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Abstract

This thesis proposes an integrated model for vaccine distribution and allocation that

combines an SEIR compartmental model with a transshipment model. Given the

NP-hardness of the problem, eight solution methods are explored and evaluated in

terms of solution quality and run time. The best-performing method was found to

be a greedy marginal benefit heuristic combined with a genetic algorithm while a

logic-based Benders Decomposition approach provided provably optimal solutions

to homogeneous vaccine allocation problems, albeit in prohibitively long solve times.

Applied to a case study based on data from Ontario during the COVID-19 pandemic,

we identify the best practices for allocating and distributing a limited supply of

vaccines to minimize both total cases and deaths. The best identified vaccination

strategies were able to reduce the total number of cases by 25% compared to a

Pro-rata allocation of vaccines while saving $6,800,000 in vaccine acquisition and

transportation costs.
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Chapter 1

Introduction

In early 2020, the world experienced a healthcare emergency with the emergence of

COVID-19 and its subsequent spread around the globe. This sparked an extraordi-

nary effort by the scientific community to develop a vaccine, culminating in not just

one, but several vaccines being developed and approved for public use in less than a

year. But that was only the beginning of the end, as the task then became how to

best allocate and distribute a limited supply of vaccines as governments around the

world competed for these valuable resources [10]. It was important to make the best

use of limited vaccines to maximize the societal benefit by reducing and controlling

the extent of the outbreak while accounting for the logistical limitations and minimiz-

ing the economic burden of distributing large quantities of vaccines. Policymakers

had to decide who should have priority and what should guide these decisions. How

would these vaccines be distributed to where they were needed and was the chosen

strategy even going to be feasible?

1.1 Background

Vaccines are a vital tool in public health and one of the most cost-effective methods of

curbing the spread and impact of a disease. Used preventively, such as in childhood

and seasonal vaccination campaigns, they help prevent outbreaks from occurring and

have successfully eradicated or nearly eradicated diseases such as smallpox, polio, and

measles. Used reactively in the event of an outbreak, they help prevent the worse

symptoms of infectious diseases, while also lowering transmission rates, both of which

help save lives and prevent outbreaks from overwhelming healthcare systems [4, 19].

However, without a proper logistics network behind them, vaccines would be far less

effective. Vaccines are a unique product. They are subject to strict health and safety

regulations not only in their production, but also in their packaging, transportation,

and storage. Additionally, unlike some other medical products, most vaccines are

1
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not stable at room temperature, and as such must be stored and transported at

refrigerator, freezer, or even deep-freeze temperatures. This makes the vaccine supply

chain a cold chain, requiring specific infrastructure that leads to increased costs and

energy consumption. In developing countries, cold chain resources are often limited,

with no way for some communities to safely store vaccines for prolonged periods.

Even in ideal storage conditions, vaccines cannot be stored indefinitely, meaning

stockpiling vaccines in preparation for an outbreak inevitably leads to at least some

wasted stock. [3, 26].

As noted by Duijzer, Jaarsveld, and Dekker [19], in the event of a sudden out-

break, the available doses of vaccine are often insufficient to vaccinate the entire

population and it can take a long time for production to meet demand. On top

of the distribution problem, this situation creates an allocation problem in decid-

ing who should be vaccinated. Populations can be divided into high- and low-risk

and also high- and low- transmission rates. In the event of a multi-region outbreak,

geographic considerations have to be accounted for as well. Careful analysis of the

situation is required to decide who should have priority. In such situations, the use

of epidemiological models can be useful to predict the course of the disease, forecast

demand, and make informed decisions about where vaccines should be allocated to

control the epidemic.

There are two primary methods of modeling an epidemic, agent-based simulation

models, and compartmental models, of which compartmental models are the more

popular option due to their simplicity, flexibility, and reduced computational power

required compared to agent-based simulations [15]. First developed by Kermack and

Mckendrick in 1927 [33], compartmental epidemiological models work by dividing the

population into distinct groups based on whether they are susceptible to catching the

disease, are currently infected, or have recovered or died from the disease. Differential

equations are used to determine the rate of transfer between these compartments with

respect to time, which can be approximated using difference equations when discrete-

time models are used. One such compartmental model that serves as the basis for the

majority of other models is the Susceptible-Infected-Removed (SIR) model [49, 57,

59]. Common variants of SIR are SEIR models [21, 47], which add a compartment

to represent those who have been exposed to the disease but are not yet infectious,
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and SVEIR models [5, 44] which add different compartments to represent vaccinated

individuals. Even recent models, such as the DELPHI model developed specifically

to model the COVID-19 pandemic, are based around the SIR compartmental model

[9, 35]. However, the dynamics of disease spread mean that the number of new

infections is proportional to the product of the remaining susceptible population and

the current number of infected individuals, leading to nonlinear dynamic models.

Hence, to minimize the number of new infections, one has to solve a non-convex

problem that is known to be NP-hard [43, 55]. This means that while simulating

the course of a disease is relatively easy, determining an optimal course of action can

prove exceptionally difficult.

Before the outbreak of COVID-19, many researchers had studied the problem

of the vaccine supply chain and identifying optimal vaccination strategies, but the

pandemic only served to further highlight the importance of effective vaccination

campaigns and catalyzed an acceleration in the number of new studies on the topic

as well as a change in the research agendas [10]. For instance, studies on vaccine

allocation for seasonal influenza often focused on identifying the minimum fraction of

the population required to be vaccinated to get an outbreak under control [21, 49].

The assumption was that vaccine supply would not be a limiting factor and that

the disease could be stopped before it got out of control. By the time vaccines for

COVID-19 were being made available, the disease was already well-established in

the population and there was only a limited supply of vaccines. Containing the out-

break was infeasible under such conditions. Instead, the focus of COVID-19 vaccine

allocation studies is usually on the allocation of a limited supply of vaccines to mit-

igate infections, deaths, YLL, etc. [44, 63]. Similarly, previous distribution studies

were unprepared for the scale of the COVID-19 mass vaccination campaign, neces-

sitating re-examining how vaccine supply chain and distribution networks should be

structured [40]. Many existing studies do not consider both the allocation and dis-

tribution aspects of vaccination, instead focusing on one or the other. Distribution

studies usually have a predetermined demand and focus on costs and fulfillment,

without seeking to control the disease or modeling its impact on the course of the

outbreak [18, 22, 36]. On the other hand, many vaccine allocation studies have not

accounted for the supply chain limitations surrounding implementing their proposed
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strategies, in reality, [21, 41, 49].

Likewise, vaccine allocation studies often do not consider allocating individual

vaccines directly, but instead, find what fraction of the population should be vac-

cinated. They assume that all vaccination can be done all at once (i.e., in a single

period) [21, 41, 49], rather than over time (multiple periods) [9, 44, 59]. Vaccine

allocation studies commonly use homogeneous epidemiological models [35, 57] in

place of heterogeneous ones [9, 44], meaning groups and locations are kept separated

with no interaction, with each population using its own independent epidemiological

model. These assumptions and alterations simplify the vaccine allocation problem

and make it easier to solve, but also fundamentally change the nature of the system

being modeled.

1.2 Summary of Work

This thesis presents a new integrated model that combines a heterogeneous epidemi-

ological model for multi-period vaccine allocation and a vaccine supply chain model,

and explores several solution methods for the vaccine allocation problem, comparing

their solution quality and resolution times. The epidemiological model used in this

thesis is a modified version of a traditional SEIR model and is used to capture the

dynamics of the disease spread and how different vaccination strategies impact them.

The vaccine supply chain model follows the formulation of a standard network prob-

lem, with a pool of vaccines made available for distribution to a set of population

centers during each period through a set of distribution centers (DC). These two

models work in tandem to identify vaccine allocation strategies that minimize the

epidemiological impact of an outbreak both within and across population centers

while balancing against the economic cost and logistical limitation on the system

when trying to fulfill the selected vaccination strategy.

The vaccine allocation formulation presented in this thesis is highly complex, as it

is non-linear, non-convex, and combinatorial, resulting in a large-scale mixed-integer

global optimization problem. As such, it is extremely difficult to solve to the proven

optimality. To the best of our knowledge, no previous study has been able to present

a method to solve the vaccine allocation problem to the guaranteed optimal within

a reasonable time frame without making gross simplifications such as linearizing
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the model [12, 24], or significantly limiting the problem size [21, 59]. Therefore,

we explore eight different solution methods, explain how they function, and present

the advantages and disadvantages of each method. It was found that four of the

explored methods were promising, being able to produce near-optimal solutions in a

reasonable time (i.e., no more than 24 hours), for problems of a reasonable size (i.e.,10

or more distinct populations, 5 or more risk groups, and at least 20 time periods).

These methods included three heuristic methods: a Mountain Climbing (MC), a

Greedy Marginal Benefit (GMB), and a Genetic Algorithm (GA). Alongside these

heuristic methods is a novel method employing logic-based Benders Decomposition

(BD), which guarantees optimality, though its solution time in all but the simplest

test scenarios was found to be prohibitively long. We hope that by presenting the full

scope of the explored methods (promising or not), the community might be informed

of how a broad range of methods perform and potentially allow future work to build

off our own to develop further methods to solve the problem of vaccine allocation

and distribution.

The solution methods are tested under a variety of scenarios to evaluate their

performance in terms of both the solution quality (their epidemic impact and mone-

tary cost), and run time. Performance is measured relative to the baseline scenario of

Non-Intervention (NI) and against simple rule-of-thumb strategies such as Pro-rata

(PR) (proportional to population size) allocation. From this round of experiments,

we identify that the best-performing solution method of those explored in terms of

solution quality was the GMB combined with the GA, which can produce a near-

optimal solution in just over 24 hours for a problem of reasonable size (e.g., 34

regions, 7 groups, 20 time periods), with potential for further improvements in both

speed and quality. However, it might be better to simply use the GMB alone, as

the difference in solution quality could be considered insignificant for the additional

run time added by the GA. The fastest solution method that could still generate a

reasonably good solution was found to be the MC, though for larger problems there

was around an 11% gap between its solution and that of the GMB. However, there

is potential to improve its quality in future research. In addition to these heuristic

methods, we show that our BD method can solve a problem with a single risk group

but multiple regions to the guaranteed optimal, though the time it takes to solve
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all but the smallest problems is prohibitively long. However, we do identify several

potential directions to explore that might lead to improvements for this method.

Finally, the model and solution methods are used to explore a case study based

on the Canadian province of Ontario during the COVID-19 pandemic. Using the

best solution methods, approximately 683,500 cases were prevented over 20 weeks

when compared to the NI policy, while 419,700 cases were prevented when compared

to the PR allocation policy, with cost savings of $6,798,000. When the objective

was to minimize deaths rather than cases, 1,260 deaths were prevented compared

to the NI policy, and 350 deaths were prevented compared to the PR allocation

policy, with cost savings of $25,612,000. As the model is multi-objective, balancing

epidemic impact (cases, deaths, etc.) against monetary costs, these values represent

a conversion factor between the two objectives of decision makers being willing to

spend $1,000 per prevented case, and $50,000 per prevented death, respectively.

Additionally, from these case study results, insights can be derived that might

benefit decision-makers such as governing bodies or health authorities in deciding

how to best utilize limited resources during an epidemic situation, even without

directly utilizing the solution methods. Most notably, when preventing infections,

the optimal strategy is to focus on young children and teenagers, as they have many

more contacts per week than any other groups [11], thus acting as a super vector for

spreading the disease to others. However, if looking to prevent deaths, a combination

of vaccinating older age brackets; as they are the most vulnerable, and vaccinating the

young super spreaders, thus slowing the spread through the rest of the population,

is a better strategy. In both cases, when supplies are limited, focusing on just a few

areas rather than spreading resources equally across the entire region was found to

be the optimal choice. It was found that the monetary amount that the decision-

makers are willing to spend to prevent additional infections or deaths impacts both

the number of vaccines utilized and the locations where they are sent. As cost

restrictions tighten, the number of allocated vaccines will begin to drop rapidly and

large increases in cases and deaths are observed, especially for remote areas that are

further from DCs and have rather high shipping costs.
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1.3 Contributions

In summary, this thesis makes four contributions. 1) From a modeling perspective,

it proposes a novel integrated model that combines features of SEIR epidemiological

and supply chain models to formulate a multi-period vaccine allocation strategy.

2) It explores eight solution methods for solving the problem of vaccine allocation

and distribution, including three promising heuristic methods along with an exact

novel approach using logic-based BD with a guarantee of optimality. 3) It applies

the model and solution methods to a case study with real data derived from the

province of Ontario’s COVID-19 statistics. 4) Finally, it provides practical insights

into where to best allocate vaccines to make the most of limited resources.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 covers a literature review of

existing research on vaccine allocation. Chapter 3 describes the problem structure

and the model formulation. Chapter 4 presents the solution methods. Chapter 5

outlines the numerical results and the evaluation of the different solution methods.

Chapter 6 applies the promising solution methods to the case study, outlines the

results, and presents what insights were gained from their application. Chapter 7

provides the thesis conclusions and suggests promising directions for future research.



Chapter 2

Literature Review

Since the mid-1900s, Operations Research has been used as a standard tool for man-

aging healthcare logistics, specifically resource planning, scheduling, and allocation.

A review of existing literature finds that there has been a steady interest in the topic

of modeling the spread of epidemic disease and developing strategies to control out-

breaks using various measures. The emergence of COVID-19 onto the world stage in

early 2020 highlighted the importance of making the most of limited resources and

having reliable and fast supply chains to produce, distribute, and administer vac-

cines. As such, there has been an increase in the number of papers studying vaccine

supply chains and how best to use vaccines to combat the spread of disease. This

section reviews those studies, focusing on those most related to the current study.

There have been several survey papers that analyzed vaccine supply chain lit-

erature until 2020. Lemmens et al. [34] reviewed supply chain network design

models with a focus on vaccine supply chains. They discussed the strategic, tac-

tical, and operational decisions a supply chain has to make, and categorized the

reviewed references based on network characteristics, performance measures, and so-

lution methodology used. While most studies are focused on minimizing the cost of

supply chain network design, it has been argued that there is value in designing an

equitable vaccine supply chain and/or ways to measure the humanitarian aspect of

the vaccine supply chain. Duijzer, Jaarsveld, and Dekker [19] characterized vaccine

supply chain studies by product, production, allocation, and distribution models,

and identified the cost-effectiveness of the vaccine supply chain, preparation for out-

breaks, and preparation for bio-terror attacks to be the main challenges that vaccine

supply chains are facing. De Boeck, Decouttere, and Vandaele [17] characterized

vaccine supply chains by studying sourcing, storage, transportation, and administra-

tion of vaccines and dividing the decisions into strategic, tactical, and operational

levels. They reported that simulation is the most widely-used methodology, followed

8
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by optimization techniques, and then analytical methods. They concluded that no

study has considered all four characteristics, from sourcing to administration, of the

vaccine supply chain under uncertainty.

A recent review by Blasiolo et al [10] focused on vaccine distribution and alloca-

tion studies in the context of how they were or could be applied to COVID-19. They

identified several issues that made the equitable allocation of vaccines during the pan-

demic difficult, namely 1) the unprecedented scale resulting in fierce competition for

access to the limited supply of vaccines, 2) the urgency in development which led to

increased hesitancy, 3) production and distribution challenges from the huge demand

and complexity of the supply chain, 4) the use of mRNA which induced additional

pressure from scarcity of materials and skilled labor, and 5) shortage gaming and

global politics resulting in high-income countries taking more of the limited supply

of vaccines than they needed. In the context of vaccine allocation, they highlighted

the need to develop models that can further incorporate equity, such as including

disparities in accessing healthcare, equity in allocation, and vaccine hesitancy. They

highlight a need for studies that incorporate prioritizing allocation among patients

with comorbidity and high-risk workers, capturing interaction amongst individuals

according to population density and age, capturing the effect of second and third

doses and different vaccine types, and hesitancy towards vaccination.

In this thesis, the review focuses primarily on studies on vaccine supply chains,

distribution, and allocation. The literature is categorized based on its primary fo-

cus and further subdivided based on methodology and objectives. In section 2.1

we discuss studies that focus on the vaccine supply chain, which generally covers

the period from manufacturer to administration. These studies generally discuss

questions such as where to locate facilities, capacity considerations, and how to

best move vaccines through a distribution network. In general, these studies ei-

ther have fixed or stochastic demand for vaccines that do not account for disease

patterns or impact. They mainly aim to minimize the economic, environmental,

and/or societal costs incurred in the distribution of vaccines to meet a given de-

mand, or improve the availability of vaccines by making the most of limited resources

[13, 29, 28, 18, 36, 40, 64, 58, 66, 22, 65, 56].

Sections 2.2 and 2.3 cover studies that use epidemiological modeling to predict and
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control the spread of the disease through intervention and control measures. These

studies can be further categorized with respect to methodology (such as simulation,

optimization techniques, or analytical methods), or defined target and/or impact

metric, (such as minimizing costs, total exposures, deaths, YLL, outbreak duration).

Additionally, several reviewed studies also included different metrics of equity in

their decision-making, such as enforcing that a minimum fraction of a group must be

vaccinated, or minimizing the maximum difference between the vaccinated fraction

of each group [5, 20, 21, 38, 41, 47, 49, 59, 62, 63].

Section 2.4 focuses on studies that combine vaccine allocation, distribution, and

epidemic modeling for the purpose of the allocation of resources to control the impact

of disease. Similar to the previous categories, these papers are further classified by

methodology and their primary objective [9, 40, 44, 46, 58, 66]. This thesis is most

relevant to studies reviewed in this category.

2.1 Vaccine Supply Chain and Distribution

A variety of vaccine supply chain issues have been explored by operational re-

searchers. Several tools including stochastic programming, dynamic programming,

and network design modeling have been used to model and solve these problems,

usually for the purposes of reducing costs, both economical and environmental, or

fixing inefficiencies in the distribution network in order to increase throughput and

access to vaccines. Occasionally, there are studies that are primarily focused on

promoting equitable access to vaccines.

In 1974, the World Health Organization (WHO) launched a program called the

Expanded Program on Immunization (EPI) that aimed to improve childhood ac-

cess to various vaccines in some of the poorest countries around the globe [4, 13].

The program is a collaboration between WHO, UNICEF, the World Bank, various

public health departments and charities, and vaccine manufacturers, and aims to

help decision-makers plan out and coordinate various aspects of national vaccination

strategies. This includes a suggested structure (see Figure 2.1) for the vaccine supply

chain of a country that covers the point from which vaccines enter the country to

the point they are distributed to local clinics. The suggested structure is a multi-tier

network with vaccines flowing down from national stockpiles through several layers
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Figure 2.1: Supply chain and logistics and IA2030. Source: World Health Organiza-
tion [54]

of regional warehouses before ultimately being delivered to clinics where they will

be administered. This network structure allows for an organized yet still flexible

top-down diffusion of vaccines.

Even though the WHO’s EPI provides guidelines for how to develop and struc-

ture a national vaccine distribution network, there have been numerous researchers

over the years who have questioned whether the suggested framework is the best for

all scenarios and where improvements might be made. Among them are Chen et

al. [13], who formulated a model that sought to address several of the issues they

identified with the WHO’s EPI recommendation for the design of a national vaccine

distribution network, and presented a framework for expanding on the recommen-

dations from the WHO to tailor it to a specific country’s needs. The objective of

the model was to maximize the number of fully immunized children by deciding how

many vaccines of differing types to store in different facilities across the country at

any given time, where to send vaccines to and from, how much basic, refrigerated,

and freezer capacity to build into a location, and how much transportation capac-

ity to build into connections between locations. The model used vaccine packaging
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volume to measure its capacity usage and also accounted for product loss in storage

and transport, with the ability to have different values for each location and vaccine

type across different time periods. Applied to a case study in Niger, they evaluated

the impact changes such as removing regional-level hubs, changing vial sizes, and

introducing new vaccines would have on the national vaccine distribution network.

