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ABSTRACT 

This thesis presents a comprehensive visual SLAM system that extends the application of 

ORB-SLAM3. Using it as a template, a supplementary and optional function of 3D dense 

reconstruction is implemented for both RGB-D and stereo cameras. With conventional 

datasets, TUM, EuRoC, and KITTI as benchmarks, we confirm the validity of proposed 

system in both indoor and outdoor scenarios. Besides, the concept of Octree is integrated 

into our system to generate Octomap. A compact mapping can be achieved as such, verified 

by the fact that the size of each dense point cloud map is reduced to approximately one-

fifth after the conversion. Furthermore, a multi-sequence merging method is included in 

our proposed system, formulating with a probabilistic-based optimizing algorithm and map 

accessing functions from the original system. Multi-sequence experiments evince that the 

tracking accuracy profits from the exploitation of a priori knowledge gathered through the 

preceding sequences. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

As one of the most popular and intense research topics in the robotics field, the SLAM 

algorithm capacitates mobile robots to localize themselves while exploring and mapping 

an unknown environment. Being widely used in industry, SLAM algorithms can be 

implemented to different types of robots, depending on the purpose of application, 

including agriculture, healthcare, manufacturing, smart cities, etc. Studies have been 

conducted during the past decades [1], resulting to the proposition of numerous SLAM 

systems. Implementing heterogeneous sensors, applying various optimization techniques, 

and picturing with different mapping methods, all the SLAM algorithms are aiming to 

maintain the system robustness, enhance the tracking accuracy and achieve the real-time 

performance. 

SLAM algorithms can read from sensors including, but not limited to, camera, lidar, radar, 

IMU, and GNSS. Table I below provides an example of categorizing some typical sensors 

used by SLAM algorithms based on its application.  

Table I: Example of SLAM Applications with Typical Sensors 

SLAM Application Typical Sensors 

UGV Camera Lidar IMU 

UAV Lidar IMU GPS 

AUV Sonar Camera IMU 
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Choosing appropriate sensors is of utmost importance for the SLAM application. In terms 

of UGVs, Lidar SLAM and Visual SLAM are considered together as the two mainstreams. 

They are named by the main sensor used in the algorithms: Lidar SLAM utilizes 2D or 3D 

lidars. Visual SLAM adopts monocular camera, stereo camera, and sometimes RGB-D 

camera – a hybrid sensor that also collects depth information. Figure 1 examples each of 

these sensors. 

                    
(a) LS01B1 Rotating 2D LIDAR [24]             (b) Ultra Puck 3D Lidar [25] 

                                     
(c) C270 HD Monocular Camera [26]       (d) RealSense™ D405 RGB-D Camera [27] 

Figure 1: Example of Different Lidar and Camera Sensors 

Lidar-based algorithms are developed in earlier years and are considered as a mature 

technology nowadays. The highly reliable and accurate maps can be later used by path 

planning algorithms. The lidar-based algorithms are, nonetheless, too expensive as a 

solution when building products like a robot vacuum cleaner. It is common that the price 

of a lidar sensor, varying by its accuracy, can reach thousands of dollars, and even beyond. 
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During the past years, many approved Lidar SLAM algorithms have been published, 

including Gmapping [2], Hector-SLAM [3], LOAM [4], LIO-SAM [5], etc.  

Of these two branches, the latter uses cameras as its main sensor to estimate the robot pose. 

It has not been wide-ranging discussed, in-depth studied and high-speed evolved until the 

late 2000s, due to limiting factors such as the undersupply of computing resources. Thanks 

to the development of computer technology, more computing resources are accessible to 

the researchers in recent years. Being able to handle the high workload from image 

processing, the vision-based algorithms become a trend of research.  

Unlike the lidar-based algorithms that provide accurate point clouds without cumulative 

error, a vision-based SLAM algorithm has to extract the key features from each image 

captured by the camera, and match across multiple images to determine the relative 

changes on both pose and position of the camera. This usually gives extremely inaccurate 

results. The main contributing factors include the defect of manufacturing, noises of sensor, 

and cumulative errors. Therefore, additional optimization algorithms are required to 

produce credible results. 

The early-stage Visual SLAM algorithms are mostly filter-based. MonoSLAM [6] is 

acknowledged as the first real-time monocular solution, making use of the extended 

Kalmen filter (EKF) algorithm [7]. However, implementing EKF causes consistency issue 

during linearization. [8] improves this with unscented Kalmen filter (UKF) [9], and 

UFastSLAM [10] overcomes this drawback by introducing Rao-Blackwell particle filter 

(RBPF) [11] to SLAM system. 

Some other Visual SLAM systems rely on keyframes. PTAM [12], as a representative 

algorithm, shows an ingenious process using two parallel threads. It separates the tracking 
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and mapping tasks, obtaining comparable results at a lower computing cost; nonetheless, 

PTAM is constrained by the adequacy of feature matching. Direct registration algorithms 

avoid this issue by making direct operations to the intensity of pixels in lieu of feature 

extractions. DTAM [13] constructs a depth map with all pixels in an RGB image, 

promoting a more robust and accurate tracking when suffering from feature deficits. In 

contrast, the real-time operation of DTAM cannot be accomplished without considerable 

GPU resources. LSD-SLAM [14] alters the selection of pixels, adapting it for larger-scale 

scenarios. Instead of all the pixels, only those within high-gradient regions are selected for 

computation. However, as a direct method, which is formed on the gray-scale invariant 

assumption, its robustness and accuracy can be undermined by unmodelled behaviors like 

lens vignetting and drastic changes of illumination.  

ORB-SLAM [15] is a monocular feature-based SLAM system that has been divided into 

three threads: tracking, local mapping and loop closing. It uses oriented FAST and rotated 

BRIEF (ORB) features [31] to achieve a real-time operation without GPU. Essential Graph 

is first introduced for speedier loop closing. The successor ORB-SLAM2 [16] extends the 

original work to be compatible with stereo camera and RGB-D camera. A place recognition 

module is established on DBoW2 [17], and being applied to the system for relocalization, 

reinitialization and loop detection. The accuracy is further improved by implementing the 

EPnP [18] algorithm. ORB-SLAM3 [19] is a state-of-the-art algorithm published recently. 

Monocular-inertial and stereo-inertial options are integrated with its previous work, 

providing this SLAM system with additional robustness and accuracy. The refinement of 

place recognition algorithm increases the recall rate significantly, preserving the system 
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from getting lost in low-textured scenes. It also uses a multi-map sub-system that underlies 

ORBSLAM-Atlas [20]. 

Despite the fact that ORB-SLAM3 is one of the most powerful and valuable visual SLAM 

systems, the output semi-dense map confines its range of application. On the other hand, 

this algorithm does not trim, nor release any past landmarks – meaning all the landmarks 

are stored cumulatively until the end of program. Tested with a large-scale dataset, the time 

efficiency suffers after processing hundreds of keyframes. 

Novel research aiming to enhance the system accuracy are being continually proposed to 

this day. SOFT2 [37] makes significant improvement on solving the epipolar geometry and 

kinematics, bringing resilience to object depth uncertainty. CT-ICP [38], although working 

with the LiDAR configuration, demonstrates a state-of-the-art loop detection method, 

achieving minor pose error in the validation with benchmark datasets. [39] reports their 

work on obtaining more precise front-end estimations. 𝑂𝑉2𝑆𝐿𝐴𝑀 [40] utilizes a multi-

threaded architecture for a robust and precise system. [41] describes progress on motion 

estimations using an innovative technique to integrate information from multiple stereo 

camera configurations, named joint forward-backward visual odometry with multiple 

cameras and feedback mechanism. RT-SLAM [42] processes visual information with 

semantic algorithm to achieve accurate motion estimations. Dynam-SLAM [43] presents a 

stereo visual-inertial SLAM system to survive under dynamic environments by defining 

virtual landmarks. D3VIL-SLAM [44] applies fusion of cameras with both LiDAR and 

inertial measurements, and an enhancement on robot pose estimations is validated through 

the benchmark dataset. 
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1.2 Contributions 

In this thesis, we propose an accurate visual SLAM system with dense point cloud 

reconstruction and probabilistic multi-sequence merging. The contributions are listed 

below: 

A dense mapping approach is inspired by the RGB-D SLAM [21][22] and embedded to 

the original system as an optional feature. It reconstructs the maps in a more detailed level 

that enriches the robot scene understanding and perception. We offer this implementation 

with either stereo camera or RGB-D camera. Sensing through a stereo camera not only 

reduce the hardware complexity but also demonstrates enhanced performance in texturally 

rich environment leveraging its reliance on feature matching across plentiful stereo pairs. 

The utilization of an RGB-D camera is also kept since it is considered to remain superior 

functionality facing occlusions due to the nature of having a direct depth measurement. 

Moreover, an Octomap [23] is integrated to the original system, aiming to enhance the 

mapping with finer texture and shading with improved memory efficiency and real-time 

updates. It expands the system to be used by further robotic applications, especially those 

demanding accurate 3D spatial understanding, such as mobile manipulation and navigation. 

Last but not least, the proposed system includes a multi-sequence merging method that 

fetches the knowledge of one sequence with the next and conducts a probabilistic-based 

optimization to those redundant map points. Multiple benchmark datasets have been tested 

to validate its beneficial impact on facilitating precise estimations of the camera pose. 
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1.3 Organization 

This section contains a sequence of the thesis chapters, and also a brief description of each， 

shown as follows: 

Chapter 1: This chapter includes an introduction to SLAM, reveals the challenges that 

researchers have experienced and those are experiencing, and describes the motivation of 

my thesis. 

Chapter 2: This chapter contains a literature review on related SLAM systems, and explains 

the principles used by them. 

Chapter 3: This chapter exhibits the system architecture of my proposed SLAM system, 

and explicates the improvements made to the original SLAM system. 

Chapter 4: This chapter evinces the feasibility of the proposed SLAM system by comparing 

it with previous work. Results obtained from multiple sets of experiments are analyzed and 

discussed to prove the enhancement on system performance. 

Chapter 5: This chapter concludes the work of this thesis and advises the future orientation. 

  



8 

 

CHAPTER 2  LITERATURE REVIEW 

RGB-D SLAM [21][22] and ORB-SLAM family are introduced in this section. The former 

allows to construct colored 3D models from camera. Having the same mapping method as 

our proposed system, it is included in this thesis to make a fair comparison, evincing the 

system performance. This is detailed in the fourth chapter. On the other hand, ORB-SLAM 

family consists of three generations. Evolving in the past decade, it has been acknowledged 

to be one of the most powerful visual SLAM algorithms. An introduction to all the 

generations in ORB-SLAM family is presented in this section since our system is built on 

the basis of its latest generation, ORB-SLAM3. 

