the operating environment of Intel Core i7-7500U

at 2.7GHz, 1×8 GB RAM, and without GPU acceleration.

The length of each sequence in all three datasets are provided in Table III below.

Table III: Dataset Characteristics

a. TUM dataset (Length in 𝑚, duration in 𝑠, camera 30𝐻𝑧)

Sequence FR1_desk FR1_room FR2_desk FR2_no_loop FR2_with_loop FR3_office

Length 9.263 15.989 18.880 26.086 39.111 21.455

Duration 23.40 48.90 99.36 112.37 173.19 87.09

b. EuRoC dataset (Length in 𝑚, duration in 𝑠, camera 2 × 20𝐻𝑧)

Sequence MH_01 MH_02 MH_03 MH_04

Length 80.6 73.5 130.9 91.7

Duration 182 150 132 99

Sequence MH_05 V1_01 V1_02 V1_03

Length 97.6 58.6 75.9 79.0

Duration 111 144 83.5 105

c. KITTI dataset (Total length 39.2km, 41k frames, in 22 sequences, camera 2 × 10𝐻𝑧)

To validate the accuracy of our proposed system, we compute the root mean square value

of absolute trajectory error, which is a widely used criteria and defined as:

For an estimated trajectory 𝑿̂ = {𝑥̂1 … 𝑥̂𝑛} and its corresponding ground truth 𝑿,

Sequence 00 01 02 03 04 05 06 07

Frames 4541 1100 4661 801 271 2761 1101 1101

47

𝐴𝑇𝐸𝑅𝑀𝑆𝐸(𝑿̂, 𝑿) = √
1

𝑛
∑‖𝑇𝑿̂𝒊 − 𝑇𝑿𝒊‖

2
𝑛

𝑖=1

(36)

where inside the sigma is the Euclidean distance between the two poses from estimation

and ground truth at time stamp 𝑖.

4.1 RGB-D Dense Reconstruction

Figure 18 exhibits the dense point cloud maps with their corresponding Octomap generated

from sequences in the TUM dataset using RGB-D camera configuration and single

sequence operation.

These results demonstrate the validity of our system with RGB-D images. The red and

green markers in the point cloud represent the starting and ending locations while those

blue markers are the keyframes determined by the original ORB-SLAM3 system.

Errors calculated for all sequences with the proposed system is summarized in Table IV,

showing a comparison with RGB-D SLAMv2. Results for proposed system are calculated

from the average of three runs for fairness. Results for RGB-D SLAMv2 is obtained from

[22].

Table IV: TUM Single Sequence RGB-D Reconstruction Performance Comparison

Sequence FR1_desk FR1_room FR2_desk FR2_no_loop

Proposed 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) 0.017 0.052 0.018 0.237

Proposed 𝐹𝑃𝑆 (𝐻𝑧) 23.7 24.2 19.6 17.7

RGB-Dv2 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) 0.026 0.087 0.057 0.860

RGB-Dv2 𝐹𝑃𝑆 (𝐻𝑧) 15.2 14.0 7.34 6.80

48

(a) FR1 desk

(b) FR1 room

(c) FR2 desk

49

(d) FR3_office

(e) FR2_no_loop

Figure 18: Dense Point Cloud (left) and Octomap (right) Reconstructed with RGB-D

Camera from Single Sequence in TUM Dataset

It can be summarized that the proposed system exhibits better performance compared to

RGB-D SLAMv2 algorithm, the root mean square absolute trajectory error is reduced up

to one-fourth. Considering the camera input is at 30Hz in this dataset, we are close to

achieve real-time dense reconstruction in small indoor environment. However, the time

consumption is still challenging in a relatively large room. This could be improved

significantly by reducing the map density, which is coded as a user input that can be easily

50

modified at preparative stage. Comparing the frame rates in FR1_room and FR1_desk

datasets, it is observed that the smaller-scale scene unexpectedly demonstrates less frame

rates, indicating that it could be the hardware that constraints the system performance.