A similar study by Hovav and Tsadikovich [29] used an optimization model to

minimize the setup, distribution, and administrative cost across the entire vaccine

supply chain from manufacturer to clinic for seasonal influenza vaccines, with un-

met demand for vaccines incurring additional costs on the clinic side through future

outpatient and hospitalization services. Their model was able to improve the perfor-

mance of the real strategies used by Israeli HCO CLALIT Health Services experts

during an outbreak in 2013 by approximately 12%. They identified a behavior they

called “planned shortages”, where in the last few weeks of the season, it was more

profitable to stop ordering and administering vaccines and simply incur the addi-

tional treatment costs. Building on that study, Hovav and Herbon [28] presented

a detailed logistics model to determine the number of shipments and quantity of

seasonal influenza vaccines in each periodic shipment that is delivered from manu-

facturers to DCs, from DC to clinics, and from clinics to sub-groups. The objective

of the model was to minimize costs across the entire supply chain for a healthcare

organization planning a large-scale vaccination program, including service costs to

administer medical care, cost of bad reputation from unmet demand, and the cost

saving of health benefits for the customer converted into monetary terms. They

found that their approach was particularly useful in situations where resources were

limited, and they were able to significantly reduce costs incurred from backlogs,

hospitalizations, and outpatient visits.

De Carvalho, Ribeiro, and Barbosa-Póvoa [18] outlined a model for designing

and planning sustainable vaccine supply chains by maximizing economic (NPV) and

social benefit (GDP) while minimizing environmental impact (ReCiPe). The supply

chain was comprised of factories, warehouses, and markets. Vaccines could flow from

factories to warehouses or directly to markets. On the facility side, the model could

determine where to locate facilities, what their capacities should be, what technolo-

gies they should use, and their optimal inventory levels. On the distribution side, it
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would decide how much to transport between locations and how many vehicles and

trips are required to transport them. The study accounts for numerous auxiliary

variables such as net present value, cash flow, net earnings, depreciation capital, and

fixed capital investment. Through the application of the model to the creation of

a European vaccine supply chain under five different scenarios, they identified the

trade-offs that occur when trying to balance economic, social, and environmental con-

cerns. They demonstrated that significant environmental and social improvements

can be achieved with minimal compromise in economic return.

Saif and Elhedhli [61] presented a mixed-integer concave model for the purposes

of minimizing capacity, transportation, and inventory costs along with greenhouse

gas emissions across a cold supply chain. Utilizing a novel application of Lagrangian

decomposition to solve the model, they applied their model to several different ap-

plications of a cold chain, including a case for distributing vaccines in Ontario. Ex-

amining the trade-off that occurs between balancing total cost and total greenhouse

gas emissions, they found that as the model prioritized emissions more heavily the

transportation costs would dominate over inventory costs and the optimal solution

was to open more DCs in order to minimize travel costs.

Expanding on the work by Chen et al. [13], Lim, Norman, and Rajgopal [36]

presented a mixed-integer programming model to reorganize vaccine distribution

networks in low- and middle-income countries to minimize annual costs while con-

tinuing to meet the requirements outlined by the WHO-EPI. By restructuring a

subsection of the national distribution network away from its normal rigid hierarchy,

optimizing inventory and delivery rates, and optimizing the use of resources such as

different types of transportation and vaccine storage devices, they were able to signif-

icantly reduce the transportation, storage, and facility costs of the network. Solving

this problem to optimality would sometimes take in excess of 196 hours. Therefore,

alongside the model, they presented a heuristic to solve larger vaccine distribution

network problems to near-optimally in a reasonable time. They concluded that using

their model to adapt the vaccine distribution chain to the specific characteristic of a

country provided annual savings ranging from just under 10% to just over 30%.

The pandemic highlighted a fundamental need to re-examine how vaccine sup-

ply chains should be structured. Manupati et al. [40] argue that most studies that
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explored optimizing vaccine distribution prior to the pandemic were not suitable for

the magnitude of the distribution efforts required to vaccinate entire populations

of people. To remedy this, they formulated their own multi-echelon dynamic cold

chain distribution model, specifically catered to mass vaccination drives. They used

decision tree analysis to develop different vaccination strategies and then used the

synthetic control method to identify the expected reduction in the number of cases

and deaths from implementing the strategy. A stochastic mixed-integer program-

ming problem is then used to determine the location and number of cold storage

facilities, their required inventory levels, and the allocation of vaccines to clinics,

which minimizes both transportation time and cost for a given strategy. A similar

paper by Sripada et al. [64] presents a decision support framework for designing a

multi-tier vaccine cold chain network along with two optimization formulations to

minimize inventory, ordering, transportation, personnel, and shortage costs across a

single- and multi-vaccine distribution network, respectively. The framework informs

those in lower tiers about which higher tier facilities they should order from, the

number of vaccines they should order in each period, the number of vehicles required

to transport said vaccines, the inventory levels of each facility in the network for each

period, the number of staff required to run each facility, and the number of vaccines

to administer to a subgroup of the population in a given time period. Applying this

framework to the Indian state of Bihar, they were able to make several observations

about how the optimal strategy would change based on different model parameters,

such as what impact the volume of packaging would have on the optimal ordering,

inventory levels, shortages, and staffing requirements.

Concerned with shortages of influenza vaccines in developing countries amidst

the COVID-19 pandemic, Rastegar et al. [58] proposed a single-product, multi-

period distribution model for the equitable distribution of vaccines in situations

where demand outstrips supply. The model maximizes the minimum delivery-to-

demand ratio amongst provinces in a country for a given budget by deciding which

DCs to open and how to best allocate vaccines to different risk groups, who each had

their own demand for vaccines. They grouped the population into eight risk groups

that, rather than primarily focusing on age, consisted of various different high-risk

groups such as infants and toddlers, pregnant women, healthcare providers, adults
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over 65, and people with pre-existing conditions, with everyone else grouped into the

“other” category. The model was then applied to an Iranian case study to suggest

the equitable and fair distribution of the influenza vaccine for the fall and winter flu

seasons. An extension of this study by Tavana et al. [66] incorporated cold, very cold,

and ultra-cold supply chain constraints into decision-making, with the assumption

that the distribution process starts when an order is placed with a manufacturer.

They applied their model to a case study in India. These models are semi-unique

in that they are almost entirely focused on maximizing equity for a given budget,

whereas others often balance minimizing economic costs against equity-enforcing

constraints.

Fadaki et al.[22] presented a transshipment model for the distribution and alloca-

tion of vaccines between a single Distribution center (DC) and a network of medical

centers while minimizing exposure risk to the unvaccinated population. Limited

vaccines were made available each period, stored in the DC, and distributed out to

medical centers. Unvaccinated individuals booked an appointment at a medical cen-

ter and were prioritized for vaccination based on their susceptibility and exposure

risk. Each medical center had only a certain capacity to administer vaccines each pe-

riod, with unmet demand being carried over to the next period. What distinguished

this model from others was that there was a single DC but it allowed for the trans-

shipment of vaccines between medical centers to cover demand along with the return

of unused vaccines to the DC. Shipping to and from the DC was unlimited, while

there was limited capacity to transport vaccines between medical centers each day.

This essentially allowed the model to turn certain medical facilities into hubs that

then distributed vaccines to other centers. For a case study in Australia, through

their multi-period model, they were able to shorten the administering period and

reduce total residual risk significantly compared to the single-period model.

These papers primarily focused on high-level strategic decisions, such as facility

location, capacity, inventory levels, and the number of vaccines to send from one

location to another, though some did factor vehicle, administrative, and or worker

costs and constraints into their models [64]. However, all of these papers considered

the delivery of vaccines through the network to be a direct distribution. Vehicles

only travel between two points to pick up and drop off their load of vaccines. A



16

different approach is to examine the operational side and how to actually deliver

vaccines on a daily or weekly schedule using a fleet of vehicles. One such study by

Sun, Andoh, and Yu [65] used the anyLogistix simulation package to analyze the

performance of the distribution of COVID-19 vaccines through the cold chain in a

real-world case study in the Oslo area and Viken county in Norway. A fleet of vehicles

delivered the daily demand for vaccines to various locations around Oslo and Viken

county starting from a regional warehouse. By varying metrics such as fleet size and

composition (including the consideration of using unmanned aerial vehicles) they

developed, analyzed, and compared twelve different scenarios, and evaluated their

performance based on metrics such as transportation costs and emissions, vehicle

utilization, service level, and lead time.

All papers discussed thus far have only considered the vaccine supply chain from

at most the point where vaccines leave the manufacturer to the point they are admin-

istered at a clinic. In contrast, Pishvaee, Razmi, and Torabi [56] proposed a stochastic

multi-objective programming model to assist in designing an entire sustainable sup-

ply chain for the sourcing, production, distribution, and disposal of medical needles,

down to individual components. The model balanced the competing objectives of

minimizing total costs, minimizing environmental impact, and maximizing the soci-

etal impact in the form of created jobs, local development, and lowered consumer

and worker risk.

2.2 Epidemiological Models

Some of the first instances of mathematical modeling being applied to analyzing and

predicting the spread of disease occurred in the early twentieth century, with some of

the most influential early work being done by Kermack and Mckendrick in 1927 who

developed the first SIR (Susceptible-Infected-Removed) compartmental models for

simulating the spread of disease [33]. Compartmental epidemiological models work

by dividing the population into discrete groups (compartments) based on whether

they are susceptible to catching the disease, are currently infected, or have recovered

or been killed by the disease. Differential equations are used to determine the rate of

transfer between these compartments with respect to time. These first compartmen-

tal models were still relatively simple and used a single homogeneous population,
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rather than subdividing the population into different regions and risk classes, as

would become common practice later. The primary focus of the initial study was to

investigate the relationships between population density and transmission rate to the

final size and duration of an outbreak. Through this work, it was identified that for a

given transmission rate, if the population density of susceptible people does not pass

a certain threshold, the disease will quickly die out, as well as demonstrating that

once the susceptible population falls below a certain threshold, either from natural

or artificial immunization, the outbreak can no longer sustain itself and the disease

will eventually burn itself out naturally. This would later lead to the concept of the

basic reproduction number (R0) defined as the number of additional infections the

average infected individual causes. When R0 > 1, the disease can perpetuate in the

population, while if the R0 ≤ 1, the disease will die out.

Since this initial study, compartmental models have remained a popular tool for

modeling the dynamics of epidemics. While the underlying principle is the same,

the model has evolved with time, such as dividing the population into heterogeneous

risk groups who may be more or less likely to catch, transmit, or be negatively

impacted by the disease [9, 44], or modeling the population as households [8, 31].

Another common alteration is the addition of new compartments, with some of the

most common ones adding an “Exposed” group (SEIR) [25] which adds a latency

period between catching a disease and being able to transmit it, and/or dividing

“Recovered” into “Death” and “Recovered” (SEIRD) [5, 21, 47]. In recent years,

there have also been several studies that add separate compartments for vaccinated

and unvaccinated individuals (SVEIR) [44, 24, 9]. There are also SIS or SIRS models,

where infected individuals eventually re-enter the pool of susceptible individuals to

represent immunity falling over time.

A study by Gillis et al. [25] developed a simulation-optimization framework to

help policymakers select the optimal response strategy to an outbreak of epidemic

disease in order to minimize the total number of infected for a limited budget. The

framework was based on an SEIR model, with additional compartments that divided

the infected into many distinct categories based on the severity of an individual’s

symptoms (e.g., Mild-Moderate, Severe, Hospitalized, ICU) as well additional sepa-

rate compartments for if an individual is isolating after being exposed to the disease
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or not. The model simulated what effect different response strategies (closures, pro-

tection, travel restrictions) would have on the course of an outbreak and what cost it

would incur on the economy of the region to maintain. They applied this framework

to a case study in the Canadian province of Nova Scotia during the COVID-19 pan-

demic. They found that if the budget allows it, strict policies can work to severely

limit the total cases, while if the budget is limited, oscillating between strict and

relaxed closures is the best policy, and whenever possible to enforce mask-wearing

and social distancing.

Recently, a new compartmental epidemiological model, called DELPHI, was de-

veloped by Li et al. [35], which was tailored specifically for predicting the cases and

deaths for COVID-19 and the impact of different control measures. DELPHI is based

on the mechanistic compartmental structure of SEIR models, with three major alter-

ations. First, it adds the additional compartments of undetected, detected hospital-

ized, and detected quarantined. Second, measures of non-pharmaceutical interven-

tions (NPIs) (social distancing, school closures, gathering restrictions, non-essential

business restrictions, lockdowns) are factored into the disease activity (transmission

and death rate). Finally, the model accounts for declining mortality rates over time,

as medical practices improve. With this model, they found they were able to predict

cases of and deaths from COVID-19 to within 6% and 11% accuracy, respectively,

over a period of two weeks across 200 geographical areas. However, two shortcomings

of DELPHI are: 1) the base DELPHI model does not account for vaccination, and

2) within regions, populations are homogeneous, and not divided into different risk

classes. This can make it difficult to use DELPHI for vaccine allocation, as often

specific sub-populations have different dynamics and need to be prioritized over one

another. However, an extension on DELPHI, referred to as DELPHI-V, accounts for

vaccination and heterogeneity across risk groups [9].

While compartmental models are far more common, in recent years with improve-

ments in computational ability, agent-based simulation has begun to be used more

frequently in epidemiological modeling. In agent-based simulation models, each in-

dividual is assigned attributes and adheres to a set of rules that impact the actions

and interactions between individuals. Through these actions, interactions, and emer-

gent behavior, the system is simulated. Dalgiç et al [15] compared the performance
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of strategies derived from compartmental SEIR models and FluTe agent-based sim-

ulation across different scenarios and performed sensitivity analysis on both. The

agent-based simulation was found to generally lead to lowered costs and cases com-

pared to compartmental models, at the expense of being far more computationally

expensive. While both models agreed on the importance of vaccinating school-age

children, FluTe models were found to vary their strategy with slight differences in

scenarios, while SEIR was less sensitive to change.

While the agent-based simulation approach has its benefits, its use in vaccine al-

location studies continues to be rare in comparison to compartmental models. This is

likely due to the simplicity and flexibility compartmental models bring, which allows

them to be quickly adapted to new situations and scenarios, while not being overly

sensitive to initial conditions and minor parameter changes. One problem with the

compartmental model approach, or really any epidemiological modeling method, is

that the number of newly infected is fundamentally a bilinear function of the current

susceptible and infectious populations. This makes it easy to simulate the effect of

various intervention strategies, but difficult to optimize their implementation. This

model structure is what makes resource allocation problems so difficult when trying

to control the dynamics of an epidemic disease.

2.3 Resource Allocation in Epidemic Scenarios

As previously mentioned, when examining existing work on the topic of how to

allocate limited resources or implement control strategies to combat the spread of

disease, the most common approaches are using analytical methods, simulation, and

optimization techniques.

The nature of the problem seems to resist analytical methods. Its non-convex

nature makes it difficult to derive useful insights beyond a few basic ones. However,

Duijzer et al. [20] were able to use analytic methods to study SIR models and

the impact of vaccine allocation on the spread of disease to derive new structural

results and insights. First, through the analysis of the herd effect, they prove that the

health benefits for a population as a function of the vaccination fraction are in general

convex-concave and increasing-decreasing. Second, they investigate the relationship

between administering a single vaccine and administering multiple ones and define
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the concept of the dose-optimal vaccination fraction, the fraction that maximizes the

health benefit per dose of vaccine in a population. At the dose-optimal vaccination

fraction, the health benefits per dose decrease when moving away from this fraction

in either direction. They argue that while the critical vaccination coverage, i.e.,

the coverage required to reach R0 ≤ 1, is suitable for situations where there is a

large supply of available vaccines, the dose-optimal fraction is the better guide for

allocating scarce vaccines. However, the study does not consider interaction effects

between different sub-populations, neither inter- nor intra-regional. Furthermore, it

focused only on the best practice for a single initial allocation of vaccines and not the

best practice for the allocation of vaccines over multiple periods, as otherwise finding

the dose-optimal vaccination fraction becomes exceedingly difficult. The most useful

takeaways from this work are the proof that the epidemiological benefits of vaccines

are non-linear and that this effect can be measured.

While most compartmental models either assume a homogeneous population or

divide the population into groups of individuals based on geographic regions and/or

risk groups, a second approach is to partition the population into households. In

household models, there are two levels of mixing: global and local. On the global

level, each infectious individual has a small chance of passing the infection on to any

susceptible individual, while on the local level, each infectious individual has a much

higher probability of passing on the infection to other members of their local group

or “household”. Though frequently referred to as households, these local groups can

actually be expanded to include neighborhoods or larger communities. This approach

was first developed by Ball, Mollison, and Scalia-Tomba [8]. Through the analysis of

the household model, they found that when this local level mixing was accounted for,

it had an amplifying effect on the impact of an outbreak and the basic reproductive

number, with a larger fraction of the population needing to be vaccinated to get an

outbreak under control. From these results, they proposed that the optimal strategy

with respect to minimizing the impact and duration of an outbreak is the equalizing

strategy. The equalizing strategy allocates vaccines such that each household receives

the same level of coverage. Expanding on this work, Ball and Lyne [7] showed that, at

least under certain conditions, the equalizing strategy was also the optimal approach

in regards to minimizing the overall cost of a vaccination program for a household
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model. Further building off this work, Kneeling and Ross [31] use a household

SIR model that accounts for differences in intra-household transmission rates and

considers larger households to re-evaluate the performance of the equalizing strategy

in different scenarios and identify where it breaks down. They found that both

large household sizes and small within-household transmission rates would break the

optimality of the equalizing strategy [7]. When this optimality breaks, they found

there was no simple rule to determine the optimal distribution strategy. Another

problem with household models is they can only provide insight into whether it is

better to focus on fully vaccinating individual households or spread vaccines across

the population. They have no means of distinguishing where or who should receive

priority for vaccination. For these reasons, household models are not very common

in other literature on the topic of vaccine allocation.

Choi and Shim [14] take a game theory approach to analyze the problem of

vaccination. Using an extension on the SIR model, they developed a model that uses

game theory to predict whether individuals will choose to partake in social distancing,

vaccination, or both. Game theory works by expecting individuals to behave in a

manner that is most advantageous to the individual, in this case, avoiding infection

while incurring the least “cost” to themselves. From this, they can try to predict how

individuals will act under different scenarios, such as what fraction of the population

is likely to engage in social distancing or get vaccinated. This game theory approach

is useful for predicting public uptake of vaccines, but not for designing a vaccination

strategy to control an epidemic.

The common thread between these studies is that analytically deriving useful

rules and relationships for the problem of controlling the spread of the epidemic

disease has proven to be exceedingly difficult. The problem has to be simplified or

abstracted to the point that it no longer resembles the original problem or system.

When studying the allocation of vaccines, the most common methodology is sim-

ulation or a combination of simulation and optimization techniques. Pure simulation

models are built to quickly evaluate the performance of different strategies or eval-

uate a strategy under different model parameters and scenarios, rather than finding

the optimal solution. For instance, Araz, Galvani, and Meyers [5] developed a varia-

tion on the traditional SEIR simulation model to include ineffectively and effectively
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vaccinated groups, which they used to evaluate the effectiveness of different vac-

cination strategies under different scenarios. In this study, effectively vaccinated

individuals moved to a “protected” group after an incubation period, during which

they could still catch the disease, but after which they were considered completely

immune and could no longer catch or transmit the disease. Meanwhile, ineffectively

vaccinated individuals were unaware that they were not protected, thus did not seek

re-vaccination, and were always susceptible to becoming infected. Using the model,

they evaluated the effectiveness of Pro-rata, sequential by population, sequential-by-

peak, and reverse sequential-by-peak vaccination strategies in minimizing cases and

average wait time to be vaccinated. They found that the two best strategies were

Pro-rata and reverse sequential-by-peak, with the latter having slightly fewer cases

but longer average wait times versus Pro-rata, and both strategies made significant

improvements from the base case of no intervention.