 

2.1 RGB-D SLAM 

 

Figure 2: General Framework of SLAM System with RGB-D Camera 
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Figure 2 demonstrates the general framework for SLAM system with an RGB-D camera 

as the input sensor. The process is explained as following: The sensor data from an RGB-

D camera works together with the global map in the front end. They are used to for the 

image preprocess and pose estimation. With the preprocessed image and the estimated 

camera pose, the back end of this system updates the local map and optimizes it. A loop 

closing pipeline containing loop detection, correction utilizes the local map to optimize and 

update the global map. This updated map is stored for the succeeding data. 

RGB-D SLAM [21] and its second version named RGB-D SLAMv2 [22] were proposed 

by Felix Endres et al. This section focuses on reviewing the latest version since it covers 

most work of its ancestor as well as sharing a similar system structure. A schematic 

overview of RGB-D SLAMv2 is excerpted as in Figure 3 [22]. 

This system extracts SIFT [30], SURF [31] or ORB [32] features from the color image and 

matches them across adjacent images. The depth information directly obtained from 

camera helps to locate the sensor in 3D space. Random Sample Consensus (RANSAC) 

algorithm is used to robustly filter out the outliers among the camera pose estimations. 

Only those inliers are left to compute a refined transformation, generating an edge in the 

backend pose graph. On the other hand, Iterative Closest Point (ICP) algorithm aims to 

estimate the best transformations in point clouds generated from motions defined by the 

Lie parameterization 𝑆𝐸(3). The last step of this system provides an effective nonlinear 

optimization on the pose graph, where a minimization problem is solved on an error 

function. The following part in this section details this process. 
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Figure 3: Schematic Overview of RGB-D SLAMv2 [22] 

First, some commonly used feature extraction and matching algorithms are introduced, 

including SIFT, SURF and ORB. The concepts of RANSAC and ICP are explained 

afterwards. This section ends with the error function and optimizations that RGB-D SLAM 

uses. 

SIFT stands for scale-invariant feature transform. The SIFT algorithm provides scale-

invariant to the feature extraction process. This starts with blurring an input image. The 

image is minified to multiple octaves and blurred progressively, creating a scale space, also 

called a Gaussian pyramid. Representing with math, the blurred images 𝐿(𝑥, 𝑦; 𝜎) can be 

calculated with the convolution of the original image 𝐼(𝑥, 𝑦) and a Gaussian blur operator 

𝐺: 

𝐿(𝑥, 𝑦; 𝜎) = 𝐺(𝑥, 𝑦; 𝜎) ∗ 𝐼(𝑥, 𝑦) (1) 

where 𝜎 is the Gaussian blur factor. 

The operator is defined as: 

𝐺(𝑥, 𝑦; 𝜎) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 (2) 
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A Difference of Gaussian (DoG) kernel is established afterwards by comparing the 

difference of adjacent images with different blur factors, for instance: 𝜎 and 𝑘𝜎. It is said 

to have a higher accuracy of finding keypoints in the input image. This is completed for all 

octaves in the Gaussian pyramid. Therefore, if there are 𝑛  layers in an octave of the 

pyramid, the DoG will contain 𝑛 − 1 layers for each octave. Figure 4 [29] below shows a 

set of progressively blurred images, with blur factor 𝜎 = 0.5, 1, 2, 4, 8, 16, respectively.  

 

Figure 4: Image with Progressively Blur Scale [29] 

DoG is defined as:  

𝐷𝜎,𝑘(𝑥, 𝑦) =  𝐿(𝑥, 𝑦; 𝜎) − 𝐿(𝑥, 𝑦; 𝑘𝜎), 𝑘 > 1 (3) 

Calculating the Laplacian of Gaussian (LoG) approximations is the following step. It is 

essential for having the scale invariant property. The idea is to compare each pixel in an 
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image with its 8 neighbors, as well as the 9 pixels in both the previous and next octave of 

different blur scale. If the current pixel is a local extremum compared to its 26 neighbors, 

it will be treated as a potential keypoint.  

LoG can be calculated by: 

∇2𝐺𝜎(𝑥, 𝑦) ≈
𝐺𝑘𝜎(𝑥, 𝑦) − 𝐺𝜎(𝑥, 𝑦)

(𝑘 − 1)𝜎2
(4) 

The DoG representation in equation (3) is commonly used as an approximation of LoG in 

equation (5) due to its time-efficiency. The scale factor 𝑘 = 1.6 is preferred. 

However, the previous step gives more than necessary number of extrema. Those lies along 

an edge and those without enough contrast are removed. The latter is checked with the 

intensity of pixel and the earlier is performed by calculating its principal curvature with a 

2 × 2 Hessian matrix 𝑯. Representing with math, a potential keypoint is determined to be 

rejected and discarded if having: 

{

|𝐷(𝑥, 𝑦)| < 0.03
𝛼

𝛽
< 10

(5) 

where 

𝛼, 𝛽 = eigen(𝑯), |𝛼| ≥ |𝛽|; 𝑯(𝑥, 𝑦) = [
𝐷𝑥𝑥(𝑥, 𝑦) 𝐷𝑥𝑦(𝑥, 𝑦)

𝐷𝑦𝑥(𝑥, 𝑦) 𝐷𝑦𝑦(𝑥, 𝑦)
] (6) 

where 𝐷𝑥𝑦 is the second order difference quotient of DoG with respect to 𝑥 first and 𝑦 next. 

The other three terms are following the same rule. Equations below examples the 

calculations of the first and second order difference quotients: 

𝐷𝑥(𝑥, 𝑦) = 𝐿(𝑥 + 0.5, 𝑦) − 𝐿(𝑥 − 0.5, 𝑦) (7) 
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𝐷𝑥𝑥(𝑥, 𝑦) = 𝐷𝑥(𝑥 + 0.5, 𝑦) − 𝐷𝑥(𝑥 − 0.5, 𝑦) =

𝐿(𝑥 + 1, 𝑦) + 𝐿(𝑥 − 1, 𝑦) − 2𝐿(𝑥, 𝑦) (8)
 

The two eigenvalues of the Hessian matrix of a feature point indicate the corresponding 

shape around this point: When 𝛼 and 𝛽 both have large magnitudes, a corner is detected. 

When 𝛼 is far larger than 𝛽, it is recognized as an edge, which is one of the two cases that 

the potential keypoints should be rejected. The last case is for having small values of both 

𝛼 and 𝛽. In this case, it is a low-contrast region that should also be rejected. 

The legitimate keypoints obtained from previous steps are proven to be stable and scale 

invariant. The succeeding step called orientation assignment provides SIFT algorithm 

rotation invariance. The gradient magnitude 𝑚(𝑥, 𝑦) and direction 𝜃(𝑥, 𝑦) are calculated 

for each point in an orientation collection region around the keypoint 𝐿(𝑥, 𝑦). They can be 

calculated by:  

{
𝑚(𝑥, 𝑦) = √[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]2 + [𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]2

𝜃(𝑥, 𝑦) = arctan
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)

(9) 

An orientation histogram is used as a compilation of each keypoint. The horizontal axis 

contains sectors that cover all 360 degrees. Configurations can be set manually depending 

on the accuracy required. For examples, 10 sectors (36 degrees each), and 8 sectors (45 

degrees each) can be used. The vertical axis is for the cumulative intensities for all pixels 

in the orientation collection region. The highest peak in the histogram marks the orientation 

of the keypoint. 

Figure 5 [30] visualizes the process of determining the orientation of a keypoint. The blue 

circle indicates the orientation collection region. As can be seen that each pixel around the 
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keypoint at the center are marked with a gradient with a black arrow, representing its 

magnitude and orientation. The right part of this figure shows a detailed gradient within 

each pixel. 

 

Figure 5: Process of  Calculating Gradient Magnitude and Orientation of a Keypoint [30] 

So far, the location, scale, and orientation of all keypoints have been determined. A 

distinctive and invariant descriptor is going to be assigned to each keypoint. During this 

step, 4 × 4 blocks are windowed around the keypoint, which can be further combined into 

16 × 16 sub-blocks. For each block, gradient in 8 sectors are calculated with similar steps 

as previous. Therefore, a 128-dimentional (4 × 4 × 8) array can be used as the descriptor 

of a keyframe.  

At the end, in order to match the same feature across different images, the Euclidean 

distance between keypoints in both images is calculated. The less distance they have, the 

better they are matched. 

Another feature extraction algorithm is SURF (Speeded-Up Robust Features) [30], it is 

developed to increase to computing speed of SIFT. Instead of Gaussian filter for SIFT, 

SURF utilizes box filters, enabling it for real-time applications. 
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The integral image 𝐼Σ(𝒙) at 𝒙 = (𝑥, 𝑦)𝑇  shows the summation of all pixels inside a 

rectangular region formed by 𝒙 and the origin. It can be calculated by: 

𝐼Σ(𝒙) = ∑ ∑ 𝐼(𝑖, 𝑗)

𝑗≤𝑦

𝑗=0

𝑖≤𝑥

𝑖=0

(10) 

The main benefit of using integral image is to accelerate the computation of approximate 

second order Gaussian derivatives, independently of size. Furthermore, instead of using a 

LoG approximation as previously introduced in the SIFT algorithm, SURF calculates both 

the approximation for convolution and for the second order derivative in a more effective 

way. Given that: 

𝑯(𝒙; 𝜎) = [
𝐿𝑥𝑥(𝒙; 𝜎) 𝐿𝑥𝑦(𝒙; 𝜎)

𝐿𝑦𝑥(𝒙; 𝜎) 𝐿𝑦𝑦(𝒙; 𝜎)
] (11) 

Figure 6 [31] compares the Gaussian second order partial derivatives in 𝑦-direction (top-

left) and 𝑥𝑦-direction (bottom-left) with the box filter approximations. A 9 × 9 box filter 

is used to estimate the Gaussian second order derivatives with blur factor 𝜎 = 1.2.  

In this case, the determinant of Hessian matrix can be calculated by: 

det(𝑯𝑎𝑝𝑝𝑟𝑜𝑥) = 𝐷𝑥𝑥𝐷𝑦𝑦 − (𝜀𝐷𝑥𝑦)
2

(12) 

Where 𝜀 is a relative weight that manually balanced, determined by the Frobenius norms: 

𝜀 =
|𝐿𝑥𝑦(1.2)|

𝐹
|𝐷𝑥𝑥(9)|𝐹

|𝐿𝑥𝑥(1.2)|𝐹|𝐷𝑥𝑦(9)|
𝐹

≈ 0.912 (13) 
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Figure 6: Gaussian Filter (left) vs. Box Filter (right) [31] 

The scale space for SURF is also slightly different from SIFT: Instead of reducing the 

image size repeatedly, the size of box filter can be increased iteratively to analyze the scale 

space. For instance, a 9 × 9 box filter is exampled in the last step to form a layer of the 

pyramid. 15 × 15, 21 × 21, and 27 × 27 filters can be used to set the other layers. Note 

that when a bigger mask of the box filter is used, the blur scale 𝜎 should also be magnified 

by the same ratio. For example, the 27 × 27 filter should have 𝜎 =
27

9
× 1.2 = 3.6. The 

advantage of this is that with the relative weight is remained constant since Frobenius 

norms are scale normalized. Therefore, only one calculation is required among all layers 

of the filter, which significantly boosts the computation of scale space. 

