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Abstract

This thesis evaluates the effectiveness of two recent works in the area of nonlinear causal modelling,

DeepSCM and ImageCFGen, in their ability to explain image classifiers and model audio data.

First, techniques are presented for generating local counterfactual explanations of classifiers using

DeepSCM and ImageCFGen models, and quantitative comparisons are made with techniques from

the OmnixAI explanation toolkit. The metrics used to evaluate these explanation techniques on

the Morpho-MNIST dataset indicate that the proposed methods of model explanation are more

interpretable than those in the OmnixAI toolkit. Second, a causal graph is constructed on top of

the attributes of the Audio-MNIST speech dataset in order to train DeepSCM and ImageCFGen

models. To evaluate the models on this speech dataset, classifiers are trained and used to measure

the consistency of attributes in observational and counterfactual data generated by DeepSCM and

ImageCFGen. DeepSCM outperforms the standard ImageCFGen model on this task, but after

fine-tuning the ImageCFGen model shows similar levels of agreement with attribute classifiers when

compared with DeepSCM. In addition to attribute classifiers, a speaker classifier is trained to measure

the ability of the causal models to maintain a speaker’s voice when computing speech counterfactuals.

The counterfactual models are compared with interventional models which do not perform abduction

in order to provide a baseline to the experiment. DeepSCM is the only model which significantly

improves over the interventional baseline, suggesting this model may be preferred over ImageCFGen

to establish a causal model with the ability to produce believable speech counterfactuals. Finally,

a dataset of North American Right Whale (NARW) calls is investigated, and a similar evaluation

using attribute classifiers is performed which demonstrates the ability of these models to manipulate

audio data.
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Chapter 1

Introduction

1.1 Counterfactual Modelling

Causality has been of growing interest to Machine Learning (ML) researchers due to

the ability for causal systems to adapt to shifts in data distributions. Causal systems

understand not just associations between variables but explicitly how variables influ-

ence each other. This allows them to generalize far better than traditional machine

learning strategies, as they learn families of distributions rather than a single distribu-

tion as a statistical model does [1]. Additionally, causal models aware of the structure

of a data generation process and are able to create and reason about data not present

in observational reality, i.e., counterfactual data. Counterfactual statements have

been proposed for use in machine learning domains, including reinforcement learning

and transfer learning, and have been argued previously to be crucial to formulat-

ing “hypotheses that can be empirically verified in a process akin to the scientific

method” [2]. A typical counterfactual statement will often take the form “if it had

been the case that ϕ then it would have been the case that ψ.”, where ϕ and ψ are

statements about the data generation process, such as the values of variables [3]. For

example, “if the patient had been to convinced to quit smoking ten years earlier, they

would not have died of lung cancer” is one such counterfactual concerned with the

state of a deceased patient.

Two recent works, DeepSCM [4] and ImageCFGen [5], have been developed us-

ing generative deep learning models to approximate counterfactual data generation.

DeepSCM utilizes a method based on variational autoencoders [6], while ImageCF-

Gen uses a GAN-style architecture [7]. Both methods employ generative deep learning

models to create structural causal models (SCM) on high-dimensional data. Low di-

mensional variables, such as univariate attributes of an image, can be modelled via

maximum likelihood using the method of normalizing flows [6, 8] to build a full SCM

1
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on top of a known or assumed set of causal associations between variables when com-

bined with these generative models. The authors of both DeepSCM and ImageCFGen

study the Morpho-MNIST causal dataset [9], a dataset of handwritten digits modified

to have attributes of thickness, intensity, and slant as “causes” of the digit image.

Additionally, the authors of ImageCFGen proposed a counterfactual importance score

metric to measure the importance of binary attributes on a classifier, suggesting that

causal models are feasible to use as components of a classifier explanation system.

The ImageCFGen algorithm also comes with a recommended fine-tuning proce-

dure from its authors in order to produce more realistic counterfactuals. This pro-

cedure uses two losses, a typical reconstruction loss and a latent loss involving an

expected value over a latent prior. This thesis presents a closed form for the latent

loss term to simplify the implementation of fine-tuning, a proof of which is found

in Appendix A.

To facilitate the experiments in this thesis, the DeepSCM and ImageCFGen al-

gorithms were implemented using the Pytorch software library [10]. This was done

in part to adapt DeepSCM to the datasets used in this work, and also due to no

public implementation of ImageCFGen being available. Normalizing flow models,

which model low-dimensional random variables using learned transformations, were

implemented as needed using transformations and distributions from the Pyro prob-

abilistic programming language [11] and trained using Pytorch optimizers. A public

implementation of all experiments in this work has been made available on GitHub.1

1.2 Model Explanation

Counterfactual examples, which aim to provide an interpretable change to a classifier’s

input in order to change a classifier’s decision, have been used to explain classifiers

in previous works [12], and open-source toolkits exist for the creation of such model

explanations. One such open-source toolkit is OmnixAI [13]. The computer vision ex-

planation library of OmnixAI provides both counterfactual and contrastive explainers

of image classifiers, with the counterfactual explainer coming from Wachter et al. [12]

and the contrastive explainer coming from Dhurandhar et al. [14]. Both methods

1The repository is available at https://github.com/wtaylor17/ImageCFGen-Pytorch, and
holds all experiments for this thesis despite its name indicating that it is focused on the ImageCFGen
algorithm.
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provide visual explanations of classifiers that are meant to provide interpretable jus-

tifications of their decisions by showing minimal changes to an image which change

a classifier’s decision.

A central goal of this research is to determine if causal generative models can

produce more interpretable visual classifier explanations than the perturbation-based

methods available from OmnixAI. A main contribution of this research, therefore,

is to show that DeepSCM and ImageCFGen can be used to produce counterfactual

explanations specific to a given classifier. To generate explanations using DeepSCM

and ImageCFGen models, minimal changes are made to the human-interpretable

attributes of an image in order to change the decision of a classifier. When searching

for changes, either a loss function can be used to perform gradient descent on the

attributes in question or model-agnostic interpolation between attribute values can be

performed. The hypothesis behind this experiment is that searching in the attribute

space (the space of low-dimensional causes of an image) rather than the pixel space

(the space of all possible images) allows for the style of an image to be preserved

while also producing realistic counterfactual data to explain a classifier. To test this

hypothesis, a case study was performed on Morpho-MNIST to generate explanations

for a classifier using the methods considered. The IM1 and IM2 metrics from Van

Looveren and Klaise [15] as well as the oracle score metric from Hvilshøj et al. [16] were

used to quantitatively measure the interpretability of generated explanations from

the proposed methods and those from OmnixAI (see subsection 4.5.1). The proposed

methods from this work outperform the counterfactual explainer from OmnixAI on

all metrics considered, suggesting that the proposed methods using causal generative

models provide more interpretable (i.e., less adversarial) explanations of classifiers

than the considered perturbation-based methods.

1.3 Counterfactuals for Audio Data

The main audio dataset considered in this thesis is Audio-MNIST [17], which consists

of recordings of human speech (speakers uttering the digits “zero” through “nine”)

with metadata concerning speakers age, biological sex, and other attributes related

to the speaker’s voice, such as accent. This work presents an assumed causal graph

over the attributes of the dataset, where causal influences exist between attributes of
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the speakers voice in order to build a structural causal model.

The second central goal of this research is to evaluate the ability of the DeepSCM

and ImageCFGen algorithms to generate observational and counterfactual spectro-

gram data from audio datasets containing metadata with causal influences on the

audio. This is done in two ways. The first method of evaluation is similar to the eval-

uation of digit counterfactuals from Dash et al. [5], in that an image classifier is used to

measure the validity of generated counterfactuals for attributes being classified, with

the main difference being the application to audio data rather than Morpho-MNIST.

For instance, if an utterance is changed from a “three” to an “eight” via a counterfac-

tual being performed, the classifier is used to ensure that the generated counterfactual

is a valid “eight”. The second method of evaluating audio counterfactuals is unique

to this work and is specific to the Audio-MNIST dataset. The creation of a second

method of evaluation is motivated by the difficulty of evaluating counterfactual data

in a way that is not identical to an evaluation of interventional data. Specifically,

when considering the setting of creating a digit utterance counterfactual (e.g., chang-

ing “three” to “eight”), any model which produces a valid eight will achieve a high

score on a metric that simply uses a classifier of the digit being spoken, regardless

of whether or not it has produced a counterfactual in a causally valid manner. This

fact highlights the difficulty of evaluating causal models which produce counterfac-

tuals. To measure the ability of a model to compute this counterfactual, it must

not only measure that the digit attribute was properly changed, but also that the

speakers voice was preserved. With this in mind, this thesis proposes using a subject

(speaker) classifier to evaluate this form of counterfactual. To provide a baseline, this

thesis uses this “subject agreement” metric to compare DeepSCM and ImageCFGen

models with simpler generative models which do not compute counterfactuals.

The results in this thesis found that in the experiment involving consistency of

measured attributes, the DeepSCMmodel provides superior counterfactual generation

to ImageCFGen after standard training completes in most settings. However, when

combined with a fine-tuning approach, the ImageCFGen model is able to produce

comparable performance to DeepSCM. This observation is not carried over to the

speaker classifier-based evaluation, however, where DeepSCM is the only model able
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to significantly improve over simpler generative models in terms of speaker preserva-

tion when approximating speech counterfactuals. This leads to the conclusion that

the VAE-based model of DeepSCM can be more easily trained on spectrogram data

than GAN-based models to produce accurate speech counterfactuals.

A second dataset consisting of North American Right Whale (NARW) calls is also

considered in this thesis to test the ability of ImageCFGen and DeepSCM models to

produce whale call spectrograms. The causal graph of this dataset is simple, with the

metadata of the audio indicating which type of call was recorded (upcall, gunshot call,

or no call). Both DeepSCM and ImageCFGen models are trained on these datasets

in order to produce observational speech and whale call data. To evaluate DeepSCM

and ImageCFGen on this dataset, a whale call classifier is trained to evaluate data

generated by the two models. Because the data does not lend itself to the abduction

evaluation strategy of speaker classification as with Audio-MNIST, this evaluation

does not measure an ability unique to counterfactual models. The models achieve

high agreement with the whale call classifier in most cases for both observational and

counterfactual data. However, a repetition of this experiment resulted in a very low

agreement for the ImageCFGen model without fine-tuning, highlighting the instability

of the GAN-based model and suggesting that the VAE-based model of DeepSCM may

be more desirable and simpler to train in some settings.

1.4 Summary

In summary, this thesis makes two main contributions. The first is a method of

explaining image classifiers using pretrained causal models, which produces realistic

handwritten digit examples and achieves promising results on quantitative evaluation

metrics. The second is the evaluation of existing deep causal model architectures

on a human speech dataset. This includes using a speaker classifier to measure the

ability of causal models to accurately perform abduction and preserve a speaker’s

voice during counterfactual generation, where DeepSCM is the only causal model

which achieves a significantly higher performance than models which do not compute

counterfactuals. Evaluations using classifiers for the attributes of the human speech

data also suggest that the causal models considered in this work are able to produce

spectrograms for audio with desired values of attributes (e.g., accent). Additionally,



6

results on whale call data suggest that the causal generative models can produce

whale call spectrograms with features believable to a classifier based on call type.



Chapter 2

Background on Causal Systems

2.1 The Ladder of Causation

A structural causal model is a mathematical object capable of answering queries at all

three rungs of the ladder of causation as introduced by Pearl in The Book of Why [18].

These three rungs are:

1. Association: concerned with answering questions such as “Is smoking associ-

ated with lung cancer?” without considering causation, e.g., by using tests of

correlation.

2. Intervention: concerned with answering questions such as “If I quit smoking

today, how is my probability of contracting lung cancer influenced?”. Answering

such questions accurately requires knowledge of the causal relation between

variables, and can be thought of as allowing exogenous influences to vary as

usual, while modifying one or more endogenous variables.

3. Counterfactual: the highest and arguably most complicated rung of causal-

ity. Counterfactual questions include those such as “Would the patient have

lived longer if they had been convinced to quit smoking ten years earlier?”.

Counterfactual questions must account for the exogenous influences on observed

variables, and as such require more powerful inference techniques than inter-

ventional questions.

Because an SCM is able to answer questions at all three rungs of the ladder of

causality, it must represent not only the presence of causal relationships between

variables, but also the functional relationships between causes and effects. Further,

it must account for the random factors present in data in order to build density func-

tions for observed variables (when possible) and allow for sampling from its various

distributions.

7
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2.2 Structural Causal Models

The latter two rungs of the ladder of causation can be described in the language of

SCMs as presented by Scholkopf and Kugelgen. Definitions provided in this section

are heavily inspired by those presented in their previous work [1].