A similar study by Shim [63], applied a SEIR model to simulate the effects of

different age-stratified vaccination strategies in South Korea during the COVID-

19 pandemic. By testing numerous different potential vaccination strategies under

varying supply and vaccine efficacy scenarios, they evaluated the outcome of each

according to three different metrics: total infections averted, total deaths averted,

and total Years of Life Lost (YLL). When there were enough vaccines to vaccinate

at least 50% of the population, the best-performing strategy in terms of preventing

infections focused on vaccinating adults between the ages of 20-49 years of age. This

is because, in South Korea, this age bracket had the highest transmission incidence.

When seeking to prevent deaths, the best-performing strategy shifted to instead pri-

oritize adults older than 50. Then when preventing YLL, there was a slight shift

compared to the preventing deaths strategy, as the best-performing strategy focused

on those between 40-69 years old. While the strategies for preventing deaths and

YLL were mostly consistent regardless of the supply of vaccines, as the vaccine sup-

ply became further limited, the best-performing strategies for preventing infections

allocated more and more of the limited supply of vaccines to the 10-19 age bracket.

These results are consistent with our own findings for the Ontario COVID-19 case

study, discussed in Chapter 6.

In epidemic situations, the resources required to get an outbreak under control
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are generally exponentially increasing with time. Rachaniotis, Dasaklis, and Pap-

pis [57] tried to address this problem by combining a deterministic SIR simulation

model with a single resource scheduling problem for medical teams that applies the

concept of deteriorating jobs to represent the increasing time and effort required to

contain an outbreak. They applied and evaluated their model against the case of

mass vaccination against influenza A(H1N1) in Greece in 2009. 24 strategies were

enumerated, simulated, and evaluated analytically for their performance. The best

performance of these strategies was found to be able to significantly improve on the

performance of the random allocation of medical teams.

While the previous examples have utilized simulation to predict the dynamics of

disease under different parameters (such as the disease’s transmission incidence, av-

erage infectious period, and contact rate), the reverse can also be done. Mukandavire

et al. [47] developed and fit a SEIR simulation model to the cases of COVID-19 ex-

perienced in South Africa during the early stages of the pandemic. From this model,

they were able to estimate the R0 for this early strain of COVID-19 (R0 = 2.95), as

well as other infectious metrics such as the incubation and infectious periods. They

also derived insights into the impact of lockdown on the number of contacts a person

had in a day, observing an 80.31% reduction in contacts per day during lockdown,

demonstrating what role such a reduction would play in slowing the spread of the dis-

ease. These estimates were derived extremely quickly, with the paper being accepted

for publication in June of 2020, just months after COVID-19 had begun to spread

around the world, providing valuable insights into the behavior of early COVID-19

which were corroborated by future studies [63, 35].

While using simulation to evaluate different vaccination strategies is extremely

fast, the results are restricted to the test scenarios and strategies researchers develop

synthetically. The model itself makes no decisions and there is no expectation of

optimality. However, by combining the evaluation speed of simulation with opti-

mization techniques, one can circumvent the difficulties that arise with trying to

apply optimization techniques alone to the non-convex epidemiological model and

use them to identify improved strategies over those that are developed manually.

The usual process is to iterate between simulating the course of the disease and

generating a vaccination strategy using optimization techniques. Using this iterative
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process, simulation-based optimization can find near-optimal strategies tailored to

the model’s parameters and scenarios in a more reasonable time frame compared to

using optimization alone.

Savachkin and Uribe [62] proposed a simulation-optimization approach to min-

imizing measures of morbidity, mortality, and societal and economic costs by dis-

tributing and redistributing resources such as vaccines, anti-viral drugs, and admin-

istrative capacity, over the course of an outbreak. The proposed approach consists

of three models. The first handled cross-regional simulation of the spread of the out-

break between areas, to decide when an outbreak would spread to a region, while a

separate set of models simulated the progression of the disease within each region. A

separate optimization model was solved periodically to reallocate resources amongst

the regions, while strategically keeping reserves for potential future outbreaks avail-

able. By applying their model to a hypothetical outbreak of H5N1 in Florida, they

found that this proactive approach was able to significantly improve on a traditional

reactive myopic policy. Liu and Zhang [38] presented a similar study where they used

a dynamic logistics model to allocate various medical resources amongst geographic

regions during an outbreak of epidemic disease. They believed previous work focused

too much on a static problem without considering how the situation could evolve over

time. Their work followed a closed forecast, plan, execute, and adjust the loop. First,

a SEIR model would be run to forecast the course of the epidemic and the demand

for medical resources. The forecast would then be used in a mixed 0-1 integer pro-

gramming problem to identify the optimal allocation of medical resources to meet

demand through a three-tiered logistics network (manufacturers, DCs, and clinics)

for the lowest overall cost. Finally, the model’s solution would be implemented in

the real world and new data would be collected to adjust the forecast model for the

next decision cycle. In both these studies (i.e., [62, 38]), the allocation of medical

resources did not directly impact the course of the outbreak, and the epidemiological

models are simply a forecasting tool for the demand. They focused on alleviating

the worst effects of the disease, rather than trying to control it.

Conversely, Matter and Potgieter [44] used a combination of simulation and opti-

mization to model the course of an epidemic, allocate medical teams, and distribute
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vaccines via a drone network in an effort to directly control the course of an out-

break. The epidemic dynamics were simulated using a SEIRVD model. An integer

programming problem is solved on each simulated day to maximize the expected

prevented exposures (EPE) from allocating teams across the network, formulated as

a knapsack problem. The allocation of drone deliveries was solved in a similar man-

ner, by calculating the EPE value of delivery of vaccines and solving the knapsack

problem with the additional constraint of limited daily delivery time. These EPE

maximizing strategies were compared to and combined with several other strate-

gies for allocating teams and deliveries such as simply prioritizing higher population

areas or equally distributing resources across the region, with each combination of

team and delivery strategy being run. They found that while for an untargeted

vaccination campaign the EPE team allocation strategy performed poorly in terms

of preventing exposures, the EPE delivery strategy outperformed all other delivery

strategies. Meanwhile, for targeted vaccination campaigns, both the EPE team and

delivery strategies performed extremely well, outperforming all other strategies. This

EPE allocation approach shares a lot in common with one of the better-performing

solution methods tested in our own study, namely the GMB heuristic.

Recently, Bertsimas et al. [9] used an extension on the DELPHI model [35] to

optimize the location of vaccination sites and the allocation of vaccines to sites in

order to minimize both deaths and the distances between vaccination sites and pop-

ulation centers. They made two augmentations to the base DELPHI model. The

first was partitioning the population into risk classes to capture the disparate impact

of the disease on different groups of people. The second was the capability to model

the impact of vaccination on the dynamics of the pandemic. The model assumed

there was only a single type of vaccine and there was no interaction between the

different regions, with each region having its own separate DELPHI model. They

also added smoothing constraints on the allocation of vaccines to prevent large fluc-

tuations in the number of vaccines allocated to a region day to day. To combat the

non-convexity issue of allocating vaccines, the authors devised a custom coordinate

descent algorithm. This algorithm would iterate between simulating the dynamics of

the disease under a certain vaccination strategy and then generating a new strategy
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using a linear approximation of the bilinear non-convex equations from the simula-

tion. A similar method, the fixed allocation linear approximation, was experimented

with for solving our model, though the results proved to be less promising for the

allocation of vaccines amongst regions and subgroups when compared to other meth-

ods explored. This was likely due to the simplicity of our own linear approximation

generated from the simulation solution. An alternate linearization method would

likely lead to an improved solution.

Pure optimization approaches are rare in the literature, as the non-convex nature

of the problem makes it computationally difficult to solve. When it is used, usually

some form of approximation is required.

Ng et al. [49] proposed a multi-criterion vaccination planning problem for seasonal

influenza, with the objective of minimizing the vaccination cost and reproduction

number while maximizing societal benefit. This model differed from other models

in that rather than directly allocating vaccines, it sought to decide what portion

of a population to vaccinate using a specific strategy, such as mass, targeted, and

random. They used the model to identify the conditions under which each strategy

was preferable. Targeted vaccination was found to perform better in the early stages

of an outbreak, especially when there were limited vaccines, while mass vaccination

became more favorable later on in an outbreak. The priority groups to vaccinate

were found to be the elderly, who are most at risk from the disease, and school-age

children, who are the most likely to spread the disease.

Enayati and Özaltın [21] presented an optimization model for finding the min-

imum vaccination coverage required to control an emerging outbreak of influenza

across multiple geographic regions and sub-groups. The base model was a SEIR

model with the addition of dividing the infected into quarantined and non-quarantined

individuals. The decision variables are the portion of the population to be vaccinated

in each sub-group (single period). Alongside the model, they proposed a solution

algorithm that works by iteratively solving for upper and lower bounds by approx-

imating the bilinear terms using discretization and exact linearization. Even with

this algorithm, in a case study with only six regions and five age groups, the model

took over two hours to solve to optimality. Through the model, they explored the

effect of vaccine efficacy, enforcing equity across age groups and population centers,
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and altering the probability of an infected individual isolating or not.

Majrajt et al. [41] developed an optimization method for the vaccine allocation

problem based on the Nelder-Mead method and were able to observe significant

improvement over other vaccination strategies. Particle swarm optimization was also

used with similar results. While the authors refer to their solution as the optimal, it

should be noted that for non-convex problems; as is the case with their underlying

model, Nelder-Mead optimization can only locate a local optimum, and does not

guarantee global optimality. Additionally, this work does not directly consider the

allocation of vaccines and instead focuses on what fraction of different sub-groups of

the population to vaccinate (single period). An extension on this work [42] applies

their model and solution method to exploring the differences between the allocation

strategies to minimize different disease metrics for one versus two-dose vaccines and

investigate how parameters like vaccine efficacy, transmission rate, and supply impact

the derived strategies.

The aforementioned studies (i.e., [49, 21, 41, 42]) do not consider vaccine alloca-

tion over time, and instead treat it as a one-time decision of deciding what fraction

of the population to vaccinate, essentially when setting the initial conditions for the

SEIR model. Multi-period vaccine allocation problems are even more uncommon in

the literature. Of the papers that did use multi-period allocation, Ren, Órdoñez, and

Wu [59] was one of the most comprehensive works, presenting two SIR optimization

models tailored to modeling a smallpox outbreak in a single city and a network of

cities, respectively. The objective of the models was to minimize deaths by deciding

how to allocate a limited pool of vaccines to control an outbreak of smallpox. In ad-

dition to the usual parameters and constraints, their model had the ability to choose

whether to adopt a ring or mass vaccination approach in a period and how many re-

sources to dedicate to either strategy. The behavior of the ring vaccination strategy

would even change depending on if mass vaccination had at any point been utilized

in the city in the past. In their model, the usually non-convex SIR transmission rate

is replaced with a constant transmission rate, based on a second-order Taylor approx-

imation, to make it easier to solve. The authors found that for short time frames,

with 4 time periods of 15 days each, constant-rate approximations would deviate by

only 2% on average from those of the non-convex formulations, with a maximum
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deviation of 11%. However, this result is specific to smallpox with a relatively low

transmission rate, and would differ for other diseases.

Buhat et al. [12] took an alternate approach to linearize the SEIR model by using

the maximum recorded R0 in a region to determine the maximum outbreak size as

a function of the susceptible population. The number of susceptible individuals

after vaccination is a function of the population size, the active cases at the time

of vaccination, and the number of administered vaccines multiplied by their efficacy.

The model seeks to minimize deaths for a given budget. They applied their model

to the allocation of vaccines in the Philippines during the COVID-19 pandemic and

found that while richer regions could afford to vaccinate their entire population,

poorer regions could get the most for their limited resources by vaccinating 60-70%

of the population.

While most papers on the subject of vaccine allocation primarily focus on control-

ling the course of the disease, there are some that also try to enforce some measure

of equity into the model, either in the constraints or objective function, in order to

guide aspects of the model’s decision-making. Balcik et al. [6] took an alternate

approach and is entirely focused on maximizing equity for a wide range of different

regions and groups of people, while still ensuring reasonable coverage is achieved.

Unlike the other studies covered thus far, this paper highlighted the importance of

considering whether a vaccination strategy is equitable or not and whether some

groups will be left vulnerable when deciding whether to implement it or not.

2.3.1 Stochastic & Robust Approaches

The previous papers took a deterministic approach to the problem of resource allo-

cation in epidemic scenarios. Fu, Sim, and Zhou [24] argued that this deterministic

approach often used in SEIR models was not realistic to the reality of disease spread

and instead proposed a robust formulation of an SVEIR to optimally allocate vac-

cines on a limited budget. They made slight alterations to their model to linearize

the constraint and make it easier to solve by modifying the calculation of the new

exposure and replacing it with a normal approximation.

In addition to robust formulations, there have been studies that developed a

stochastic approach to the problem. Examples of such studies include Yarmand et
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al. [68], who proposed a two-phase stochastic simulation model for the allocation of

seasonal influenza vaccines amongst disparate geographic regions. The first phase

occurs before the beginning of flu season. A limited pool of vaccines was allocated

amongst the different regions with the goal being to contain the spread of the disease

for the lowest cost. The simulation then advanced to the second stage and deter-

mined whether the disease was successfully contained in each region as a stochastic

function of the administered vaccination strategy. In regions where the disease was

not contained, a second round of vaccines would be administered at an increased cost

compared to the first phase. As such, the model’s purpose was to carefully balance

the risk of over-vaccinating against the risk of under-vaccinating. Structurally, this

closely resembles the news-vendor model and the first phase decision can be solved

as such.

Similarly, Nguyen and Carlson [50] developed a discrete stochastic simulation

model to simulate the spread of infection and the real-time allocation of vaccines,

aiming to complement and compare results with studies that used deterministic

methods. They focused on the reactive allocation of vaccines and how the time de-

lay to allocation could impact the course of the disease in a scenario where vaccines

were allocated all at once in a single time period. They identified the trade-off be-

tween the number of available vaccines and the time to intervention on the spread of

disease, outbreak duration, and final outbreak size, and demonstrated that with in-

creasing delay in intervention, the quantity of vaccine required to keep an outbreak

under control grows exponentially. They also investigated the impact of coupling

cities together, demonstrating that the optimal vaccination strategy when consid-

ering coupled cities depends on the strength of the coupling. The best strategy

identified was to exclusively focus on one city in the event of weak coupling and to

move towards equal distribution as coupling grows stronger.

Yin and Büyüktahtakın [69] presented a stochastic multi-stage model to minimize

total infected and required funerals across multiple regions through the distribution of

both medical centers and resources under a limited budget. The model was built for

use in outbreaks of Ebola, which primarily impacts low-income countries that need to

make the most of limited resources. The model accounted for yet-to-be-buried bodies

as Ebola requires careful and costly burials for the deceased in order to prevent the
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risk of further infection. Their model is different from others discussed thus far as

they linearize the transmission of disease in their model by modeling the course of the

disease as the probability of a series of discrete scenarios occurring, allowing them to

efficiently solve the model. They also include two forms of equity metrics: infection

equity, enforcing a limit on the absolute deviation between regions relative to the

number of infected, and capacity equity, enforcing a limit on the absolute deviation

between the amount of treatment capacity established in a region relative to all

other regions. The strategies developed by their model could significantly improve

on existing strategies for combating Ebola outbreaks. By enforcing or relaxing these

equity constraints on the model, they demonstrated that strict adherence to these

equity constraints can be very costly in terms of additional infections and deaths.

Mohammadi et al. [46] presented both a stochastic and robust version of a model

to optimize the design of a vaccine distribution network with the objective of mini-

mizing total deaths and the cost of distribution and administration. Their network

followed a four-tier hierarchical hub network design of national, regional, and depart-

mental warehouses, with vaccines being administered at vaccination centers. Each

vaccination center had a set of “demand points” that it was able to cover. The model

tracked the cost of opening warehouses and vacation centers, placing an order, pur-

chasing vaccines, transportation and holdings costs, and the cost of administering

the vaccine to an individual. Each vaccination center was modeled as a multi-server

GI/G/c queue that limited the number of individuals who could be vaccinated in

a given period. Furthermore, these demand points were subdivided into different

risk classes, with the risk class determining an individual’s infection, hospitalization,

and mortality risk, as well as what vaccines they were potentially eligible for and

their number of contacts in a week. Different types of vaccines had different efficacy

and costs, with some vaccines requiring up to two doses and a time delay between

doses. The stochastic nature of the model comes from the chances of inventory dis-

ruptions, inventory degradation, capacity disruption, and capacity degradation over

time, along with different scenarios for contact, infection, mortality rates, and vac-

cine effectiveness. The epidemiological side of this model was simplified to a linear

approximation with each risk group having a static probability of becoming infected

in any given period. The authors expressed an interest in trying to integrate their
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model with a SIR model to account for the variable transmission rates over time that

would be experienced in a real-world outbreak.

2.4 Vaccine Allocation and Distribution

It was found that studies that examine both the allocation and distribution of vac-

cines for the purposes of controlling and minimizing epidemics are relatively rare.

As previously mentioned, Rastegar et al. [58] and Tavana et al. [66] decided how

to best allocate and distribute a limited supply of vaccines when demand outstrips

supply. However, they did not use any epidemiological modeling and instead had a

static demand for vaccines. Meanwhile, Liu and Zhang [38] used a SEIR model to

periodically forecast demand for medical supplies for which they then determined

the optimal allocation to minimize distribution costs. While the SEIR model was

being used to determine where to allocate resources, the allocation of those resources

was reactive and had no impact on the course of the epidemic. Going a step further,

Fadaki et al. [22] calculated the risk of being left unvaccinated for each client. They

then used a transshipment model to determine how best to allocate and distribute

vaccines to minimize this risk when there were not enough vaccines to cover demand.

While a wide variety of factors went into calculating this risk, there was still no direct

use of an epidemiological model, and they were not trying to impact the course of

the disease. However, since the COVID-19 pandemic, there has been an increase in

interest and studies on the topic, and there have been several studies that considered

both the optimal allocation and distribution strategy to control an epidemic.

One such study was the previously mentioned Matter and Potgieter [44], which

approached the problem as a knapsack problem. Using a SEIRVD simulation model,

they solved a 0-1 integer programming model each day to allocate medical teams and

vaccines where their allocation saw the most immediate benefit in terms of expected

prevented exposures (EPE) for the following day. A similar approach was used to

design the drone distribution network to deliver the vaccines to the medical teams.

It was essentially using a GMB heuristic, allocating resources where individually the

most immediate impact is seen, which cannot guarantee optimality. As such, when

performance was compared to other strategies, the EPE strategy under-performed

in certain scenarios.
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Manupati et al. [40] used decision tree analysis to develop different vaccination

strategies and evaluated them using the synthetic control method for the expected

reduction in the number of cases and deaths from implementing each strategy. They

then used a stochastic MILP to build a custom distribution network to fulfill the

selected strategy. The model determined the location and number of cold storage

facilities, their required inventory levels, and the allocation of vaccines to clinics,

so as to minimize both transportation time and cost. However, while both vaccine

allocation and distribution are considered, they are solved separately, rather than as

a single problem.

Using their extension on the DELPHI model, Bertsimas et al. [9] optimized the

location of mass vaccination sites and the allocation of vaccines amongst said sites

and sub-populations so as to minimize deaths, hospitalizations, and quarantined

individuals. To circumvent the non-convex nature of the model, they developed an

algorithm to iterate between simulating the dynamics of the pandemic under a certain

vaccination strategy and then generating a new strategy using a linear approximation

of the bilinear non-convex equations from the simulation. However, the authors were

primarily focused on the high-level strategic decision of where to locate vaccination

sites, rather than on how to allocate vaccines. Additionally, they did not model the

distribution network required to supply the chosen mass-vaccination sites with their

required vaccines, and instead simply assumed that no matter how many vaccines

are allocated to a location they could be delivered and administered.

Finally, Mohammadi et al. [46] developed a detailed model for the design of

multi-vaccine distribution networks built to serve an ongoing epidemic situation.