The keypoint localization is similar to what SIFT does, the 26 neighbors of an interest point 

are used for the comparison to localize the keypoint. Those with weak contrast and on an 

edge are, again, eliminated to reduce the total number of keypoints. 
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In terms of the orientation, the Haar wavelet responses of a keypoint are calculated in both 

𝑥 and 𝑦 direction, denoted 𝑑𝑥 and 𝑑𝑦. Same as SIFT, an orientation collection region of 

4 × 4 is used. The responses within this region are summed up to ensure the uniqueness of 

descriptors. Furthermore, considering the polarity change among intensities, the magnitude 

of 𝑑𝑥 and 𝑑𝑦 are also used to make the descriptors recognizable. Figure 7 [30] examples 

these four indicators  Σ𝑑𝑥,  Σ𝑑𝑦, Σ|𝑑𝑥| and Σ|𝑑𝑦| over three typical intensity patterns. 

 

Figure 7: SURF Descriptors against Three Intensity Patterns [30] 

To establish a descriptor for each keypoint, a 64-dimensional array (4 × 4 × 4) is generated. 

This also explains the higher efficiency that SURF holds compared to the SIFT algorithm. 

For the feature matching, the Euclidean distance is computed, which is following the same 

rule as in the SIFT algorithm. Besides, SURF calculates the trace of Hessian matrix: When 

these two keypoints being compared have both trace of same sign, no matter positive or 

negative, these two features are considered to have their contrasts varying in the same 

direction. 

ORB (Oriented FAST and rotated BRIEF) [32] algorithm can also be used to extract 

features from an input image and create unique descriptors for them, which can be further 
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used for applications such as image identification. This will be discussed in the later section 

of ORB-SLAM family. A comparison among all the three algorithms of feature extraction 

and matching will come in that section as well. 

To filter out the outliers among the results computed directly from the camera 

measurements, the RANSAC algorithm is implemented in the RGB-D SLAM.   

Unlike the canonical data fitting method least square, which takes all data points into 

account, RANSAC is famous for its ability to figure out the inliers and outliers. This is 

extremely important for the point cloud segmentation of a SLAM system. Although it is 

not mentioned in RGB-D SLAM, some modern SLAM systems extract objects from the 

input point clouds, utilizing the a priori knowledge such as the shape, color, and sometimes 

texture. For example, a desktop on the office desk is very likely to be a block shaped object. 

The percentage of the numbers of inliers among all data points is defined as 

𝑊 =
𝑛𝑢𝑚𝑖𝑛𝑙𝑖𝑒𝑟

𝑛𝑢𝑚𝑖𝑛𝑙𝑖𝑒𝑟 + 𝑛𝑢𝑚𝑜𝑢𝑡𝑙𝑖𝑒𝑟

(14) 

 

Selecting 𝑛 points from the point set, the probability of having at least one outlier in each 

time of 𝑘 iteration is (1 − 𝑊𝑛)𝑘. 

Thus, the probability of having a correct prediction of model, which means that all points 

selected are inliers, can be defined as 

𝑃 = 1 − (1 − 𝑊𝑛)𝑘 (15) 

The number of iterations can therefore be calculated by the following equation. 
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𝑘 =
log(1 − 𝑃)

log(1 − 𝑊𝑛)
(16) 

The values of 𝑃, 𝑊, and 𝑛 are set based on experience. For example, having 300 data 

points selected with inlier rate of 98%, the expected numbers of iterations required to obtain 

a prediction with 99% correctness is around 2000. 

However, RANSAC is limited for single model scenario. If more than one model can be 

found among data points, Hough transform, or PEARL should be considered. 

The iterative closest point (ICP) method is used to estimate the motions by aligning 

consecutive point clouds and depth frames in RGB-D SLAM. Only point-to-point, i.e. the 

original version of ICP used in RGB-D SLAM is discussed in this section. The improved 

versions such as point-to-plane ICP and projective ICP will be included in the later section 

of ORB-SLAM. 

The question is mathematically defined as: given point cloud 𝑷 = {𝒑1, 𝒑2, … , 𝒑𝑛} and its 

consecutive point cloud 𝑸 = {𝒒1, 𝒒2, … , 𝒒𝑛} and solve for the camera rotation matrix 𝑹 

and translation matrix 𝒕 in the following equation. 

𝒒𝑖 = 𝑹𝒑𝑖 + 𝒕 (17) 

This equation does not hold all the time due to sensor noises and possible errors in data 

association process. In this case, this is an optimization problem with object function: 

1

2
∑‖𝒒𝑖 − 𝑹𝒑𝑖 − 𝒕‖2

𝑛

𝑖=1

(18) 

A common way of solving this problem is singular value decomposition (SVD).  



20 

 

Giving center of mass for each point clouds, 𝝁𝑝 =
1

𝑛
∑ 𝒑𝑖

𝑛
𝑖=1  and 𝝁𝑞 =

1

𝑛
∑ 𝒒𝑖

𝑛
𝑖=1 , the 

displacement of each data point to the center of mass is defined as 𝒑𝑖
′ = 𝒑𝑖 − 𝝁𝑝 and  𝒒𝑖

′ =

𝒒𝑖 − 𝝁𝑞, the object function in equation (18) can be rewritten as 

1

2
∑ (‖𝒒𝑖′ − 𝑹𝒑𝑖′‖

2 + ‖𝝁𝑞 − 𝑹𝝁𝑝 − 𝒕‖
2

)

𝑛

𝑖=1

(19) 

The optimized solution is solved as 

𝑹∗ = argmin
𝑹

∑ −𝒒𝑖
′𝑇𝑹𝒑𝑖′

𝑛

𝑖=1

(20) 

𝒕∗ = 𝝁𝑞 − 𝑹𝝁𝑝 (21) 

To simplify the rotation matrix, let 𝑾 = ∑ 𝒒𝑖
′𝒑𝑖

′𝑇𝒏
𝒊=𝟏 .  

From SVD, for a full rank matrix 𝑾 = 𝑼𝚺𝑽𝑇, where 𝚺 is a square diagonal matrix, the 

combination of 𝑼 and 𝑽 matrices exists and is unique. Therefore, the optimized rotation 

matrix in equation (20) can be rewritten as 

𝑹∗ = 𝑼𝑽𝑇 (22) 
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2.2 ORB-SLAM Family 

ORB-SLAM family includes three generations and has now become one of the most 

accurate real-time visual SLAM systems without the adoption of deep learning methods. 

Inspired by PTAM [12], the first generation ORB-SLAM [15] enhanced efficient real-time 

operation in large-scale environment. It is the first SLAM system utilizes ORB features for 

extraction and matching. Dividing the SLAM task into tracking, local mapping, global 

relocalization and loop closing, ORB-SLAM enables efficient computation without GPU 

acceleration. Besides, the system robustness is significantly enhanced by its unique 

initialization process, map creation method, and keyframe selection policy. 

A schematic overview of ORB-SLAM is included below as Figure 8. 

 

Figure 8: Schematic Overview of ORB-SLAM [15] 

As a beginning version, ORB-SLAM also has its limitations. First, implemented with only 

monocular camera configuration, the depth estimations could be challenging compared to 
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the other systems using RGB-D or stereo configurations. Besides, the loop closing method 

at that time can still become struggling under certain conditions. This is said to happen 

more frequently in complex and repetitive environments. Lastly, the computational cost is 

relatively high due to the nature of ORB features. 

Considering of all the deficiencies, ORB-SLAM2 [16] was proposed by the same group of 

researchers after two years. Comparing to their previous work, improvements are made 

from multiple aspects. First of all, ROS platform becomes optional, the SLAM system can 

be performed and visualized by Pangolin package instead. Secondly, not only monocular 

but also stereo and RGB-D cameras are supported in its framework. And as the result, the 

initialization process is redesigned as preprocessing since the depth information can be 

either directly obtained from an RGB-D camera or calculated through disparities from a 

stereo camera. The scale information of objects, in this case, is calculated from rigid 

transformation instead of similarities therefore being more accurate. This also fixes failures 

from the drifting as well as during rotations, caused by the nature of monocular cameras. 

Moreover, a full bundle adjustment is implemented to ORB-SLAM2 after its loop detection 

for enhanced mapping accuracy. Lastly, a localization mode is implemented to the SLAM 

system. Other than the normal operation which creates a map while localizing the robot 

simultaneously, it is capable for operations in a known environment where a map has 

already been generated and can be loaded as input of the system. It is introduced that the 

local mapping and loop closing threads of the system are suspended under this situation; 

the relocalization thread is processed alone. The tracking of robot acts similar as a visual 

odometry system at this moment. 

A schematic overview of ORB-SLAM2 is included below as Figure 9. 



23 

 

 

Figure 9: Schematic Overview of ORB-SLAM2 [16] 

ORB-SLAM2 also has limitations compared to the other SLAM algorithms during the 

same period. One of the principal concerns raised by researchers is the lack of sensor fusion. 

There are multiple algorithms proposed at that time adopting information from multiple 

sensors. Lidar, GPS, and IMU sensors are frequently used as compensations for the camera 

in challenging situations to improve the system robustness in complex environment. 

ORB-SLAM3 [19], the latest generation of this family, introduces multiple improvements 

based on the inadequacy explained earlier. Firstly, it supports IMU, the inertial sensor as 

an optional input to enhance the robustness. It is said that the system accuracy is also 

improved relying on Maximum-a-Posteriori (MAP) estimations. Besides, an advanced 

place recognition algorithm is proposed in ORB-SLAM3 to provide better system accuracy 
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with a slightly increased computational cost. Furthermore, integrating ORB-SLAM Atlas 

[20], ORB-SLAM3 has become a comprehensive multi-map SLAM system. 

A schematic overview of ORB-SLAM3 is included below as Figure 10. 

 

Figure 10: Schematic Overview of ORB-SLAM3 [19] 

The following part in this section will explain how ORB features can be extracted and 

matched. The pros and cons of ORB feature alongside the two other feature extraction and 

matching methods discussed in the previous section will be summarized in this part as well. 
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ORB (Oriented FAST and rotated BRIEF) [32] is a combination and upgrade of a feature 

extraction algorithm FAST (Features from Accelerated Segment Test) and a feature 

descriptor BRIEF (Binary Robust Independent Elementary Features).  

FAST takes 16 pixels around the interested pixel, also called a patch of interest: one pixel 

that are 2 pixels away along each of the intercardinal directions (a total of 4), and one pixel 

that is approximately 3 pixels distance along each of the cardinal directions (a total of 4), 

and the two pixels next to the ones in the cardinal directions (a total of 8). These 16 pixels 

form a circle around the interested point, also known as a Bresenham’s circle of radius 3. 