Figure 19: Dense Map (left) and Octomap (mid) Obtained from Pipes (right) in EuRoC

4.2 Stereo Dense Reconstruction

For reconstruction from a stereo camera, we validated our system performance in both

indoor and outdoor, with EuRoC and KITTI dataset, respectively.

In terms of the indoor EuRoC dataset, we have run dense reconstruction in two scenes. The

first one is captured inside the industrial machine hall in ETH Zurich, therefore containing

pipes and tanks. Note that this is a challenging dataset since images are captured from a

stereo camera implemented on a drone. The aerial camera movements and changing

lighting conditions can exert huge influence on our SLAM system.

To reduce the computational cost while maintaining a relatively reliable visualization, the

color information from input images is discarded, and spatial points are assigned with

rainbow colors based on its distance from the camera, red is the farthest and vice versa.

An example of reconstruction from the pipes captured in MH_01 is illustrated as Figure 19.

Figure 20 shows the reconstructed dense map as well as the Octomap.

51

Figure 20: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from

Single Sequence in EuRoC MH_01 (top), MH_03 (mid), and MH_05 (bottom)

52

The second scene contains three sequences recorded in the Vicon Room with different

obstacle configurations. There are some moving curtains visible while recording these

sequences, so having accurate tracking becomes more challenging. Figure 22 presents the

dense map and Octomap generated from these sequences.

We are able to rotate these 3D maps in map viewer software, which immensely helps in

understanding the room’s environment; nonetheless, it is not possible to attach the 3D map

in this thesis as PDF. To further enhance the readability of these maps, a sparse map is

provided below as Figure 21. Other than what have been explained for Figure 18 above,

the red and black dots represent active and inactive keypoints captured from camera,

respectively, and green lines shows the co-visibility relationship between keyframes.

Figure 21: Sparse Map with Co-Visibility Obtained from EuRoC V1_01

53

Figure 22: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from

Single Sequence in EuRoC V1_01 (top), V1_02 (mid), and V1_03 (bottom)

54

Errors calculated for all sequences using the proposed system are summarized in Table V,

compared with the stereo configuration of ORB-SLAM3. Results for proposed system are

calculated from the average of three runs for fairness. Results for ORB-SLAM2 and ORB-

SLAM3 are obtained from [16] and [19].

Table V: EuRoC Single Sequence Stereo Reconstruction 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) Comparison

Sequence MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03

ORB-

SLAM3

stereo

0.029 0.019 0.024 0.085 0.052 0.035 0.025 0.061

ORB-

SLAM2

stereo

0.035 0.018 0.028 0.119 0.060 0.035 0.020 0.048

Proposed 0.039 0.028 0.032 0.112 0.061 0.042 0.036 0.107

It can be concluded that with the proposed system, an acceptable trajectory tracking can be

achieved. However, unlike the enhancement achieved for the RGB-D configuration

compared to RGB-D SLAMv2, we are not able to obtain improved results compared to

ORB-SLAM family. A potential reason for this is the parameter tuning for the

reconstruction. We intentionally reduced the number of keypoints in each keyframe from

the original value used in ORB-SLAM3, decreasing it from 2000 to 1000. This sacrifice

brings significant enhancement on real-time performance, boosting the frame rate from less

than 10Hz to around 15Hz. More importantly, this modification solves an occasional

program die-out issue when running the MH_05 sequence, which sometimes consumes all

memory space of the laptop.

With respect of the validation for outdoor environment, KITTI provides 22 sequences

recorded in Karlsruhe, Germany. Figure 23 [36] illustrates a map where all sequences are

recorded. It is introduced that those high precision with GPS corrections are in red, whereas

55

the rest in blue shows the GPS absence areas. These sequences are from both rural areas

and on highways, so a typical length of one to two kilometers is expected. It is introduced

that the first 11 sequences out of these 22 are used for testing purpose, thereby making the

ground truth public. The rests are made for validation only, so it is not possible to obtain

the ATEs unless a submission to the dataset publisher’s website is made. As the result, only

sequence 00 to 10 is used in this thesis for analysis.

Figure 23: Recording Zone for KITTI Dataset [36]

56

An example of reconstruction from the road captured in 00 is illustrated as Figure 24.