Definition 1 A structural causal model (SCM) for a set of n observed variables X =

{Xi}ni=1 is a tuple M = (F, pU), where pU is a distribution over n independent noise

variables U = {Ui}ni=1 and F is a set of n structural equations of the form:

Xi := fi(PAi,Ui).

The symbol PAi represents the causal parents, or the causes of Xi, and fi is a

function representing the causal relationship between Xi and its causes which accounts

for random factors Ui.

Because the noise variables Ui are independent, they admit a factorization over the

n independent distributions pUi
:

pU(U1,U2, . . . ,Un) =
n
∏

i=1

pUi
(Ui). (2.1)

Further, because each Xi is fully determined by Ui when conditioning on PAi, the

overall distribution of X admits a so-called causal factorization:

p(X1,X2, . . . ,Xn) =
n
∏

i=1

p(Xi|PAi). (2.2)

This causal factorization implicitly defines a directed acyclic graph (DAG) describing

the causal relationships between variables, with the vertex set representing the set of

variables in X and an edge Xj → Xi whenever Xj ∈ PAi.

2.2.1 Interventions

Consider an SCM M over variables A,B,C, with the causal DAG having edges

{A → B,A → C,B → C} (see Figure 2.1a). It is relatively straightforward to show

that:

p(C|B = b) = Ea∼p(A|B=b)[p(C|A = a,B = b)]. (2.3)

However, this distribution does not amount to an intervention on B in the SCM M,

which comes from the following definition.
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Figure 2.1: The graph representing the causal structure of the SCM considered in
section 2.2.1, with three variables A,B, and C with the causal relationships A →
B,A → C, and B → C. The graph is shown both (a) before an intervention is
performed and (b) after an intervention do(B = b) has removed the causal relationship
A→ B.

Definition 2 An intervention do(Xi = xi) in an SCM M = (F, pU) replaces the ith

structural assignment in F with the assignment Xi := xi, resulting in a new set of

structural assignments F′ and a new SCM Mdo(Xi=xi) = (F′, pU).

Using this definition, A and B become independent in our example SCM when we

perform the intervention do(B = b). Thus:

p(C|do(B = b)) = Ea∼p(A)[p(C|A = a,B = b)]. (2.4)

This shows that, in general, intervened distributions are not equal to their standard

conditional counterparts, due to the modification of the causal graph that takes place

when an intervention is performed. A similar example can be found from Scholkopf

and Kugelgen [1]. In reference to Equation 2.2, the term p(Xi|PAi) in Equation 2.2 is

replaced by a delta function δ(Xi−xi) when computing an intervention. Equivalently,

some authors [1] may simply consider the distribution p(X−i|do(Xi = xi)) where X−i

is the set of variables in X excluding Xi, removing the intervened variable from

consideration when computing Equation 2.2.

2.2.2 Counterfactuals

Interventions modify the causal structure of an SCM, but do not change the noise

distribution pU of the SCM. Counterfactuals, on the other hand, require updating

pU based on observed evidence in order to account for the conditions (unobserved
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influences) under which the evidence was created. The process of updating pU is

commonly referred to as abduction [5, 4, 1], and can be thought of as the procedure

by which the values of U which could have led to a given observation X = x are

recovered.

Definition 3 A counterfactual SCM for a given observation X = x is derived from

an SCM M = (F, pU) by replacing pU with the conditional distribution pU |X=x, the

ith component of which is the conditional p(Ui|X = x). This counterfactual SCM is

denoted MX=x = (F, pU|X=x).

Definition 4 A counterfactual can be computed in an SCM M in two main steps:

1. An observation X = x is used to construct a counterfactual SCM MX=x ac-

cording to Definition 3.

2. An intervention is performed in the counterfactual SCM according to Defini-

tion 2.

Definition 4 is based on previously described steps of counterfactuals [1], though it

is simplified due to building on Definitions 2 and 3. Abduction is the most crucial

component of computing a counterfactual, and what separates SCMs from other

types of models, as it requires knowledge of the inner workings of the data generation

process. For example, if Xi := fi(PAi,Ui) is an assignment of M, and unique f−1i

exists (at least locally) satisfying the inverse function condition:

fi(pai, f
−1
i (xi,pai)) = xi, (2.5)

then the ith component of pU|X=x satisfies:

p(Ui|Xi = xi,PAi = pai) = δ(Ui − f−1i (xi,pai)). (2.6)

In the case of discrete distributions, where the logits of the distribution are defined

as a function of PAi, the distribution pU|X=x can be sampled from using a Gumbel-

max parameterization [19, 20, 4] and the counterfactual can be approximated through

Monte-Carlo style sampling.
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2.3 Normalizing Flows

When approximating the distribution p(X) of an SCM, it is common to learn the

transformation Xi := fi(PAi,Ui) using a trainable model fθi and a fixed prior

p(Ui) [4]. This strategy allows for drawing samples from p(X) by first drawing sam-

ples from pU and transforming noise variables into observations through the learned

functions fθi . However, if the parameters θi are to be learned through maximum

likelihood, the density pθi(Xi|PAi) of the transformed variable Xi is required. The

method of normalizing flows allow the necessary densities to be computed exactly for

observed data in a tractable manner [8]. The popularity of normalizing flow models

is credited by Kobyzev et al. [8] to Rezende and Mohamed [6] and Dinh et al. [21],

though they have been present in the literature for at least four years prior to these

works [22]. More recently, these models have been extended to conditional distribu-

tions in high dimensions [23, 24]. Conditional normalizing flows have also found a

home as the crux of the “invertible, explicit” strategy of deep structural causal models

(DeepSCM) [4].

Normalizing flow models allow the modelling of a data generation process of a

random variable Y as an invertible function f . A formal definition is provided below.

Definition 5 A normalizing flow model of a random variable Y consists of a prior

pU over a random variable U and an invertible function f with inverse f−1. The data

generation process of Y is modelled as:

U ∼ pU, (2.7)

Y := f(U). (2.8)

Using the change of variables U = f−1(Y), the density of Y can be calculated as:

p(Y) = pU(f
−1(Y))| detDf−1(Y)|, (2.9)

where Df−1 denotes the Jacobian of f−1.

If f in Definition 5 is composed of multiple simple transformations ϕ1, ϕ2, . . . , ϕN ,

then the determinant of the Jacobian of f can be represented as a product of the

determinants of the Jacobians of the individual transformations ϕi [21], allowing for

the combination of multiple invertible transformations to be used. The strategy for
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computing conditional normalizing flows is essentially the same as Definition 5, with

the exception that f becomes a function with two arguments and f−1 returns only

the value of one argument. In SCMs, these two arguments are PAi and Ui, and the

function must be invertible in Ui to use normalizing flows.

2.4 Counterfactual Approximation

As seen in section 2.3, the distribution p(Xi|PAi) of a variable Xi of an SCM can

be computed using normalizing flows, provided that fi is invertible in Ui and pUi

is known. However, this strategy can only be used to learn fi through approximate

maximum likelihood when fi can be defined explicitly, which is typically only possible

when Xi is a continuous variable. When Xi is categorical, the Gumbel-max param-

eterization trick [20] can be used when the logits λ = g(PAi) of the used softmax

distribution are a learned (possibly non-invertible) function g of the causal parents

PAi.

When high-dimensional unstructured data is used, such as images or audio, ex-

plicitly learning the densities p(Xi|PAi) of random variables in the SCM is often

intractable using normalizing flows, motivating the use of other methods. To the best

of my knowledge, there have been two main works on creating models for tractable

counterfactual inference for image data: DeepSCM from Pawlowski et al. [4], and

ImageCFGen from Dash et al. [5]. While the DeepSCM paper is more high-level, and

outlines three strategies for learning SCM components using deep mechanisms (one

of which is considered theoretically equivalent to ImageCFGen), the two studies are

in practice different enough to be considered separately as they use different deep

learning techniques (Variational Autoencoders vs. Bidirectional GANs). When dis-

cussing such models, it is helpful to recall that Pearl defines three abilities any model

must have in order to perform counterfactual inference [25]:

1. Abduction: the process of computing pU|X=x.

2. Action: the process of computing an intervention in the resulting counterfactual

SCM.

3. Prediction: the process of performing probabilistic inference in the SCM result-

ing from the previous two steps.
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Because the action and prediction steps are straightforward when given the definition

of all transformations fi and the result of abduction, the abduction process is the

focus of the discussion of DeepSCM and ImageCFGen in chapter 3.



Chapter 3

Related Work

3.1 DeepSCM

Work from Pawlowski et al. [4] is the first work to use deep mechanisms to learn high-

dimensional flows for counterfactual inference. Referred to as DeepSCM, the work

proposes three ways to model the data generation process of an SCM while allowing

for counterfactual inference.

The first type of mechanism proposed by DeepSCM is referred to as “invertible,

explicit” mechanisms. This is equivalent to a learned conditional normalizing flows

strategy (see section 2.3). For each observed variable Xi, a base distribution p(Ui) is

chosen along with a (typically trainable) transformation fi(PAi,Ui) invertible in its

second argument. Due to the invertibility of fi, the abduction step can be performed

simply by computing the abduction noise distribution as a point mass:

pUi|X=x(Ui) = δ(Ui − f−1i (PAi,Xi)). (3.1)

The second mechanism proposed for counterfactual inference by Pawlowski et al.

is referred to as the “amortized, explicit” strategy. In this case, the noise variables

Ui are decomposed into two components as Ui = (Ti,Zi), and two transformations

Hi (invertible) and Gi (non-invertible) are chosen, to make the assignment of Xi

represented as:

Xi := Hi(PAi, Gi(Zi,PAi),Ti). (3.2)

In practice, this can be interpreted as the stochastic decoder of a variational au-

toencoder [26], such as those using the well-known reparameterization trick of the

variational Bayes [27]. More specifically, Gi could output the mean of the decoder’s

output distribution, and Hi could transform the zero-mean Gaussian random variable

Ti into a Gaussian random variable centered at Gi(Zi,PAi) with fixed variance. If

the latent distributions Q(Zi|Xi,PAi) and p(Zi) are also known, a variational lower

14
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bound can be constructed [4]:

log p(Xi|PAi) ≥ EQ(Zi|Xi,PAi) [log p(Xi|PAi,Zi)]

−DKL [Q(Zi|Xi,PAi)||p(Zi)] (3.3)

where DKL is the Kullback–Leibler divergence, which can be computed analytically

for independent Gaussians. As is usually done with variational autoencoders, the

distribution Q(Zi|Xi,PAi) can be approximated by a stochastic encoder distribution

Q(Zi|Ei(Xi,PAi)) with parameters specified by a learned function Ei. The encoder

can be jointly trained with the decoder to maximize the lower bound in Equation 3.3.

While exact abduction cannot be performed to compute p(Xi|PAi) due to Gi not

being invertible, samples from the encoder can be used to compute p(Xi|PAi,Zi)

and hence the variational lower bound. This is because Ti can be uncovered from

Xi,PAi, and Zi due to the invertibility of Hi. Because the distribution of Zi is

learned through the encoder, and Ti is found directly, the noise distribution can be

approximated as:

pUi|X=x(Ui) ≈ Q(Zi|Ei(Xi,PAi))p(Ti|Xi,PAi,Zi). (3.4)

That is, samples of Ui are found by sampling Zi from the encoder and then by

computing Ti directly using Gi and Hi. Because this distribution is itself not a point

mass, counterfactual prediction is often performed by Monte Carlo sampling [4]. A

diagram of the VAE architecture used to train a “amortized, explicit” DeepSCM

model using a variational autoencoder is shown in Figure 3.1.

The third and final SCM mechanism proposed by Pawlowski et al. is the “amor-

tized, implicit” mechanism, which does not rely on approximate maximum likelihood

training. Because this method was first implemented as ImageCFGen, it is instead

discussed in section 3.3. Specific implementations of the DeepSCM mechanisms, in-

cluding model architectures, are discussed in detail in chapter 4.
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Figure 3.1: The variational autoencoder architecture used in the DeepSCM strategy
of counterfactual approximation. The encoder Ei models a latent distribution Q con-
ditioned on observed variables Xi and their causal parents PAi. A decoder/generator
Gi is trained to reconstruct an image when provided with the causal parents PAi and
latent features Zi.

3.2 Generative Adversarial Networks

Before discussing the bidirectional generative models used in the ImageCFGen method

of counterfactuals (see section 3.3), the general theory of generative adversarial net-

works (GANs) [28] is introduced. GANs aim to solve the generative modelling prob-

lem, in which a generator G attempts to produce samples similar to those observed

from an observed distribution q(x). Specifically, a prior distribution p(z) is chosen,

and images G(z) are made to approximate those from q(x). To solve this task, the

generator engages in a zero-sum game with a discriminator function D, which aims

to distinguish real samples from q(x) from generated samples G(z) (where z ∼ p(z)).