If more than half of these pixels have intensities 𝑙𝑖 ( 𝑖 ≤ 16, 𝑖 ∈ ℤ+) are beyond a threshold 

(𝑙𝑖 ≥ 𝑙𝑝 + ℎ or 𝑙𝑖 ≤ 𝑙𝑝 − ℎ, where ℎ is the preset threshold), the interest point of intensity 

𝑙𝑝 is considered as a keypoint. 

FAST further improves this step by only comparing the four pixels in the cardinal 

directions. It is discovered that only if two or more pixels among these four satisfy the 

previously mentioned criteria, that the interest point is possible to be a keypoint. This 

reduces the process time significantly, to approximately one fourth. 

To detect those interest points in adjacent locations and determine which one suits better, 

a non-maximal suppression is applied. It is explained that a score function will be computed 

in this case: 

𝑉 = ∑|𝑙𝑝 − 𝑙𝑖|

𝑖≤16

𝑖=1

(23) 

The interest point with lesser score is eliminated. 
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Different from SIFT and SURF algorithms, FAST detects the regions with rapid contrast 

change, which typically indicates an edge. The green marks in Figure 11 below represents 

part of the features detected. It can be seen that the keypoints are aligned with the joints of 

pipes, a ladder, and the frames of baffle boards. 

 

Figure 11: Features Extracted with FAST Algorithm 

ORB further apply an orientation assignment to FAST, named oriented FAST. It assigns a 

direction for each keypoint, depending on the intensities of neighbor pixels. A vector is 

established pointing from the geometric center, which is the location of the keypoint itself, 

to the intensity center of its neighbors. The location of the intensity center as well as this 

orientation can be calculated with the moment of this patch. 

In terms of the BREIF descriptor, it starts from blurring the image, using the Gaussian 

kernel to prevent the descriptor being sensitive to noises, same as SIFT. After that, a pair 

of pixels is selected randomly among these neighbors. The first point of the pairs is selected 

from a Gaussian distribution centered around the keypoint with a standard deviation of 𝜎. 
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The second point is selected within a standard deviation of 𝜎/2 centered around the first 

point. It has been proven that this will increase the feature matching rate. The intensities of 

these two points are compared to determine a binary value, which is used as one digit of 

the descriptor. Representing with math: 

𝜏(𝒑; 𝒙, 𝒚) = {
1 ∶ 𝒑(𝒙) ≤ 𝑝(𝒚)

0 ∶ 𝒑(𝒙) > 𝑝(𝒚)
(24) 

where 𝒑(𝒙) and 𝒑(𝒚) are the intensities of the first and second point, respectively. 𝒙 and 

𝒚 are the pixels selected, defined by the image coordinates 𝒙 = (𝑢, 𝑣)𝑇.  

This intensity test is performed repeatedly for 𝑛 pairs of random points, typically 𝑛 =

128, 256 𝑜𝑟 512, so that these binary values form up a unique bitstring 𝑓(𝑛)of the set 

length, that is the BRIEF descriptor. Representing with math: 

𝑓(𝑛) = ∑ 2𝑛−1 𝜏(𝒑; 𝒙𝒊, 𝒚𝒊)

1<𝑖<𝑛

(25) 

ORB algorithm also endows the BRIEF descriptor with rotation invariance, named rotated 

BRIEF. Instead of rotating the entire patch around each keypoint, only the selected BRIEF 

pairs are rotated, so that the computation cost is reduced. The location of selected pairs can 

be represented by: 

𝑺 = [
𝒙𝟏 … 𝒙𝒏

𝒚𝟏 … 𝒚𝒏
] (26) 

The location of rotation invariant pairs can be represented by: 

𝑺𝜽 = 𝑹𝜽𝑺 (27) 
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where 𝜃 comes from the orientation assignments, indicating the direction from geometric 

center to the intensity center of the patch. 𝑹𝜽 is the rotation matrix relating the original 

direction with the orientation of intensity center. 

By this way, the location of the detected pairs can always be transformed into a normalized 

direction before comparing with the location of another set of random pairs that are in the 

same direction. Thus, the rotation invariance of the descriptor can be ensured. 

Table II below exhibits a comparison of the performances among these three algorithms 

mentioned in this section. 

Table II: Comparison of Three Feature Extraction and Matching Algorithms 

Algorithm Name SIFT SURF ORB 

Computation Efficiency + ++ +++ 

Rotation Robustness +++ ++ ++ 

Scale Robustness +++ ++ + 

 

It can be concluded that when the application demands high real-time performance, the 

ORB algorithm is preferred. However, it only provides partial scale invariance, indicating 

that the images are preferred to be taken from the right in front of the objects in order to 

achieve its best performance. The SURF algorithm not only solves this scale invariance 

problem but also makes progress on the rotation robustness. Besides, as an improved 

version of the SIFT algorithm, SURF computes the features in a more time efficiency way, 

contributed by its operational simplicity explained earlier. Although SIFT is the most time-
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consuming algorithm, it has the best rotation and scale robustness. It is better to be applied 

to those demand high accuracy but without the need of real-time operation. 

ORB-SLAM3 also has state-of-the-art optimization methods, including pose graph 

optimization, bundle adjustment, and loop closure optimization. One of the most critical 

keys to build an accurate SLAM system is the bundle adjustment. Therefore, a brief 

summary of the bundle adjustment method is included below. 

Bundle adjustment aims to optimize the camera pose estimations and the coordinates of 

keypoints. The core issue is to solve a problem minimizing the reprojection error, which 

can also be considered as a nonlinear least square problem, defined as: 

min ∑ ∑[𝑢𝑖𝑗 − 𝜋(𝐶𝑗 − 𝑋𝑖)]
2

𝑚

𝑗=1

𝑛

𝑖=1

(28) 

where 𝑢𝑖𝑗  is the pixel coordinate of observed 𝑖th point 𝑋𝑖  by 𝑗th camera 𝐶𝑗 , 𝜋(∙) is the 

reprojection function, which is nonlinear. 

There are multiple ways to solve this problem. The old-fashioned ways are based on 

gradient descent and Newton’s method. However, gradient descent method cannot achieve 

fast converging; Newton’s requires to calculate the computing expensive Hessian matrix 

and cannot ensure a steady descent of gradient. Gauss-Newton improves the solving to 

some extent. The calculation of Hessian matrix is avoided but the descent of gradient can 

still not be guaranteed. A powerful tool commonly used today is called Levenberg-

Marquardt method, which is developed by combining gradient descent with Gauss-Newton. 

This method ensures a fast convergence with descending gradient by tuning a parameter 𝜆. 
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CHAPTER 3 SYSTEM ARCHITECTURE 

The proposed system is built on ORB-SLAM3 [19]. Figure 12 dissects the main system 

components, that a new working thread named Dense Reconstruction is created beyond the 

original system, circled by the red dashed box.  

 

Figure 12: Architecture of the Proposed SLAM System 

Dense Reconstruction thread takes two inputs. The first one is keyframes, decided by the 

tracking thread. This frame can be a combination of color image and depth image, provided 

by an RGB-D camera; or it can be two images from both views of a stereo camera. The 

following working process differs depending on the type of camera. 
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The second input is optional. Leveraging the Atlas subsystem and configure by user, when 

enabling the multi-sequence merging mode, a dense point cloud from the previous 

sequence(s) is expected to be input, carrying the keyframes, map points, as well as their 

connections. 

The following stage generates a depth map and a color map for each keyframe. Our purpose 

is to obtain the red, green, and blue intensity of each pixel along with its distance to camera; 

therefore, the pixel can be converted to a map point in the dense point cloud. This is 

straightforward when using an RGB-D camera as all the information can be read directly 

from the image captured. 

For a stereo camera, yet, we have to take additional considerations. To obtain the depth 

from corresponding left and right views of a keyframe, we first compute a disparity map. 

However, it is quickly discovered that not all pixels, even in keyframes, brings useful 

information. For example, some pixels can be too obscure to give reliable calculations, and 

some can have beyond reasonable distances. These outliers introduce perceptible errors 

when converting their disparities to depths. These pixels are mostly located on the 

periphery of the image; hence, a region of interest is chosen, and only those pixels within 

are used to compute the disparity. 

In terms of creating a color map from stereo images, limited by the size of dataset, many 

stereo images are provided grayscale. This is not sufficient enough to generate a 

recognizable 3D scene. The demand of better visualization necessitates a color assignment 

based on depth. 

Since the system is designed to process multiple sequences of the same scene, it is revealed 

that the same feature can be repeatedly detected, during one dataset and, specifically, cross-
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datasets. The same map point can, therefore, be assigned to the point cloud for multiple 

times. However, a later estimation does not mean it is inevitably more accurate. For 

example, a map point corresponding to a center pixel of the image was detected at a 

distance of 1 meter from the camera and was then added to the point cloud. After 20 

seconds, the same point is detected again, but now from 5  meters away, and the 

corresponding pixel is located at the periphery of the interest region in the image. We are 

cognizant of the fact that the latter presence, in this case, should be treated as less accurate, 

in accordance with the epipolar geometry. 

With regard to this, we register a probability to each map point in the dense point cloud as 

its confidence. It is initialized when a map point is being added to the dense point cloud. A 

modified sigmoid function is used to assign this probability. The less depth a map point 

has, the higher confidence on its accuracy we can have. This probability is updated only 

when two map points are merged with the following rule: when a map point is being added 

to the dense map, if another map point already exists within a preset spatial distance, then 

they are treated as the same point. Accordingly, the pending map point combines with the 

existing one, and being replaced by a new map point at a location calculated from their 

probabilities of confidence. This prevents those inaccurate latter estimations from ruining 

the previous trust-worthy point cloud map. 

To demonstrate the real-time reconstruction, we further process the dense point cloud to a 

voxel grid filter before visualization. The redundant points in the dense point cloud are 

removed. The point cloud is sparsified at a user-configurable resolution such that only 

desired number of points are preserved in the map, thereby reducing the CPU workload. 

The dense point cloud is also converted to an Octomap, which represents the scene with a 
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compact 3D model. Both the dense point cloud map and the Octomap are saved before 

exiting for potential uses afterwards. 

The following sections in this chapter will detail the improvements mentioned above. 

3.1 Camera Model 

As discussed in the literature review, ORB-SLAM3 efficiently identifies the ORB features 

and accurately produces a semi-dense map in real-time. We further utilize these keyframes 

determined by the original system to provide an additional function of constructing dense 

point cloud maps with either RGB-D or stereo images. Furthermore, this dense point cloud 

is converted into an Octomap for possible subsequent operations. A pinhole camera model 

is assumed during the reconstruction for simplicity. 

