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Abstract

Traditional statistical methods face lots of challenges in model fitting, variable selection and
model diagnosis when analysing high-dimensional data. LASSO is one of the most popular
regularised approaches for high dimensional data such as gene expression in microbiome
research. However, it often selects a large number of noise variables and it does not provide
a direct quantitative assessment of the significance of each variable selected. We present a
new variable selection method Subsampling Ranking Forward selection (SuRF) based on
penalised regression, subsampling and forward-selection methods. We apply our method
to classification problems from microbiome data, using a novel agglomeration approach
to deal with the special tree-like correlation structure of the variables. Existing methods
arbitrarily choose a taxonomic level a priori before performing the analysis, whereas by
combining SuRF with these aggregated variables, we are able to identify the key biomarkers
at the appropriate taxonomic level, as suggested by the data.

The default standardisation used in LASSO regression is effective for the normal pre-
dictors, but not for predictors from heavy-tailed distributions. We presented a large scale of
simulations showing that heavy-tailed predictors have a large impact on variable selection
and prediction in Binomial and Poisson regression, and a less pronounced effect in Gaussian
regression. This can cause the model to underselect the true predictors from heavy-tailed
distributions such as log-normal and Pareto distributions, and to overselect those variables
in Poisson regression. SuRF is less influenced by the distribution of the predictors. A
Box-Cox transformation generally improves the selection rate of the heavy-tailed predictors
for both SuRF and Stability Selection in Binomial regression, but it can cause a diverse
effect in Poisson regression.

Generalised additive models (GAMs), a type of non-parametric additive model, are a
natural choice to extend SuRF to select predictors with a non-linear relation to the response.
Replacing GLMs with GAMs is necessary in both the ranking and the forward-selection
steps of SuURF. SuRFgam demonstrates a superior performance in both nonlinear variable
selection and the prediction accuracy. It is particularly effective in reducing the noise

variables, making it a better choice in various modelling scenarios.
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Chapter 1

Introduction

As technology continues to advance and data collection and storage solutions become
increasingly accessible, the volume of information generated in almost every field has grown
exponentially. While the process of collecting data has become more straightforward and
more economical nowadays, extracting meaningful insights from complex data poses a series
of more challenging issues than ever. Effectively harnessing the enriched information and
identifying key indicators for predicting the outcomes is a common and pressing problem
across numerous research fields and domains, including finance, marketing, environmental

science, medicine, microbiome studies, and more.

One of the fundamental challenges in modern data analysis is that the number of
predictors, denoted by p, is often larger than the number of observations, denoted by N.

When this occurs, the results of many traditional statistical methods become very unreliable.

There are several approaches to deal with this issue. One approach is to develop
new methods which can provide reasonable predictions from data with more predictors
than observations. Another is to reduce the dimension of the data by creating summary
predictors, which summarise a large number of predictor variables. Another important
approach, and the topic of this thesis, is variable selection, where we select a small number
of the predictors, which contain most of the information needed to predict the response

variable.

Variable selection has a number of advantages over other methods. Identifying the
important predictors can be important for improving our scientific understanding. Predicting
the response from a small number of key predictors also reduces the cost of future data

collection, by allowing researchers to only collect a small number of key variables.

Variable selection methods are generally classified into four main types of methods.
Filter methods mostly assess predictors based on general features of the predictors, such as
correlation with the response. Often, filter methods consider each predictor in isolation,

making them very fast, but unable to account for the correlation between predictors. Wrapper
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methods and embedded methods select the variables based on a criterion. The difference
between wrapper methods and embedded methods is in the search strategy. Wrapper
methods fully fit the model on the selected variables, before changing the selection, usually
by either adding a variable to the selected set (forward selection) or by removing a variable
from the selected set (backward selection). By contrast, embedded methods simultaneously
fit the model and select the variables, usually by optimising an objective function that
includes a penalty term which is not differentiable with respect to a coefficient when the
coeflicient is zero. The final class of methods is ensemble methods, which aggregate
the results of a large number of variable selection methods to form a consensus variable
selection.

Many of the most popular variable selection methods are embedded methods, based
on the Least Absolute Shrinkage and Selection Operator (LLasso), which was introduced by
Robert Tibshirani in the 1990s in the context of linear regression, and has subsequently
been extended to generalised linear models (GLMs). The idea is to minimise the negative
log-likelihood, plus a penalty term which is proportional to the L; norm of the fitted vector

of linear coefficients.

p
L(B)=~1(B: X,y) + A ) |Bi
=1

where A is a tuning parameter that controls the sparsity of the fitted model. The effect of
this loss function is to both shrink the coeflicients towards zero, and also to select variables
by shrinking the coefficients of noise variables to actually equal zero.

There have been a number of variations of the Lasso method developed based on using
a modified penalty function. These are designed to address a variety of variable selection
situations. A few key Lasso based methods include FUSED Lasso (2005, [60]), Elastic
net (2005, [80]), Group Lasso (2006, [73]), Adaptive Lasso (2006, [79]), Dantzing selector
(2007, [7]), Smoothly clipped absolute deviation (SCAD) (2008, [64]) and Scaled Lasso
(2012, [55]).

In the Lasso and related approaches, the variable selection or the model selection heavily
relies on the choice of the turning parameter(s). Common techniques for choosing the
parameter include Cross-validation (CV) and AIC/BIC scores. The selection of variables
can vary significantly in size depending on these parameter choices, resulting in inconsistent
prediction performance. Additionally, the variable selection can be also influenced by some

observations or outliers.
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Many of these issues are addressed by Stability Selection [39], which is an ensemble
method based on subsampling and Lasso. The method takes a large number of subsamples
of the original dataset, without replacement, of size half the size of the original data, and
applies Lasso to each subsample over a range of tuning parameter values. The final model
chosen includes all variables that are selected (non-zero coefficients) for above a chosen
proportion of subsamples over some tuning parameter value. The authors of Stability
Selection [39]suggest the proportion should be in the range 0.6-0.9, with larger values
selecting a more parsimonious model. By controlling the Lasso tuning parameter and the
cut-off, it is possible to control the Per Family Error Rate (PFER), resulting in a very sparse
model.

Stability Selection has been widely used in a range of regression and classification

problems [28, 48, 53, 33, 4]. However, it does have certain limitations:

* The cut-off value is chosen arbitrarily, and does not have an intuitive interpretation.
This means that it is hard to control the parsimony of the selected model. Simulation
studies performed by [31] have demonstrated that in order to get acceptable variable
selection, the cut-off I1;;,, may need to be set lower than 0.5 in cases where p > N,
and conversely, it may need to exceed 0.9 when p < N. The sensitivity of variable
selection to the choice of I1;,, is a concern and determining an appropriate threshold

beforehand can be challenging.

* Indatasets with multicollinearity issues, each subsample may select one variable from
a set of surrogate variables, with different surrogates selected in different subsamples,

resulting in none of them being selected in the final model.

* The selection can become inconsistent when the assumption of similar distributions

of sub-samples is violated.

* A 50% sub-sampling proportion is often overly restrictive, especially when the orig-
inal sample size is small. Using a subsample with a very limited number of observa-

tions can reduce the power of the selection procedure.

This thesis focuses on variable selection for Microbiome research problems. Micro-
biome data consists of counts of particular microbes in an environment. There is substantial

evidence [12, 58, 10, 54, 23] that the microbiome has a large influence on a number of areas
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ranging from health to environment to agriculture. However, the sheer numbers of mi-
crobes make interpretation of microbiome data a challenge. Furthermore, identification of
biomarkers that serve as indicators of specific health conditions, diseases, or environmental
states, such as the presence of algae bloom in a lake, can improve our understanding of the
underlying mechanisms, and give rise to more effective monitoring of these conditions.

It is therefore crucial to develop variable selection in the context of microbiome research.
However, microbiome data has a number of features which cause existing variable selection
methods to perform badly. Firstly, microbiome data are very high dimensional, with
thousands of predictors, and the expense and difficulty of collecting samples means that
datasets often contain only several hundred samples or fewer. Secondly, the predictors are
highly correlated. Approximate collinearity of predictors is well known to make variable
selection challenging. Thirdly, the predictors are structured in a taxonomic tree structure,
representing the evolutionary relationships between the microbes. Since evolutionary close
microbes are relatively similar, there is a prior belief that the relations between closely
related predictors and the response are more likely to be similar. Fourthly, most microbial
relative abundances are very sparse and heavy-tailed. The effect of the distribution of
predictors on variable selection methods is a seriously understudied problem, to which an

entire chapter of this thesis is devoted.

1.1 Organisation of the Thesis

In Chapter 2, we develop a new variable selection method, called Subsampling Ranking
Forward selection (SuRF), for regression and classification purposes, particularly for mi-
crobiome analysis. Our method is based on Lasso penalised regression, subsampling and
forward-selection methods. We apply our method to classification problems from mi-
crobiome data, using a novel agglomeration approach to deal with the special tree-like
correlation structure of the variables. Existing methods arbitrarily choose a taxonomic level
a priori before performing the analysis, whereas by combining SuRF with these aggregated
variables, we are able to identify the key biomarkers at the appropriate taxonomic level, as
suggested by the data. We also present simulations in multiple sparse settings to demonstrate
that our approach performs better than several other popularly used existing approaches in
recovering the true variables. We apply SuRF to two microbiome data sets: one about

prediction of pouchitis and another for identifying samples from two healthy individuals.



5

We find that SuRF can provide a better or comparable prediction with other methods while

controlling the false positive rate of variable selection.

Chapter 3 explores the impact of the distribution of predictors on variable selection from
Lasso-based methods in Gaussian, Binomial and Poisson GLM models. Standardisation
of the predictors for Lasso is recommended as a default to ensure Lasso is scale-invariant.
While standardisation in terms of standard deviation is appropriate for normal predictors,
the standard deviation is not always such a good measure of scale for heavy-tailed distri-
butions. The lack of a more appropriate standardisation method for heavy-tailed predictors
leads to worse performance of Lasso-based methods. The simulation results confirm that
the predictors’ distributions usually have limited effect on variable selection for the Gaussian
regression models. In contrast, the heavy-tailed predictors are usually under-selected in the
Binomial logistic regression, and over-selected in Poisson regression models. Furthermore,
this bias in variable selection reduces prediction accuracy in these cases. Box-Cox trans-
formation of the predictors can improve variable selection of some methods, even when
it results in misspecified models, but does not completely remove the impact of predictor

distribution.

In Chapter 4, we adapt our SuURF method to a new method called SuRFgam (Sub-
sampling Ranking Foward selection for generalised additive models) for variable selection
in generalised additive models (GAMs). GAMs are a type of non-parametric additive
model, that is able to model non-linear relations between predictors and the response. In
particular, GAMs model the conditional expectation of the response through a link function
as a sum of smooth functions of each predictor, in order to capture non-linear effects of
the predictors. Replacing GLMs with GAMs is necessary in both the ranking and the
forward-selection steps of SuRF. In the forward-selection step, this can be routinely done
by replacing the GLM by a GAM. For the ranking step, we use Gamsel [11] (Generalised
Additive Model Selection), which is a variable selection method for GAMs, based on group
Lasso. We conduct a comprehensive simulation study to compare SuRFgam with various
state-of-the-art methods for variable selection in GAMs, including linear methods and non-
linear methods. We compare performance on Gaussian and Binomial regression model
settings across a range of data dimensions and signal strengths. SuRFgam demonstrates
a superior performance in both nonlinear variable selection and prediction accuracy. It is

particularly effective in reducing the noise variables, making it a better choice in various



modelling scenarios.



Chapter 2

SuRF: A new method for sparse variable selection, with application in

microbiome data analysis

2.1 Introduction

Traditional statistical methods face lots of challenges when analysing high-dimensional data.
These challenges occur in model fitting, variable selection and model diagnosis. A series
of regularised models have become popular inference approaches for high dimensional data
such as gene expression. The most well-known methods include Lasso regression [59], the
elastic-net regression model [80] and various variations such as group Lasso [73], Bayesian
Lasso [42], etc. Lasso is based on penalising the model by the sum of the absolute values of
coeflicients of all variables and hence it is a soft thresholding method so that some variables
are eliminated due to a resulting zero coefficient. This has the advantage of selecting
sparse models. In addition, it is a suitable method to use for tree-structured data, such as

microbiome data, as we discuss in Section 2.4.

There are a few issues with the use of Lasso for microbiome data. The first is inference
— Lasso can select a parsimonious model, but it does not provide a direct quantitative
assessment of the significance of each variable selected. For scientific and clinical research,
it is vital to include these assessments of the significance of variables (p-values). There is a
method related to this matter [37] but, in practice, high dimensional data rarely satisfies the
weak collinearity assumption needed. The more robust approach of Tibshirani et al. [61]
is only available for Gaussian response variables. Secondly, Lasso provides only a list of
variables, with coefficients, but in many cases very strong correlation exists between some
variables, either of which might be selected with no indication that the other variables might
have an almost equally strong association with the response variable. The choice of which

variables are selected can be very unstable.

We introduce a variable selection method, SuRF, based on regularised regression and

subsampling of observations in the generalised linear model setting in this chapter. This

7
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method provides a p-value for each variable. The p-values are for forward selection, so
should be interpreted for the null hypothesis “All true variables have already been selected”.
In cases where variables are correlated, the p-value assigned to a given variable measures the
extent to which that variable improves prediction compared to the model already selected.
A variable might have a high p-value if a surrogate variable is already included, and a

variable with a low p-value could be a surrogate of the true predictor.

SuRF also gives information on the stability of the selected variables. There has
been previous work on dealing with the lack of stability in Lasso, such as Zakharov and
Dupont [75] and Grave et al. [24]. A promising recent approach to this issue which has
some similarity to our SuRF method is Stability selection [39]. Stability selection has

proven to be a very popular and effective method for variable selection.

Another good variable selection method is best subset selection. As the name implies,
this method chooses the set of variables of a given size that optimises some suitable
criterion. While this is intuitively appealing, actually finding this optimal subset is an
NP-hard problem. However, the recent work of Bertsimas et al. [2] has provided an efficient
method for approximately finding an optimal subset of a given size. Choosing the number
of variables is still a challenge in best subset selection. Recently Zhang and Cavenaugh [76]

provide a method to use bootstraps in combination with a corrected AIC to solve this issue.

Another popular variable selection approach that we consider is VSURF [21]. This uses
the variable ranking produced by the Random Forest method to select variables using a
stepwise approach. This has many conceptual similarities with SuRF, in that it is a ranking
procedure followed by a stepwise procedure. However, it differs from SuRF, not only in the
use of Random Forest for ranking and selecting the variables. Random Forest is based on
subsamples, but it does not apply variable selection to the subsamples. Instead, the variable
importance ranking is based on the difference in cross-validated prediction accuracy with

and without the selected variable.

We are particularly interested in applications to microbiome research. The microbiome
is the collection of all bacteria present in a location, e.g. a person’s gut, and one of the
main questions of microbiome research is the relationship between phenotypes (e.g., healthy
versus disease groups) and the microbiome. The data consist of counts of various types of
microbes, classified into Operational Taxonomic Units (OTUs). These counts of OTUs are

generally normalised to calculate the relative abundances for each microbe in each sample



9

and the abundance data are used as predictors for certain phenotypes. Through such models,
we hope to find the major correlations between microbes and the phenotype under study.
Due to the vast number of OTUs and the cost of samples, the sample size is always much
smaller than the number of OTUs. In this modelling process, variable selection and the

interpretation of the models are the most important results.

We show in our simulations that SuRF gives comparable performance to that of Stability
selection [39] in the usual settings when the predictors follow multivariate Normal distribu-
tions, and outperforms Lasso and best subset selection. For the simulations where predictor
variables are based on real microbiome data, SURF shows much better performance than

Stability selection, best subset selection and VSUREF in variable selection and prediction .

The remainder of the chapter is structured as follows: Section 2.2 describes the general
SuRF method. Section 2.3 sketches how to prove consistency of SuRF. Section 2.4 describes
how we have adapted SuRF for the microbiome data in our example. In Section 2.5, we
compare the performance of SuRF with other variable selection and machine-learning
methods on simulated data, both with and without the microbiome tree structure. In
Section 2.6, we apply SuRF to two real microbiome data sets. In Section 2.7, we study
the reliability of the p-values given by SuRF. In Section 2.8, we discuss the extension of
SuRF to the Cox-proportional hazards model through a joint work to handle time-to-event
outcomes. In Section 2.9, we conclude the chapter with a brief discussion of the advantages

of SuRF. In Section 2.10, more detailed tables are presented.

2.2 Subsampling Ranking Forward selection (SuRF)

The framework of SuRF has two main steps. The first step creates a list of ordered predictors
that have been selected most frequently by Lasso variable selection on subsamples of the
observations. The second step applies ANOVA with forward selection to this ordered list
of variables to eliminate or alleviate the issue of surrogate variables. The significance of
each variable in the forward selection test is calculated from the likelihood ratio statistic
via sequential permutation tests. A sketch of the algorithm is provided in Figure 2.1, with

more detailed pseudocode in Section 2.2.3.
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2.2.1 Variable Ranking

The subsampling approach plays an important role in formulating the list of top predictors.
This technique is widely used in many recent methods for variable selection and the details
were summarised well by Dezeure ef al. [15]. Each subsample is used to perform a variable
selection procedure and the results from all subsamples are used to rank the importance of
variables according to the frequency of variables being selected.

In principle, any good variable selection methods can be implemented here, but we focus
on Lasso for the linear predictors in this chapter because of its empirically better screening
performance than other regularised models [6] and its computational speed. In Chapter 4,
we will use another method Gamsel to deal with non-linear predictors in the ranking. In
addition, we find that Lasso is particularly suitable for the variables from the microbiome
data (see Section 2.4). For each subsample, we record the variables selected by Lasso, with
the tuning parameter selected by cross-validation over the subsample. We rank variables
by the frequency they are selected (Ties are broken by reduction of deviance residuals from
models containing all higher-ranked variables). The order of variables can be interpreted
as measuring the strength of the association with the response variable.

We recommend about 90% of the data for this purpose when the sample size is extremely
limited but otherwise the proportion appears to make a minimal difference in results for
values in the range 50-90% in the simulations (see Table 2.9). In classification problems,
we also recommend taking stratified subsamples (subsamples having the same proportion
in each class as the true data) since if the subsamples are not balanced, this can affect prior
probabilities of each class, resulting in worse classification. The subsampling procedure is
repeated in a large number of times. Some literature suggests 50 or 100 times can produce
decent accuracy [15], but as the computation this step is small compared to other parts of
the method, there is little cost to performing this step in a much larger number of times (e.g.

1000 times in this chapter) to ensure higher accuracy.

2.2.2 Sequential permutation tests with ANOVA forward selection

The forward selection involves sequentially testing the null hypothesis that no variables
beyond the currently selected variables are good predictors for the response variable, given
the currently selected variables. In forward selection, the order in which variables are

added to the model can be important. At each stage, if multiple predictors are significant,
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we add the one ranked highest by our variable ranking procedure. Because we are testing
multiple predictors at each stage, Wilks’ theorem [66] (that the log-likelihood ratio statistic
follows a y? distribution) does not apply. The predictors are not independent, so Bonferroni
correction [5] cannot be used. Instead we calculate the critical value empirically using

permutations [44].

More specifically, we start with a list of candidate variables, containing all variables
in the order found using the ranking method from Section 2.2.1, and a list of selected
variables being initially empty. At each step, we generate a random permutation for all
observations, and apply it only to the variables in the candidate variable list. This breaks
the relationship between the candidate variables and the response variable while preserving
the correlation structures, both between selected variables and the response variable, and
among candidate variables. Now for each candidate variable, we compute the log-likelihood
ratio statistic between the current model and the model with this variable added. We record
the largest log-likelihood ratio statistic. We repeat this process for many more permutations
(we usually use 200 permutations as a compromise between accuracy and speed), to obtain
the null distribution of the maximum log-likelihood ratio statistic. We use the 100(1 — )th
percentile (& = 0.05) of this null distribution as our critical value, denoted as Di1—a for
the ith variable in this forward sequential variable selection procedure. We now return
to the original unpermuted data, and for each candidate variable in the ranking order, we
calculate the log-likelihood ratio statistic between the current model, and the model with
this candidate variable added. We select the first candidate variable for which this statistic
exceeds D’i_a, and add this variable to the model (and remove it from the candidate variable
list). We then generate a new distribution, with new permutations and repeat the same
procedure. When the log-likelihood ratio statistic for each candidate variable is no greater
than the critical value, we terminate the algorithm and output the current model as the final

model selected.

For each variable added to the model, SuRF has computed a p-value based on the
comparison of the likelihood ratio statistic with the empirically calculated null distribution.
This p-value is based on the increase in training fit over the variables that were already
included in the model. That is, the p-value is for the null hypothesis that all true variables
are in the current model. A variable which is a surrogate for a variable that has been already

selected may not have a significant p-value if there is not significant evidence that this
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variable improves prediction over the surrogate already selected.
Figure 2.1: Overview of the SuRF method

More detailed pseudocode is given in Section 2.2.3.

Draw 1000 random
stratified subsamples)

Apply LASSO to
select variables
for each subsample

Start: list of selected Count selection
variables is empty 2@%%2&{1{{%

Rank (Rank predictors
predictors

by selection

J

frequency

Calculate
Critical
Value

Generate 200
random permutations

. Do an

Select Highest Deviance S)t/atistics

Ranked Significant Exceed the Critical Permute observaion
ariable

Vanables

deviance statistic

Return list of selected
variables
Return dlstrlbutlon

of maximal deviance
statistic

)
| J
[Calculate maximum j
| |

2.2.3 SuRF Algorithm: single cut-off method
2.2.4 Revised algorithm: variable selection path

In the revised SuRF package, we have modified the algorithm to accommodate the need
for refitting the data with a different significance level @. This feature proves particularly
useful for visualising the selection path along a predetermined significance level range [«;,
a,] (e.g., [0.01,0.2]) in a single model fitting. The idea of the new algorithm is to store
the variable selections at each step as a decision tree, based on the significance level range.

Each node on the tree contains a set of selected variables and a significance level range. The
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Algorithm 1 Variable ranking

Require: X matrix of predictors (e.g. proportions for OTU data)

1:
2:

s @

A

10:

11:

12:

13:
14:

function VRANK(Xyxp, YN, ¢, B)
Stepl: Create a zero matrix Mpp
fori «— 1to Bdo

Randomly select the i’ stratified subsample of size qN;

Fit Lasso with this subsample;

M[i,T;] = 1; > T; selected variable set chosen from i'" subsampling
end for

Step2: Rank variables by their frequencies F, = 3;, M[b, q];

Step3: In case of a tie, re-rank variables according to the contribution of how each
of them decreases the LR statistics by adding each variable to a model already including
the variables listed above those tied variables;

Step4: Further reduce the above list by removing the variables listed at the bottom
with a low frequency.

return R = {R|,R>,...,Rp/}

> R represents the ranked variable set (from most frequently selected to the least

frequently selected)

: end function
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Algorithm 2 Variable selection (main)

function VSeLEcT(Xyxp, YN, R, T) > T: the number of permutations
2:
C<—R > C: Candidate variable set
4:
S0 > S: Selected variable set
6: repeat
newcutoff=DeriveSampDist(Xyxp, yn,C, S, T);
8: x*=SelnNewvar(Xyxp, yn, C, S, newcutoff)
S —{S,x*}
10:
C — {C\x*}
12: until
All observations have been perfectly classified or x* ==
14: return

end function
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Algorithm 3 Variable selection step 1: derive the sampling distribution

function Der1vESAMPDIST(X NP, YN, C, S, T, @ = 0.05) > 7T': the number of
permutations
fori — 1toT do
Select a random permutation 7;

Permute all rows of variables listed in C with 7;

for j — 1 tow do >w = |C|: the size of the set
Pj — {S, CJ}
D] «— —2In fo
J
end for
D7 «— max; D;
end for
D — {DT, ..., D" }_a > D"*: the new cut-off value

return DT
end function
D Likelihood ratio statistics between model using variables in § and in Lp,
Lg: Likelihood of the model including variables in the current selected variable set S
Lp;: Likelihood of the model including variables in the current selected variable set S

plus the j candidate variable in candidate set C
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Algorithm 4 Variable selection step 2: select a new variable

function SELNEWVAR(Xyxp, yn, C, S, newC)

for k — 1tow do >w = |C|: the size of the set
Py — {S,Cy}
Gy« —2In LLTSk
if G, > newC then

return xnew = Cy;break;

end if

end for

return ()

G Likelihood ratio statistics between model using variables in S and in Lp,

Lg: Likelihood of the model including variables in the current selected variable set

Lp,: Likelihood of the model including variables in the current selected variable
set S plus the k" candidate variable in candidate set C

end function
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top node contains the empty set of variables and the full significance level range [a;, @, ].
At a given node, we perform the usual procedure to form the ranked list of predictors and
the null distribution of the deviance. We then descend down the list until the significance
level needed to select one of the variables X; is less than «,. If the necessary significance
level is less than «;, then X; is selected, and there is a single branch below the current node.
If the significance level a; is between a; and «,, then our tree will branch with one node
having range [a;, @, ], and variable X; selected (in addition to the variables selected in the
current node). We will then continue to descend further down the list, to see if any more
variables are selected for significance level @ < ;. If no more variables are selected, then
the second branch has range [, ¢;], and selects no additional variables, thus terminating
the algorithm for that branch. If X; is selected at significance level «; < «;, then a new
branch with range [}, @;] (or [a;, @;] if a; < @) is created, and X is selected on this
branch. This process is repeated until a variable is selected at significance a; < q;, or
until no variable is selected in the lowest range. The process is then repeated for all lower
nodes for which a variable is selected. The permutation test only needs to be performed
once for each node of this tree, regardless of the actual significance level used. In theory,
the permutation test may apply to multiple nodes with the same set of variables selected,
but the benefit of this is usually limited, as SuRF is parsimonious, so it is fairly rare for the

same set of variables to be selected in different orders at different significance levels.

2.3 Theory

SuRF is designed to combine the best parts of three methods: Stability selection, Lasso
and forward selection. The advantages and disadvantages of these methods are as follows.
Forward Selection provides clear p-values at each stage, but heavily depends on the order of
variables entering the model. Lasso does well at identifying the correct variables, but does
not provide p-values and often selects too many variables. Stability selection is robust to
outliers, but can “fall between two stools” with surrogates, and offers only limited p-values.

Because the variable selection in SuRF is mainly controlled by the forward selection
part, SuRF retains the advantages of forward selection — namely the clear p-values and
sparsity. However, by choosing the order of variables using Lasso, SuRF is able to avoid the

pitfall of choosing variables that do not work well with other predictors. Because the final
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selection in SuRF is made using forward selection, it is able to consider variables which
are not selected often in the subsampling. This can be important in cases with surrogate
variables, where the subsamples could be closer to evenly split. In such cases, Stability
selection is likely to select both or neither, depending on its cut-off value. SuRF is able
to consider variables that are chosen in fewer subsamples, relying on forward selection to
avoid selecting too many variables.

We will base our theory on forward selection, since forward selection is responsible for
the final selection decisions made by SuRF. We want to show that asymptotically, SuRF
will select the true variables. This occurs in two stages. Firstly, the true variables must be
ranked highly by the subsampling procedure. Otherwise, a surrogate variable may be tested
and selected before the true variable. At best, this will be a false positive. In worse cases,
this could prevent the true variable from being selected. The true variables being ranked
highly relies on the performance of Lasso at identifying the true variables. It is known that
Lasso is consistent provided the irrepresentability condition holds [78]. In this case, the
subsampling is asymptotically guaranteed to select the true variables before other variables,
which overcomes the danger with forward selection that the surrogate will be selected
first, preventing the true variables from entering the model. In addition, the subsampling
approach should offer some robustness, allowing the top variables to be highly ranked
even if some outliers might make them less highly ranked in some subsamples. Secondly,
assuming the true variables have been ranked above other variables, the hypothesis test must
reject the null model when true variables haven’t all entered the model. We can prove that,

assuming:

1. the true variables are ranked before all other variables by the ranking procedure,

2. log(p,) = o(n), where p,, is the number of predictors included in the dataset with n

observations and

3. Ba > 1, where B is the number of permutations used in calculating the null distri-

bution and « is the significance level for the forward selection test.

SuRF will almost surely select all true variables for large enough n.

We establish the following notation:

* The true model is E(Y|X) = g~'(Xp), where Y|X follows an exponential family

distribution and g is a link function. X is an n X p,, matrix.



19

* Viue denotes the set of indices of “true” predictors, i.e. B; = 0 for all i ¢ Ve and

Bi # 0 forany i € Vipye.
* Puue = |Virue| 1s the number of true predictors, and is fixed as n — oo.

e For a set V of selected indices, ,E; = arg maxg|(vigV)8;=0} l(é; Y, X) is the estimate
for B restricted to elements of V and Iy = supgvigv)g,=0} ! (B Y, X) is the maximum

log-likelihood for the selected variables.

* For a set V of selected indices, §}, = arg maxg(vigv)p,=0} E(/(8; Y, X)) is value of
the coefficient vector, g restricted to elements of V, which maximises the expected
log-likelihood, or equivalently, minimises the Kullback-Leibler divergence from the

true distribution.

Let D(V,k) = z(lvu{k} —ly).

We first prove a lower bound on the log-likelihood ratio statistic D(V, k) when B # 0. We

start by proving a lower bound on the expected log-likelihood.

Lemma 1. If V & V., then there is some j € Vi for which E(l(,B;“,U{j};Y, X)) >
E(1(8;:Y,X))

Proof. We know that for an exponential family model, the likelihood function is concave.
This means that if 3, is not the global maximum for E(/(B;Y, X)), then it must have a
non-zero derivative in the direction g — fy,. Since it has a non-zero derivative, in this
direction, it must have non-zero derivative in one of the component directions. Let k be one
of the component directions in which there is a non-zero derivative. Then we must have

E(l(ﬁ;"/u{k}; Y, X)) > E(I(By; Y, X)), which completes the proof. O

Next we use standard asymptotic theory to show that this bound holds for the finite sample

values with large probability.

Theorem 3.1: For V & Ve, there is some € > 0 such that
P| sup D(V,j)>ne|—1
JE€Virue\V
Furthermore, if the log-likelihood ratio is almost surely o(n) — that is if

[(Bv:Y,X) = 1(B}: Y. X) R
n

0
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a.s., then sup;cy, \y D(V, j) > ne a.s.

Proof. We have that

D(V. k)

> = 1(Bvoy: Y. X) = 1(Br:Y.X)

= 1By Y- X) = 1By Y. X) + (1(Bvog: V. X) = 1By Y. X))
- (1B Y. X) - 18137, %)

> 1By Yo%) = 1B Y.X) = (1(Bv: ¥, X) - 1(8:Y.X)

By Lemma 1, there is some j € Vi such that E(l(ﬁ;}u{k}; Y, X)) -E((By:;Y,X)) > €.
By the strong law of large numbers, for any &,

[(Byypy: Y- X) = 1(By: Y, X)

n

- E(Z(B:/U{k}; Y,X)) - E(l(ﬁik/, Y, X))
almost surely, so with probability 1, for large enough n,

n

<

— (Bx (B0 Y- X)) Bx(U(B: ¥, X))

ANl ™

n

LBy X)=1(By:Y X)

n

Therefore, > %e. Therefore, if < § then D(V, k) >

ne.

By Wilks’ theorem, we have that 2(/ (,E‘;; Y,X) - 1(By;Y,X)) converges in distribution

1(By:Y X)-1(B}:Y X)
n

to a y? distribution. Therefore converges in probability to 0. Thus

Pl sup D(V,j) > ne
J€Virwe\V
LBy Y. X) = 1(By: Y, X) [(By:Y,X) - 1(B::Y,X
>1—P( VU{k} v <§E _»p (Bv ) = L(By, )>§ .
n n

1(Bv:Y X)=1(By:Y . X)

Furthermore, if — 0 a.s., then with probability 1, there is some N such

thatforalln > N, and some k € Vie, - > Zeand - %

which means sup ey, \v D(V, j) > ne.

On the other hand, we can study how the null distribution changes with n and p.
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Theorem 3.2: Suppose X is an n X p, matrix and Y is a random vector (independent of
X) from an exponential family distribution, then for any V. C {1,..., p,}, the maximum

deviance Q = sup;qy D(V,j) of a single column of X as a predictor of Y has survival

where So(x) = P (Q > x).

(S

2pne”
V2rx ’

function asymptotically bounded by Sp(x) <

Proof. For asingle column j of X, the deviance D (V, j) asymptotically follows a chi-square
distribution with one degree of freedom. Its survival function is therefore S(x) = 2®(—+/x).
The survival function of the maximum of p, such distributions is therefore bounded by

So(x) < 2p,P(—+/x) (with no assumptions about the joint distribution). Recall for u < 0,

we have
u _ﬁ
e
D(u) = dt
—00 Vzﬂ
2
Ut o=
< / L ar
—oo UN2pT
1 [ 2 ]”
= —e 2
V2nru —c0
_e_é
2rtu
In particular, setting u = —/x gives us Sg(x) < 2p,P(—vx) < 2pn\‘};—% This means that
. . . ane_%
the survival function is bounded by Vet O

For the hypothesis test, we sample B permutations of the data, and for each permutation,
compute the values D(V, j) for each j ¢ V, and take the maximum sup 4, D(V, j). This
gives B simulated deviances. The critical value is the 100(1 — @)th percentile of these
simulated deviances. Since the deviance for the true variable is larger than ne, for some
e > 0, we will reject the null hypothesis if fewer than B simulated deviances are larger
than ne. If Sp(x) is the survival function of the simulated deviance distribution, then the
probability that more than aB simulated deviances are larger than ne is asymptotically
bounded by

_ne \ Ba Ba
B 20, 2B)BY [ p
( )SQ(ne)B"‘ < B (—p ¢ ) -8 ( b 6_7”)
Ba V2mne 21 @ VHe

This is an upper bound on the probability that SuRF stops before selecting the next variable.
The probability that SuRF stops before selecting all true variables is therefore bounded by
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p true

ey (ﬂe—én)Ba
mBa N3

By our assumptions, p,e~ 5" < 1 for all sufficiently large n, so pye~ 2" < e~5" — 0, so
the probability of SuRF selecting all true variables converges to 1.

Furthermore, Y%, p,e 2" < C+ 3% e™#" < co. Given a sequence of datasets, X,,
which are n X p, matrices of predictors, with corresponding response variables Y;,, let 7,, be
an indicator Varijl\ble for the event that the selected variables under SuRF include all variables
in Vige. If w — 0 almost surely, then with probability 1, for all sufficiently
large n, P(T, = 0) < puue () So(n€)B?, so since ¥, (2 )So (n€)B* < oo, we have shown
that E(X,2 (1 -T,)) = X2 (1 - P(T, = 1)) < c0,50 P (X2 (1 -T,) < o) = 1. Thus,

SuRF is almost surely consistent.

2.4 Adapting SuRF to Tree Structured Data

SuRF can be applied to any exponential-family GLM variable selection problem. However,
our application of interest is microbiome data. In this section we discuss the particular way
we have adapted SuRF to deal with such data. Hierarchical clusterings like the taxonomic
tree structure of microbiome data are common in many types of data, so this adaptation has
wide applicability. We can also use this adaptation with other variable selection methods.
The benefits of the aggregation described here depend on the nature of the data being
analysed. For microbiome data, we recommend using this aggregation method with all
variable selection methods, since the OTU level predictors are already somewhat arbitrary
aggregations of strains.

Microbiome data typically consist of proportions of OTUs present in each sample. OTUs
are clusters of DNA sequences, usually clustered at 97% similarity, approximately equivalent
to species-level resolution. We are working with a GLM g(E(Y|X)) = By + X8, where X is
the column-centralised OTU data matrix with each column representing an OTU variable.
The phylogenetic relationships among OTUs provide us with prior knowledge about g.
Namely, we expect the §; to be close for closely-related OTUs because of phenotypic
similarity. It is a standard assumption in microbiome research that phylogenetically close
organisms have similar functions in the microbiome. We reflect this prior knowledge via

the regularisation of the coefficients. We choose to base this on the taxonomic tree, rather
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than more detailed phylogenetic trees, because estimation of the phylogenetic tree is subject
to a lot of noise, and the taxonomic tree is easily available from the output of most pipelines.
However it is trivial to use a phylogenetic tree instead.

A common practice is to aggregate variables at an arbitrarily chosen taxonomic level,
usually genus or phylum. That is, to replace the original data matrix X by the aggregated
data matrix X = XC , where C is the clustering matrix at the chosen level. For example,

B { 1 if OTU i is in phylum j,
ij =

0 otherwise.

Now, fitting a model g(E(Y|X)) = Xa + By is equivalent to fitting g(E(Y|X)) = XB + Bo,
where 8 = Ca. That is, this regularisation consists of the restriction = Ca, namely that
OTUs from the same phylum have the same coefficients.

While aggregating at a sufficiently high taxonomic level can have the convenient con-
sequence that classical statistical methods can be applied, the aggregated data may lack the
resolution to answer the scientific questions, or may lead us to make unsupported or false
generalisations. On the other hand, the large noise when analysing at a low taxonomic level
may obscure general patterns, and not provide a satisfactory prediction [29].

The trouble with aggregation at a certain taxonomic level is that it converts the soft
prior expectation that coefficients for OTUs in the same group should be similar into a hard
requirement that the coefficients be equal, even if this is disproved by the data. Instead,
we penalise the extent to which the coefficients differ. More formally, instead of setting
X = XC,wesetX = X(C,I),where (C, I) is a matrix whose first columns are C, and whose
remaining columns are the identity matrix. Now instead of the standard Lasso penalty ||3]|1,
we apply the modified penalty inf ¢ 7),-g||||1. Here we refer to an a with (C, I)a = S as an
interpretation of 8. We are interpreting the coefficients S according to groups. For example,
if G = {A, B, C} is one group, then the variable selection “A and B” could also be interpreted
as “G, except for C”. These two interpretations both refer to the same fitted model, and we
may choose whichever minimises the penalty term. The penalised regression problem can
easily be optimised by fitting a standard Lasso regression to the GLM g(E(Y|X)) = Xa.
This GLM is not identifiable because of the linear dependence between columns. There are
multiple transformed coefficient vectors « that give rise to the same coefficient vector 3.
However, this is not a problem, because the coefficient vector f is still identifiable, and it is

only the different interpretations of this vector that are not identifiable. Often, for a given
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coeflicient vector S, there is a unique interpretation @ that minimises the penalty. This is
the simplest interpretation of the fitted coefficient vector. It can be shown that the penalty
term for interpretations of 8 is minimised by « if for any j at the higher taxonomic level,
is the median of {0} U {g;|C;; = 1}, and for any i in cluster j (i.e. C;j = 1) a; = B; —aj. We
can apply the same method after constructing similar aggregations at every taxonomic level.
The resulting penalty for a particular coefficient vector S is the most parsimonious total
change of coeflicients over the taxonomic tree structure. We clarify this with an example:
Figure 2.2(a) shows a small taxonomic tree containing OTUs Xj, . . ., X¢. We create the
combinations X7 = X1+ X+ X3, Xg = X4+ X5, Xo = X4+ X5+ Xgand X;; = X1+ - - + Xg.
We do not consider the combination X, because it is equal to X7. For the coefficient
vector 8 = (1,2,2.5,-2,-1,-0.5)7, i.e. the model g(E(Y|X)) = X| +2X> + 2.5X3 —
2X4 — X5 — 0.5X6, the most parsimonious coefficients in terms of the expanded set of
predictors are @ = (0,1,1.5,-1,0,0,1,-0.5,-0.5,0) as shown in Figure 2.2(b). That
is, g(E(Y|X)) = Xp + 1.5X3 — X4y + X7 — 0.5Xg — 0.5Xg is equivalent to the original
estimate, but is given a lower penalty by Lasso. Similarly, for the coefficient vector
B =(2,2,25,-2,-1, -0.5)7, in Figure 2.2(c), the most parsimonious coefficients in the
aggregated model are o’ = (0,0,0.5,-1,0,0,2,—-0.5,-0.5,0). In the original model, the
penalty assigned to 8" is A(|2| + (2| + |2.5] +| = 2|+ | — 1| +| — 0.5]) = 104, which is larger
than the penalty A(|1]| + |2| + |2.5| +| = 2| +| = 1| + | = 0.5]) = 94 assigned to B8, whereas,

for the aggregated model, the penalty assigned to « is

A(O] + |1+ |1.5]+|=1]+[0]+ 10|+ |1| +| = 0.5]+] = 0.5| +|0]) =5.54
and the penalty for @’ is

A0l + 0] +10.5] + | = 1| + |O] + |0] + |2] + | = 0.5] + | = 0.5] + |0]) = 4.54

so the penalty for « is larger. Thus, the aggregation approach uses the same space of models,
but a different regularisation, which can affect the selected model. In this aggregated setting,
we will often say something like “We select the higher level variable X7 as a shorthand for
“We select a model in which variables X, X, and X3 are included, but constrained to have
equal coefficients.”