This approach allows the model to learn the distribution q(x) without explicitly rep-

resenting the density function. While there are multiple possible objectives to jointly

train G and D, one common approach is to use a binary cross-entropy style loss,

treating D as a binary classifier. In this setting, the objective of the optimization

process is to find:

min
G

max
D

V (G,D) = Eq(x)[logD(x)] + Ep(z)[log(1−D(G(z)))]. (3.5)

Such an optimization strategy is referred to as the minmax strategy, as the same

objective function is used for the generator and discriminator, with the generator
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performing minimization and the discriminator performing maximization. This pro-

cess is equivalent to training the generator using the negative of the objective used

for the discriminator. Promising results have also been found when the generator

instead maximizes logD(G(z)), as this objective function leads to less saturated gra-

dients [28].

Once trained, new data samples x̃ can be computed by sampling z ∼ p(z) and

setting x̃ = G(z). Note that this takes the form of a zero-sum game: any increase

in the objective being maximized by D corresponds to the same increase in the ob-

jective being minimized by G. Bidirectional and Wasserstein GANs, variants on this

architecture, are discussed in section 3.3 and section 3.4 respectively.

3.3 ImageCFGen

Dash et al. [5] have implemented the amortized, implicit SCM mechanism proposed by

Pawlowski et al. using Adversarially Learned Inference (ALI), also known as Bidirec-

tional generative adversarial networks (BiGAN) [29, 7]. As with a typical generative

adversarial network, in a BiGAN model a generator model Gi (which models the

variable Xi) and a discriminator model D engage in a zero-sum game in which the

discriminator aims to tell generated data from observational data and the generator

aims to trick the discriminator. In addition to these two models, an encoder model

Ei aims to generate encodings of observational data which fool the discriminator into

believing they are from a predefined prior p(Zi). When the model is also conditioned

on the attributes (causal parents) PAi of a variable Xi, the discriminator is meant

to discriminate tuples (Xi, Ei(Xi,PAi),PAi) of real images, real encodings, and at-

tributes from tuples (Gi(Zi,PAi),Zi,PAi) of generated images, samples from p(Zi),

and attributes. Denoting q(Xi,PAi) as the observational distribution of images and

attributes, the solution of the conditional BiGAN zero-sum game can be described

as:

min
G,Ei

max
D

Eq(Xi,PAi) [logD(Xi, Ei(Xi,PAi),PAi)] +

Ep(Zi)p(PAi) [log(1−D(Gi(Zi,PAi),Zi,PAi))] . (3.6)
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Note that in this way, D acts as a binary classifier, typically with a single-neuron

sigmoid output, determining whether the image and latent data comes from the em-

pirical distribution and encoder or is generated from the latent prior. Contrast this

with the original GAN discussed in section 3.2, which only discriminates based on

image data and does not define Ei. Thus, only the BiGAN can create latent repre-

sentations of observed images, a process crucial to counterfactual approximation.

Figure 3.2: The conditional BiGAN architecture used in the ImageCFGen method of
counterfactual approximation. The encoder Ei and generator Gi are jointly trained to
fool a discriminator D from distinguishing generated images and real latent features
from real images and encoded latent features.

Because the encoder Ei of a BiGAN is deterministic, approximate abduction can

be performed by finding Z̃i = Ei(Xi,PAi). Hence, computing a counterfactual given

evidence Xi,PAi and counterfactual attributes PA′i recovered from other observed

variables in the SCM is defined as:

X′i = G(E(Xi,PAi),PA
′
i). (3.7)

The appendices of the paper from Dash et al. [5] provide an analysis comparing this

method of counterfactual generation to the standard form of an SCM [1].

In addition to training the ImageCFGen model to solve the optimization problem

specified by Equation 3.6, Dash et al. recommends a finetuning process for the encoder

in order to improve the quality of counterfactuals. The finetuning process jointly

minimizes two losses, the image reconstruction error and the latent space loss. These

errors are defined as:

Lx = Eq(Xi,PAi)||Xi −Gi(Ei(Xi,PAi),PAi)||2, (3.8)

Lz = Ep(Zi)||Zi − Ei(Xi,PAi)||2. (3.9)



19

The loss Lx can be estimated directly from the observational distribution of images

and attributes. This thesis shows that when the prior p(Zi) has independent compo-

nents, zero mean, and finite variance, Lz has a closed form such that the fine-tuning

process can be described as finding:

min
Ei

Eq(Xi,PAi)

[

||Xi −Gi(Ei(Xi,PAi),PAi)||2 + ||Ei(Xi,PAi)||2
]

. (3.10)

A proof of this is provided in Appendix A.

3.3.1 ImageCFGen Feature Importance

Consider a standard image flow setting as before, where a set of attributes PAi with

a causal structure defined by an SCM M are causes of images Xi. Further, suppose

f(Xi) is a model providing classification scores for observations. Finally, suppose

we observe an image-attribute pair Xi,PAi, and we want to measure the (local)

importance of a binary attribute aj ∈ PAi with values v0 and v1. Denote PA
aj←v|PAi

i

as the counterfactual values of PAi found by computing the intervention do(aj = v)

in the counterfactual SCM MPAi . Dash et al. [5] define an importance metric for

binary attributes as follows:

importance(j;Xi,PAi) = f(X
aj←v1|PAi

i )− f(X
aj←v0|PAi

i ) (3.11)

where X
aj←v|PAi

i is computed by the BiGAN as:

X
aj←v|PAi

i = G(E(Xi,PAi),PA
aj←v|PAi

i ). (3.12)

In the case of a stochastic encoder and decoder (as with deepSCM), X
aj←v|PAi

i can be

computed through Monte Carlo sampling. Dash et al. successfully used this impor-

tance metric to measure the impact of binary attributes on an attractiveness classifier

trained on the CelebA dataset. For instance, when the attribute aj corresponds to

baldness, and importance(j;Xi,PAi) < 0, this indicates that the presence of baldness

causes a decrease in attractiveness.

3.4 SpecGAN

Generative modelling of audio using GANs has been previously proposed by Donahue

et al. [30] in an algorithm referred to as WaveGAN. Standard GAN models employ
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a generator G and a discriminator D in a zero-sum game similar to Equation 3.6.

While the authors generate raw audio directly, they also propose a variant of their

model which generates spectrograms, called SpecGAN. Generated spectrograms can

be approximately inverted using Griffin-Lim algorithms [31] to recover audio. Further,

WaveGAN and SpecGAN models are trained using a Wasserstein GAN objective with

a gradient penalty [32]. The Wasserstein GAN objective is defined as:

min
G

max
D

Eq(x)[D(x)]− Ep(z)[D(G(z))] (3.13)

where G and D are the generator and discriminator functions of the GAN, q(x) is

the audio data distribution and p(z) is a chosen prior. In this method, rather than

classifying samples as real or fake, the discriminator aims to calculate the Wasser-

stein distance between the distribution q(x) and that of G(z). The gradient penalty

proposed by Gulrajani et al. [32] aims to keep the norm of the gradient of D close

to 1 by adding a regularization term to Equation 3.13, making a costly second-order

derivative computation necessary for training the discriminator.



Chapter 4

Methods and Experimental Setup

4.1 Audio Processing

Audio data is often stored as a signal in formats such as the WAV file format [33],

which represents the audio as a univariate time series. However, audio can be rep-

resented in ways other than this time-domain representation, such as in the fre-

quency domain through the use of spectrograms. Previous studies have been con-

ducted on performing audio synthesis using GAN models with both WAV and spec-

trograms [30, 34]. One recent study found that, among others, the short-time Fourier

transform (STFT) provided strong generation results [35]. A benefit of using the

STFT is that it can be quickly approximately inverted using a Griffin-Lim algo-

rithm [31] to produce WAV representations of generated audio. Given a discrete

signal f(i) defined at integer points 1 ≤ i ≤ T , the STFT of f is defined as a function

of frequency ω as it changes over time:

f̂(ω,m) =
ℓw
∑

k=0

w(k)f(mℓh +m) exp

(

−j 2πωm
ℓw

)

(4.1)

where w (called the window) is a vector of length ℓw, ℓh (called the hop length) is a

positive integer, and j is the imaginary unit (j2 = −1). A common choice of w is the

Hanning window, defined as:

w(k) = sin2

(

πk

ℓw − 1

)

. (4.2)

Note that f̂ is a complex-valued function and is defined for continuous ω. One can

choose a discrete grid of ω to use, and convert the STFT to a spectrogram by using

the square of its magnitude (called a “power” spectrogram):

spectrogram{f̂}(ω,m) = Re(f̂(ω,m))2 + Im(f̂(ω,m))2. (4.3)

21
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Alternatively, the magnitude itself can be used by taking the square-root of the above

equation as in work by Nistal, Lattner, and Richard [35]. In the experiments per-

formed in this work, Equation 4.3 is used to compute spectrograms, with ℓw and ℓh set

based on the dataset in order to produce images of a desired size. Spectrograms are

log-transformed in order to produce more similar scales among frequency bins. The

same data scaling technique used by Donahue et al. [30] is used, where spectrogram

features are clipped to three standard deviations to produce a bounded feature space

and then are scaled linearly to [−1, 1].

4.2 Passing Attributes To Models

There are two methods used in this work to pass a group of attributes from an

attribute SCM to a deep CNN model, depending on whether a given attribute is

continuous or categorical (discrete). For continuous attributes, it is assumed that

the attribute values are bounded between -1 and 1, and the raw attribute may be

passed to the model directly by adding a constant channel to the models input. For

example, if a 28x28 image is expected and there are k continuous attributes available

to the model, the input image conditioned on the attributes can take the form of a

Figure 4.1: The strategy used in this work to pass attributes of an SCM to a CNN
model. Continuous attributes form constant image channels in the input, while cat-
egorical attributes are transformed using a learned embedding e(·), reshaped, and
upsampled. The learned embedding maps each value of the categorical attribute to
a vector of fixed size.
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(k + 1) × 28 × 28 tensor, where k of the input channels correspond to single-valued

28x28 images having the same value as the continuous attributes. For categorical

attributes taking integer values 1, 2, . . . , K, learned embedding vectors e(c) ∈ R
N can

be used, where c ∈ {1, 2, . . . , K} is the value of the attribute and e(·) is the embedding

lookup. The dimension N of the embedding is chosen to be a factor of the image

size, and the image is upscaled by the result of dividing the image size by N in order

to form a channel of the input image. For example, if a categorical attribute has K

possible values and the input size of the original image is 28x28, we could take an

embedding size of N = 28 and perform an upsampling of the embedding to create a

new 28x28 channel of the input. A hyperbolic tangent function is applied to these

upsampled embeddings to ensure features are constrained to [−1, 1].

Note that the method of attribute passing shown in Figure 4.1 is only required

for the encoder model of DeepSCM and the encoder and discriminator models of

ImageCFGen (see section 3.1 and section 3.3). This is because generator/decoder

models can simply concatenate attribute representations (i.e., embeddings and con-

tinuous attribute values) with latent image representations in order to produce image

data.

4.3 Datasets

The following subsections describe the datasets used in this work, as well as the neural

network architectures used to model the data.

In all datasets, transformations of random variables are required to model variables

of the considered SCM other than the image or audio data. All transformations were

implemented using the Pyro probabilistic programming framework [11], as they were

in the work on DeepSCM by Pawlowski et al. [4]. Any learned parameters of these

transformations were found through gradient ascent by maximizing the log likelihood

of observed samples, which were computed using the method of normalizing flows

(see section 2.3).

The encoder architectures of both BiGAN and VAEmodels trained in the following

experiments are nearly identical, with the one key difference being that the encoder of

a VAE is stochastic. Because the VAE encoder is stochastic, the features produced by

the encoder architectures described in the following subsections are passed through
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(a) An observational generative model, where image attributes and samples from a latent
prior p(Zi) are passed to a conditional generator Gi (as with a conditional GAN). Such
models are common in modern machine learning.

(b) The type of generative model that is considered interventional in this work. Modifica-
tions to causes PAi of a variable can be performed in a causally correct way by computing
a counterfactual in the attribute SCM (a normalizing flows model), where the shown in-
tervention changes the jth causal parent (PAi)j . This is referred to as the interventional
setting as no abduction is performed using the generative model itself, so sampling from the
latent prior p(Zi) is still necessary. This is the type of model we use to compare with coun-
terfactual models using the Audio-MNIST subject classifier metric from subsection 4.4.2.

(c) A counterfactual model such as ImageCFGen, which follows the same method as the
interventional model to uncover counterfactual attributes paci , but also performs abduction
using an encoder Ei to uncover latent features manually and compute a causally accurate
image counterfactual.

Figure 4.2: Diagrams illustrating and contrasting the data generation process of
standard generative models and causal models.
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a LeakyReLU activation and two CNN layers, each with a filter size of 1, to produce

the mean and log variance of a Gaussian distribution, as is often seeing when training

VAEs [6].