The model decided what warehouses and vaccine centers to open, when to place

orders, what inventory levels to keep, and how to distribute the vaccines through

the network. Additionally, the model was stochastic, with the chance for disruptions

to the network to occur. However, they used a simplified linear approximation of

the epidemiological model where each risk class had a flat probability of becoming

infected in any given period. The authors expressed a desire to replace this linear

approximation with a SIR model to improve the accuracy to which they can model

the course and impact of an epidemic.
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2.5 Literature Review Classification Table

Table 2.1 classifies the literature. A study’s focus can be classified based on whether

it considers distribution (Dist); how resources get to their destination, site location

(Loc); deciding where to locate facilities (such as DCs, clinics, vaccination sites),

epidemiological modeling (Epid); whether disease dynamics are modeled, and al-

location (Alloc); deciding how resources should be divided amongst a population.

Studies can be further classified by their solution method (whether the paper uses

analytical (Analy), simulation blue(Sim), heuristic (Heur), or optimization (Opt)

techniques), and what objective metric the paper focuses on, (such as minimizing

economic (Econ) or environmental (Env) costs, maximizing societal benefits (Soc),

or minimizing epidemiological impact (Epid)). Each paper can also be classified

based on whether it is deterministic or accounts for uncertainty (Uncrt) in one form

or another. The last column of the table contains the topic of the paper’s case study,

if it had one.
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Table 2.1: Literature Review Classification Table

3whitelightgrey

Study Focus Solution Method Objective
Study Dist Loc Epid Alloc Analy Sim Heur Opt Econ Env Soc Epid Uncrt Case Study
[5] Araz, Galvani, & Meyers 2012 ✓ ✓ ✓ ✓ Epidemic Influenza -

Arizona
[6] Balcik et al. 2022 ✓ ✓ ✓ ✓ COVID-19 - Turkey
[7] Ball & Lyne 2002 ✓ ✓ ✓ ✓ ✓ -
[8] Ball, Mollison, & Scalia-
Tomba 1997

✓ ✓ ✓ ✓ ✓ -

[9] Bertsimas et al. 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ COVID-19 - USA
[12] Buhat et al. 2021 ✓ ✓ ✓ ✓ ✓ COVID-19 - Philip-

pines
[13] Chen et al. 2014 ✓ ✓ ✓ ✓ EPI Vaccination -

Niger
[14] Choi & Shim 2020 ✓ ✓ ✓ ✓ ✓ ✓ -
[15] Dalgic et al. 2017 ✓ ✓ ✓ ✓ -
[18] De Carvalho, Ribeiro, &
Barbosa-Póvoa 2019

✓ ✓ ✓ ✓ ✓ ✓ European Supply
Chain

[19] Duijzer, Van Jaarsveld, &
Dekker 2018

✓ ✓ ✓ ✓ -

[21] Enayati and Özaltın 2020 ✓ ✓ ✓ ✓ ✓ -
[22] Fadaki et al. 2022 ✓ ✓ ✓ ✓ COVID-19 - Aus-

tralia
[24] Fu, Sim, & Zhou 2021 ✓ ✓ ✓ ✓ ✓ ✓ COVID-19 - New

York
[25] Gillis et al. 2021 ✓ ✓ ✓ ✓ ✓ COVID-19 - Nova

Scotia
[28] Hovav and Herbon 2017 ✓ ✓ ✓ ✓ ✓ Seasonal Influenza -

Israel
[29] Hovav and Tsadikovich 2015 ✓ ✓ ✓ ✓ ✓ Seasonal Influenza -

Israel
[31] Keeling and Ross 2015 ✓ ✓ ✓ ✓ ✓ -
[33] Kermack and McKendrick
1927

✓ ✓ ✓ -

[35] Li et al. 2022 ✓ ✓ ✓ ✓ -
[38] Liu and Zhang 2016 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
[36] Lim, Norman, and Rajgopal
2019

✓ ✓ ✓ ✓ EPI Vaccination -
Africa

[40] Manupati et al. 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ COVID-19 - India
[41] Matrajt et al. 2021 A ✓ ✓ ✓ ✓ ✓ COVID-19 - Wash-

ington
[42] Matrajt et al. 2022 B ✓ ✓ ✓ ✓ ✓ COVID-19 - Wash-

ington
[44] Matter and Potgieter 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Measles - Niger
[46] Mohammadi et al. 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ COVID-19 - France
[47] Mukandavire el al. 2020 ✓ ✓ ✓ COVID-19 - South

Africa
[49] Ng et al. 2018 ✓ ✓ ✓ ✓ -
[50] Nguyen and Carlson 2016 ✓ ✓ ✓ ✓ ✓ ✓ -
[56] Pishavee, Razmi, & Torabi
2014

✓ ✓ ✓ ✓ ✓ ✓ ✓ Vaccine Supply Chain
- Iran

[57] Rechaniotis, Dasaklis, &
Pappis 2012

✓ ✓ ✓ ✓ H1N1 - Greece

[58] Rastegar et al. 2021 ✓ ✓ ✓ ✓ ✓ ✓ Influenza
[59] Ren, Ordóñez, & Wu 2013 ✓ ✓ ✓ ✓ ✓ Smallpox Bio-terror

Attack
[61] Saif and Elhedhli 2016 ✓ ✓ ✓ ✓ ✓ ✓ Ontario Cold Chain
[62] Savachkin and Uribe 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ H5N1 - Florida
[63] Shim 2021 ✓ ✓ ✓ ✓ COVID-19 - South

Korea
[64] Sripada et al. 2023 ✓ ✓ ✓ ✓ COVID-19 - India
[65] Sun, Andoh, & Yu 2021 ✓ ✓ ✓ ✓ COVID-19 - Norway
[66] Tavana et al. 2021 ✓ ✓ ✓ ✓ ✓ ✓ Influenza
[68] Yarmand et al. 2014 ✓ ✓ ✓ ✓ ✓ Seasonal Influenza -

North Carolina
[69] Yin and Büyüktahtakın 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Ebola - Africa
Our work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ COVID-19 - Ontario
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2.6 Literature Gaps

To the best of our knowledge, there is currently no known method that can solve

the problem of vaccine allocation to minimize measures of epidemiological impact

(infected, deaths, YLL, outbreak duration) to the guaranteed optimal in a reasonable

time frame (i.e., a few days to a week at most, as the problem likely does not need to

be solved regularly) in the case of a limited supply of vaccines. Given the non-convex

nature of the problem, it is at least NP-hard [43, 55], meaning that depending on the

size of the problem, it can take days, weeks, or even months to solve, even using state-

of-the-art commercial solvers like GUROBI and BARON. As such, the existing works

on the problem of vaccine allocation either linearize the model or take a heuristic

solution approach, often combined with simulation. We implemented several novel

solution methodologies, carefully evaluated them in terms of their solution quality

and their execution time, and were able to identify three promising approaches to

solve the problem to near optimality and devise an exact solution method that is

suitable for small-size problems.

Additionally, to the best of our knowledge, few studies have utilized epidemio-

logical modeling to both optimally allocate and distribute vaccines in an epidemic

situation. Most vaccine supply chain and distribution studies use models with a

fixed demand for vaccines or try to simply distribute as many vaccines as possible

for a given budget. A few studies have used epidemiological modeling as a fore-

casting tool for the future demand for vaccines, but the allocation of the vaccines

did not actually impact the course of the outbreak. Meanwhile, studies focused on

vaccine allocation for the purposes of controlling epidemic disease either largely ig-

nored costs and supply chain considerations, instead only limiting supply, or reduced

the costs to just the cost of acquisition and administration. On top of that, many

allocation studies only assumed a single-period allocation of vaccines, rather than a

multi-period allocation which allocates vaccines over time, and/or are homogeneous
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(single population or multiple disconnected populations), rather than heterogeneous

(multiple interconnected groups).

Our work presents a novel combination of a SEIR epidemiological model and a

network model for the purpose of vaccine allocation and distribution that enables

balancing the effectiveness of a vaccination strategy against the logistical limitation

of the assumed allocation strategy. The model is heterogeneous and capable of

handling multi-period allocation for a limited supply of multiple types of single-dose

vaccines. Alongside this model, we explore several novel solution methods, including

four promising ones. This model and solution methods are applied to a case study in

the Canadian province of Ontario during the COVID-19 pandemic in 2021 and used

to derive useful insights into the best practices for vaccine allocation when looking

to prevent cases and/or deaths.



Chapter 3

Problem Description and Mathematical Formulation

Consider a scenario where there has been an epidemic outbreak of a disease in a

region. The population has little to no natural immunity to the disease, and if no

intervention is taken, the disease will rapidly spread through the population. One

effective measure to control the outbreak is mass vaccination. However, it is infeasi-

ble to vaccinate the entire population at once due to supply and/or administrative

capacity constraints. Decisions need to be made on how to best make use of these

limited resources.

The population at large can be divided into a set of population zones, indexed

by i ∈ I, and stratified based on factors such as age or vulnerability to disease (such

as high-vulnerability or immunocompromised individuals), indexed by g ∈ G. A

Susceptible-Exposed-Infected-Removed (SEIR) compartmental model can be used

to model and predict the dynamics of the epidemic. Consider that there is a limited

supply of vaccines that becomes available every time period (e.g., week) t ∈ T , of

which there are different vaccine types v ∈ V with varying efficacy, cost, and logistical

requirements. These vaccines need to be stored in and shipped from DCs j ∈ J to

the population zones. The aim is to determine the number of doses of each type of

vaccine to administer to each group in every population zone in every time period, so

as to minimize some impact of the epidemic, such as total exposures, while balancing

against the costs required to enact such a strategy and respecting the constraints of

the distribution system. These constraints might include a limited vaccine supply,

minimum shipment sizes, capacity constraints for the DCs and population zones,

access and equity considerations, etc.

37
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3.1 Notation

Table 3.1 presents the notation used in the models.

Table 3.1: Notation
Sets:
I Set of population zones (e.g., Public Health Unit in Ontario Canada) indexed by i
J Set of vaccine distribution centers (DC) indexed by j
G Set of risk classes (e.g. age groups) indexed by g
V Set of vaccine types indexed by v
T Set of time periods indexed by t

Parameters:
djv The unit cost (per lot) for sourcing and shipping vaccine type v to DC j
cijv The unit cost (per lot) for shipping from DC j to population zone i for vaccine type v
pj Maximum capacity that can be shipped from DC j in a single period, measured in terms of volume (cubic inches)
qvt Total quantity of vaccine v available in time period t
sj Maximum storage capacity of DC j, measured in terms of volume (cubic inches)
ai Maximum number of doses that can be administered in zone i per time period (administrative capacity).
ηv Efficacy of vaccine v
bv Number of shots per a lot of vaccines v
κv Storage requirement of one lot of vaccine v in cubic inches
Cgg′ Matrix for inter-group mixing in a single period of time
τ Disease transmissibility coefficient (i.e., probability of infection given contact)
α1 Average exposure duration (i.e. the diseases incubation period)
α2 Average infection duration (i.e. how long an individual remains infectious)
β Conversion factor between epidemiological impact and total shipping costs
S0
ig Initial susceptible population in zone i in risk group g

E0
ig Initial exposed population in zone i in risk group g

I0ig Initial infected population in zone i in risk group g
R0

ig Initial removed population in zone i in risk group g
r0jv Initial stockpile of vaccine v at DC j
wig Weight of new exposures for each zone i and risk group g (i.e. Mortality Rate)

Decision variables:
xijvt Lots of vaccine v shipped from DC j to zone i in period t
yjvt Lots of vaccine v supplied to DC j in time period t
rjvt Lots of vaccine v in DC j at the end of period t
zigvt Number of people in group g in zone i that receive vaccine v in period t
Sigt Number of susceptible cases of group g in zone i at the end of period t
Eigt Number of exposed cases of group g in zone i at the end of period t
Iigt Number of infected cases of group g in zone i at the end of period t
Rigt Number of removed cases of group g in zone i at the end of period t
NEigt New exposures in group g in zone i in period t

3.2 SEIR Epidemiological Model

The SEIR epidemiological model handles the disease dynamics and how an outbreak

spreads through the population over time. The population of the region, already
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broken down by population zone i and risk group g, is divided further into four

compartments, denoted by Sigt, Eigt, Iigt and Rigt. These compartments denote,

respectively, the number of susceptible, exposed, infected, and removed individuals

in zone i belonging to risk group g at the end of time period t. While some SEIR

models are continuous time, using differential equations, our model is instead of a

discrete time and uses difference equations. Assuming a closed system and that the

time period under consideration is not sufficient that natural population growth and

migration will have a major impact, the total population Pig = Sigt + Eigt + Iigt +

Rigt, (∀i ∈ I, g ∈ G, t ∈ T ), remains constant.

Within each zone, inter-group mixing happens according to a symmetric |G|×|G|
contact matrix C, where Cgg′ specifies the average number of close contacts a person

in group g has with people from group g′ in a single period of time. Given a disease

transmissibility coefficient (i.e., probability of infection given contact) τ , the number

of new exposures, NEigt, in period t+1 due to contact during period t is calculated

as

NEig(t+1) = τSigt

∑︂
g′∈G

Cgg′
Iig′t
Pig′

, (3.1)

where the term inside the summation is simply the product of the number of contacts

by the probability that the contacted person is infectious, returning the number

of contacts with infected people in group g′. Summing over all groups, it is then

multiplied by the probability of infection given contact and the susceptible population

of group g to find the number of new exposures in the group (NEig(t+1)). This number

is then subtracted from the susceptible compartment (Sigt) and added to the exposed

compartment (Eigt) to get their corresponding values in period t+1. Additionally, in

every period, the flows from E to I and from I to R, are determined by the α1 and α2

parameters, which denote the average exposure and infection duration respectively,

in the same units as t (e.g., weeks). The initial conditions, how many susceptible,
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exposed, infected, and removed there are for each risk group g in zone i at the start

of t = 1, are set using the parameters S0
ig, E

0
ig, I

0
ig, and R0

ig.

The decision variable zigvt denotes the number of doses of vaccine of type v admin-

istered in zone i to risk group g in each time period t. A set Z can be defined by all

the feasibility constraints imposed on the allocation of vaccines, such as supply chain

and administrative limitations. We assumed that only the unvaccinated can contract

and spread the disease, and thus the effectively vaccinated portion of each group

(
∑︁

v∈V ηvzigvt) is subtracted from Sigt and added to Rigvt, where ηv is the efficacy

of vaccine v. Ineffectively vaccinated individuals simply remain in the susceptible

compartment. If instead, we wanted to have vaccinated individuals still contract and

spread the disease, just at a different rate, additional compartments would need to

be added to represent the vaccinated populations (i.e., V Sigt, V NEigt, V Eigt, V Iigt).

The objective function should seek to find z ∈ Z in such a way that minimizes

some epidemiological metric (total cases, hospitalizations, deaths, YLL). For this

model, it was decided to focus on minimizing the total number of new exposures

NEigt (i.e., cases), and thus the size of the outbreak. However, a weight parameter

wig can be used to adjust model behavior. For example, setting the weight to the

mortality rate of each group g will have the model minimize deaths rather than

cases. Alternatively, it can be used with separate vulnerable groups, such as the

immunocompromised and frontline workers, to prioritize those groups for vaccination.

Putting this all together, the SEIR model can be formulated as follows:
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min
z∈Z,S,E,I,R,NE

∑︂
i∈I

∑︂
g∈G

∑︂
t∈T

wigNEigt (3.2)

s.t. NEig(t+1) = τSigt

∑︂
g′∈G

Cgg′
Iig′t

Pig′
∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.3)

Sig(t+1) ≥ Sigt −NEig(t+1) −
∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.4)

Eig(t+1) =

(︃
1− 1

α1

)︃
Eigt +NEig(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.5)

Iig(t+1) =

(︃
1− 1

α2

)︃
Iigt +

Eigt

α1
∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.6)

Rig(t+1) = Rigt +
Iigt
α2

+
∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.7)

Sig0 = S0
ig ∀i ∈ I, g ∈ G (3.8)

Eig0 = E0
ig ∀i ∈ I, g ∈ G (3.9)

Iig0 = I0ig ∀i ∈ I, g ∈ G (3.10)

Rig0 = R0
ig ∀i ∈ I, g ∈ G (3.11)

Sigt, Eigt, Iigt, Rigt, NEigt ≥ 0 ∀i ∈ I, g ∈ G, t ∈ T (3.12)

Constraint (3.3), based on (3.1), determines the number of new exposures for the

next time period. Constraints (3.4) through (3.7) determine the dynamics of the

population, i.e., how many are in the susceptible, exposed, infected, and removed

compartments for each zone, group, and time period. Constraints (3.8) through

(3.11) determine the initial conditions of the model. Constraint (3.12) enforces non-

negativity.

There are numerous potential alterations that could be made to improve the real-

ism of the model. Such as incorporating inter-zone mixing of the population, which

might be modeled using constraints similar to the equation
∑︁

i′∈I δii′gt =
∑︁

i′∈I δi′igt,

where δii′gt denotes the population of group g moving from zone i to i′ in time period

t. However, inter-zone mixing would account for a very small portion of the overall

population and contacts, especially in an epidemic scenario where travel is likely

to be kept to a minimum, and is thus over-shadowed by intra-zone mixing as soon
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as the disease becomes established in a zone. Furthermore, as the model currently

assumes that, once vaccinated, a person is unable to either contract or spread the

disease, additional compartments could be built to represent the vaccinated popula-

tion, separate from the rest of the population (S ′
igt, E

′
igt, I

′
igt), where the vaccinated

might have lower contract, transmission, and mortality rates from the disease, but

are still a contributing factor to the epidemic. For diseases such as COVID-19, it

might be useful to explore a model where every person requires multiple doses of a

vaccine in order to be fully vaccinated. This could be achieved in a similar manner to

incorporating vaccination into the model; by adding separate compartments to cap-

ture the first-dose and second-dose populations. This would also require dividing the

vaccine allocation decision variables zigvt into first dose allocation and second dose

allocations. However, as even the single-dose vaccine model would prove difficult to

solve, in this thesis the focus is on single-dose vaccines.

3.3 Vaccine Supply Chain Model

The vaccine supply chain model can be formulated as a standard network problem.

Vaccines are either manufactured locally or imported from abroad. Let djv be the

cost associated with sourcing and shipping one lot of vaccine type v to DC j, and

qvt be the total quantity available (in lots) of vaccine v in time period t. It can be

assumed that, within a reasonable time frame, the quantity of available vaccines is

determined ahead of time, based on production and shipping plans from the vaccine

supplier(s), and thus are beyond the control of the decision-maker. We assume that

there is always going to be some limiting factor on the vaccine supply in any time

period. The decision variable yjvt denotes the number of lots of vaccine v shipped to

DC j in each time period t, and the vaccine lot size (doses per lot) is set by bv. Each

DC j can ship only a limited quantity of vaccine during each time period, denoted

as pj. It is assumed that the DCs are equipped to store vaccine lots for prolonged
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periods (i.e., longer than the planning horizon) and turnover is high enough that

perishability is not a major concern. The maximum storage capacity in DC j is sj

and each vaccine has a storage space requirement κv, both of which are measured

in cubic inches. The actual inventory of vaccine v in DC j at the end of period t is

denoted as rjvt, with the initial inventory levels being r0jv. The unit (lot) shipping

cost from DC j to population zone i of vaccine type v is cijv. Finally, xijvt is the lots

of vaccine v shipped to population center i from DC j in each time period t. With

that, for a given demand for vaccines
∑︁

g∈G zigvt the vaccine supply chain problem

can be formulated as:

min
x,y,r

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt +
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt (3.13)

s.t.
∑︂
j∈J

yjvt ≤ qvt ∀v ∈ V, t ∈ T (3.14)

∑︂
i∈I

∑︂
v∈V

κvxijvt ≤ pj ∀j ∈ J, t ∈ T (3.15)

bv
∑︂
j∈J

xijvt ≥
∑︂
g∈G

zigvt ∀i ∈ I, v ∈ V, t ∈ T (3.16)

rjv(t+1) − rjvt = yjv(t+1) −
∑︂
i∈I

xijv(t+1) ∀j ∈ J, v ∈ V, t ∈ T (3.17)

∑︂
v∈V

κvrjvt ≤ sj ∀j ∈ J, t ∈ T (3.18)

rjv0 = r0jv ∀j ∈ J, v ∈ V (3.19)

yjvt, rjvt, xijvt ≥ 0 ∀i ∈ I, j ∈ J, v ∈ V, t ∈ T (3.20)

yjvt, rjvt, xijvt ∈ Z (3.21)

The objective function (3.2) seeks to minimize the shipping and sourcing costs,

both from the suppliers to the DCs and from the DCs to the population zones.