Figure 24: Dense Map (left) and Octomap (mid) Obtained from Road (right) in KITTI

Trees and a vehicle on the road from the input image can be correspondingly found in the

reconstructed maps. However, only the back part of this vehicle is captured, which is

denoted in purple located at the middle part of the dense map.

Figure 25 shows the dense map and the Octomap reconstructed from this outdoor dataset.

To further validate the accuracy of the proposed system, comparisons of the absolute

trajectory errors from sequences 00 to 10 are performed among the proposed system with

the latest two generations in ORB-SLAM family. Because the results of ORB-SLAM3

using stereo camera configuration are not reported in their publish, three runs are operated

with the same setup as the proposed system, averaged and collected in Table VI below.

Results for ORB-SLAM2 is retrieved from [16] directly.

57

Figure 25: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from

Single Sequence in KITTI 00 (top), 02 (mid), and 09 (bottom)

58

Table VI: KITTI Single Sequence Stereo Reconstruction 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) Comparison

Sequence 00 01 02 03 04 05 06 07 08 09 10

ORB-

SLAM3

stereo

1.252 5.364 1.805 0.749 0.192 0.638 1.025 0.379 2.691 3.448 0.927

ORB-

SLAM2

stereo

1.3 10.4 5.7 0.6 0.2 0.8 0.8 0.5 3.6 3.2 1.0

Proposed 1.248 5.596 1.924 0.637 0.233 0.561 1.352 0.459 2.654 3.861 1.245

It can be discovered that the proposed system achieves better accuracy compared to ORB-

SLAM2, especially in the first three sequences. However, for the rest sequences there is no

significant enhancement. This is most likely due to the parameter selections, which needs

to be tuned carefully for best performance. Comparing to ORB-SLAM3, the proposed

system holds similar accuracy, it can be assumed that taking average from more iterations

will further reduce the difference between these two systems.

Overall, the proposed system is able to achieve dense reconstruction from either indoor or

outdoor environments using a stereo camera. Its accuracy is proven after the comparison

with other algorithms using the same sensor configuration.

4.3 Multi-Sequence Merging

Multi-sequence operations are performed on both RGB-D and stereo datasets. Specifically,

TUM and EuRoC are chosen to validate the performance of multi-sequence merging.

KITTI is not considered suitable for this purpose as it only comprises large outdoor

sequences without significant overlaps. We are aiming to demonstrate the accuracy of

proposed system can be enhanced after merging multiple sequences with overlapping

features.

59

Figure 26: Comparison of Trajectories between Single Sequence and Multi-Sequence

Operation on TUM FR2_large_no_loop with Ground Truth

We first tested the proposed system with TUM dataset. Figure 26 represents a comparison

of trajectories and errors between running FR2_large_no_loop as a single sequence and a

multi-sequence operation with a priori information collected from another sequence

FR2_large_with_loop.

Three trajectories are shown in this figure: the ground truth is represented with a black

dashed line whereas the single and multisequence operations have trajectories in blue and

green. The middle portion of all trajectories is straight since the author of this dataset

intentionally turned off GPS for added difficulty, causing the corresponding part to be

60

missing. In spite of this, it is clearly illustrated that the trajectory after sequence merging

is closer to the ground truth, proving that the accuracy of system is improved.

To further explain the enhancement, the instantaneous and cumulative 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 are

plotted in Figure 27. As introduced earlier, that portion without ground truth provided is

cropped from the plot, creating a discontinuous on the x-axis for elapsed time of system.

As the legend indicates, black and red solid lines represent the instantaneous absolute

trajectory error at each individual time stamp, using y-axis on the left; blue and brown lines

with transparent fill represent the cumulative absolute trajectory error for single sequence

and multiple sequence merging operations, respectively.

It is calculated that the average ATE per frame drops when using multi-sequence

configuration, from 0.706m to 0.181m. Therefore, it can be summarized that with the

proposed multi-sequence merging method which reuses the knowledge from previous

sequences, the system accuracy can be enhanced.

A similar evaluation has been made on the stereo dataset, EuRoC.