The discriminator models used to train the BiGANs in this work always have three

components: an image and attribute processing moduleDx, a latent vector processing

module Dz producing feature vectors, and a downstream discriminator module Dx,z

producing discriminator scores from the given features. Formally, we can write using

the notation used in Figure 3.2:

D(Xi,Zi,PAi) = Dx,z(Dx(Xi,PAi), Dz(Zi)) (4.4)

where Xi is the observed variable to be modelled, PAi are the causal parents of Xi,

and Zi is a latent variable accounting for the unobserved influences of Xi.

All neural network models in this work were implemented in Pytorch [10]. When

describing the layers of neural network models (e.g. in Table 4.1), notation consistent

with the Pytorch library is used when possible. Specifically, the following notation is

used to describe neural network layers:

• Conv2D(fi, fo, k, s, p, a) refers to a 2D convolutional layer with the respective

number of input and output filters (fi, fo), kernel size (k), stride (s), input

padding (p), and activation function (a).

• Conv2DT(fi, fo, k, s, p, a) refers to a transposed convolutional layer with the

respective number of input and output filters (fi, fo), kernel size (k), stride (s),

padding (p), and activation function (a).

• Dropout(q) refers to a layer which sets input nodes to zero with probability q.

• Linear(n, m, a) denotes a fully-connected network layer with n input neurons,

m output neurons, and activation function a.

• Reshape(·) represents an operation which reshapes the input tensor to the pro-

vided shape (batch dimensions ignored).

All models for each dataset are trained for 500 epochs using an Adam opti-

mizer [36]. The hyperparameters β1 and β2 used for Adam, as well as learning rates



26

and batch size, are reported for each dataset in their respective subsections. When

fine-tuning ImageCFGen models, 20 epochs are used to minimize Equation 3.10 with a

learning rate of 10−5 in all cases. The default hyperparameters of the Adam optimizer

from Pytorch are used during fine-tuning.

Curves showing the convergence of models trained while carrying out the experi-

ments described in this chapter are provided in Appendix C.

4.3.1 Morpho-MNIST

The Morpho-MNIST dataset [9] presented by de Castro et al. adds additional causal

aspects to the well-known MNIST handwritten digits dataset [37]. Specifically, at-

tributes of line thickness and image intensity are added to the original handwritten

digits of MNIST. Because these attributes are added to the digits of MNIST using

image processing techniques, scientists have complete control over the data gener-

ation process of Morpho-MNIST data and hence have full knowledge of the SCM

used to generate Morpho-MNIST data. Pawlowski et al. [4] were the first to create

learned SCMs from the data generated using Morpho-MNIST techniques, and propose

a causal graph involving the following attributes:

1. Thickness, denoted here as tm.

2. Intensity, denoted here as im.

3. Digit image output, denoted here as om.

In the SCM proposed by Pawlowski et al., and the one used in this work, all attributes

cause the image output om, and thickness tm causes intensity im. However, in this

work an additional attribute of image slant (denoted sm, measured in radians) is

applied to the handwritten digits, as was proposed by Dash et al. [5]. The causal

graph for the Morpho-MNIST SCM is shown in Figure 4.3, and examples of instances

from the dataset are shown in Figure 4.4.

The assignments of the variables in the Morpho-MNIST SCM are adapted from

the equations provided by Pawlowski et al. [4]. The distribution of the slant sm is

taken to be a zero-centered Gaussian with variance of π/10, as the slant distribution

was not provided by any prior works. Variable assignments are as follows in the
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tm imsmℓm

om

Figure 4.3: Causal graph for Morpho-MNIST, identical to the one used by Dash et
al. [5]. The label, slant, thickness, and intensity are causes of the digit image, and
thickness is a cause of intensity.

Figure 4.4: Instances from the Morpho-MNIST training set. Each digit has a varying
class, thickness, intensity, and slant sampled from the ground-truth SCM.

ground-truth SCM:

tm := 0.5 + ϵt, ϵt ∼ Γ(10, 5)

(4.5)

im := 191σ(0.5ϵi + 2tm − 5) + 64, ϵi ∼ N (0, 1)

(4.6)

sm :=
π

10
ϵs, ϵs ∼ N (0, 1)

(4.7)

ℓm := ϵℓ, ϵℓ ∼ MNIST

(4.8)

om := SetIntensity(SetSlant(SetThickness(SetLabel(ϵo; ℓm); tm); im)), ϵo ∼ MNIST

(4.9)
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In the above assignments, σ refers to the logistic sigmoid, SetIntensity and SetThickness

refer to image processing operations, while SetLabel(ϵo; ℓm) refers to drawing an im-

age with label ℓm randomly from the MNIST data (equivalent to setting the label

and choosing a “random style” among those available).

To approximate the data generation process of this SCM, the following learned

transformations are used for continuous attributes, which are denoted with a hat ˆ

to indicate that they are approximations:

t̂m := exp(BatchNormθ(ϵ̂t)), ϵ̂t ∼ N (0, 1) (4.10)

îm := Affine
(

σ
(

ConditionalAffineθ(ϵ̂i; t̂m)
))

, ϵ̂i ∼ N (0, 1) (4.11)

ŝm := Affine (Splineθ(ϵ̂s)) , ϵ̂s ∼ N (0, 1). (4.12)

The single independent categorical attribute ℓ̂m has its distribution taken from the

MNIST training set. In Equation 4.10, BatchNormθ(·) refers to a learned batch

normalization transformation, while Affine(·) in Equation 4.11 and Equation 4.12

refers to a linear transformation scaling the output to the range of values found in a

large sample of that attribute. The transformation ConditionalAffineθ(·; ·) computes

the parameters of an affine transformation as a function of its second argument in

order to transform its first argument.

The image observation om is modelled by both VAE and BiGAN neural networks,

following from DeepSCM [4] and ImageCFGen [5] using a independent standard nor-

mal distribution with 512 components as a latent prior. For the encoder of both the

BiGAN and VAE, an embedding of dimension 256 is used to compute features for the

digit label, and all attributes are passed to the model according to the method de-

scribed in section 4.2. Table 4.1 describes the model architecture generating encoder

features for both the BiGAN and VAE models.

Layer number Layer description
1 Conv2D(5, 64, 3, 2, 1, LeakyReLU(0.2))
2 Conv2D(64, 128, 4, 2, 1, LeakyReLU(0.2))
3 Conv2D(128, 256, 4, 2, 1, LeakyReLU(0.2))
4 Conv2D(256, 512, 4, 2, 1, LeakyReLU(0.2))
5 Conv2D(512, 512, 1, 2, 0, Identity)

Table 4.1: Description of layers in the encoder models for BiGAN and VAE used for
Morpho-MNIST experiments.
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Layer number Layer Description
1 Conv2DT(772, 512, 3, 1, 0, LeakyReLU(0.2))
2 Conv2DT(512, 256, 2, 1, 0, LeakyReLU(0.2))
3 Conv2DT(256, 128, 3, 2, 1, LeakyReLU(0.2))
4 Conv2DT(128, 64, 3, 2, 1, LeakyReLU(0.2))
5 Conv2DT(64, 1, 4, 1, 1, tanh)

Table 4.2: Description of layers in the decoder models for BiGAN and VAE used for
Morpho-MNIST experiments.

Layer number Layer description
1 Dropout(0.2)
2 Conv2D(512, 512, 1, 1, 0, LeakyReLU(0.1))
3 Dropout(0.5)
4 Conv2D(512, 512, 1, 1, 0, LeakyReLU(0.1))

Table 4.3: Description of layers in the discriminator module Dz for the BiGAN used
for Morpho-MNIST experiments.

Layer number Layer description
1 Dropout(0.2)
2 Conv2D(5, 32, 5, 1, 0, LeakyReLU(0.1))
3 BatchNorm
4 Dropout(0.2)
5 Conv2D(32, 64, 4, 2, 0, LeakyReLU(0.1))
6 BatchNorm
7 Dropout(0.5)
8 Conv2D(64, 128, 4, 1, 0, LeakyReLU(0.1))
6 BatchNorm
7 Dropout(0.5)
8 Conv2D(128, 256, 4, 2, 0, LeakyReLU(0.1))
9 BatchNorm
10 Dropout(0.5)
11 Conv2D(256, 512, 3, 1, 0, LeakyReLU(0.1))

Table 4.4: Description of layers in the discriminator module Dx for the BiGAN used
for Morpho-MNIST experiments.
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The decoder models for BiGAN and VAE are identical for the Morpho-MNIST

dataset. For both models, the latent vector is concatenated with the continuous at-

tributes of the data and the embedding representation of the digit label. As with

the encoder models, the digit label embedding for the decoder has dimension 256.

These concatenated features are passed as a 772×1×1 tensor to a sequence of trans-

posed convolutional layers described in Table 4.2. The discriminator models Dz, Dx,

and Dx,z used for Morpho-MNIST are shown in Table 4.3, Table 4.4, and Table 4.5

respectively. Both the VAE and BiGAN models are trained with a learning rate of

10−4 and a batch size of 64. The hyperparameters for the Adam optimizer used are

β1 = 0.5, β2 = 0.999 for both models.

The classifier used for evaluating these models according to the methods described

in subsection 4.4.1 is present in Table 4.6. The model was trained for 20 epochs with

a learning rate of 10−4, β1 = 0.9, β2 = 0.999 for Adam hyperparameters, and a batch

size of 512. Results for the ImageCFGen and DeepSCMmodels trained on this dataset

have been reported in section 5.1.

Layer number Layer description
1 Dropout(0.2)
2 Conv2D(1024, 1024, 1, 1, 0, LeakyReLU(0.1))
3 Dropout(0.2)
4 Conv2D(1024, 1024, 1, 1, 0, LeakyReLU(0.1))
5 Dropout(0.2)
6 Conv2D(1024, 1024, 1, 1, 0, Sigmoid)

Table 4.5: Description of layers in the discriminator module Dx,z for the BiGAN used
for Morpho-MNIST experiments. Note that this model has 1024 input channels, as
Do and Dz both output 512 feature channels (see Table 4.4 and Table 4.3).

Layer number Layer description
1 Conv2D(1, 32, 3, 1, 0, LeakyReLU(0.2))
2 Conv2D(32, 64, 3, 2, 0, LeakyReLU(0.2))
3 Conv2D(64, 128, 3, 2, 0, LeakyReLU(0.2))
4 Conv2D(128, 256, 3, 2, 0, LeakyReLU(0.2))
5 Linear(4096, 10, Identity)

Table 4.6: Description of layers in the image classifier used for Morpho-MNIST ex-
periments.
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4.3.2 Audio-MNIST

The Audio-MNIST dataset consists of 30,000 utterances of the digits 0-9 spoken by

60 different speakers. Speakers uttered each digit 50 times, and 9 of each these runs

were randomly selected to form a validation set. Other than raw audio recordings,

metadata associated with each speaker is present in the dataset repository.1 While

Becker et al. [17] originally studied this dataset for audio classification, there is an

obvious causal association between the metadata of the speaker and the audio the

speaker produces from an utterance, motivating experiments involving learned SCMs.

When combined with the digit being spoken, this metadata forms the causal attributes

of the dataset considered in this work. These attributes are:

1. Biological sex of the speaker, denoted here as sa.

2. Age demographic of the speaker, denoted here as da.

3. Digit label spoken, denoted here as ℓa.

4. Country of origin of the speaker, denoted here as ca.

5. A binary indicator of whether or not the speaker is a native speaker of English,

denoted here as na.

6. The accent of the speaker, denoted here as aa.

The audio variable of the dataset is denoted oa. Because the Audio-MNIST data is

only observational, i.e., there is no known ground-truth SCM, assumptions must be

made to simplify the process of learning an SCM from the data. In this work, the

following associations are assumed between the variables:

1. The country of origin causally influences whether ot not the speaker is a native

speaker of English. The justification for this is somewhat obvious, as someone

born in a non-English speaking country is highly unlikely to be a native speaker

of English simply because of where they were born.

2. Both the country of origin and whether ot not the speaker is a native speaker

of English causally influences the accent of the speaker. The justification for

1https://github.com/soerenab/AudioMNIST
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this is that while many accents are associated directly with a particular country

(e.g. a German accent), someone born in an English-speaking country who

is a non-native speaker may have developed an accent from members of their

household early in life.