It is usual to standardise variables prior to applying Lasso. This is to balance the

penalty terms between different variables. For microbiome data, the motivation for using
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Figure 2.2: Example tree
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(a) shows a taxonomic tree relating the OTU variables Xi,...,Xs. We create addi-
tional variables X7, ..., X9 by aggregating the variables below. Let X be the original
OTU data matrix (X;---Xg). In (b), we consider the estimate ¥ = XS + By where
B =(1,2,2.5-2,-1,-0.5)T and in (c), we consider the estimate ¥ = X3’ + BE) where
B =(2,2,25,-2,-1,-05)".

The coefficients in the expanded model are shown on the branches of the trees, and the
values shown at internal nodes are cumulative sums of the branches above. For leaf nodes,
these are the coefficient § in the original model.
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the aggregation method is that phylogenetically similar microbes are often interchangeable,
so we expect the coefficients to be similar. This is on the original abundance scale.
Therefore, to achieve the correct regularisation, we need to aggregate the abundances prior

to standardisation.

Yan and Bien [70] independently develop a similar method involving adding aggregated
variables to alter the regularisation. Their approach is tailored to text mining problems,
and consequently differs from ours in a couple of respects: Firstly, they include an addi-
tional penalty for the coefficients at leaf nodes. This does not make sense for OTU data,
since leaf nodes are clusters of lower level strains, so should not be treated differently.
Furthermore, additional penalty for coefficients at leaf nodes creates a new optimisation
problem. Secondly, their method does not scale the variables before regularisation. For
Lasso, standardisation makes predictors more comparable, so that penalties are equivalent.
For their count data, the counts are already equivalent. For our tree-based Lasso, it is less
clear what standardisation means. Further work on fine-tuning the procedure to produce a
better penalty that more accurately reflects this is outside the scope of the current thesis,
which focuses on the SuRF procedure, but is a topic the author plans to address in future

work.

The theory for this augmented version of Lasso has not been developed. It is not possible
to apply the standard theory for the augmented set of predictors, because there are many
representations of the true model using the augmented predictors. Described in terms of
the augmented predictors, even the notion of consistency is challenging to define — there
are multiple correct sets of selected augmented variables, and when we convert back to the
original variables, it can be challenging to even determine whether or not a given original
variable has been selected. Developing a new theory about the consistency of augmented

Lasso is beyond the scope of this thesis, but is an interesting area for future work.

There are several ad-hoc methods in the literature to incorporate tree structure into
the Lasso model, for example Xiao et al. [69]. However, an advantage of our aggregated
Lasso method is that it is trivial to also incorporate covariates which do not fit into the tree
structure, simply by not creating aggregated variables for them. This approach can also be
applied to multiple hierarchical clustering structures on the same set of variables e.g. all
clades from all gene trees for a given data set. We can do this by simply adding a set of

aggregated variables for each clustering.
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2.5 Simulation

2.5.1 Study 1: Linear and Logistic Regression with Multivariate Normal Predictors

In this simulation, we simulate the predictors Xi, ..., X200 from a multivariate normal
distribution, with Cov(X;, X;) = 0.8/~ (like an AR1 covariance structure). We perform
two studies. In the first study, the response Y follows a normal distribution with mean a linear
function of X. In the second study, the response, Y, is binary, with probability an inverse
logistic transformation of a linear function of X. We simulate 100 training observations

and 100 test samples in each dataset.

In both studies, we consider four cases for true predictors — one true predictor; three true
predictors including two consecutive (highly correlated) variables; three true predictors not
including two consecutive variables; and eight true predictors with two consecutive pairs.
We also consider three different signal-noise ratios: low — 0.7, medium — 1 and high —
3. We simulate 100 replicates in each scenario. We compare SuRF with the significance
level set to each of the values 0.05, 0.1, 0.15 and 0.2, Stability with FMER set to 1 and to
0.0526 (this is the expected number of false positives if the significance level @ of SURF
is set to 0.05) and proportion set to 0.6, 0.7, 0.8, 0.9. We also compare Lasso, and best
subset selection using MIO for optimisation [2] and using APS [76] to choose the number
of variables. For each method, we assess results using both the number of true predictors
identified, the number of false positives and the predictive performance on test data. Except
for Lasso, we fit a GLM using only the selected variables. Using the standard GLM fitting
provides a common assessment of the selected variables under each method. However, for
Lasso, fitting a GLM on the selected variables performs significantly worse than using Lasso
directly on the training data, so we used the results from Lasso directly without refitting the
GLM. The test prediction is assessed using R? for continuous response and misclassification
rate for binary response. Because the average MSE can be heavily influenced by outliers

with large MSE, we use the median, rather than the mean.

The test R? values for the case where Y is Gaussian are in Table 2.1. The true and false
positive rates are given in Table 2.2 and shown in Table 2.17 in Section 2.10 with more
details. Average results across all scenarios are very similar between SuRF and Stability
selection with FMER upper bound set to 1 and cut-off proportion set to 0.6. Other settings

for Stability selection and other methods produce much worse overall results. The poor



28

results for other settings of Stability selection contradict the claim from Meinshausen and
Biihlmann [39] that results are not sensitive to the choice of cut-off. The results are close
inthe p =1 and p = 8 cases. In the p = 3 cases, when the true predictors are weakly
correlated, particularly when signal-to-noise ratio is not so high, SuRF performs better than
other methods. When two of the true predictors are highly correlated, SuURF performs much
worse than other methods in terms of the true and false positive rates, and slightly worse in
predictive accuracy. This is because SuRF tends to select only one from highly correlated
variables, whereas Stability selection is more likely to select both. In the case where two
highly correlated variables are both true predictors, this results in a lower true positive
rate for SURF. Because the variables are highly correlated, missing one of the true positive
variables does not have a very large effect on prediction using SuRF. In cases where only
one of the correlated variables is a true predictor, this results in a lower false positive rate

for SuRF, and therefore better prediction.

The average test misclassification rates for the simulation where Y is binary are shown
in Table 2.3. The average numbers of true positive and false positive rates are shown in
Table 2.4 and Table 2.18 in Section 2.10 with more details. The results are similar to the
Gaussian case. Misclassification rates are similar in the p = 1 and p = 8 cases, and in
the p = 3 case, Stability selects better predictors than SuRF in the case where two true
predictors are highly correlated, and selects worse predictors than SuRF in cases where the
true predictors are more weakly correlated. As in the Gaussian case, this is because SURF

is less likely to select two highly correlated variables.

As in the Gaussian case, while stability selection often performs better in individual
scenarios, SURF performs best across all scenarios. The performance of Stability selection is

very sensitive to the choice of cut-off value, with the best choice varying between scenarios.

Looking at the variable selection results in more detail, when the three true variables
are not highly correlated, SuRF performs better than other methods, achieving the same
number of true positives with fewer false positives. In the three true predictor case with
two highly correlated predictors, as for the continuous case, SuRF often selects just one
of the predictors, resulting in the selection of fewer true variables. In the 8-variable case,
SuRF often selects more false positives than Stability for settings where they select a similar
number of true predictors. However, from Table 2.3, we see that even in this case, SURF

is able to achieve comparable or better misclassification error than other methods. This
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Table 2.2: Average Numbers of true and false positives for variable selection methods under
Gaussian error model over 100 simulations.

(a) True positive results

P SNR SURF ‘ Stability, FMER=1 | Stability, FMER=0.0526 | Best |Lasso
0.05 0.1 0.1502 |06 07 0.8 09 |06 0.7 08 09 Subset
High |1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 Fair 0.99 0.99 0.99 0991 1 1 1 1 1 1 1 099 |1
Low [0.99 0.99 0.99 0.98|1 0.99 0.99 0.97/0.99 0.99 0.99 0.97 099 |1
High [2.09 2.2 2.26 2.28|2.95 2.88 2.81 2.57|2.89 2.86 2.76 2.62 1.09 |3
3(a) Fair |13 1.39 1.42 1.48(2.31 1.94 1.38 0.88|1.99 1.8 1.41 0.97 0.31 |2.7
Low |[1.12 1.1 1.12 1.13]|1.77 1.46 1.03 0.5 |1.48 1.27 1.00 0.66 0.2 2.45
High |3 297 298 3 297 29 273 2.1 |2.02 2.28 2.13 1.82 2.88 |3
3(b) Fair |[1.64 1.76 1.81 1.89|1.37 1.11 0.74 0.39|0.65 0.58 0.46 0.29 2.01 |2.64
Low [1.04 1.17 1.35 1.38]/0.86 0.67 0.39 0.19]0.32 0.27 0.21 0.12 145 |2.29
High [2.03 2.21 2.33 2.49|2.59 2.24 1.78 1.00|2.04 1.88 1.57 1.22 0.83 |4.92
8 Fair |0.96 1.01 1.04 1.07|1.43 1.13 0.59 0.22|1.16 1 0.67 0.29 0.69 |3.8
Low (0.8 0.82 0.85 0.88|1.14 0.77 0.34 0.12]0.77 0.59 0.41 0.19 0.69 |3
(b) False positive results '
p SNR SURF ‘ Stability, FMER=1 | Stability, FMER=0.0526 |Best |Lasso
0.05 0.1 0.1502 |06 07 0.8 09 |06 0.7 08 09 Subset
High [0.05 0.14 0.18 0.24|0.13 0.08 0.04 0 |0.05 0.04 0.03 0.01 0.69 |8.59
1 Fair |0.06 0.1 0.18 0.27]0.23 0.11 0.03 0.02|0.08 0.05 0.03 0.01 0.3 8.29
Low [0.06 0.11 0.22 0.36]/0.19 0.09 0.06 0.02]0.09 0.07 0.05 0.02 026 |11.28
High [0.1 0.15 0.16 0.27|/0.4 0.16 0.04 0 0.3 0.15 0.08 0.02 0.14 |12.34
3(a) Fair [0.19 0.26 0.32 0.44|0.5 0.22 0.06 0.01[0.38 0.21 0.15 0.04 1.1 12.09
Low [0.14 0.18 0.29 0.37]|0.44 0.19 0.06 0.01]0.27 0.19 0.11 0.02 1.05 |12.96
High [0.03 0.13 0.2 0.21]/0.48 0.19 0.07 0 |0.25 0.18 0.07 0.01 2.12  |25.65
3(b) Fair |0.36 0.53 0.61 0.75]0.34 0.15 0.07 0.02|0.2 0.11 0.05 0.02 299 |19.61
Low [0.4 0.54 0.59 0.72/0.29 0.09 0.01 0 |0.1 0.06 0.03 0.01 355 |17.22
High [0.25 0.37 0.49 0.57|0.92 0.51 0.14 0.05[0.82 0.59 0.26 0.08 0.31 |16.33
8 Fair ]0.35 0.47 0.57 0.65|0.67 0.35 0.15 0.07|0.47 0.31 0.2 0.08 0.72 |24.24
Low [0.33 0.42 0.47 0.54|0.36 0.18 0.07 0.05[0.27 0.18 0.11 0.05 0.61 |24.46
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indicates that the “false positives” selected by SuRF are still good predictors, i.e. they are
surrogates of the true predictors. While SuRF is not able to distinguish which predictor is

the true predictor, it is able to select good predictors.



32

8TT0| SEE€0 ¥OE€0 LLTO S9TO|9%€0 06T°0 €ST0 TETO|ICC0 TTTO $TTO LITO  ULIA JO dTeIoAy
#0'0| €900 800 ¥80°0 +¥L0°0[6¥00 LLOO ¥80°0 #SO'0| €00 TEO'0 TEO'0 TEO'0 as ol
TEE0 | €LY'0 PO 86€0 €LE0|S8F0 TSHO 6£0 €VE0| PEECO 9E€°0 9€€°0 LECO| UBSN

870°0| 9600 [1°0 2600 SLOO| 800 11'0 8800 6¥0°0| €00 6200 #20°0 +200 as wy g
8LT0|STHF'0 LLED 9TE0 66C0|€9%'0 80 TIEO LLTO | S8T0 98C0 88T0 T6CT0O| UBN

9¢0'0| €I°0 110 8900 SO0[SEI'0 110 €50°0 TEO'0| 870°0 LFO'O 8700 9%0°0 as -
8L1'0| THE'0 1STO S61°0 €81°0(T8E°0 19T°0 LST°0 #91°0 | 881°0 €61°0 L61°0 LOTO| UL

€60°0| 9€0°0 €50°0 890°0 9L0°0[LEO0 890°0 180°0 6L0°0| SLO'O 9L0'0 SLO'O +L0°0 as ol
SIE0| 6870 SLY'0 6570 TH0[887°0 +SH0 €TF0 18€0|SCE0 LECO SPED 19€°0| UBIA

8L0°0| LS00 SLO'0 800 980°0(#90°0 $80°0 €£80°0 190°0| 990°0 8900 LO'0 S90°0 as My @ ¢
L8TO| 8LF'0 ISH0O I€4'0 €I¥0[ILF0 THO SLEO €E€E0|ELTO 18T0 S8T0 L6TO| UL

1S0'0| TITO €IT°0 S60°0 TLOO|SIT'O #80°0 6700 €S00| €00 9€0°0 €400 8700 as -
T91°0| LI+'0 89€°0 €T€0 S6T0|€8€°0 TOE0 9¥T0 +CT0|8CIO 1€1°0 LEI'O 8ET°0| UL

SS0'0| 6€1°0 €€1°0 1010 180°0(8TI'0  €I'0 L60'0 9S0°0| LEO'O ¥€0°0 TEO'0 TEO0O as o]
I¥T0| 18€0 ¥1€0 85T0 I¥T0|TIF0 1€0 65T0 LECO | ¥€T0 1€C0 €T0 €T0| UBSN

8€0°0| 9IT°0 €L0°0 ¥S0'0 #SO'0|1CI'0 €800 8700 I#0°0| 9€0°0 LEO'O 9€0'0 9£0°0 as S
TSTO| €0 1LT0 1STO LYTO|SLEO LLTO SPT0O 6€C0 | ¥STO ¥STO €ST0 ¥STO| UL

LTO0| 80°0 TEO'0 LTO0 #T0'0[660°0 SE0°0 STO'O €T00| 6200 LTOO 620°0 6200 as -

SI'0| 161°0 9S1°0 871°0 9¥1°0|11T0 1910 #¥1°0| #I'0 | €S1°0 TSI'0 9S1°0 8S1°0| UBN
S¥00°0| SLO'0 8¥0°0 200 +20°0|880°0 9S0°0 620°0 620°0| TEO'0 1€0°0 620°0 STO'0 as o]
S¥T0| 61770 80T°0 10T°0 1020 (62C0 11T°0 +0T0 SOTO| 11T0 120 LOTO +0T0O| UedN

9¢€0°0| ¢SO0 TO'0 1200 TTO'0[8E0'0 8100 TTO'0 €TO'0| TEO'0 €0°0 8200 €200 as wy
T8I0 LI°0 S9T°0 991°0 L91°0|991°0 (€910 L91°'0 LI'O| €L1°0 LI'0 891°0 S91°0| UBN

Tv0'0| 100 200 1200 2TO0|¥100 #10°0 ¥10°0 LIOO| TO'O TO'0 9100 +10°0 as -
TIT0| €80°0 S9T°0 991°0 L91°0|€80°0 [€80°0 | +80°0 980°0| 680°0 880°0 S80°0 ¥80°0| UL

60 80 LO 90| 60 80 L0 90| TO SI'0O 10 SO0
0SSET| 9SO 0=YANA KN[IqeIs [=¥ANA “Apiqels 24NS amsed]N INS 4

"Suore[NWIS ()()] I9A0 Ik SINSAY ‘osuodsar

AIeuiq ® J0J SPOY}OW JUAIJIP JOpUN SI[BLIBA PJIJ[AS U0 PANL UOISSAITAI ONSISO J0J JOIIQ UOIIBIYISSB[OSIW 1$9) 9FRIAAY €7 9[qRL



33

Table 2.4: Average Numbers of true and false positives for variable selection methods under

logistic model over 100 simulations.

(a) True positive results

p SNR SURF Stability, FMER=1 | Stability, FMER=0.0526 | Lasso
0.05 0.1 0.150.2 [0.6 0.7 0.8 09 (06 0.7 0.8 0.9

High |1 1 1 1 1 1 1 1 1 1 1 1 1

1 Fair [0.99 0.98 0.97 0.99]1 1 1 0981 1 1 0.97 1
Low [0.98 0.98 0.98 098|1 0.99 0.97 0.91]0.99 0.99 0.96 0.94 1
High [1.25 1.34 1.4 1.42|2.67 245 197 1.16/2.34 224 1.9 1.26 2.82

3(a) Fair [1.03 1.05 1.07 1.07(1.79 1.48 1.1 0.57|1.53 1.37 1.04 0.67 2.15
Low [0.91 094 0.94 0.94|1.39 1.02 0.74 0.33|1.11 0.98 0.69 0.43 1.81
High |2.68 2.73 2.79 2.85|1.86 1.6 1 0.5410.89 0.79 0.58 0.35 2.96

3(b) Fair [1.24 1.38 1.43 1.54(1.02 0.77 0.44 0.16/0.42 0.32 0.24 0.11 2.56
Low [0.71 0.86 0.9 0.99/0.75 0.51 0.33 0.1 |0.31 0.27 0.17 0.09 1.82
High [1.05 1.18 1.24 1.25/1.87 1.47 0.84 0.41|1.55 1.36 0.9 0.55 3.1

8 Fair [0.72 0.72 0.78 0.79|1.15 0.86 0.46 0.14/0.9 0.68 0.46 0.22 2.2
Low [0.65 0.68 0.68 0.69|0.88 0.54 0.22 0.07[0.59 0.47 0.25 0.13 1.71

(a) False positive results
p SNR SURF Stability, FMER=1 | Stability, FMER=0.0526 | Lasso
0.05 0.1 0.1502 |0.6 0.7 0.8 09 |06 0.7 08 0.9

High [0.04 0.08 0.17 0.22]0.15 0.02 0 O 0.03 0010 O 2.53

1 Fair [0.06 0.12 0.15 0.27|0.18 0.09 0.02 0.01]0.09 0.06 0.04 0.01 4.38
Low [0.08 0.13 0.2 0.22]0.17 0.08 0.02 0 0.07 0.04 0.02 0 4.64
High |0.14 0.16 0.16 0.31/0.37 0.18 0.07 0.01|0.3 0.18 0.07 0.02 4.86

3(a) Fair [0.15 0.21 0.24 0.28/0.39 0.13 0.04 0.01{0.2 0.14 0.08 0.04 7.62
Low [0.17 0.21 0.31 0.42/0.26 0.11 0.02 O 0.12 0.08 0.03 0 2.73
High |0.24 0.33 0.33 0.36/0.28 0.12 0.03 0.01{0.17 0.1 0.05 0.01 17.58

3(b) Fair [0.43 0.58 0.66 0.76(0.38 0.19 0.07 0.01|0.15 0.1 0.06 0.02 18.17
Low [0.47 0.52 0.57 0.71/0.33 0.09 0.03 0 0.12 0.04 0.02 0 17.2
High [0.43 0.47 0.53 0.72]0.81 0.42 0.2 0.06/0.68 0.47 0.27 0.09 10.42

8 Fair [0.36 0.42 0.52 0.53/0.43 0.29 0.14 0.04{0.37 0.27 0.15 0.05 11.31
Low [0.36 0.46 0.46 0.52/0.44 0.15 0.08 0.02{0.31 0.17 0.08 0.03 9.36
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2.5.2 Study 2: Simulation using Pouchitis Data Set

In the remaining simulation studies, we use real microbiome data as the predictors and
simulate the response following a generalised linear model. We use the aggregation from
Section 2.4 to analyse the data for all variable selection methods.

Our first microbiome simulation is based on the original microbiome data matrix X from
the pouch data (afferent limb site) in Tyler et al. [62] (see details of the data in Section 4.1).
This dataset includes 71 samples with approximately 2000 species level OTUs. We examine
our method under the null case (no variable is significantly associated with the outcome
variable) and under various sparse settings using variables from higher taxonomic levels:
phylum or class. These settings were chosen to be similar to the results from the real
data analysis on that dataset. For each simulated dataset we compare the performance of
SuRF with several existing popular variable selection methods: Lasso, VSURF [21] and
Stability selection. VSUREF uses the variable importance from the random forest method
to select variables. Stability selection performs Lasso variable selection on a large number
of subsamples of the data, and selects the variables that are selected by Lasso for a large
proportion of these subsamples.

Because we do not know the underlying distribution of the microbiome data (it is heavy-
tailed and skewed) we cannot simulate additional predictors, and due to the sample size, we
cannot afford to hold out a test sample, so only in-sample prediction (same predictor matrices
for the training and test data, but new values are simulated for the response variable) results
are available. The penalty parameter A for Lasso is obtained by a 5-fold cross validation
procedure and we use the largest A which gives an error within 1 standard error of the best
model to select a simpler model. For Stability selection, we adopt a range of threshold
probabilities recommended in Meinshausen and Biihlmann [39], between 0.6 and 0.9, and
use the default family error rate upper bound parameter of 1 and a value of 0.0526 for this
parameter, which is the theoretical number of false positives selected by SuRF at the 5%
significance level, so should result in a comparable false positive rate to SURF. VSURF
offers variable selection for different objectives: interpretation and prediction. We compare
only the variables selected for prediction, which are always a subset of the variables selected
for interpretation.

For assessment of results, we look at both the variables selected and the in-sample

predictive accuracy. Variable selection can be used either for interpretation or for prediction.
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For microbiome data, the interpretation can be challenging because of the large number
of surrogate variables. We therefore view predictive accuracy as the primary objective of
our variable selection, with interpretation a secondary goal. However, selection of the true
variables is important for both prediction and interpretation. Therefore, we have included

it in the results of our simulations.

We simulate a binary response variable, under 5 cases for the true predictors. In the

Null case, the response variable Y follows a Bernoulli distribution with probability 0.3,

P(Y=1)
P(Y=0)

is a linear function of one or two predictor variables. We simulate four scenarios. In

independent of X. In the other cases the logistic transformed probability log(

Scenario S1, the logistic-transformed probability is a function of the abundance of the
phylum Bacteroidetes. Nearly all Bacteroidetes in the data set are from the class Bacteroidia,
so this forms a very strong surrogate. In Scenario S2, the only true predictor is the phylum
Firmicutes. This phylum is divided into several classes, so the closest surrogate variable
in the dataset has approximately 70% correlation with the true predictor. In Scenario S3,
we simulate two weakly correlated true predictors, the phyla Bacteroidetes and Firmicutes,
with equal signal strength. In the final Scenario S4, we simulate two predictors at class level,

Bacilli and Clostridia. These classes make up the majority of Firmicutes in the dataset.

We simulate 200 replicates for the null scenario and 100 replicates for each non-null
scenario. We simulate three levels of signal-noise ratio in each non-null scenario: high —
3.0, fair— 1.0 and low — 0.7. The coefficients of each predictor in each scenario are shown

in Table 2.5. These coeflicients are calculated to achieve the desired total signal strength

Var(E(Y|X)) _ Var(P(Y=1]X))
E(Var(Y|X)) — E(P(Y=1|X)(1-P(Y=1]X)))"

seem large for logistic regression. This is because of the skewed and heavy-tailed nature of

using the approximation SNR ~ The coefficients may
the predictors, meaning that a large proportion of the observations are close to the median,
and so contribute little signal. Because the underlying distributions are different for different
taxonomic groups, the coeflicients that produce the same signal strength also differ between
predictors. We use negative coeflicients for Bacteroidetes and positive coefficients for

Firmicutes, based on the estimated coefficients from the real data analysis.

The results of the variable selection methods are shown in Table 2.6. (For Stability, we
only present results for cutoff 0.6 and 0.9 in Tables 2.6-2.8, with more complete results for
cutoffs 0.7 and 0.8 in Tables 2.19-2.21). Table 2.6(a) gives the in-sample misclassification

error for each method. The prediction results in these simulations are obtained by fitting a
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Table 2.5: Coefficients for four different simulation scenarios

Coefficients of variables (3)

Case SNR Bacteroidetes Firmicutes Bacilli Clostridia
Single variable High -4.58
with one strong Fair -2.84
surrogate (Case 1) Low -2.40
Single variable High 5.00
with no extreme Fair 2.32
surrogate (Case 2) Low 1.85
Two variables with | High -4.87 4.39
equal strength Fair -1.82 1.64
(Case 3) Low -1.42 1.28
Two variables High 4.76 4.76
equivalent to one Fair 2.21 2.21
variable (Case 4) Low 1.75 1.75

logistic regression model on the selected variables for each method, except for Lasso, where
the model fitted by Lasso was used directly. Tables 2.6(b) and 2.6(c) give the true positive
and false positive results for each method. This is not always completely clear-cut because
of surrogacy between variables. For Scenarios S1 and S3, we found no method was able
to distinguish reliably between Bacteroidetes and Bacteroidia, so we deemed either was
correct. However, we deemed the selection of both variables as the inclusion of a noise
variable, since once the first variable is included, the second variable does not give additional
information. For Scenarios S2 and S3, we did not deem any surrogate of Firmicutes to
be acceptable, since the correlation is not so high, and the methods are generally able to
distinguish between surrogates and select the true predictor. For Scenario S4, we found
that no method was able to identify the true predictors Bacilli and Clostridia. Instead, most
methods identified the phylum Firmicutes as a predictor. The phylum Firmicutes is almost
entirely comprised of the three classes Bacilli, Clostridia and Erysipelotrichi. Therefore, the
combination of Bacilli and Clostridia can also be approximately described as “Firmicutes,
with the exception of Erysipelotrichi”. We therefore deemed the selection of Firmicutes to
be a correct variable, and the selection of Firmicutes and Erysipelotrichi (or an incertae
sedis genus from within Erysipelotrichi) to be two correct variables.

Across all four non-null scenarios, the in-sample prediction results from SuRF and
Stability selection with FMER=1 and cut-off 0.6 are very similar, and better than the other

methods compared. (Stability with FMER=1 and cut-off 0.9 shows similar performance in
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Scenario | SNR SuRF Stability, FMER=1 Stability, FMER=0.0526 VSURF Lasso
0.6 0.9 0.6 0.9
(a) In-sample average misclassification error rate (SD)

High || 0.095 (0.011) | 0.103 (0.044) 0.252(0.194) 0.119 (0.069) 0.348 (0.191) 0.108 (0.031)  0.126 (0.062)

s1 | Fair | 0.190(0.019) 0.219 (0.080) 0.416(0.141) 0.243(0.122) 0.421 (0.138)  0.240 (0.048)  0.365 (0.142)
Low || 0.240 (0.082) 0.274 (0.101) 0.454 (0.107) 0.318 (0.141) 0.454 (0.107)  0.276 (0.027)  0.418 (0.120)
High | 0.093 (0.010) 0.095 (0.011) [ 0.092 (0.008) | 0.214 (0.037) 0.275(0.125) 0.122(0.018)  0.224 (0.058)

S2 | Fair |[OA73(0:016)] 0.178 (0.017) 0.187 (0.074)  0.296 (0.098)  0.408 (0.125)  0.222 (0.023)  0.294 (0.104)
Low || 0.210(0.020) | ' 0.210 (0.020) | 0.282(0.142) 0.349 (0.110) 0.446 (0.099) 0.266 (0.024) 0.368 (0.144)
High || 0.102 (0.010) | 0.115(0.037) 0.196 (0.056) 0.191 (0.082) 0.316(0.116) 0.124 (0.015)  0.228 (0.063)

S3 | Fair | 0.204(0.080) [0M9270:026)] 0.316(0.133) 0.346 (0.108)  0.447 (0.094)  0.232(0.021)  0.311 (0.100)
Low | 0.262(0.129) [0.232 (0.072) 0.365(0.139) 0.413(0.116) 0.487 (0.059)  0.265 (0.026)  0.342 (0.127)
High | 0.136 (0.030) 0.139(0.032) 0.152(0.045) 0.233(0.036) 0.352(0.136) | 0.117 (0.018) | 0.204 (0.059)

S4 | Fair | 0.204 (0.016) 0.207 (0.012) 0.318(0.147) 0.338(0.116) 0.467 (0.086)  0.220 (0.024)  0.356 (0.160)
Low | 0.245(0.077) | 0.231 (0.055) | 0.408 (0.129) 0.407 (0.112) 0.481 (0.064) 0.254 (0.025) 0.403 (0.152)

(b) Frequency of selecting all true variables (frequency of selecting at least one true variable) '

High 100 98 58 96 38 82 100

SL | Fair 98 88 26 80 25 79 100
Low 95 81 16 63 16 83 95
High 100 100 100 99 77 100 100

S2 | Fair 100 100 93 77 32 93 95
Low 97 99 71 54 19 83 87
High 100 (100) 90 (100) 24 (100) 57 (98) 9 (73) 86 (100) 100 (100)

S3 | Fair 66 (100) 72 (99) 3(63) 1 (60) 0(22) 63 (94) 88 (99)
Low 35(96) 43 (92) 1 (46) 0(33) 04) 49 (93) 70 (98)
High 19 (100) 22 (100) 1 (100) 099 0(54) 8 (100) 57 (99)

S4 | Fair 9 (100) 14 (100) 2(62) 0(62) 0(11) 16 (98) 84 (84)
Low 8(92) 8 (98) 0(32) 0(36) 0(7) 5(94) 20 (66)

(c) False positive results: average number of noise variables per simulation (SD)
Null? 0.03 (0.18) 13.10 (0.67) 0.01 (0.07) 0.035 (0.210)  0.005 (0.071) 3.96 (2.64) 0.92 (5.15)

High 0.02 (0.14) 4.06 (2.18) 0.46 (0.63) 0.79 (0.409) 0.22 (0.416) 4.50 (3.11) 22.45(21.62)

s1 | Fair 0.11 (0.35) 1.78 (1.51) 0.15 (0.46) 0.43 (0.498) 0.06 (0.239) 4.76 (3.13) 31.46(43.69)
Low 0.09 (0.32) 1.24 (1.20) 0.04 (0.20) 0.23 (0.423) 0.02 (0.141) 4.58 (3.30)  42.96 (55.03)
High 0.06 (0.24) 0.56 (1.09) 0.00 (0.00) 0.13 (0.338) 0.02 (0.141) 5.77(2.97) 24.04 (25.64)

S2 | Fair 0.11 (0.31) 0.89 (1.16) 0.08 (0.34) 0.23 (0.489) 0.08 (0.273) 5.26 (2.87) 33.92 (37.04)
Low 0.07 (0.26) 0.93 (1.37) 0.02 (0.14) 0.23 (0.566) 0.05 (0.261) 5.00 (2.82) 29.52 (42.46)
High 0.05 (0.22) 0.54 (0.81) 0.01 (0.10) 0.29 (0.46) 0.03 (0.171) 2.49 (2.27) 18.79 (32.51)

S3 | Fair 0.06 (0.24) 0.81 (1.04) 0.04 (0.20) 0.34 (0.536) 0.07 (0.256) 4.15 (2.76) 31.57 (43.18)
Low 0.16 (0.40) 1.12 (1.23) 0.04 (0.20) 0.21 (0.498) 0.05 (0.261) 4.12 (2.98) 27.61 (37.27)
High 0.08 (0.31) 0.84 (1.14) 0.03 (0.22) 0.17 (0.378) 0.03 (0.171) 5.60 (2.85) 26.24 (24.94)

S4 | Fair 0.11 (0.31) 1.04 (1.45) 0.14 (1.51) 0.18 (0.411) 0.03 (0.171) 4.30(2.52) 19.56 (29.58)
Low 0.09 (0.29) 0.82 (1.26) 0.02 (0.14) 0.09 (0.038) 0.02 (0.2) 4.33 (2.49) 19.21 (33.25)

! In Scenarios S1 and S2, the table gives the total number of times the true single variable/surrogate variable is selected. In Scenario S3,
the table gives the total number of two true variables selected and the number of times at least one of two true variables selected in
the bracket. In Scenario S4, the table gives the number of times two true/surrogate variables are selected (perfect selection) and the
number of times the phylum Firmicutes is selected in brackets.

2 The null Simulation is over 200 batches; all other scenarios are over 100 batches.
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the high SNR cases, but clearly drops off as SNR decreases.) There are only four simulations
where there is a significant difference in the in-sample prediction between SuRF and Stability
with these settings: in Scenario S1 with fair and low SNR and Scenario S3 with high SNR,
SuRF performs significantly better, while in Scenario S3 with low SNR, Stability performs
significantly better. These differences are borne out in the variable selection results with
SuRF selecting both more true positives and fewer false positives for the cases where its
in-sample prediction is significantly better. For the case where Stability has lower in-sample
misclassification error, Stability selection more frequently chooses both true predictors than
SuRF. It also chooses more noise variables; however it is possible that these noise variables
are partial surrogates of the true predictor, and might actually enhance predictive accuracy.
Selection of surrogate variables can be more advantageous for in-sample prediction because
the level of surrogacy is fixed, so the usefulness of the surrogate variable is retained for
the prediction. When we want to generalise results to new test data, it is possible that the
surrogacy occurs only by random chance and does not hold for new test data, in which case
the predictive ability of a surrogate variable will decline for new test data. We will look at
this effect in more detail in Simulation 3 where there are sufficient data to hold out a test
data set.

Looking at the false positives, for a significance level @ = 0.05, the number of false
positives selected after all true variables have been selected follows a geometric distribution
with probability 1 — a, so the expected number of false positives is 0.0526. The number of
false positives observed in Table 2.6(c) are mostly in line with this assumption, except for
the low SNR case of Scenario S3. In cases with high false negative results, it is possible to
select surrogates instead of the true variables. These would be recorded as false positives.
This could explain the number of false positives in Scenario S3 for low SNR. In terms of true
positives, only VSURF and Lasso, which select many more variables, select significantly

more true variables than SuRF.

2.5.3 Study 3: Simulation using variables from lower taxonomic levels from the

Moving Picture dataset

In this simulation, we study the performance of SuRF on a different microbiome dataset
with more observations. We also simulate three true predictors at species level to observe

the effect of having more predictors. Given that SuRF tends to select very sparse models,
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we want to see whether sensitivity decreases as the number of true variables increases. We
also simulate predictors at a lower taxonomic level. For the microbiome tree structure, it
is conceivable that there could be some bias towards higher or lower taxonomic levels, so
it is important to check that SuRF is able to identify the true variables in both cases. In
real-world microbiome studies, classification using predictors from lower taxonomic levels
such as genus or species has been acknowledged as more challenging [29]. The moving
picture gut dataset[8] includes a total of 467 observations, with approximately 2000 OTUs.
We divide the data into training and test sets, with the training data set containing the first

2/3 of the time points for each individual.

We perform two simulation studies, one with a binary response under a logistic linear
model, and one with a continuous response following a Gaussian linear model with con-
ditional variance 1. We set the coefficients in each simulation to achieve the desired total
SNR which we set to one of three levels: High — 5, Fair — 3, and Low — 1. For the
Gaussian response case, we set the irreducible error to 1 for all scenarios, so that MSE is
comparable for different scenarios, and adjust signal strength to achieve the desired SNR.
We compare MSE and R? on test data based on linear regression on the selected variables

for each method. For the binary case, we compare misclassification rates.

We compare the same methods as in Simulation 2, namely SuRF with critical value
a = 0.05; Stability selection with FMER=1 and cut-off 0.6, 0.7, 0.8 and 0.9; Stability
selection with FMER=0.0526 and cut-off 0.6, 0.7, 0.8, 0.9; VSURF; and Lasso. For
the prediction, we also compare Random Forest and Support Vector Machine. These are
popular machine learning methods that are able to achieve good predictive accuracy without
performing variable selection. We compare the misclassification rates using both the test

data, and the in-sample error on the training samples.
The results are shown in Table 2.7 (binary response) and Table 2.8 (continuous response).

For the binary simulation, SuRF has much lower misclassification error rate than other
methods. This is achieved by selecting many more true predictors than other methods and
fewer false positives than most methods. However, Stability selection achieves comparable
in-sample misclassification error despite selecting fewer true predictors and more false
positives. This suggests that the false positives include surrogate variables that contain
most of the signal. However, we see that these surrogate variables do not generalise

well, and the test misclassification error rate is much higher. This also suggests that the



Table 2.7: Simulation study 3 (Binary outcome)
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SNR SuRF  Stability, FMER=1 Stability, FMER=0.0526 VSURF Lasso RF SVM
0.6 0.9 0.6 0.9
(a) Mis-classfication error rate in test samples
High mean 0.102 0.207 0.295 0.383 0.412 0.288 0.290 0.292 0.197
SD (0.020)  (0.042) (0.021) (0.033) (0.035) (0.034) (0.041) (0.026) (0.046)
Fair mean 0.191 0.306 0.349 0.366 0.377 0.301 0.323 0.291 0.372
SD (0.028)  (0.030) (0.013) (0.034) (0.030) (0.041)  (0.038) (0.032) (0.080)
Low mean 0.228 0.345 0.371 0.361 0.366 0.315 0.333 0.296 0.390
SD (0.037)  (0.030) (0.013) (0.032) (0.035) (0.047)  (0.033) (0.032) (0.084)
(b) In-sample mis-classification error rate
High mean 0.100 0.176 0.259 0.228 0.295 0.126 0.169 0.126 0.128
SD (0.009) (0.044) (0.024) (0.038) (0.033) (0.011)  (0.034) (0.011) (0.014)
Fair mean 0.220 0.207 0.259 0.309 0.350 0.259 0.295 0.259 0.277
SD (0.010)  (0.037) (0.021) (0.030) (0.010) (0.017)  (0.029) (0.017) (0.024)
Low mean 0.259 0.240 0.265 0.348 0.371 0.285 0.331 0.285 0.317
SD (0.017)  (0.032) (0.019) (0.031) (0.012) (0.020)  (0.034) (0.020) (0.032)
No of true (¢) Frequency of number of true variables selected
variables
3 99 0 0 0 0 20 30
High 2 1 97 80 4 14 80 70
1 0 3 20 96 86 0 0
0 0 0 0 0 0 0 0
3 82 0 0 0 0 21 5
Fair 2 18 52 23 3 3 78 90
1 0 48 77 97 97 1 5 N/A
0 0 0 0 0 0 0 0
3 71 0 0 0 0 9 4
Low 2 24 27 9 2 1 76 76
1 5 73 91 97 97 15 20
0 0 0 0 1 2 0 0
(d) False positive results: number of noise variables per simulation
High mean 0.120 1.65 0.07 0.76 0.120 8.71 68.93
SD (0.356) (1.266) (0.293) (0.452) (0.327) (3.036)  (40.59)
Fair mean 0.690 1.61 0.07 0.340 0.02 7.080 62.45 N/A
SD (0.895)  (1.325) (0.256) (0.476) (0.141) (3.183)  (46.98)
Low mean 0.610 0.160 0.79 0.01 0.010 6.590 61.92
SD (0.764)  (0.935) 0.1) (0.368) (0.327) (0.100)  (55.24)




Table 2.8: Simulation study 3 (Continuous outcome)

SNR SuRF Stability, FMER=1 Stability, FMER=0.0526 VSURF Best Lasso RF
0.6 0.9 0.6 0.9 Subset
Oracle MSE (a) Median MSE (IQR) in test samples
High 1 1.009  3.943 4.589 4433 4.555 2.781 1.955 3470 2977
(0.131) (0.708)  (0.671)  (0.672) (0.678) (0.379) (1.671) (0.794) (0.416)
Fair 1 1.004 2919 3.127 2.870 3.117 2.083 1.785 2.535 2.236
(0.143) (0.515) (0.382) (0.430) (0.357) (0.258) (1.292) (0.460) (0.272)
Low 1 1.011  1.698 1.715 1.691 1.711 1.428  1.399 1.644  1.431
(0.176) (0.286)  (0.239)  (0.267) (0.237) (0.232) (0.523) (0.499) (0.224)
Oracle R? (b) Average R in test samples
High 0.833 0.801 0.28 0.126 0.367 0.356 0460 0524 0324 0417
(0.098) (0.035) (0.018) (0.044) (0.046) (0.048) (0.189) (0.109) (0.038)
Fair 0.75 0.706 0.189 0.112 0.389 0.336 0391 0440 0267 0.359
(0.075) (0.031) (0.030) (0.072) (0.050) (0.045) (0.172) (0.100) (0.037)
Low 0.5 0439 0.079 0.068 0.274 0.253 0215 0.245 0.127 0.211
(0.043) (0.030) (0.051) (0.070) (0.054) (0.062) (0.124) (0.071) (0.053)
No of true (c) Frequency of Number of true variables selected
variables
3 99 0 0 0 0 35 25 81
High 2 1 37 31 0 0 19 42 65
1 0 63 69 100 100 0 14 0
0 0 0 0 0 0 0 19 0
3 97 0 0 0 0 71 31 12
. 2 3 32 23 0 2 19 31 81
Fair 1 0 68 77 100 98 0 11 7 N/A
0 0 0 0 0 0 0 27 0
3 80 0 0 0 0 40 20 1
Low 2 19 9 2 4 2 60 24 52
1 1 91 98 96 98 0 24 47
0 0 0 0 0 0 0 32 0
(d) False positive results: number of noise variables per simulation
High mean 0.040 2.7 0.08 0.360 0.080 15.16 327 52540
SD 0.197) (1.592) (0.273)  (0.503) (0.273) (4.334) (1.043) (29.186)
Fair mean 0.140  2.16 0.13 0.790 0.100 4.436 334 46370 N/A
SD 0.377) (1.475) (0.367)  (0.686) (0.302) (2.106) (1.193) (30.833)
Low mean 0.540  0.86 0.04 0.700 0.010 14330 3.65  28.700
SD (0.784) (1.092) (0.197) (0.916) (0.100) (5.650) (1.167) (16.407)
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comparable performance of SuRF and Stability selection in Simulation 2, in terms of in-
sample misclassification error might not generalise to test data. While SuRF is often able
to select the true predictors, the false positive rate is higher than the desired significance
level, particularly in cases where the SNR is lower, causing SuRF to not select all true
variables. The high false positive rate could include partial surrogates of true variables,
which would explain why the average number of false positives is higher when the number
of true positives is lower. However, it appears that the number of false positives is higher
than the significance level, even in cases where SuRF selects all true variables. This is
possible because false positives can enter the model before all true predictors have been
selected.