For a point 𝑃(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) in the world coordinate system, its projection onto the image 

coordinate system, denoted as (𝑢, 𝑣), can be calculated with a homogeneous expression: 

𝑧𝑐 [
𝑢
𝑣
1

] = 𝑲 [
𝑹3×3 𝒕3×1

0 1
] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (29) 

where 𝑧𝑐 is the distance of the point from image; 𝑹 and 𝒕 are the rotation and translation 

matrices that form up the camera extrinsic. 𝑲 is the camera intrinsic matrix defined with 

the focal length, 𝑓𝑥, 𝑓𝑦, the principal point offset 𝑐𝑥, 𝑐𝑦, horizontally and vertically, and the 

axis skew coefficient 𝑠. These camera parameters are directly input to the system from a 

configuration file. 

Reconstruction of map points, which is detailed below, reverses the calculation of equation 

(29). The processes using RGB-D and stereo camera, however, differ significantly since 
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the depth 𝑧𝑐  cannot be obtained directly from stereo images. For this reason, they are 

discussed separately in their respective sections. 

3.2 Dense Reconstruction from RGB-D Camera 

Generating a point cloud from RGB-D camera is relatively simple. This process is formally 

presented in Algorithm 1.  

 

Figure 13: Algorithm 1 for RGB-D Point Cloud Generation 
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The set of input frames are bijective with either the set of color images or the depth images. 

Therefore, the frame ID, 𝑛, can be used to access all these three sets, 𝕊𝑓  , 𝕊𝑐  and 𝕊𝑑 . 

Therefore, if a frame is determined as keyframe in the Tracking thread, a correlated pair of 

color image and depth image is added to queue. The decision of keyframe is made, 

according to certain rules that have been introduced in the original system. On the other 

hand, the Dense Reconstruction thread pops out from the front of the queue with a first 

come first serve manner. The world position for each pixel is calculated with the pinhole 

model, illustrated in Figure 14. 

 

Figure 14: Illustrative Diagram of RGB-D Camera Model 

Assume a point 𝑃(𝑃𝑋 , 𝑃𝑌, 𝑃𝑍) — in the camera coordinate system, with origin at the focal 

point 𝑂 — is projected to the image plane at 𝑝(𝑝𝑥, 𝑝𝑦, 𝑝𝑧), where 𝑃𝑍 is its distance to the 

camera, from 𝐶 to 𝑂. Using an RGB-D camera, this can be directly measured, so being 
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used as line 13 in Algorithm 1. 𝑝𝑧 is also a known value, which is the distance from 𝑐 to 

𝑂. It measures from the image plane to the focal point, which is the focal length 𝑓. The 𝑥 

and 𝑦 coordinate of this point can be calculated separately, each with a pair of similar 

triangles. Horizontally, the first triangle is formed by 𝑂 , 𝑐  and the point where 𝑝𝑥  is 

marked in the figure; and the second triangle is within 𝑂, 𝐶 and the point where 𝑃𝑋  is 

marked. They are filled with light and dark blue, respectively. Likewise, another pair of 

triangles is formed vertically. These pair of triangles are in green. From these similarities, 

the equations in line 14 and 15 are established. 

Concurrently, color in blue, green, and red intensities are extracted from 𝑴𝑐 and assigned 

to each point. This process iterates whenever the image queue is not empty and ends by the 

end of program when thread is killed. Line 19 stores the converted map points of a single 

keyframe to ℙ𝑐, that is in camera coordinate system. Line 21 converts these points to world 

coordinate system with a transformation matrix 𝑻𝑤
𝑐  calculated and optimized by the 

original system, then updates the dense point cloud 𝕊𝑃 with all nonexistent points. 

These map points are recorded in the form of voxels. For a 640 by 480 image, more than 

300,000 voxels are generated, causing unnecessary computational burden if all of them 

are stored into the dense map. A reasonable solution to this issue is to use a voxel filter, 

which sieves the close voxels and replaces them with only one voxel. This filter can operate 

at a preset resolution. In order to ensure real-time performance most of the time in the 

experiments, more than 90% of the voxels are removed. They are stored into a .pcd file for 

reuse purpose as well as the Octomap conversion, which will be discussed in the latter 

section. 
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3.3 Dense Reconstruction from Stereo Camera 

Generating a point cloud from stereo camera requires extra steps compared to the previous 

discussed RGB-D reconstruction. This process is formally presented in Algorithm 2. 

 

Figure 15: Algorithm 2 for Stereo Point Cloud Generation 
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Unlike the RGB-D camera which can obtain the depth directly, the concept of disparity, 

which is introduced in epipolar geometry, is required to calculate depth from a stereo 

camera. However, we need to rectify both views in advance. In this step, functions in the 

OpenCV [28] library are used to undistort, calibrate, and crop the image: the epipolar is 

moved to infinity, the same pixels are aligned horizontally as much as possible, and invalid 

regions are removed. This is done in line 4 of Algorithm 2, where 𝑅𝑂𝐼 stands for the region 

of interest, which consists of the upper and lower bounds of the image in both horizontal 

and vertical directions. 

Disparity indicates the distance of a point 𝑃 between the left and right views, in the unit of 

pixels. As shown in Figure 16, the point 𝑃 is projected onto the left image plane at 𝑝𝐿, 

having horizontal coordinate of 𝑝𝐿
𝑥; and for the right image plane, 𝑝𝑅

𝑥. As aforementioned, 

only horizontal disparity 𝑝𝐿
𝑥 − 𝑝𝑅

𝑥 needs to be considered after calibration. In line 11 of the 

algorithm, disparities are calculated for all pixels with the calibration matrices 𝑴𝑐𝑙 and 

𝑴𝑐𝑟. They are stored in consistent with the input image in 𝒅, which is a matrix of the same 

size as image. 

The next step is to convert the disparity to depth with geometric similarity. Note that after 

the calibration, the two “curves” 𝑂𝐿𝑂𝑅 and 𝑝𝐿
𝑥𝑝𝑅

𝑥 in blue are line segments, they seem to 

be curves due to one-point perspective. The length of baseline is defined as 𝑏; the distance 

between the two points marked 𝑝𝐿
𝑥  and 𝑝𝑅

𝑥  is 𝑏 – 𝑝𝐿
𝑥𝑐𝐿  +  𝑝𝑅

𝑥𝑐𝑅 , since 𝑂𝐿  and 𝑂𝑅  are 

projected at the center of each image. The two triangles formed by the point marked 𝑃𝐿
𝑋 

and each of the two segments are similar. Thus, the equation in line 17 can be applied to 

find the length of the blue line segment perpendicular to baseline, which is the depth of 

point 𝑃. 
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Figure 16: Illustrative Diagram of Stereo Camera Model 

As for colors, the grayscale images have same intensities for all three channels: red, green, 

and blue. For better visualization, line 12 assigns all pixels with colors based on their depths. 

The colorization is coded as an optional function intentionally. The alternative option 

assigns all map points with a single solid color, defined by user before the program starts. 

Having this option benefits the visualization when running multiple sequences in the same 

scene. 

 

3.4 Octomap from Dense Point Cloud 

The previous section outlines the process of generating a dense point cloud map. This 

section introduces an alternative mapping method, Octomap, its necessity and 

implementation. 

One major limit for the dense point cloud map is that too much space is consumed after 

mapping for a sizable dataset, even after those redundant points being filtered. Depending 
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on the application, these dense maps can sometimes be needlessly detailed in textures and 

shadings. On contrary, Octomap have its storage cost prominently reduced by using Octree, 

a tree structure, which partitions the space into multiple cubic voxels. Each of them, being 

considered as a parent node, can be further divided into eight child nodes, halving in all 

three directions. 

This step is repeated for multiple times until a satisfactory resolution is reached. The tiniest 

voxels after division, called leaf nodes, are assigned with float numbers to represent the 

probabilities of their positions being occupied. This probability is initialized with 0.5 and 

always in the [0,1] interval. The larger this number is, a higher degree of certainty we have 

that this voxel has already been occupied. To visualize the map, all unoccupied and 

undetermined leaf nodes are rendered in fully transparent while those occupied are 

rendered with colors to form the 3D model. Different from the dense point cloud, Octomap 

has a compact structure, so that it can be directly used by mobile manipulation, navigation, 

and other robotic applications. 

Furthermore, this tree structure guarantees an outstanding computing efficiency and 

demands less space for storing. To be more specific, all eight child nodes under a parent 

node are pruned if they are assigned with same states, i.e., "unoccupied", "undetermined" 

or "occupied", since the parent node itself is sufficient enough to describe this volumetric 

space. The map structure is greatly simplified in such manner. 

Introduced by the author in [23], 𝑃(𝑛|𝑧1:𝑡), the probability that a leaf node 𝑛 has been 

occupied at time 𝑡, with the sensor measurements 𝑧1:𝑡 given, is updated by: 

𝑃(𝑛|𝑧1:𝑡) = [1 +
1 − 𝑃(𝑛|𝑧𝑡)

𝑃(𝑛|𝑧𝑡)

1 − 𝑃(𝑛|𝑧1:𝑡−1)

𝑃(𝑛|𝑧1:𝑡−1)

𝑃(𝑛)

1 − 𝑃(𝑛)
]

−1

(30) 
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The 𝑙𝑜𝑔𝑖𝑡  function maps the probabilities from 𝑃(𝑛) ∈ (0,1)  to α(𝑛) ∈ 𝑅 . When a 

probability is above 0.5 , it is mapped to a positive number, and vice versa. The 

transformation is defined as: 

α = 𝑙𝑜𝑔𝑖𝑡(𝑃) = ln (
𝑃

1 − 𝑃
) (31) 

The inverse function of 𝑙𝑜𝑔𝑖𝑡 is 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, defined as: 

𝑃 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(α) = 𝑙𝑜𝑔𝑖𝑡−1(α) =
1

1 + e−α
(32) 

To avoid the calculations with astronomical numbers, upper and lower limits, 𝑙𝑚𝑎𝑥 and 

𝑙𝑚𝑖𝑛, for the 𝑙𝑜𝑔𝑖𝑡 transformation are defined. Applying equation (32) to equation (31) 

results: 

𝐿(𝑛|𝑧1:𝑡) = max(min(𝐿(𝑛|𝑧1:𝑡−1) + 𝐿(𝑛|𝑧𝑡), 𝑙𝑚𝑎𝑥) , 𝑙𝑚𝑖𝑛) (33) 

where 𝐿(𝑛|𝑧) =  ln (
𝑃(𝑛|𝑧)

1−𝑃(𝑛|𝑧)
). 