Constraint (3.14) states that only as many vaccines as are available can be sourced

and shipped to the DCs in each time period, while (3.15) states that the volume of

vaccines distributed from each DC cannot exceed a set volume. Constraint (3.16)
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requires that the vaccines shipped from all DCs must collectively meet the demand

for vaccines in a region. Constraint (3.17) is the flow balance constraint for the DCs,

which states that the change in inventory from one period to the next equals the

difference between received and shipped vaccine quantities. Constraint (3.18) limits

how much can be stored in a DC while (3.19) defines the initial inventory levels of

the DCs. Constraint (3.20) defines the domain of the decision variables.

There are numerous potential additions or alterations that could be made to the

supply chain model to improve on its accuracy. For instance, a common structure

for vaccine supply chain models is a multi-tier network, with vaccines starting from a

large stockpile and working their way down through a series of DCs. As it currently

is formulated, the model is essentially a three-echelon model (Supply, DC, Zone), but

additional intermediate stages could be added relatively easily without major mod-

ifications. Alternatively, rather than stopping at zones, the model could go a layer

deeper and show how vaccines are distributed to individual clinics and vaccination

sites. Taking it a step further, an alternate approach entirely from the simple trans-

shipment model could be to treat the distribution of vaccines as a vehicle routing

problem. However, for this thesis, we elected to keep the vaccine supply chain model

simple yet effective. It serves the goal of limiting the supply of vaccines and loosely

modeling how they might be distributed. It is not meant to accurately predict the

true vaccine distribution costs, but instead, be quick to solve while providing a rough

estimate of the sourcing and shipping costs. The complexity of this problem arises

almost entirely in solving the vaccine allocation portion of the problem, with the

distribution side being far easier comparatively. In fact, so long as the supply chain

model eventually connects to the SEIR model through a constraint such as (3.16),

where demand represents the chosen allocation of vaccines, all solution methods

explored in this paper can be applied with only minor alterations.
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3.4 Integrating the Models

The epidemiological and supply chain models can be combined into a single multi-

objective model where the epidemiological portion tries to minimize the epidemiolog-

ical impact through the optimal allocation of vaccines and the supply chain portion

imposes limits on vaccine availability and seeks to minimize the monetary costs of

a given vaccine allocation strategy. These two objectives are adversarial as admin-

istering more vaccines reduces epidemiological impact but increases costs, and vice

versa. Using a conversion factor of β, the model can be made to prioritize minimizing

cases or costs. β essentially denotes how much the decision-maker is willing to spend

in order to prevent one additional unit of the chosen epidemiological impact metric

(new exposures, deaths, YLL, etc.). The combined model is as follows:
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min
S,E,I,R,NE,z,x,y,r

∑︂
i∈I

∑︂
g∈G

∑︂
t∈T

wigNEigt (3.22)

+ β(
∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt +
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt)

s.t NEig(t+1) = τSigt

∑︂
g′∈G

Cgg′
Iig′t

Pig′
∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.23)

Sig(t+1) ≥ Sigt −NEig(t+1) −
∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.24)

Eig(t+1) =

(︃
1−

1

α1

)︃
Eigt +NEig(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.25)

Iig(t+1) =

(︃
1−

1

α2

)︃
Iigt +

Eigt

α1
∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.26)

Rig(t+1) = Rigt +
Iigt

α2
+

∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn} (3.27)

∑︂
j∈J

yjvt ≤ qvt ∀v ∈ V, t ∈ T (3.28)

∑︂
i∈I

∑︂
v∈V

κvxijvt ≤ pj ∀j ∈ J, t ∈ T (3.29)

rjvt − rjv(t−1) = yjvt −
∑︂
i∈I

xijvt ∀j ∈ J, v ∈ V, t ∈ T (3.30)

∑︂
v∈V

κvrjvt ≤ sj ∀j ∈ J, t ∈ T (3.31)

∑︂
g∈G

zigvt ≤ bv
∑︂
j∈J

xijvt ∀i ∈ I, v ∈ V, t ∈ T (3.32)

∑︂
g∈G

∑︂
v∈V

zigvt ≤ ai ∀i ∈ I, t ∈ T (3.33)

Sig0 = S0ig ∀i ∈ I, g ∈ G (3.34)

Eig0 = E0ig ∀i ∈ I, g ∈ G (3.35)

Iig0 = I0ig ∀i ∈ I, g ∈ G (3.36)

Rig0 = R0ig ∀i ∈ I, g ∈ G (3.37)

rjv0 = r0jv ∀j ∈ J, v ∈ V (3.38)

zigvt, Sigt, Eigt, Iigt, Rijt, NEigt, xijvt, yjvt, rjvt ≥ 0 (3.39)

xijvt, yjvt, rjvt ∈ Z (3.40)
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Constraints (3.23)-(3.27) are the SEIR constraints of the epidemiological model,

which determine the disease dynamics. Constraints (3.28)-(3.31) are the supply chain

constraints. Constraint (3.32) is the only constraint that connects the two models

together, by enforcing that the collective vaccines delivered to a zone must be greater

than or equal to the administered vaccines. Constraint (3.33) is a new constraint

that enforces that the number of vaccines administered in a zone must be less than

or equal to the administrative capacity of the zone. For the sake of simplicity, we

assume administrative capacity is constant over time but depends on the geographical

zones where the vaccines are being administered. However, ai could be replaced with

another equation, such as increasing administrative capacity over time to represent

increased efficiency and practice in administering vaccines, or this constraint could

also be replaced with a similar constraint

∑︂
j∈J

∑︂
v∈V

bvxijvt ≤ ai ∀i ∈ I, t ∈ T, (3.41)

which connects the amount of vaccines delivered to a region to the administrative

capacity, rather than the amount that is used. This would prevent wasting partial

lots of vaccines (e.g., sending 2 lots of 1000 vaccines but only having the capacity

to use 1300 of them, wasting 700 vaccines). This constraint would be useful if

decision-makers wanted to avoid wasting any vaccines. This problem could also be

corrected by allowing the zones to store a small number of vaccines on-site between

time periods, thus allowing them to store a partial lot of vaccines for use in the next

period if they exceed their administrative capacity for the current period. As is, the

model will avoid wasting vaccines, unless the benefits outweigh the incurred costs.

Constraints (3.34)-(3.38) set the initial conditions of the model. Constraint (3.39)

is the non-negativity constraint, and constraint (3.40) states that xijvt,yjvt, and rjvt

must be integers.

As previously mentioned, this model is a multi-objective one, balancing epidemic



48

impact against monetary costs using a conversion factor β. Alternatively, we could

add an additional constraint to the model that imposes a cap on the total cost (i.e.,

a budget). This would remove the requirement to select a specific value for β and

would allow decision-makers to define precisely how much money is available for

the vaccination campaign. This would also circumvent the requirement to attach a

monetary cost to prevented deaths, which can be a sensitive matter, both morally

and politically. The Pareto frontier between the epidemiological impact and costs

of both the budget-constrained and multi-objective models would be identical, as

by setting the budget to the optimal cost incurred under a specific value of β, the

optimal allocation strategy would be identical.



Chapter 4

Solution Methods

On the surface, this model may seem relatively easy to solve. For the SEIR epidemi-

ological portion of the model, the majority of the model is just a series of difference

equations simulating the dynamics of the epidemic based on the vaccine allocation

strategy represented by the decision variable zigvt. The remaining decision variables

(Sigt, Eigt, Iigt, Rigt, NEigt) are state variables determined explicitly from this value.

For the supply chain portion, while a mixed integer problem, it is relatively simple

to solve as a transshipment model, where values of the xijvt, yjvt, and rjvt decision

variables again rely on the value of the decision variable zigvt, as it represents the de-

mand for vaccines in the model. However, the real complexity arises with constraint

(3.23), which can be shown to not only be non-linear, but non-convex in nature.

This bilinear constraint and the inclusion of the bilinear term NEigt in constraints

(3.24) and (3.25) makes the solving process significantly more complex.

Because where vaccines are administered directly impacts the susceptible popu-

lation (3.24), which in turn impacts the new exposures (3.23), as well as the future

susceptible and infected populations, where every vaccine will be most effective de-

pends on where every other vaccine is administered. As such, deciding where to

administer a vaccine is a nearly endlessly recursive decision. Consider also that the

secondary objective of minimizing costs means that not every vaccine will even nec-

essarily be administered and that there are potentially multiple different strategies

that can arrive at the same objective value just with a different balance between

costs and new exposures. Hence, it becomes apparent why the vaccine allocation

and distribution problem has proven so difficult to solve to optimality.

49
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4.1 Commercial Solvers

It was found that commercially available solvers, such as GUROBI v10 or BARON

v22, were ineffective for all but the simplest of problems. In general, if the number

of zones is greater than five, the number of groups is greater than three, or if there

are more than ten time periods or one type of vaccine, a commercial solver will be

unable to solve the model to optimality or even near optimality in a reasonable time

frame (i.e., takes longer than 24 hours.). The optimality gap is often very large,

relatively speaking, often stalling for hours at a gap of ≥ 50%. Even when the solver

is warm-started using the best solution obtained from another solution method, it is

usually unable to further improve on the provided solution. This is not unexpected,

as most commercial solvers are not built to efficiently solve non-convex problems.

However, for the small problems that commercial solvers can solve, they can provide

a point of comparison for other solution methods.

4.2 Lagrangian Relaxation

The first solution method that was explored was using Lagrangian relaxation [23].

Lagrangian relaxation works by relaxing the “complicating” constraints to decom-

pose the problem into sub-problems. Without the complicating constraints, the

sub-problems are, in theory, easier to solve, with the violation of the relaxed con-

straint being linearly penalized in the objective function according to the Lagrangian

multiplier. By solving the sub-problems, a Lagrangian bound (lower bound) on the

optimal solution can be obtained. Then, by using a method such as Kelley’s cutting

plane method [32], additional cuts can be generated from the sub-problem solu-

tions for use in the dual master problem, which will provide both new Lagrangian

multipliers and an upper bound on the optimal solution. These new Lagrangian

multipliers are plugged back into the sub-problems and this process is repeated until

convergence.
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4.2.1 Relaxed Model

The model below is the relaxed combined supply chain and epidemiological model,

where constraint (3.32) was relaxed.

min
S,E,I,R,NE,z,x,y,r

∑︂
i∈I

∑︂
g∈G

∑︂
t∈T

wigNEigt (4.1)

+ β

⎛⎝∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt +
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt

⎞⎠
+
∑︂
i∈I

∑︂
v∈V

∑︂
t∈T

λivt(
∑︂
g∈G

zigvt − bv
∑︂
j∈J

xijvt)

s.t Constraints (3.23)− (3.31)

Constraints (3.33)− (3.40)

This method was initially attempted because by relaxing constraint (3.32), which

is the only constraint joining the supply chain and the epidemiological parts of the

model, using the Lagrangian multiplier λivt, the problem can be decomposed into

a supply chain sub-problem (SP1) and |I| different epidemiological sub-problems

(SP2), which can all be solved individually.

4.2.2 SP1

Based on the supply chain model, SP1 (4.2) is a MILP that is always bounded and

returns a solution feasible to the original formulation. It is always bounded as even

if the term (βcijv − λivtbv) is negative, constraints (3.29)-(3.30) impose an upper

bound on the value of xijvt. It can be solved quickly as a transshipment model using

commercial solvers.



52

θ1 = min
x,y,r

∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

(βcijv − λivtbv)xijvt +
∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

βdjvyjvt (4.2)

s.t Constraints (3.28)− (3.31), (3.38)

xijvt, yjvt, rjvt ≥ 0 & ∈ Z

4.2.3 SP2

SP2 is based on the SEIR epidemiological model and can be further decomposed

into |I| identical sub-problems. Unfortunately, each sub-problem is still non-convex

due to constraint (3.23), which still makes SP2 significantly difficult to solve using

commercial solvers. Therefore, it is necessary to limit the number of risk groups,

vaccine types, and time periods in order to solve SP2. Even with these smaller

problems, it is sometimes only possible to obtain an upper bound on the sub-problem

rather than the true optimal, which severely impacts performance. In theory, the

sub-problem could be solved to optimality through simulation and enumeration if the

problem is reduced to a single risk group (homogeneous model) rather than using

multiple risk groups (heterogeneous model) and some limit is imposed on the number

of vaccines that can be allocated to a zone. This limit could be something like the

initial susceptible population or the overall supply of vaccines. Alternatively, by

solving SP1 first, the results from it could be plugged into SP2 to limit the supply of

vaccines, which ensures the solution to SP2 is always feasible for the original problem.

SP2 can thus be formulated as (4.3)
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θ2i = min
S,E,I,R,NE,z

∑︂
g∈G

∑︂
t∈T

wigNEigt +
∑︂
g∈G

∑︂
v∈V

∑︂
t∈T

λivtzigvt (4.3)

s.t Constraints (3.23)− (3.27)

Constraints (3.34)− (3.37)

zigvt, Sigt, Eigt, Iigt, Rigt, NEigt ≥ 0 v ∈ V, g ∈ G, t ∈ T (4.4)

4.2.4 Dual Master Problem

For the dual master problem, the objective function (4.5) seeks to maximize θ1 +∑︁
i∈I θ2i. K is the index set of feasible solutions obtained by solving the sub-

problems. Constraints (4.6) and (4.7) are cuts derived from previous iterations of

solving the sub-problems. Constraint (4.8) is included as without it, for certain val-

ues of λivt, the value of θ2i can become unbounded. This occurs when by decreasing

θ1, the problem is able to increase the values of θ2i such that it will always result

in a net increase in the objective function. Therefore, (4.8) is included to prevent

θ2i, representing total new exposures in zone i, from surpassing the total population

of this zone, which would be both infeasible to the original problem and illogical to

consider as a potential solution. The dual master problem is a simple LP and thus

can be solved efficiently using commercially available solvers.

max
λivt,θ1,θ2i

θ1 +
∑︂
i∈I

θ2i (4.5)

s.t θ1 ≤ (
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

(βcijv − λivtbv)x
k
ijvt + β

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvy
k
jvt) ∀k ∈ K (4.6)

θ2i ≤
∑︂
g∈G

∑︂
t∈T

wigNEk
igt +

∑︂
g∈G

∑︂
v∈V

∑︂
t∈T

λivtz
k
igvt ∀i ∈ I, k ∈ K (4.7)

θ2i ≤
∑︂
g∈G

Pig ∀i ∈ I (4.8)

λivt ≥ 0 (4.9)
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4.3 Linear Approximation

Another approach to deal with the non-convexity in the epidemiological model is

to replace the bilinear constraints with a linear approximation before solving. This

might lead to a different solution from the one obtained from using the original

formulation. However, if the linear approximation is a close approximation of the

bilinear constraint or is used as part of a larger solving algorithm, such as alternating

between optimizing a linear approximation and simulating the non-convex model,

then potentially a near-optimal solution could be obtained from it.

4.3.1 McCormick Envelope

Lets define the variable Qigg′t = SigtIig′t. Constraint (3.23) can then be rewritten as

follows:

NEig(t+1) = τ
∑︂
g′∈G

Cgg′
Qigg′t

Pig′
∀i ∈ I, g ∈ G, t ∈ T (4.10)

Given that the original variables have some known lower and upper bound, i.e.,

I l ≤ I ≤ Iu and Sl ≤ S ≤ Su, the bilinear term Qigg′t = SigtIigt can be approximated

using the following inequalities [60]:

Qigg′t ≥ Sl
igtIig′t + SigtI

l
ig′t − Sl

igtI
l
ig′t (4.11)

Qigg′t ≥ Su
igtIig′t + SigtI

u
ig′t − Su

igtI
u
ig′t (4.12)

Qigg′t ≤ Su
igtIig′t + SigtI

l
ig′t − Su

igtI
l
ig′t (4.13)

Qigg′t ≤ Sl
igtIig′t + SigtI

u
ig′t − Sl

igtI
u
ig′t (4.14)

These equations collectively form the McCormick Envelope [60] and provide an

approximation on the value of the bilinear term, which allows the model to be solved

as a linear model. The quality of this approximation depends on the tightness of the

bounds on Iigt and Sigt.
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4.3.2 MC Heuristic

Observe that the complicating decision variables are Sigt and Iigt. The model can

thus be linearized by fixing either of these variables and optimizing the other. Addi-

tionally, by fixing Sigt to Sigt, the allocation of vaccines zigvt can no longer impact the

model, as its impact on the model is exclusively to lower the value of Sigt+1. Thus

when fixing Sigt, zigvt must also be fixed to zigvt or the model will not allocate any

vaccines as they do not impact the new exposures and only serve to increase costs. To

simplify the model, the removed compartment Rigt can be dropped as the removed

population has no impact on the outcome of the model. The fixed susceptible model

can be formulated as follows:
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min
E,I,NE,x,y,r

∑︂
i∈I

∑︂
g∈G

∑︂
t∈T

wigNEigt (4.15)

+ β

⎛⎝∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt +
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt

⎞⎠
s.t NEig(t+1) = τSigt

∑︂
g′∈G

Cgg′
Iig′t

Pig′
∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.16)

Eig(t+1) =

(︃
1− 1

α1

)︃
Eigt +NEig(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.17)

Iig(t+1) =

(︃
1− 1

α2

)︃
Iigt +

Eigt

α1
∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.18)∑︂
j∈J

yjvt ≤ qvt ∀v ∈ V, t ∈ T

(4.19)∑︂
i∈I

∑︂
v∈V

κvxijvt ≤ pj ∀j ∈ J, t ∈ T

(4.20)

rjvt − rjv(t−1) = yjvt −
∑︂
i∈I

xijvt ∀j ∈ J, v ∈ V, t ∈ T

(4.21)∑︂
v∈V

κvrjvt ≤ sj ∀j ∈ J, t ∈ T

(4.22)∑︂
g∈G

zigvt ≤ bv
∑︂
j∈J

xijvt ∀i ∈ I, v ∈ V, t ∈ T

(4.23)

Eig0 = E0
ig ∀i ∈ I, g ∈ G

(4.24)

Iig0 = I0ig ∀i ∈ I, g ∈ G

(4.25)

rjv0 = r0jv ∀j ∈ J, v ∈ V

(4.26)

Eigt, Iigt, NEigt, xijvt, yjvt, rjvt ≥ 0 (4.27)

xijvt, yjvt, rjvt ∈ Z (4.28)
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By fixing Iigt to I igt, both the Exposed and Removed compartments no longer

impact the model’s behavior and can be dropped to further simplify the model. The

fixed infected model can then be formulated as follows:



58

min
S,NE,z,x,y,r

∑︂
i∈I

∑︂
g∈G

∑︂
t∈T

wigNEigt (4.29)

+ β

⎛⎝∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt +
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt

⎞⎠
s.t NEig(t+1) = τSigt

∑︂
g′∈G

Cgg′
Iig′t

Pig′
∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.30)

Sig(t+1) ≥ Sigt −NEig(t+1) −
∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.31)∑︂
j∈J

yjvt ≤ qvt ∀v ∈ V, t ∈ T

(4.32)∑︂
i∈I

∑︂
v∈V

κvxijvt ≤ pj ∀j ∈ J, t ∈ T

(4.33)

rjvt − rjv(t−1) = yjvt −
∑︂
i∈I

xijvt ∀j ∈ J, v ∈ V, t ∈ T

(4.34)∑︂
v∈V

κvrjvt ≤ sj ∀j ∈ J, t ∈ T

(4.35)∑︂
g∈G

zigvt ≤ bv
∑︂
j∈J

xijvt ∀i ∈ I, v ∈ V, t ∈ T

(4.36)∑︂
g∈G

∑︂
v∈V

zigvt ≤ ai ∀i ∈ I, t ∈ T

(4.37)

Sig0 = S0
ig ∀i ∈ I, g ∈ G

(4.38)

rjv0 = r0jv ∀j ∈ J, v ∈ V

(4.39)

zigvt, Sigt, NEigt, xijvt, yjvt, rjvt ≥ 0 (4.40)

xijvt, yjvt, rjvt ∈ Z (4.41)



59

By alternating between solving the problem while fixing Sigt or Iigt, it was con-

jectured that these approximations would work together to gradually converge on a

stable solution that is a good approximation of the optimal solution to the original

non-convex problem.