For the Gaussian case, SuURF outperforms the other methods in terms of both MSE and
R?. This is achieved by selecting more true predictors, while selecting fewer false positives
than most methods. Thus SuRF’s variable selection performs well at selecting species level
variables. The MSE and R? are close to the oracle values (i.e. the theoretical values under
the true predictors and coefficients used to simulate the data). As for the binary outcome,
the average number of false positives is larger than the significance level, particularly in
cases with low SNR. This is partly caused by the selection of surrogate variables, and partly
by the ranking part of the method not putting all true predictors first.

Within this section, we also look into assessing how the proportion of subsamples utilized
in the SuRF algorithm influences both variable selection and prediction performance. Our
recommendation leans toward employing roughly 90% of the data, particularly when dealing
with significantly constrained sample sizes. However, our findings (See Table 2.9) suggest
that, within the range of 50% to 90%, the selected proportion minimally impacts the
outcomes in this study.

Table 2.9: Simulation results for changing the proportion of subsampling in Study 3 (fair
SNR scenario for binary response — see Section 2.5.2 for details)

Proportion Frequency of no. of Average no. of
true variables selected (sd) noise variables (sd) Mean MCER (sd)
3 21
50% 80 19 1 0.77 (0.920) 0.191 (0.029)
60% 81 18 1 0.72 (0.889) 0.191 (0.030)
70% 81 18 1 0.74 (0.883) 0.191 (0.029)
80% 82 17 1 0.71 (0.913) 0.191 (0.028)
90% 82 18 0 0.69 (0.895) 0.191 (0.028)
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2.5.4 Study 4: Simulation with more true predictors

We also performed a more challenging simulation with eight true predictors, covering a
range of taxonomic levels and rarities of taxa, also with different signal strengths for different

taxa.

Design

This simulation provides a larger scale simulation to determine the performance of SuRF
under different conditions. We base this simulation on the OTU counts from the Left
Palm data of the moving picture data set. This data set includes over 12,000 OTUs, many
more than in the previous simulations. Furthermore, in this simulation, we include 8 true
variables, to assess the performance of SuRF in less sparse situations. We choose the true
predictors to assess the influence of various factors on the ability of SuRF to select key
predictors. In particular, we choose 8 predictors across a range of taxonomic levels, with
some rarer taxa, and several different nesting patterns between the taxa. The nesting patterns
and rareness are shown in Figure 2.3. We choose a chain of abundant variables from the
class Bacilli; the phylum Bacteroidetes and two classes within it; the phylum Synergistetes;
and the species Corynebacterium tuberculostearicum. All the variables used have at least
one strong surrogate in the dataset (correlation at least 0.9), with the exception of A2 and

B. Full details of the simulation are presented in Table 2.10 and Figure 2.3.

Figure 2.3: Variables used in the simulation. Circles represent abundant taxa, while
diamonds represent rare taxa. Colours represent taxonomic level: blue — phylum; green
— class; orange — order; pink — family; light yellow — species

A
Bacilli
A1
Racillaleg

B
Thermoaetaceae

We also study the effect of the coefficients on the taxa selected, simulating two different

B
agteroidefes
B1
scteroigha

D
Corynebacteyium
tuberdylostegricum
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sets of coeflicients, one with larger coefficients for abundant taxa, and one with larger
coeflicients for rare taxa. For each set of coeflicients, we simulated a high, medium and low

signal-noise ratio. For each scenario, we simulated 100 datasets.

Table 2.10: Coeflicients used in Simulation 4. Each coeflicient is the product of the relative
variable coefficient shown at the top for each scenario, and the factor for signal-noise ratio.

variable coeflicient

SNR factor A Al A2 B B1 B2 C D

1 1.5 -0.5 1 2 -0.5 1 1

High 172 172 258 -086 1.72 344 -0.86 172 1.72
g1 Fair 075 075 1.125 -0375 0.75 1.5 -0.375 0.75 0.75
Low 0.63 0.63 0945 -0.315 0.63 126 -0.315 0.63 0.63

1 1 2 1 1 2 2 1

High 1.9 1.9 3.8 1.9 1.9 3.8 3.8 1.9 1.9
g2 Fair 0.794 0.794 1588 0.794 0.794 1.588 1.588 0.794 0.794
Low 0.613 0613 1.226 0613 0613 1.226 1226 0.613 0.613

Results

Table 2.11 and Table 2.12 summarise the results of SuRF, Stability selection and Lasso on
these simulations.

This is a very challenging problem with slightly over 300 observations and over 12,000
variables. This explains why the results are generally worse than Simulation 2. We
see that SuRF significantly outperforms the other methods in all scenarios in terms of
misclassification error rate, and in terms of number of noise variables selected. SuRF does
not achieve the target 0.0526 noise variables, but selects sparse models. SuRF also selects
more true variables than Stability in all scenarios, and more than Lasso in many situations.
Lasso selects a lot of variables, so would be expected to select more true variables by
chance. As expected, the number of true variables selected increases as signal-noise ratio
increases. With even higher SNR, or more data, we would expect SuRF to select all the true
variables.

We now look at patterns among which true variables are selected. Table 2.11 shows the
number of times each of the true variables was selected by each method in each scenario.

In the first scenario (S1), we see that as expected, variables with larger coeflicients are se-
lected more often. Even at high signal-noise ratio, Sphingobacteria was never selected, and

Thermoactinomycetaceae was rarely selected. However, we also see that among variables
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with the same coefficients, Corynebacterium tuberculostearicum was selected a reasonable
proportion of times, while Synergistetes and Bacteroidetes were never selected. This indi-
cates that it may be easier to select abundant predictors. In the case of Bacteroidetes, the
effect is absorbed by the class Bacteroidia. In the class Bacilli, the class-level variable is
often selected instead of the order Bacillales. The high correlation between the order-level
and class-level variables makes distinguishing between them a challenging problem, and
among the three methods, only SuRF is able to detect that both have a separate effect, when

the signal noise ratio is high.

Lasso also shows similar patterns of favouring more abundant variables from among
variables with the same coefficients. Stability selection mostly selected only Bacteroidia,
so it is not possible to determine the extent to which it might favour more abundant taxa

from the results on this scenario.

In Scenario 2, we see that even when coefficients are larger for rare taxa, the methods still
have difficulty selecting these variables. This is an issue with penalised logistic regression,
where the underlying distribution of the predictor variable can have a large effect on that
variable’s ability to be selected. This issue is studied in more detail in Chapter 3. This issue
is even more significant for Lasso, which never selects Synergistetes, in spite of the large
coeflicient. Stability selection also shows some ability to select the abundant predictors
Bacteroidetes and Bacteroidia, but cannot select the rare predictors Sphingobacteria or
Synergistetes. It is able to select the rare predictor Corynebacterium tuberculostearicum.
This is presumably related to the problem of selecting between correlated variables. When
there are closely correlated variables, Stability selection will often select neither, while
SuRF will usually select one, and can select both if there is evidence for separate effects

from the two variables.

It is also interesting to look at the selection between surrogates. Many of the true
variables in the simulation have strong surrogates in the data. Looking more carefully,
we see that for this data set, SuRF is often able to distinguish between surrogates with
correlation less than 0.95, whereas the other methods, when they select any variables, tend

to have more difficulty determining which surrogate variable should be selected.

As expected, variables with larger coeflicients are more easily selected. However, rarer
taxa are selected less often, even when they have relatively high coefficients. These patterns

are common to all variable selection methods. Across the range of signal-noise ratios
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and coefficients, SuRF outperforms Stability selection (we only compare FMER=1 in this
simulation, since it produced better results than FMER=0.0526 in previous simulations)
in terms of both false positive and false negative rate. SuRF hugely outperforms Lasso in
terms of false positive rate, and outperforms Lasso in false negative rate at high SNR, with
comparable performance at lower SNR. In terms of misclassification error rate, summarised
in Table 2.12, SuRF is clearly the best method. We did not compare VSUREF or best subset
selection in this simulation because of their slow running time.

Table 2.11: Frequency of selection for each variable over 100 simulations. The relative
coeflicients for each predictor are shown at the top of each scenario.

Scenario SNR _ Method A Al A2 B BI B2 C D
1 15 05 1 2 05 1 1

SURE 79 57 170 100 0 0 42

High Stability©.6) 0 8 0 0 100 0 0 0
Lasso 1 97 1 0 100 0 0 12

SURE 68 32 5 0 100 0 0 17

Fair Stability©.6) 8 1 0 0 100 0 0 2

Sl Lasso 2 77 1 0 100 0 0 22
SURE 68 26 1 0 100 0 0 4

Low Stability©6) 7 3 0 0 100 0 0 0
Lasso 26 71 0 0 100 1 0 16

1 1 2 1 1 2 2 1

SURF 14 100 100 100 1 38 46 38

High Stability0.6) 0 0 100 9 14 0 0 0
Lasso 0 0 100 8 46 93 0 2

SURE 8 79 99 100 0 10 6 6

Fair Stability©6) 0 0 99 7 9 0 0 0

52 Lasso 0 3 100 79 49 63 0 2
SURF 10 63 98 100 0 10 3 3

Low Stability 0.6) 0 8 1 9 0 0 0
Lasso 0 1 100 65 43 42 0 0
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Table 2.12: Misclassification error rate(SD), average number of true variables selected (SD)

and average number of noise variables selected (SD) from 8-variable simulations

Scenario

SNR

SuRF

Stability (0.6)

Lasso

(a) Misclassification Error Rate

S1

High
Fair
Low

0.174 (0.028)
0.246 (0.028)
0.235 (0.023)

0.235 (0.046)
0.296 (0.039)
0.311 (0.041)

0.218 (0.035)
0.274 (0.036)
0.280 (0.036)

S2

High
Fair
Low

0.143 (0.030)
0.239 (0.027)
0.308 (0.027)

0.255 (0.038)
0.315 (0.028)
0.369 (0.040)

0.258 (0.051)
0.317 (0.047)
0.318 (0.037)

(b)Average number of true variables selected (SD)

S1

High
Fair
Low

2.95 (0.796)
2.22 (0.645)
1.99(0.438)

1.08 (0.273)
1.11 (0.345)
1.10 (0.302)

2.11 (0.373)
2.28 (0.697)
2.14 (0.725)

S2

High
Fair
Low

4.37 (1.390)
3.08 (0.598)
2.86 (0.551)

1.23 (0.446)
1.15 (0.386)
0.99 (0.389)

3.29 (0.518)
2.96 (0.737)
2.51 (0.689)

(c) Average number of noise variables selected (SD)

High 0.83(0.792) 546 (1.314) 34.28 (14.600)
g1 Fair 042(0.699) 3.87(1.353)  19.33 (10.440)
Low 0.39(0.618)  2.89(1.214) 17.20 (8.837)
High 1.40(0.791)  2.86(1.092)  32.17 (12.254)
s2 Fair  0.53 (0.688) 1.75(0.845)  24.18 (11.832)
Low 0.43(0.607) 1.25(0.857)  18.14 (11.889)
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2.6 Application: the pouchitis and moving picture data

We analyse two published microbiome datasets using SuRF. The first dataset is from a
pouchitis study [62]. The second dataset includes samples from four body sites of two

individuals over a long time period [8].

2.6.1 Pouchitis study

Colectomy with ileal pouch anal anastomosis (IPAA), also referred to as “J-pouch surgery”,
1s a common surgery for patients who have ulcerative colitis (UC) and those with familial
adenomatous polyposis syndrome (FAP) [52]. Pouchitis is a common complication of
J-pouch surgery involving inflammation of the ileal pouch. It is unclear what triggers
pouchitis in some patients but not others: pouchitis occurs almost exclusively in patients
with inflammatory bowel disease and not in patients with FAP.

Our data come from the study Tyler et al. [62] which includes microbiome samples from
biopsies of 71 patients following a J-pouch surgery. Our objective is to classify individuals
between the healthy and inflammation group. The inflammation group is composed of the 34
subjects from the “pouchitis” and “CD (Crohn’s disease)-like” groups in the original paper.
It includes inflammation in either the pouch or the pre-pouch ileum; and the inflammation
may or may not be active at time of biopsy. The healthy group is composed of the 37
subjects in the “FAP” and “no pouchitis” groups from the original study.

Some patients received one or two antibiotic treatments before the biopsy. We include
two variables describing antibiotics usage in addition to the proportions of OTUs at each
taxonomic rank, making a total of 1781 predictors. The same information was measured at
both pouch and afferent limb for each patient.

The mean classification error rate is estimated by averaging the cross-validated classifi-
cation error across a thousand subsamples. It is about 0.2 and 0.35 for pouch and afferent
limb, respectively. At both biopsy sites, the phylum Bacteroidetes is the only variable sig-
nificant at level 0.05. The agreement on the importance of Bacteroidetes at both biopsy sites
suggests this phylum is significantly associated with inflammation. The single Bacteroidetes
phylum gives a 0.88 and 0.83 AUC (area under the ROC curve shown in Figure 2.4) in
the pouch and afferent limb respectively. The ROC curves suggest that Bacteroidetes is an

effective discriminant variable for differentiating the inflammation condition at both biopsy
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sites, especially for the pouch data. This is consistent with the literature where decreased
abundance and diversity of Bacteroidetes in CD samples has been found, both in other

datasets [13] and the same dataset using different methods [62].

Figure 2.4: ROC curve for Bacteroidetes as a predictor of inflammation
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Even the non-significant highly ranked variables, see Table 2.13, are potentially interest-
ing variables for future studies. Most of these organisms have been found to be associated
with conditions related to pouchitis, such as IBD: for example, Fusobacteriaceae [46],
Turicibacter [47], Bacilli and Erysipelotrichi [40], and Subdoligranulum [57].

Stability selection with FMER=1 also selects Bacteroidetes for cut-off probability 0.6
for both pouch and afferent limb, but selects no variables at higher cut-off probabilities 0.8
and 0.9. At cut-off probability 0.7, it selects Bacteroidetes for the pouch data, but selects no
variables for the afferent limb data. In Table 2.15, we compare the predictive accuracy of the
logistic regression model using the selected variable Bacteroidetes, with other commonly
used classification methods for microbiome data, namely Random Forest (RF) and Support
Vector Machine (SVM) with a linear kernel (we obtained similar results for other kernels and
omitted them from the table). These predictive accuracies are computed using leave-one-
out cross-validation with their corresponding tuning parameters chosen by cross-validation

within the training data. The predictive accuracy from RF and SVM are comparable to the



Table 2.13: Top 10 variables selected by SuRF

(a) From the Pouch variables in the Pouchitis data set
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Variable Taxonomy Phylum Frequency LR p-value Critical
Name Level Statistic Value
Bacteroidetes Phylum Bacteroidetes 923 32.45 0.000 13.36
Fusobacteriaceae Family Fusobacteria 232 5.96 0.995 13.76
unclassified Order Proteobacteria 225 2.46 1.000
Turicibacter Genus Firmicutes 220 6.53 0.965
Subdoligranulum Genus Firmicutes 179 5.61 0.995
Bacteroidia Class Bacteroidetes 170 0.03 1.000
Erysipelotrichi Class Firmicutes 151 3.92 1.000
Bacilli Class Firmicutes 150 2.85 1.000
Dialister Genus Firmicutes 141 11.03 0.315
Granulicatella Genus Firmicutes 131 2.90 1.000

(b) From the Afferent Limb variables in the Pouchitis data set
Variable Taxonomy Phylum Frequency LR p-value Critical
Name Level Statistic Value
Bacteroidetes Phylum Bacteroidetes 858 24.53 0.000 12.75
Bacteroidia Class Bacteroidetes 322 0.03 1.000 14.29
Erysipelotrichi Class Firmicutes 188 5.21 1.000
Pasteurellales Order Proteobacteria 163 9.60 0.415
Bacilli Class Firmicutes 149 11.18 0.180
unclassified Genus Firmicutes 144 10.80 0.230
Epsilonproteobacteria Class Proteobacteria 139 6.05 0.980
Deinococcus-Thermus Phylum Deinococcus-Thermus 138 4.51 1.000
Leuconostocaceae Family Firmicutes 138 5.56 0.995
unclassified Genus Bacteroidetes 134 5.62 0.995




51

results using SuRF since the mean test errors are all within one standard deviation.

2.6.2 Moving picture data

The moving picture data set [8] recorded a long period of repeated observations from
multiple body sites (gut, tongue, left and right palms) of two individuals. This data set has
a larger sample size for each body site than the pouchitis data. The number of observations
for the gut, tongue, left palm and right palm are respectively 131, 135, 134 and 134 for the
first individual, and 336, 373, 365 and 359 for the second individual. We split the dataset
for each site into a training and a test sample set with a ratio of 2:1. At each body site, the
observations from each individual are ordered by time. The earlier 2/3 of time points from
each individual are used as training samples and the rest as test samples. Other than for
division into training and test data, we make no use of the time metadata in this dataset.
We train SuRF to classify samples from each body site between the two individuals
using the training data. The selected variables are summarised in Table 2.14, and the joint
distributions are displayed in Figure 2.5. Table 2.15(b) shows the misclassification error
rate for SURF and other methods. Between one and four variables are selected at each body
site and the prediction errors for the test samples are very low at all sites. SuRF has found
a small set of variables that can distinguish two individuals’ microbial environments. For
most methods the test error tends to be lowest in the gut and highest for palms. This can be
well explained by the fact that the microbiome community is most stable in the gut [63] and
least stable for palms because, in contrast to the human gut, the composition of microbial
communities from hands, though in the long run relatively stable [41] and personalised
[19], can change dramatically even from washing hands with some disinfectant cleaning
products. Identifying individuals using the palm microbiomes is feasible but more variable

than using a more closed environment such as the gut.

Table 2.14: Variables selected by SuRF for 4 body sites in the Moving pictures dataset

Site Selected variable Last identified level Phylum Critical value LR p-value
Gut unclassified species Bacteroides (Genus) Bacteroidetes 17.77 371.21 0.00
unclassified species Lachnospiraceae (Family)  Firmicutes 14.90 309.45  0.00
Tongue | unclassified species Neisseria (Genus) Proteobacteria 18.13 43.18 0.00
unclassified species Sphingobacteriales (Order) Firmicutes 26.12 28.67 0.01
unclassified species Deinococcus (Genus) Thermi 20.29 327.79 0.00
Left Palm Propionibacterium (Genus) Propionibacterium (Genus) Actinobacteria 17.28 56.97 0.00
. unclassified species Corynebacterium (Genus)  Actinobacteria 20.82 169.26 0.00
Right Palm | y1classified species Deinococcus (Genus) Thermi 19.85 187.77  0.00
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Figure 2.5: Prediction of test samples from gut, tongue, left and right palm
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Table 2.15: Results comparison among SuRF, Stability selection, VSURF, Lasso, Random Forest (RF) and SVM (Linear Kernel) for
the pouchitis study and moving picture data

Data

SuRF

| Stability Selection |

VSURF

Lasso

RF

SVM

(a) Mean Misclassification error (sd)

Pouch’ 0.197 (0.047) 0.197 (0.047) 0.268 (0.053) 0.282 (0.053) | 0.169 (0.044) | 0.211 (0.048)
Afferent limb' 0.254 (0.052) 0.254 (0.052) 0.254 (0.052) 0.324 (0.056) | 0.225 (0.050) | 0.211 (0.048)
Gut 0.000 0.000 0.000 0.000 0.000 0.000
Tongue 0.053 (0.017) 0.000 0.018 (0.010) 0.000 0.006 (0.006) | 0.024 (0.012)
Left Palm 0.024 (0.012) 0.030 (0.013) 0.061 (0.05319) | 0.079 (0.021) | 0.079 (0.021) | 0.224 (0.032)
Right Palm 0.025 (0.012) 0.067 (0.020) 0.025 (0.012) 0.129 (0.026) | 0.037 (0.015) | 0.288 (0.035)
Left predict Right Palm | 0.020 (0.006) 0.020 (0.006) 0.014 (0.005) 0.049 (0.010) | 0.152 (0.016) | 0.148 (0.016)
(b) The total number of variables selected

Pouch’ 1(0) 1(0) 4.282 (0.701) 1.254 (1.795)

Afferent limb' 1(0) 1(0) 6.592 (0.729) | 2.676 (12.033)

Tongue 3 8 3 9

Left Palm 2 2 3 67

Right Palm 2 2 4 45

1 Misclassification error and mean number of variables selected with standard deviation are calculated based on leave-one-out for
pouch and afferent limb.

We also tested cross-predictions — using models fitted on one body part to predict the
owner of samples from another body part. The prediction model trained on one palm could
identify samples from the other palm with low prediction error. The two bacteria selected
in the two palm models include the same species-level variable from genus Deinococcus
and two different unspecified species-level variables from genus Corynebacterium. This
suggests a similarity between the microbiomes on two palms from a single individual. No

other cross-predictions performed significantly better than random guessing.

SuRF and Stability selection (using cutoff probability 0.9 and default family error
upper bound) were on average comparable in predictive accuracy to Random Forest and
significantly better than SVM (see Table 2.15(b)). Compared to Stability selection, we
found that SuRF seemed to achieve a lower prediction error, and consistently selected fewer

variables.

In the gut data, SuRF chooses one unspecified species from the genus Bacteroides,
which is one of three variables selected by Stability selection with cut-off probability
0.9. With one variable we obtain exactly the same prediction training and test errors
as with three variables selected by Stability selection. The other two variables selected
by Stability selection (another unclassified species from the genus Bacteroides and the
family Porphyromonadaceae) didn’t provide additional predictive accuracy for recognising

individuals.

In the tongue data, even using cut-off probability 0.9, Stability selection still selects
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eight variables. SuRF selects only three variables: the most important variable is one
species from genus Neisseria and the remaining two are unspecified species from the family
Lachnospiraceae, and order Sphingobacteriales. There are no common variables selected
by both SuRF and Stability selection. SuRF’s misclassification error on this dataset is
higher than other methods, so it is natural to ask whether SuURF might have selected too few
variables in this case. However, using only the first two variables chosen by SuRF reduces
the test error to 0.03, so the poor performance here is not entirely explained by excessive
sparsity.

For the left palm data, both Stability selection with the highest cut-off probability and
SuRF choose the same set of variables (one unspecified species from the genus Corynebac-
terium and another unspecified species from Deinococcus).

For the right palm data, SuRF selects the same species from the genus Deinococcus
and a different unspecified species from the genus Corynebacterium. The former is also
selected by Stability selection for the right palm model, but the second variable is replaced
by the kingdom Bacteria. Both methods choose two variables (using cut-off 0.9 for Stability
selection), however, SuURF not only provides a smaller prediction error for both training and
test data, but also indicates a similarity between two palms within the individual which is
not reflected by the variables selected by Stability selection.

These two real datasets exemplify the ability of SuRF to select discriminant OTUs at the
appropriate taxonomic level. For the pouchitis data, with large within-class variation at lower
levels, SuRF identifies a phylum-level variable. For comparing two healthy individuals, the

higher-level structure is more similar, so SuRF selects species-level variables.
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Figure 2.6: Permutation distributions of Likelihood Ratio (LR) in training samples from
real data sets.
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2.7 Discussion on p-values

In this section, we study the reliability of the p-values given by SuRF. The p-value calculated
by SuRF represents the p-value for the null hypothesis that all true predictors have already
been included in the model. Because of the presence of surrogate variables, if there are true
predictors that have not been included in the model, this null hypothesis may be rejected
even if the next variable selected is not the “true predictor”. Therefore, we can only assess
the reliability of this p-value in the simulations by examining cases where all true variables
have already been selected. Recall that SuRF is a forward selection method, so there is an
order in which variables enter the model. If a noise variable enters the model before all true
variables have been selected, then it is technically correct to reject the null hypothesis that
all true variables have been selected.

If the probability of rejecting the null hypothesis is p, then the number of variables
selected after all true variables have already been selected should follow a geometric
distribution with parameter 1 — p. The total number of noise variables selected across all
simulations therefore should follow a negative binomial distribution with r the number of
simulations in which all true variables are selected, and p the probability of incorrectly
rejecting the null hypothesis. Thus if N is the number of cases in which we select all true
predictors and X is the number of noise variables selected after all true variables, then
the MLE estimate for p is ﬁ If our p-values are well controlled, then we should have
p = 0.05. We can test the significance of the number of noise variables selected with the

null hypothesis p = 0.05 and the alternative hypothesis p > 0.05. The significance is given
by

[s¢]

> (x N )0.05)“0.95N
N

x=X

‘We calculate the number of cases where all true variables are selected, and the number of
noise variables that are selected after all true variables for Simulations 2 and 3 in Table 2.16.
We cannot assess reliability for Simulation 4 because there were no cases where all true
predictors were selected.

We see that the results are consistent with the p-values being correct. Only in one
case, (Simulation 2, Scenario S2, fair SNR) is the number of noise variables selected after
all true variables significantly more than would be expected for a reliable p-value. When

accounting for the multiple testing from the 18 different scenarios, this is not significant.
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Table 2.16: Testing the p-values

Scenario SNR all true selected noise variables p-value significant
High 100 2 0.020 0.964
S1 Fair 98 6 0.058 0411
Low 95 3 0.031 0.869
High 100 6 0.057 0.429
S2 Fair 100 11 0.099 0.022
Simulation 2 Low 97 4 0.040 0.742
High 100 5 0.048 0.599
S3 Fair 66 2 0.029 0.854
Low 35 0 0 1.000
High 19 1 0.05 0.623
S4 Fair 9 1 0.1 0.370
Low 8 0 0 1.000
Binary High 71 1 0.014 0.974
response Fair 82 3 0.035 0.797
Simulation 3 ng 99 3 0.029 0.886
Continuous ngh 99 1 0.01 0.994
response Fair 97 6 0.058 0.402
Low 80 4 0.048 0.601

2.8 Extension of SuRF to Survival model applications: SuRFCox

SuRF is directly applicable to exponential family GLM models. In this chapter, the sim-
ulation and data analysis primarily focused on Gaussian and Binomial models, while the

performance of the Poisson model will be discussed in Chapter 3.

In a collaborative research paper ([3]) not included in this thesis, the author has developed
an extension, SURFCox, which applies to the Cox-proportional hazards model for survival
analysis. This work has been applied for predicting the microbial community transitions for
environmental DNA data. In the ranking step, Lasso with family ‘cox’ is obtained using the
R package glmnet. Due to the presence of censored data, it is challenging to maximise the
full log-likelihood function in the CoxPh model. Instead, the partial likelihood estimation
is used for this type of data. The ANOVA implemented for the permutation test in SuRFCox
algorithm is through the log of partial likelihood as well.

The results from SuRFCox were compared with three other methods including Best
Subset Selection [65] (BESS), Survival and Stationary Distribution in a Sure Independence
Screening [17, 50] (SIS) and BeSS+SuRFBCox. SuRFCox has shown a great performance
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in recovering the true variables and achieved a lower mean squared error (MSE) of the
differences between estimated and true survival probabilities across various SNRs in the

simulation.

2.9 Concluding Remarks

We have developed a very useful variable selection method for GLMs, SuRF, which involves
a subsampling based approach to rank variables that may be highly associated with the
response variable followed by variable selection with forward ANOVA. This method takes
advantage of the sparseness of the model selected by Lasso and chooses variables that appear
more frequently and contribute significantly to reducing residual deviances in the forward
ANOVA procedure. Due to its high sparseness and stability, SuRF can be particularly
useful for microbiome data or any data that is high dimensional and contains many surrogate
variables. The method provides a conservative but stable selection of variables that can
predict and classify the outcomes. SuRF can also provide a reasonable way to compute p-
values for all variables according to sequentially calculated empirical distributions, whereas
Lasso does not provide p-values directly. The forward selection procedure helps to alleviate
the phenomenon of including surrogate variables and leads to a highly sparse model. Due to
its short list of selected variables, SuRF is particularly suitable for identifying biomarkers.

In our simulation studies we saw that in comparison to many competing methods,
SuRF is very competitive at selecting predictors, and typically selects sparser models than
other methods, without a loss in predictive ability. A more in-depth simulation study
of the performance of SuRF in the classical GLM case is warranted to fully determine
the advantages and disadvantages of SuRF, compared to other methods. However, the
focus of the current chapter is on the application of SuRF to microbiome data. For the
simulations based on microbiome data, the results of SuRF were significantly better than
other methods. It is unclear why SuRF shows a clear particular advantage for microbiome
data. It could be because of the high correlations between variables, particularly with the
aggregation approach that we used with all variable selection methods for the microbiome
data. Another possible reason for SuRF’s performance in this case might be the marginal
distributions of the predictors. Microbiome data tends to be long-tailed and skewed. The
distribution of the predictors can influence variable selection methods, and it is possible

that SuRF is less affected by this than other methods. The question of how the marginal
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distribution of predictors affects variable selection is studied in more detail in Chapter 3.

In the two real data analyses, we found that no other methods significantly outperformed
SuRF in terms of prediction error, but SuRF selects fewer variables than other methods.
For identifying biomarkers, selecting a smaller set of biomarkers with the same predictive
power is valuable, because it allows the development of cheaper tests. We also observe that
SuRF was able to adjust the taxonomic levels of the variables selected to suit the individual
datasets.

There are many promising avenues for future research into extending the SuRF frame-
work. In this chapter, we have presented SuRF based on penalised regression followed
by generalised linear models, because that seemed most appropriate to the structure of the
microbiome data. However, the core idea is to use subsampling with a simple variable
selection method, then use the ensuing ranking in a forward selection method. This core
idea could be applied with any combination of a variable selection method and a family of
nested models to be used in forward selection. For example, we could develop a ranking
based on Random Forest, and then perform the forward selection based on neural networks.
The use of the permutation test for evaluating a variable automatically adjusts to our choice
of method. Further research is needed into what combinations of methods work well in this

framework.

2.10 Appendix

Simulation and analysis results with more detailed are provided in this section:
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Table 2.17: Average Numbers of true and false positives for variable selection methods
under Gaussian error model (complete results).

(a) True positive results

p SNR Measure SURF \ Stability, FMER=1 Stability, FMER=0.0526 |Best |Lasso
005 0.1 015 02 (06 07 08 09 (0.6 07 08 0.9 |Subset
High Mean |1 1 1 1 1 1 1 1 1 1 1 1 1 1
SD 0 0 0 0 0 0 0 0 0 0 0 0 0 0
| Fair Mean (099 0.99 0.99 099 |1 1 1 1 1 1 1 1 099 |1
SD 0.1 01 01 0.1 |0 0 0 0 0 0 0 0 0.1 0
Low Mean (099 0.99 0.99 098 |1 0.99 099 097 {099 0.99 099 097 [0.99 |1
SD 0.1 0.1 01 0.141/0 0.1 0.1 0.171{0.1 0.1 0.1 0.171]0.1 0
High Mean (2.09 22 226 228 |295 288 2.81 257 |2.89 286 276 2.62 |1.09 |3
SD 0.588 0.569 0.562 0.587(0.219 0.327 0.443 0.590|0.314 0.349 0.495 0.582/0.321 |0
3(a) Fair Mean (1.3 139 142 148 |231 194 138 0.88 [1.99 1.8 141 097 (031 |27
SD 0.560 0.567 0.535 0.522(0.662 0.750 0.599 0.608|0.785 0.778 0.637 0.540|0.465 |0.461
Low Mean |1.12 1.1 1.12 1.13 |1.77 146 1.03 05 |1.48 127 1.00 0.66 |0.2 245
SD 0.383 0.414 0.456 0.442(0.679 0.642 0.611 0.522]0.717 0.679 0.586 0.536|0.402 |0.609
High Mean |3 297 298 3 297 29 273 2.1 (2.02 228 2.13 1.82 |2.88 |3
SD 0 022302 0 0.171 0.302 0.468 0.704[0.710 0.683 0.747 0.74410.383 |0
3(b) Fair Mean |1.64 1.76 1.81 1.89 |1.37 1.11 0.74 0.39 |0.65 0.58 0.46 0.29 [2.01 |2.64
SD 1.106 1.016 1.012 1.004|0.761 0.695 0.645 0.530|0.592 0.638 0.576 0.478{0.959 |0.560
Low Mean |1.04 1.17 1.35 1.38 |0.86 0.67 0.39 0.19 |0.32 027 0.21 0.12 [145 |2.29
SD 0.921 0.965 0.936 0.929(0.603 0.604 0.567 0.419]0.490 0.468 0.433 0.356|1.048 |0.782
High Mean |2.03 221 233 249 (259 224 178 1.00 |2.04 1.88 1.57 1.22 [0.83 |4.92
SD 0.926 1.018 1.035 1.133(0.767 0.780 0.737 0.651]0.650 0.608 0.590 0.613|0.493 |1.548
3 Fair Mean (096 1.01 1.04 1.07 |143 1.13 059 022 [1.16 1 0.67 029 |0.69 |3.8
SD 0.665 0.703 0.737 0.756(0.782 0.747 0.605 0.462]0.762 0.667 0.604 0.498|0.506 |1.378
Low Mean (0.8 0.82 0.85 0.88 |1.14 0.77 0.34 0.12 |0.77 059 0.41 0.19 |0.69 |3
SD 0.471 0.520 0.539 0.590(0.711 0.694 0.536 0.327]0.649 0.588 0.534 0.394|0.526 |1.407
(b) False positive results |
p SNR Measure SURF ‘ Stability, FMER=1 Stability, FMER=0.0526 |MIO |Lasso
005 01 015 02 (06 07 08 09 (06 07 08 09
High Mean |0.05 0.14 0.18 024 |0.13 0.08 0.04 0 0.05 0.04 0.03 0.01 [0.69 |8.59
SD 0.219 0.493 0.520 0.589(0.418 0.307 0.197 0 0.219 0.197 0.171 0.1 |0.465 |12.452
| Fair Mean |0.06 0.1 0.18 027 |023 0.11 0.03 0.02 |0.08 0.05 0.03 0.01 |03 8.29
SD 0.278 0.362 0.458 0.529(0.468 0.345 0.171 0.141]0.273 0.219 0.171 0.1 ]0.503 |10.909
Low Mean |0.06 0.11 0.22 0.36 |0.19 0.09 0.06 0.02 [0.09 0.07 0.05 0.02 [0.26 |11.28
SD 0.239 0.345 0.504 0.732[0.465 0.288 0.239 0.141]0.288 0.256 0.219 0.141|0.463 |13.141
High Mean (0.1 0.15 0.16 027 |04 0.16 0.04 0 0.3 0.15 0.08 0.02 [0.14 |12.34
SD 0.302 0.411 0.420 0.584(0.620 0.368 0.197 0 0.522 0.359 0.273 0.141]0.493 |15.205
3(a) Fair Mean |0.19 0.26 0.32 044 |05 022 0.06 0.01 [0.38 0.21 0.15 0.04 |1.1 12.09
SD 0.443 0.485 0.530 0.656(0.643 0.440 0.239 0.1 ]0.582 0.409 0.359 0.197|1.010 |12.63
Low Mean |0.14 0.18 0.29 0.37 044 0.19 0.06 0.01 |0.27 0.19 0.11 0.02 [1.05 |12.96
SD 0.377 0.411 0.574 0.661(0.671 0.419 0.239 0.1 [0.529 0.394 0.314 0.141]0.796 |14.427
High Mean |0.03 0.13 0.2 021 |[048 0.19 0.07 O 025 0.18 0.07 0.01 |2.12 |25.65
SD 0.171 0.367 0.492 0.478(0.627 0.443 0.293 0 0.458 0.386 0.256 0.1 |0.383 |16.402
3(b) Fair Mean |0.36 0.53 0.61 0.75 |0.34 0.15 0.07 0.02 (02 0.11 0.05 0.02 {299 |19.61
SD 0.560 0.703 0.737 0.833(0.536 0.359 0.256 0.141]0.426 0.314 0.219 0.141]0.959 |17.466
Low Mean |04 054 0.59 0.72 |029 0.09 0.01 O 0.1 0.06 0.03 0.01 [3.55 |17.22
SD 0.586 0.673 0.753 0.805[0.478 0.288 0.1 0 0.302 0.239 0.171 0.1 |1.048 |18.387
High Mean |0.25 0.37 049 0.57 [{0.92 0.51 0.14 0.05 |0.82 0.59 0.26 0.08 |0.31 [16.33
SD 0.5 0.580 0.703 0.820(0.706 0.541 0.349 0.219]0.672 0.605 0.441 0.273]0.748 |16.703
3 Fair Mean |0.35 047 0.57 0.65 |0.67 035 0.15 0.07 {047 031 0.2 0.08 [0.72 |24.24
SD 0.539 0.594 0.655 0.702(0.711 0.575 0.359 0.256]0.577 0.506 0.402 0.273|1.443 |22.83
Low Mean |0.33 042 047 054 (036 0.18 0.07 0.05 |0.27 0.18 0.11 0.05 [0.61 |24.46
SD 0.514 0.554 0.594 0.642(0.482 0.386 0.256 0.219]0.468 0.386 0.314 0.219|1.127 |22.25
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Table 2.18: Average Numbers and standard deviations of true and false positives for variable
selection methods under logistic model (complete results).