This equation dissects the update of probability at leaf node 𝑛  after receiving a new 

observation 𝑧𝑡, showing the fact that the update is based on accumulations. The current 

probability is mapped with equation (31) to make it accumulative, before adding it to the 

existing previous probabilities. To concludes the update, the probability is mapped back to 

the [0,1] interval with equation (32). For instance, if a point has been regularly measured 

to be unoccupied, its estimations are correspondingly to be negative. The initial estimation 

at zero, mapped from a probability of 0.5, is added with these negative estimations and 

becomes more negative before the minimum limit is reached. This negative number with 
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huge magnitude, at the end, maps to a near-zero probability, indicating this voxel is very 

likely to be unoccupied. 

This approach is implemented to the proposed system utilizing some predefined functions 

in the Octomap library that calculates and generates the Octomap with the dense point 

cloud. 

 

3.5 Multi-Sequence Merging 

The demands for additional computing resources have been recognized when constructing 

a 3D dense point cloud. This cannot be avoided due to the nature of dense reconstruction, 

computing pixel-wise always takes longer. To minimizing the negative impact, we would 

like to have the function of reutilizing the map and point cloud. As a result of this, we are 

able to fragment a huge sequence; Regaining the full view by merging multiple tinier 

sequences have become possible. This function is designed as optional since not in all cases 

that it is required.  

The map saving and loading functions in the proposed system is refined so that all data can 

be accessed across datasets. With this approach, it is able to run multiple partially 

overlapping sequences in the same scene and provide probabilistic updates to map points 

in the dense point cloud, therefore, constructing a reliable map to enhance the tracking 

accuracy. In the previous section, we briefly mentioned that when a map point is added to 

the dense point cloud, its position is corrected according to a probability of confidence. 

This section explains this approach exhaustively. 
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As mentioned earlier, one of the key steps when generating the dense point cloud map is 

to obtain the depths of all map points. These depths are then transformed into world 

positions by multiplications with the transformation matrices. Regardless of the RGB-D 

camera that can directly obtain the depth, when using a stereo camera, the calculated depths 

are obviously not fully accurate since they are based primarily on the camera model and 

the epipolar geometry, both of which have made assumptions for simplicity. 

For stereopsis vision, each increment of the disparity suggests a closer corresponding 

position in space. However, it is discovered from line 17 of Algorithm 2 that the 

relationship between disparity and depth of a map point is not linear but inversely 

proportional, implying that the possible values of depth are denser for those points closer 

to the camera. This fact provokes the idea that measurements should not be treated as equals. 

The sparse depth values, for those map points at far, can lead to increased measurement 

error. Observations closer to the camera should thus be considered more credible. 

The closest and farthest depth, 𝑑𝑚𝑖𝑛  and 𝑑𝑚𝑎𝑥 , establish an acceptable range for map 

points. Any map point within this acceptable range will be assigned with a probability, 𝑃, 

before joining the dense point cloud map. This probability represents the level of 

confidence we have to its sensor measurement. From a practical point of view, assigning 

full confidence to a map point at the minimum distance is witless, resulting it no longer 

updatable. Conversely, setting zero trust to a point at the maximum distance is also 

imprudent, exerting insufficient effect on the map update. Since the ideal values of 𝑑𝑚𝑖𝑛 

and 𝑑𝑚𝑎𝑥 differ from datasets, they are predefined in a configuration file. The highest 𝑃𝑚𝑎𝑥 

and lowest 𝑃𝑚𝑖𝑛 probabilities a map point can possess when locating at distance 𝑑𝑚𝑖𝑛 and 

𝑑𝑚𝑎𝑥, respectively, are also set in accordance with the surrounding conditions. A modified 
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version of the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function is used to register probability 𝑃 to a map point 𝑐 with its 

depth 𝑑, as follows: 

𝑃(𝑑) = 1 −
1

1 + e−𝑘(𝑑−𝑑0)
(34) 

where 𝑘 = 2 ln(𝑃𝑚𝑎𝑥
−1 − 1) /(𝑑𝑚𝑖𝑛 − 𝑑𝑚𝑎𝑥); 𝑑0 = (𝑑𝑚𝑖𝑛 + 𝑑𝑚𝑎𝑥)/2; 𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥. 

This function retains the characteristic of the original function, having descending 

gradients when reaching its saturation. Moreover, it is ensured that the points (𝑑𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥) 

and (𝑑𝑚𝑎𝑥, 𝑃𝑚𝑖𝑛) are passed through. Due to the symmetry property of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, 

this function has the properties: 𝑃𝑚𝑖𝑛 + 𝑃𝑚𝑎𝑥 = 1 and 𝑃(𝑑0) = 0.5. 

Since the same map point can be detected time after time, whether in the same dataset or 

across different datasets, a probabilistic-based optimization is made to estimate its position 

when it is added to the dense point cloud map repeatedly. The probabilities of confidence 

for both times are calculated by equation (34) and used jointly to find a weighted average. 

For a newly added map point 𝑐1, the spatial distance from its closest point existing in the 

point cloud, 𝑐2 , is calculated by two-norm. If this is less than a certain value, that is 

converted from the preset resolution, these two map points will be considered as the same 

point, and be replaced with a new map point, 𝑐3. We define the update as: 

𝑆(𝑐3) =
𝑃(𝑑1)

𝑃(𝑑1) + 𝑃(𝑑2)
𝑆(𝑐1) +

𝑃(𝑑2)

𝑃(𝑑1) + 𝑃(𝑑2)
𝑆(𝑐2) (35) 

where 𝑆(𝑐𝑖) = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖, 𝑑𝑖], representing the Cartesian coordinates of map point 𝑐𝑖 in the 

world reference frame and its distance from the camera. 
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The probability, 𝑃3, is then calculated by equation (35). As such, 𝑐3 becomes the latest map 

point that another searching and replacing process is applied to. This is iterated as many 

times as necessary until no map point can be found within the minimum spacing. Figure 

17 exemplify the update in 2D.  

 

Figure 17: Example of Point Cloud Updating 

Each black dot represents a map point that already exists in the dense point cloud. The red 

dot indicates the newest inserted map point and the red circle filled with light yellow 

describes the searching space around a map point. The blue dot shows a new position for 

the map point which is estimated by combining the two previous probabilities. Those map 

points that have been removed from the map are drawn in orange. 

For the instance in this figure, two rounds of selection, searching and replacing procedure 

have occurred. At the end, the six initially map points in the point cloud is eliminated to 

four, with an accepted distance between any two of them. 

In conclusion, using the update rule introduced in this section, we are able to achieve more 

accurate map point estimations; meanwhile, the redundant map points are banished from 

the point cloud to reduce the computation workload. 
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CHAPTER 4 RESULTS AND DISCUSSION 

We verify the performance of our proposed system with the following two sets of 

evaluations: 

• 3D dense reconstruction: with benchmark dataset TUM [33] for RGB-D camera; and 

indoor dataset EuRoC [34], outdoor dataset KITTI [35] for stereo camera configuration. 

• Multi-sequence merging in all datasets. 

All experimental results are produced in the operating environment of Intel Core i7-7500U 

at 2.7GHz, 1×8 GB RAM, and without GPU acceleration. 

The length of each sequence in all three datasets are provided in Table III below. 

Table III: Dataset Characteristics 

a. TUM dataset (Length in 𝑚, duration in 𝑠, camera 30𝐻𝑧) 

Sequence FR1_desk FR1_room FR2_desk FR2_no_loop FR2_with_loop FR3_office 

Length 9.263 15.989 18.880 26.086 39.111 21.455 

Duration 23.40 48.90 99.36 112.37 173.19 87.09 

b. EuRoC dataset (Length in 𝑚, duration in 𝑠, camera 2 × 20𝐻𝑧) 

Sequence MH_01 MH_02 MH_03 MH_04 

Length 80.6 73.5 130.9 91.7 

Duration 182 150 132 99 

Sequence MH_05 V1_01 V1_02 V1_03 

Length 97.6 58.6 75.9 79.0 

Duration 111 144 83.5 105 

c.  KITTI dataset (Total length 39.2km, 41k frames, in 22 sequences, camera 2 × 10𝐻𝑧) 

 

To validate the accuracy of our proposed system, we compute the root mean square value 

of absolute trajectory error, which is a widely used criteria and defined as: 

For an estimated trajectory  𝑿̂ = {𝑥̂1 … 𝑥̂𝑛} and its corresponding ground truth 𝑿, 

Sequence 00 01 02 03 04 05 06 07 

Frames 4541 1100 4661 801 271 2761 1101 1101 
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𝐴𝑇𝐸𝑅𝑀𝑆𝐸(𝑿̂, 𝑿) = √
1

𝑛
∑‖𝑇𝑿̂𝒊 − 𝑇𝑿𝒊‖

2
𝑛

𝑖=1

(36) 

where inside the sigma is the Euclidean distance between the two poses from estimation 

and ground truth at time stamp 𝑖. 

 

4.1 RGB-D Dense Reconstruction 

Figure 18 exhibits the dense point cloud maps with their corresponding Octomap generated 

from sequences in the TUM dataset using RGB-D camera configuration and single 

sequence operation. 

These results demonstrate the validity of our system with RGB-D images. The red and 

green markers in the point cloud represent the starting and ending locations while those 

blue markers are the keyframes determined by the original ORB-SLAM3 system. 

Errors calculated for all sequences with the proposed system is summarized in Table IV, 

showing a comparison with RGB-D SLAMv2. Results for proposed system are calculated 

from the average of three runs for fairness. Results for RGB-D SLAMv2 is obtained from 

[22]. 

Table IV: TUM Single Sequence RGB-D Reconstruction Performance Comparison 

Sequence FR1_desk FR1_room FR2_desk FR2_no_loop 

Proposed 𝐴𝑇𝐸𝑅𝑀𝑆𝐸  (𝑚) 0.017 0.052 0.018 0.237 

Proposed 𝐹𝑃𝑆 (𝐻𝑧) 23.7 24.2 19.6 17.7 

RGB-Dv2 𝐴𝑇𝐸𝑅𝑀𝑆𝐸  (𝑚) 0.026 0.087 0.057 0.860 

RGB-Dv2 𝐹𝑃𝑆 (𝐻𝑧) 15.2 14.0 7.34 6.80 
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(a) FR1 desk 

 

(b) FR1 room 

 

(c) FR2 desk 
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(d) FR3_office 

 

(e) FR2_no_loop 

Figure 18: Dense Point Cloud (left) and Octomap (right) Reconstructed with RGB-D 

Camera from Single Sequence in TUM Dataset  

It can be summarized that the proposed system exhibits better performance compared to 

RGB-D SLAMv2 algorithm, the root mean square absolute trajectory error is reduced up 

to one-fourth. Considering the camera input is at 30Hz in this dataset, we are close to 

achieve real-time dense reconstruction in small indoor environment. However, the time 

consumption is still challenging in a relatively large room. This could be improved 

significantly by reducing the map density, which is coded as a user input that can be easily 
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modified at preparative stage. Comparing the frame rates in FR1_room and FR1_desk 

datasets, it is observed that the smaller-scale scene unexpectedly demonstrates less frame 

rates, indicating that it could be the hardware that constraints the system performance.  