Figure 27: Comparison of Instantaneous and Cumulative 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 between Single and

Multi-Sequence Operation on TUM FR2_large_no_loop with Ground Truth

61

In order to visualize the merging of multiple sequences, different colors are assigned to

each of the sequences from MH_01 to MH_05, instead of using a rainbow color like what

has been done in the single sequence operation. Figure 28 illustrates a multi sequence

merging of MH_01, MH_02, MH_03, MH_04, and MH_05, which are colored in blue, pink,

orange, purple, and green, respectively. The subfigure on the right is a sparse map

generated during the final run of five, multiple trajectories are included as the operation of

MH_05 is reusing the knowledge from previous runs.

Figure 29 presents a closer look at these trajectories. Camera poses at keyframes in the

former maps are denoted in purple, while in the current map, they are colored in blue. It is

evident that the co-visibilities are estimated between these two trajectories, implying cross-

dataset connections.

Figure 28: Dense (left) and Sparse (right) Map Generated from Multi-Sequence Merging

of EuRoC Sequences, the Latter Sequence Reuses Map from Previous Ones

62

Figure 29: Cross Dataset Co-Visibilities Estimated in EuRoC Multi-Sequence Merging

The root mean square absolute trajectory error of multi-sequence merging is concluded

below in Table VII.

It is noteworthy that after merging with the map knowledge from MH_01 sequence, the

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 of MH_02 is reduced from 0.028m, summarized in Table V, to 0.026m. Similar

enhancement can be observed for V1_02 sequence after merging with V1_01.

However, for each set of sequences in EuRoC dataset, the difficulty is described as

increasing by the author. Therefore, the improvements are not tremendous, most of the time

for less than one centimeter. We are expecting to see more significant improvements on

sequences with similar difficulties.

Besides, we noticed an unexpected increase of error after merging the maps obtains from

first three sequences in Machine Hall with the fourth sequence. After checking the dataset,

it is discovered that although MH_04 shares the same room with other three sequences, it

63

does not have much common view with the others. The limited enhancement is explained

as a result of lacking co-visibility.

Table VII: EuRoC Multi-Sequence Merging 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 (𝑚) Summary

Sequence MH01 MH01-02 MH01-03 MH01-04 MH01-05

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 0.039 0.026 0.027 0.091 0.044

Sequence V1_01 V1_01 - V1_02 V1_01 - V1_03

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 0.042 0.028 0.030

Overall, we have checked the validity of the multi-sequence merging method of the

proposed system. Enhancements on the system accuracy after reusing the map knowledge

from previous sequences can be observed for both RGB-D and stereo camera

configurations.

4.4 Octomap

Four different mapping methods can be used in the proposed system: point cloud map,

sparse mapping, dense mapping, and Octomap. Figure 30 compares a laptop mapped by

these four methods, from left to right.

The point cloud map contains a collection of 3D points in space, and it is the raw data used

to create sparse map and dense map. Although it is visually similar to the dense map, point

cloud is unordered, or sparsely distributed.

Figure 30: Laptop Mapped by Point Cloud, Sparse, Dense Mapping and Octomap

64

This becomes even more obvious when using sparse map, all unnecessary information,

such as the shape, color, and texture of the laptop, have been discarded. For this case,

anything other than the ORB feature points is removed for computational simplicity.

Overlapping with those features from other objects, such as the desk underneath, it is

difficult for human to tell what objects exist in the map.

Dense mapping solves this problem with a significant higher computational complexity.

The texture of laptop is fully captured and there is an occupancy grid related to it. This

occupancy grid discretizes the 3D space into grid cells and assigns each cell with a binary

value. This value is dynamically updated to represent if the corresponding space is

occupied by an object or not, which is crucial to multiple robotic applications.

Octomap, as introduced earlier, is a solution to the huge memory consumption by dense

mapping. A comparison of the Octomap generated from TUM FR1_room using different

leaf size is included below in Figure 31. Table VIII shows the file size of the dense map

(.pcd) and the Octomap (.ot) regarding to different leaf size configurations but for the same

sequence. It can be observed that a smaller value should be set for the leaf size if a finer

map is required. However, the smaller leaf size is set, the larger file size would be expected.