The full set of assumed associations between the the variables is displayed in Fig-

ure 4.5. Because all variables in this dataset are discrete (age is binned into demo-

graphics to discretize da), all independent variables can have their distributions taken

directly from a training set. Dependent variables (na and aa) are learned using the

Gumbel-max trick described by Pawlowski et al. [4]. Specifically, feedforward neural

networks with two hidden layers and 64 neurons per hidden layer are used to com-

pute the logits of the conditional distributions of na and aa. Denoting the networks

with linear activations for na and aa as gn and ga respectively, the distributions are

modelled as:

p(na = k|ca) =
exp gn(ca)k

∑

j exp gn(ca)j
, (4.13)

and

p(aa = k|ca, na) =
exp ga(ca, na)k

∑

j exp ga(ca, na)j
(4.14)

respectively. The conditional attributes (causes) ca and na are passed to the logit

networks as one-hot encoded vectors.

ca na

aa

ℓadasa

oa

Figure 4.5: Proposed causal graph for the Audio-MNIST speech dataset. Causal
relationships are assumed between the low-level variables of country of origin (ca),
native speaker (na), and accent (aa).

To enable to use of CNN models when modelling the audio variable oa, raw wave-

forms are converted to log scaled power spectrograms according to the method de-

scribed in section 4.1. The spectrograms have 255 frequency bins, and use a window

length of 128 with a hop length of 64. Audio waveforms are zero-padded to produce
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Figure 4.6: Audio waveforms (left), speaker attributes (middle), and audio spectro-
grams (right) from the Audio-MNIST training set. The 1-second waveforms were
recorded at 8000Hz.
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a 128 × 128 spectrogram matrix from the single-second utterances of the dataset.

This allows the training process for ImageCFGen and DeepSCM to be similar to that

seen in the MNIST experiment (subsection 4.3.1). Model architectures take inspira-

tion from those used by Donahue et al. [30] in their audio synthesis paper and from

previously used ImageCFGen models [5].

Encoder and decoder model architectures for Audio-MNIST are described in Ta-

ble 4.7 and Table 4.8 respectively. The discriminator models Dz, Dx, and Dx,z are

described in Table 4.9, Table 4.10, and Table 4.11 respectively. As with Morpho-

MNIST, the latent prior takes the form of a 512-dimensional Gaussian and and em-

bedding dimension of 256 is used for the discrete variables of the dataset. The causal

generative models were trained with a batch size of 64, a learning rate of 10−4 and

the default Adam hyperparameters from Pytorch [10].

Layer number Layer description
1 Conv2D(7, 64, 5, 2, 1, LeakyReLU(0.2))
2 Conv2D(64, 128, 5, 2, 1, LeakyReLU(0.2))
3 Conv2D(128, 256, 5, 2, 1, LeakyReLU(0.2))
4 Conv2D(256, 512, 5, 2, 1, LeakyReLU(0.2))
5 Conv2D(512, 1024, 5, 2, 1, LeakyReLU(0.2))
6 Conv2D(1024, 512, 5, 2, 1, Identity)

Table 4.7: Description of layers in the encoder models for BiGAN and VAE used for
Audio-MNIST experiments.

Layer number Layer description
1 Linear(2048, 16384, LeakyReLU(0.2))
2 Reshape((1024, 4, 4))
3 Conv2DT(1024, 512, 5, 2, 2, LeakyReLU(0.2))
4 Conv2DT(512, 256, 5, 2, 2, LeakyReLU(0.2))
5 Conv2DT(256, 128, 5, 2, 2, LeakyReLU(0.2))
6 Conv2DT(128, 64, 5, 2, 2, LeakyReLU(0.2))
7 Conv2DT(64, 1, 5, 2, 2, tanh)

Table 4.8: Description of layers in the decoder models for BiGAN and VAE used for
Audio-MNIST experiments.
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Layer number Layer description
1 Conv2D(512, 512, 1, 1, 0, LeakyReLU(0.2))
2 Conv2D(512, 512, 1, 1, 0, LeakyReLU(0.2))

Table 4.9: Description of layers in the discriminator module Dz for the BiGAN used
for Audio-MNIST experiments.

Layer number Layer description
1 Conv2D(7, 64, 5, 1, 0, LeakyReLU(0.2))
2 Conv2D(64, 128, 5, 1, 0, LeakyReLU(0.2))
3 Conv2D(128, 256, 5, 1, 0, LeakyReLU(0.2))
4 Conv2D(256, 512, 5, 1, 0, LeakyReLU(0.2))
5 Conv2D(512, 1024, 5, 1, 0, LeakyReLU(0.2))
6 Conv2D(1024, 512, 5, 1, 0, Identity)

Table 4.10: Description of layers in the discriminator module Dx for the BiGAN used
for Audio-MNIST experiments.

Layer number Layer description
1 Conv2D(1024, 1024, 1, 1, 0, LeakyReLU(0.2))
2 Conv2D(1024, 1024, 1, 1, 0, LeakyReLU(0.2))
3 Conv2D(1024, 1, 1, 1, 0, Sigmoid)

Table 4.11: Description of layers in the discriminator module Dx,z for the BiGAN
used for Audio-MNIST experiments.

Layer number Layer description
1 Conv2D(1, 32, 3, 1, 0, LeakyReLU(0.2))
2 Conv2D(32, 64, 3, 2, 0, LeakyReLU(0.2))
3 Conv2D(64, 128, 3, 2, 0, LeakyReLU(0.2))
4 Conv2D(128, 256, 3, 2, 0, LeakyReLU(0.2))
5 Conv2D(256, 512, 3, 2, 0, LeakyReLU(0.2))
6 Conv2D(512, 1024, 3, 2, 0, LeakyReLU(0.2))
7 Conv2D(1024, 3, 2, 0, LeakyReLU(0.2))
8 Linear(4096, 1024, LeakyReLU(0.2))
9 Linear(1024, 10, LeakyReLU(0.2))

Table 4.12: Description of layers in the image classifier used for Audio-MNIST ex-
periments.
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4.3.3 North American Right Whale Calls

The classification of North American Right Whale (NARW) calls is important to

the monitoring of these endangered mammals. Further, passive aucoustic monitoring

(PAM) produces large amounts of data that often cannot be feasibly annotated by

human experts, motivating the use of automated systems. Due to the lack of large

amounts of annotated data, Padovese et al. [38] investigated the use of data augmen-

tation techniques for use while training whale call classifiers. The original data source

for NARW calls, along with a detection method, was proposed and made public by

Gillespie [39].2 The dataset used in this work consists of NARW calls recorded off

the coast of Massachusetts in the years 2000, 2008, and 2009. Three types of record-

ings are present in the data: NARW upcalls, NARW gunshot calls, and recordings

that contain no NARW calls to the best of the annotator’s knowledge. Because the

distance of each animal to the recording devices varies greatly, the experiments in

this work use a signal-to-noise ratio (SNR) calculation to eliminate upcalls consisting

mostly of background noise. The SNR of a signal is calculated as:

SNR =
E[st]

Std(st)
(4.15)

where st is the time series representing the signal and Std(st) is the standard deviation

of the signal. A threshold of SNR > −2 was chosen empirically for upcall recordings.

Information on the number of whale calls of each type (after dropping upcalls with

too low SNR) for training and validation is displayed in Table 4.13.

Call Type # Train # Validation
No call 5370 1350
Gunshot 1796 427
Upcall 4882 982
Total 12048 2759

Table 4.13: The number of whale calls of each type for training and testing used in
NARW call experiments. Counts are shown from the processed dataset, where upcalls
with too low SNR have been removed.

The causal graph for this dataset only involves two variables: the categorical

whale call type, tw, and the whale call observation ow. The audio is transformed

2The NARW data is available online at https://risweb.st-andrews.ac.uk/portal/en/

datasets/dclde-2013-workshop-dataset(62c3eebc-5574-4ec0-bfef-367ad839fe1a).html
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tw

ow

Figure 4.7: Proposed causal graph for the NARW dataset. Only two observed vari-
ables are present, the whale call type tw and the audio ow.

into a log-scaled spectrogram with 511 frequency bins, a window length of 128, and

a hop length of 24. The audio signals are taken to be three seconds in length, with

the whale calls centered within the time window and truncated when required. This

produces a 256×256 spectrogram image for each whale call. The categorical variable

tw is processed as described in section 4.2, using a 256-dimensional embedding layer

and a hyperbolic tangent activation. Table 4.14 and Table 4.15 describes the encoder

and decoder model architectures used for both DeepSCM and ImageCFGen on the

NARW dataset. Table 4.16, Table 4.17, and Table 4.18 describe the discriminator

modules Dz, Dx, and Dx,z, respectively. As with the previously described datasets,

the latent prior for both DeepSCM and ImageCFGen is taken to be a 512-dimensional

independent Gaussian. Both models are trained with a batch size of 32 and the default

hyperparameters for Adam from Pytorch. The ImageCFGen BiGAN model is trained

with a learning rate of 10−4, while the DeepSCM VAE model is trained with a learning

rate of 10−5 due to exploding gradients occurring when training with larger learning

rates.

Layer number Layer description
1 Conv2D(2, 64, 5, 2, 1, LeakyReLU(0.2))
2 Conv2D(64, 128, 5, 2, 1, LeakyReLU(0.2))
3 Conv2D(128, 256, 5, 2, 1, LeakyReLU(0.2))
4 Conv2D(256, 512, 5, 2, 1, LeakyReLU(0.2))
5 Conv2D(512, 1024, 5, 2, 1, LeakyReLU(0.2))
6 Conv2D(1024, 1024, 5, 2, 1, LeakyReLU(0.2))
7 Conv2D(1024, 512, 5, 2, 1, Identity)

Table 4.14: Description of layers in the encoder models for BiGAN and VAE used for
NARW call experiments.
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Figure 4.8: Waveforms (left) and spectrograms (right) from the training set of the
NARW dataset. One sample is shown for each type of whale call.

Layer number Layer description
1 Linear(768, 16384, LeakyReLU(0.2))
2 Reshape((1024, 4, 4))
3 Conv2DT(1024, 1024, 5, 2, 2, LeakyReLU(0.2))
4 Conv2DT(1024, 512, 5, 2, 2, LeakyReLU(0.2))
5 Conv2DT(512, 256, 5, 2, 2, LeakyReLU(0.2))
6 Conv2DT(256, 128, 5, 2, 2, LeakyReLU(0.2))
7 Conv2DT(128, 64, 5, 2, 2, LeakyReLU(0.2)
8 Conv2DT(64, 1, 5, 2, 2, tanh)

Table 4.15: Description of layers in the decoder models for BiGAN and VAE used for
NARW call experiments.
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Layer number Layer description
1 Conv2D(512, 512, 1, 1, 0, LeakyReLU(0.2))
2 Conv2D(512, 512, 1, 1, 0, LeakyReLU(0.2))

Table 4.16: Description of layers in the discriminator module Dz for the BiGAN used
for NARW call experiments.

Layer number Layer description
1 Conv2D(7, 64, 5, 1, 0, LeakyReLU(0.2))
2 Conv2D(64, 128, 5, 1, 0, LeakyReLU(0.2))
3 Conv2D(128, 128, 5, 1, 0, LeakyReLU(0.2))
4 Conv2D(128, 256, 5, 1, 0, LeakyReLU(0.2))
5 Conv2D(256, 512, 5, 1, 0, LeakyReLU(0.2))
6 Conv2D(512, 1024, 5, 1, 0, LeakyReLU(0.2))
7 Conv2D(1024, 512, 5, 1, 0, Identity)

Table 4.17: Description of layers in the discriminator module Dx for the BiGAN used
for NARW call experiments.

Layer number Layer description
1 Conv2D(1024, 1024, 1, 1, 0, LeakyReLU(0.2))
2 Conv2D(1024, 1024, 1, 1, 0, LeakyReLU(0.2))
3 Conv2D(1024, 1, 1, 1, 0, Sigmoid)

Table 4.18: Description of layers in the discriminator module Dx,z for the BiGAN
used for NARW call experiments.