4.3.3 Fixed Allocation Linear Approximation

Alternatively, by fixing zigvt and using simulation to solve the SEIR portion of the

model the values of NEigt and Sigt for a given value of zigvt can be obtained (NEigt,

Sigt). The bilinear constraint (3.32) can then be replaced with a linear constraint

that calculates NEigt as a function of the value of Sigt.

NEigt+1 =
NEigt+1

Sigt

Sigt ∀i ∈ I, g ∈ G, t ∈ T\{tn} (4.42)

Observe that for the same value of zigvt this linear constraint is equivalent to

constraint (3.32). By solving this linear model without fixing zigvt, a new value for

zigvt can be obtained, which can be used to get new values for NEigt and Sigt using

simulation. Similar to the previous method, it was conjectured that these approxi-

mations would gradually converge to a stable solution that is a good approximation

of the optimal solution to the original problem.

4.3.4 Piecewise-Linear Approximation

Rather than converting the non-convex constraint (3.32) into a single linear ap-

proximation, it can be approximated using a piecewise-linear function. Let Qigt =

τ
∑︁

g′∈GCgg′
Iig′t
Pig′

. Then, (3.32) can be written as NEig(t+1) ≥ SigtQigt. Next, define

the variables Uigt = (Sigt + Qigt)/2 and Vigt = (Sigt − Qigt)/2, which enables the

constraint to be written as NEig(t+1) ≥ U2
igt − V 2

igt. Although the right-hand side is

a non-convex difference-of-convex (d.c.) function, it can be easily piece-wise linearly

approximated. In fact, only the second term (V 2
igt) needs to be approximated since
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Figure 4.1: Piecewise-Linear Approximation Over and Under Approximation Visual
Aid

it is the concave term.

There are two potential approaches to handling a piece-wise-linear approxima-

tion of V 2
igt, either an over-approximation or an under-approximation. An over-

approximation would not work for this problem without a very large number of

breakpoints. This is because when substituted back into NEig(t+1) ≥ U2
igt − V 2

igt, an

over-approximation can sometimes allow V 2
igt to take on a value greater than U2

igt,

which would mean there would be no new exposures, as seen in figure 4.1.

Instead, an under-approximation must be used. Initially, it was speculated

that the under-approximation could be generated iteratively over time as a se-

ries of linear cuts, however, this ended up not working as intended. Instead, we

use a series of breakpoints. Because Qigt is strictly positive, the maximum value

Vigt = (Sigt − Qigt)/2 can take on is S0
ig/2. Thus V 2

igt can be approximated using
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a series of k breakpoints (vkigt) between 0 and S0
ig/2, and a set of SOS2 decision

variables (µk
igt). The more breakpoints used, the tighter the approximation to the

original. By generating breakpoints
√
ϵ apart starting from 0 until surpassing S0

ig/2,

the maximum deviation from the original when drawing a straight line between any

two points is limited to ϵ. Any value of Vigt can then be linearly approximated as∑︁
k∈K(v

k
igt)

2µk
igt. This piecewise-linear approximation of the SEIR model can then

be divided by population zone I and expressed as follows:
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min
S,E,I,R,NE,z

∑︂
g∈G

∑︂
t∈T

wigNEigt (4.43)

s.t NEig(t+1) ≥ U2
igt −

∑︂
k∈K

((v̄kigt)
2 − ϵ)µk

igt g ∈ G, t ∈ T\{tn} (4.44)

Qigt = τ
∑︂
g′∈G

Cgg′
Iig′t
Pig′

g ∈ G, t ∈ T (4.45)

Uigt = (Sigt +Qigt)/2 g ∈ G, t ∈ T (4.46)∑︂
k∈K

vkigtµ
k
igt = (Sigt −Qigt)/2 g ∈ G, t ∈ T (4.47)

∑︂
k∈K

µk
igt = 1 g ∈ G, t ∈ T (4.48)

Sig(t+1) ≥ Sigt −NEig(t+1) −
∑︂
v∈V

ηvzigv(t+1) g ∈ G, t ∈ T\{tn} (4.49)

Eig(t+1) =

(︃
1− 1

α1

)︃
Eigt +NEig(t+1) g ∈ G, t ∈ T\{tn} (4.50)

Iig(t+1) =

(︃
1− 1

α2

)︃
Iigt +

Eigt

α1
g ∈ G, t ∈ T\{tn} (4.51)

Rig(t+1) = Rigt +
Iigt
α2

+
∑︂
v∈V

ηvzigv(t+1) g ∈ G, t ∈ T\{tn} (4.52)

Sig0 = S0
ig g ∈ G (4.53)

Eig0 = E0
ig g ∈ G (4.54)

Iig0 = I0ig g ∈ G (4.55)

Rig0 = R0
ig g ∈ G (4.56)

zigvt, Sigt, Eigt, Iigt, Rigt, NEigt ≥ 0 v ∈ V, g ∈ G, t ∈ T (4.57)

µk
igt ≥ 0, SOS2 (4.58)

z ∈ Z (4.59)

where µk
igt are special ordered sets of type 2 variables, of which at most 2 consecutive can

take nonzero values and vkigt are the breakpoints selected in the range [0, S0
ig/2].
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4.4 Greedy Marginal Benefit Heuristic

A promising approach to solving the problem of vaccine allocation is using a greedy

heuristic to maximize the immediate marginal benefits. This method takes advantage

of the fact that while finding the optimal vaccine allocation is difficult, for any given

vaccination strategy (zigvt), the outcome can be solved for efficiently using simulation.

By starting from the baseline scenario of sending no vaccines, and then simulating the

outcome of sending some portion of the vaccines to each zone and group combination,

the marginal benefit for each potential allocation can be measured. By choosing to

allocate a given portion of vaccines where the most immediate marginal improvement

is observed, and repeating this process until all vaccines have been allocated, a very

good solution can be found relatively quickly. This algorithm takes from a few

seconds for simple problems to just over 24 hours for more complex scenarios.

4.4.1 Proportioning Scheme

The proportioning scheme used determines how the supply of vaccines is divided up

into N portions. This is done for each type of vaccine v and for each time period t

(P vt
1 , . . . , P vt

N ), with each portion being allocated one at a time. There are countless

potential methods that could be used to proportion the vaccine supply. In this work,

three different proportioning schemes were experimented with.

The first is to allocate one vaccine at a time. This is the slowest possible method,

requiring potentially millions or even billions of potential allocations to be evaluated

to arrive at a solution, depending on the supply of vaccines and the number of zones

and groups. The one benefit of this approach is it generally leads to slightly better

solutions through a more granular search of the solution space, though this is not

always the case, especially as the value of β increases.

The second approach is to allocate in bulk, such as portions of base ten units

(e.g., 1000, 100, 10, 1). Starting from allocating 1000 doses of vaccine at a time,
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when there are 10,000 doses left, start allocating 100 at a time. When there are

1000 left, allocate 10 at a time, and when there are 100 left allocate 1 at a time.

This base ten scheme is not special, and the supply could just as easily be divided

according to some other pattern, but base ten is convenient. A shortcoming of this

approach though is there is the potential that if care is not taken in how the portions

are created, not every solution is possible. Consider a scenario where there are

1,000 doses, divided into 9 portions of 100 doses, 9 portions of 10 doses, and 10 1

dose portions, with 15 possible zone and group combinations to potentially allocate

to. Under the previously described proportioning scheme, it would be impossible to

achieve a nearly equal distribution of the supply of vaccines, as 9 groups would be

allocated the first 900 doses, and there would only be 100 doses left over to spread

across the remaining 3 groups. Regardless of whether an equal distribution is the

best or not, using this proportioning scheme cannot even be considered a possibility.

This can be avoided by creating smaller portion sizes, however, if there are too many

portions the run time will begin to increase again.

Therefore, a third approach is to divide the supply into as few portions as possible

while still being able to achieve every possible solution through some combination of

the portions, which can be done as follows. To start, assuming that the entire supply

will be used, the largest portion of the supply of vaccines that can be guaranteed

any zone and group combination will receive is equal to the amount received if the

supply were to be divided equally amongst all zones and groups, rounded down to

the nearest integer.

P vt
1 = ⌊qvt/(|I| ∗ |G|)⌋. (4.60)

This portion of the vaccines can then be removed from the supply pool, and the

remaining supply divided equally again amongst all zones and groups.
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P vt
K = ⌊(qvt −

K−1∑︂
k=1

P vt
k )/(|I| ∗ |G|)⌋. (4.61)

This proportioning process repeats until (qvt−
∑︁K−1

k=1 P vt
k )/(|I|∗|G|) ≤ 1, at which

point, the remaining supply of vaccines is divided into portions of size 1. Through

different combinations of these portions of the supply of vaccines, any possible allo-

cation can be achieved.

While the second and third methods significantly improve the solve time of the

algorithm; as there are fewer portions to be allocated, because they allocate in such

large portions the granularity of the search is compromised and it can lead to worse

solutions compared to allocating one at a time. This could be partially corrected by

using more portions than strictly necessary while still limiting the number of portions

that need to be allocated. However, in certain situations, increased granularity can

also lead to worse solutions compared to a less granular search. This will be discussed

in more detail in section 5.3.6.

4.4.2 Allocation and Measuring Marginal Benefit

Once the supply is divided into portions, a simulation is run to get the epidemiological

impact for the case where no vaccines are administered; the distribution costs of such

a solution would necessarily be zero and thus are ignored for now. This serves as the

baseline solution from which the marginal benefit will be measured.

Starting from the first time period and the first type of vaccine, simulations are

run of the SEIR epidemiological model for the case where P 1,1
1 is individually allo-

cated to each zone and group combination to get the epidemiological impact. For

each set of groups in a zone, the best epidemiological solution is identified. The allo-

cation of vaccines across all zones can then be translated into a demand for vaccines

in lots and plugged into the transshipment model, which is solved efficiently using

a commercial solver, such as GUROBI. There is no need to solve the transshipment
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model for each group, as the distribution costs are the same for sending vaccines to

a region, regardless of how they are allocated once they arrive.

The epidemiological impact and distribution costs are then combined to evaluate

the solution quality. This is compared to the best currently identified solution quality.

If it is better, this solution becomes the new best solution. Once all zone and group

combinations are tested for P 1,1
1 , the allocation of P 1,1

1 is locked to the best-identified

zone and group combination and the algorithm will begin the allocation of the next

portion (P 1,1
2 ), building off the previous one. In this way, vaccines are allocated so as

to maximize the marginal benefit of each portion. If none of the potential allocations

for the tested portion improve on the current best solution, that portion is discarded.

This occurs when the cost of distributing that portion of vaccines outweighs its

benefits. By starting from the feasible solution of NI and sufficiently punishing

infeasible allocations, the heuristic is guaranteed to return a feasible solution.

Once all portions for a given vaccine v are either allocated or discarded, it will

advance to the next vaccine type v + 1 (P v,t
N → P v+1,t

1 ). Once all vaccines have

been allocated for time period t, the algorithm will advance to the next time period

t + 1 (P V,t
N → P v,t+1

1 ). The algorithm terminates once all allocations up to |T | − 1

have been performed. There is no need to explore the final time period as allocating

vaccines in the final period can never have a positive impact on performance. The

best-identified allocation strategy is then extracted and its performance, decision

variables’ values, along with the algorithm run time are recorded.

4.4.3 Model Structure and Pseudocode

A pseudocode for simulating the epidemiological impact of a given vaccine allocation

strategy can be found in Algorithm 1 and the pseudocode of the GMB heuristic can

be found in Algorithm 2.

The supply chain model requires minor alterations in order to work with the

GMB heuristic. Because the allocation is generated separately from the supply chain
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Algorithm 1 SEIR Simulation Algorithm Pseudocode
1: Accepts zigvt

2: Sig0 ← S0
ig, Eig0 ← E0

ig, Eig0 ← E0
ig, Rig0 ← R0

ig ▷ Set Initial Conditions

3: for t = 1 : T do

4: for i = 1 : I do

5: for g = 1 : G do

6: for g′ = 1 : G do ▷ Calculate # of Infected Contacts

7: Contactsigt = Contactsigt + Cgg′Iig′t/Pig′

8: end for

9: NEigt+1 = τSigtContactsigt ▷ Calculate New Exposures

10: TotalNE = TotalNE + wigNEigt+1 ▷ Track Total New Exposures

11: for v = 1 : V do ▷ Calculate “Effective” Vaccines Administered

12: V accinesigt = V accinesigt + ηvzigvt+1

13: end for

14: Sigt+1 = max(0, Sigt −NEigt − V accinesigt) ▷ Calculate Susceptible

15: Eigt+1 = max(0, (1− (1/α1))Eigt +NEigt+1) ▷ Calculate Exposed

16: Iigt+1 = max(0, (1− (1/α2))Iigt + Eigt/α1) ▷ Calculate Infected

17: Rigt+1 = Rigt + Iigt/α2 + V accinesigt ▷ Calculate Recovered

18: end for

19: end for

20: end for

21: Return TotalNE,NEigt, Sigt, Eigt, Iigt, Rigt
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constraints, it has the potential to be infeasible to the original problem, such as

allocating more vaccines than there is the capacity to administer or distribute. To fix

this, the constraints are relaxed, and instead, violations are penalized in the objective

function. Table 4.1 presents the notation used in the relaxed supply chain model.

The modified supply chain model used alongside the GMB heuristic is formulated as

follows.

Table 4.1: Notation for Relaxed Supply Chain Model

Parameters:
Divt Demand in batches for vaccine v in region i at time period t
AP Penalty incurred for each additional unit of administrative capacity required
CP Penalty incurred for each additional unit of logistical capacity required
SP Penalty incurred for each additional batch of vaccine required

Decision variables:
apit Units of additional administrative capacity required in region i during time period t
cpjt Units of additional logistical capacity required in DC j during time period t
spvt Lots of additional vaccine v supply required to satisfy demand in time period t
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min
x,y,ap,cp,sp

β

⎛⎝∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt +
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt

⎞⎠ (4.62)

+
∑︂
i∈I

∑︂
t∈T

APapit +
∑︂
j∈J

∑︂
t∈T

CPcpjt

+
∑︂
v∈V

∑︂
t∈T

SPspvt

s.t
∑︂
j∈J

yjvt ≤ qvt + spvt ∀v ∈ V, t ∈ T (4.63)

∑︂
i∈I

∑︂
v∈V

κvxijvt ≤ pj + cpjt ∀j ∈ J, t ∈ T (4.64)

rjvt − rjv(t−1) = yjvt −
∑︂
i∈I

xijvt ∀j ∈ J, v ∈ V, t ∈ T (4.65)

∑︂
v∈V

κvrjvt ≤ sj ∀j ∈ J, t ∈ T (4.66)

∑︂
j∈J

xijvt ≥ Divt ∀i ∈ I, v ∈ V, t ∈ T (4.67)

∑︂
v∈V

bvDivt ≤ ai + apit ∀i ∈ I, t ∈ T (4.68)

rjv0 = r0jv ∀j ∈ J, v ∈ V (4.69)

xijvt, yjvt, rjvt, apit, cpjt, spvt ≥ 0 (4.70)

xijvt, yjvt, rjvt ∈ Z (4.71)

4.5 Evolutionary Genetic Algorithm

The heuristic algorithm described in the previous section demonstrates that simulat-

ing the outcome and performance of any given vaccination strategy zigvt can be done

very efficiently. What the heuristic lacks, being a greedy algorithm, is the ability to

thoroughly explore the solution space. Due to the non-convex nature of the problem,

this greedy search tends to lead to a local rather than the global optimum. In order

to combat this, an Evolutionary GA [16] approach was used. Starting from a pool of
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Algorithm 2 GMB Pseudocode
1: zigvt ← 0

2: BestNE = inf

3: for t = 2 : T − 1, v = 1 : V do

4: Q = 0

5: portion = 10⌊log10(bvqvt)⌋−1

6: while Q < bv ∗ qvt do
7: if (bv ∗ qvt)−Q < 10 ∗ portion then

8: portion = max(1, int(portion/10))

9: end if

10: for i = 1 : I do

11: for g = 1 : G do

12: zigvt = zigvt + portion

13: Epi.Impact← Run SEIR Simulation(zigvt)

14: if Epi.Impact < BestEpi.Impact then

15: BestEpi.Impact = Epi.Impact

16: BestZg = z

17: end if

18: zigvt = zigvt − portion

19: end for

20: Convert BestZg (Doses) into Demand (Lots)

21: Costs← Solve Supply Chain Model for Demand

22: SolutionPerformance = BestEpi.Impact+ Costs

23: if SolutionPerformance < BestSolution then

24: BestSolution = SolutionPerformance

25: BestZ ← BestZg

26: end if

27: end for

28: Q = Q+ portion

29: z ← BestZ

30: end while

31: end for

32: Return BestZ, Best Solution
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random vaccination strategies, through crossover and random mutation, better so-

lutions are continuously generated, allowing for a wider search of the solution space

than the GMB heuristic.

4.5.1 Chromosomes

For this GA, each chromosome is a four-dimensional array of genes of size |I|× |G|×
|V | × |T |. Each gene in a chromosome represents how many vaccines of type v are

allocated to any given group g in zone i in each time period t. This is equivalent to

the previously defined zigvt decision variable that linked the two parts of the model

and represents a potential vaccination strategy that could be utilized to control the

epidemic.

4.5.2 Fitness Function

The fitness function of the GA takes in a chromosome (z) and evaluates performance

in terms of the expected epidemiological impact and distribution costs associated

with that chromosome’s vaccine allocation strategy. The fitness function uses the

same SEIR simulation (Algorithm 1) and relaxed supply chain model (equations

(4.62)-(4.70)) used for evaluating the quality of vaccination strategies in the GMB

heuristic. The relaxed supply chain model is still required as any given chromosome

might represent an infeasible solution to the original problem. The fitness function

first solves for epidemiological impact and then converts the individual vaccines in

a zone into demand in lots, which is used in solving the transshipment model. The

combined epidemiological impact and distribution costs are the chromosome’s fitness

score.
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4.5.3 Crossover

Crossover is the process of taking two chromosomes, referred to as the “parent”

chromosomes, and creating a new chromosome from them, referred to as the “child”

chromosome. The purpose of crossover is to introduce new combinations of existing

genes into the population. The crossover process works as follows:

First, the parent chromosomes are selected. Generally speaking, the parent chro-

mosomes should be selected from the top-performing chromosomes of a given genera-

tion, rather than the bottom. This will lead to better-performing genes perpetuating

and poorer-performing genes dying out. However, simply taking the top two per-

forming chromosomes in each generation would limit the pool of available genes and

limit the exploration of the solution space. Instead, it is better to give preference to

the selection for higher performers, but still allow worse-performing chromosomes to

occasionally be selected. The weights for each chromosome are generated using equa-

tion (4.72), where N is the total number of chromosomes and n is a chromosome’s

position in a list sorted by its fitness score.

weightn = (N − n)2 (4.72)

A random number is generated between 0 and the sum of the weights. By looping

through and subtracting the weight of each chromosome from the random number

in order until the random number is smaller than the currently selected chromosome

weight, higher-weighted chromosomes will be selected more often than lower ones.