 

Figure 19: Dense Map (left) and Octomap (mid) Obtained from Pipes (right) in EuRoC 

4.2 Stereo Dense Reconstruction 

For reconstruction from a stereo camera, we validated our system performance in both 

indoor and outdoor, with EuRoC and KITTI dataset, respectively. 

In terms of the indoor EuRoC dataset, we have run dense reconstruction in two scenes. The 

first one is captured inside the industrial machine hall in ETH Zurich, therefore containing 

pipes and tanks. Note that this is a challenging dataset since images are captured from a 

stereo camera implemented on a drone. The aerial camera movements and changing 

lighting conditions can exert huge influence on our SLAM system.  

To reduce the computational cost while maintaining a relatively reliable visualization, the 

color information from input images is discarded, and spatial points are assigned with 

rainbow colors based on its distance from the camera, red is the farthest and vice versa.  

An example of reconstruction from the pipes captured in MH_01 is illustrated as Figure 19. 

Figure 20 shows the reconstructed dense map as well as the Octomap.  
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Figure 20: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from 

Single Sequence in EuRoC MH_01 (top), MH_03 (mid), and MH_05 (bottom) 
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The second scene contains three sequences recorded in the Vicon Room with different 

obstacle configurations. There are some moving curtains visible while recording these 

sequences, so having accurate tracking becomes more challenging. Figure 22 presents the 

dense map and Octomap generated from these sequences. 

We are able to rotate these 3D maps in map viewer software, which immensely helps in 

understanding the room’s environment; nonetheless, it is not possible to attach the 3D map 

in this thesis as PDF. To further enhance the readability of these maps, a sparse map is 

provided below as Figure 21. Other than what have been explained for Figure 18 above, 

the red and black dots represent active and inactive keypoints captured from camera, 

respectively, and green lines shows the co-visibility relationship between keyframes. 

 

Figure 21: Sparse Map with Co-Visibility Obtained from EuRoC V1_01 
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Figure 22: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from 

Single Sequence in EuRoC V1_01 (top), V1_02 (mid), and V1_03 (bottom) 
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Errors calculated for all sequences using the proposed system are summarized in Table V, 

compared with the stereo configuration of ORB-SLAM3. Results for proposed system are 

calculated from the average of three runs for fairness. Results for ORB-SLAM2 and ORB-

SLAM3 are obtained from [16] and [19]. 

Table V: EuRoC Single Sequence Stereo Reconstruction 𝐴𝑇𝐸𝑅𝑀𝑆𝐸  (𝑚) Comparison 

Sequence MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 

ORB-

SLAM3 

stereo 

0.029 0.019 0.024 0.085 0.052 0.035 0.025 0.061 

ORB-

SLAM2 

stereo 

0.035 0.018 0.028 0.119 0.060 0.035 0.020 0.048 

Proposed  0.039 0.028 0.032 0.112 0.061 0.042 0.036 0.107 

 

It can be concluded that with the proposed system, an acceptable trajectory tracking can be 

achieved. However, unlike the enhancement achieved for the RGB-D configuration 

compared to RGB-D SLAMv2, we are not able to obtain improved results compared to 

ORB-SLAM family. A potential reason for this is the parameter tuning for the 

reconstruction. We intentionally reduced the number of keypoints in each keyframe from 

the original value used in ORB-SLAM3, decreasing it from 2000 to 1000. This sacrifice 

brings significant enhancement on real-time performance, boosting the frame rate from less 

than 10Hz to around 15Hz. More importantly, this modification solves an occasional 

program die-out issue when running the MH_05 sequence, which sometimes consumes all 

memory space of the laptop. 

With respect of the validation for outdoor environment, KITTI provides 22 sequences 

recorded in Karlsruhe, Germany. Figure 23 [36] illustrates a map where all sequences are 

recorded. It is introduced that those high precision with GPS corrections are in red, whereas 
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the rest in blue shows the GPS absence areas. These sequences are from both rural areas 

and on highways, so a typical length of one to two kilometers is expected. It is introduced 

that the first 11 sequences out of these 22 are used for testing purpose, thereby making the 

ground truth public. The rests are made for validation only, so it is not possible to obtain 

the ATEs unless a submission to the dataset publisher’s website is made. As the result, only 

sequence 00 to 10 is used in this thesis for analysis. 

 
Figure 23: Recording Zone for KITTI Dataset [36] 
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An example of reconstruction from the road captured in 00 is illustrated as Figure 24. 

 

Figure 24: Dense Map (left) and Octomap (mid) Obtained from Road (right) in KITTI 

Trees and a vehicle on the road from the input image can be correspondingly found in the 

reconstructed maps. However, only the back part of this vehicle is captured, which is 

denoted in purple located at the middle part of the dense map.  

Figure 25 shows the dense map and the Octomap reconstructed from this outdoor dataset. 

To further validate the accuracy of the proposed system, comparisons of the absolute 

trajectory errors from sequences 00 to 10 are performed among the proposed system with 

the latest two generations in ORB-SLAM family. Because the results of ORB-SLAM3 

using stereo camera configuration are not reported in their publish, three runs are operated 

with the same setup as the proposed system, averaged and collected in Table VI below. 

Results for ORB-SLAM2 is retrieved from [16] directly. 
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Figure 25: Dense Map (left) and Octomap (right) Reconstructed with Stereo Camera from 

Single Sequence in KITTI 00 (top), 02 (mid), and 09 (bottom) 
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Table VI: KITTI Single Sequence Stereo Reconstruction 𝐴𝑇𝐸𝑅𝑀𝑆𝐸  (𝑚) Comparison 

Sequence 00 01 02 03 04 05 06 07 08 09 10 

ORB-

SLAM3 

stereo 

1.252 5.364 1.805 0.749 0.192 0.638 1.025 0.379 2.691 3.448 0.927 

ORB-

SLAM2 

stereo 

1.3 10.4 5.7 0.6 0.2 0.8 0.8 0.5 3.6 3.2 1.0 

Proposed 1.248 5.596 1.924 0.637 0.233 0.561 1.352 0.459 2.654 3.861 1.245 

 

It can be discovered that the proposed system achieves better accuracy compared to ORB-

SLAM2, especially in the first three sequences. However, for the rest sequences there is no 

significant enhancement. This is most likely due to the parameter selections, which needs 

to be tuned carefully for best performance. Comparing to ORB-SLAM3, the proposed 

system holds similar accuracy, it can be assumed that taking average from more iterations 

will further reduce the difference between these two systems. 

Overall, the proposed system is able to achieve dense reconstruction from either indoor or 

outdoor environments using a stereo camera. Its accuracy is proven after the comparison 

with other algorithms using the same sensor configuration. 

4.3 Multi-Sequence Merging 

Multi-sequence operations are performed on both RGB-D and stereo datasets. Specifically, 

TUM and EuRoC are chosen to validate the performance of multi-sequence merging. 

KITTI is not considered suitable for this purpose as it only comprises large outdoor 

sequences without significant overlaps. We are aiming to demonstrate the accuracy of 

proposed system can be enhanced after merging multiple sequences with overlapping 

features. 



59 

 

 

Figure 26: Comparison of Trajectories between Single Sequence and Multi-Sequence 

Operation on TUM FR2_large_no_loop with Ground Truth 

We first tested the proposed system with TUM dataset. Figure 26 represents a comparison 

of trajectories and errors between running FR2_large_no_loop as a single sequence and a 

multi-sequence operation with a priori information collected from another sequence 

FR2_large_with_loop.  

Three trajectories are shown in this figure: the ground truth is represented with a black 

dashed line whereas the single and multisequence operations have trajectories in blue and 

green. The middle portion of all trajectories is straight since the author of this dataset 

intentionally turned off GPS for added difficulty, causing the corresponding part to be 
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missing. In spite of this, it is clearly illustrated that the trajectory after sequence merging 

is closer to the ground truth, proving that the accuracy of system is improved.  

To further explain the enhancement, the instantaneous and cumulative 𝐴𝑇𝐸𝑅𝑀𝑆𝐸  are 

plotted in Figure 27. As introduced earlier, that portion without ground truth provided is 

cropped from the plot, creating a discontinuous on the x-axis for elapsed time of system. 

As the legend indicates, black and red solid lines represent the instantaneous absolute 

trajectory error at each individual time stamp, using y-axis on the left; blue and brown lines 

with transparent fill represent the cumulative absolute trajectory error for single sequence 

and multiple sequence merging operations, respectively. 

It is calculated that the average ATE per frame drops when using multi-sequence 

configuration, from 0.706m to 0.181m. Therefore, it can be summarized that with the 

proposed multi-sequence merging method which reuses the knowledge from previous 

sequences, the system accuracy can be enhanced. 

A similar evaluation has been made on the stereo dataset, EuRoC. 

 

Figure 27: Comparison of Instantaneous and Cumulative 𝐴𝑇𝐸𝑅𝑀𝑆𝐸 between Single and 

Multi-Sequence Operation on TUM FR2_large_no_loop with Ground Truth 
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In order to visualize the merging of multiple sequences, different colors are assigned to 

each of the sequences from MH_01 to MH_05, instead of using a rainbow color like what 

has been done in the single sequence operation. Figure 28 illustrates a multi sequence 

merging of MH_01, MH_02, MH_03, MH_04, and MH_05, which are colored in blue, pink, 

orange, purple, and green, respectively. The subfigure on the right is a sparse map 

generated during the final run of five, multiple trajectories are included as the operation of 

MH_05 is reusing the knowledge from previous runs. 

Figure 29 presents a closer look at these trajectories. Camera poses at keyframes in the 

former maps are denoted in purple, while in the current map, they are colored in blue. It is 

evident that the co-visibilities are estimated between these two trajectories, implying cross-

dataset connections. 

 

Figure 28: Dense (left) and Sparse (right) Map Generated from Multi-Sequence Merging 

of EuRoC Sequences, the Latter Sequence Reuses Map from Previous Ones 
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Figure 29: Cross Dataset Co-Visibilities Estimated in EuRoC Multi-Sequence Merging  

The root mean square absolute trajectory error of multi-sequence merging is concluded 

below in Table VII.  

It is noteworthy that after merging with the map knowledge from MH_01 sequence, the 

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 of MH_02 is reduced from 0.028m, summarized in Table V, to 0.026m. Similar 

enhancement can be observed for V1_02 sequence after merging with V1_01.  

However, for each set of sequences in EuRoC dataset, the difficulty is described as 

increasing by the author. Therefore, the improvements are not tremendous, most of the time 

for less than one centimeter. We are expecting to see more significant improvements on 

sequences with similar difficulties. 

Besides, we noticed an unexpected increase of error after merging the maps obtains from 

first three sequences in Machine Hall with the fourth sequence. After checking the dataset, 

it is discovered that although MH_04 shares the same room with other three sequences, it 
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does not have much common view with the others. The limited enhancement is explained 

as a result of lacking co-visibility. 