Layer number Layer description
1 Conv2D(1, 32, 3, 1, 0, LeakyReLU(0.2))
2 Conv2D(32, 64, 3, 2, 0, LeakyReLU(0.2))
3 Conv2D(64, 128, 3, 1, 0, LeakyReLU(0.2))
4 Conv2D(128, 256, 3, 2, 0, LeakyReLU(0.2))
5 Conv2D(256, 512, 3, 2, 0, LeakyReLU(0.2))
6 Conv2D(512, 1024, 3, 2, 0, LeakyReLU(0.2))
7 Conv2D(1024, 1024, 3, 2, 0, LeakyReLU(0.2))
8 Conv2D(1024, 1024, 3, 2, 0, LeakyReLU(0.2))
9 Linear(4096, 1024, LeakyReLU(0.2))
10 Linear(1024, 3, Identity)

Table 4.19: Description of layers in the image classifier used for NARW call experi-
ments.
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4.4 Evaluation of Counterfactuals

4.4.1 Evaluation by Attribute Classifiers

Given an encoder-decoder model with encoder Ei, decoder Gi, and target prior p(Zi),

one question of the validity of the model is how well Gi can condition itself on at-

tributes; that is, how well setting the value of the causal parents PAi produces data

that shares characteristics of known data with similar values of PAi. For example, in

Morpho-MNIST or Audio-MNIST, one may want to know how well setting the digit

label ℓm to ‘9’ causes a reasonable handwritten digit or recording of speech to be

generated. To this end, consider an SCM M on n variables, in which some observed

variable Y takes the form of a categorical random variable and Xi takes the form of

an image representation of the data, such that Y is a causal parent of Xi. If Y is

of particular interest, we can train a classifier f(Xi) = Y to evaluate the validity of

counterfactuals in an automated fashion. Naturally, to test the ability of Gi alone, we

can generate random instances of the variable Xi using randomly generated causal

parents PAi and latent vectors Zi, checking if the classification of the generated in-

stances is consistent with the desired label Y ∈ PAi. Letting Acc(a, b) equal 1 when

a = b and 0 otherwise, the following formula for a generator evaluation is proposed:

scoreG = Ep(PAi)p(Zi) [Acc(Y, f(Gi(Zi,PAi)))] . (4.16)

Alternatively, the expected value over Zi used to compute scoreG can be replaced

by computing latent codes of observational data using the encoder Ei. Given an

observation (Xi,PAi) from e.g. a validation set, and a distribution of alternative

classes q(Y ′), a score accounting for the ability of Ei to compute effective latent

representations is:

scoreEG = Eq(Y ′)

[

Acc
(

Y ′, f
(

G(E(Xi,PAi),PA
Y←Y ′|PAi

i )
))]

. (4.17)

Note that this score actually involves computing a counterfactual, and as such mea-

sures the ability for the SCM to produce believable counterfactuals of the form

“what would Xi have been if the variable Y had instead had value Y ′?”. Here,

PA
Y←Y ′|PAi

i are the counterfactual values of PAi computed by performing the inter-

vention do(Y = Y ′) in the counterfactual attribute SCM conditioned on the observed
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values of PAi. When approximating the above value, samples from the distribution

over Y ′ which have the same value as that of the observed set of attributes are dis-

carded to ensure counterfactuals are not simply reconstructions of the original data.

In chapter 5, the values of the two metrics proposed above are presented for each

dataset and model considered.

4.4.2 Evaluation by an Audio-MNIST Subject Classifier

In certain cases, the nature of a dataset (specifically, the abundance of data of a certain

type) can facilitate comparisons of counterfactual data with observational data from

a test set via a classifier trained on observational data. The setting of Audio-MNIST

(subsection 4.3.2) allows such a comparison due to the fact that each speaker in the

dataset utters each of the digits “zero” through “nine” multiple times. Thus, when

we ask the counterfactual “what would the utterance sound like if it had contained a

different digit”, we can compare this to the subset of data in which the same speaker

uttered the digit in question by querying a classifier trained to detect speakers. For

example, letX,PA denote the audio and attribute observations of Audio-MNIST, and

denoteXc
k be the counterfactual obtained from a deep generative model by performing

abduction on the given observation and the intervention do(digit = k). Further,

denote {X(i)
k }Ni=1 as the subset of observational validation data such that each X

(i)
k

is an utterance of the digit k from the same subject which produced the original

utterance X. To evaluate the abduction process, a subject classifier is trained on

the Audio-MNIST training set. Then, beyond merely checking that the digit k is

classified correctly, one can check the agreement between the classifier and the subject

associated with the original observation. The mean agreement is used as a form of

accuracy on the abduction process in section 5.2. In the case of the Audio-MNIST

validation set, there are 60 unique subjects speaking 10 unique digit utterance types 9

times each. Hence, the number of counterfactual utterances for a given counterfactual

digit k and a given subject is 9× 9 = 81, giving 81× 60× 10 = 48600 counterfactuals

to check the agreement between causal models and the subject classifier.
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4.5 Counterfactual Explanations with Causal Generative Models

This section proposes a method of explaining a classifier f using the encoder and

decoder models of either a BiGAN or VAE, which are denoted E and G respectively.

Dash et al. [5] define a counterfactual importance score using the ImageCFGen archi-

tecture, which measures how a classifier’s prediction changes when a given attribute

(cause) of the classifier’s input changes. For instance, measuring how an “attractive”

classifier’s output changes when the attribute “bald” changes. While this method

proved useful in the work by Dash et al., it is not without limitations. Namely,

that it is only defined for binary attributes and binary classifiers. These limitations

motivate the method described in this section, which aims to provide image-based

counterfactual explanations on datasets with continuous and categorical variables of

interest. This method uses the BiGAN and VAE architectures of ImageCFGen and

DeepSCM respectively to generate explanations which lie in the original space of im-

ages. Specifically, we focus on counterfactual explanations, which provide alternative

values of variables which lead to a different classification from a certain classifier.

Definition 6 ([40]) Given a classifier f that outputs the decision y for an instance

x, a counterfactual explanation consists of an instance x′ such that the decision for f

on x′ is different from y, i.e., f(x′) ̸= y, and such that the difference between x and

x′ is minimal. As such, the instance x′ should be a realistic instance from the same

space as x.

Ideally, counterfactual explanations come from a “closest possible world” [12],

i.e., minimal changes to variables are performed while still producing realistic data.

This concept of minimality is left without a rigorous definition in Definition 6 due

to this concept being specific to the method of explanation used [40]. The Om-

nixAI library [13] is a publicly available software toolkit which provides a method of

computing counterfactual explanations. For a given image x and classifier f(·), the
counterfactual is found by solving the following optimization problem:

min
x′

max
λ

λH
(

fy(x
′)−max

y′ ̸=y
fy′(x

′)

)

+ ||x′ − x||1 (4.18)

where fj denotes the score for class j, y is the prediction of f for the original input x,

andH is the hinge loss function. This optimization problem aims to find x′ which flips
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the prediction of f while also keeping x′ close to x via the L1 regularization term.

One potential downfall of this approach is that while x′ is close to x, it may not

represent a realistic image, i.e., it may not fall within a “possible world” as described

by Wachter et al. [12]. Such examples may be considered adversarial, as they are not

easily interpreted by humans and are very specific to the classifier being explained.

To generate counterfactual examples which remain in the space of realistic images,

this work proposes using the encoder E and decoder G of a causal generative model to

search in the space of possible counterfactuals for an image x. This way, the search for

x′ becomes a search over possible counterfactual attributes pa′. As in Equation 3.7,

the counterfactual is defined as:

x′ = G(E(x,pa),pa′) (4.19)

where pa are the original causes of x. Accounting for a desired target class yt of x
′,

the optimization problem for the gradient-based method of counterfactual explanation

proposed here takes the following form:

min
pa′

max
λ

λ

(

max
y′ ̸=yt

fy′(x
′)− fyt(x

′)

)

+ ||x′ − x||1 (4.20)

where x′ is defined in terms of x,pa, and pa′ as in Equation 4.19. In practice λ was

set to 10 rather than performing an additional search over the parameter for each

counterfactual explanation.

While a search over continuous attributes is straightforward, a search over cate-

gorical attributes can be more difficult to achieve. As discussed in section 4.2, cat-

egorical attributes are passed to the generator G via an embedding lookup function

e(·) learned during training. If the search space over a categorical attribute a ∈ PA′

is converted to a search over discrete probability distributions p(a), we can represent

an element of the search space as a softmax vector p with pk = p(a = k). Then,

instead of passing the embedding vector e(a) of a single categorical attribute, we pass

the expected vector for the given element of the search space:

Ep(a)[e(a)] =
∑

k

pke(k). (4.21)

This allows the counterfactual explanations to be “inbetween” values of a given cat-

egorical attribute (e.g. the digit 3 and 8) while still producing realistic image styles

via the generator G.



44

The previously described method of embedding interpolation also allows for a

model-agnostic search for counterfactuals to be performed. Letting Y be the categor-

ical variable classified by f , we can interpolate between y (the original classification)

and y′ (the desired classification) to find the minimum change required in order to

flip the label. Let PAt denote the original attribute values with the embedding for

Y replaced by the linear combination te(y′) + (1 − t)e(y), such that PA0 = PA. A

model-agnostic search can then be performed by finding the smallest value of t such

that:

argmax
j
fj (G(E(x,PA),PAt)) = y′. (4.22)

This can be approximated via a grid search over several values of t ∈ [0, 1]. Be-

cause this method only requires querying the classifier rather than backpropagating

through it, it is naturally faster than the gradient-based optimization problem de-

scribed in Equation 4.20. However, it also only changes a single attribute (along a

single axis) and does not perform as sophisticated of a search.

4.5.1 Evaluating Counterfactual Explanations

The above counterfactual explanation methods, which are referred to as gradient-

based and model agnostic, are compared with methods implemented in the OmnixAI

toolkit [13] on the Morpho-MNIST dataset. Specifically, they are compared with the

counterfactual image explainer and the contrastive image explainer from OmnixAI,

which were originally proposed by Wachter et al. [12] and Dhurandhar et al. [14],

respectively. The comparison is made based on the hypothesis that the methods

from OmnixAI may produce small, adversarial-like changes rather than meaningful,

interpretable changes in the data to explain a classifier. To test this hypothesis,

quantitative metrics are employed which measure the interpretability of generated

counterfactuals.

Definition 7 ([15]) A counterfactual explanation x′ of a model f is considered inter-

pretable if it lies close to the model’s training distribution. This applies not just to the

overall distribution, but also to training instances which belong to the counterfactual

class.

The first metrics come from Van Looveren and Klaise [15], who proposed metrics
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of IM1 and IM2 and who also provide the definition interpretability from Definition 7.

For an image x from class p and corresponding counterfactual x′ supposedly from class

q, IM1 measures whether x′ is closer to class p or q using autoencoders AEp and AEq

trained on data coming from only the respective classes:

IM1 =
||x′ − AEq(x

′)||22
||x′ − AEp(x′)||22 + ε

. (4.23)

If IM1 falls below 1, the counterfactual is better reconstructed by a model trained on

data from the target class, suggesting it can be easily interpreted as an instance from

the target class. IM2, also proposed by Van Looveren and Klaise, aims to measure

how well the counterfactual follows the overall distribution of data by utilizing an

autoencoder AE trained on the entire training set:

IM2 =
||AEq(x

′)− AE(x′)||22
||x′||1 + ε

. (4.24)

Similarly to IM1, lower values of IM2 are considered better by the authors who

proposed the metrics. These metrics have been met with some criticism, including

from Hvilshøj et al. [16] who found that as dataset complexity increases, differences

in the values of these metrics between explanation methods can become insignificant.

Despite this, the metrics are included in this work due to the relatively low complexity

of Morpho-MNIST digits.

Additional quantitative evaluation metrics have been proposed by Hvilshøj et

al. [16], who aim to determine whether the changes found in a counterfactual ex-

planation are too specific to the classifier being explained to be interpretable (i.e.,

adversarial). The metrics proposed by Hvilshøj et al. are based on the presence of

an oracle o, which is an additional classifier trained with a different initial random

state than the one used to train the explained classifier f . While a label variation

score (LVS) is proposed by Hvilshøj et al., the metric is stated to be suitable only

for datasets where more than one label is present. Instead, we use the oracle score,

a measure of agreement between the classifier f and oracle o on the counterfactual

data. Letting X ′ denote a set of counterfactuals explanations from a given method,

the oracle score is defined as:

Oracle =
1

|X ′|
∑

x′∈X ′

Acc(f(x′), o(x′)) (4.25)
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where Acc is a binary indicator of equality as in Equation 4.17. If this score is very

low, it indicates that the counterfactual explanations in X ′ may be very specific to the

weights of f , hence it is used to avoid giving good scores to adversarial-like changes.

Results for the chosen quantitative metrics above on the four proposed explanation

methods (BiGAN and VAE, gradient-based and agnostic) and the two explanation

methods from OmnixAI are presented in section 5.1. When reporting values of IM1

and IM2, a normal approximation is used to compute 95% confidence intervals. At

the 95% confidence level, this interval is of the form:

x̄± 1.96
s√
n

(4.26)

where x̄ is the observed sample mean of the metric, s is the sample standard deviation,

and n is the sample size (10,000 for Morpho-MNIST). The 1.96 value in Equation 4.26

comes from the 97.5th percentile of the standard normal distribution. For the oracle

score, we measure the change with which the score changes when a different oracle

is used, training 10 oracles with different random initializations and forming a 95%

confidence interval using Equation 4.26.



Chapter 5

Results

This chapter displays the results from experiments on the three datasets considered

in this work. Both the evaluation of the DeepSCM and ImageCFGen models on the

datasets, as well as the results for counterfactual explanation on the Morpho-MNIST

dataset, are reported. When reporting agreement between the generative models and

classifiers in the observational setting (Equation 4.16), no results are reported for the

fine-tuned ImageCFGen model as the generator is not modified during fine-tuning.