(a) True positive results

p SNR Measure SURF Stability, FMER=1 Stability, FMER=0.0526 |Lasso
005 01 015 02 (06 07 08 09 |06 07 08 09
High Mean |1 1 1 1 1 1 1 1 1 1 1 1 1
1 SD 0 0 0 0 0 0 0 0 0 0 0 0 0
Fair Mean [0.99 0.98 0.97 0.99 |1 1 1 098 |1 1 1 097 |1
SD 0.1 0.141 0.171 0.1 |0 0 0 0.141|0 0 0 0.171|0
Low Mean (098 0.98 098 098 |1 099 097 091 |0.99 0.99 096 094 |1
SD 0.141 0.141 0.141 0.141|0 0.1 0.171 0.288]0.1 0.1 0.167 0.239|0
High Mean |[1.25 134 14 142 |2.67 245 197 1.16 (234 224 19 126 |2.82
3(a) SD 0.479 0.517 0.512 0.516]0.514 0.592 0.674 0.609|0.623 0.622 0.628 0.597|0.435
Fair Mean [1.03 1.05 1.07 1.07 |1.79 148 1.1 057 [1.53 137 1.04 0.67 |2.15
SD 0.437 0.458 0.477 0.477]0.671 0.627 0.541 0.573|0.658 0.614 0.511 0.533|0.744
Low Mean [091 0.94 094 094 |[1.39 1.02 0.74 033 |[1.11 098 0.69 043 |1.81
SD 0.379 0.397 0.397 0.397]0.695 0.635 0.543 0.473|0.618 0.586 0.526 0.498|0.692
High Mean |[2.68 273 279 285 [1.86 1.6 1 0.54 10.89 0.79 0.58 0.35 |2.96
3(b) SD 0.790 0.723 0.656 0.557]0.682 0.636 0.512 0.540|0.424 0.498 0.554 0.479|0.243
Fair Mean [1.24 138 143 1.54 |1.02 0.77 0.44 0.16 [042 032 024 0.11 |2.56
SD 1.016 1.08 1.047 1.077]0.635 0.617 0.556 0.368|0.496 0.469 0.429 0.314|0.641
Low Mean [0.71 0.86 09 0.99 |0.75 051 033 0.1 (031 027 0.17 0.09 |1.82
SD 0.782 0.841 0.870 0.916]0.642 0.611 0.514 0.302|0.506 0.489 0.378 0.288|0.903
High Mean |[1.05 1.18 124 125 |1.87 147 0.84 041 |155 136 09 055 |3.1
8 SD 0.833 0.845 0.866 0.892]0.597 0.643 0.662 0.534|0.672 0.689 0.704 0.609|1.259
Fair Mean [0.72 0.72 0.78 0.79 |1.15 086 046 0.14 |09 0.68 046 0.22 |2.2
SD 0.494 0.514 0.561 0.591]0.687 0.697 0.576 0.349|0.704 0.634 0.576 0.416|1.146
Low Mean [0.65 0.68 0.68 0.69 |0.88 0.54 0.22 0.07 |0.59 047 025 0.13 |1.71
SD 0.479 0.510 0.510 0.526]0.671 0.576 0.440 0.256|0.570 0.540 0.435 0.338|0.956
(a) False positive results
)4 SNR Measure SURF Stability, FMER=1 Stability, FMER=0.0526 |Lasso
005 01 015 02 (06 07 08 09 |06 07 08 09
High Mean [0.04 0.08 0.17 022 |0.15 0.02 O 0 0.03 001 O 0 2.53
1 SD 0.197 0.307 0.428 0.462]0.386 0.141 O 0 0.171 0.1 O 0 6.106
Fair Mean [0.06 0.12 0.15 0.27 |0.18 0.09 0.02 0.01 [0.09 0.06 0.04 0.01 [4.38
SD 0.239 0.356 0.386 0.529]0.386 0.288 0.141 0.1 |0.288 0.239 0.197 0.1 |8.702
Low Mean [0.08 0.13 0.2 0.22 |0.17 0.08 0.02 0 0.07 004 002 O 4.64
SD 0.307 0.393 0.449 0.462]0.428 0.273 0.141 0 0.293 0.197 0.141 0 9.070
High Mean |[0.14 0.16 0.16 0.31 |0.37 0.18 0.07 0.01 0.3 0.18 0.07 0.02 [4.86
3(a) SD 0.349 0.395 0.420 0.563]0.544 0.386 0.256 0.1 |0.503 0.386 0.256 0.141|7.32
Fair Mean [0.15 0.21 0.24 0.28 |0.39 0.13 0.04 0.01 {02 0.14 0.08 0.04 |7.62
SD 0.359 0.433 0.474 0.49410.584 0.338 0.197 0.1 |0.402 0.349 0.273 0.197|13.373
Low Mean [0.17 0.21 0.31 042 |026 0.11 0.02 0 0.12 0.08 0.03 0 2.73
SD 0.378 0.456 0.581 0.713]0.505 0.314 0.141 O 0.327 0.273 0.171 0 4.144
High Mean (024 033 033 036 |0.28 0.12 0.03 0.01 |0.17 0.1 0.05 0.01 |17.58
3(b) SD 0.515 0.604 0.604 0.64410.494 0.327 0.171 0.1 |0.378 0.302 0.219 0.1 |13.867
Fair Mean 1[043 0.58 0.66 0.76 |0.38 0.19 0.07 0.01 [0.15 0.1 0.06 0.02 |18.17
SD 0.573 0.669 0.685 0.726]0.546 0.394 0.256 0.1 |0.359 0.302 0.239 0.141|17.38
Low Mean (047 0.52 0.57 0.71 |0.33 0.09 0.03 0 0.12 0.04 002 0O 17.2
SD 0.627 0.627 0.624 0.729]0.570 0.321 0.171 O 0.327 0.197 0.141 0 20.424
High Mean (043 047 053 0.72 |0.81 042 0.2 0.06 |0.68 047 027 0.09 [10.42
8 SD 0.573 0.627 0.643 0.780]0.631 0.572 0.426 0.239|0.566 0.559 0.468 0.288 |13.566
Fair Mean [0.36 042 0.52 0.53 |043 029 0.14 0.04 [0.37 027 0.15 0.05 |11.31
SD 0.503 0.554 0.643 0.643]0.573 0.498 0.349 0.197|0.506 0.468 0.359 0.219|16.954
Low Mean [0.36 046 046 0.52 |[0.44 0.15 0.08 0.02 [0.31 0.17 0.08 0.03 |9.36
SD 0.482 0.576 0.576 0.611]0.592 0.359 0.273 0.141|0.506 0.403 0.273 0.171|15.405




Table 2.19: Simulation study 2 complete results
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Stability, FMER=1

Stability, FMER=0.0526

Scenario | SNR ‘ SuRF 06 07 08 09 06 07 08 09 VSURF Lasso
(a) In-sample mean misclassification error rate (SD) over 100 simulations
High [[0.095(0.011) 0.103 (0.044) 0.115(0.076)  0.152(0.130) 0.252(0.194)  0.119 (0.069) 0.167 (0.141)  0.214(0.175)  0.348 (0.191)  0.108 (0.031)  0.126 (0.062)
S1 Fair 0.190 (0.019) 0.219(0.080)  0.264 (0.130)  0.339(0.157)  0.416 (0.141)  0.243 (0.122)  0.284 (0.146) ~ 0.343 (0.158)  0.421 (0.138)  0.240 (0.048)  0.365 (0.142)
Low |/ 0.240(0.082) 0.274 (0.101) 0.311(0.127)  0.381 (0.139) 0.454 (0.107) 0.318 (0.141)  0.337(0.143)  0.393 (0.141)  0.454 (0.107)  0.276 (0.027)  0.418 (0.120)
High | 0.093(0.010) 0.095(0.011) 0.094 (0.010) |[0:092(0:009)" | 0:092(0:008)7 0.214 (0.037) 0.213(0.037) 0.229(0.077) 0.275 (0.125) 0.122(0.018)  0.224 (0.058)
s2 Fair | 0.173(0.016) 0.178 (0.017)  0.175(0.016) [0.172(0.014) 0.187 (0.074)  0.296 (0.098) ~ 0.311(0.115)  0.351 (0.123)  0.408 (0.125)  0.222 (0.023)  0.294 (0.104)
Low |[0.210(0.020) | 0.210(0.020) 0.214(0.069)  0.223 (0.088)  0.282(0.142)  0.349 (0.110)  0.369 (0.115)  0.396 (0.117)  0.446 (0.099)  0.266 (0.024)  0.368 (0.144)
High [[0.102(0.010) 0.115(0.037) 0.127(0.048) 0.151 (0.062) 0.196 (0.056) ~ 0.191 (0.082)  0.187 (0.071)  0.238 (0.087)  0.316 (0.116)  0.124 (0.015)  0.228 (0.063)
S3 Fair | 0.204(0.080) [0:192(0.026) 0.207 (0.029) 0.231 (0.068) 0.316(0.133)  0.346 (0.108)  0.356 (0.113)  0.387 (0.114)  0.447 (0.094)  0.232(0.021)  0.311 (0.100)
Low | 0.262(0.129) | 0.232(0.072) 0.251(0.097) 0.282 (0.116) 0.365(0.139)  0.413 (0.116)  0.422(0.119)  0.455(0.094)  0.487 (0.059)  0.265 (0.026)  0.342 (0.127)
High []0.136 (0.030) 0.139 (0.032) 0.145(0.031) 0.147 (0.029) 0.152(0.045)  0.233 (0.036)  0.240 (0.051)  0.246 (0.063)  0.352(0.136)  0.117 (0.018)  0.204 (0.059)
sS4 Fair | 0.204(0.016)  0.207 (0.012) 0.210(0.032)  0.231 (0.080) 0.318 (0.147)  0.338 (0.116)  0.358 (0.122)  0.409 (0.120)  0.467 (0.086) ~ 0.220 (0.024)  0.356 (0.160)
Low | 0.245(0.077) [0.231(0.055) 0.242(0.076) 0.280 (0.114) 0.408 (0.129)  0.407 (0.112) 0.412(0.111)  0.454 (0.092) 0.481 (0.064)  0.254 (0.025)  0.403 (0.152)
(b) True positive results over 100 simulations 2
High 100 98 92 80 58 96 84 72 38 82 100
S1 Fair 98 88 69 48 26 80 67 48 25 79 100
Low 95 81 65 39 16 63 56 37 16 83 95
High 100 100 100 100 100 99 98 92 77 100 100
S2 Fair 100 100 100 100 93 77 71 53 32 93 95
Low 97 99 96 91 71 54 49 33 19 83 87
High 100 (100) 90 (100) 80 (100) 60 (100) 24 (100) 57 (98) 58 (99) 30 (95) 9 (73) 86 (100) 100 (100)
S3 Fair 66 (100) 72 (99) 40 (98) 19 (90) 3 (63) 1 (60) 2 (59) 1 (44) 0 (22) 63 (94) 88 (99)
Low 35 (96) 43 (92) 25 (84) 9 (74) 1 (46) 0 (33) 131 0 (15) 0 4 49 (93) 70 (98)
High 19 (100) 22 (100) 10 (100) 3 (100) 1 (100) 0 (99) 0 (97) 0 (95) 0(54) 8 (100) 57 (99)
S4 Fair 9 (100) 14 (100) 11 (99) 8 (92) 2 (62) 0 (62) 0 (53) 0 (34) 0 (1) 16 (98) 84 (84)
Low 8 (92) 8(98) 4 (94 0 (80) 0 (32) 0 (36) 0 (32) 0 (17 0 (7 5 (%4 20 (66)
(c) Null Case: False positives '
5 200 200 200 1 6 2 2 1 200 13
Null mean | 0.03 13.10 8.06 3.01 0.01 0.035 0.015 0.01 0.005 3.96 0.92
(SD) | (0.18) (0.67) (0.56) (0.27) (0.07) (0.210) (0.158) (0.100) (0.071) (2.64) (5.15)
(d) False positive results: average number of noise variables (SD) over 100 simulations
High | 0.02(0.14) 4.06 (2.18) 2.88(1.94) 1.66 (1.39) 0.46 (0.63) 0.79(0.409)  0.71(0.478)  0.48(0.522)  0.22(0.416)  4.50 (3.11) 22.45(21.62)
S1 Fair | 0.11(0.35) 1.78 (1.51) 1.17 (1.20) 0.56 (0.88) 0.15 (0.46) 0.43(0.498)  0.38(0.483)  0.21(0.409)  0.06 (0.239)  4.76 (3.13) 31.46(43.69)
Low | 0.09(0.32) 1.24 (1.20) 0.76 (0.87) 0.38 (0.60) 0.04 (0.20) 0.23(0.423) 0.2 (0.402) 0.08 (0.273)  0.02(0.141)  4.58 (3.30) 42.96 (55.03)
High | 0.06 (0.24) 0.56 (1.09) 0.24 (0.71) 0.06 (0.28) 0.00 (0.00) 0.13(0.338)  0.2(0.402) 0.12(0.327)  0.02(0.141)  5.77(2.97) 24.04 (25.64)
S2 Fair | 0.11(0.31) 0.89 (1.16) 0.89 (1.16) 0.89 (1.16) 0.08 (0.34) 0.23(0.489)  0.25(0.539)  0.14(0.377)  0.08 (0.273)  5.26 (2.87) 33.92(37.04)
Low | 0.07 (0.26) 0.93 (1.37) 0.61 (1.05) 0.18 (0.48) 0.02 (0.14) 0.23(0.566) 0.2 (0.512) 0.17(0.451)  0.05(0.261)  5.00(2.82) 29.52 (42.46)
High | 0.05(0.22) 0.54 (0.81) 0.31 (0.66) 0.06 (0.24) 0.01 (0.10) 0.29 (0.46) 0.32(0.469)  0.18(0.386) 0.03(0.171) ~ 2.49(2.27) 18.79 (32.51)
S3 Fair | 0.06(0.24) 0.81 (1.04) 0.45 (0.77) 0.24 (0.26) 0.04 (0.20) 0.34(0.536)  0.32(0.529)  0.19(0.394)  0.07 (0.256)  4.15(2.76) 31.57 (43.18)
Low | 0.16 (0.40) 1.12(1.23) 1.23(0.74) 0.29 (0.62) 0.04 (0.20) 0.21(0.498)  0.18(0.458)  0.1(0.333) 0.05(0.261)  4.12(2.98) 27.61 (37.27)
High | 0.08 (0.31) 0.84 (1.14) 0.37 (0.80) 0.11 (0.51) 0.03 (0.22) 0.17(0.378)  0.15(0.359)  0.07(0.256) ~ 0.03 (0.171)  5.60 (2.85) 26.24 (24.94)
S4 Fair | 0.11(0.31) 1.04 (1.45) 1.09 (1.11) 0.33 (0.90) 0.14 (1.51) 0.18 (0.411) 021 (0.518)  0.07(0.256)  0.03 (0.171)  4.30(2.52) 19.56 (29.58)
Low | 0.09(0.29) 0.82 (1.26) 0.41 (0.95) 0.15 (0.64) 0.02 (0.14) 0.09 (0.038)  0.11(0.399)  0.06(0.343)  0.02 (0.2) 4.33(2.49) 19.21 (33.25)

! Simulation under Null case: the number of batches that any noise variables are selected, together with mean and standard deviation of number of noise variables over 200 batches.

2 In scenarios S1 and S2, the table gives the total number of times the true single variable/surrogate variable is selected. In scenario 3, the table gives the total number of two true variables selected and
the number of times at least one of two true variables selected in the bracket. In scenario 4, the tables gives the number of times two true/surrogate variables selected (perfect selection) and the number
of times variables selected deemed correct selection in bracket.



Table 2.20: Simulation study 3 (Binary outcome) complete results
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No of true Stability, FMER=1 Stability, FMER=0.0526
SNR variables se- | SuRF 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 VSURF  Lasso RF SVM
lected
(a) Mean misclassification error rate in test samples (sd)
High mean 0.102 0.207 0.247 0.274 0.295 0.383 0.382 0.399 0.412 0.288 0.290 0.292 0.197
SD (0.020) (0.042) (0.053) (0.044) (0.021) (0.033) (0.043) (0.041) (0.035) (0.034) (0.041) (0.026) (0.046)
Fair mean 0.191 0.306 0.324 0.338 0.349 0.366 0.369 0.373 0.377 0.301 0.323 0.291 0.372
SD (0.028) (0.030) (0.032) (0.024) (0.013) (0.034) (0.033) (0.033) (0.030) (0.041) (0.038) (0.032) (0.080)
Low mean 0.228 0.345 0.357 0.364 0.371 0.361 0.359 0.361 0.366 0.315 0.333 0.296 0.390
SD (0.038) (0.030) (0.028) (0.021) (0.013) (0.037) (0.032) (0.031) (0.035) (0.047) (0.033) (0.032) (0.084)
(b) In-sample mean misclassification error rate (sd)
High mean 0.100 0.176 0.214 0.239 0.259 0.228 0.249 0.276 0.295 0.126 0.169 0.126 0.128
SD (0.009) (0.044) (0.053) (0.045) (0.024) (0.038) (0.053) (0.049) (0.033) (0.011) (0.034) (0.011) (0.014)
Fair mean 0.220 0.207 0.229 0.245 0.259 0.309 0.324 0.340 0.350 0.259 0.295 0.259 0.277
SD (0.010) (0.037) (0.040) (0.033) (0.021) (0.030) (0.031) (0.024) (0.010) (0.017) (0.029) (0.017) (0.024)
Low mean 0.259 0.240 0.251 0.258 0.265 0.348 0.357 0.364 0.371 0.285 0.331 0.285 0.317
SD (0.017) (0.032) (0.030) (0.027) (0.019) (0.031) (0.029) (0.022) (0.012) (0.020) (0.034) (0.020) (0.032)
(¢) Frequency of number of true variables selected over 100 simulations
3 99 0 0 0 0 0 0 0 0 20 30
. 2 1 97 95 89 80 4 12 13 14 80 70
High 1 0 3 5 1 20 96 88 87 86 0 0
0 0 0 0 0 0 0 0 0 0 0 0
3 82 0 0 0 0 0 0 0 0 21 5
. 2 18 52 50 39 23 3 7 5 3 78 90
Fair 1 0 48 50 61 77 97 93 95 97 1 5 N/A
0 0 0 0 0 0 0 0 0 0 0 0
3 71 0 0 0 0 0 0 0 0 9 4
2 24 27 24 19 9 2 5 4 1 76 76
Low 1 5 73 76 81 91 97 95 96 97 15 20
0 0 0 0 0 0 1 0 0 2 0 0
(d) Mean number of noise variables selected (sd)
High mean 0.120 1.65 0.8 0.3 0.07 0.76 0.71 0.37 0.120 8.71 68.93
SD (0.356) (1.266) (0.943) (0.541) (0.293) (0.452) (0.556) (0.544) (0.327) (3.036) (40.59)
Fair mean 0.690 1.61 0.82 0.38 0.07 0.340 0.250 0.120 0.02 7.080 62.45 N/A
SD (0.895) (1.325) (0.978) (0.678) (0.256) (0.476) (0.458) (0.327) (0.141) (3.183) (46.98)
Low mean 0.610 0.79 0.44 0.17 0.01 0.160 0.140 0.050 0.010 6.590 61.92
SD (0.764)  (0.935) (0.743) (0.378) 0.1) (0.368) (0.377) (0.219) (0.327)  (0.100)  (55.24)




Table 2.21: Simulation study 3 (Continuous outcome)
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No of true Stability, FMER=1 Stability, FMER=0.0526 Best
SNR | variables SuRF 0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 VSURF  Subset Lasso RF
Oracle MSE (a) Median MSE (IQR) in test samples
High 1 1.009 3.943 4.130 4.500 4.589 4.433 4.380 4.475 4.555 2.781 1.955 3.470 2.977
(0.131)  (0.708) (0.964) (0.806) (0.671) (0.672) (0.758) (0.774) (0.678) (0.379) (1.671) (0.794) (0.416)
Fair 1 1.004 2919 3.029 3.130 3.127 2.870 2917 3.069 3.117 2.083 1.785 2.535 2.236
(0.143)  (0.515) (0.499) (0.368) (0.382) (0.430) (0.454) (0.496) (0.357) (0.258) (1.292) (0.460) (0.272)
Low 1 1.011 1.698 1.698 1.708 1.715 1.691 1.695 1.708 1.711 1.428 1.399 1.644 1.431
(0.176)  (0.286) (0.255) (0.228) (0.239) (0.267) (0.251) (0.255) (0.237) (0.232) (0.523)  (0.499) (0.224)
Oracle R? (b) Mean R? (sd) in test pl
High 0.833 0.801 0.28 0.222 0.148 0.126 0.367 0.373 0.365 0.356 0.460 0.524 0.324 0.417
(0.010) (0.098) (0.104) (0.067) (0.035) (0.044) (0.058) (0.057) (0.046) (0.048) (0.189) (0.109) (0.038)
Fair 0.75 0.706 0.189 0.154 0.120 0.112 0.389 0.381 0.357 0.336 0.391 0.440 0.267 0.359
(0.030) (0.075) (0.068) (0.046) (0.031) (0.072) (0.073) (0.066) (0.050) (0.045) (0.172) (0.100)  (0.037)
Low 0.5 0.439 0.079 0.075 0.069 0.068 0.274 0.262 0.257 0.253 0.215 0.245 0.127 0.211
(0.051) (0.043) (0.039) (0.033) (0.030) (0.070) (0.064) (0.062) (0.054) (0.062) (0.124) (0.071)  (0.053)
Oracle MSE (©1 ple Median MSE (IQR)
High 1 1.043 3.555 3.791 4.965 4971 4.964 4.966 4.968 4971 1.655 2.683 1.723 1.698
(0.010) (0.364) (0.522) (0.788) (0.018) (0.816) (0.216) (0.016) (0.015) (0.092) (1.255) (0.100)  (0.099)
Fair 1 1.025 2.673 2.818 3.336 3.338 2.796 2.810 3.338 3.340 1.498 1.893 1.487 1.535
(0.010) (0.337) (0.652) (0.446) (0.010) (0.646) (0.648) (0.559) (0.010) (0.103) (0.752) (0.079)  (0.101)
Low 1 1.071 1.978 1.996 1.999 2.00 1.993 1.997 1.999 2.000 1.555 1.664 1.312 1.570
(0.018) (0.159) (0.048) (0.012) (0.011) (0.155) (0.013) (0.011) (0.011) (0.089) (0.364) (0.035) (0.100)
Oracle R? d) I ple mean R2 (sd)
High 0.833 0.841 0.460 0.404 0.314 0.272 0.553 0.547 0.536 0.525 0.759 0.525 0.773 0.755
(0.002) (0.053) (0.081) (0.075) (0.034) (0.054) (0.058) (0.052) (0.039) (0.012) (0.119) (0.026) (0.012)
Fair 0.75 0.756 0.378 0.316 0.264 0.234 0.553 0.543 0.511 0.482 0.651 0.482 0.718 0.644
(0.004) (0.066) (0.083) (0.069) (0.041) (0.065) (0.070) (0.064) (0.040) (0.018) (0.117) (0.024)  (0.019)
Low 0.5 0.511 0.189 0.171 0.161 0.157 0.428 0.410 0.400 0.396 0.358 0.287 0.548 0.349
(0.018) (0.037) (0.028) (0.017) (0.007) (0.041) (0.030) (0.018) (0.007) (0.025) (0.079) (0.019)  (0.025)
(e) Number of true variables selected
3 99 0 0 0 0 0 0 0 0 81 25 35
. 2 1 37 48 47 31 0 0 0 0 19 42 65
High 1 0 63 52 53 69 100 100 100 100 0 14 0
0 0 0 0 0 0 0 0 0 0 0 19 0
3 97 0 0 0 0 0 0 0 0 71 31 12
. 2 3 32 39 31 23 0 0 0 2 19 31 81
Fair 1 0 68 61 69 77 100 100 100 98 0 11 7 N/A
0 0 0 0 0 0 0 0 0 0 0 27 0
3 80 0 0 0 0 0 0 0 0 40 20 1
2 19 9 8 5 2 4 4 4 2 60 24 52
Low 1 1 91 92 95 98 96 96 96 98 0 24 47
0 0 0 0 0 0 0 0 0 0 0 32 0
(f)Mean number of noise variables selected (sd)
High mean 0.040 2.70 1.48 0.47 0.08 0.360 0.260 0.160 0.080 15.16 3.27 52.540
SD (0.197)  (1.592) (1.123) (0.688) (0.273) (0.503) (0.463) (0.368) (0.273) (4.334) (1.043) (29.186)
Fair mean 0.140 2.16 1.04 0.42 0.13 0.790 0.680 0.370 0.100 4.436 3.34 46.370 N/A
SD (0.377)  (1.475) (1.053) (0.684) (0.367) (0.686) (0.709) (0.614) (0.302) (2.106) (1.193) (30.833)
Low mean 0.540 0.86 0.42 0.13 0.04 0.700 0.290 0.110 0.010 14.330 3.65 28.700
SD (0.784)  (1.092) (0.794) (0.393) (0.197) (0.916) (0.574) (0.373) (0.100) (5.650) (1.167) (16.407)
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Table 2.22: Full results comparison among SuRF, Stability selection with FMER=1,
VSUREF, Lasso, Random Forest (RF) and SVM (Linear Kernel) for the pouchitis study

and moving picture data

a) Pouchitis study (Leave-one-out prediction mean test error (sd))

Site SuRF Stability Selection VSURF Lasso RF SVM
Pouch 0.197 (0.047) 0.197 (0.047) 0.268 (0.053) 0.282 (0.053) 0.169 (0.044) | 0.211 (0.048)
Afferent limb 0.254 (0.052) 0.254 (0.052) 0.254 (0.052) 0.324 (0.056) 0.225 (0.050) | 0.211 (0.048)
b) Moving picture
SuRF Stability Selection VSURF Lasso RF SVM
Site no. var Test Error Cut-off no. var Test Error | no. var Test Error | no. var Test Error Test Error Test Error
mean(sd) | Probability mean(sd) mean(sd) mean(sd) mean(sd)
0.6 10 0.000
0.7 10 0.006
Gut 1 0.000 (0.006) 1 0.000 18 0.000 0.000 0.000
0.8 6 0.000
0.9 3 0.000
0.6 14 0.030
(0.013)
Tongue 3 0.053 0.7 13 0.053 3 0.018 9 0.000 0.006 0.024
(0.017) 0.017) (0.010) (0.006) (0.012)
0.8 10 0.018
(0.010)
0.9 8 0.000
0.6 5 0.030
(0.013)
Left 2 0.024 0.7 3 0.042 3 0.061 67 0.079 0.079 0.224
Palm (0.012) (0.016) (0.019) (0.021) (0.021) (0.032)
0.8 3 0.042
(0.016)
0.9 2 0.030
(0.013)
0.6 7 0.080
(0.021)
Right 2 0.025 0.7 3 0.061 4 0.025 45 0.129 0.037 0.288
Palm (0.012) 3 (0.019) (0.012) (0.026) (0.015) (0.035)
0.8 3 0.061
(0.019)
0.9 2 0.067
(0.020)
0.6 0.034
(0.008)
Left palm 0.020 07 0.028 0.014 0.049 0.152 0.148
(0.006) (0.007) (0.005) (0.010) (0.016) (0.016)
predicts 0.8 0.028
(0.007)
right palm 0.9 0.020
(0.006)




Chapter 3

Effect of predictors’ distributions on Lasso-based variable selection

3.1 Introduction

Lasso [59] has become one of the most popular variable selection methods, particularly
in high-dimensional settings and for generalised linear models (GLMs). There has been
a large amount of research on the performance of Lasso in the literature, both in terms of
its theoretical properties and its practical performance. However, there has been almost
no research into the effect of the marginal distributions of the predictor variables on the
performance of Lasso-based variable selection methods. For some classification methods,
such as quadratic discriminant analysis (QDA), the method works under the assumption that
the predictors follow a multivariate Gaussian distribution. It was well known that the QDA
classification results are sensitive to violations of this assumption [68]. In other studies about
robustness to heavy-tailed distributions, the research has focused on heavy-tailed response
variables (Fan et. al, 2014,[16]), and the approaches developed in that literature are not
appropriate for handling heavy-tailed predictors. For very high-dimensional problems, it
is often appropriate to precede the Lasso variable selection by a screening process such as
correlation learning (Lv and Fan, 2008 and 2010, [17, 18]) or feature ranking. Delaigle
and Hall (2012) [14] have shown that heavy-tailed predictors can adversely influence these
screening methods and that correlation ranking based on student’s ¢ scores of predictors
and a robust transformation using the median and interquartile range before the correlation
learning can alleviate some impact of heavy-tailed predictors on the variable selection. The
latter performs better when the dimension of predictors, p, is very large and distributions are
extremely heavy-tailed. However, there is no literature about how much impact heavy-tailed
predictors have on the variable selection based on the Lasso shrinkage method.

GLMs are widely used for regression and classification in real world problems, which
often include a large number of predictors with heavy-tailed distributions. For example,
in microbiome data where the predictors are the abundance of microbes in a sample, the

marginal distributions of the majority of these abundances are heavy-tailed, resembling

66
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a log-normal distribution. Variable selection, or biomarker identification, in microbiome
data is very important. Not only can it improve the prediction accuracy for some problems,
but it can also focus our attention on some key microbes, leading to better interpretation
and enabling further study into the functions of these microbes. Lasso shrinkage based
variable selection has been routinely used in both regression and classification problems in
microbiome research, for example, identifying biomarkers for particular diseases [22], or
for toxic Cyanobacterial blooms in lakes [51, 9]. Variable selection for these classification
problems can be performed using logistic regression with a Lasso penalty. Lasso GLMs
have also been applied to other real-world variable selection problems from areas such as
genetics [20], medicine [72], ecology [27], biology [32] and finance [1], all of which can

involve a wide variety of marginal distributions of predictor variables.

Typically, Lasso GLM minimises a loss function consisting of the negative log-likelihood
of the model with an L' penalty on the coefficients. The relative penalties on different
coeflicients depend on the scale of the predictors. To make the method scale-invariant, it
is a common practice to standardise all the predictors prior to applying Lasso, so that the
variance of each predictor is one. While standardisation in terms of standard deviation is
appropriate for normal predictors, the standard deviation is not always such a good measure
of scale for heavy-tailed distributions. The lack of a more appropriate standardisation

method for heavy-tailed predictors leads to worse performance of Lasso-based methods.

In this chapter, we perform extensive simulations to study the effect of different dis-
tributions of predictors on the performance of Lasso-based variable selection in GLMs,
focusing on three different commonly-used GLMs: Gaussian linear regression with identity
link function; Binomial logistic regression; and Poisson GLM with log link function; and a
variety of predictor distributions. Four Lasso based variable selection methods: Lasso [59],
Adaptive-Lasso [79], Stability Selection [39], and SuRF [36] are included for the compar-
isons. Furthermore, since the variable selection is well-established for Gaussian predictors,
we also apply each of these methods after performing a Box-Cox transformation on each
predictor. Since the data are simulated from the original predictors, this causes the model

to be misspecified.

We find the marginal distributions of predictors have a limited but statistically significant
effect on variable selection performance for Gaussian linear regression but can have a

large effect on both logistic regression and Poisson regression. The biggest difference in
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performance is between light-tailed and heavy-tailed predictors with heavy-tailed predictors
selected less often for logistic regression, and selected more often than light-tailed predictors
for Poisson regression. These effects are common for Lasso and for methods based on Lasso,
such as Stability selection. For methods which combine Lasso with other variable selection
approaches, such as SuRF, the effect of predictors’ distributions is reduced, so that SuRF
performs comparably with Stability when the true predictors are light-tailed, and better than
Stability selection for heavy-tailed predictors.

This chapter is organised as follows. Section 3.2 presents the simulation designs for three
different GLM models. A detailed comparison among different methods including Lasso,
Adaptive-Lasso, Stability Selection (with per-family error rate PERF = 1 and PERF =
0.0526, called STAB1, STAB2, respectively), and SuRF for Gaussian linear regression,
logistic regression and Poisson regression with log link models are given in Section 3.3.
We also apply SuRF and Stability Selection to the Box-Cox transformed predictor variables
to examine whether such transformation can help to improve the identification of the true
variables, especially the heavy-tailed variables. Finally, we discuss all simulation results in

Section 3.4.

3.2 Simulation design

Our objective is to study how the distributions of predictors influence the variable selection
in three frequently used generalised linear models (GLMs), Binomial, Gaussian, and Poisson
regression. For each model, we include two scenarios — only one true predictor and three
true predictors. We are interested in the variable selection in cases where the number of
predictor variables is much larger than the number of observations and where the predictor
variables follow a variety of distributions, including both light-tailed and heavy-tailed
distributions. In every scenario, we simulate 400 predictors from each of 11 distributions
(listed in Table 3.1). For each data set, we simulate 100 observations, thus all data sets are
of dimension 100 x 4400. For each scenario, 100 replicate data sets are simulated.

We use the following procedure to simulate 100 replicates of the predictor matrix X
with correlated predictors following 11 different marginal distributions. We first simulate
100 replicate matrices, each of dimension 100 x 4400, from a multivariate standard normal
distribution with a covariance matrix whose (i, j)'* element is given by p~/! (p = 0.8), so

that there is a high correlation among predictors in the adjacent columns and the correlation
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diminishes as the separation between the two variables increases. Secondly, we randomly
permute the columns of the data matrix, so that the correlation pattern varies between
simulations. Finally, we perform a univariate transformation on each predictor so that it has
the desired marginal distribution. The transformation is given by y(X;;) = FJ.‘I(d)(Xi i)
where F; is the distribution function of the target distribution and @ is the distribution
function of the standard normal distribution. These 100 predictor matrices are fixed across

different scenarios.

3.2.1 Simulations for different GLM models

In order to fairly compare the effects of variable selection on different distributions, we need
to ensure that within each simulation scenario, true predictors with different distributions
have comparable signal strengths. This is somewhat challenging, because there is not a clear
definition of signal strength. The commonly used signal-noise-ratio (SNR) defined as the
variance of the conditional mean over the mean of the conditional variance is a good measure
of signal strength for Gaussian regression, but it is inappropriate for logistic regression. We
use mutual information as a measure of signal strength for logistic regression. For Poisson
regression, the signal-noise-ratio is an acceptable measure of signal strength. The details

of how to control the signal strength in each type of model are given below.

Gaussian linear regression model

In linear regression models, the signal strength is most often expressed by the SNR and the
coeflicients can be determined explicitly. Generally for model Y = f(X) + €, the signal-
noise-ratio is defined as SNR = %((EX))) We fix € ~ N(0,1). It is easy to calculate the
regression coefficients so that the linear model Y = X + € has the target SNR level. When
there is only one true predictor with variance 1, 8 = VSNR. In the multivariate cases where
there are 3 true predictors, since the correlations between these three predictors are different
for different data sets, we simply assign \/W to each non-zero coefficient after each

predictor is standardised based on its empirical distribution so that approximately the same

strength of signal comes from each predictor.
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Binomial logistic regression model

Unlike linear regression, the variance of a Bernoulli variable in the logistic regression is
a function of the mean, and there is no separate parameter for the variance. Furthermore,
this variance is too small for observations with small or large probability of belonging to
one class, so SNR is not a good measure of signal strength for logistic regression. For this
reason, we use mutual information as the measure of signal strength. Mutual information
measures the dependence between two random variables. It is defined as the Kullback
Leibler divergence of the product of the marginal distributions p(X)p(Y) from the joint
distribution p(X,Y), i.e. MI(X,Y) = Dkr(pxyllpxpy) = E(xy)log pf)(();;g,). In the
L zgi()?)/) is the conditional probability of Y given X.
In the logistic regression model with one predictor variable X, Y|X has a Bernoulli

distribution Bern(p (X)) where p(X) = AP IfweletP = E (p(X)), then the marginal

1+ePo+B1X*

GLM setting, it is convenient to note that

distribution of Y is Bern(P). The mutual information between the random variables Y and
X is

MI(X,Y) = ExEyx log (f X (Y))

fr(Y)

p(X)
P

1 - p(X)

= Ex|p(X) log T_p

+ (1 - p(X)) log

= Ex|p(X) (log(p(X)) —log(P)) + (1 - p(X)) (log(1 - p(X)) —log(1 - P))

X P
= Ex|log(1 — p(X)) —log(1 — P) + p(X) log%—log m)
= Ex| —log(1 + eP1X*F0) —1og(1 - P) + p(X) /31X+,80—10g1fp)

3.1
The mutual information can be very small if the quantity P = E(p(X)) is relatively
close to 0 or 1. For our simulations, we fix P = 1/2. This is achieved by the following

parameter values in the simulations with a single true predictor:

1. For the distributions that are symmetric about yu, setting Sy = —8u gives P = 1/2.
Thus for the normal and ¢ distributions, we set 8y = 0. For Beta(a, @) distributions,

we set Bo = —f1/2;
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2. For the remaining distributions: log-normal, Pareto, Gamma and Poisson, the inter-

cept Bo needs to be solved numerically for each value of the coefficient 5.

For the scenarios with one true predictor, we perform simulations at four signal strength
levels: M1 = 0.05,0.1,0.2 and 0.3. For each distribution of the true predictor, we use a
grid search to find the coeflicient 8 that achieves the desired mutual information. These
coefficients are summarised in Table 3.1.

For the scenarios in which there are three true predictor variables, it is difficult to set the
coeflicients to achieve a target level of mutual information, with each predictor contributing
equally, because the mutual information between one predictor and the response depends
on the coefficients of other predictors, and the marginal mutual information between each
predictor and the response will be different from the conditional mutual information given
the other predictors. We therefore fix the coefficients calculated from the single true
predictor scenarios (in Table 3.1), and use these coefficients for the simulations. We drop
the 0.05 mutual information level because selecting multiple variables with such weak
signal is too challenging for all methods. For the coefficients from each mutual information
level, MI = 0.1,0.2 and 0.3, we simulate one scenario (100 replicates) for each set of
three different distributions from 8 of the 11 distributions studied (excluding the gamma
distribution with shape 2, the ¢ distribution with 4 degrees of freedom, and the Pareto
distribution with shape 3).

Although it is not possible to set the coefficients so that every true predictor has the
desired mutual information with the response variable, it is possible to use Monte Carlo
methods to calculate the total mutual information between the predictors and the response
for a given set of coefficients. We do this by simulating a large number of samples from
the joint distribution of the predictors, then calculating the conditional probability of the
response variable, and thus the conditional entropy. This allows us to check that the
simulation scenarios have comparable total signal strength. The mutual information values
are shown in Figure 3.1.

The joint mutual information MI(Y, X) of each case is higher than the mutual information
in the single true predictor case with the same coeflicient. The cases in which the true
variables are not long-tailed (Case 1-Case 10) generally have a slightly lower mutual
information level, especially Case 7, highlighted in Figure 3.1. However, the values are

fairly similar for all scenarios.
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Figure 3.1: Integrated joint mutual information between response variable and predictors
for Binomial model simulations

Circle for Cases 1-10 (no heavy-tailed true predictors); diamond for Cases 11-56 (at least
one heavy-tailed true predictor). Case 7 (highlighted with a cross) shows a consistently
lower integrated mutual information at all MI levels.
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Table 3.1: Coefficients for predictors with different distributions in the single true predictor
case for the logistic regression model for the given levels of mutual information

MI=0.3 MI=0.2 MI=0.1
Distribution Bi Bo B Bo B Bo
Normal(0, 1) 2.64 0 1.75 0 1.04 0
Poisson A=2 1.88 -3.53 126 -2.40 0.75 -1.46
Log Normal (0, 2)* 312 -2.13 160 -1.25 0.67 -0.56
Beta (0.5, 0.5) 593 -297 428 -2.14 274 -1.37
Uniform (0, 1) 7775 =388 544 -272 342 -1.71
t-dist (df=2)" 2.04 0 1.25 0 0.66 0
t-dist (df=4)* 2.32 0 1.49 0 0.84 0

Gamma, ; (shape=1, scale=2) 1.75 -2.74 1.11 -1.85 0.61 -1.10
Gamma; ; (shape=2, scale=2) 1.09 -3.86 0.71 -2.59 041 -1.55
Paretoy(scale=1, shape=2.01)* 4.70 -2.38 2.76 -1.57 1.30 -0.87
Paretos (scale=1, shape=3)* 8.00 -2.48 483 -1.65 241 -0.94
*a long-tailed distribution

Poisson count model

For the Poisson count model Y; ~ Poisson(A;) where log(4;) = Xl.T,B, there is no good
measure of signal strength, with SNR and mutual information both potentially influenced
by outliers due to the log link function. We therefore standardise all the predictors to have
variance 1 and fix all the coefficients for true predictors at one of the values 0.2, 0.3, or 0.4

for low, medium or high signal respectively.

An important issue about Poisson regression on one hand is that when 4;’s are small, the
vast majority of observed values are zero, which gives little information about the Poisson
means, making variable selection particularly challenging. On the other hand, when A; is
large, log(Y;) can be reasonably well approximated by a normal distribution, making this
simulation too similar to the Gaussian case. To avoid these extremes, we set the intercept
Bo such that the median of 4;’s (MRates) takes one of the values 0.8, 1 or 2, by using a grid
search to find this coefficient. For these values, the discrete nature of the Poisson response
still plays a role, but the response is not too sparse to invalidate all variable selection

procedures.



74

3.2.2 Methods Compared

A few Lasso-based methods are selected to compare the impact of the predictors’ distri-
butions on variable selection using the simulated datasets. The methods are: Lasso [59],
Adaptive-Lasso [79], Stability Selection [39], and SuRF [36].

Lasso minimises the GLM negative log-likelihood function plus an L' penalty on the
coeflicients. While this method has been widely used in various cases including very
high dimensional predictors, it is also well known to produce biased estimates for large
coefficients, and hence inconsistent selection (Fan and Lv, 2001,[18]).

Adaptive-Lasso is a two-step method which introduces a weight to each coefficient as
given in (3.2) for Gaussian linear regression, in order to achieve stronger asymptotic oracle

properties than Lasso. These oracle properties also hold true for GLM models in general.
1 2
L(BIX.y) = 5-Ily = XBI +ﬂ;w,~|ﬁj| (3.2)

In more detail, the first step of Adaptive-Lasso is to obtain an initial estimate of the
coeflicients, ﬁAij“it, using another method, such as ordinary least squares, ridge regression,
Lasso, etc.. Then the weight w; for the jth coeflicient §; is adaptively selected to ensure

the shrinkage is inversely proportional to the size of each initial estimate, i.e. w; = L

—
Compared to a constant Lasso penalty on all coefficients of different sizes, this seconlﬁjarly
selection adjusts the penalty based on the initial estimate of the parameter to reduce the
bias and improve the prediction. Huang et al. [30] and Lin, et al. [35] have proved the
oracle properties of Adaptive-Lasso in the linear regression case in the sparse and/or high
dimensional settings. Huang, et al. [30] assumes the error in the regression to have a
Gaussian tail and Lin, et al. [35] relaxes the condition to any errors that have the finite 2k’ h
moments for an integer k£ > 0, such as a ¢ distribution with sufficient degrees-of-freedom.
Ridge regression is recommended by Zou [79] to obtain the initial estimate for Adaptive-
Lasso for high dimensional data. We therefore use this approach for Adaptive-Lasso in our
simulations.