Only the top X% of chromosomes have a chance of being selected as a parent,

as determined by the parent selection range parameter, i.e., if set to a value of 0.3,

the GA will only consider the top 30% of chromosomes as potential candidates for

parent selection, preferring to select the highest performing chromosomes amongst

them. This is done as the number of good chromosomes is vastly outweighed by bad

chromosomes, especially as the solution begins to approach the limits imposed on it
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by the supply chain constraints, and many of the worse-performing chromosomes are

infeasible solutions.

Additionally, whenever a parent chromosome is selected, there is a random chance

that it will be replaced with a predetermined “extreme” chromosome. An extreme

chromosome would be a solution such as sending nothing or sending the maximum

administrative capacity of a zone, for every gene in a chromosome. This is done

because even if these chromosomes perform poorly in terms of their own fitness, they

can be used to introduce these extreme genes back into the population, where they

might serve to improve the solution and help maintain genetic diversity. Specifically,

the extreme chromosome of sending nothing has proven to be useful in expediting

the run time, as in many scenarios, the optimal strategy sees many genes take on a

value of zero. By introducing the extreme chromosome, the GA is able to efficiently

mix these genes into the population where they will be most effective, rather than

relying solely on a mutation to introduce genes with a value of zero in the right

location.

Once the two parent chromosomes are determined, genes are picked at random

and their values are swapped, creating two new children in the process. Genes are

only swapped with genes that occupy the same position in a chromosome, and there

is no swapping of genes between groups, regions, vaccine types, or time periods. To

what degree the two solutions are mixed, i.e., what ratio of their genes are swapped,

is controlled by the mix ratio parameter. A mix ratio of 0.5 would mean each child

contains half the genes of each parent, while a mix ratio of 0.2 (or 0.8) means each

child has 1/5 of the genes of one parent and 4/5 of the other. Through experimen-

tation on test data, it was found that a mix ratio of 0.3 was most effective for our

problem.
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4.5.4 Mutation

“Mutation“ is the process of randomly introducing variation into the population in

order to seed potential improvement. In each generation, after crossover is performed,

there is a random chance that a chromosome will be chosen for mutation, creating a

copy of the chosen chromosome and altering a gene at random.

Due to the large number of genes present in a chromosome (|I| × |G| × |V | ×
|T |), even mutating 5% of the genes in a chromosome would result in mutations on

numerous genes. Too many mutations make it less likely that helpful mutations will

be able to stand out from unhelpful mutations. For example, gene X is mutated in

such a way that it would improve the fitness score of a chromosome. However, at the

same time gene Y is also mutated in such a way that it would harm the fitness score

by the same or more than the previous mutation. This helpful mutation will likely be

lost as its chromosome’s fitness score is penalized overall. It was found that limiting

the mutation rate to just one gene per chromosome improved the performance of

the algorithm, especially as the algorithm nears the optimal solution, and mutations

become increasingly likely to generate infeasible solutions.

There are two different methods of mutation in this GA. The first method is

altering a randomly selected gene by a random amount between -X and +X, where

X is the mutation size parameter. If such a mutation would change a gene to have a

value less than or equal to 0, it instead takes on a value of 0. This form of mutation

is useful for varying the total number of vaccines being allocated. In theory, just

this form of mutation and crossover could find the optimal solution given sufficient

time and generations. However, due to the fact that the fitness function penalizes

solutions that violate feasibility or send more vaccines than required when solutions

are near the optimal, it becomes increasingly unlikely for mutation or crossover to

generate a better feasible solution on their own. Sending more vaccines results in

a penalty, sending fewer vaccines results in a loss of benefit. Therefore, the only

way to improve would be, through mutation and crossover, to randomly create a
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chromosome where the exact same amount of vaccines were taken from one group,

while that same amount of vaccines were given to another. This is very unlikely.

Even more unlikely that this alteration will be beneficial. To combat this, a special

kind of alternate mutation function, called ”recombination“, was introduced.

“Recombination” is an alternate form of mutation that accounts for how the spe-

cific problem of vaccine allocation is structured. Recombination works by causing

mutations where if one group would have vaccines taken away, a second group would

receive those vaccines, and vice versa. This allows the algorithm to explore solu-

tions where the same amount of vaccines were being used, just in different ways.

Recombination works by selecting a “From” gene and a “To” gene at random in a

chromosome. It only makes sense to re-allocate vaccines in this manner if the selected

genes are of the same vaccine type and time period, so the re-combination function

first chooses the “From” gene and then based on the vaccine type and time period

of that gene picks the “To” gene. A random percentage of the value of the “From”

gene is then taken and transferred to the “To” gene. Additionally, when a gene has

a value of 0, it is impossible to send anything from it, and so if a gene with a value of

0 is chosen as the “From” gene the recombination would be wasted. To prevent this,

the algorithm will check whether the randomly selected “From” gene has a value

of 0 and if it does, it will continue to pick random genes until it picks a gene that

does not have a value of 0. This is especially helpful because the optimal solution is

likely to have numerous genes with a value of 0, which would lead to many useless

mutations if not accounted for. In the rare event that all genes have a value of zero,

the recombination function will stop looking for genes after 100 failed attempts, so

as to prevent an infinite loop.

What portion of mutations are regular versus recombination is controlled by the

mutation and recombination chance parameters. In general, through experimenta-

tion on test data, it was found a 10% regular mutation chance and 90% recombination

mutation chance lead to the best overall performance.
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4.5.5 Elitism

Elitism refers to how many of the top-performing chromosomes are kept between

generations. If this value is not at least 1, the algorithm has the potential to regress,

as it discards the previous top-performing solution. Higher values of elitism will

encourage the perpetuation of the most successful genes, potentially improving time

to convergence. However, if the value is too high, there is the potential to harm

genetic diversity. If half the population are near-identical chromosomes that all

perform approximately the same, and thus are kept in the population from generation

to generation, genetic diversity will plummet as these near-identical chromosomes

only crossover with each other. New genes and gene combinations are needed to

encourage a thorough search of the solution space.

4.5.6 Warm Start using GMB Heuristic

Rather than starting from a random initial population, by first solving the GMB

heuristic, its solution can be given to the GA as a starting point from which it can

improve on. This leads to improved performance compared to either method on its

own, which will be explored in more detail in section 5.3.7.

4.5.7 GA Pseudocode

Algorithm 3 contains the pseudocode for the GA.

4.6 Benders Decomposition

BD is a solution method where the problem is solved by fixing the complicating

variables, allowing the model to be decomposed into smaller sub-problems and a

master problem. These sub-problems are solved to generate an upper bound and

add cuts to a master problem. The master problem is then solved to generate a

lower bound and new fixed variables for the sub-problem. This repeats until the
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Algorithm 3 GA Pseudo Code
1: Set GA Parameters

2: Generate N random starting Chromosomes (z)

3: if Warm Start then

4: Run GMB heuristic and add BestZ to starting Chromosomes

5: end if

6: while Generation < MaxGeneration and Average Improvement of previous K

generations > L do

7: Evaluate Fitness of each Chromosome

8: Sort Chromosomes by Fitness

9: Perform Crossover to create a new generation of N chromosomes

10: Add previous top X performing chromosomes to a new generation

11: Mutate new generation of chromosomes

12: end while

13: Return Top Performing Chromosome
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upper and lower bounds converge. Because BD keeps the integrity of the problem

intact and we utilize a logic-based BD [27] rather than generalized BD, it will always

converge to the optimal solution. This guarantee of optimality is the primary benefit

of using BD compared to the other solution methods explored thus far; however, this

comes with a trade-off in run time.

The structure of the model would initially suggest that it would lend itself well

to this approach, similar to the Lagrangian relaxation approach. By fixing xijvt to

x̄ijvt the model can be decomposed into the SEIR sub-problem, which can be further

decomposed by population zone into |I| identical sub-problems, with the supply

chain model serving as the basis for the master problem. However, in traditional

BD, the purpose of solving the sub-problem is to use the dual variables to find the

extreme points and rays and use them to generate cuts for the master problem.

Unfortunately, the non-convex nature of the SEIR sub-problem means that there are

no dual variables in the classical sense of convex optimization. This means traditional

BD cannot be utilized to solve the problem. Instead, a logic-based BD approach is

required to generate cuts.

Benders Sub-problem

The sub-problem is based on the SEIR portion of the model and can be further

decomposed by population zone into |I| sub-problems. However, as previously men-

tioned, the sub-problems are still non-convex, meaning the dual variables required

for the master problem in traditional BD do not exist. Additionally, similar to the

problem with SP2 for the Lagrangian relaxation approach, even with only a single

zone the problem quickly becomes intractable with additional groups and an ex-

tended time frame. This limits the applicability of the BD method to either small

problems, where the sub-problem can still be solved by some other method, such

as commercial solvers, or converting it into a homogeneous problem (i.e., one risk
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group but multiple independent zones), which can be solved instantly through sim-

ulation. Once solved, cuts can be derived from the sub-problems using the solutions

themselves. The sub-problem is formulated as follows:

min
S,E,I,R,NE,z

∑︂
g∈G

∑︂
t∈T

wigNEigt (4.73)

s.t NEig(t+1) = τSigt

∑︂
g′∈G

Cgg′
Iig′t
Pig′

∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.74)

Sig(t+1) ≥ Sigt −NEig(t+1) −
∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.75)

Eig(t+1) =

(︃
1− 1

α1

)︃
Eigt +NEig(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.76)

Iig(t+1) =

(︃
1− 1

α2

)︃
Iigt +

Eigt

α1
∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.77)

Rig(t+1) = Rigt +
Iigt
α2

+
∑︂
v∈V

ηvzigv(t+1) ∀i ∈ I, g ∈ G, t ∈ T\{tn}

(4.78)∑︂
g∈G

zigvt ≤ bv
∑︂
j∈J

xijvt ∀i ∈ I, v ∈ V, t ∈ T

(4.79)∑︂
g∈G

∑︂
v∈V

zigvt ≤ ai ∀i ∈ I, t ∈ T

(4.80)

zigvt, Sigt, Eigt, Iigt, Rijt, NEigt ≥ 0 ∀g ∈ G, t ∈ T

(4.81)
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Benders Master Problem

The Benders master problem is based on the supply chain portion of the model,

formulated below, where θi is an approximation of the objective function of the sub-

problem i. By solving the master problem with cuts generated from the sub-problems

(Θi), new values for xijvt can be identified and passed to the sub-problems. Through

this process of continuously generating new cuts and new solutions, eventually, the

optimal solution will be found. The Benders master problem is formulated as follows:

min
x,y,r

∑︂
i∈I

θi + β(
∑︂
i∈I

∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

cijvxijvt (4.82)

+
∑︂
j∈J

∑︂
v∈V

∑︂
t∈T

djvyjvt)

s.t
∑︂
j∈J

yjvt ≤ qvt ∀v ∈ V, t ∈ T (4.83)

∑︂
i∈I

∑︂
v∈V

κvxijvt ≤ pj ∀j ∈ J, t ∈ T (4.84)

rjvt − rjv(t−1) = yjvt −
∑︂
i∈I

xijvt ∀j ∈ J, v ∈ V, t ∈ T (4.85)

∑︂
v∈V

κvrjvt ≤ sj ∀j ∈ J, t ∈ T (4.86)

rjvt = r0jv ∀j ∈ J, v ∈ V (4.87)

θi ∈ Θi ∀i ∈ I (4.88)

xijvt, yjvt, rjvt, θi ≥ 0 ∀i ∈ I, j ∈ J, v ∈ V, t ∈ T (4.89)

xijvt, yjvt, rjvt ∈ Z (4.90)

Generating Logic-Based Benders Cuts

It can be easily proven that the optimal value of Benders sub-problem i cannot be

improved by sending fewer lots of vaccines to zone i in at least some periods while

keeping the shipped amounts constant in the remaining periods. The sub-problem’s
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objective function seeks to minimize total new exposures. New exposures increase

as a function of the susceptible population. By administering more vaccines we can

only ever lower the susceptible population, thus lowering new exposures. If we know

the previous allocation was optimal, and fewer vaccines are sent to a zone, total new

exposures thus necessarily will either have to be higher than the previous allocation

or equal, if the vaccines had no impact. Thus sending fewer vaccines might lead to

an equivalent solution, but never an improvement. This property can be used to

obtain lower bounds on the optimal values of the sub-problems, and thus generate

Benders optimality cuts. Let xm
ijvt and xm+1

ijvt be partial optimal solutions to the master

problem (i.e., the number of vaccine lots v sent to zone i from DC j in period t) in

iterations m and m + 1, respectively. If
∑︁

j∈J x
m+1
ijvt ≤

∑︁
j∈J x

m
ijvt∀v ∈ V, t ∈ T , then∑︁

g∈G
∑︁

t∈T wigNEm
igt ≤

∑︁
g∈G

∑︁
t∈T wigNEm+1

igt , meaning that
∑︁

g∈G
∑︁

t∈T wigNEm
igt

servers as a lower bound on the optimal value of SPi in the next iteration. This

lower bound can be used to generate the Benders optimality cut:

θi ≥
∑︂
g∈G

∑︂
t∈T

wigNEm
igt, if and only if

∑︂
j∈J

xijvt ≤
∑︂
j∈J

xm
ijvt, ∀v ∈ V, t ∈ T

(4.91)

which can be linearized by introducing the binary variables omi and um
ivt and the

following set of constraints:

θi ≥ omi
∑︂
g∈G

∑︂
t∈T

wigNEm
igt ∀i ∈ I,m ∈M (4.92)

∑︂
j∈J

xm
ijvt −

∑︂
j∈J

xijvt + 1 ≤Mum
ivt ∀i ∈ I, v ∈ V, t ∈ T,m ∈M (4.93)

omi ≥
∑︁

v∈V
∑︁

t∈T um
ivt + 1

|V |.|T |
− 1 ∀i ∈ I,m ∈M (4.94)

omi , u
m
ivt ∈ {0, 1} (4.95)
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The first constraint (4.92) ensures that if omi has a value of 1, the lower bound

on θi is NEm
igt, otherwise the lower bound is 0. The second constraint (4.93) forces

the binary variable um
ivt to take a value of 1 if the number of vaccine lots (of type

v in period t) sent to zone i in iteration m + 1 is less than or equal to those sent

in iteration m. If, instead, more lots of vaccines are sent, um
ivt can take on a value

of 0 or 1. The last constraint (4.94) forces omi to take the value 1 if and only if all

um
ivt = 1. Note that if given the option of choosing 0 or 1 by constraint (4.93), the

decision variable um
ivt will prefer to take on a value of 0, as this allows omi to be 0,

which in turn allows the lower bound on θi to be relaxed (4.92). This allows the

model to ignore the epidemiological impact of a region in the objective function so

long as it sends more lots to that zone than in previous iterations.

Initially, the entire epidemiological impact can be ignored in the master problem

by sending one additional lot to each zone in each iteration. Over time, the number of

lots sent to a zone will gradually increase until there is no more supply to draw from,

after which the model will begin sending different combinations of lots, allowing it to

ignore only a portion of the zones each iteration, but not the entire epidemiological

impact. Once all possible combinations that allow the model to send more lots of

vaccines to a zone than in any previous iteration have been exhausted, the model can

be solved instantly. All the cuts generated by the sub-problems collectively allow the

model to evaluate the benefit gained from any potential allocation of vaccine lots,

and it chooses the best-performing allocation among them.

BD Pseudocode

Algorithm 4 contains the pseudocode for the logic-based BD algorithm.
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Algorithm 4 BD Pseudocode

1: UB = inf, LB = -inf

2: while UB − LB > ϵ do

3: for i = 1 : I do

4: Solve Benders sub-problem for each zone using xijvt

5: Extract values of NEm
igt and xm

ijvt

6: end for

7: Update UB

8: Generate and add new cuts (4.92)-(4.94) to Benders Master Problem

9: Solve Benders Master problem

10: Update LB

11: Extract xijvt for use in sub-problem

12: end while



Chapter 5

Solution Method Comparison

This section compares the performance of the different solution methods described

in Chapter 4. The most promising of these methods, i.e., those that could generate

feasible solutions in a reasonable time frame, are run on a set of test data for problems

of different sizes to evaluate and compare their performance. Because this is only test

data, the actual solutions to these problems will not be of interest, instead only how

each solution method performs relative to other methods matters. The performance

will be judged both in terms of their objective values and run times. If two methods

have comparable solutions in terms of their objective values (i.e., within 5% of each

other), but one was able to arrive at its solution faster, then it is considered preferable

over the other.

Not all solution methods covered in Chapter 4 worked as intended, in the sense

that the solutions they produced were of poor quality, infeasible to the original

formulation, or had prohibitively long solve times with no guarantee of optimality.

Even though there are no numerical results for such solutions methods, they will

still be covered alongside the others in the method comparison section 5.3, with a

justification as to why they did not work and potential future paths to follow.

The solution methods for which numerical results could be obtained are the

Mountain Climbing heuristic (MC), the Greedy Marginal Benefit heuristic (GMB),

the Genetic Algorithm (GA) and the GA warm started with the GMB heuristic

(GA+GMB), and Benders Decomposition (BD). In the case of the GMB heuristic,

the base ten proportioning scheme was used, as described in section 4.4.1. In the

case of the methods that use the GA, the stopping condition is set to be after 1000

84
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generations or if less than 0.01 average improvement per generation is seen in the

previous 100 generations. In the case of BD, due to the restrictions on the problem

size that BD can be used solved in a reasonable time, it is compared on a separate set

of problems to the other methods. It could only be used on a small set of scenarios

where it can arrive at the optimal solution in less than 24 hours.

In addition, performance is evaluated for two potential vaccination policies: 1)

Non-Intervention (NI), i.e., sending no vaccines, and 2) Pro-rata allocation (PR),

i.e., allocating supply proportional to population size. Evaluating the scenario of

Non-Intervention allows for establishing a baseline, worst-case scenario from which

the impact of other strategies can be judged fairly. For example, say the objective

values found using two solution methods differ by 1,000. If the difference from NI

is only 5,000, that represents a significant difference in quality between the two so-

lution methods. If, instead, the difference from NI is 1,000,000, the two methods

actually performed comparably, especially as small changes to the vaccination strat-

egy will naturally propagate over time. Every potential vaccination strategy will fall

somewhere between this NI strategy and the true optimal allocation strategy.

Meanwhile, Pro-rata allocation was chosen as it is a very common approach to

allocating vaccines because it does not end up favoring any one group over another.

There are actually two PR approaches used for comparison in this section. The

first is a rigid application of Pro-rata, allocating vaccines strictly proportional to

the population of a zone and group, regardless of whether they can actually use

those vaccines or not. This leads to two problems: 1) it tends to lead to wasting

vaccines once a portion of the population has been fully immunized. 2) a purely Pro-

rata allocation of vaccines might be infeasible to the original problem and violate

administrative or logistical capacity constraints. Therefore, a corrected version of

the PR strategy (PR*) was developed, where if a population group has been fully

immunized, those vaccines are no longer allocated to them, saving costs, and if a

region exceeds its administrative capacity, the number of vaccines sent to the region
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is reduced to the administrative capacity. The performance of a simple rule-of-thumb

vaccine allocation policy such as PR is perhaps a more fair comparison than Non-

Intervention, as in reality, it would be unrealistic, or at least irresponsible, to do

nothing in the face of an epidemic if vaccination was a possibility. If the vaccination

strategies identified by the solution methods cannot significantly improve on a simple

strategy like proportionally allocating available vaccines, then they likely are not

worth the increased complexity of gathering and verifying the data, and building,

validating, and running the algorithms.

5.1 Data Generation

Pseudo-random test data was generated specifically for use in these tests, though the

values are based on those that might be experienced in a real scenario. Population

zones were placed by generating random uniformly distributed x and y coordinates

between 0 and 1. The overall population of each zone is a random uniformly dis-

tributed integer number between 100,000 and 1,000,000, which is then randomly

divided among 5 risk groups. The initial infected population for each group is a

random integer number between 1 and 1000, and the initial exposed population is

twice that number. The initial susceptible population is the group’s overall popu-

lation minus the infected and exposed populations, and finally, the initial removed

population is set to 0.