When reporting metrics for causal models’ generation capabilities (e.g., Equa-

tion 4.16 and Equation 4.17) in tables, two values are presented for each metric. This

is because limited resources led to each causal model only being retrained once.

5.1 Morpho-MNIST

When evaluating the effectiveness of DeepSCM and ImageCFGen to model the Morpho-

MNIST dataset, the direct measurement of thickness, intensity, and slant was per-

formed using morphological operations, similarly to work from Pawlowski et al. [4].

Specifically, a random intervention of each type (thickness, intensity, and slant) was

performed on each of the images in the Morpho-MNIST test set, and then target at-

tributes were measured to check for consistency with causal models. This experiment

was reproduced for ImageCFGen, DeepSCM, as well as the fine-tuned ImageCF-

Gen model to ensure the training process of the models is consistent with previously

published work. The measured values extracted from counterfactuals are shown in

Figures 5.1, 5.2, and 5.3.

In addition to evaluation of counterfactuals concerning continuous attributes of

Morpho-MNIST using direct measurement, counterfactuals for the digit label were

evaluated using a trained classifier using the methods from subsection 4.4.1. Table 5.1

shows the evaluation of digit counterfactuals, as well as the evaluation of digits gen-

erated using random latent vectors and attributes from the Morpho-MNIST test set.

47
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ImageCFGen ImageCFGen (ft) DeepSCM
Digit (obs) 0.9810 0.9843 - 0.9916 0.9900
Digit (cf) 0.9533 0.9678 0.9979 0.9987 0.9854 0.9851

Table 5.1: Classification-based scoring of the Morpho-MNIST handwritten digit
causal models. The top row displays scores in the observational setting, where at-
tributes are taken from the test set and latent features are randomized. The bottom
row displays scores in the counterfactual setting, where a random intervention is per-
formed on each digit in the test set.

Figure 5.1: Measured thickness, intensity, and slant values from Morpho-MNIST
counterfactuals computed by the trained ImageCFGen model described in section sub-
section 4.3.1.
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Figure 5.2: Measured thickness, intensity, and slant values from Morpho-MNIST
counterfactuals computed by the trained ImageCFGen model after fine-tuning using
the method described in section 3.3.

Figure 5.3: Measured thickness, intensity, and slant values from Morpho-MNIST
counterfactuals computed by the trained DeepSCM model described in subsec-
tion 4.3.1.
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All three models accurately model counterfactuals of the three continuous at-

tributes, with thickness being the most difficult of the three attributes to model.

Further, all models are able to produce counterfactuals concerning digit labels with

very high accuracy as measured by a classifier. In the case of both continuous at-

tributes and the digit label, finetuning the ImageCFGen model increases the model’s

ability to produce accurate counterfactuals. Figure 5.4 shows examples of thickness

counterfactuals, and Figure 5.5 shows reconstructions of Morpho-MNIST digits com-

puted by each of the trained generative causal models.

In addition to the evaluation of counterfactual inference discussed above, the

Morpho-MNIST dataset is also used as a case study for the counterfactual expla-

nation methods described in section 4.5. For each image in the test set, a counter-

factual explanation is produced to explain a classifier trained on the Morpho-MNIST

training set. As the contrastive explainer from OmnixAI does not use a target class,

the class of the example produced by the contrastive explainer is used as the target

class of the VAE and BiGAN-based explainers in order to make a fair comparison.

Classifiers, including oracles, were trained with the same procedure as the classifer

used to evaluate the validity of digit counterfactuals.

An example of visual classifier explanation for the methods proposed here as well as

the counterfactual and contrastive explainer from OmnixAI are shown in Figure 5.6.

The gradient-based methods seem to fully transform the provided zero into a six

with the same style, while the model-agnostic methods peform a smaller change to

Figure 5.4: Counterfactuals computed by the three causal generative models on the
Morpho-MNIST dataset. The counterfactual shown is produced increasing the thick-
ness attribute tm by two units. Note that intensity is increased along with thickness
due to the causal structure of Morpho-MNIST (see Figure 4.3).
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Figure 5.5: Reconstructions (left-center, right-center, right) of original images (left)
from the Morpho-MNIST test set. All models produce accurate reconstructions,
though the DeepSCM autoencoder seems to produce images visually closest to the
originals.

Figure 5.6: Comparison of visual explanation methods proposed in this work with
the counterfactual and contrastive explainers from OmnixAI. The class of each ex-
planation is shown in the title of each subfigure with the name of the explanation
method, and the class score distribution from the classifier is shown underneath each
image. The label “OmnixAI PN” refers to the contrastive explainer, which produces
what are called pertinent negatives.
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the image by removing part of the zero to make it closer to a six. The OmnixAI

methods, however, appear to add small pixels to the center of the zero. The agnostic

and OmnixAI methods also appear to leave the classifier with a nonzero score for

both the original class (0) and target class (6), while the gradient-based methods

fully flips the score distribution. Additional examples of classifier explanations are

provided in Appendix B.

Figure 5.7: Mean IM1 scores computed on the Morpho-MNIST test set for the visual
explanation methods considered in this work. Confidence intervals at the 95% level
are shown as error bars on each value. All methods proposed in this work (those using
VAE or BiGAN) have significantly better performance than those from OmnixAI at
the 95% confidence level, with gradient-based methods performing the best.

Results for counterfactual explanation evaluation metrics are shown in Figure 5.7,

Figure 5.8, and Figure 5.9. The gradient-based explainers clearly outperform the rest

in terms of IM1 (see Figure 5.7). Further, the OmnixAI CF explainer has compara-

tively high IM1 scores compared to the rest of the methods. The agnostic methods

have similar performance on IM1 to the OmnixAI contrastive explainer, though they

still outperform the contrastive explainer at the 95% confidence level. For the IM2

metric, all methods except the gradient-based VAE explainer outperforms the meth-

ods from OmnixAI at the 95% confidence level (see Figure 5.8). Examining the oracle

score values in Figure 5.9, the gradient-based explainers proposed in this work obtain

the highest scores. However, both the gradient-based and model-agnostic explainers

have higher scores than the methods from OmnixAI. The low score from the OmnixAI



53

Figure 5.8: Mean IM2 scores computed on the Morpho-MNIST test set for the visual
explanation methods considered in this work. Confidence intervals at the 95% level
are shown as error bars on each value. All methods have significantly different per-
formance at this confidence level, with the agnostic BiGAN method performing the
best.

counterfactual explainer in particular suggests the changes provided by this method

may be adversarial. This observation is reinforced by the unrealistic changes to the

image made by the OmnixAI methods in Figure 5.6.

5.2 Audio-MNIST

Although the Audio-MNIST dataset contains several different attributes, not all can

be easily measured by a classifier (e.g. country of origin). Because of this, three at-

tributes were chosen to train spectrogram classifiers for the evaluation of the trained

generative models in this work. The three attributes chosen are the speaker’s biolog-

ical sex, the speaker’s accent, and the digit spoken by the speaker. The accuracy of

the trained classifiers is shown for each attribute in Table 5.2. The classifiers achieve

over 95% accuracy on the validation set in all three settings, with the speaker’s accent

being the most challenging attribute to classify.

This dataset was used as a case study in the use of the subject classifier agree-

ment metric from subsection 4.4.2. The metric produces a single binary value for each
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Figure 5.9: Oracle scores for each of the explanation methods considered in this
work, computed across the Morpho-MNIST test set. Confidence intervals at the
95% confidence level are shown by error bars at the top of each score bar, which were
computed using samples collected from 10 oracles with different random initializations
to remove bias that would be introduced from the weights of a single oracle.

Attribute Classifier Validation Accuracy
Speaker’s biological sex 0.9985

Digit spoken 0.9946
Speaker’s accent 0.9522

Table 5.2: Validation accuracy for different attribute classifiers trained on the Audio-
MNIST dataset.
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possible digit counterfactual that can be produced from the validation set. The clas-

sifier trained has the same architecture as the other Audio-MNIST classifiers used,

and was trained for 10 epochs. The subject classifier obtained 96.2% accuracy on

the validation set. The agreement metric was recorded for the ImageCFGen and

DeepSCM models as well as the fine-tuned ImageCFGen model. To test whether the

counterfactuals produced matched the desired subject better than a simpler inter-

ventional distribution, the generators of the two models were also used to produce

alternative images with the same target label without being counterfactuals (no ab-

duction). These models are referred to as “GAN” and “VAE Decoder” in Table 5.3.

Examining the classifier agreement results, even the interventional models achieve

a nontrivial level of agreement on subject with the classifier (ranging from approxi-

mately 25% to 30%). This could be explained in part by some subjects in the dataset

having attributes such as accent unique to only them. Using this range as a baseline,

both ImageCFGen and its fine-tuned version fail to beat the baseline. However, the

DeepSCM model achieves almost double the level of the agreement of the other mod-

els, suggesting it most accurately preserves the speaker’s voice when computing digit

counterfactuals.

ImageCFGen ImageCFGen (ft) DeepSCM GANnc VAE Decodernc

0.2177 0.2391 0.2532 0.2543 0.5802 0.5722 0.2489 0.2416 0.3031 0.3047

Table 5.3: Mean agreement on subject for digit counterfactuals as described in subsec-
tion 4.4.2. The causal models ImageCFGen, fine-tuned ImageCFGen, and DeepSCM
are compared with non-causal generative models GANnc and VAE Decodernc formed
by removing the encoder from an ImageCFGen or DeepSCM model (see Figure 4.2b).
The nc superscript in the names of these models stands for non-causal. The compar-
ison between these models is made to determine their relative abilities to preserve a
subject’s voice when changing the utterance being said.

Attribute ImageCFGen DeepSCM
Speaker’s biological sex 0.9733 0.9846 1.0 1.0

Digit spoken 0.9811 0.9659 0.9981 0.9980
Speaker’s accent 0.8002 0.8028 0.8754 0.8793

Table 5.4: Classification-based scoring of the Audio-MNIST generator (Equation 4.16)
models for prominent categorical attributes. Each score is computed over the Audio-
MNIST validation set with 4 Monte-Carlo samples from p(z) for each set of attributes.
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As with all datasets, the ability for DeepSCM and ImageCFGen to model cate-

gorical attributes is measured using classifiers according to the methods from subsec-

tion 4.4.1. The models are evaluated on their ability to reproduce data with attributes

from the distribution of the validation set (Table 5.4) and on their ability to produce

believable counterfactuals on given attributes (Table 5.5). Original images for coun-

terfactuals are taken from the validation set, and new attributes are sampled from

the trained attribute SCM described in subsection 4.3.2.

In the observational setting (Table 5.4), high agreement between the classifier and

the generative causal models is achieved. However, the DeepSCM model seems to

have an advantage over ImageCFGen, especially in the case of the speaker’s accent

where a discrepancy of over 7% is observed and duplicated on a second run of training.

Results on counterfactuals seen in Table 5.5 are consistent with results on different

datasets from Dash et al. [5] in that fine-tuning the ImageCFGen architecture im-

proves the ability of the model to produce believable counterfactuals. In fact, the

fine-tuned ImageCFGen appears to give comparable performance to DeepSCM in the

counterfactual setting. Interestingly, the model is able to produce believable digit

and sex counterfactuals, but not believable accent counterfactuals. This shortcoming

is discussed further in chapter 6.

Attribute ImageCFGen ImageCFGen (ft) DeepSCM
Speaker’s biological sex 0.8950 0.9174 0.9233 0.9072 0.9463 0.9193

Digit spoken 0.9252 0.9598 0.9736 0.9856 0.9832 0.9829
Speaker’s accent 0.0940 0.1011 0.0780 0.1094 0.0796 0.1096

Table 5.5: Classification-based scoring of the Audio-MNIST model for prominent
categorical attributes. Each score is computed by performing a counterfactual on an
instance of the Audio-MNIST validation set.

5.3 North American Right Whale Calls

When evaluating the models trained on the North American Right Whale call data,

the method of measuring the models’ abduction abilities used on Audio-MNIST is not

applicable due to the lack of metadata on individual whales in the dataset. Because of

this, the only quantitative evaluation used on the generative models for this dataset

is the agreement with a trained whale call classifier on generated observational and
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counterfactual data. The resulting agreement scores are shown in Table 5.6. In the

observational setting, both ImageCFGen and DeepSCM models achieve high agree-

ment with the whale call classifier, suggesting the association between whale call types

and spectrogram features was learned effectively by both models. However, in both

the observational and counterfactual setting, the ImageCFGen model achieved wildly

different agreement scores across the two training runs completed, dropping from full

agreement in the counterfactual setting to less than 40% agreement. This discrepancy

in performance is aided by the fine-tuning process, which brings the model to above

90% agreement with the classifier once again.