It is noteworthy that when a small leaf size is set for a large map, an integer overflow error

may occur before killing the program. Based on experience, using a leaf size around 0.01m

in an indoor sequence is considered appropriate; as for outdoor datasets like KITTI, leaf

size should not be set less than 0.05m, a typical value for me to use is 0.2m.

Table VIII: File Size (in Megabytes) for Different Leaf Size Configurations

Leaf Size (m) 0.01 0.02 0.05 0.1 0.2

Dense Map 106.4 31.6 6.6 1.2 0.317

Octomap 25.2 6.4 1.2 0.230 0.062

65

Figure 31: Octomap with Leaf Size 0.01m (top left), 0.02m (top right), 0.04m (bottom

left), and 0.08m (bottom right) from TUM FR1_room

Table IX shows the comparisons we made on the size of each Octomap (.ot file) and its

corresponding dense map (.pcd file). The compactness of Octomap can be proved by the

diminishing size of each map after being converted.

4.5 Runtime Analysis

Similar to the code included in the ORB-SLAM3, which analyzes the time cost for each

step during the SLAM process, a piece of code is written to determine the time required to

accomplish dense reconstruction.

66

The time required for each step of the main operations in the proposed system as well as

the ORB-SLAM3 has been concluded in Table X. This table contains analysis on both

RGB-D and stereo configuration, indoor and outdoor. The data for the ORB-SLAM3 stereo

configuration on EuRoC V2_02 sequence is directly sourced from [19], while the data for

the stereo configuration on KITTI 07 sequence and the RGB-D configuration on TUM

FR3_office sequence are derived from my experiment and averaged from three trials.

Table IX: File Size (in Megabytes) of Dense Mapping Compared to Octomap

TUM FR1_desk FR1_room FR2_desk FR2_no_loop

Dense 36.7 90.4 67.7 52.1

Octomap 7.5 22.6 17.2 7.9

TUM FR2_with_loop FR3_office Average Compress Ratio

Dense 31.3 34
5.138

Octomap 4.2 8.6

EuRoC MH_01 MH_03 MH_05 V1_01

Dense 38.2 43.1 71.1 5.8

Octomap 5.5 6.6 11.5 0.94

EuRoC V1_02 V1_03 Average Compress Ratio

Dense 11.1 16.6
6.546

Octomap 1.7 2.4

KITTI 00 01 02 ACR

Dense 83.7 4.8 15.2
4.771

Octomap 16.1 1.1 3.2

Table X: Running Time (in milliseconds) of Main Parts in the Proposed System

Compared to ORB-SLAM3, on TUM FR3_office, EuRoC V2_02, and KITTI 07

*Statistics for ORB-SLAM3 stereo on EuRoC V2_02 is based solely on author’s report.