Both Stability selection and SuRF are Lasso-based sub-sampling approaches. Stability
selection performs Lasso variable selection on a large number of subsamples of the data
set, and selects variables which are selected in a sufficiently large proportion of these

subsamples. The cutoff for this selection is usually set in the range of 0.6 — 0.9. Another

tuning parameter for Stability selection is the per-family error rate (PERF), which is set
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by controlling the tuning parameter A in Lasso. In our simulations, we compare both the
default setting for the per-family error control rate (PFER) of 1 and a more conservative
setting at approximately 0.05. The theory underpinning Stability selection is based on a
multivariate normal distribution of the predictors.

In the Binomial and Poisson regression models, we also compare the variable selec-
tion performance with an additional method where we perform a variant of the Box-Cox
transformation on each predictor prior to applying Stability selection. We adopted the
Yeo-Johnson transformation [71] for this purpose, because of its ability to handle zeros
or negative values. This transformation destroys the linear relation between the predictors
and the response, but makes heavy-tailed predictors closer to a normal distribution. The

transformation is defined as

Ol ipy > 0,4%0
log(y+1) ify>0,1=0

¢y,/1 = < (_y+1)27/l_1 . (33)
Gl ey < 0,422

log(-y+1) ify<0,4=2

where the constant shift +1 in the formula keeps zero as a fixed point for the transformation.
The parameter A is estimated via maximum likelihood, under the assumption that the
transformed distribution is normal.

SuRF is a two-stage method. The first step is to create a ranked list of all variables
by performing Lasso variable selection on a large number of random subsamples of data
points, similar to Stability selection. The critical difference between Stability selection and
SuRF is at the final variable selection decision. SuRF uses this ranked list as the basis
for a test-based forward selection procedure. We compare SuRF selection results with
the significance level @ ranging between 0.002 and 0.2 for the sequential tests. We also
apply SuRF on the aforementioned Yeo-Johnson transformed predictors in the Binomial

and Poisson regression models for variable selection as a comparison.

3.3 Simulation results

Our objective is to study how the distributions of predictors influence the variable selection

in three frequently used generalised linear models (GLMs), Binomial, Gaussian, and Poisson
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regression. For each model, we include two scenarios — only one true predictor and three
true predictors. We are interested in the variable selection in cases where the number of
predictor variables is much larger than the number of observations and where the predictor
variables follow a variety of distributions, including both light-tailed and heavy-tailed
distributions. In every scenario, we simulate 400 predictors from each of 11 distributions
(listed in Table 3.1). For each data set, we simulate 100 observations, thus all data sets are

of dimension 100 x 4400. For each scenario, 100 replicate data sets are simulated.

We use the following procedure to simulate 100 replicates of the predictor matrix X
with correlated predictors following 11 different marginal distributions. We first simulate
100 replicate matrices, each of dimension 100 x 4400, from a multivariate standard normal

) element is given by pl=/! (p = 0.8), so

distribution with a covariance matrix whose (i, j
that there is a high correlation among predictors in the adjacent columns and the correlation
diminishes as the separation between the two variables increases. Secondly, we randomly
permute the columns of the data matrix, so that the correlation pattern varies between
simulations. Finally, we perform a univariate transformation on each predictor so that it has
the desired marginal distribution. The transformation is given by y(X;;) = F].“ (D(Xij))
where F; is the distribution function of the target distribution and @ is the distribution

function of the standard normal distribution. These 100 predictor matrices are fixed across

different scenarios.

We present the results in two scenarios for Gaussian, Binomial and Poisson models. In
the first scenario, the underlying model is based on only one true variable generated from
one of 11 distributions. Among all listed distributions, the log-normal, Pareto, (scale=1 and
shape=2.01), 1, t4, and Paretos (scale=1 and shape=3) are heavy-tailed. The tail densities of
these distributions are shown in Figure 3.2. We will present the results of standard normal,
Gamma, > (scale=1, shape=2) , 2, 4 and Pareto, (scale=1 and shape=2.01) in this section,

and all other scenarios in Sections A.1 and A.2.

In the second scenario, the underlying model is based on three true variables with
different distributions. We consider separately the cases in which the three true variables all
follow light-tailed distributions (where we include the Gamma distributions as light-tailed)
and the cases where one or more are from heavy-tailed distributions. Due to the scale
of the simulations in the second scenario, we present only some selected representative

cases, including six cases where all three true predictors are light-tailed; two cases where
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one of the true predictors is heavy-tailed; three case where two of the true predictors are
heavy-tailed; and one case where all three true predictors are heavy-tailed. Results for all

other cases are given in Sections A.1 and A.2.

In both scenarios, the average number of true variables and false variables selected
are used for comparing the variable selection performance for all models. We exclude
Lasso and Adaptive-Lasso results from some figures, as these methods have very high false
positive rates. To make the comparisons clearer, we have linked the points for different
tuning parameters of each method at the same SNR level in all the plots showing the true
and false variable selections, i.e. for the cutoff values of 0.6,0.7, 0.8 and 0.9 for the Stability
selection results for the per-family error rate of 1 (termed STAB1) and the per-family error
rate of 0.0526 (termed STAB2); and for the significance levels « in the range of 0.002 — 0.2
for SuRF.

For predictive performance, we simulate independent test data with the same number
of replicates (100 replicates) and the same sample sizes (N = 100) and use the prediction
mean squared errors (PMSE), misclassification error rate (MCER) and the mean squares
of the log Poisson mean (MSElogl.ambda) to compare the prediction results for Gaussian,
Binomial and Poisson regression models, respectively. The MSElogl.ambda is defined as
mean squared differences between the predicted values for the log Poisson means and the
true log Poisson means in the test data set. To avoid the results being unduly influenced
by several outstanding outliers, we adopted a robust version of the measure in Gaussian
model (trimmed PMSE) and Poisson model (trimmed MSEloglLambda) with the largest
5% of the errors (corresponding to five test datasets with the largest mean errors) removed.
Lasso and Adaptive-Lasso both estimate regularised coefficients for the selected models,
and we use these regularised coefficients for prediction. Stability selection and SuRF, do
not estimate regularised coeflicients for the selected predictors, so we use models fitted on
the training data using the selected variables without further shrinkage for prediction. For
Stability selection and SuRF applied on the Box-Cox transformed predictors, we calculated
the predictive accuracies using both a misspecified GLM model fitted on the transformed
version of the selected predictors (with the test data transformed in the same way as
the training data), and a GLM model fitted on the selected predictors using the original
untransformed predictors. The former method resulted in worse prediction due to the

misspecification. Thus we only present the prediction results from the latter approach.
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Prediction accuracies for different methods under the same SNR level are also linked in all
the plots to make the comparison clearer. We also include the model prediction on test data
based on the model fitted on the training data using the known true variable(s) (’the true
model”). We only include the prediction accuracy for Stability selection with cutoff 0.6
in the Binomial and Poisson scenarios, since the prediction accuracies at other cutoffs are

generally similar for high SNRs and less good for low SNRs.
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Figure 3.2: Comparison of tail behaviour of heavy-tailed distributions: original scale and
log scale.

Distributions have been centred and rescaled to have variance 1.
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Figure 3.4: Comparison of variable selection and prediction for Gaussian regression with one true
predictor

Panels in the 1st and 3rd rows show the true positive versus false positive rates for variable selection:
results for different tuning parameters for each method at each SNR level are linked. Panels in the
2nd and 4th rows show the corresponding predictive trimmed MSEs on test data sets: results at each
SNR level are linked. All results are averaged over 100 data sets. The circled SuRF results in the
variable selection panels correspond to the cases where the prediction MSEs are the same for SURF
and STAB1 (cutoff 0.6) in the prediction panels.
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3.3.1 Results for Gaussian Regression Model

Single true variable scenario

Figure 3.3 shows the frequency of the true positive selections when the true variable follows
different distributions under four SNR levels. We see that all methods reliably select the
four light-tailed distributions: normal, Poisson, beta(0.5,0.5) and uniform. The Gamma
distributions were reliably selected by all methods except Adaptive-Lasso. The heavy-tailed
distributions: log-normal, Pareto and ¢, were more difficult to select. Lasso is still able
to reliably select these predictors, and SuRF is able to reliably select the Pareto and ¢
predictors. Stability and Adaptive-Lasso frequently fail to select these predictors at low
SNR. Scenarios where the true predictor is log-normal are most challenging, with Lasso,
then SuRF, able to more reliably select the true predictor at low SNR, Stability sometimes
failing to select the true predictor even at high SNR, and Adaptive-Lasso rarely selecting the
true predictor even at high SNR. Adaptive-Lasso is clearly most affected by the distribution
of the true predictor, followed by Stability, with SuRF and Lasso able to select the true
predictor in almost all scenarios. The per-family error rate bound does not greatly affect the

true positive selection of Stability.

We also compared the number of false variables selected by each method (not shown
in the figure). Adaptive-Lasso selects by far the most false positives, with the number of
false positives higher for the low SNR scenarios. Lasso also selects a large number of
false positives, but much less than Adaptive-Lasso, even at high SNR. The number of false
positives selected by Lasso is comparable for all SNR levels. The false positive rates for
Stability and SuRF in some scenarios are shown in Figure 3.4. The other scenarios are
similar, with the plots included in Section A.1. In all scenarios, Stability and SuRF select
many fewer false positives than Lasso. For the light-tailed (including gamma) scenarios,
Stability and SuRF both reliably select the true predictor, with comparable false positive
rates, which vary as we change the cut-off for Stability and the significance level for SuRF.
For the log-normal distribution, SuRF is able to achieve a larger true positive rate with the
same false positive rate as Stability at all SNR levels. We see that this results in better
predictive accuracy. For the # and Pareto distributions, SuRF outperforms Stability at lower
SNR; at higher SNR, both methods are able to reliably select the true predictor without

selecting noise predictors.
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Figure 3.4 also shows the trimmed Prediction mean squared errors (PMSEs) on the
test datasets for each method. We used the trimmed PMSEs because the PMSEs based on
all simulations were influenced by outliers in the heavy-tailed predictor case, even for the
true model. Since Adaptive-Lasso has higher false positive rate and lower true positive
rate than the other methods, it is not surprising that it has the highest trimmed PMSE in
all scenarios. Lasso has the highest true positive rate, but also a very high false positive
rate, which leads to larger trimmed PMSE than Stability and SuRF, which are much more
conservative in variable selection. Furthermore, because of the shrinkage, even if Lasso
selects the true variables, its estimate is biased, leading to inferior prediction. For the two
values of per-family error bound in Stability, the prediction errors are similar, with the
more conservative bound of 0.0526 performing slightly better. For low significance level,
«, SuRF outperforms Stability in most scenarios, particularly when the true predictor is

heavy-tailed.

Multiple true variables scenario

Figure 3.5 shows the frequency of each of the three true variables being selected in Gaussian
regression models for some of the multiple true variables scenarios. As in the single true
variable scenarios, Lasso and Adaptive-Lasso select a large number of noise variables.
Being less conservative than Stability and SuRF, they also tend to select the true variable
more often, particularly in the low SNR cases. Indeed, Lasso selects all true variables more
frequently than Stability and SuRF, at the cost of selecting many more false positives. We
note, however, that in the low SNR cases, Lasso selects heavy-tailed true predictors less
frequently than light-tailed true predictors. Adaptive-Lasso is more volatile, selecting some
true predictors more frequently than Lasso, but others less frequently, and almost never
selecting log-normal predictors.

When all true predictors are light-tailed (e.g. Figure 3.5(a)—(f)), all methods reliably
select the true predictors at high SNR. Selecting heavy-tailed predictors is much more
difficult for all methods, and even at the highest SNR, Stability and SuRF sometimes fail to
select these predictors. In particular, all methods struggle to select log-normal predictors.
These results are similar to the single true predictor scenarios. We also note that when a
heavy-tailed true predictor is included in the scenario, the ability of the methods to select

light-tailed predictors also decreases. This makes sense, as the predictors are correlated, so
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Figure 3.5: Frequency of each of three true variables being selected in the Gaussian regression

model

The frequency bars for each variable are arranged from left to right by methods Adaptive-Lasso, Lasso, STAB1 (cutoff 0.6), STAB2 (cutoff 0.6), SuRF at significance level 0.05, 0.1
and 0.2. Four SNR levels 0.7, 1, 3 and 5 are shown in each panel.
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if variable selection for one predictor becomes worse, it will impact variable selection for

the other variables.

Since Stability and SuRF have different settings to control how conservative the variable
selection is, we need to compare the performance in terms of both average number of true

positives and average number of false positives.

Figure 3.6 shows the true positive and false positive rates for Stability and SuRF in 6
scenarios where all three true predictors are light-tailed, and the corresponding trimmed
MPSEs. We see that Stability and SuRF trace very similar curves. At its most conservative,
Stability is more conservative than SuRF, even at the lowest significance level considered.
On the other hand, at higher values of the significance level, SuRF is able to be much
less conservative than Stability. In the low SNR case, this allows it to achieve much better
trimmed PMSE, as missing a true predictor usually has more effect on PMSE than including
a false positive. Even at this level, SuRF selects a sparse model, with an average of much
less than 1 false positive. Generally, the significance level where SuRF achieves the same
trimmed PMSE as Stability is the one where the number of true predictors selected is equal.
Sometimes, SuRF will have lower trimmed PMSE at a level where Stability has higher true
positive rate and lower false positive rate. This can be explained by surrogate variables.
When SuRF selects a surrogate of the true predictor, this increases the “false positive rate”

without increasing the “true positive rate”, but it also usually reduces the trimmed PMSE.

Figure 3.7 shows the variable selection performance and trimmed PMSE for Stability
and SuRF on a number of scenarios where the three true predictors include at least one
long-tailed variable. We see that at a given SNR level, the true positive versus false positive
curve is much lower for both methods. False positives are at a similar level to the light-
tailed cases, but the number of true positives is greatly reduced for both methods. As a
consequence, the trimmed PMSE is also increased compared with the light-tailed cases.
As in the previous cases, the reduction in true positives is most noticeable when one of the
predictors is log-normal. Again both methods produce similar true positive versus false
positive curves, but over different ranges. Similarly, for the different per-family error bounds
in Stability, the trade-off between true positive and false positive rates is not changed much,
but the lower per-family error bound selects variables more conservatively, with lower true
positive and false positive rates. As in the light-tailed cases, prediction is most affected

by missing a true predictor, so less conservative settings for SuRF and Stability tend to
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Figure 3.6: Gaussian regression models with three true light-tailed distributed predictors

Gaussian models with three true predictors, all with light-tailed distributions: panels in the 1st and 3rd rows show the true positive versus false positive rates for variable selection, the
same method with different tuning parameters at the same SNR level are linked; panels in the 2nd and 4th rows show the corresponding predictive MSEs on test data sets, different
methods on the same SNR level are linked. All results are averaged over 100 data sets. The circled SuRF results in the variable selection panels correspond to the cases that the
prediction MSEs are the same for SURF and STAB1 (cutoff 0.6) in the prediction panels.
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Figure 3.7: Gaussian models with three true predictors: cases with at least one heavy-tailed
predictor

Gaussian models with three true predictors: Panels (a) (b) and (d) (e) are for variable selection and
prediction with two light-tailed and one heavy-tailed predictors; Panels (c)(g)(h) and (f)(j)(k) are
for variable selection and prediction with one light-tailed and two heavy-tailed predictors; Panels (i)
and (1) are for variable selection and prediction with three heavy-tailed predictors.
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have lower trimmed PMSE. However, Lasso selects a lot of false positives, and shrinks the
coeflicients of the true positives, so it has higher trimmed PMSE, compared with Stability
and SuRF in the high SNR case. In the low SNR case, it often outperforms Stability and

SuRF, which often fail to select the true predictors.

3.3.2 Results for Binomial Regression Model
Single True Variable Scenarios

Figure 3.8 shows the proportion of simulations in which the true predictor is selected in each
scenario for each method. We see that for all methods, the light-tailed true predictors are eas-
ier to select than the heavy-tailed true predictors. Most methods select the gamma predictors
at about the same frequency as the light-tailed predictors. However, Adaptive-Lasso has dif-
ficulty selecting the true gamma predictors, selecting them with lower frequency than some
of the heavy-tailed distributions. Among the heavy-tailed distributions, the log-normal is
hardest to select for all untransformed methods, with many methods almost never selecting
the log-normal true predictors, even at the highest SNR. Among the methods, Lasso has
the highest frequency of selecting all light-tailed true predictors. On the other hand, Lasso
has much higher false positive rate than Stability and SuRF, so it is not surprising that it
is able to achieve a higher true positive rate. Adaptive-Lasso performs worse than Lasso
in terms of both true positive and false positive rate. For the heavy-tailed true predictors,
Stability selects the true predictor less often than Lasso, meaning that it amplifies the bias
in Lasso. SuRF is much more able to select heavy-tailed true predictors, particularly the
log-normal true predictors, where it has higher true positive rate than Lasso. For the other
heavy-tailed predictors, it has higher true positive rate than Lasso at high SNR, and lower
true positive rate at low SNR. Overall, SuRF is far less influenced by the distribution of the
true predictor. This makes sense, since the final selection in SuRF is by forward selection
based on hypothesis tests instead of Lasso shrinkage, and forward selection is more robust
to the distribution of the predictors.

The Box-Cox transformation improves the ability of SuRF and Stability to select the
true log-normal and Pareto distributed predictors. For the ¢-distributed true predictor with
2 degrees-of-freedom, the Box-Cox transformation improves performance of Stability, but
not SuRF, and for the 7-distributed true predictor with 4 degrees-of-freedom, the Box-

Cox transformation makes it a bit more difficult to select the true predictor. Note that
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Figure 3.8: Comparison of true positive rate for Binomial logistic regression by distribution

of the true predictor for various methods.
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Figure 3.9: Comparison of variable selection and prediction for Binomial regression with one true
predictor

Binomial models with one true predictor: panels in the 1st and 3rd rows show the true positive versus false positive rates for variable selection, the same method with different tuning
parameters at the same mutual information (MI) level are linked; panels in the 2nd and 4th rows show the corresponding misclassification error rate (MCER) on test data sets, different
methods on the same mutual information level are linked. All results are averaged over 100 data sets. The circled SuRF results in the variable selection panels correspond to the cases
that the prediction MCERSs are the same for SURF (or SuRFBCox) and STABI1 (cutoff 0.6) in the prediction panels.
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the data were simulated following logistic regression on the untransformed data, so after
the Box-Cox transformation, the model is misspecified. However, the bias caused by the
model being misspecified is less than the bias caused by the heavy-tailed predictor. It
is not surprising that the Box-Cox transformation has more effect on the log-normal and
Pareto distributions, because these distributions are skewed, so the Box-Cox transformation
will select a transformation which makes the distribution less heavy-tailed; whereas the
t-distribution is symmetric, so a Box-Cox transformation which makes the distribution less

heavy-tailed would also make it more skewed.

Figure 3.9 shows true positives versus false positives for different methods and their
predictive accuracy on test data for several cases. Lasso and Adaptive-Lasso are excluded
from the comparison of true and false positives due to their high false positives. For
light-tailed true predictors, SuURF and Stability selection both perform extremely well at
high mutual information, reliably selecting the true predictor, and selecting very few noise
predictors. When the SNR is smaller, Stability performs slightly better than SuRF, selecting
fewer false positive variables for the same number of true positives. For the heavy-tailed
true predictors, the performance of both methods drops, but the drop in performance is
much larger for Stability. This drop in performance is most pronounced for the log-
normal true predictor, followed by the Pareto true predictor. For the #-distributed true
predictor with 4 degrees-of-freedom, the performance of SuRF is similar to the light-tailed
true predictor cases, both in terms of true positives versus false positives and in terms
of prediction misclassification error rate, though the performance for Stability is slightly
worse. The better performance of Stability for the light-tailed true variable scenarios might
be explained by its worse performance on the heavy-tailed predictors. Since many of the
candidate predictors are heavy-tailed, in the case where the heavy-tailed predictors are all
noise variables, a method which has difficulty selecting heavy-tailed predictors would be

expected to select fewer noise variables.

It can be observed that the Box-Cox transformation greatly improves the variable selec-
tion and prediction for both SuRF and Stability when the true predictor follows a skewed and
long-tailed distribution such as log-normal or Pareto distribution in high SNR scenarios;
however this effect is not obvious or even slightly worse at lower SNRs. For light-tailed true
predictors and ¢ distributions, Box-Cox transformation has little effect on both the variable

selection and prediction.
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Multiple True Predictor Scenarios

Figure 3.10 shows the frequency with which each true predictor is selected by each method,
over 100 simulations for each scenario, over a range of cases, including cases with zero, one,
two and three heavy-tailed true predictors. As in the single-variable case, Lasso consistently
selects light-tailed variables more than other methods (with the exception of Adaptive-
Lasso, which is extremely variable, sometimes frequently selecting the true variable, and
sometimes selecting it less often than other methods). Lasso and Adaptive-Lasso also
select a large number of noise variables. Stability and SuRF are more conservative, often
struggling to select the true predictors when the MI is low. All methods are less likely
to select heavy-tailed predictors, particularly log-normally distributed predictors. SuRF is
more robust to long-tailed predictors than Stability and Lasso. Stability almost never selects
the log-normal distributed true predictors, even in the high MI case.

Also as in the single-variable case, the Box-Cox transformation greatly improves the
ability of Stability to select log-normal and Pareto true predictors, but decreases the ability
to select other predictors. Even after the Box-Cox transformation, Stability selects the
log-normal and Pareto distributed true predictors less often than SuRF without Box-Cox
transformation. The Box-Cox transformation also increases the ability of SuRF to select true
log-normal, uniform and beta predictors at high MI, with similar performance as without
Box-Cox transformation for selecting true predictors for other cases.

Figures 3.11 and 3.12 compare the true positive versus false positive curves for Stability
and SuRF with and without the Box-Cox transformation, and the predictive misclassification
error rate for all methods. For cases without long-tailed predictors, the methods cover a
different range of the true positive versus false positive curves, but show similar trade-offs
between true positives and false positives with some methods performing better in some
cases and other methods performing better in other cases. Stability slightly outperforms
SuRF overall in the medium and low MI cases, which might be explained by the fact that
Stability has difficulty selecting the heavy-tailed predictors, which effectively makes this a
lower-dimensional problem for Stability than for SURF. The prediction MCER are consistent
with the true positive versus false positive curves — methods with higher true positive rates
predict better, with the exception of Lasso and Adaptive-Lasso, which have very high false
positive rates. Atlow and medium MI, Lasso usually gives the best prediction, while at high

MI SuRF with a high value of « usually outperforms Lasso. The Box-Cox transformation



92

100} ;041 m:02 m:03 ool M0 m:02 m:03 ool M0 m:02 m:03
75- 75- 75-
gi'f 50- E’- 50- 5 50-
w w w
Al Of Mk
béta pois sdnorm beta pois sdnorm beta pois sdnorm pois sdnorm  unif pois sdnorm  unif pois sdnorm  unif beta sdnorm unif  beta sdnorm unif  beta sdnorm unif
Distribution Distribution Distribution
(a) beta+Pois+sdnorm (b) Pois+sdnorm+unif (c) beta+sdnorm+unif
w0 ;041 m:02 m:03 o) M0 m:02 m:03 o) M0 m:02 m:03
75- 75- 75-
g 50- E 50- E 50-
) ' ‘ ] d H ' ] " ' ‘
Al Al O,
beta pois unif  beta pois unif  beta pois unif o ma12pois o ma12pois o ma12pois gammat2pois unif gammat2pois unif gammal2pois  unif
Distribution Distribution Distribution
(d) beta+Pois+unif (e) beta+gammaj,+Pois (f) gammaj,+Pois+unif
100} ;041 m:02 m:03 oo} M0 m:02 m:03 M0 m:02 m:03
75- 75- 5]
8 50 g 50 gs0-
ol “ Al ﬁ HM
RN Al A
Inorm  pois sdnorm  Inorm  pois sdnorm  Inorm  pois sdnorm pois t2 unf pois t2 unif  pois 2 unif Inorm sdnorm 2 Inorm sdnorm 2 Inorm sdnorm 2
Distribution Distribution Distribution
(g) sdnorm+Pois+Inorm (h) Pois+ty+unif (1) Inorm+sdnorm-t;
75- 75 ™
g 50- g50° g50—
] Il [ “ ] L“ t | u I \
ol ||| .u “ I | ol ” I " ol " |.h “ | |
Inorm pare ¢ Inorm pare ¢ Inorm pare ¢ gammat@iareto2 t2 gammaifareto2 t2 gammaflfareto2 (2 Inorm pareto2 2 Inorm pareto2 2 Inorm pareto2 2
Distribution Distribution Distribution
() Inorm+Pareto,+sdnorm (k) Paretoy+t,+gammaj, (1) Inorm+Pareto; +t,
B =capiasso [l smet [ sme2 surr_o0.0s [l surF o2 B surFecox 0.1

method
B asso Il smsiecoc [l smezacox [ surr o1 [ surracox 0.0s [l surFecoc 02

Figure 3.10: Frequency of selecting individual true variables in logistic regression with three true
predictors

MI level between 0.1 and 0.3 from left to right for each panel. Methods compared include Adaptive-
Lasso, Lasso, two Stability selection methods (cutoff 0.6) and their application on the Box-Cox
transformed predictors (STAB1BCox and STAB2BCox), SuRF (significant level 0.05, 0.1 and 0.2)
and SuRF applied to the Box-Cox transformed predictors (SuRFBCox).
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Figure 3.11: Comparison of variable selection and prediction for Binomial regression with three

true predictors from light-tailed distributions

Panels in the 1st and 3rd rows show the true positive versus false positive rates for variable selection, the same method with different tuning parameters at the same mutual information
(MI) level are linked; panels in the 2nd and 4th rows show the corresponding predictive MCERs on test data sets, different methods on the same MI level are linked. All results are
averaged over 100 data sets. The circled SuRF results in the variable selection panels correspond to the cases that the prediction MCERs are the same for SuRF and STAB1 (cutoff

0.6) in the prediction panels.
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Figure 3.12: Comparison of variable selection and prediction for Binomial regression with three
true predictors of which at least one from heavy-tailed distribution

Panels (a) (b) and (d) (e) are for variable selection and prediction with two light-tailed and one heavy-tailed predictors; Panels (c)(g)(h) and (f)(j)(k) are for variable selection and
prediction with one light-tailed and two heavy-tailed predictors; Panels (i) and () are for variable selection and prediction with three heavy-tailed predictors. Panels in the Ist and 3rd
rows show the true positive versus false positive rates for variable selection: results for different tuning parameters for each method at each mutual information (MI) level are linked.
Panels in the 2nd and 4th rows show the corresponding predictive MCERs on test data sets: results at each MI level are linked. All results are averaged over 100 data sets. The circled
SuRF results in the variable selection panels correspond to the cases where the prediction MCERSs are the same for SURF and STAB1 (cutoff 0.6) in the prediction panels.
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in these cases causes Stability methods to perform slightly worse in terms of both true/false
positive rate and MCER; It generally has a small positive impact on the variable selection
of SuRF and often leads to a similar or lower MCER. Overall, the Box-Cox transformation
has little effect for cases without long-tailed true predictors.

For scenarios involving a log-normal or Pareto true predictor, Stability performs much
worse, while SuRF performs slightly worse than in the cases without heavy-tailed true
predictors. The Box-Cox transformation greatly improves the performance of Stability and
SuRF in these cases, by both increasing the true positive rate and decreasing the false
positive rate, and also decreasing the prediction MCER. SuRF often shows the best variable
selection and prediction results in cases where at least one heavy-tailed true predictor is
present. At low MI level or in the scenarios where there are no heavy-tailed true predictors,
the Box-Cox transformation shows little effect. The general conclusion is that applying the
Box-Cox transformation on long-tailed predictors can be a useful step prior to Stability and

SuRF variable selection for the Binomial model.

3.3.3 Results for Poisson Regression Model
Single True Variable Scenarios

Figure 3.13 shows the true positive rates for the different variable selection methods for
different true variable cases when the median value of the Poisson mean is 1. Results for
median value of Poisson mean equal to 0.8 and 2 are similar, except that variable selection
is generally easier when the median is 2, and harder when the median is 0.8, and are shown
in Section A.1. We see that the skewed medium-to-heavy-tailed true predictors (Gamma,
log-normal, and Pareto) are selected more frequently by Lasso, Stability and SuRF. Adaptive
Lasso is more likely to select beta and uniform true predictors, and never selects the log-
normal true predictors. Unlike the binomial and Gaussian cases, SuRF is affected by the
distribution of predictors as much as the other methods.

The Box-Cox transformation has little effect on the frequency with which the light-tailed
(excluding Gamma) true predictors are selected, but causes a large decrease in the frequency
with which the skewed heavy-tailed (including Gamma) predictors are selected, and causes
an increase in the frequency with which the z-distributed true predictors are selected. The
decrease in frequency is particularly large for the Pareto and log-normal distributions.

Figure 3.14 shows the true positive and false positive rates and trimmed PMSE of log(A)
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Figure 3.14: Comparison of variable selection and prediction for Poisson regression with
one true predictor (Mrate=1)

Panels in the 1st and 3rd rows show the true positive versus false positive rates for variable
selection: results for different tuning parameters for each method at each S level are linked.
Panels in the 2nd and 4th rows show the corresponding predictive MCERs on test data sets:
results at each MI level are linked. All results are averaged over 100 data sets. The circled
SuRF results in the variable selection panels correspond to the cases where the prediction
MCERs are the same for SURF and STAB1 (cutoff 0.6) in the prediction panels.
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for each scenario in the cases with median Poisson mean equal to 1. Cases with median
Poisson mean equal to 0.8 and 2 are similar, except that the variable selection is easier when
the median is 2 and harder when it is 0.8, and shown in Section A.1. We see that the variable
selection is much better for both methods when the true predictor has a skewed long-tailed
distribution, with higher true positive rates and lower false positive rates, particularly for
the high SNR case. This results in lower trimmed PMSE for log(1). Note that the trimmed
PMSE is sometimes higher in the high SNR case. This is because, although the variable
selection is better in the high SNR case, the cost of failing to select the true predictor is also
much higher.

Stability with familywise error bound 0.0526 and SuRF have a similar true positive
versus false positive curve in most cases, but cover different parts of the curve, with Stability
more conservative. The exception is when the true predictor follows a ¢-distribution with 2
degrees-of-freedom, in which case SuRF performs better than Stability. Stability with the
per-family error bound 1 generally performs worse than SuRF.

The Box-Cox transformation has little effect on the variable selection or prediction when
the true predictor is symmetric, and causes variable selection and prediction to get much

worse when the predictor is skewed.

Multiple true variable scenario

Figure 3.15 shows the frequency with which each true predictor was selected by each
method for a selection of scenarios with median Poisson mean equal to 1. Similar results
with median of Poisson mean equal to 0.8 or 2 are shown in Section A.1. Lasso selects
more true positives than other methods, except Adaptive-Lasso, which varies a lot, but also
selects a large number of false positives. Adaptive-Lasso does very well at selecting the
Beta and uniform true predictors, and very badly for other predictors. With the exception of
Adaptive-Lasso, all methods select the long-tailed skewed true predictors more often than
other predictors. For Adaptive-Lasso, this pattern is reversed, and long-tailed predictors
are selected less frequently, as in the Gaussian and binomial cases. As in the single-
variable case, the Box-Cox transformation reduces the ability to select skewed heavy-tailed
predictors without increasing the ability to select light-tailed predictors.

Figures 3.16 and 3.17 show the true positive rate and false positive rate, and the trimmed

PMSE for log() for Stability and SuRF with and without Box-Cox transformations, in a
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Figure 3.16: Comparison of variable selection and prediction for Binomial regression with three
true light-tailed predictors (Mrate=1)

Panels in the Ist and 3rd rows show the true positive versus false positive rates for variable selection: results for different tuning parameters for each method at each (3 level are linked.
Panels in the 2nd and 4th rows show the corresponding predictive MSEs (log rates) on test data sets: results at each 3 level are linked. All results are averaged over 100 data sets. The
circled SuRF results in the variable selection panels correspond to the cases where the prediction MSEs (log rates) are the same for SURF and STAB1 (cutoff 0.6) in the prediction
panels.
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Figure 3.17: Comparison of variable selection and prediction for Poisson regression with three true
predictors including at least one heavy-tailed predictor ((Mrate=1)

Panels (a) (b) and (d) (e) are for variable selection and prediction with two light-tailed and one heavy-tailed predictors; Panels (c)(g)(h) and (f)(j)(k) are for variable selection and
prediction with one light-tailed and two heavy-tailed predictors; Panels (i) and (1) are for variable selection and prediction with three heavy-tailed predictors. Panels in the 1st and 3rd
rows show the true positive versus false positive rates for variable selection: results for different tuning parameters for each method at each 3 level are linked. Panels in the 2nd and
4th rows show the corresponding predictive MSEs (log rates) on test data sets: results at each 3 level are linked. All results are averaged over 100 data sets. The circled SuRF results
in the variable selection panels correspond to the cases where the prediction MSEs (log rates) are the same for SuRF and STAB1 (cutoff 0.6) in the prediction panels.
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variety of scenarios with median of Poisson mean equal to 1. Results with median of
Poisson mean equal to 0.8 or 2 are similar and shown in Section A.1. Stability appears to be
more affected by the median of Poisson means than SuRF, though this varies significantly
between scenarios.

As in the other studies, Stability is limited to the more conservative part of the curve.
For this study, the performance of Stability and SuRF is similar for most scenarios, but
there are scenarios, such as (Pareto, shape=2.01; ¢, df=2; Gamma, shape=1), where SuRF
outperforms Stability by a substantial margin, and scenarios such as (Pareto, shape=2.01; ¢,
df=2; log-normal) where Stability outperforms SuRF for the largest coefficients.

This is a very challenging problem, and even for the largest coefficients the methods
rarely select an average of more than 1 true predictor. As in the single variable case, results

are generally better when at least one of the predictors is skewed and heavy-tailed.

Patterns of selection bias

Figure 3.18 shows the relative frequency with which noise variables were selected from
each predictor distribution for each method. Recall that in all scenarios, there were 400
predictors with each distribution, so if there were no bias in the selected predictors, we would
expect each distribution to represent the same proportion of all noise variables selected. It
is worth noting that Stability and SuRF are conservative methods, and select an average of
less than 0.2 false positives over all simulations. This means that the total number of false
positives selected for the single true predictor cases was about 600 or less for these methods.
Therefore, there is substantial variability in the estimated relative frequency. There is less
variability in the multiple true variable case, as there were many more scenarios in that
case.

We see that the noise variables show a similar pattern to the true predictors, with Lasso
and SuRF selecting the noise variables equally for Gaussian regression; underselecting the
heavy-tailed predictors in the log-normal, Pareto and 7 cases for logistic regression; and
overselecting the log-normal and Pareto predictors for Poisson regression with log link
function. Adaptive Lasso heavily favours beta and uniform predictors for all models, and
almost never selects any heavy-tailed noise variables, despite selecting a large number of
noise variables overall. Stability underselects the log-normal and Pareto predictors and the

t distribution with 2 degrees-of-freedom, even in the Gaussian case.
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Figure 3.18: Comparison of distributions of noise variables selected for Gaussian, Binomial

and Poisson regression.

Results are averaged over all signal strengths and simulation scenarios. Cut-off 0.6 is used
for Stability, and significance level @ = 0.05 is used for SuRF.
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For logistic regression, Stability massively underselects the log-normal and Pareto
predictors, and also underselects the ¢ predictors with 2 degrees-of-freedom. The Box-Cox
transformation makes it easier for Stability to select the log-normal and Pareto distributed
predictors, but makes it more difficult to select the 7-distributed predictors. These patterns
of selection bias shown in the single variable cases are also confirmed in the multiple true
predictor cases. The Box-Cox transformation causes SuRF to select more log-normal and
Pareto predictors over other types of predictors. Itis likely that these variables are surrogates
of the true predictors.

For Poisson regression with a log link function, Lasso and SuRF select the noise variables
almost equally between the distributions, suggesting that the different results for different
true predictor distributions might be due to the signal sizes not being equal. Stability
overselects the beta and uniform predictors when the per-family error bound is set to 1, and
overselects the Pareto and log-normal predictors when it is set to 0.0526. The Box-Cox
transformation causes Stability and SuRF to overselect z-distributed predictors, especially

the ¢ predictors with 2 degrees-of-freedom.

3.4 Conclusion

We have demonstrated that the marginal distribution of predictors can have a significant
effect on the ability of Lasso and similar methods to select the true predictors. For Gaussian
and logistic regression, heavy-tailed variables, particularly log-normal and Pareto, are
selected less often than light-tailed predictors. For Poisson regression with log link function,
skewed heavy-tailed predictors such as Gamma, Pareto and log-normal are selected more
often than other predictors by most methods. Adaptive-Lasso is more heavily influenced by
the distribution of the predictors, and always struggles to select long-tailed predictors, even
for Poisson regression. By contrast, Adaptive-Lasso is more able to select predictors with
finite support, such as uniform or beta.

The effect of marginal distribution of predictors is relatively small for Gaussian regres-
sion, but is much larger for logistic regression and Poisson regression with log link. In the
case of the Poisson regression with log link, for Lasso, this might be due to the different
signal strengths of true variables, rather than a bias in variable selection.

Stability, being based on a consensus estimate from multiple Lasso variable selections,

amplifies the differences in variable selection based on marginal distribution of predictors.
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Even at the highest MI level considered in this study, Stability is almost never able to select

log-normal distributed predictors.

SuRF is less affected by the marginal distribution of predictors than Lasso and Stability.
This means that SuRF performs by far the best when at least one true predictor follows a
log-normal or Pareto distribution for logistic regression. For Poisson regression with log
link, SuRF performs similarly to Stability, though it is easier to select less conservative

models.

For the logistic regression, performing a Box-Cox transformation on all predictors before
variable selection greatly improves results when the true predictors are log-normal or Pareto
distributed. When the true predictors follow a z-distribution, the Box-Cox transformation
does notimprove results. Note that the true probability was simulated as a logistic function of
the predictors, so logistic regression on the Box-Cox transformed predictors is misspecified.
Despite the misspecification, variable selection is still far better when performed on the Box-
Cox transformed predictors. This means that the marginal distribution of predictors has

more impact on variable selection than the correct specification of the model.

For the Poisson regression, the Box-Cox transformation makes the variable selection
worse. This is not surprising, as the skewed predictors are easiest to select, and therefore,
performing a Box-Cox transformation has the effect of both making the predictor have a

more difficult distribution to be selected, and making the model misspecified.

A natural question is why the shape of the predictor distributions affects the variable
selection to such an extent. More work is needed to fully understand the cause of this effect.
However, the difficulty seems to be based on standardisation. It is standard practice when
performing Lasso to standardise the predictors prior to variable selection, in order to make
the method scale-invariant. This is done by dividing each predictor by its standard deviation.
For Gaussian regression, this makes the coefficient of the standardised variable equal to the
covariance between the predictor and the fitted value, which should give reasonable results.
For heavy-tailed predictors, the sample variance of the predictor is more variable than for
light-tailed predictors. Since, for a fixed coeflicient, the sample variance of the predictor
determines the total amount of signal in the data, the empirical SNR is more variable for
heavy-tailed predictors than light-tailed predictors. This could account for the results in the

Gaussian regression simulation.

For logistic regression and Poisson regression with a log link function, the standard
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deviation of the predictor is not a good measure of its total influence on the regression,
since, in the case of heavy-tailed predictors, the standard deviation is mostly due to a small
number of outliers. In logistic regression, the influence of a single observation is limited,
so for a heavy-tailed predictor, the total influence is lower than for a light-tailed predictor
with the same standard deviation. For the log-normal distribution, a higher proportion of
observations are very close to the mean, so the effect is stronger for the log-normal. For the
Poisson regression, because of the log link function, large points are extremely influential.
This explains why the skewed predictors are easier to select. For the z-distribution, half of
the outliers are on the negative side, which means the Poisson mean is very close to zero,
so there is little information for these data points, making it more difficult to select the

predictor.

Since Stability is based on the frequency with which Lasso selects a predictor, when
applied to subsamples, predictors which are underselected by Lasso are much more under-
selected by Stability. Furthermore, for heavy-tailed predictors, many subsamples do not
include the influential observations needed to select these predictors. While it could be
argued that a predictor selected because of a single observation is not very reliable, the fact
that these outliers are used to standardise predictors means that the signal strength for the

other observations is underrepresented.

By contrast, SuURF uses Lasso to identify the relative importance of the predictors, but
bases the final variable selection on an hypothesis-test-based forward selection procedure.
This forward selection procedure is not so strongly influenced by the distribution of the
predictors. Therefore, SuRF is more often able to select heavy-tailed predictors. The
danger is that a less heavy-tailed surrogate may be ranked above the true predictor, causing
SuRF to select the surrogate instead. We see this in many of the simulation studies, where
at high MI levels, SuRF selects a large number of “noise” variables. (See for example,

Figure 3.9(c).) These are likely to be surrogates of the true predictor.