Table VII: EuRoC Multi-Sequence Merging 𝐴𝑇𝐸𝑅𝑀𝑆𝐸  (𝑚) Summary 

Sequence MH01 MH01-02 MH01-03 MH01-04 MH01-05 

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 0.039 0.026 0.027 0.091 0.044 

Sequence V1_01 V1_01 - V1_02 V1_01 - V1_03 

𝐴𝑇𝐸𝑅𝑀𝑆𝐸 0.042 0.028 0.030 

 

Overall, we have checked the validity of the multi-sequence merging method of the 

proposed system. Enhancements on the system accuracy after reusing the map knowledge 

from previous sequences can be observed for both RGB-D and stereo camera 

configurations. 

4.4 Octomap 

Four different mapping methods can be used in the proposed system: point cloud map, 

sparse mapping, dense mapping, and Octomap. Figure 30 compares a laptop mapped by 

these four methods, from left to right. 

The point cloud map contains a collection of 3D points in space, and it is the raw data used 

to create sparse map and dense map. Although it is visually similar to the dense map, point 

cloud is unordered, or sparsely distributed. 

    

Figure 30: Laptop Mapped by Point Cloud, Sparse, Dense Mapping and Octomap 
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This becomes even more obvious when using sparse map, all unnecessary information, 

such as the shape, color, and texture of the laptop, have been discarded. For this case, 

anything other than the ORB feature points is removed for computational simplicity. 

Overlapping with those features from other objects, such as the desk underneath, it is  

difficult for human to tell what objects exist in the map. 

Dense mapping solves this problem with a significant higher computational complexity. 

The texture of laptop is fully captured and there is an occupancy grid related to it. This 

occupancy grid discretizes the 3D space into grid cells and assigns each cell with a binary 

value. This value is dynamically updated to represent if the corresponding space is 

occupied by an object or not, which is crucial to multiple robotic applications. 

Octomap, as introduced earlier, is a solution to the huge memory consumption by dense 

mapping. A comparison of the Octomap generated from TUM FR1_room using different 

leaf size is included below in Figure 31. Table VIII shows the file size of the dense map 

(.pcd) and the Octomap (.ot) regarding to different leaf size configurations but for the same 

sequence. It can be observed that a smaller value should be set for the leaf size if a finer 

map is required. However, the smaller leaf size is set, the larger file size would be expected. 

It is noteworthy that when a small leaf size is set for a large map, an integer overflow error 

may occur before killing the program. Based on experience, using a leaf size around 0.01m 

in an indoor sequence is considered appropriate; as for outdoor datasets like KITTI, leaf 

size should not be set less than 0.05m, a typical value for me to use is 0.2m.  

Table VIII: File Size (in Megabytes) for Different Leaf Size Configurations 

Leaf Size (m) 0.01 0.02 0.05 0.1 0.2 

Dense Map 106.4 31.6 6.6 1.2 0.317 

Octomap 25.2 6.4 1.2 0.230 0.062 
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Figure 31: Octomap with Leaf Size 0.01m (top left), 0.02m (top right), 0.04m (bottom 

left), and 0.08m (bottom right) from TUM FR1_room 

Table IX shows the comparisons we made on the size of each Octomap (.ot file) and its 

corresponding dense map (.pcd file). The compactness of Octomap can be proved by the 

diminishing size of each map after being converted. 

4.5 Runtime Analysis 

Similar to the code included in the ORB-SLAM3, which analyzes the time cost for each 

step during the SLAM process, a piece of code is written to determine the time required to 

accomplish dense reconstruction. 
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The time required for each step of the main operations in the proposed system as well as 

the ORB-SLAM3 has been concluded in Table X. This table contains analysis on both 

RGB-D and stereo configuration, indoor and outdoor. The data for the ORB-SLAM3 stereo 

configuration on EuRoC V2_02 sequence is directly sourced from [19], while the data for 

the stereo configuration on KITTI 07 sequence and the RGB-D configuration on TUM 

FR3_office sequence are derived from my experiment and averaged from three trials. 

Table IX: File Size (in Megabytes) of Dense Mapping Compared to Octomap 

TUM FR1_desk FR1_room FR2_desk FR2_no_loop 

Dense 36.7 90.4 67.7 52.1 

Octomap 7.5 22.6 17.2 7.9 

TUM FR2_with_loop FR3_office Average Compress Ratio 

Dense 31.3 34 
5.138 

Octomap 4.2 8.6 

EuRoC MH_01 MH_03 MH_05 V1_01 

Dense 38.2 43.1 71.1 5.8 

Octomap 5.5 6.6 11.5 0.94 

EuRoC V1_02 V1_03 Average Compress Ratio 

Dense 11.1 16.6 
6.546 

Octomap 1.7 2.4 

KITTI 00 01 02 ACR 

Dense 83.7 4.8 15.2 
4.771 

Octomap 16.1 1.1 3.2 

 

Table X: Running Time (in milliseconds) of Main Parts in the Proposed System 

Compared to ORB-SLAM3, on TUM FR3_office, EuRoC V2_02, and KITTI 07 

*Statistics for ORB-SLAM3 stereo on EuRoC V2_02 is based solely on author’s report. 

S
ettin

g
s 

Sensor RGB-D Stereo Stereo 

Dataset TUM EuRoC KITTI 

Sequence FR3_office V2_02 07 

Input FPS 30Hz 20Hz 10Hz 

Resolution 640 × 480 752 × 480 1226 × 370 

ORB 

Features 
1000 1000 2000 

System Ours ORB3 Ours ORB3* Ours ORB3 

Tracking 
Stereo 

Rectification 
- - 1.56 1.32 - - 
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ORB 

Extraction 
9.10 8.84 17.27 15.68 18.28 18.61 

Stereo 

Matching 
- - 3.05 3.35 4.02 3.91 

Pose 

Prediction 
2.57 2.58 2.73 2.69 2.57 2.56 

Local Map 

Tracking 
6.62 6.56 6.60 6.31 4.79 4.83 

New 

Keyframe 

Decision 

0.24 0.24 0.21 0.12 0.28 0.28 

Total 19.41 19.15 32.16 31.48 31.92 32.17 

Mapping 

Keyframe 

Insertion 
8.21 8.20 8.24 8.03 8.83 8.70 

Map point 

Culling 
0.28 0.29 0.35 0.32 0.30 0.31 

Map Point 

Creation 
22.83 23.07 19.52 18.23 19.81 19.22 

Local BA 251.62 255.96 146.79 134.60 67.21 64.91 

Keyframe 

Culling 
5.14 4.87 5.31 5.49 0.94 1.00 

Total 290.50 294.71 174.20 158.84 98.32 95.36 

Loop 

Database 

Query 
0.75 0.75 0.98 1.06 1.03 1.01 

Compute 

Sim3/SE3 
5.89 5.90 6.19 5.26 9.30 9.88 

Loop Fusion 263.67 265.13 31.86 29.07 84.13 88.42 

Essential 

Graph 

Optimization 

135.06 134.42 71.43 84.36 132.33 134.13 

Total 408.99 408.34 112.46 124.94 226.79 233.44 

Loop 

Full BA 

Full BA 2176.49 2358.61 1809.31 1118.54 2560.22 2439.94 

Map Update 14.95 15.14 16.95 13.65 28.31 30.12 

Total 2191.44 2373.75 1826.26 1132.19 2588.53 2470.06 

D
en

se R
e
co

n
stru

ctio
n

 

Keyframe 

Insertion 
8.31 - 8.19 - 9.19 - 

Depth 

Acquisition 
0.02 - 1.57 - 1.49 - 

Voxel 

Filtering 
91.90 - 82.96 - 99.68 - 

Map Update 85.35 - 89.60 - 107.69 - 

Octomap 

Conversion 
153.27 - 149.32  182.21 - 

Total 385.70 - 378.49 - 447.11 - 
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It is reported in [19] that the original system is able to run in real time at 30-40 frames and 

at 3 to 6 keyframes per second. Besides, recognizing a closing loop will trigger the loop 

closing thread that contains a very time expensive full bundle adjustment, which can cause 

the system a pause for around one second. This value has been proven to vary significantly 

depending on the device used, typically increasing to around two seconds on my laptop. 

With dense reconstruction enabled, the frame rate would be around 25Hz in small 

environments, decreasing as the sequence becomes larger. it can drop to as low as 10Hz in 

extremely large outdoor sequence provided by KITTI. 

From this analysis, it can be concluded that implementing this dense reconstruction plugin 

to the original ORB-SLAM3 system does increase the system’s running time, but not by 

an unacceptable amount. People can either reduce the maximum amount of ORB features 

allowed per keyframe or reduce the input image resolution, sacrificing the system accuracy 

to achieve improved running time for particular use. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

We proposed a visual SLAM system based on ORB-SLAM3in this paper. Aside from 

original functions, we offer a 3D dense reconstruction function through either RGB-D or 

stereo camera. It is also noteworthy that a conversion to generate Octomap is implemented 

to our system, not only reducing the map size, but also making the system competent in 

comprehensive applications. Furthermore, utilizing the map saving and loading functions 

of ORB-SLAM3, we apply probabilistic-based optimizations to merge information from 

multiple sequences, providing a remarkable enhancement to the system accuracy.  

Besides, we are mindful of a possible lessening of computing speed that is caused mainly 

by the reconstruction, which is comparatively more computing expensive. Consequently, 

we code with foresight so that the modifications can be seamlessly integrated into the 

original ORB-SLAM3 software. The applicability is secured since they can be toggled 

effortlessly without recompilation. A runtime analysis has also been performed to show the 

loss of computing time is within an acceptable range. 

The validity of the proposed system has been tested with both RGB-D and stereo datasets, 

indoor and outdoor. Comparisons have been made with state-of-the-art SLAM algorithms 

to demonstrate the effectiveness of the proposed system. 

 

5.2 Future Work 

As future work, the proposed system should be implemented with hardware for testing and 

future improvements. 
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Moreover, the quality of reconstruction can be further improved with semantic algorithms. 

Presently, the proposed system lacks the ability to handle dynamic environments. It has 

been observed, particularly in certain sequences in the outdoor KITTI dataset, that other 

vehicles presenting on the road could degrade the system’s performance. This also applies 

to the presence of any humans in the office room within the TUM dataset. Besides, the 

integration of semantic algorithms could facilitate the safe removal of unwanted elements 

in the dense point cloud maps, such as room ceilings and tree branches along the road.  

Furthermore, due to the nature limitations camera holds, fusing it with other types of 

sensors has proven to bring not only a boost of system accuracy, but also sometimes an 

extension on the robot’s application. 

Lastly, I have noticed many researchers have combine their SLAM system with machine 

learning methods. Some of them are able to achieve incredibly high accuracy in particular 

environments. This could also become something I would like to challenge in the future. 
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