S
ettin

g
s

Sensor RGB-D Stereo Stereo

Dataset TUM EuRoC KITTI

Sequence FR3_office V2_02 07

Input FPS 30Hz 20Hz 10Hz

Resolution 640 × 480 752 × 480 1226 × 370

ORB

Features
1000 1000 2000

System Ours ORB3 Ours ORB3* Ours ORB3

Tracking
Stereo

Rectification
- - 1.56 1.32 - -

67

ORB

Extraction
9.10 8.84 17.27 15.68 18.28 18.61

Stereo

Matching
- - 3.05 3.35 4.02 3.91

Pose

Prediction
2.57 2.58 2.73 2.69 2.57 2.56

Local Map

Tracking
6.62 6.56 6.60 6.31 4.79 4.83

New

Keyframe

Decision

0.24 0.24 0.21 0.12 0.28 0.28

Total 19.41 19.15 32.16 31.48 31.92 32.17

Mapping

Keyframe

Insertion
8.21 8.20 8.24 8.03 8.83 8.70

Map point

Culling
0.28 0.29 0.35 0.32 0.30 0.31

Map Point

Creation
22.83 23.07 19.52 18.23 19.81 19.22

Local BA 251.62 255.96 146.79 134.60 67.21 64.91

Keyframe

Culling
5.14 4.87 5.31 5.49 0.94 1.00

Total 290.50 294.71 174.20 158.84 98.32 95.36

Loop

Database

Query
0.75 0.75 0.98 1.06 1.03 1.01

Compute

Sim3/SE3
5.89 5.90 6.19 5.26 9.30 9.88

Loop Fusion 263.67 265.13 31.86 29.07 84.13 88.42

Essential

Graph

Optimization

135.06 134.42 71.43 84.36 132.33 134.13

Total 408.99 408.34 112.46 124.94 226.79 233.44

Loop

Full BA

Full BA 2176.49 2358.61 1809.31 1118.54 2560.22 2439.94

Map Update 14.95 15.14 16.95 13.65 28.31 30.12

Total 2191.44 2373.75 1826.26 1132.19 2588.53 2470.06

D
en

se R
e
co

n
stru

ctio
n

Keyframe

Insertion
8.31 - 8.19 - 9.19 -

Depth

Acquisition
0.02 - 1.57 - 1.49 -

Voxel

Filtering
91.90 - 82.96 - 99.68 -

Map Update 85.35 - 89.60 - 107.69 -

Octomap

Conversion
153.27 - 149.32 182.21 -

Total 385.70 - 378.49 - 447.11 -

68

It is reported in [19] that the original system is able to run in real time at 30-40 frames and

at 3 to 6 keyframes per second. Besides, recognizing a closing loop will trigger the loop

closing thread that contains a very time expensive full bundle adjustment, which can cause

the system a pause for around one second. This value has been proven to vary significantly

depending on the device used, typically increasing to around two seconds on my laptop.

With dense reconstruction enabled, the frame rate would be around 25Hz in small

environments, decreasing as the sequence becomes larger. it can drop to as low as 10Hz in

extremely large outdoor sequence provided by KITTI.

From this analysis, it can be concluded that implementing this dense reconstruction plugin

to the original ORB-SLAM3 system does increase the system’s running time, but not by

an unacceptable amount. People can either reduce the maximum amount of ORB features

allowed per keyframe or reduce the input image resolution, sacrificing the system accuracy

to achieve improved running time for particular use.

69

CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

We proposed a visual SLAM system based on ORB-SLAM3in this paper. Aside from

original functions, we offer a 3D dense reconstruction function through either RGB-D or

stereo camera. It is also noteworthy that a conversion to generate Octomap is implemented

to our system, not only reducing the map size, but also making the system competent in

comprehensive applications. Furthermore, utilizing the map saving and loading functions

of ORB-SLAM3, we apply probabilistic-based optimizations to merge information from

multiple sequences, providing a remarkable enhancement to the system accuracy.

Besides, we are mindful of a possible lessening of computing speed that is caused mainly

by the reconstruction, which is comparatively more computing expensive. Consequently,

we code with foresight so that the modifications can be seamlessly integrated into the

original ORB-SLAM3 software. The applicability is secured since they can be toggled

effortlessly without recompilation. A runtime analysis has also been performed to show the

loss of computing time is within an acceptable range.

The validity of the proposed system has been tested with both RGB-D and stereo datasets,

indoor and outdoor. Comparisons have been made with state-of-the-art SLAM algorithms

to demonstrate the effectiveness of the proposed system.

5.2 Future Work

As future work, the proposed system should be implemented with hardware for testing and

future improvements.

70

Moreover, the quality of reconstruction can be further improved with semantic algorithms.

Presently, the proposed system lacks the ability to handle dynamic environments. It has

been observed, particularly in certain sequences in the outdoor KITTI dataset, that other

vehicles presenting on the road could degrade the system’s performance. This also applies

to the presence of any humans in the office room within the TUM dataset. Besides, the

integration of semantic algorithms could facilitate the safe removal of unwanted elements

in the dense point cloud maps, such as room ceilings and tree branches along the road.

Furthermore, due to the nature limitations camera holds, fusing it with other types of

sensors has proven to bring not only a boost of system accuracy, but also sometimes an

extension on the robot’s application.