Future research is needed into methods to improve the variable selection of Lasso-based
methods when some or all of the predictors have heavy-tailed distributions. Applying a
Box-Cox transformation prior to variable selection, or using SuRF for variable selection can
improve performance for logistic regression when some or all of the predictors follow heavy-
tailed distributions. However, even with these methods, the ability to select heavy-tailed

predictors still lags behind the ability to select light-tailed predictors with similar signal
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strength, and the Box-Cox transformation works well for skewed heavy-tailed distributions,
such as the log-normal or Pareto distribution, but is not effective for symmetric heavy-
tailed distributions such as the ¢ distribution. Furthermore, neither of these approaches
resolves the variable selection bias for Poisson regression with log link. A natural attempt
is to choose a different standardisation method that better accounts for the total influence
of the observations in non-Gaussian regression. It is unclear exactly what form such a
standardisation would take. From our other experiments which are not detailed in this

chapter, standard robust measures of scale do not seem to work.



Chapter 4

Sub-sampling Ranking Forward selection for generalised additive

models (SuRFgam)

4.1 Introduction

Generalised additive models (GAMs), introduced by Hastie and Tibshirini [25], provide
a flexible option for modelling the non-linear relationship between the predictors and the
response. Unlike linear models, GAM models don’t require specifying a detailed parametric
relationship between predictors and the response but use only smooth functions of low
complexity as explained in [67]. Consider a dataset with n observations, including the
response variable denoted by y; € R and predictors x;; for the i'" observation where
i=1,2,...,nand j = 1,2,...,P. A GAM models the transformed conditional mean of

the response as sum of smooth functions of the predictors:

E(yt|xl]) Zf](xlj)—zzbjk(xu)ﬁ]k 4.1)

where 7 is a continuous monotone link function, and f;(x;;) is fitted from a semiparametric
family of smooth functions, usually cubic splines. Cubic splines are twice differentiable
piecewise cubic functions. The points at which the functions are not cubic are called knots,
and choice of number and placement of knots can influence performance of the method.
The functions f; are chosen to minimise the negative log-likelihood plus a smoothness
penalty on each f;. In theory, the choice of basis functions b;; shouldn’t influence the
results, but some choices such as B-splines greatly simplify the computation, resulting in
better optimisation. For a full discussion of various spline fitting methods, see [67].

In many real world problems, the number of predictors can be significantly larger than the
sample size, and it is necessary to select a sparse model including only the most important
predictors. This is the problem addressed in this chapter. A common approach to variable

selection problems is to maximise penalised log-likelihood or equivalently to minimise a

108
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penalised loss function:

P
wgminl(y: fi...... fp) + DI (4.2)
1seeesJ P j=1

with a penalty designed so that the fitted effects of noise variables become zero. For
example, Lasso uses an L' penalty on the coefficients of a GLM to shrink coefficients to
zero. This idea extends easily to the GAM case, often using a group-Lasso style penalty,
J(fj) = 4 /Zle ,B?k in addition to the smoothness penalty used by GAM methods without
variable selection. Methods based on this idea include Gamsel, RGAM, RGAM_SEL and
SPAM.

Research on variable selection for GLMs has shown that penalty-based methods often
select a relatively large number of variables, many of which are false positives. This
can impair both prediction and interpretation. Furthermore, variable selection results can
be unstable, sometimes based on a single outlier. Variable selection methods based on
subsampling, such as SuRF and Stability, are much more conservative, often not selecting a
single false positive. In sparse cases, this can result in better prediction and interpretation.
Both SuRF and Stability apply Lasso to a large number of random subsamples of the data,
and use these results to identify the variables most frequently selected for these subsamples.
Stability then selects all variables that are selected in more than a fixed proportion of
these random subsamples. SuRF incorporates an additional forward-selection step, using
the selection frequency to decide the order in which to attempt to add variables to the
model. This forward-selection step has the benefit of making SuRF more robust to long-
tailed predictors, which are underselected by Lasso-based methods in some cases, and
overselected in others (see Chapter 3).

This chapter develops a novel extension of the SuRF methodology to the GAM case.
This method is able to select very sparse models with non-linear relations between predictors
and response variables. We demonstrate the ability of our new SuRFgam method to select
the true variables while strictly controlling the false positives across a range of scenarios.

The remainder of the chapter is structured as follows: in Section 4.2, we conduct a
comprehensive review of recent related developments in selecting sparse additive models,
with a particular focus on the methods applicable to the high dimensional case. We also re-

view methods designed to control the noise variables in linear models. Section 4.3 provides
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a detailed introduction to our proposed method, called Sub-sampling Ranking Forward
selection for generalised additive models (SuRFgam). In Section 4.4, we present extensive
simulation studies conducted across various data settings. These experiments compare
the performance of SuRFgam in variable selection and prediction, in both Gaussian and
Binomial models, against several other existing methods. Section 4.6 presents the analysis
of a real dataset containing 57 predictors collected from 4061 emails and spam samples,
originally used in the illustration in the book “Elements of Statistical Learning” [26]. Fi-
nally, the chapter concludes with a discussion of the results and potential future research

work in Section 4.7.

4.2 Review of related work

4.2.1 Existing sparse additive models

Numerous methods have emerged for fitting sparse GAM models in the context of N <« P
over the past two decades, based on the introduction of an L penalty, as in Lasso. Different
methods include different penalty terms J(f) in the objective function. One pioneering
method in sparse GAMs is the Component Selection and Smoothing Operator (COSSO)
introduced by Lin[34]. Unlike traditional spline methods that used a squared norm, COSSO
adopts a penalty that consists of a sum of L; norms on functions. The formulation of J( f)
is built based on a reproducing kernel Hilbert space (RKHS) and the objective function is

expressed as

argmin  [(y; fi,.... fp) + T2 (f) (4.3)
f] ..... fPERKHST

with J(f) = Z§=1||SD" f|l and 7, is the smoothing parameter in this model. P is the
orthogonal projection of f onto RKHS ¢ where ¥¢’s are the main effect spaces. This
penalty is similar to a group Lasso penalty and thus in special cases it is equivalent to the
Lasso penalty. SpAM (Sparse additive models [45]) instead uses a functional version of the
Group Lasso[74] penalty defined as J(f) = j'):l JE{ f] 21,

More recently, several methods have been developed to not only select the predictors,

but also distinguish between linear and non-linear predictors at the same time. Gamsel
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(Generalised additive model selection [11]) minimises the objective function

argmln—Hy afo—Za/ij ZUﬁJH

.....

£ 510 4 (4.4)
) (vlasl + (1 =98, lps ) + 2, 3965 Dib
J= J=
selection penalty end-of-path penalty

where the U; is the matrix of evaluations of the basis functions b;; at the observed points
x;, i.€. f;(x;) = a;x; +b;(x;)T B; where b; is a vector of basis functions. As linear functions
are a special case of cubic splines, the parametrisation is redundant. This redundancy has
the effect of allowing a separate penalty on the linear coefficients |a/| (a Lasso penalty) and
the nonlinear coefficients ||| (a group Lasso penalty by ||5;|| Dj-)’ so that the model can
select one or both. The end of path penalty is the standard quadratic smoothness penalty.
Gamsel classifies each predictor to be in one of the three categories: null (o = 0,5 = 0),
linear (@ # 0, 8 = 0) and non-linear (8 # 0).

Two alternative methods capable of selecting both linear and nonlinear predictors are
SPLAM (Sparse Partially Linear Additive Models [38]) and SPLAT (Sparse partially linear
additive trend filtering [43]). SPLAM is a form of hierarchical group Lasso, encompassing
both the SPAM model (by setting @ = 1) and Lasso model (by setting « to a small value

and configuring a specific 1) as special cases in its objective function:

P
argmin /(33 i fp) +2 35 (1 l+(1 = sl (45)
..... ; £

J(f)
where B8; = (8,1, 8;,-1) with 8;1 denoting the coefficient for the linear basis function and
B;.—1 including all coeflicients for the non-linear basis functions. This method excels in
scenarios where the true variables comprise a mixture of linear and nonlinear predictors.
However, in settings where all predictors are linear or all predictors are non-linear, SPLAM
is generally outperformed by Lasso or SpAM [45].
SPLAT takes a trend filtering technique used in FLAM [49]

P p P
argmin(y; fi,.... fr) +d PUDEP Il + (1= ) Y llyslb+d ) 10;12)  (46)
..... P j=1 j=1 j=1

1)
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where 6; = x;8; +y; with y; capturing all non-linear effect. The first term in the above
penalty is a Lasso penalty on (K + 1)’ order difference of the permuted (ordered) y 7 which
controls the complexity of the nonlinear function y;; the second term in J(f) is a group
Lasso penalty on the non-linear terms; and the third penalty is a group Lasso penalty on
6; for variable selection purposes. Compared to SpAM and SPLAM, SPLAT provides the
additional advantage of allowing a flexible fitting of the nonlinear function with adaptively
chosen knots and fewer degrees of freedom.

RGAM (Reluctant GAM [56]) is a three-step algorithm. In the first step, a linear model
of y on x with Lasso penalty is fitted, and the residuals are computed; In the second step, a
smoothing spline f] is fitted using residuals obtained from the first step on each variable x;
and the resulting functions fj’ s are scaled; Finally, y is fitted on X and F combined, where
F;j = fj(x;). RGAM can be modified to RGAM_SEL by a slight adjustment in the second
step. This modification restricts the fitting of smoothing splines only to the non-zero linear

predictors from the first step.

4.2.2 Existing work in variable selection with a false positive control

Sub-sampling is a widely used approach in variable selection to control the false positive
rate, particularly in ultra-high dimensional scenarios. The idea is that important predictors
should be selected in a vast majority of sub-samples of the original data. This can avoid
selecting the variables due to a few outliers and maintains a set of reliable set of predictors.
Stability selection [39] and SuRF (Chapter 2) are both built on the sub-sampling technique
using Lasso for the variable selection on subsamples. In the Stability selection procedure,
the data is split randomly into two equal samples B times. Each time, all predictors are
fit by Lasso at a pre-specified and fixed grid of penalty parameter values. The variable
is selected by Stability if the proportion of the B subsamples for which it is selected by
Lasso exceeds a pre-specified cut-off m;j,, usually in the range (0.6,0.9). By choosing the
penalty parameter in the Lasso to select a fixed number, ¢, of variables, the per-family error
rate (PFER) is controlled by E (V) < ﬁ, where V is the number of noise variables
selected, and p is the total number of predictors.

SuRF uses a similar sub-sampling procedure to construct a ranked list of predictors,
from the most frequently selected to the least. SuRF then uses this list to perform an

ANOVA forward selection step to formally test whether each selected variable significantly
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improves the fit of the model. The fit is assessed using log-likelihood ratio, and the critical

value, accounting for multiple testing, is computed via a permutation test.

4.3 Method

We develop a two-step method, SuRFgam, based on a sub-sampling approach, a regularised
generalised additive model and forward selection. A similar framework employed in the
SuRF method has been successful in selecting linear predictors, maintaining a low false
positive rate and providing a very competitive prediction performance in various Generalised
linear models (GLM). To select non-linear predictors in subsamples, SuRFgam uses Gamsel
instead of Lasso to perform variable selection on the subsamples.

In the first step, we randomly select B (typically 1,000) subsamples from the data. The
size of these subsamples can be changed, with a range 50-90% of the original dataset
producing reasonable results. We use larger proportions when the original dataset is
small, in order to ensure all subsamples have reasonable size. For each subsample, we
use Gamsel, with fixed y = 0.7, and A = Ay, selected to minimise cross-validated error,
to select variables. The value y = 0.7 was found to produce good results. This value
is larger than the recommendations of the authors of Gamsel, who recommend y < 0.5.
However, this recommendation is designed to enable selection of linear predictors, whereas
SuRFgam does not distinguish between linear and nonlinear predictors, so this criterion
is not so important. Furthermore, larger values of y tend to result in less sparse models,
which is desirable, because the later stage of the SuRFgam method further reduces the set
of selected variables, so selecting sparse models on the subsamples can reduce the ability
to select the true predictors. We then order the predictors by the number of subsamples in
which they are selected (@ # 0 or 8 # 0) by Gamsel.

In the second step, a sequential forward selection via permutation tests is used to select
variables. The null hypothesis Hy of the permutation test is that no variables beyond the
currently selected set are good predictors for the response variable. The active selected
variable set starts as an empty set. For each new selection, for each candidate variable, the
test statistic is a log-likelihood ratio between the current GAM model and the model having
this candidate variable added, using a thin-plate spline basis with a dimension k for each
variable in the GAM models. The number of basis functions is fixed at dimension k = 6.

To find the appropriate critical value, a permutation is applied to all data samples on all
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variables, excluding the ones already selected and the response variable. We then compute
the log-likelihood ratio for each permuted predictor, and take the largest of these values
for each permutation. We perform a large number (usually, C = 200) of permutations,
obtaining a log-likelihood ratio for each one, then take the 100(1 — ) percentile, D{_, of
these values, where « is the chosen significance level for the test, to get the critical value for
the log-likelihood ratio test. Permuting samples in this way breaks the association between
the candidate variables and the response variable while reserving the relationship between
the candidate variables, so that the null hypothesis holds for the permuted samples. The
first variable on the ranked list whose log-likelihood ratio statistic exceeds the critical value
is added to the model, and the next forward selection step begins. When no likelihood ratio
statistic exceeds the critical value, the method ends, and the current GAM is returned as the

final selected model.

4.4 Simulation design

4.4.1 Design matrix

We first simulate a matrix, Xy, of 1000 predictors and N = 100, 000 observations from a
multivariate standard normal distribution with a co-variance matrix whose (i, /)" element
is given by Cov(Xo);; = p!"/! (p = 0.8), so that there is a high correlation among predictors
in the adjacent columns and the correlation diminishes as the separation between the two
variables increases.

Furthermore, we divide the observations in Xy into two equal parts: training samples
X and test samples Xi. The training samples are further divided into 100 replicates,
X}, X2

tr’ >

ces thrOO. Each replicate has N = 500 observations and p = 1000 predictors.
The prediction outcomes will be assessed on a large test dataset X.. From each replicate,
we randomly select 6 predictors as true predictors so that the correlation within the true
predictors and correlation between the true predictors and the remaining predictors are all
different. The training response variables are generated according to those true predictors
in each replicate and 100 sets of the response variables in the test data are simulated based
on the corresponding true variables in the test samples X.

To demonstrate the impact of the strength of the signal on the variable selection, the

standard deviation of the noise term N(0O, o) in the Gaussian model is set to 6 levels:
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o = (1,1.2,1.5,1.8,2,2.5). Similarly, we generate the binary responses at 4 levels:
SNR = (0.7, 1, 3,5) in the logistic regression. Both models share the same training and test

X matrices. The choices of the function of each true predictor in the model are as follows:

filx) =x Linear
fr(x) = x? Nonlinear; quadratic
fx) =3 Nonlinear; cubic
0 ifx>0
fa(x) = Nonlinear; step function
1 ifx<O0
0 ifx>1 . .
f5(x) = Nonlinear; step function
1 ifx<1
fo(x) = sin(mx) Nonlinear; periodic function

These functions cover a range of different types of linear and non-linear behaviour,

shown in Figure 4.1.

(a) g1: Linear (b) g>: Quadratic (c) g3: Cubic

p—

(d) g4: Step (0) (e) g5: Step (1) (f) ge: Periodic sin(mx)

Figure 4.1: True functions in the simulations

Functions f;—f3 are polynomial, and can therefore be perfectly modelled by cubic
splines, while functions f; and f5 are discontinuous, so can only be crudely approximated
by a spline. fg is smooth, so can be fairly well approximated by a spline. However, because
of the periodic nature, the smoothness penalty is relatively high, making it difficult to select

predictors with this functional relationship. Also note that since each X; is simulated from
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a standard normal distribution, for f> and fe there is no correlation between X; and f;(X;),
meaning there is no linear signal for these predictors. This should make these predictors
particularly challenging to select for linear methods.

The Gaussian model can be written as
6
Vie= Y gi(vi) + N(0, o)
n=1

where v;, i=1,2, ... ,6, represent the randomly selected true predictors in each replicate.
gi(v) = fi(v) /7 is the scaled f;(v), chosen so that the non-linear terms f>- f; have the same
scale (mean and standard deviation). The scale factors 7=0"( f(x)) for these functions are
V2, V15, 10.5(1 = 0.5) , 4/0.16(1 = 0.16) and /1 (1 — e=27), respectively .

For the logistic regression model, we used the same coefficient 5 for all six true predictors

v2 —vg and these predictors are scaled in the same way as in the simulations for the Gaussian
model. The coefficients 8 and By are provided in the Table 4.1 for different SNRs. The
proportion of 0’s and 1’s in the simulated training and test samples are reasonably balanced:

roughly 50%.

Table 4.1: Simulation coefficients for the Binomial model at various SNRs

SNR | By B  percentage of 1’s

0.7 -39 0091 460
1 -5 117 46%
3] -11 2.68 48%
5| -16 4.10 52%

Additionally, we aim to investigate how the data dimension impacts the variable selection
of SuRFgam. We therefore consider four subsets of each training data replicate with
dimensions summarised in Table 4.2. Xi represents the original training replicate itself.
X!, isasubsetof X!, fori = 1,2,..., 100 that includes all observations from X! but only 200
predictors including all six true predictors plus 194 randomly selected additional predictors.
The same response data y is used for X, as for X;. Both X} and X} are a subset of X} with
reduced observations, 100 and 200, respectively. These observations are randomly drawn
from X’. The predictors in X}—X| are the same. The response variable yj for replicates X}
and X, are the corresponding subset of the response variables y{. from the training data sets

Xi and Xé.
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Case Scenario Training X Training y N p  No. of replicates
Design X; p> N Xi(=Xfr) yi1 (=y!) 500 1000 100
Design X, N>p X, A\ 500 200 100
Design X3 N=p Xg subset from y’.1 200 200 100
DesignXy p>N X subset from y; 100 200 100

Table 4.2: Data matrices with four different dimensions

From these scenarios, X> is the easiest, having the joint largest number of observations
and the smallest number of predictors. X; and X3 are more challenging than X>, having
more predictors or fewer observations respectively. X4 is more challenging than X3, having
fewer observations. These scenarios cover a range of cases, with X and X4 having p > N,

X5 having N > p and X3 having N = p.

4.4.2 Methods Compared

We compare SuRFgam with a number of variable selection methods, including both linear
methods, which have been shown to work well in many non-linear cases [77], and non-
linear methods. The linear methods compared are Lasso, SuRF, and Stability selection; the
non-linear methods compared are Gamsel, SPAM, RGAM and RGAM_SEL. The overall
true positive rate (TPR) and false positive (FPR) are compared to assess variable selection
performance. The true positive rate for each true variable vy, ..., vg is also compared and
discussed.

For Stability Selection, the probability cutoff is usually set to the range 0.6-0.9. The
higher the cut-off value, the fewer variables will be selected by the method. We only consider
the cutoff 0.6 since previous research has shown that this cut-off is most comparable with
SuRF. Higher cut-offs tend to be more conservative, making the methods incomparable in
terms of variable selection. For Gamsel models, although y < 0.5 is recommended, this
recommendation is designed to improve identification of linear predictors, which is not
assessed in our simulation study. Furthermore, our simulation settings are more complex.
We therefore compared a wider range of y values, ranging from 0.4 to 0.9. For SuRF, we
used the significance levels @ € {0.05,0.1,0.2} in all settings. For SuRFgam, we used
a € {0.05,0.1,0.2} for scenarios of type X; and X,; but for some of the scenarios of type
X3 and Xy, the variable selection results at these levels were incomparable with Gamsel and

other methods, so we used a wider range for @, even comparing @ = 0.9 in some cases.
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For SPAM, the R package does not provide an automated method to select the tuning
parameters. We therefore performed variable selection using a grid of penalty parameters,
and in each simulation, for each fixed number of true predictors 1-6, we chose the smallest
penalty value which selects that many true values, and recorded the false positive rate.
This assessment gives SPAM a huge advantage, selecting the best penalty parameter in
each simulation. However, even with this huge advantage, SPAM is unable to outperform
SuRFgam in the majority of scenarios.

We use trimmed prediction MSE (the largest 5% of simulation MSEs are removed) and
misclassification error rate (MCER) to compare the prediction performance in the Gaussian
and Binomial models respectively. Trimmed MSE avoids issues caused by a small number
of outliers, where performances of some methods can be really bad, and focuses on the
typical performance. For Lasso, Stability Selection, SuURF and SuRFgam, we fit GAM on
the selected variables to predict the test samples. For Gamsel, RGAM and RGAM _SEL, we
use their regularised models with cross-validations based on the training samples to predict

test samples.

4.5 Simulation Results

Detailed tables of results for all simulations are presented in Section 4.8. In this section,

we provide figures to show the results, and discuss the findings for each scenario.

4.5.1 Gaussian Model
Design X, (N=500, P=1000)

Data design in Scenario X presenta p > N case with a large sample size and a large

number of predictors.

Figure 4.2(a) compares the true positive and false positive rates for all methods, while
Figure 4.2(b) compares the predictive accuracy. We see that SuRFgam significantly
outperforms Gamsel, RGAM _SEL and the linear methods, with higher true positive
rate and lower false positive rate. RGAM is able to achieve a higher true positive rate,
but at the cost of a much higher false positive rate. The difference in true positive
rate is small, so the large difference in false positive rate results in worse prediction.

Recall that the SPAM package does not provide appropriate tuning methods, so we
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Figure 4.2: Gaussian models with six true predictors V| —Vg: Left panels show the true positive
versus false positive for variables selection of Lasso, STAB (cutoft 0.6), SuRF (a = 0.05,0.1,0.2),
Gamsel (y ranges from 0.4 to 0.9), RGAM, RGAM _SEL and SuRFgam (a varies, up to 0.2 in
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for non-linear methods only; results for different tuning parameters for each method at each signal
strength level (o =1, 1.2, 1.5, 1.8, 2, and 2.5) are linked. All results are averaged over100 data sets.
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are comparing that method in a way that gives it an unfair advantage. Nevertheless,
SPAM is unable to outperform SuRFgam at any SNR level, and for the low SNR case,

is outperformed by SuRFgam in terms of both true positive and false positive rate.

Figure 4.3 breaks down the true positive rate by functional form of the relation between
predictor and response. As predicted, the linear methods and RGAM _SEL are unable
to select V;, and Vg, where there is no correlation between the predictor and response.
The other variables are selected fairly reliably even by the linear methods, though the
more conservative linear methods (Stability and SuRF) struggle to select V3 and V5 in
the low SNR cases. The nonlinear methods (excluding RGAM_SEL) have no trouble
selecting V,, which has a fairly simple functional relationship between predictor and
response. However, the more fluctuating relationship between Vs and the response
proves more difficult, and only RGAM is able to reliably select this variable in the
low SNR cases. We see that SuRFgam and RGAM have similar rates of selecting
V1-Vs, and the difference in their true positive rates is almost entirely due to the
difficulty of selecting V5. Gamsel also selects V1—V5 reliably for all y values at all
SNRs, but almost never selects Vg for y < 0.5, and rarely selects Vg for y < 0.8 in
the medium-to-low SNR case. Increasing y above this level to enable selection of Vg

results in extremely high false positive rates.

Design X, (N=500, P=200)

Data design X5 is an easier scenario, with fewer noise variables included. From
Figure 4.2(c), we see that all methods have slightly higher true positive rates than
in design X, and Gamsel and RGAM have substantially lower false positive rates.
However, the comparison between methods tells a similar story to design X, with
SuRFgam outperforming Gamsel by a large margin in terms of both true positive and
false positive rates, and the linear methods massively underperforming in terms of
true positive rate. Again, RGAM is able to achieve a slightly higher true positive
rate at the cost of a much higher false positive rate. From Figure 4.2(d), we see that
this trade-off results in a substantial increase in prediction trimmed MSE for RGAM
compared with SuRFgam. In this scenario, the predictive performance of Gamsel
has actually got worse than design X;. Again, despite the assessment method giving

an unfair advantage to SPAM, it is unable to outperform SuRFgam at any SNR level,
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and for low SNR, it is outperformed by SuRFgam.

Figure 4.4 shows the frequency with which the true predictors are selected by each
method. Results are very similar to the X; design, with all methods selecting Vi, V3,
V4 and V5 in the vast majority of cases, all nonlinear methods (excluding RGAM_SEL)
selecting V, reliably, and Gamsel struggling to select V. In this design SuRFgam

does better at selecting Vg, even at low SNR.

Design X5 (N=200, P=200)

Design X3 has a much smaller sample size, which makes variable selection more
challenging. In Figure 4.2(e), we see that all methods struggle in this design, except
at the highest SNR. In this design, Gamsel and SuRFgam with low @ are incomparable,
with SuRFgam having lower true positive rate and lower false positive rate. However,
by increasing the significance level a, we are able to compare the methods, and we
see that SuRFgam outperforms Gamsel in terms of true positive and false positive
rate. In the lowest SNR case, SuRFgam with @ = 0.8 also outperforms RGAM in
terms of both true positive and false positive rate. At higher SNR, the methods are
incomparable, with RGAM achieving both higher true positive rate and higher false
positive rate. From Figure 4.2(f), we see that as in the X and X; designs, this trade-off
results in better prediction for SuRFgam. In this design, the linear methods are more
competitive, having an advantage selecting variables with strong linear correlation,
and a disadvantage selecting variables with little-to-no linear correlation. However,
the linear methods still lag behind SuRFgam in terms of both true positive rate and
false positive rate. In this design, SPAM is directly comparable with SuRFgam, for
all SNR levels, and at all SNR levels, SuRFgam performs better, obtaining higher

true positive and lower false positive rates than SPAM.

Figure 4.5 breaks down the true positive rate by functional form of the relationship.
We see that Vg is still the most difficult predictor to select, with most methods
struggling to select it, particularly at low SNR. However, many of the other predictors
are difficult to select. V; and V, are generally the most frequently selected by the
nonlinear methods, with V3—V5 being more difficult to select. The linear methods are
obviously more able to select V|, which has a linear relation with the response, than

the nonlinear methods. Furthermore, in some cases, the linear methods are more able
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to select some nonlinear predictors with strong linear correlation with the response
than corresponding nonlinear methods. For example, with @ = 0.05, the linear SuURF

selects V4 significantly more frequently than the nonlinear SuRFgam.

Design X, (N=100, P=200)

Design X4 represents the most challenging scenario among the four data designs
due to its limited sample size. With half of the number of samples from X3, all
methods select fewer true variables. Variable selection and prediction results are
shown in Figure 4.2(g) and (h) respectively. The parameter used in Gamsel and
SuRFgam has a large effect on the true positive-false positive trade-off. For small
significance level, SuRFgam is very conservative, and we increase the significance
level up to @ = 0.8 to obtain comparable results to the other methods. At this level
of @, SuRFgam outperforms RGAM, SPAM and Gamsel with y < 0.5 in terms of
both true positive and false positive rates. The linear methods are very competitive
in these scenarios. Interestingly, at low SNR, RGAM is able to outperform SuRFgam
in terms of prediction, despite having fewer true positives and more false positives.
This discrepancy is because RGAM uses Lasso to shrink the fitted functions. In this
case, with small sample size, even methods that select some of the true predictors
rarely do much better than the null model, which selects no predictors. Even when
RGAM selects a large number of noise variables, the shrinkage means that it fits a
model close to the null model. Indeed, looking in more detail at the results, we see
that RGAM selects no variables in over 60% of cases, but in other cases selects a large
number of variables, many of which are noise variables. Because of the shrinkage,
it performs well in these cases. On the other hand, SuRFgam selects more true
variables, but the variance of the function estimation means that SuRFgam does not
outperform RGAM by a wide margin in these cases, while when SuRFgam selects

noise variables, it performs badly, because the final model has no shrinkage.

Figure 4.6 shows the true positive rates broken down by prediction variable. The
results are similar to the X3 design scenarios with Vg being the most difficult variable
to select under all methods. V5 is the easiest variable to select for the nonlinear
methods, and is almost never selected by the linear methods or by RGAM_SEL. V4

and Vs are harder to select than V3 when the parameters « or y are set to conservative
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Figure 4.6: Frequency of six true predictors Vi — Vi being selected for the Xy scenario (N=100,
p=200) in the Gaussian model. The bar-plot shows the selection frequency of each true predictor and
the sum of all true predictors over 100 simulations. The average false positive over 100 simulations
from the same method is displayed at the top of the bar-plot.
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low values, but become easier to select at the less conservative high values, whereas
the frequency of selecting V3 increases much less as @ or y increases. The linear
methods are more able to select V| and V,4 than the nonlinear methods with comparable

parameter settings, which is why these methods are competitive in these scenarios.

4.5.2 Binomial Model

Figure 4.7 shows the true positive versus false positive rates and misclassification error rates

for all methods across all scenarios.

Design X, (N=500, P=1000)

As seen in Figure 4.7(a), SuRFgam is able to achieve a comparable true positive
rate to Gamsel, but with a much lower false positive rate. RGAM is able to achieve
a higher true positive rate, but at the cost of an extremely high false positive rate.
From Figure 4.7(b), we see that this results in a higher misclassification error rate for
RGAM. SPAM also has a much higher false positive rate for every true positive rate
and SNR in this scenario. With this scenario being relatively easy, even in the lowest
SNR cases, the nonlinear methods select more than 4 true predictors. As the linear

methods never select V, or Vg, they are unable to compete in this scenario.

Figure 4.8 shows a breakdown of the true positive rates by variable type. We see that
even at the lowest SNR, SuRFgam does well at selecting Vy, V,> and V4. V; and V4
are well selected by all methods, even the linear methods. V; is well selected by all
non-linear methods, with the exception of RGAM_SEL and Gamsel with y = 0.4.
SuRFgam reliably selects Vs for SNR > 1, but sometimes fails to select it at SNR=0.7,
particularly with @ < 0.1. RGAM and Gamsel with y > 0.5 select V5 more reliably,
at the cost of much higher false positive rates. SuRFgam does not reliably select V3
at SNR < 1, but is able to reliably select it at SNR > 3. RGAM and Gamsel are more
able to select V3 at low SNR. Vg is even more challenging, with SuRFgam unable to
reliably select this variable, even at SNR=5. However, Gamsel with y < 0.8 struggles
even more with this variable, selecting it in fewer than half the simulations, even at
SNR=5, and rarely selecting it at all for SNR < 1. Gamsel with y = 0.9 selects so
many false positives, that it is not worth comparing. RGAM does well at selecting

Ve, and is therefore a viable, less conservative alternative to SuRFgam that is able
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Figure 4.7: Binomial models with six true predictors V| —Vg: Left panels show the true positive
versus false positive for variables selection of Lasso, STAB (cutoff 0.6), SuRF (@ = 0.05,0.1,0.2),
Gamsel (y ranges from 0.4 t0 0.9), RGAM, RGAM_SEL and SuRFgam (« varies, up to 0.2 in X; — X,
and up to 0.9 in X3 — X4). False positive rates are censored at 20 in X; and at 15 in other designs,
in order to better show most differences. Right panels shows the misclassification error (MCER) on
test data sets for non-linear methods only; results for different tuning parameters for each method at
each signal strength level (SNR= 0.7, 1, 3 and 5) are linked. All results are averaged over 100 data

sets.
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Figure 4.8: Frequency of six true predictors V| — Vg being selected for the X; scenario
(N=500, p=1000) in the Binomial model. The bar-plot shows the selection frequency of
each true predictor and the sum of all true predictors over 100 simulations. The average
false positive over 100 simulations from the same method is displayed at the top of the
bar-plot.
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to select predictors whose functional relationship has high smoothness penalty, if

prediction is not the main aim of the variable selection.

Design X, (N=500, P=200)

Figure 4.7(c) and (d) tell a similar story to the X; design case. SuRFgam achieves
comparable true positive rate to Gamsel, but with much lower false positive rate.
RGAM achieves a higher true positive rate, but at the cost of an extremely high false
positive rate, resulting in a higher misclassification error rate for RGAM. SPAM still

has much higher false positive rate for every true positive rate.

Figure 4.9 also shows a similar story to the X design, with SuRFgam reliably selecting
Vi, V2, and V4 even SNR=0.7, and being less able to select the other variables at low
SNR. However, in this design, SuRFgam is able to reliably select even Vi for SNR > 3.
Again, RGAM is able to reliably select all true predictors, even at lower SNR, but at
the cost of high false positive rate. Interestingly, the false positive rate for RGAM
gets larger in the large SNR case, where the problem is, in theory, easier. Gamsel, on

the other hand, still struggles to select Vg at higher SNR.

Design X5 (N=200, P=200)

As the sample size decreases, making the problem more challenging, the true positive
rate falls for all methods. Figure 4.7(e) shows that SuRFgam, even with @ = 0.9 is
still more conservative than RGAM and Gamsel, with the results being incomparable
between SuRFgam and RGAM, and SuRFgam outperforming Gamsel with y = 0.4,
and at higher SNR, also outperforming Gamsel with y = 0.5, in terms of both true-
positive and false-positive rates. Gamsel with higher values of vy is incomparable
with SuRFgam, with higher true-positive and false-positive rates than SuRFgam, but
is outperformed by RGAM. SuRFgam still outperforms SPAM in all cases where
comparisons can be made. Figure 4.7(f) shows that, in most cases, more conservative
variable selection provides better classification, with « in the range 0.4—0.6 providing
the lowest MCER. The much less conservative methods, RGAM and Gamsel therefore
do substantially worse at prediction. For the cases with SNR < 1, Gamsel actually
outperforms RGAM, and even outperforms SuRFgam for one or two values of y.
For these cases, SuRFgam has the lowest false positive and true positive rates, while

Gamsel has the highest for both rates, with RGAM falling in the middle. Thus, the
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Figure 4.9: Frequency of six true predictors V

— Ve being selected for the X, scenario

(N=500, p=200) in the Binomial model. The bar-plot shows the selection frequency of each
true predictor and the sum of all true predictors over 100 simulations. The average false
positive over 100 simulations from the same method is displayed at the top of the bar-plot.
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effect on prediction of the trade-off between true-positive and false-positive rate is not
completely clear-cut. However, even in these cases, the difference in MCER between

SuRFgam and Gamsel is very small.

Figure 4.10 shows that all methods struggle to select the true variables at lower SNR,
with the same patterns of Vi, V> and V4 being the easiest variables to select for
SuRFgam and Gamsel. Interestingly, RGAM struggles to select V, at low SNR in
this scenario, indicating that different methods are sensitive to different functional
forms of the relationship between predictors and response. Again, Vg is the most
challenging variable to select for SuRFgam and Gamsel, but interestingly, RGAM
has more difficulty selecting V,, V3 and V5. Figure 4.10 is also interesting, because
it shows a wider range of a values for SuRFgam. We see that V;-Vs all show a
similar pattern of being selected more frequently as « increases. However, Vj is still
difficult to select, even at the highest @ value. Indeed the frequency of selection of
Ve actually drops slightly for very high « values. This may be because Vg is ranked
fairly low by Gamsel, so there will often be noise variables ranked above it. At high
a values, these noise variables have an increased chance of being selected, and after
noise variables have been selected, it becomes harder to select V. There is also the
risk of saturation of the model — for a binomial model with relatively small sample
size, perfect separation is possible, after which no further variables will be selected.
This can prevent selection of the variables that appear lower down the ranking list.
This problem is actually more acute at higher SNR, since the stronger signal increases

the chance of perfect separation.

Design X, (N=100, P=200)

From the comparisons in Figure 4.7(g), we see that this scenario is less clear-cut than
other scenarios, with more comparisons between the methods possible, but some
cases where SuRFgam performs slightly better in terms of true-positive and false-
positive rates, and some cases where it performs worse than other methods. The
differences are fairly small, indicating that SuRFgam, RGAM and Gamsel perform
similarly in this respect. There are no cases where SPAM outperforms SuRFgam, but
the comparisons are closer in a lot of cases. Looking at the MCER in Figure 4.7(h),

we see that SuRFgam and Gamsel are fairly similar, with Gamsel being able to achieve
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Figure 4.10: Frequency of six true predictors V| — Vi being selected for the X3 scenario
(N=200, p=200) in the Binomial model. The bar-plot shows the selection frequency of each
true predictor and the sum of all true predictors over 100 simulations. The average false
positive over 100 simulations from the same method is displayed at the top of the bar-plot.
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a slightly better MCER. Provided « is not chosen too conservatively, SuRFgam and
Gamsel both outperform RGAM by a wider margin. This is despite RGAM being the
best method in terms of true positive and false positive rate in at least some of the
cases. This may be because of surrogate variables selected by SuRFgam or Gamsel,

or may be because the shrinkage harms classification in these cases.

From the breakdown of true positives in Figure 4.9, we see that while the overall true
positive and false positive rates can be comparable for certain tuning parameter values
for all three methods, there are noteworthy differences between which true predictors
are selected, indicating that the different methods are more sensitive to different
functional relations between predictors and response. In particular, all methods are
sensitive to the linear predictor V; and the symmetric step function V4. However,
SuRFgam and Gamsel also do well at selecting the quadratic predictor V, and the
asymmetric step function V5, while RGAM struggles more with these, particularly
the quadratic V. On the other hand, SuRFgam and particularly Gamsel have great
difficulty selecting the periodic Vg, while RGAM does very well at selecting this
predictor. All methods do fairly badly at selecting the cubic predictor V3.

4.6 Real Data Analysis

We re-analyse the spam email classification dataset from the book ‘The Elements of Sta-
tistical learning’ as an example. This dataset includes information from 4,601 emails with
57 predictors in total. Among these emails, 1813 emails are labelled as ‘spam’. Each
predictor corresponds to a proportion of specific words or characters within the email. We
adopted a 20/80 training-test split for evaluating the performance of the variable selection
and prediction. More specifically we divide the dataset into five folds, each containing
approximately 920 observations. Each fold is used as training samples and the remaining
four folds are test samples.

We compared the performance for Lasso, Stability Selection, SuRF, Gamsel, RGAM,
RGAM_SEL, and SuRFgam. The evaluation of prediction performance is based on two
metrics: the average misclassification error rate (MCER) and average number of selected
variables. For Stability Selection, we explored a range of per-family-error-rate (PERF) from

1 to 15 (close to the maximum allowed for the data dimension). However, using a PERF
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Figure 4.11: Frequency of six true predictors V| — Vi being selected for the X4 scenario
(N=100, p=200) in the Binomial model. The bar-plot shows the selection frequency of each
true predictor and the sum of all true predictors over 100 simulations. The average false
positive over 100 simulations from the same method is displayed at the top of the bar-plot.
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value smaller than 5 resulted in the selection of a very small set of variables and significantly
higher MCER, making it not comparable with other methods. As a result, we use the PERF
6, 10 and 15 and a probability cutoft 0.6 for Stability Selection. In Gamsel, we consider a
range of y values from 0.4 to 0.9 as we used in the simulation. For SuRF and SuRFgam,
the significance level varied from 0.05-0.9. We adopted 5 degrees of freedom and 4 basis
functions when fitting the Gamsel and SuRFgam.

As shown in Figure 4.12, although the prediction MCER is low, Lasso consistently
includes a majority of variables, between 44 and 54, in each fold and the average number
of variables selected across 5 folds amounts to 49 out of 57 available predictors. Except
for ‘fold3’, Gamsel also selects at least 30 variables in each fold and the average number
of selected variables across the folds are between 32.8 and 44.2 for y values of 0.4 and
0.9, respectively. RGAM performs similarly to Gamsel with a value of y = 0.4 in terms of
number of variables selected but its prediction MCER is less favourable than Gamsel. There
is no significant difference between RGAM_SEL and RGAM. RGAM selects slightly more
variables than RGAM _SEL with negligible differences in the prediction. In contrast, Stabil-
ity Selection selects considerably fewer variables than any method, up to 15 approximately.
Even with the largest PEREF, its average prediction MCER remains the highest among all
methods. SuRF and SuRFgam are very competitive in this case. Both methods can achieve
similar prediction to those of Gamsel with a y value of 0.6, but SuRFgam stands out by
selecting fewer variables than SuRF. We also observe that increasing the significance level
above about 0.5 or 0.6 in SuRF and SuRFgam does not significantly change the prediction
MCERs, indicating that additional variables are not necessary. The results show the effi-
cacy of SuRFgam in selecting important features that contribute to a good prediction while

effectively controlling the total number of variables.