Generated whale calls from the causal models are shown in Figure 5.10. The calls

generated by DeepSCM are blurrier than those generated by ImageCFGen, but also

seem to more accurately capture features such as the half-parabola shape of a whale’s

upcall (bottom right of Figure 4.8). This could be due to the VAE of the DeepSCM

requiring a lower learning rate to avoid exploding gradients.

ImageCFGen ImageCFGen (ft) DeepSCM
Call Type (obs) 0.9736 0.8774 - 1.0 1.0
Call Type (cf) 1.0 0.3898 0.9815 0.9326 0.9868 0.9825

Table 5.6: Classifier agreement with causal generative models on the NARW dataset.
Results from both observational (top) and counterfactual (bottom) settings are pre-
sented.
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Figure 5.10: North American Right Whale calls generated by ImageCFGen (top),
fine-tuned ImageCFGen (middle), and DeepSCM (bottom) models. The three classes
of audio are represented in the columns of the figure. Spectrograms were generated
by averaging over 4 monte carlo samples using the latent prior.



Chapter 6

Discussion

This thesis has presented two main contributions in the area of counterfactual data

generation. First, methods were proposed for the generation of counterfactual ex-

planations of classifiers using both gradient descent and model-agnostic interpolation

by utilizing the generative structure of DeepSCM [4] and ImageCFGen [5] models

(see section 4.5 and section 5.1). These explanations were compared with the coun-

terfactual [12] and contrastive [14] explainers implemented in the OmnixAI model

explanation toolkit [13] using quantitative metrics for evaluating counterfactual ex-

planations [15, 16] on the Morpho-MNIST dataset. Second, two more complex

datasets were chosen to train and evaluate the DeepSCM and ImageCFGen mod-

els on spectrogram-representation audio data, a speech dataset (Audio-MNIST) and

a dataset containing North American Right Whale calls. Two methods of evalu-

ating these models using spectrogram classifiers were proposed. The first method

was used to test consistency between the attributes of generated observational and

counterfactual data by using agreement with the classifier(s) as a sort of accuracy

(see Equation 4.16 and Equation 4.17). The second method of evaluation was unique

to Audio-MNIST, and used a speaker classifier to measure the ability of DeepSCM

and ImageCFGen to accurately maintain a speakers voice when computing counter-

factuals concerning the utterance being performed (see Table 5.3).

A limitation of the speaker classifier metric from subsection 4.4.2 is that it does

not directly measure the ability of the generative models to produce data which

is not present in the training set. That is, because every subject speaks each digit

multiple times, counterfactuals involving changing the digit spoken by any subject will

produce data similar to that in the training set. This could be potentially improved

by training a model with ablations, removing some digit utterances for given subjects

and evaluating the model’s ability to produce utterances for those unseen digits for

a given subject (while still allowing the subject classifier to be trained on all data).

59
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Limitations also exist when using any classifier-based metric, i.e., either the speaker

classifier metric from subsection 4.4.2 or the metrics from subsection 4.4.1 for attribute

agreement. Namely, that the metrics measure a change in a discrete outcome (the

classification of a generated image). This could potentially lead to overoptimistic

metric values in cases where generated images lie close to the classifier’s decision

boundary. A metric accounting for the uncertainty in the outcome of the classifier

using the classifier’s class distribution could potentially alleviate this limitation in

future work.

When evaluating counterfactual explanations of classifiers, two classes of metrics

were chosen. The first, IM1 and IM2 [15], uses class-specific autoencoders to measure

the relative distance from a counterfactual example to a target manifold. The second,

the oracle score from Hvilshøj et al. [16], uses a second classifier independent of the

explanation method to measure how adversarial the changes performed to generate a

counterfactual are. In both cases, the metrics used for evaluation were chosen in order

to compare the interpretability of the model explanations generated by the methods

proposed in this thesis with those from OmnixAI.

In terms of IM1, a clear difference is seen when comparing the gradient-based

methods of BiGAN and VAE to the methods from OmnixAI. Specifically, the mean

IM1 of the proposed gradient-based methods is less than half of that of either method

from OmnixAI (see Figure 5.7). Further, values of IM1 from the model-agnostic

method proposed are significantly smaller than the the IM1 recorded from the Om-

nixAI explainers at the 95% confidence level. All methods proposed in this thesis

other than the gradient-based VAE explainer also were significantly better in terms of

IM2 than those from OmnixAI at the 95% confidence level (see Figure 5.8), however,

this metric in particular has been met with criticism in the literature. Specifically,

Schut et al. [41] choose not to take IM2 into account due to its inability to distinguish

in-distribution data from out-of-distribution (junk) data.

The results recorded using the oracle score from Hvilshøj et al. favour the expla-

nation methods presented in this work over those from OmnixAI, with all methods

proposed in this work significantly outperforming both methods from OmnixAI at the

95% confidence level (see Figure 5.9). As with the IM1 metric, the gradient-based

BiGAN and VAE methods achieve the most desirable values of the metric among
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all methods considered, while the model-agnostic BiGAN and VAE methods have

comparable (but superior) performance to the contrastive explainer from OmnixAI,

and the counterfactual explainer from OmnixAI has the worst value of the metric.

The results of both IM1 and oracle score suggest that the methods presented in this

thesis for the generation of counterfactual explanations of classifiers produce more

interpretable explanations than those from OmnixAI.

On the Audio-MNIST dataset, three attributes were considered for the generation

of observational data and counterfactuals: digit spoken, sex of speaker, and accent

of speaker. Using a spectrogram classifier, the generated data was evaluated for con-

sistency of these attribute values. When generating observational data, consistency

of all three attributes is very high, suggesting a high capacity in both the DeepSCM

and ImageCFGen models to produce believable spectrograms. In the counterfactual

setting, sex and digit counterfactuals again produce high consistency metrics, but the

models are unable to produce believable accent counterfactuals. This is likely due to

the lack of diversity of accents in the dataset, with several accents having only one

speaker. Overall however, the models appear to produce believable counterfactuals

and are suitable to this audio dataset. In both the observational and counterfactual

setting, the DeepSCM model has an advantage over the ImageCFGen model, poten-

tially due to the VAE of DeepSCM having an explicit reconstruction term in its loss

function in the case of a Gaussian prior. However, when the ImageCFGen model is

fine-tuned, this discrepancy in performance is no longer observed, suggesting the fine-

tuning process proposed by Dash et al. [5] is a valid way of improving counterfactual

model performance.

Perhaps the most unique model evaluation method used in this work is the one

proposed in subsection 4.4.2. Because measuring consistency of attributes does not

measure the ability to perform abduction (the process which separates interventions

from counterfactuals), this work proposed a metric for the Audio-MNIST dataset

which uses a speaker classifier to measure how well a speaker’s voice is maintained

when a digit (utterance) counterfactual is computed. If abduction was performed

correctly, the speaker’s voice should be maintained through a combination of noise

variables and attributes, whereas attributes alone (an intervention) may lead to a
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speaker with the same sex, accent, etc. but a different voice overall. The experi-

ments in this thesis used this metric to compare ImageCFGen and DeepSCM with

interventional models formed by using the generator/decoder of ImageCFGen and

DeepSCM models along with noise variables sampled from a latent prior. The results

in Table 5.3 clearly indicate that DeepSCM is the only model which can significantly

improve over the interventional baseline, increasing the agreement with the speaker

classifier from approximately 30% to approximately 60%. This result suggests that

on the Audio-MNIST dataset, the DeepSCM model is best suited for counterfactuals

which preserve the speaker’s voice, and does not require fine-tuning to achieve high

levels of agreement with the attribute classifiers.

On the North American Right Whale call dataset, the evaluation offered by a

whale call classifier does not actually measure the ability of models to perform ab-

duction, i.e., compute counterfactuals. This means that a model producing interven-

tional data may achieve similar scores to the causal models trained on this dataset.

Therefore, the results shown in Table 5.6 are more concerned with the feasibility of

training DeepSCM or ImageCFGen models to generate believable whale call data.

The goal of this thesis was to evaluate and compare the abilities of the DeepSCM

and ImageCFGen causal generative models to produce accurate counterfactual audio

data, as well as to produce counterfactual image explanations of classification mod-

els. A metric for measuring the ability of these models to perform abduction was

proposed on a human speech dataset, which recorded a significant improvement of

DeepSCM over standard generative models such as conditional GANs. While this

metric is dataset-specific, the development of such metrics, which can distinguish the

performance of causal models from standard generative models, will become more

important if the performance of emerging deep causal model architectures are to be

trusted. Thus, future work in the area of causal modelling should include the de-

velopment of new metrics to distinguish the performance of counterfactual-capable

models from other similar architectures. The counterfactual explanation methods

proposed in this work also demonstrate the ability of causal generative models such

as DeepSCM and ImageCFGen to explain classifiers, providing an additional use for

such models and further demonstrating the link between causality and explainable

AI. Future work in the area of explainable AI could explore new methods of classifier
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explanation using causal models, or potentially refine the explainers proposed in this

work.
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Appendix A

Proof of ImageCFGen Finetuning Objective

For brevity and clarity of notation when referencing vector components, the subscript

i on the variables Xi,PAi, and Zi of the SCM being discussed are dropped in the

following proof. To begin the proof, we start from the definition of the latent loss Lz:

Lz = Ep(Z)||Z− E(X,PA)||2. (A.1)

Assume the components Zj of the latent vector Z ∈ R
d are independent random

variables with zero mean and finite variances σ2
j . Taking || · ||2 to be the squared L2

vector norm, we expand the expected value in the definition of Lz as follows:

Lz = Ep(Z)||Z− E(X,PA)||2 (A.2)

= Ep(Z)

[

d
∑

j=1

(Zj − E(X,PA)j)
2

]

(A.3)

=
d

∑

j=1

Ep(Zj)[(Zj − E(X,PA)j)
2] (A.4)

=
d

∑

j=1

Ep(Zj)[Z
2
j + E(X,PA)2j − 2ZjE(X,PA)j]. (A.5)

Next, note that:

Ep(Zj)[Z
2
j ] = σ2

j + Ep(Zj)[Zj]
2 = σ2

j , (A.6)

and

Ep(Zj)[−2ZjE(X,PA)j] = −2E(X,PA)jEp(Zj)[Zj] = 0. (A.7)
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The loss Lz then becomes:

Lz =
d

∑

j=1

(

Ep(Zj)[Z
2
j ] + E(X,PA)2j + Ep(Zj)[−2ZjE(X,PA)j]

)

(A.8)

=
d

∑

j=1

(σ2
j + E(X,PA)2j) (A.9)

= ||E(X,PA)||2 +
d

∑

j=1

σ2
j . (A.10)

Hence, as all the σ2
j ’s are constant, minimizing Lz under the given assumptions on

p(Z) is equivalent to minimizing the norm of latent vectors produced by E.



Appendix B

Morpho-MNIST Visual Classifier Explanations

This appendix contains Morpho-MNIST counterfactual examples for each of the ten

classes in the dataset. All figures are displayed in the same way as Figure 5.6, with

explanations for each method considered shown alongside the original image. Also

as in Figure 5.6, the target class for the causal-model based explainers is taken to

be the resulting class of the OmnixAI contrastive explanation. In all cases but one

the methods are successful in flipping the classifier’s prediction to the target class,

with the gradient-based explainers failing in the case of flipping a ‘5’ to a ‘3’ (see Fig-

ure B.6). However, even in this case, the gradient explainer still flipped the classifier’s

prediction to another class.

Figure B.1: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 0.
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Figure B.2: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 1.

Figure B.3: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 2.
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Figure B.4: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 3.

Figure B.5: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 4.
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Figure B.6: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 5.

Figure B.7: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 6.
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Figure B.8: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 7.

Figure B.9: Classifier explanations and score distributions from the explanation meth-
ods considered in this work. The pictured example is a Morpho-MNIST digit from
class 8.
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Figure B.10: Classifier explanations and score distributions from the explanation
methods considered in this work. The pictured example is a Morpho-MNIST digit
from class 9.



Appendix C

Model Convergence Curves

Figure C.1: Validation accuracy during training of classifiers for the Morpho-MNIST
dataset used to produce results in section 5.1.

Figure C.2: Convergence of the BiGAN (left) and VAE (right) models trained to
compute counterfactuals on the Morpho-MNIST dataset.
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Figure C.3: Validation accuracy during training of classifiers for the Audio-MNIST
dataset used to produce results in section 5.2.

Figure C.4: Convergence of the BiGAN (left) and VAE (right) models trained to
compute counterfactuals on the Audio-MNIST dataset.
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Figure C.5: Validation accuracy during training of the whale call type classifier used
to produce results in section 5.3.

Figure C.6: Convergence of the BiGAN (left) and VAE (right) models trained to
compute counterfactuals on the whale call dataset.
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