Lastly, I have noticed many researchers have combine their SLAM system with machine

learning methods. Some of them are able to achieve incredibly high accuracy in particular

environments. This could also become something I would like to challenge in the future.

71

BIBLIOGRAPHY

[1] H. Taheri, C. X. Zhao, “SLAM; definition and evolution.” Engineering Applications of

Artificial Intelligence, vol. 97, pp. 104032, 2021.

[2] Y. Abdelrasoul, A. B. S. H. Saman and P. Sebastian, “A quantitative study of tuning

ROS gmapping parameters and their effect on performing indoor 2D SLAM,” 2016 2nd

IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), pp.

1-6, 2016.

[3] S. Nagla, “2D Hector SLAM of Indoor Mobile Robot using 2D Lidar,” 2020

International Conference on Power, Energy, Control and Transmission Systems

(ICPECTS), pp. 1-4, 2020.

[4] J. Zhang, S. Singh, “LOAM: Lidar Odometry and Mapping in real-time,” Robotics:

Science and Systems Conference (RSS), pp. 109-111, 2014.

[5] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and D. Rus, “LIO-SAM: Tightly-

coupled Lidar Inertial Odometry via Smoothing and Mapping,” 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 5135-5142, 2020.

[6] A. J. Davison, I. D. Reid, N. D. Molton and O. Stasse, “MonoSLAM: Real-time single

camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29,

no. 6, pp. 1052-1067, 2007.

[7] T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot, “Consistency of the EKF-

SLAM algorithm,” 2006 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 3562-3568, 2006.

[8] R. Martinez-Cantin and J. A. Castellanos, “Unscented SLAM for large-scale outdoor

environments,” 2005 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 3427-3432, 2005.

[9] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”

Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422, 2004.

[10] C. Kim, R. Sakthivel and W. K. Chung, “Unscented FastSLAM: a robust and efficient

solution to the SLAM problem,” IEEE Transactions on Robotics, vol. 24, no. 4, pp. 808-

820, Aug. 2008.

72

[11] G. Grisetti, C. Stachniss and W. Burgard, “Improved techniques for grid mapping with

Rao--Blackwellized particle filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34-

46, Feb. 2007.

[12] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”

2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp.

225-234, 2007.

[13] R. A. Newcombe, S. J. Lovegrove and A. J. Davison, “DTAM: dense tracking and

mapping in real-time,” 2011 International Conference on Computer Vision, pp. 2320-2327,

2011.

[14] J. Engel, T. Schöps, D. Cremers, “LSD-SLAM: large-scale direct monocular SLAM,”

Computer Vision – ECCV 2014, vol 8690, pp. 834-849, 2014.

[15] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, “ORB-SLAM: a versatile and

accurate monocular SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp.

1147-1163, Oct. 2015.

[16] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM system for

monocular, stereo, and RGB-D cameras,” IEEE Transactions on Robotics, vol. 33, no. 5,

pp. 1255-1262, Oct. 2017.

[17] D. Galvez-López and J. D. Tardos, “Bags of binary words for fast place recognition

in image sequences,” IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, Oct.

2012.

[18] V. Lepetit, F. Moreno-Noguer, P. Fua, “EPnP: an accurate O(n) solution to the PnP

problem.” International Journal of Computer Vision, vol. 81, no. 2, pp. 155–166, 2008.

[19] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel and J. D. Tardós, “ORB-

SLAM3: an accurate open-source library for visual, visual–inertial, and multimap SLAM,”

IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874-1890, Dec. 2021.

[20] R. Elvira, J. D. Tardós and J. M. M. Montiel, “ORBSLAM-Atlas: a robust and accurate

multi-map system,” 2019 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 6253-6259, 2019.

[21] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers and W. Burgard, “An

evaluation of the RGB-D SLAM system,” 2012 IEEE International Conference on

Robotics and Automation (ICRA), pp. 1691-1696, 2012.

73

[22] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3D Mapping with an RGB-

D Camera,” IEEE Transactions on Robotics, vol. 30, no. 1, pp. 177-187, Feb. 2014.