4.7 Conclusion

In this chapter, we have developed a new variable selection method, SuRFgam, for selecting
predictors in a GAM. SuRFgam is based on the method SuRF (Chapter 2) for linear variable
selection problems, which was shown to be an extremely competitive conservative variable
selection method. SuRFgam is more conservative than other variable selection methods
for GAMs. In principle the SuRFgam method can apply to any GAM, but our current

implementation depends on an implementation of the Gamsel method that only offers
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Figure 4.12: (Average) MCER vs the (average) number of selected variables
The first subfigure shows average cross-validated MCER with 1 SD vs average number of
selected variables across 5-folds for Lasso, STAB (PERF=6,10, and 15), SuRF (« ranging
from 0.05 to 0.9), SuRFgam (« ranging from 0.05 to 0.9), RGAM,RGAM SEL, Gamsel (y
ranging from 0.4 to 0.9). The rest shows test MCER vs average number of selected
variables in each of 5 folds of data, respectively. 5 dotted lines from left to right represent
the total number of selected variables at 10, 20, 30, 40 and 57 (all available variables).
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Gaussian or Binomial models. We have compared the performance of SuRFgam on a large
range of simulated scenarios, for both Gaussian and Binomial response, in terms of both
true-positive rate and false-positive rate, and found that it performs very well. In many
cases SuRFgam outperforms Gamsel in terms of both true-positive rate and false-positive
rate, and is incomparable with RGAM. In a large majority of cases, SuRFgam outperforms
both other methods in terms of prediction (trimmed MSE for Gaussian simulations, and
MCER for binomial).

SuRFgam was far more conservative than Gamsel and RGAM across all simulations,
always selecting fewer noise variables. In many cases, SuRFgam is also able to select
more true predictors than Gamsel. RGAM nearly always selects more true predictors than
SuRFgam, but also selects many more false predictors, and performs worse in terms of
prediction in all scenarios. The different methods perform differently for different types
of functional relation between predictors and response variables. SuRFgam outperforms
Gamsel at selecting the predictor with a periodic relationship, and outperforms RGAM at
selecting the predictor with a quadratic relationship in the difficult cases.

We also compared the performance of various linear methods for the GAM variable
selection. In many GAM variable selection problems, linear methods can perform very
competitively. This depends a lot on the type of functional relationship between the
predictor and the response. In our simulations, we included two predictors with no linear
correlation with the response. These are extremely challenging for the linear variable
selection methods, so the linear methods are unable to compete with the more general
methods in any of the scenarios studied. The RGAM_SEL method behaves like the linear
methods, because it relies on a linear step, which is unable to select the predictors with no
linear correlation with the response.

In terms of computing time, SuRFgam takes significantly longer time than other meth-
ods in comparison. This is mainly due to the permutation tests in the forward selection
step. However both ranking step and permutation test step can be accelerated by parallel

computing.

4.8 Full Tables of Simulation Results
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Table 4.3: Simulation results (Gaussian) for data type X; (N=500, p=1000)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ | VI V2 V3 V4 V5 V6 | mean SE | mean SE |
SuRFgam 0.05 100 100 100 100 100 88 5.88  0.03 0.31 0.06
SuRFgam 0.10 100 100 100 100 100 88 5.88  0.03 045 0.07
Gamsel 0.4 100 100 100 100 100 6 506 0.02 2559 2.07
Gamsel 0.5 100 100 100 100 100 37 5.37 0.05 32.32 247
Gamsel 0.6 100 100 100 100 100 54 554 0.05 22.62 2.05
Gamsel 0.7 100 100 100 100 100 51 551 0.05 2198 1.88
Gamsel 0.8 100 100 100 100 100 54 554 0.05 2207 1.71
1 Gamsel 0.9 100 100 100 100 100 &4 584 0.04 4122 142
RGAM NA 100 100 100 100 100 100 6.00 0.00 11.19 0.65
RGAM_SEL | NA 100 7 100 100 100 O 407 0.03 446 0.33
Lasso N/A 100 5 100 100 100 1 406 0.02 18.23 1.01
STAB 0.6 100 O 99 100 96 0 395 0.02 0.71 0.08
SuRF 0.05 99 0 99 100 97 0 395 0.02 0.12 0.04
SuRF 0.10 99 0 99 100 97 0 395 0.02 0.17 0.04
SuRF 0.20 99 0 99 100 97 0 395 0.02 0.26 0.05
SuRFgam 0.05 100 100 100 100 100 88 585 0.04 0.29 0.05
SuRFgam 0.10 100 100 100 100 100 85 585 0.04 0.43 0.07
Gamsel 0.4 100 100 100 100 100 2 5.02 0.01 19.54 1.48
Gamsel 0.5 100 100 100 100 100 16 5.16 0.04 2091 1.75
Gamsel 0.6 100 100 100 100 100 33 5.33  0.05 14.53 1.51
Gamsel 0.7 100 100 100 100 100 31 531 0.05 13.86 1.27
Gamsel 0.8 100 100 100 100 100 34 5.34  0.05 14.55 1.31
1.2 Gamsel 0.9 100 100 100 100 100 79 579 0.04 49.13 1.66
RGAM NA 100 100 100 100 100 100 6.00 0.00 11.50 0.69
RGAM_SEL | NA 100 6 100 100 100 O 4.06 0.02 441 0.32
Lasso N/A 100 2 100 100 100 O 4.02 0.01 18.01 1.00
STAB 0.6 100 O 99 100 93 0 392 0.03 0.76  0.08
SuRF 0.05 99 0 97 100 95 0 391 0.03 0.14 0.04
SuRF 0.10 99 0 97 100 95 0 391 0.03 020 0.04
SuRF 0.20 99 0 97 100 95 0 391 0.03 0.28 0.06
SuRFgam 0.05 100 100 100 100 100 79 579 0.04 0.31 0.06
SuRFgam 0.10 100 100 100 100 100 79 579 0.04 0.39 0.06
Gamsel 0.4 100 100 100 100 100 O 5.00 0.00 16.40 1.05
Gamsel 0.5 100 100 100 100 100 6 5.06 0.02 14.27 1.24
Gamsel 0.6 100 100 100 100 100 11 5.11 0.03 941 0.94
Gamsel 0.7 100 100 100 100 100 15 5.15 0.04 8.45 0.78
Gamsel 0.8 100 100 100 100 100 14 5.14 0.03 946 0.92
1.5 Gamsel 0.9 100 100 100 100 100 72 572 0.05 66.73 1.85
RGAM NA 100 100 100 100 100 100 6.00 0.00 11.56 0.72
RGAM_SEL | NA 100 3 100 100 98 0 401 0.02 4.14 0.31
Lasso N/A 100 3 100 100 98 0 401 0.02 17.94 0.94
STAB 0.6 100 O 97 100 89 0 3.86 0.03 0.71 0.08
SuRF 0.05 99 0 97 100 90 0 3.86 0.03 0.16 0.04
SuRF 0.10 99 0 97 100 90 0 3.86 0.03 0.21 0.05
SuRF 0.20 99 0 97 100 91 0 3.87 0.03 0.30 0.06
SuRFgam 0.05 100 100 100 100 100 73 573 0.04 0.29 0.05
SuRFgam 0.10 100 100 100 100 100 73 572  0.05 041 0.07
Gamsel 0.4 100 98 100 100 99 0 497 0.02 13.79 0.79
Gamsel 0.5 100 100 99 100 100 2 5.01 0.02 11.07 0.94
Gamsel 0.6 100 100 99 100 100 7 5.06 0.03 7.64 0.78
Gamsel 0.7 100 100 99 100 100 6 5.05 0.03 6.92 0.59
Gamsel 0.8 100 100 99 100 100 8 5.07 0.03 799 0.73
Gamsel 0.9 100 100 100 100 100 63 5.63 0.05 84.77 1.99
RGAM NA 100 100 99 100 100 100 599 0.01 11.44 0.75
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Table 4.3: Simulation results (Gaussian) for data type X; (N=500, p=1000)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
1.8 \ \ | VI V2 V3 V4 V5 V6 |mean SE | mean SE |
RGAM_SEL | NA 100 3 99 100 98 0 4.00 0.02 3.92 0.28
Lasso N/A 100 2 100 100 98 1 401 0.02 17.92 0.97
STAB 0.6 100 O 94 100 84 0 378 0.04 0.73 0.08
SuRF 0.05 98 0 93 100 82 0 373  0.05 0.21 0.05
SuRF 0.10 98 0 93 100 83 0 374  0.05 0.28 0.05
SuRF 0.20 98 0 95 100 86 0 3.79 0.04 0.38 0.07
SuRFgam 0.05 98 100 99 99 98 68 5.62 0.06 0.25 0.04
SuRFgam 0.10 98 100 99 100 98 68 563 0.05 0.39 0.06
Gamsel 0.4 100 97 99 100 99 0 495 0.02 12.49 0.73
Gamsel 0.5 100 100 99 100 100 1 5.00 0.01 9.64 0.84
Gamsel 0.6 100 100 99 100 100 3 5.02  0.02 6.89 0.69
Gamsel 0.7 100 100 99 100 100 3 5.02 0.02 6.23 0.57
Gamsel 0.8 100 100 99 100 100 6 505 0.03 8.63 0.72
2.0 Gamsel 0.9 100 100 99 100 100 58 557 0.05 96.58 204
RGAM NA 100 100 99 100 100 100 599 0.01 11.07 0.75
RGAM_SEL | NA 100 3 98 100 98 0 3.99 0.03 349 0.27
Lasso N/A 100 2 100 100 98 0 4.00 0.02 17.8 0.98
STAB 0.6 100 O 90 99 80 0 3.69 0.05 0.69 0.08
SuRF 0.05 96 0 89 100 80 0 3.65 0.05 0.27 0.05
SuRF 0.10 96 0 91 100 81 0 3.68 0.05 0.30 0.05
SuRF 0.20 96 0 91 100 81 0 3.68 0.05 0.39 0.06
SuRFgam 0.05 94 98 95 98 92 57 534  0.07 0.28 0.05
SuRFgam 0.10 94 98 96 98 92 57 535 0.06 0.44 0.07
Gamsel 0.4 100 75 96 100 92 0 463 0.06 9.11 0.69
Gamsel 0.5 100 98 96 100 97 0 491 0.03 795 0.70
Gamsel 0.6 100 100 96 98 100 1 495 0.03 6.26 0.60
Gamsel 0.7 100 100 96 98 100 1 495 0.03 592 0.61
Gamsel 0.8 100 100 98 99 100 5 5.02 0.03 14.86 1.11
2.5 Gamsel 0.9 100 100 99 100 100 45 544  0.05 124.54 2.30
RGAM NA 100 98 96 100 97 99 590 0.03 930 0.71
RGAM_SEL | NA 100 2 92 97 93 0 3.84 0.05 3.28 0.29
Lasso N/A 100 3 95 100 94 1 393 0.04 18.63 1.06
STAB 0.6 98 0 76 93 62 0 3.29  0.07 0.66 0.08
SuRF 0.05 93 0 79 92 60 0 3.24  0.07 0.33 0.05
SuRF 0.10 94 0 83 92 69 0 3.38 0.06 0.40 0.06
SuRF 0.20 94 0 84 94 74 0 346 0.06 0.53 0.07

Table 4.4: Simulation results (Gaussian) for data type X, (N=500, p=200)

SIGMA Method Param Selected variables True Positive | False Positive ‘
\ \ | VI V2 V3 V4 V5 V6 |mean SE | mean SE |

SuRFgam 0.05 100 100 100 100 100 99 5.99 0.01 0.27 0.05

SuRFgam 0.10 100 100 100 100 100 99 5.99 0.01 040 0.07

SuRFgam 0.20 100 100 100 100 100 99 5.99 0.01 047  0.07

Gamsel 0.4 100 100 100 100 100 91 591 0.03 80.53 2.70

Gamsel 0.5 100 100 100 100 100 95 595 0.02 62.88 1.99

Gamsel 0.6 100 100 100 100 100 94 594 0.02 47.53 2.14

Gamsel 0.7 100 100 100 100 100 96 596 0.02 4993 2.04

1 Gamsel 0.8 100 100 100 100 100 96 596 0.02 48.07 2.12
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Table 4.4: Simulation results (Gaussian) for data type X, (N=500, p=200)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ | VI V2 V3 V4 V5 V6 | mean SE | mean SE |
Gamsel 0.9 100 100 100 100 100 95 595 0.02 4950 2.02
RGAM NA 100 100 100 100 100 100 6.00 0.00 722  0.56
RGAM_SEL | NA 100 18 100 100 100 9 427 0.05 245 0.24
Lasso N/A 100 15 100 100 100 8 423 004 1332 0.84
STAB 0.6 100 O 99 100 99 0 398 0.01 0.19 0.04
SuRF 0.05 100 O 99 100 100 O 3.99 0.01 0.07 0.03
SuRF 0.10 100 O 99 100 100 O 3.99 0.01 0.12 0.03
SuRF 0.20 100 O 99 100 100 O 3.99 0.01 022 0.04
SuRFgam 0.05 100 100 100 100 100 99 5.99 0.01 0.27 0.05
SuRFgam 0.10 100 100 100 100 100 99 5.99 0.01 042  0.07
SuRFgam 0.20 100 100 100 100 100 99 5.99 0.01 0.57 0.08
Gamsel 0.4 100 100 100 100 100 65 565 0.05 57.19 3.17
Gamsel 0.5 100 100 100 100 100 85 585 0.04 45.69 225
Gamsel 0.6 100 100 100 100 100 85 585 0.04 3420 2.10
Gamsel 0.7 100 100 100 100 100 85 585 0.04 3449 224
1.2 Gamsel 0.8 100 100 100 100 100 &4 584 0.04 3431 2.19
Gamsel 0.9 100 100 100 100 100 90 590 0.03 36.58 1.96
RGAM NA 100 100 100 100 100 100 6.00 0.00 6.82 048
RGAM_SEL | NA 100 18 100 100 100 9 427 0.05 239 0.24
Lasso N/A 100 14 100 100 100 10 424 004 13.15 0.81
STAB 0.6 100 O 99 100 99 0 398 0.01 0.18 0.04
SuRF 0.05 100 O 99 100 100 O 3.99 0.01 0.07 0.03
SuRF 0.10 100 O 99 100 100 O 3.99 0.01 0.14 0.04
SuRF 0.20 100 O 99 100 100 O 3.99 0.01 023 0.05
SuRFgam 0.05 100 100 100 100 100 96 596 0.02 0.22 0.05
SuRFgam 0.10 100 100 100 100 100 96 596 0.02 040 0.07
SuRFgam 0.20 100 100 100 100 100 96 596 0.02 0.56 0.08
Gamsel 0.4 100 100 100 100 100 31 531 0.05 2789 244
Gamsel 0.5 100 100 100 100 100 50 550 0.05 23.61 1.85
Gamsel 0.6 100 100 100 100 100 54 5.54 0.05 14.72 1.51
Gamsel 0.7 100 100 100 100 100 52 5.52  0.05 1447 1.58
1.5 Gamsel 0.8 100 100 100 100 100 52 5.52  0.05 14.55 1.54
Gamsel 0.9 100 100 100 100 100 86 5.86 0.03 29.25 1.15
RGAM NA 100 100 100 100 100 100 6.00 0.00 7.03 049
RGAM_SEL | NA 100 13 100 100 100 9 422 0.04 232 027
Lasso N/A 100 12 100 100 100 9 421 004 13.16 0.78
STAB 0.6 100 O 99 100 95 0 394  0.02 0.17 0.04
SuRF 0.05 100 O 99 100 98 0 397 0.02 0.08 0.03
SuRF 0.05 100 O 99 100 99 0 398 0.01 0.14 0.04
SuRF 0.05 100 O 99 100 100 O 399 0.01 0.21 0.05
SuRFgam 0.05 100 100 100 100 99 92 591 0.02 0.21 0.05
SuRFgam 0.10 100 100 100 100 100 92 592 0.03 0.39  0.07
SuRFgam 0.20 100 100 100 100 100 92 5.92 0.03 0.59 0.09
Gamsel 0.4 100 100 100 100 100 13 5.13  0.03 18.15 1.69
Gamsel 0.5 100 100 100 100 100 22 522 0.04 13.33 1.37
Gamsel 0.6 100 100 100 100 100 26 526 0.04 823 0.99
Gamsel 0.7 100 100 100 100 100 25 525 0.04 7.91 1.05
1.8 Gamsel 0.8 100 100 100 100 100 26 526 0.04 8.25 1.00
Gamsel 0.9 100 100 100 100 100 83 583 0.04 36.04 1.08
RGAM NA 100 100 100 100 100 100 6.00 0.00 6.63 047
RGAM_SEL | NA 100 13 100 100 100 8 421 0.04 2.10 0.23
Lasso N/A 100 12 100 100 100 8 42 0.04 1347 0.80
STAB 0.6 100 O 96 100 92 0 3.88 0.03 0.16 0.04
SuRF 0.05 100 O 98 100 96 0 394  0.02 0.09 0.03
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Table 4.4: Simulation results (Gaussian) for data type X, (N=500, p=200)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ | VI V2 V3 V4 V5 V6 | mean SE | mean SE |
SuRF 0.10 100 O 98 100 96 0 394 0.02 0.13 0.03
SuRF 0.20 100 O 99 100 98 0 397 0.02 020 0.05
SuRFgam 0.05 100 100 100 100 100 93 593 0.03 023 0.05
SuRFgam 0.10 100 100 99 100 100 93 592 0.03 037 0.07
SuRFgam 0.20 100 100 100 100 100 93 593 0.03 0.55 0.09
Gamsel 0.4 100 99 100 100 100 8 507 0.03 13.69 1.33
Gamsel 0.5 100 100 100 100 100 15 515 0.04 10.59 1.15
Gamsel 0.6 100 100 100 100 100 18 5.18 0.04 6.53 0.84
Gamsel 0.7 100 100 100 100 100 14 5.14  0.03 578  0.83
2.0 Gamsel 0.8 100 100 100 100 100 18 5.18 0.04 6.69 0.82
Gamsel 0.9 100 100 100 100 100 &4 5.84 0.04 42.12 1.19
RGAM NA 100 100 100 100 100 100 6.00 0.00 6.62 047
RGAM_SEL | NA 100 11 100 100 99 6 416 0.04 228 0.25
Lasso N/A 100 12 100 100 99 7 418 004 13.62 0.83
STAB 0.6 100 O 96 100 &9 0 3.85 0.04 0.14 0.03
SuRF 0.05 99 0 97 99 03 0 3.88 0.03 0.09 0.03
SuRF 0.05 99 0 98 99 96 0 392 0.03 0.16 0.04
SuRF 0.05 99 0 98 99 96 0 392 0.03 0.22  0.05
SuRFgam 0.05 99 100 99 96 99 86 579 0.04 0.17  0.05
SuRFgam 0.10 99 100 99 96 98 86 578 0.04 0.28 0.06
SuRFgam 0.20 99 100 99 96 98 86 578 0.04 046  0.06
Gamsel 0.4 100 94 100 100 99 3 496 0.03 836 0.74
Gamsel 0.5 100 100 99 100 99 3 5.01 0.02 6.99 0.77
Gamsel 0.6 100 100 99 99 100 7 505 0.03 432  0.56
Gamsel 0.7 100 100 98 100 100 6 504 0.03 3.69 045
2.5 Gamsel 0.8 100 100 99 100 100 9 5.08 0.03 596 0.60
Gamsel 0.9 100 100 100 100 100 77 577 0.04 5724 1.33
RGAM NA 100 100 99 100 100 100 5.99 0.01 5.91 0.49
RGAM_SEL | NA 100 9 97 100 98 8 412 0.05 2.10 0.24
Lasso N/A 100 8 100 100 99 7 414 004 13.18 0.80
STAB 0.6 100 O 90 94 76 0 3.6 0.06 0.15 0.04
SuRF 0.05 99 0 93 98 82 0 372  0.05 0.1 0.03
SuRF 0.05 99 0 93 99 85 0 376 0.05 0.15 0.04
SuRF 0.05 99 0 96 99 88 0 3.82  0.04 024  0.05

Table 4.5: Simulation results (Gaussian) for data type X3 (N=200, p=200)

SIGMA Method Param Selected variables True Positive | False Positive ‘
| | | VI V2 V3 V4 V5 V6 |mean SE | mean SE |
SuRFgam 0.05 98 99 99 97 99 94 592 0.04 0.16 0.04
SuRFgam 0.10 98 99 99 98 99 96 595 0.02 0.25 0.05
SuRFgam 0.20 98 99 99 97 99 95 593 0.04 0.39  0.07
Gamsel 0.4 100 94 99 99 99 7 498 004 1190 0.95
Gamsel 0.5 100 100 99 99 100 13 5.11 0.04 11.25 1.20
Gamsel 0.6 100 100 99 99 100 19 5.17 0.04 796  0.85
Gamsel 0.7 100 100 99 99 100 17 5.15 0.04 8.11 0.71
1 Gamsel 0.8 100 100 99 99 100 18 5.16 0.04 8.81 0.89
RGAM NA 100 100 100 99 100 100 5.99 0.01 822 0.53
RGAM_SEL | NA 100 15 96 99 96 6 412 0.06 4.01 0.34
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Table 4.5: Simulation results (Gaussian) for data type X3 (N=200, p=200)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ | VI V2 V3 V4 V5 V6 | mean SE | mean SE |
Gamsel 0.9 100 100 100 100 100 57 5.57 0.05 34.01 0.87
Lasso N/A 100 16 98 99 95 7 415 006 1273 0.74
STAB 0.6 98 2 71 95 65 0 331 0.08 0.18 0.04
SuRF 0.05 97 1 83 95 76 1 3.53 0.07 0.13 0.04
SuRF 0.1 97 1 89 97 78 1 3.63 0.07 02 0.05
SuRF 0.2 97 2 89 98 79 1 3.66 0.07 0.35 0.06
SuRFgam 0.05 98 98 96 95 99 89 5.81 0.05 0.13 0.04
SuRFgam 0.10 98 99 97 96 99 89 5.84 0.05 0.22  0.05
SuRFgam 0.20 98 99 98 97 99 90 5.87 0.04 042 0.07
Gamsel 0.4 100 90 99 99 98 5 491 0.05 1097 0.96
Gamsel 0.5 100 100 99 99 99 11 5.08 0.04 9.82 1.12
Gamsel 0.6 100 100 98 99 100 15 5.12  0.04 7.16  0.78
Gamsel 0.7 100 100 99 99 100 15 5.13  0.04 7.18  0.69
1.2 Gamsel 0.8 100 100 99 99 100 15 5.13  0.04 8.52 091
Gamsel 0.9 100 100 100 99 100 54 553 0.05 3882 0.87
RGAM NA 100 100 99 99 100 100 598 0.01 8.05 0.56
RGAM_SEL | NA 100 15 95 98 94 6 4.08 0.06 3.81 0.32
Lasso N/A 100 15 98 99 93 6 411 0.05 1254 0.78
STAB 0.6 96 2 66 90 59 0 3.13 0.08 0.18 0.05
SuRF 0.05 98 1 76 94 70 1 340 0.08 0.15 0.04
SuRF 0.10 98 1 81 94 76 1 3.51 0.08 0.18 0.04
SuRF 0.20 98 1 8 98 76 1 3.59 0.07 0.32  0.06
SuRFgam 0.05 96 95 82 90 94 74 531 0.10 0.17  0.05
SuRFgam 0.10 97 97 84 94 95 75 542  0.09 0.3 0.06
SuRFgam 0.20 98 98 89 96 97 76 554 0.08 0.51 0.08
SuRFgam 0.30 98 99 89 95 98 76 5.55 0.08 0.81 0.10
SuRFgam 0.40 9 99 90 97 99 76 560 0.07 1.11 0.11
SuRFgam 0.50 99 99 9] 97 99 77 5.62 0.07 1.38  0.12
SuRFgam 0.60 99 100 93 97 99 73 5.61 0.06 1.91 0.16
SuRFgam 0.80 99 100 98 98 99 68 5.62 0.06 328 0.21
Gamsel 0.4 100 79 96 98 93 5 471 0.06 8.82 0.74
1.5 Gamsel 0.5 100 98 96 98 97 3 492 0.04 746  0.84
Gamsel 0.6 100 99 94 98 99 11 5.01 0.05 6.27 0.74
Gamsel 0.7 100 99 95 98 99 10 501 0.05 6.27 0.61
Gamsel 0.8 100 100 98 98 100 13 509 0.04 9.02 0.68
Gamsel 0.9 100 100 99 98 100 50 547 0.05 45.17 0.87
RGAM NA 100 95 96 98 99 100 5.88 0.04 7.69  0.58
RGAM_SEL | NA 98 13 87 96 88 6 3.88  0.08 326  0.28
Lasso N/A 100 14 95 98 90 6 403 006 12.16 0.76
STAB 0.6 94 2 58 84 47 0 2.85 0.08 0.18 0.04
SuRF 0.05 93 1 62 78 58 1 293 0.10 0.17 0.04
SuRF 0.10 95 1 70 88 64 1 3.19 0.09 026 0.05
SuRF 0.20 97 2 75 94 70 1 339 0.08 038 0.06
SuRFgam 0.05 83 91 69 70 72 51 436 0.16 0.13 0.04
SuRFgam 0.10 8 94 72 72 81 55 461 0.14 0.2 0.05
SuRFgam 0.20 96 94 77 82 91 62 502 0.11 045 0.07
SuRFgam 0.30 96 93 80 89 94 63 5.15 0.11 0.69 0.09
SuRFgam 0.40 97 94 8l 90 95 63 520 0.10 096 0.11
SuRFgam 0.50 97 96 82 8 94 63 521 0.10 1.29  0.12
SuRFgam 0.60 97 96 85 89 94 61 522 0.10 1.92 0.16
SuRFgam 0.80 9 97 91 93 97 54 531 0.08 3.15 022
Gamsel 0.4 97 67 8 96 86 4 436 0.10 739 0.71
1.8 Gamsel 0.5 98 94 89 96 91 2 470 0.06 693 0.84
Gamsel 0.6 9 97 8 95 96 8 481 0.06 548  0.67
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Table 4.5: Simulation results (Gaussian) for data type X3 (N=200, p=200)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ | VI V2 V3 V4 V5 V6 | mean SE | mean SE |
Gamsel 0.7 99 98 86 96 95 8 4.82 0.06 5.81 0.61
Gamsel 0.8 100 99 95 98 99 10 501 0.05 11.13 0.62
RGAM NA 100 91 93 97 94 96 571 0.06 7.03 0.60
RGAM_SEL | NA 95 10 84 93 80 5 3.67 0.09 2.61 0.25
Gamsel 0.9 100 100 99 98 100 49 546 0.05 51.41 0.93
Lasso N/A 99 10 91 98 88 7 393 0.07 12.19 0.81
STAB 0.60 91 1 49 72 39 0 252  0.08 022 0.05
SuRF 0.05 92 1 54 67 47 1 2.62 0.10 0.18 0.04
SuRF 0.10 93 1 59 77 53 1 2.84 0.10 0.27 0.05
SuRF 0.20 94 1 66 8 60 1 3.06 0.09 044  0.07
SuRFgam 0.05 70 79 57 59 55 41 3.61 0.16 0.14 0.04
SuRFgam 0.10 82 87 63 61 66 42 4.01 0.15 0.25 0.05
SuRFgam 0.20 83 92 67 68 75 46 431 0.14 0.54 0.08
SuRFgam 0.30 92 94 75 77 80 50 468 0.12 0.66 0.08
SuRFgam 0.40 92 94 77 81 8 52 481 0.12 094 0.11
SuRFgam 0.50 94 94 79 84 8 50 490 0.11 1.17  0.12
SuRFgam 0.60 93 95 79 85 87 48 4.87 0.11 1.88  0.16
SuRFgam 0.80 93 98 82 88 91 45 497 0.10 3.09 0.22
Gamsel 0.4 9% 42 75 91 79 2 3.85 0.12 597 0.67
2.0 Gamsel 0.5 97 91 82 96 87 1 454  0.09 598 0.70
Gamsel 0.6 97 95 81 92 93 6 464 0.08 5.12  0.66
Gamsel 0.7 98 98 82 92 95 5 470 0.06 5.17 0.55
Gamsel 0.8 9 99 92 96 99 9 494 005 13.12 0.67
Gamsel 0.9 100 100 99 98 100 51 548 0.05 5490 094
RGAM NA 100 90 8 97 8 86 544  0.09 643 0.71
RGAM_SEL | NA 94 8 73 86 67 4 332  0.11 2.14  0.23
Lasso N/A 99 10 88 98 83 5 3.83 0.07 11.85 0.82
STAB 0.6 87 1 45 64 34 1 232 0.08 020 0.04
SuRF 0.05 87 0 50 58 40 1 236 0.10 0.19 0.04
SuRF 0.10 89 0 53 67 47 1 257 0.11 030 0.06
SuRF 0.20 91 1 57 77 55 1 2.82  0.09 045 0.07
SuRFgam 0.05 45 48 36 24 24 18 195 0.14 0.04 0.02
SuRFgam 0.10 51 61 42 35 31 19 239  0.15 0.17 0.04
SuRFgam 0.20 63 74 47 51 42 21 298 0.13 032 0.05
SuRFgam 0.30 64 77 50 53 48 24 3.16 0.14 0.64 0.08
SuRFgam 0.40 70 80 54 56 51 25 336 0.14 0.91 0.10
SuRFgam 0.50 74 83 60 61 63 23 3.64 0.14 1.25 0.14
SuRFgam 0.60 79 83 62 67 64 26 3.81 0.13 1.75 0.15
SuRFgam 0.80 85 8 67 72 172 27 411 0.12 3.01 0.21
Gamsel 0.4 82 21 52 64 45 1 265 0.15 3.41 0.54
25 Gamsel 0.5 92 69 58 77 65 1 362 0.13 406 0.51
Gamsel 0.6 85 87 61 67 71 2 373  0.12 3.80 0.59
Gamsel 0.7 94 93 67 81 77 3 4.15 0.09 466 0.50
Gamsel 0.8 98 99 8 95 95 11 484 006 19.39 0.86
Gamsel 0.9 98 100 96 96 98 46 534  0.06 62.79 092
RGAM NA 89 63 59 71 60 57 399 0.19 4.51 0.71
RGAM_SEL | NA 75 8 47 57 42 4 233  0.14 1.17  0.17
Lasso N/A 97 8 76 92 76 4 353 0.08 11.15 0.87
STAB 0.6 75 0 38 44 25 1 1.83  0.09 020 0.04
SuRF 0.05 73 0 35 45 23 1 1.77 0.10 0.17 0.04
SuRF 0.10 75 0 39 46 27 1 1.88  0.10 032 0.05
SuRF 0.20 85 0 46 59 36 1 227  0.10 0.50 0.07
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Table 4.6: Simulation results (Gaussian) for data type X4 (N=100, p=200)

Selected variables True Positive | False Positive ‘
Method Param
\ |V V2 V3 V4 V5 V6 |mean SE | mean SE |
SuRFgam 0.05 41 42 25 24 26 17 1.75 0.17 0.09 0.03
SuRFgam 0.10 52 53 33 32 37 25 232 0.19 023 0.05
SuRFgam 0.20 65 68 47 48 59 34 321  0.20 042 0.07
SuRFgam 0.30 70 74 55 55 66 37 3.57 0.19 0.70  0.09
SuRFgam 0.40 76 79 60 63 69 39 3.86 0.18 0.84 0.11
SuRFgam 0.50 82 87 66 68 77 41 421 0.17 1.18 0.13
SuRFgam 0.60 86 88 71 76 76 41 438 0.15 1.97 0.18
SuRFgam 0.80 91 92 70 81 86 47 4.67 0.13 377 0.27
Gamsel 0.4 89 38 70 75 64 7 343 0.16 7.00 0.79
Gamsel 0.5 91 76 78 78 79 8 410 0.14 7.60 0.87
Gamsel 0.6 91 90 79 86 86 11 443  0.10 742  0.69
Gamsel 0.7 94 93 78 81 89 12 447 0.10 7.10 0.61
Gamsel 0.8 9 96 85 94 96 14 484 006 12.16 0.58
Gamsel 0.9 98 98 92 99 98 36 521 0.06 33.80 0.66
RGAM NA 92 66 67 80 77 73 455 0.16 5.51 0.51
RGAM_SEL | NA 79 11 58 63 52 8 271  0.16 253 042
Lasso N/A 92 8 76 81 79 9 345 0.11 11.51 0.80
STAB 0.6 73 0 32 40 17 O 1.62 0.09 020 0.04
SuRF 0.05 64 0 27 38 19 O 1.48 0.10 0.21 0.04
SuRF 0.10 70 0 36 48 28 O 1.82 0.11 0.31 0.05
SuRF 0.20 77 1 43 53 38 O 2.12  0.11 045 0.07
SuRFgam 0.05 31 35 19 16 20 11 1.32  0.13 0.13 0.04
SuRFgam 0.10 43 45 23 24 28 15 1.78 0.16 0.16 0.04
SuRFgam 0.20 55 56 31 35 38 24 239  0.18 044  0.07
SuRFgam 0.30 63 69 43 48 52 28 3.03 0.18 0.56 0.08
SuRFgam 0.40 63 74 51 52 59 28 3.27 0.17 0.77 0.10
SuRFgam 0.50 68 79 56 56 62 28 349 0.16 092 0.11
SuRFgam 0.60 73 82 59 65 64 30 3.73 0.16 1.57 0.16
SuRFgam 0.80 83 88 61 75 72 34 413 0.15 3.11 0.26
Gamsel 0.4 8 28 62 70 55 5 3.05 0.17 589 0.77
Gamsel 0.5 89 68 68 76 T0 7 3.78 0.15 6.85 0.87
Gamsel 0.6 88 & 70 72 177 17 399 0.13 6.01 0.62
Gamsel 0.7 91 8 71 77 87 7 4.18 0.10 640 0.54
Gamsel 0.8 9 94 82 91 95 15 476 0.07 1341 0.60
Gamsel 0.9 98 97 8 97 97 36 514 0.07 36.15 0.60
RGAM NA 83 54 65 67 61 63 393 0.19 4.69 0.56
RGAM_SEL | NA 73 6 50 54 42 9 234  0.16 2.38 0.55
Lasso N/A 91 8 73 74 75 8 329 0.12 11.29 0.86
STAB 0.6 68 0 28 38 13 O 1.47  0.09 020 0.04
SuRF 0.05 56 0 24 34 16 O 1.30 0.10 0.18 0.04
SuRF 0.10 64 0 35 43 22 0 1.64 0.11 0.31 0.05
SuRF 0.20 69 1 36 49 29 0 1.84 0.11 048 0.07
SuRFgam 0.05 23 23 15 6 14 7 0.88 0.09 0.08 0.03
SuRFgam 0.10 31 32 18 12 17 8 1.18 0.11 0.17 0.04
SuRFgam 0.20 40 37 21 17 24 13 1.52 0.14 035 0.06
SuRFgam 0.30 49 49 26 26 30 19 1.99 0.14 0.56 0.08
SuRFgam 0.40 53 60 29 33 38 21 234  0.14 0.68 0.09
SuRFgam 0.50 56 65 34 41 47 20 263 0.15 1.00 0.11
SuRFgam 0.60 65 71 44 51 50 19 3.00 0.15 1.59 0.14
SuRFgam 0.80 74 76 56 64 61 22 353 0.13 3.11 0.27
Gamsel 0.4 65 16 42 53 40 4 220 0.18 4.12  0.65
Gamsel 0.5 76 53 52 61 49 4 295 0.19 579 092
Gamsel 0.6 77 78 53 59 61 5 333  0.15 493  0.62
Gamsel 0.7 88 84 62 71 75 5 3.85 0.11 599 0.50
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Table 4.6: Simulation results (Gaussian) for data type X4 (N=100, p=200)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ |V V2 V3 V4 V5 V6 |mean SE | mean SE |
Gamsel 0.8 94 92 78 84 92 20 460 008 15.63 0.66
Gamsel 0.9 97 97 85 91 96 34 500 0.07 39.09 0.59
RGAM NA 70 37 46 50 35 40 278  0.21 3.49  0.50
RGAM_SEL | NA 56 4 33 39 33 6 1.71 0.17 1.62 0.28
Lasso N/A 88 7 63 T2 66 5 3.01 0.13 10.70 0.92
STAB 0.6 61 O 24 30 11 O 1.26  0.08 0.19 0.04
SuRF 0.05 47 0 20 23 10 O 1.00 0.09 0.16 0.04
SuRF 0.10 54 0 26 33 14 O 1.27 0.10 026 0.05
SuRF 0.20 63 1 34 40 20 O 1.58 0.11 045 0.07
SuRFgam 0.05 16 16 13 4 7 2 0.58 0.07 0.07 0.03
SuRFgam 0.10 26 18 15 6 15 5 0.85 0.09 0.18 0.04
SuRFgam 0.20 29 28 19 13 18 6 1.13  0.11 030 0.05
SuRFgam 0.30 34 36 20 18 20 9 1.37 0.11 049  0.07
SuRFgam 0.40 40 45 23 23 28 13 1.72  0.12 0.69 0.09
SuRFgam 0.50 46 50 25 26 32 11 1.90 0.12 0.88 0.10
SuRFgam 0.60 52 60 24 31 32 10 2.09 0.12 1.53 0.15
SuRFgam 0.80 62 66 39 48 43 15 273  0.14 3.05 0.23
Gamsel 0.4 52 11 29 40 28 4 1.64 0.17 3.14  0.60
1.8 Gamsel 0.5 57 34 36 47 33 3 2.10 0.20 460 0.89
Gamsel 0.6 64 60 37 51 46 3 261 0.15 373  0.56
Gamsel 0.7 80 78 53 64 68 4 347 0.11 6.11 0.50
Gamsel 0.8 91 91 72 82 86 19 441 0.10 17091 0.67
Gamsel 0.9 93 94 76 87 92 32 474 008 4192 0.55
RGAM NA 52 20 32 37 24 23 1.88  0.20 248 041
RGAM_SEL | NA 42 2 24 31 22 3 1.24  0.15 1.37 0.29
Lasso N/A 82 6 58 64 52 4 266 0.13 9.08 0.92
STAB 0.6 48 0 18 27 9 0 1.02 0.08 0.16 0.04
SuRF 0.05 42 0 14 19 9 0 0.84 0.08 0.16 0.04
SuRF 0.10 45 0 18 25 10 O 098 0.09 024 0.05
SuRF 0.20 53 1 27 34 13 0 1.28 0.10 045 0.07
SuRFgam 0.05 13 15 11 4 4 2 049 0.07 0.06 0.02
SuRFgam 0.10 19 17 13 6 7 3 0.65 0.08 0.10 0.03
SuRFgam 0.20 25 19 13 8 15 5 0.85 0.09 033  0.06
SuRFgam 0.30 30 29 18 16 18 5 1.16 0.10 047  0.07
SuRFgam 0.40 33 37 19 21 20 10 140 0.11 0.62 0.09
SuRFgam 0.50 36 40 19 21 25 12 1.53 0.11 096 0.11
SuRFgam 0.60 46 52 24 26 29 11 1.88 0.12 1.27 0.13
SuRFgam 0.80 55 64 28 40 34 10 231 0.13 293  0.25
Gamsel 0.4 40 8 22 32 17 3 1.22  0.15 2.69 0.61
2.0 Gamsel 0.5 45 29 30 38 27 3 1.72  0.18 397 0.85
Gamsel 0.6 58 54 35 41 38 1 227 0.14 324 051
Gamsel 0.7 80 75 51 60 62 4 332  0.11 636 048
Gamsel 0.8 91 90 67 75 82 20 425 010 19.62 0.68
Gamsel 0.9 93 93 74 8 90 32 468 009 43.12 0.56
RGAM NA 49 17 28 30 14 15 1.53 0.18 225 043
RGAM_SEL | NA 383 3 19 24 18 2 1.04 0.14 1.08 0.26
Lasso N/A 76 4 54 61 47 5 247  0.13 8.86  0.98
STAB 0.6 42 0 11 20 7 0 0.80 0.07 0.16 0.04
SuRF 0.05 383..0 10 14 6 0 0.68 0.08 0.14 0.04
SuRF 0.10 43 0 15 23 10 O 091 0.08 023 0.05
SuRF 0.20 47 0 21 28 12 O 1.08 0.10 036 0.06
SuRFgam 0.05 5 9 8 2 1 1 026 0.05 0.07 0.03
SuRFgam 0.10 8 11 10 4 2 2 0.37 0.06 0.14 0.04
SuRFgam 0.20 15 16 12 8 6 2 0.59 0.08 0.28 0.05
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Table 4.6: Simulation results (Gaussian) for data type X4 (N=100, p=200)

Selected variables True Positive | False Positive ‘
SIGMA Method Param
\ \ |V V2 V3 V4 V5 V6 |mean SE | mean SE |
SuRFgam 0.30 17 17 13 8 7 3 0.65 0.08 0.39 0.06
SuRFgam 0.40 22 21 15 10 13 5 0.86 0.09 0.59 0.08
SuRFgam 0.50 29 27 17 12 14 5 1.04 0.10 0.88 0.10
SuRFgam 0.60 33 32 18 15 17 6 1.21  0.10 1.14 0.14
SuRFgam 0.80 40 42 19 21 23 9 1.54 0.10 248 0.24
Gamsel 0.4 31 5 12 13 9 2 0.72 0.13 1.73  0.51
Gamsel 0.5 31 12 14 24 14 O 095 0.14 2.10 0.50
Gamsel 0.6 47 37 26 27 23 1 1.61 0.12 265 047
Gamsel 0.7 75 67 45 54 47 3 291 0.11 791 0.52
Gamsel 0.8 8 82 57 72 72 20 3.88 0.10 2337 0.65
Gamsel 0.9 90 86 67 79 82 32 436 0.10 4596 0.58
RGAM NA 32 7 18 13 9 9 0.88 0.15 1.90 0.57
RGAM_SEL | NA 23 3 14 11 7 1 0.59 0.12 092 0.1
Lasso N/A 65 4 39 54 29 4 1.95 0.13 8.08 1.01
STAB 0.6 34 0 6 15 4 0 0.59 0.06 0.15 0.04
SuRF 0.05 25 0 5 8 3 0 041 0.06 0.08 0.03
SuRF 0.10 32 0 5 14 6 0 0.57 0.07 0.17 0.04
SuRF 0.20 383 0 10 17 8 0 0.73  0.07 0.38 0.06

Table 4.7: Simulation results (Binomial) for data type X; (N=500, p=1000)

SNR Method Param Selected variables True Positive | False Positive ‘
| | | VI V2 V3 V4 VS V6 |mean SE | mean SE |

SuRFgam 0.05 91 88 57 83 68 52 439 0.12 0.28 0.05
SuRFgam 0.10 94 91 65 88 69 52 459 0.12 0.36 0.06
SuRFgam 0.20 94 94 69 86 78 52 473 0.11 0.69 0.08
Gamsel 0.4 99 62 86 98 77 5 427  0.09 16.53 1.10
Gamsel 0.5 100 96 85 98 89 3 471  0.06 1534 0.84
Gamsel 0.6 100 100 90 98 95 6 4.89 0.04 14.10 0091
Gamsel 0.7 100 100 89 98 95 4 486 0.05 14.08 0.87

0.7 Gamsel 0.8 100 100 93 99 97 14 503 0.05 27.16 1.32
Gamsel 0.9 100 100 96 99 100 50 545 0.05 136.93 2.09
RGAM NA 100 96 89 99 92 100 576  0.05 16.90 1.35
RGAM_SEL | NA 99 3 83 98 74 4 3.61 0.07 7.25 0.46
Lasso N/A 100 2 87 97 79 4 3.69 0.06 18.00 1.10
STAB 0.6 96 0 53 81 31 0 2.61 0.08 0.55 0.07
SuRF 0.05 93 0 49 80 33 0 2.55 0.08 0.32 0.05
SuRF 0.10 94 0 55 84 38 0 271  0.08 0.48 0.070
SuRF 0.20 94 0 o6l 84 42 0 2.81 0.08 0.6 0.08
SuRFgam 0.05 98 97 82 97 88 53 5.15 0.09 0.23 0.05
SuRFgam 0.10 98 96 85 97 90 53 5.19 0.10 0.24  0.05
SuRFgam 0.20 98 97 85 96 90 53 5.19 0.09 042  0.06
Gamsel 0.4 100 83 92 99 90 3 4.67 0.07 19.64 1.16
Gamsel 0.5 100 100 92 100 95 1 488 0.04 17.34 1.03
Gamsel 0.6 100 100 95 100 98 10 503 0.04 16.73 0.97
Gamsel 0.7 100 100 95 100 99 8 502 0.03 16.95 1.04

1 Gamsel 0.8 100 100 96 100 100 12 508 0.03 21.36 1.05
Gamsel 0.9 100 100 97 100 100 54 551 0.05 117.54 1.95
RGAM NA 100 98 98 100 98 100 594 0.03 20.64 1.74
RGAM_SEL | NA 100 2 89 99 87 3 3.80 0.05 796  0.50
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Table 4.7: Simulation results (Binomial) for data type X; (N=500, p=1000)

Selected variables True Positive | False Positive ‘
SNR Method Param
\ \ | VI V2 V3 V4 V5 V6 |mean SE | mean SE |
Lasso N/A 100 2 91 9 84 3 3.79 0.05 19.68 1.18
STAB 0.6 98 0 o6l 92 45 0 296 0.07 0.59 0.07
SuRF 0.05 95 0 68 90 50 0 3.03 0.08 0.32  0.05
SuRF 0.10 95 0 68 90 55 0 3.08 0.08 0.41 0.06
SuRF 0.20 95 0 72 90 60 0 3.17 0.08 0.53 0.07
SuRFgam 0.05 100 100 95 99 97 71 5.62 0.06 022 0.04
SuRFgam 0.10 100 100 96 100 97 71 5.64 0.06 0.37 0.06
SuRFgam 0.20 100 100 95 100 97 171 5.63  0.06 0.57 0.07
Gamsel 0.4 100 100 99 100 99 3 5.01 0.02 2549 1.22
Gamsel 0.5 100 100 99 100 100 7 506 0.03 2229 1.34
Gamsel 0.6 100 100 99 100 100 29 528 0.05 23.28 1.33
Gamsel 0.7 100 100 99 100 100 29 528 0.05 24.29 1.42
3 Gamsel 0.8 100 100 100 100 100 29 529 0.05 2552 1.39
Gamsel 0.9 100 100 99 100 100 70 5.69 0.05 82.23 1.70
RGAM NA 100 100 100 100 100 100 6.00 0.00 3421 1.91
RGAM_SEL | NA 100 3 97 100 98 2 4.00 0.03 9.67 0.61
Lasso N/A 100 3 99 100 98 3 403 0.03 22.88 1.26
STAB 0.6 100 0o 79 99 71 0 3.49  0.06 0.71 0.09
SuRF 0.05 99 0O 80 98 72 0 3.49 0.06 0.39  0.06
SuRF 0.10 99 0O 8 98 74 0 3.55 0.06 048 0.07
SuRF 0.20 99 0O 84 98 77 0 3.58 0.06 0.61 0.07
SuRFgam 0.05 100 100 96 100 100 75 571 0.05 0.21 0.05
SuRFgam 0.10 100 100 98 100 100 75 573  0.05 0.33  0.06
SuRFgam 0.20 100 100 99 100 100 75 574  0.05 0.54 0.08
Gamsel 0.4 100 98 100 100 99 3 500 0.03 25.08 1.17
Gamsel 0.5 100 100 100 100 100 10 5.10 0.03 23.30 1.38
Gamsel 0.6 100 100 100 100 100 38 538 0.05 28.79 1.62
Gamsel 0.7 100 100 100 100 100 41 5.41 0.05 28.29 1.64
5 Gamsel 0.8 100 100 100 100 100 41 541 0.05 29.18 1.70
Gamsel 0.9 100 100 100 100 100 75 575 0.04 74.52 1.58
RGAM NA 100 100 100 100 100 100 6.00 0.00 39.68 2.06
RGAM_SEL | NA 100 3 100 100 98 3 4.04 0.03 940 0.53
Lasso N/A 100 3 98 100 97 3 401 003 21.72 1.22
STAB 0.6 100 0 80 99 81 0 3.60 0.06 0.67 0.07
SuRF 0.05 100 0O 8 95 78 0 3.58 0.06 0.30 0.05
SuRF 0.10 100 0 8 95 81 0 3.62 0.05 040 0.06
SuRF 0.20 100 0 8 95 83 0 3.67 0.05 0.54  0.07

Table 4.8: Simulation results (Binomial) for data type X»(N=500, p=200)

Selected variables True Positive | False Positive ‘
SNR Method Param

\ \ | VI V2 V3 V4 V5 V6 |mean SE | mean SE |
SuRFgam 0.05 100 94 76 92 76 76 5.14 0.10 0.19 0.04
SuRFgam 0.10 100 95 8 92 84 76 5.32  0.09 034 0.07
SuRFgam 0.20 100 96 88 95 88 76 543  0.08 047  0.09
Gamsel 0.4 100 89 94 98 96 7 484 006 13.00 0.88
Gamsel 0.5 100 100 98 98 95 8 499 0.04 1025 0.84
Gamsel 0.6 100 100 97 100 98 21 5.16 0.05 924  0.55
Gamsel 0.7 100 100 97 100 98 20 5.15 0.05 96 0.74

0.7
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Table 4.8: Simulation results (Binomial) for data type X»(N=500, p=200)
Selected variables True Positive | False Positive |
SNR Method Param
\ | VI V2 V3 V4 VS V6 |mean SE | mean SE |
Gamsel 0.8 100 100 97 100 99 27 523 005 11.85 0.71
Gamsel 0.9 100 100 100 100 100 82 582 0.04 6837 1.37
RGAM NA 100 100 98 99 99 100 | 596 0.02 10.55 0.73
RGAM_SEL | NA 100 9 93 98 92 6 398 006 450 034
Lasso N/A 100 8 95 98 94 8 4.03 006 13.18 0.79
STAB 0.6 99 0 65 83 42 0 294 007 019 0.04
SuRF 0.05 99 0 67 87 45 0 298 0.08 0.18 0.05
SuRF 0.10 99 0 73 91 56 0 319 008 029 0.06
SuRF 0.20 99 0 80 93 58 0 330 007 036 0.06
SuRFgam 0.05 9 99 89 97 93 83 560 007 0.17 0.04
SuRFgam 0.10 9 99 90 97 94 84 5,63 0.06 030 0.06
SuRFgam 0.20 9 99 93 99 97 &4 571 006 043 0.06
Gamsel 04 100 97 97 100 95 11 500 005 14.68 0.81
Gamsel 0.5 100 100 98 100 98 15 511 004 1277 094
Gamsel 0.6 100 100 99 100 99 28 526 005 11.79 091
Gamsel 0.7 100 100 99 100 100 27 526 005 1124 0.86
1 Gamsel 0.8 100 100 99 100 100 30 529 0.05 1227 093
Gamsel 0.9 100 100 100 100 100 87 5.87 0.03 5541 1.26
RGAM NA 100 100 100 100 99 100 | 599 0.01 13.18 0.89
RGAM_SEL | NA 100 7 95 100 93 8 4.03 005 487 038
Lasso N/A 100 7 97 100 93 8 405 005 1321 0.80
STAB 0.6 99 0 72 94 62 0 327 0.07 020 0.04
SuRF 0.05 98 0 77 93 68 0 336 007 0.16 0.04
SuRF 0.10 98 0 83 95 71 0 347 007 021 0.05
SuRF 0.20 98 0 88 95 76 1 358 006 032 0.06
SuRFgam 0.05 100 100 100 100 99 96 595 003 0.13 0.03
SuRFgam 0.10 100 100 100 100 99 96 595 003 028 0.06
SuRFgam 0.20 100 100 100 100 100 96 596 0.02 051 0.08
Gamsel 0.4 100 100 100 100 100 15 5.15 0.04 21.21 1.22
Gamsel 0.5 100 100 100 100 100 46 546 0.05 2059 125
Gamsel 0.6 100 100 100 100 100 69 569 0.05 1944 120
Gamsel 0.7 100 100 100 100 100 65 565 005 18.80 1.12
3 Gamsel 0.8 100 100 100 100 100 68 568 005 1891 1.11
Gamsel 0.9 100 100 100 100 100 91 591 003 3574 098
RGAM NA 100 100 100 100 100 100 | 6.00 0.00 21.81 1.23
RGAM _SEL | NA 100 8 100 100 99 7 414 004 582 044
Lasso N/A 100 9 99 100 99 7 414 004 14.66 0095
STAB 0.6 100 O 88 100 87 0 375 005 025 0.05
SuRF 0.05 100 O 90 99 86 0 375 005 022 0.05
SuRF 0.10 100 O 92 99 88 0 379 004 026 0.05
SuRF 0.20 100 O 93 99 92 0 384 0.04 041 0.06
SuRFgam 0.05 100 100 100 100 99 92 591 003 020 0.04
SuRFgam 0.10 100 100 100 100 99 92 591 003 027 0.05
SuRFgam 0.20 100 100 100 100 99 92 591 003 047 0.09
Gamsel 04 100 100 100 100 100 24 524 0.04 2356 129
Gamsel 0.5 100 100 100 100 100 58 558 0.05 24.07 126
Gamsel 0.6 100 100 100 100 100 75 575 0.04 2147 1.06
Gamsel 0.7 100 100 100 100 100 80 5.8 0.04 2122 1.06
5 Gamsel 0.8 100 100 100 100 100 78 578 0.04 2175 1.06
Gamsel 0.9 100 100 100 100 100 92 592 0.03 3261 098
RGAM NA 100 100 100 100 100 100 | 6.00 0.00 2437 1.22
RGAM_SEL | NA 100 10 100 100 100 9 419 004 679 047
Lasso N/A 100 9 100 100 100 13 422 004 1586 0.86
STAB 0.6 100 0 92 100 88 0 380 005 020 0.04
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Table 4.8: Simulation results (Binomial) for data type X»(N=500, p=200)

Selected variables

‘ True Positive | False Positive ‘

SNR ‘ Method ‘ Param ‘

\ \ | VI V2 V3 V4 VS V6 |mean SE | mean SE |
SuRF 0.05 100 0 93 99 8 0 380 0.04 0.19 0.04
SuRF 0.10 100 0 94 99 8 0 382 0.04 024 0.05
SuRF 0.20 1000 0 9% 99 91 O 386  0.04 033 0.05

Table 4.9: Simulation results (Binomial) for data type X3 (N=200, p=200)

SNR Method Param Selected variables True Positive | False Positive \
\ \ | VI V2 V3 V4 V5 V6| mean SE | mean SE |
SuRFgam 0.05 21 16 2 16 11 12 0.78 0.08 0.12 0.04
SuRFgam 0.10 26 23 7 24 18 14 1.12  0.11 020 0.04
SuRFgam 0.20 37 34 15 35 24 19 1.64 0.13 042  0.06
SuRFgam 0.30 43 42 16 39 28 19 1.87 0.13 0.53 0.08
SuRFgam 0.40 47 46 20 42 32 20 207 0.13 0.83 0.12
SuRFgam 0.50 53 50 26 50 34 19 232  0.13 1.10 0.14
SuRFgam 0.60 58 53 27 51 35 21 245 0.13 143  0.16
SuRFgam 0.8 67 64 38 58 42 17 2.86 0.13 294  0.27
SuRFgam 0.9 74 72 41 61 46 20 3.14 0.12 454  0.35

0.7 Gamsel 0.4 86 14 47 72 40 1 260 0.12 597 0.79
Gamsel 0.5 87 55 51 77 55 3 3.28 0.13 6.54 0.67
Gamsel 0.6 84 76 45 72 62 6 345 0.13 6.53 0.81
Gamsel 0.7 91 81 54 82 72 8 3.88 0.11 9.41 0.85
Gamsel 0.8 94 95 80 93 86 23 471 0.08 26.66 1.04
Gamsel 0.9 96 97 89 100 94 47 523 007 6338 0.86
RGAM NA 78 40 49 72 39 55 333  0.17 549  0.62
RGAM_SEL | NA 73 5 37 65 38 1 2.19 0.13 2.61 0.33
Lasso N/A 88 9 62 74 53 4 29  0.12 9.19 0.78
STAB 0.6 62 0 14 40 8 0 1.24  0.09 0.19 0.04
SuRF 0.05 52 0 10 30 8 0 1 0.09 0.11 0.03
SuRF 0.10 60 0 19 38 12 0 1.29  0.09 0.21 0.05
SuRF 0.20 64 0 26 48 12 0 1.5 0.09 0.37  0.07
SuRFgam 0.05 33 30 8 35 15 20 141 0.11 0.10 0.04
SuRFgam 0.10 40 38 10 39 22 24 1.73  0.13 0.18 0.05
SuRFgam 0.20 61 49 18 48 31 27 234 0.12 040 0.08
SuRFgam 0.30 64 56 28 57 38 29 272  0.14 0.55 0.08
SuRFgam 0.40 73 63 33 6l 42 32 3.04 0.14 0.82 0.10
SuRFgam 0.50 76 72 38 66 52 36 340 0.13 1.12 0.12
SuRFgam 0.60 79 72 37 70 52 35 345 0.13 1.56 0.15
SuRFgam 0.8 82 78 48 77 59 29 373  0.12 291 0.26
SuRFgam 0.9 85 8 55 80 67 31 4.03 0.12 486 0.36

1 Gamsel 0.4 90 25 56 84 55 2 3.12  0.12 6.77 0.70
Gamsel 0.5 9 72 66 89 72 5 394 0.12 9.02 0.69
Gamsel 0.6 92 88 63 92 76 11 422 0.11 8.39 0.80
Gamsel 0.7 93 89 66 94 80 9 431 0.10 947  0.87
Gamsel 0.8 96 96 85 99 93 22 491 007 21.82 0.96
Gamsel 0.9 99 99 92 100 97 54 541 0.06 5829 0.89
RGAM NA 90 57 60 86 58 74 425 0.16 7.82  0.79
RGAM_SEL | NA 85 7 53 81 49 4 279 0.12 372 040
Lasso N/A 91 6 70 88 61 6 322 0.10 10.61 0.82
STAB 0.6 75 0 23 52 11 0 1.61 0.08 0.14 0.03
SuRF 0.05 70 0 21 46 11 0 1.48  0.09 0.1 0.03
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Selected variables True Positive | False Positive ‘
SNR Method Param
| VI V2 V3 V4 VS V6| mean SE | mean SE |
SuRF 0.10 77 0 26 55 14 0 1.72  0.08 0.16 0.04
SuRF 0.20 81 0 28 61 17 0 1.87  0.09 0.31 0.05
SuRFgam 0.05 8 59 28 71 56 57 3.56  0.16 0.10 0.03
SuRFgam 0.10 91 73 36 79 68 60 4.07 0.14 0.17 0.04
SuRFgam 0.20 94 84 48 86 77 58 447 0.12 043  0.07
SuRFgam 0.30 95 87 54 88 81 60 4.65 0.11 0.61 0.08
SuRFgam 0.40 96 88 62 90 87 58 481 0.11 096 0.12
SuRFgam 0.50 96 91 64 91 87 60 489 0.10 1.23 0.14
SuRFgam 0.60 9 93 64 92 88 62 495 0.10 1.51 0.14
SuRFgam 0.8 97 97 73 97 93 59 5.16 0.08 3.67 0.36
SuRFgam 0.9 98 95 75 97 92 58 5.15  0.09 570 0.43
3 Gamsel 0.4 9 53 79 99 81 4 415 0.09 10.74 0.89
Gamsel 0.5 9 89 &4 99 91 9 471 007 1199 0.97
Gamsel 0.6 100 98 83 100 97 12 490 006 11.69 0.79
Gamsel 0.7 100 97 87 100 97 13 494 006 12.05 0.84
Gamsel 0.8 100 99 88 100 100 18 505 005 1478 0.75
Gamsel 0.9 100 100 94 100 100 60 554 0.05 4646 084
RGAM NA 9 90 &7 100 91 97 564 0.06 12.53 0.88
RGAM_SEL | NA 99 9 73 98 80 6 3.65 0.09 5.02 045
Lasso N/A 99 10 8 99 8l 5 379 0.06 1276 0.76
STAB 0.6 94 1 30 78 26 0 229  0.08 0.15 0.04
SuRF 0.05 92 1 34 78 23 0 228  0.09 0.15 0.04
SuRF 0.10 95 1 42 84 34 0 2.56  0.09 024  0.05
SuRF 0.20 98 1 47 87 43 0 276 0.09 037 0.06
SuRFgam 0.05 8 66 34 83 69 59 396 0.16 0.21 0.05
SuRFgam 0.10 89 79 41 90 79 64 442 0.14 029  0.06
SuRFgam 0.20 93 86 52 92 88 69 48 0.11 0.53  0.08
SuRFgam 0.30 95 90 62 95 91 71 5.04 0.09 0.89 0.10
SuRFgam 0.40 95 92 66 97 94 70 5.14  0.09 1.1 0.10
SuRFgam 0.50 96 92 70 97 94 70 5.19 0.08 1.42 0.14
SuRFgam 0.60 96 92 73 99 93 69 522 0.08 1.75 0.14
SuRFgam 0.8 96 96 73 99 96 58 5.18 0.08 3.88 0.29
SuRFgam 0.9 9% 96 77 98 96 57 520 0.08 6.15 047
5 Gamsel 0.4 98 56 85 99 &7 6 431 009 11.26 0.87
Gamsel 0.5 98 93 90 99 97 13 490 006 13.59 0.88
Gamsel 0.6 98 96 85 100 97 20 496 0.07 1245 0.89
Gamsel 0.7 98 98 82 100 98 20 496 0.07 12.08 0.83
Gamsel 0.8 98 99 89 100 99 29 5.14 0.06 1558 0.86
Gamsel 0.9 98 100 98 100 100 54 550 0.05 4449 0.90
RGAM NA 99 94 89 100 99 99 580 0.05 1398 0.86
RGAM_SEL | NA 97 8 79 99 86 6 375 0.07 560 0.46
Lasso N/A 98 7 86 99 85 6 381 0.06 1456 092
STAB 0.6 92 0 25 81 26 0 224 0.08 0.19 0.04
SuRF 0.05 92 0 33 74 33 0 232 0.10 0.17 0.04
SuRF 0.10 93 0 42 85 44 0 2.64 0.09 0.25 0.05
SuRF 0.20 94 0 52 92 50 0 2.88 0.09 040 0.06
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Table 4.10: Simulation results (Binomial) for data type X4 (N=100, p=200)

Selected variables True Positive | False Positive ‘
SNR Method Param
\ \ |V V2 V3 V4 VS V6 |mean SE | mean SE |
SuRFgam 0.05 3 2 0 2 3 4 0.14 0.03 0.04 0.02
SuRFgam 0.10 5 2 0 6 6 4 023 0.04 0.1 0.03
SuRFgam 0.20 6 2 2 7 9 6 032 0.05 0.21 0.05
SuRFgam 0.30 8 6 3 11 13 9 0.50 0.06 044  0.09
SuRFgam 0.40 14 8 5 12 14 9 062 0.07 0.55 0.09
SuRFgam 0.50 17 10 5 14 16 9 0.71  0.07 0.79 0.10
SuRFgam 0.60 22 12 6 19 17 9 0.85 0.08 1.19 0.14
SuRFgam 0.80 30 21 9 26 26 11 1.23  0.10 297 0.31
SuRFgam 0.90 35 29 15 30 24 12 1.45 0.10 5.21 0.46
0.7 Gamsel 0.4 42 1 21 29 12 1 1.06 0.11 253  0.50
Gamsel 0.5 46 9 19 33 17 1 1.25 0.13 327 0.59
Gamsel 0.6 49 38 13 36 31 2 1.69 0.13 4.02 0.50
Gamsel 0.7 65 59 31 55 51 5 266 0.11 11.05 0.67
Gamsel 0.8 75 74 49 71 67 13 349 0.11 26.07 0.71
Gamsel 0.9 80 79 58 74 76 24 391 0.11 4356 0.65
RGAM NA 29 4 16 27 12 12 1.00 0.13 1.76  0.32
RGAM_SEL | NA 33 0 9 28 8 2 0.80 0.10 1.04 0.18
Lasso N/A 45 5 25 36 19 3 1.33  0.14 539 0.75
STAB 0.6 27 0 5 12 3 0 047 0.06 0.16 0.04
SuRF 0.05 15 0 3 8 2 0 028 0.05 0.05 0.02
SuRF 0.10 24 0 3 11 3 0 041 0.06 0.14 0.03
SuRF 0.20 31 0 4 14 5 0 054 0.07 024 0.04
SuRFgam 0.05 3 2 0 3 6 3 0.17 0.04 0.06 0.03
SuRFgam 0.10 4 2 0 6 7 6 0.25 0.05 0.11 0.04
SuRFgam 0.20 6 2 1 9 14 7 0.39 0.06 0.02 0.04
SuRFgam 0.30 8 9 1 16 18 9 0.61 0.07 046 0.08
SuRFgam 0.40 17 17 4 22 20 8 0.88 0.09 0.72  0.09
SuRFgam 0.50 24 20 4 24 21 9 1.02  0.09 1.06 0.12
SuRFgam 0.60 28 22 6 206 21 8 1.11  0.09 1.31 0.13
SuRFgam 0.80 33 30 10 36 28 10 1.52 0.10 297 0.28
SuRFgam 0.90 46 38 11 43 31 9 1.78 0.11 5.00 0.39
1 Gamsel 0.4 54 1 19 38 13 1 1.26 0.10 229  0.44
Gamsel 0.5 59 17 25 42 21 1 1.65 0.14 3.50 0.55
Gamsel 0.6 58 34 18 43 34 0 1.87 0.12 348 045
Gamsel 0.7 76 61 33 65 51 6 292 0.10 9.60 0.55
Gamsel 0.8 83 77 56 76 70 13 3775 0.10 24.03 0.66
Gamsel 0.9 890 83 62 82 77 21 414 0.11 41.73 0.54
RGAM NA 37 8 19 41 13 25 1.43  0.15 274 048
RGAM_SEL | NA 42 1 14 37 12 4 1.10 0.12 142  0.24
Lasso N/A 63 2 28 49 24 5 1.71 0.14 6.15 0.79
STAB 0.6 31 0 7 20 5 0 0.63 0.07 0.09 0.03
SuRF 0.05 21 0 5 14 4 0 0.44  0.06 0.05 0.02
SuRF 0.10 27 0 7 18 4 0 0.56 0.07 0.12 0.04
SuRF 0.20 37 0 7 23 6 1 0.74  0.08 025 0.05
SuRFgam 0.05 14 6 1 15 6 11 0.53 0.07 0.08 0.03
SuRFgam 0.10 21 10 1 21 11 14 0.78 0.08 0.11 0.04
SuRFgam 0.20 26 15 4 26 16 14 1.01 0.09 032 0.06
SuRFgam 0.30 31 19 9 31 22 13 1.25 0.09 047  0.07
SuRFgam 0.40 37 24 12 38 26 12 1.49 0.10 0.84 0.11
SuRFgam 0.50 44 30 17 40 23 11 1.65 0.11 1.17  0.12
SuRFgam 0.60 49 36 19 43 26 11 1.84 0.12 1.53  0.13
SuRFgam 0.80 57 49 18 55 31 10 220 0.12 342 0.29
SuRFgam 0.90 63 53 26 62 38 13 255  0.11 533  0.38
3 Gamsel 0.4 72 5 31 54 33 4 1.99 0.14 394  0.50



Table 4.10: Simulation results (Binomial) for data type X4 (N=100, p=200)
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Selected variables True Positive | False Positive ‘
SNR Method Param
|Vl V2 V3 V4 V5 V6 |mean SE | mean SE |
Gamsel 0.5 71 26 32 59 45 3 236 0.15 432 047
Gamsel 0.6 71 58 27 62 55 5 278 0.14 6.21 0.63
Gamsel 0.7 82 64 40 72 61 7 326 0.13 8.25 0.60
Gamsel 0.8 92 84 55 84 87 16 418 008 17.92 0.69
Gamsel 0.9 93 93 64 89 91 30 460 0.10 36.30 0.65
RGAM NA 75 26 34 60 41 47 2.83 0.17 488 0.53
RGAM_SEL | NA 61 4 22 57 26 3 1.73  0.13 1.97 0.28
Lasso N/A 82 8 43 68 51 7 259 0.13 9.18 0.90
STAB 0.6 50 O 8 35 9 0 1.02  0.08 02 0.05
SuRF 0.05 36 0 7 30 4 1 0.78 0.08 0.11 0.03
SuRF 0.10 47 0 10 34 7 1 099 0.09 0.21 0.04
SuRF 0.20 58 0 18 41 14 1 1.32  0.10 033  0.06
SuRFgam 0.05 18 5 1 14 6 9 0.53 0.08 0.08 0.03
SuRFgam 0.10 23 6 4 21 8 14 0.76  0.09 020 0.05
SuRFgam 0.20 31 14 9 26 16 18 1.14  0.11 039 0.07
SuRFgam 0.30 39 23 12 33 23 16 146 0.11 063 0.10
SuRFgam 0.40 48 26 15 40 27 16 1.72  0.12 0.85 0.11
SuRFgam 0.50 52 31 14 46 32 15 1.90 0.13 1.05 0.13
SuRFgam 0.60 57 34 18 47 39 15 2.10 0.13 1.52 0.16
SuRFgam 0.80 70 43 26 61 45 18 2.63  0.12 3.55  0.30
SuRFgam 0.90 75 52 27 58 53 18 2.83 0.11 558 0.37
Gamsel 0.4 78 3 35 57 41 4 2.18 0.14 443  0.56
Gamsel 0.5 83 34 37 65 50 5 274 0.15 547  0.59
Gamsel 0.6 84 55 30 66 62 5 3.02 0.14 6.44  0.66
5 Gamsel 0.7 90 61 40 77 67 9 344  0.13 8.03 0.61
Gamsel 0.8 94 81 55 89 84 14 417 0.10 1841 0.66
Gamsel 0.9 9 8 67 94 90 35 471 008 36.13 0.64
RGAM NA 81 27 38 70 51 56 323  0.18 596 0.63
RGAM_SEL | NA 79 0 30 57 44 8 2.18 0.13 2.81 0.34
Lasso N/A 86 2 47 73 52 11 271  0.13 9.63 0.90
STAB 0.6 57 0 10 32 11 O 1.10 0.08 0.12 0.03
SuRF 0.05 45 0 7 26 6 0 0.84 0.08 0.07 0.03
SuRF 0.10 52 0 8 31 11 0 1.02  0.09 0.15 0.04
SuRF 0.20 61 0 12 40 16 O 1.29 0.10 043 0.08




Chapter 5

Conclusion

In this thesis, we developed a novel method, Subsampling Ranking Forward selection

(SuRF), for a stable and sparse variable selection for high-dimensional data.

In Chapter 2, we introduced the two-step selection procedure: ranking the predictors by
applying Lasso from subsamples and selecting most important predictors via a sequential
forward ANOVA test, using a permutation to determine the critical value. SuRF offers
major advantages over existing variable selection methods in terms of both sparsity of
selected models and model inference. We also introduced an aggregation method for
selecting significant OTUs across all levels of the taxonomic tree structure, when analysing
microbiome data. Existing methods arbitrarily choose a taxonomic level a priori before
performing the analysis, whereas by combining SuRF with these aggregated variables, we
are able to identify the key biomarkers. The forward selection step makes SuRF distinct
from an alternative method, Stability Selection. While Stability selection also relies on
Lasso to select variables from subsamples, the ultimate selection is solely based on whether

the selection frequency of the variables surpasses a arbitrarily predetermined cutoff value.

Through extensive simulation studies, we have clearly established SuRF’s applicability
in a broad spectrum of variable selection and prediction tasks. It can be particularly
useful in identifying significant features for predicting various types of outcomes within
the context of generalised linear model (GLM) settings, including Gaussian, Binomial and
Poisson regression models. In a collaborative research paper ([3]) not included in this thesis,
the author has developed an extension, SURFCox, which applies to the Cox-proportional

hazards model for survival analysis.

In Chapter 3, we conducted a comprehensive simulation study to study the effect of
the marginal distribution of predictors on various Lasso-based variable selection methods.
The variable scaling in Lasso may yield desired results in the Gaussian model, but may
not be as effective in the context of Binomial and Poisson models. The effect of marginal

distribution of predictors is relatively small for Gaussian regression, but is much larger for
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logistic regression and Poisson regression with log link. Heavy-tailed predictor are selected
less frequently in the Binomial GLM with logistic link, and more frequently in the Poisson
GLM with log link. This effect was most noticeable for the log-normal predictors, which
were almost never selected by Stability selection, even at the highest MI level considered.
SuRF is less affected by the marginal distribution of predictors than Lasso and Stability.
This means that SuURF performs by far the best when at least one true predictor follows a
log-normal or Pareto distribution for logistic regression. For Poisson regression with log
link, SuRF performs similarly to Stability, though it is more able to select less conservative
models. We discovered that applying a Box-Cox transformation to the predictors in the
Binomial model can improve variable selection, even when this results in the linear model
becoming misspecified. However, the performance is still worse than for the less heavy-
tailed predictors. The Box-Cox transformation doesn’t show the same benefits for the

Poisson regression model.

In Chapter 4, we extended SuRF to perform variable selection for generalised additive
models (GAMs), a type of nonparametric additive model. GAMs model the conditional
expectation of the response through a link function as a sum of smooth functions of each
predictor, in order to capture non-linear effects of the predictors. Replacing GLMs with
GAMs is necessary in both the ranking and the forward-selection steps of SuRF. In the
forward-selection step, this can be routinely done by replacing the GLM by a GAM. For
the ranking step, we use Gamsel [11] (Generalised Additive Model Selection), which is a

variable selection method for GAMs, based on group Lasso.

We conducted a comprehensive simulation study to compare SuRFgam with various
state-of-the-art methods for variable selection in GAMs, including linear methods, such as
Lasso, SuRF, and Stability Selection, and non-linear methods Gamsel, RGAM, RGAM _SEL
and SPAM. We compared performance on Gaussian and Binomial regression model set-
tings across a range of data dimensions and signal strengths. SuRFgam demonstrates a
superior performance in both nonlinear variable selection and the prediction accuracy. It
is particularly effective in reducing the noise variables, making it a better choice in various

modelling scenarios.

Finally, we provided an R package that can implement our method for generalised linear

models, generalised additive models and survival models.

There are many possible directions for future work to improve the SuRF method:
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* It should be reasonably straightforward to extend SuRF to multilevel classification

through logistic regression.

* SuRFgam performs a variable selection without making a distinction between linear
and nonlinear predictors during the model fitting. However, many variable selection
methods for GAMs consider it important to distinguish between linear and nonlinear
predictors in these models. The Gamsel method used to rank predictors in SuRFgam
does distinguish between linear and nonlinear predictors, so incorporating this in-
formation into the ranking is relatively straightforward. The forward selection step
is more challenging, because the critical value for adding a linear predictor and for
adding a nonlinear predictor will be different. We can resolve this by calculating
separate null distributions for linear and nonlinear predictors. This could be extended
to allow certain predictors to be limited to only linear relations with the response vari-
able. This would be very useful in cases where nonlinear functions cannot feasibly
be fit for some predictors, for example if a predictor is categorical, or count data with
only a small number of values, then a spline cannot be fitted on that variable, so it
can only be considered as linear. This could apply in microbiome data, where many
rare OTUs have mainly zero counts. If these predictors could be restricted to linear
effects, then SuRFgam could be applied to these datasets to fit linear models on the

sparse OTUs and nonlinear models on the more abundant OTUs.

* Further research is needed to reduce the influence of the marginal distribution of
predictors on variable selection methods. One approach would be to develop a
new standardisation procedure that is more appropriate for heavy-tailed predictors in

GLMs.

* The main disadvantage of SuRF and SuRFgam is the heavy computational cost. For
SuRFgam, the ranking step by Gamsel alone takes significantly longer than some other
variable selection methods. While the computation time is not excessive, and it is
usually worth the extra time to get better variable selection, more work could be done
on methods to accelerate the variable selection. A straightforward implementation
change to improve the speed is to implement parallel computing for ranking predictors

and performing the permutations to estimate the null distribution.



Appendix A

Complete figures for Chapter 3

A.1 Appendix1l: Complete Figures for Variable selection and prediction
A.1.1 Gaussian single true variable cases
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Figure A.1: Variable selection and prediction for a single true variable Gaussian regression
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Figure A.1: Variable selection and prediction for a single true variable Gaussian regression

A.1.2 Gaussian multiple true variable cases
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Figure A.2: Variable selection and prediction for multiple true variable Gaussian regression



160

33 3%

8 2

] 3

8 3 P
k 8 g, e
g g s
g g H]
: iGN = s 3
g, Sq. g4
£ g g’
5 5 5
H H 2
g g e
X0 ! ! ; ; ; X0 ¢ ; 20 - | |

0.0 01 02 03 04 05 0.0 . . . 0.4 00 02 04
Average Number of noise variables selected Average Number of noise variables selected Average Number of noise variables selected
2.00
6
w 1 w 6 w
(28 « (%2}
= = =
5 = 3
3 3
£ £ £,
2 2 2
5 ] 3
54 b °
gl © ©
[N [ 2- a2
S —
1.00
005 0.10 0.20

3

(G10) beta+unif+gami, (Gl 1) sdn+pois+lnorm (G12) sdn+beta+Ilnormi,

@

L)
»
»
P

Average Number of true variables selected
Average Number of true variables selected

<@

Average Number of true variables selected

o

. 0.1 02 03
Average Number of noise variables selected

6

3.0-
w w
« «
= =
é E 25
£* £
g 220
B B B
&o g, £15°

e
1.0-
0.05 0.10 0.20
o

(G13) sdn+unif+lnorm (G14) sdn+gamjr+Inorm

-
@

|

Average Number of true variables selected

»
»
»

Average Number of true variables selected

=)

Average Number of true variables selected

@
<@

0.0 0.1 0.2 0.3 0.4 0.5 0.0 .2 -
Average Number of noise variables selected Average Number of noise variables selected
4
25
w w
(%2} (%2}
= =,
3 3
E 2.0 E
£ E
® ©
2 2
] 52
5 5
3 ©
o o

(G16) sdn+beta+t, (G17) sdn+unif+t, (G18) sdn+gamjp+t2
Method | | adapasso () Lasso A STAB1 V sz @ SURF <> mE SNR@ @ @3 @ s

Figure A.2: Variable selection and prediction for multiple true variable Gaussian regression
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Figure A.2: Variable selection and prediction for multiple true variable Gaussian regression
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Figure A.2: Variable selection and prediction for multiple true variable Gaussian regression
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A.1.3 Binomial single true variable cases
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Figure A.3: Variable selection and prediction for a single true variable logistic regression
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A.1.4 Binomial multiple true variable cases
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A.1.5 Poisson single true variable cases
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Figure A.5: Variable selection and prediction for a single true variable Poisson regression
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Figure A.5: Variable selection and prediction for a single true variable Poisson regression
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Figure A.5: Variable selection and prediction for a single true variable Poisson regression

A.1.6 Poisson multiple true variable cases
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Figure A.6: Variable selection and prediction for multiple true variable Poisson regression
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Figure A.6: Variable selection and prediction for multiple true variable Poisson regression



181

o
o

506 3 825
g g e Smeeee 2
o o o
3 3 3
3 2 2
8 $0.75 820
2 2 2
So4 S |
g g S5
3 30.50- 3
H H B0
202 2 H
E E E
5 5 5
2 2 2
> > >
3 3 3
g g g
s s s
z z z

0.25) o goee Segseses: 40 00000 0.5
.:.ﬁé‘ N S
3 gont o
0.0- 0.00- bt 0.0-
0.0 0.1 0.2 0.3 00 01 02 03 04 05
Average Number of noise variables selected Average Number of noise variables selected
0.6 05 0.4 I
0.4-

2 ] 3
£0.4- £ £
3 Jo03 3

g g 802
3 3 3
w w w
] 90.2 ]
=02 = =

0.1-

0.1-
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
[ [ [

(P7) pois+beta+unif, MRates=(.8, 1, 2), Variable selection and prediction

o
o

™

(=)

\

Average Number of true variables selected

=)
@
o

Q

PETT oS D

o b o
T R

PRy

o
o

.o
g oo

o
e vee $

S
o

o .
R R

Average Number of true variables selected
=)
=

Average Number of true variables selected

B

0.0- 0.0- 0.0-
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0 0 0.4
Average Number of noise variables selected Average Number of noise variables selected
0.8 06 05
0.4-
0.6-
] ] ]
€ 04 03
3 3 3
gos ) )
@ o Do2
= =02 =
0.2- 04
0.0 p p p p ; 0.0 p p : ; ; 0.0° : ; ; : ;
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
[ [ o

(P8) pois+beta+gam;,, MRates=(.8, 1, 2), Variable selection and prediction

o
Q

5}

3

a
[d
o

o
2
By

@

=)
o
Q

.50-

o

)
)
(=

=)

o

o

e
o

o
T A SR

e et S

Average Number of true variables selected
Average Number of true variables selected
o
Average Number of true variables selected

0.00- it S 0.00- 0.0
0.0 0.1 0.2 3 0.4 0.5
Average Number of noise variables selected
0.6-

0.6- 0.4-
8 8 803
3 S04 303
Soe g g
3 3 3
=3 =3 =3
3 3 502
I w w
9] ] ]
= =02 =

o
»
o

0.0 0.0-

0.0 0.00 005 010 0.15 020 000 005 010 0.15 020 000 005 010 0.15 020
o o o

(P9) pois+unif+gam;,, MRates=(.8, 1, 2), Variable selection and prediction
Method l:‘ adapLASSO O LASSOA STAB1 & STAEIECQXVSTAE2$STABZBCOX . SURF ‘ SURFBCOX<>TRUE BETA . 02 . 03 . 0.4

Figure A.6: Variable Selection and Prediction for multiple true variable case in Poisson
Model
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A.2 Appendix2: Complete Figures for True positives

A.2.1 Gaussian multiple true variable cases
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A.2.3 Poisson multiple true variable cases
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