[23] A. Hornung, K.M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:

an efficient probabilistic 3D mapping framework based on Octrees,” Autonomous Robots,

2013.

[24] “LS01B1 Rotating 2D LIDAR - 360°, 8 m,” RobotShop. Retrieved May 2022, from

https://www.robotshop.com/ca/en/ls01b1-rotating-2d-lidar-360-8-m.html.

[25] “Ultra Puck,” Velodyne Lidar, https://velodynelidar.com/products/ultra-puck/.

[26] “C270 HD WEBCAM,” Logitech. Retrieved May 2022, from

https://www.logitech.com/en-ca/products/webcams/c270-hd-webcam.960-000694.html.

[27] “Intel® RealSense™ Depth Camera D405,” Intel® RealSense™. Retrieved May 2022,

from https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d405.html.

[28] G. Bradski, “The OpenCV Library”, Dr. Dobb's Journal of Software Tools, vol. 120,

pp. 122-125, 2000.

[29] R. Klette, Concise Computer Vision: An Introduction into Theory and Algorithms,

Springer Science & Business Media, pp. 59, 2014.

[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[31] H. Bay, T. Tuytelaars, L. Van Gool, “SURF: Speeded Up Robust Features,” ECCV

2006. Lecture Notes in Computer Science, vol. 3951, pp. 404–417, 2006.

[32] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: An efficient alternative to

SIFT or SURF,” 2011 International Conference on Computer Vision, pp. 2564-2571, 2011.

[33] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for

the evaluation of RGB-D slam systems,” Proc. of the International Conference on

Intelligent Robot Systems (IROS), pp. 573-580, 2012.

[34] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and

R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The International Journal of

Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016.

[35] A. Geiger, P. Lenz and R. Urtasun, “Are we ready for autonomous driving? The KITTI

vision benchmark suite,” 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3354-3361, 2012.

74

[36] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI

dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237,

2013.

[37] I. Cvišić, I. Marković and I. Petrović, “SOFT2: Stereo Visual Odometry for Road

Vehicles Based on a Point-to-Epipolar-Line Metric,” IEEE Transactions on Robotics, vol.

39, no. 1, pp. 273-288, Feb. 2023.

[38] P. Dellenbach, J.-E. Deschaud, B. Jacquet and F. Goulette, “CT-ICP: Real-time Elastic

LiDAR Odometry with Loop Closure,” 2022 International Conference on Robotics and

Automation (ICRA), pp. 5580-5586, 2022.

[39] Y. Zhou, G. Gallego and S. Shen, “Event-based stereo visual odometry”, IEEE

Transactions on Robotics, vol. 37, no. 5, pp. 1433-1450, Oct. 2021.

[40] M. Ferrera, A. Eudes, J. Moras, M. Sanfourche and G. Le Besnerais, “𝑂𝑉2𝑆𝐿𝐴𝑀: A

Fully Online and Versatile Visual SLAM for Real-Time Applications,” in IEEE Robotics

and Automation Letters, vol. 6, no. 2, pp. 1399-1406, April 2021.

[41] Sardana, R., Karar, V. & Poddar, S. “Improving visual odometry pipeline with

feedback from forward and backward motion estimates,” Machine Vision and Applications,

vol. 34, pp. 24 , 2023.

[42] T. Ye and G. Zhao, “RT-SLAM:Real-Time Visual Dynamic Object Tracking SLAM,”

2023 IEEE 6th Information Technology, Networking, Electronic and Automation Control

Conference (ITNEC), pp. 677-682, 2023.

[43] H. Yin, S. Li, Y. Tao, J. Guo and B. Huang, “Dynam-SLAM: An Accurate, Robust

Stereo Visual-Inertial SLAM Method in Dynamic Environments,” in IEEE Transactions

on Robotics, vol. 39, no. 1, pp. 289-308, Feb. 2023.

[44] M. Frosi and M. Matteucci, “D3VIL-SLAM: 3D Visual Inertial LiDAR SLAM for

Outdoor Environments,” 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1-7, 2023.