To create the contact matrix, a random number between 0 and 1 is generated for

each combination of groups. These numbers are then divided by their sum across

the group to normalize them and get what percentage of a group’s contacts are with

members of each group per time period. A random number between 15 and 40 is

generated to represent each group’s total contacts per week. The total contacts are

then multiplied by each group’s percentage contact rate for each group, to get the

contacts per group per week, which gives the contact matrix.
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Two potential vaccines were used: one high efficacy, high cost, and bulky, and

one low efficacy, low cost, and non-bulky. The supply of each was kept consistent

across all time periods, at 200 and 100 lots of each type, respectively. DCs were

placed at the center and each corner of the population zone grid. The center DC

had increased capacity and slightly decreased vaccine acquisition cost compared to

the corner DCs. The distances between the DCs and population zones are measured

as the Euclidean distance on a 1-by-1 grid, where 1 unit is equivalent to 300 km.

The transmission rate was set to 5% (τ = 0.05), the average exposure duration

and average infection duration were both considered to be two time periods (α1 = 2,

α2 = 2), and cost per km is set at $2.00 per 20,000 cubic inches of product shipped.

These values are all tuned to represent a fast-spreading disease, but one that would

still be progressing after 20-30 weeks. A more infectious disease is better for these

tests as it allows differences between vaccination strategies to be accentuated. At the

same time, we do not want the disease to be too infectious, as then the vaccines would

not have an opportunity to take effect before everyone became infected. As we are

interested in preventing exposures with this test data, the weight parameters (wig)

are simply set to 1. A value of 0.001 was chosen for β; representing that preventing

1 additional exposure was worth spending an additional $1,000, as it was sufficiently

low to encourage the model to prioritize vaccination, but high enough that the costs

were still relevant to the objective function.

5.2 Numerical Results

This section will present the results of the different solution methods for problems of

varying sizes and levels of vaccine supply. Problem size, (i.e., how many regions, DCs,

groups, vaccine types, and time periods are used in the model), and the available

supply of vaccines are the primary factors that impact both solution quality and run

time. Parameters other than the supply of vaccines would have little to no impact



88

on run time, as they have no impact on how the solving algorithms behave. One

method may perform slightly better or worse than it typically does under specific

parameter settings, but in general, the relative performance of the objective values of

different methods should be comparable across different scenarios of the same-sized

problem.

Table 5.1 depicts the objective values obtained using NI, PR, PR*, MC, GA,

GMB, and GA+GMB for different problem sizes. Table 5.2 shows the time to so-

lution for each method, other than NI, PR, and PR*, as they can be solved for

almost instantaneously. Table 5.3 contains the relative improvement of each solution

method measured as the percentage improvement over the NI scenario. As previ-

ously mentioned, the solutions from the PR category are usually either infeasible or

wasteful. Therefore, rather than comparing to PR, Table 5.4 contains the relative

improvement of each solution method measured as a percentage improvement over

using a PR* allocation policy. Table 5.5 contains the relative improvement of the

MC and GA+GMB solution methods measured as a percentage improvement over

GMB. Table 5.6 contains the results for a set of problems for which GUROBI can

achieve a relatively small optimality gap within a reasonable time frame. The ta-

ble contains the objective values obtained from using the acrshortga+GMB solution

method, and the upper (UB) and lower (LB) bounds obtained from GUROBI. Along-

side these values is the gap between the UB and LB, the gap between GA+GMB

and the LB (i.e., the maximum potential optimality gap of the solution method),

and the gap between GA+GMB and the UB (i.e., the minimum potential optimality

gap of the solution method). Table 5.7 contains the objective values obtained from

using NI, PR*, GA+GMB, and BD on a separate set of problems that are tailored to

allow the BD method to solve in a reasonable time frame. When the supply column

contains two numbers (e.g., 200 100), the two numbers represent the supply of two

different types of vaccines.

For Tables 5.3, 5.4, and 5.5, the relative improvement is calculated using equation
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(5.1).

% Improvement from X =
Obj X −Obj Y

Obj X
. (5.1)
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Table 5.1: Best Objective Value obtained using different policies or solution methods
ID I J G V T Supply NI PR PR* MC GA GMB GA+GMB
1 1 1 3 1 10 200 81,225 77,560 39,518 31,331 31,692 31,380 31,283
2 1 1 3 1 20 200 226,696 161,615 46,594 35,803 38,050 36,015 35,777
3 1 1 3 1 30 200 230,285 245,671 46,630 35,551 37,958 36,021 35,783
4 1 1 5 1 10 200 193,428 79,228 115,721 101,289 102,537 113,709 101,820
5 1 1 5 1 20 200 355,756 163,284 154,069 134,161 141,507 136,291 136,030
6 1 1 5 1 30 200 356,175 247,339 154,218 134,161 140,186 136,417 136,153
7 5 1 1 1 10 200 27,427 78,898 24,523 17,270 18,779 17,311 17,269
8 5 1 1 1 20 200 81,315 162,943 24,729 25,024 23,101 21,514 21,472
9 5 1 1 1 30 200 155,797 246,989 24,736 25,070 24,235 21,963 21,871
10 5 1 3 1 10 200 642,859 165,285 304,170 254,563 263,745 261,269 259,936
11 5 1 3 1 20 200 200,3671 249,328 359,469 290,432 313,687 303,236 301,358
12 5 1 3 1 30 200 2,052,450 333,372 360,049 290,435 317,695 302,637 301,798
13 5 1 5 1 10 200 1,848,518 520,979 1,116,939 1,039,158 9,76,538 1,007,266 966,211
14 5 1 5 1 20 200 3,337,877 605,023 1,451,301 1,403,106 1,333,485 1,288,399 1,282,855
15 5 1 5 1 30 200 3,342,509 689,067 1,452,694 1,403,195 1,334,182 1,283,366 1,280,651
16 10 1 1 1 10 200 57,181 86,229 48,843 35,282 37,097 35,301 35,212
17 10 1 1 1 20 200 167,061 170,267 49,376 68,927 41,967 40,436 40,319
18 10 1 1 1 30 200 313,326 254,304 49,391 125,906 45,295 40,901 40,823
19 10 1 3 1 10 200 1,332,858 483,495 810,452 521,013 536,814 524,586 520,978
20 10 1 3 1 20 200 3,476,941 567,880 1,117,495 578,511 637,481 602,424 592,424
21 10 1 3 1 30 200 3,543,272 651,917 1,119,679 578,140 649,008 600,627 592,472
22 10 1 5 1 10 200 3,510,689 1,758,471 2,530,597 1,950,506 1,885,165 1,902,153 1,839,876
23 10 1 5 1 20 200 5,822,143 2,002,176 3,509,954 2,485,905 2,520,173 2,364,282 2,350,566
24 10 1 5 1 30 200 5,828,652 2,086,213 3,513,359 2,495,533 2,628,966 2,359,958 2,349,315
25 10 5 5 1 10 200 3,510,689 1,758,460 2,530,592 1,936,633 1,881,059 1,902,153 1,840,482
26 10 5 5 1 20 200 5,822,143 2,002,152 3,509,946 2,495,358 2,536,545 2,364,282 2,349,713
27 10 5 5 1 30 200 5,828,652 2,086,177 3,513,350 2,495,546 2,613,861 2,359,958 2,348,927
28 20 1 5 1 10 200 6,781,450 4,708,816 4,707,054 4,281,687 4,122,334 4,074,798 3,924,889
29 20 1 5 1 20 200 9,906,374 5,751,306 5,780,962 5,497,124 5,846,025 4,929,931 4,898,895
30 20 1 5 1 30 200 9,915,241 5,835,320 5,785,310 5,525,863 6,664,304 4,965,128 4,932,607
31 20 5 5 1 10 200 6,781,450 4,708,814 4,707,053 4,243,462 4,127,983 4,074,798 3,923,061
32 20 5 5 1 20 200 9,906,374 5,751,303 5,780,960 5,541,834 5,916,761 4,929,931 4,898,124
33 20 5 5 1 30 200 9,915,241 5,835,315 5,785,309 5,554,755 5,885,054 4,929,929 4,900,590
34 10 1 5 2 10 200 100 3,510,689 1,491,230 2,283,716 1,950,506 2,028,398 1,952,150 1,839,800
35 10 1 5 2 20 200 100 5,822,143 1,639,146 2,948,207 2,495,063 2,922,411 2,364,279 2,350,164
36 10 1 5 2 30 200 100 5,828,652 1,472,262 2,979,429 2,496,049 3,218,710 2,359,955 2,348,299
37 10 1 5 1 20 10 5,822,143 5,551,445 5,551,443 5,526,520 5,515,449 5,454,081 5,450,360
38 10 1 5 1 20 50 5,822,143 4,569,989 4,580,633 4,487,355 4,363,927 4,247,665 4,241,449
39 10 1 5 1 20 100 5,822,143 3,494,181 3,509,954 3,535,909 3,223,271 3,143,497 3,124,051
40 10 1 5 1 20 150 5,822,143 2,627,874 2,649,778 2,502,231 2,518,972 2,364,051 2,350,985
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Table 5.2: CPU times for different solution methods
ID I J G V T Supply MC GA GMB GA+GMB
1 1 1 3 1 10 200 0:00:00 0:01:16 0:00:02 0:00:40
2 1 1 3 1 20 200 0:00:00 0:03:17 0:00:09 0:01:12
3 1 1 3 1 30 200 0:00:04 0:05:13 0:00:22 0:01:41
4 1 1 5 1 10 200 0:00:00 0:00:06 0:02:23 0:03:18
5 1 1 5 1 20 200 0:00:07 0:08:00 0:00:26 0:03:42
6 1 1 5 1 30 200 0:00:04 0:16:59 0:00:59 0:04:20
7 5 1 1 1 10 200 0:00:00 0:03:02 0:00:10 0:01:08
8 5 1 1 1 20 200 0:00:05 0:14:36 0:00:44 0:02:17
9 5 1 1 1 30 200 0:02:06 0:30:09 0:01:39 0:04:18
10 5 1 3 1 10 200 0:00:03 0:25:49 0:00:47 0:05:31
11 5 1 3 1 20 200 0:00:16 0:45:38 0:03:26 0:25:34
12 5 1 3 1 30 200 0:00:30 1:07:02 0:07:57 0:31:58
13 5 1 5 1 10 200 0:00:18 0:36:36 0:02:03 0:17:35
14 5 1 5 1 20 200 0:01:13 1:21:41 0:10:53 1:35:56
15 5 1 5 1 30 200 0:03:10 1:54:03 0:23:42 2:16:10
16 10 1 1 1 10 200 0:00:00 0:15:08 0:00:41 0:05:54
17 10 1 1 1 20 200 0:00:11 0:42:27 0:02:45 0:15:21
18 10 1 1 1 30 200 0:02:35 1:04:48 0:06:34 0:13:50
19 10 1 3 1 10 200 0:00:00 0:43:08 0:02:52 0:31:19
20 10 1 3 1 20 200 0:00:08 1:25:54 0:12:48 1:38:26
21 10 1 3 1 30 200 0:00:45 2:10:19 0:29:50 2:39:26
22 10 1 5 1 10 200 0:00:03 1:12:41 0:08:12 1:21:55
23 10 1 5 1 20 200 0:00:06 2:34:43 0:38:59 3:44:40
24 10 1 5 1 30 200 0:04:08 3:37:58 1:26:56 5:02:51
25 10 5 5 1 10 200 0:00:03 1:18:07 0:08:07 0:43:16
26 10 5 5 1 20 200 0:00:53 2:34:59 0:42:15 3:53:18
27 10 5 5 1 30 200 0:00:12 3:44:20 1:29:12 5:15:54
28 20 1 5 1 10 200 0:00:23 2:16:25 0:31:08 2:47:21
29 20 1 5 1 20 200 0:21:11 4:43:00 2:26:52 9:34:39
30 20 1 5 1 30 200 0:36:59 7:21:22 5:44:37 12:58:20
31 20 5 5 1 10 200 0:00:56 2:25:23 0:32:43 2:56:44
32 20 5 5 1 20 200 0:04:45 4:54:52 2:30:43 9:56:40
33 20 5 5 1 30 200 0:07:16 5:05:04 2:35:06 5:00:48
34 10 1 5 2 10 200 100 0:00:34 1:24:45 0:17:12 1:17:43
35 10 1 5 2 20 200 100 0:18:29 2:50:23 1:16:35 5:24:46
36 10 1 5 2 30 200 100 0:50:10 4:14:14 3:05:07 8:07:46
37 10 1 5 1 20 10 0:00:05 2:28:37 0:28:03 1:49:36
38 10 1 5 1 20 50 0:01:11 2:29:49 0:35:22 3:02:23
39 10 1 5 1 20 100 0:03:37 2:28:05 0:36:02 3:02:58
40 10 1 5 1 20 150 0:00:48 2:29:52 0:37:18 3:08:00
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Table 5.3: Percent Improvement from NI
ID I J G V T Supply PR* MC GA GMB GA+GMB
1 1 1 3 1 10 200 51.35% 61.43% 60.98% 61.37% 61.49%
2 1 1 3 1 20 200 79.45% 84.21% 83.22% 84.11% 84.22%
3 1 1 3 1 30 200 79.75% 84.56% 83.52% 84.36% 84.46%
4 1 1 5 1 10 200 40.17% 47.63% 46.99% 41.21% 47.36%
5 1 1 5 1 20 200 56.69% 62.29% 60.22% 61.69% 61.76%
6 1 1 5 1 30 200 56.70% 62.33% 60.64% 61.70% 61.77%
7 5 1 1 1 10 200 10.59% 37.03% 31.53% 36.88% 37.04%
8 5 1 1 1 20 200 69.59% 69.23% 71.59% 73.54% 73.59%
9 5 1 1 1 30 200 84.12% 83.91% 84.44% 85.90% 85.96%
10 5 1 3 1 10 200 52.68% 60.40% 58.97% 59.36% 59.57%
11 5 1 3 1 20 200 82.06% 85.50% 84.34% 84.87% 84.96%
12 5 1 3 1 30 200 82.46% 85.85% 84.52% 85.25% 85.30%
13 5 1 5 1 10 200 39.58% 43.78% 47.17% 45.51% 47.73%
14 5 1 5 1 20 200 56.52% 57.96% 60.05% 61.40% 61.57%
15 5 1 5 1 30 200 56.54% 58.02% 60.08% 61.60% 61.69%
16 10 1 1 1 10 200 14.58% 38.30% 35.12% 38.26% 38.42%
17 10 1 1 1 20 200 70.44% 58.74% 74.88% 75.80% 75.87%
18 10 1 1 1 30 200 84.24% 59.82% 85.54% 86.95% 86.97%
19 10 1 3 1 10 200 39.19% 60.91% 59.72% 60.64% 60.91%
20 10 1 3 1 20 200 67.86% 83.36% 81.67% 82.67% 82.96%
21 10 1 3 1 30 200 68.40% 83.68% 81.68% 83.05% 83.28%
22 10 1 5 1 10 200 27.92% 44.44% 46.30% 45.82% 47.59%
23 10 1 5 1 20 200 39.71% 57.30% 56.71% 59.39% 59.63%
24 10 1 5 1 30 200 39.72% 57.19% 54.90% 59.51% 59.69%
25 10 5 5 1 10 200 27.92% 44.84% 46.42% 45.82% 47.57%
26 10 5 5 1 20 200 39.71% 57.14% 56.43% 59.39% 59.64%
27 10 5 5 1 30 200 39.72% 57.18% 55.15% 59.51% 59.70%
28 20 1 5 1 10 200 30.59% 36.86% 39.21% 39.91% 42.12%
29 20 1 5 1 20 200 41.64% 44.51% 40.99% 50.23% 50.55%
30 20 1 5 1 30 200 41.65% 44.27% 32.79% 49.92% 50.25%
31 20 5 5 1 10 200 30.59% 37.43% 39.13% 39.91% 42.15%
32 20 5 5 1 20 200 41.64% 44.06% 40.27% 50.23% 50.56%
33 20 5 5 1 30 200 41.65% 43.98% 40.65% 50.28% 50.58%
34 10 1 5 2 10 200 100 34.95% 44.44% 42.22% 44.39% 47.59%
35 10 1 5 2 20 200 100 49.36% 57.15% 49.81% 59.39% 59.63%
36 10 1 5 2 30 200 100 48.88% 57.18% 44.78% 59.51% 59.71%
37 10 1 5 1 20 10 4.65% 5.08% 5.27% 6.32% 6.39%
38 10 1 5 1 20 50 21.32% 22.93% 25.05% 27.04% 27.15%
39 10 1 5 1 20 100 39.71% 39.27% 44.64% 46.01% 46.34%
40 10 1 5 1 20 150 54.49% 57.02% 56.73% 59.40% 59.62%
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Table 5.4: Percent Improvement from PR*
ID I J G V T Supply MC GA GMB GA+GMB
1 1 1 3 1 10 200 20.72% 19.81% 20.59% 20.84%
2 1 1 3 1 20 200 23.16% 18.34% 22.71% 23.22%
3 1 1 3 1 30 200 23.76% 18.60% 22.75% 23.26%
4 1 1 5 1 10 200 12.47% 11.39% 1.74% 12.01%
5 1 1 5 1 20 200 12.92% 8.15% 11.54% 11.71%
6 1 1 5 1 30 200 13.01% 9.10% 11.54% 11.71%
7 5 1 1 1 10 200 29.58% 23.42% 29.41% 29.58%
8 5 1 1 1 20 200 -1.19% 6.59% 13.00% 13.17%
9 5 1 1 1 30 200 -1.35% 2.02% 11.21% 11.58%
10 5 1 3 1 10 200 16.31% 13.29% 14.10% 14.54%
11 5 1 3 1 20 200 19.21% 12.74% 15.64% 16.17%
12 5 1 3 1 30 200 19.33% 11.76% 15.95% 16.18%
13 5 1 5 1 10 200 6.96% 12.57% 9.82% 13.49%
14 5 1 5 1 20 200 3.32% 8.12% 11.22% 11.61%
15 5 1 5 1 30 200 3.41% 8.16% 11.66% 11.84%
16 10 1 1 1 10 200 27.76% 24.05% 27.73% 27.91%
17 10 1 1 1 20 200 -39.60% 15.01% 18.11% 18.34%
18 10 1 1 1 30 200 -154.91% 8.29% 17.19% 17.35%
19 10 1 3 1 10 200 35.71% 33.76% 35.27% 35.72%
20 10 1 3 1 20 200 48.23% 42.95% 46.09% 46.99%
21 10 1 3 1 30 200 48.37% 42.04% 46.36% 47.09%
22 10 1 5 1 10 200 22.92% 25.51% 24.83% 27.29%
23 10 1 5 1 20 200 29.18% 28.20% 32.64% 33.03%
24 10 1 5 1 30 200 28.97% 25.17% 32.83% 33.13%
25 10 5 5 1 10 200 23.47% 25.67% 24.83% 27.27%
26 10 5 5 1 20 200 28.91% 27.73% 32.64% 33.06%
27 10 5 5 1 30 200 28.97% 25.60% 32.83% 33.14%
28 20 1 5 1 10 200 9.04% 12.42% 13.43% 16.62%
29 20 1 5 1 20 200 4.91% -1.13% 14.72% 15.26%
30 20 1 5 1 30 200 4.48% -15.19% 14.18% 14.74%
31 20 5 5 1 10 200 9.85% 12.30% 13.43% 16.66%
32 20 5 5 1 20 200 4.14% -2.35% 14.72% 15.27%
33 20 5 5 1 30 200 3.99% -1.72% 14.79% 15.29%
34 10 1 5 2 10 200 100 14.59% 11.18% 14.52% 19.44%
35 10 1 5 2 20 200 100 15.37% 0.87% 19.81% 20.28%
36 10 1 5 2 30 200 100 16.22% -8.03% 20.79% 21.18%
37 10 1 5 1 20 10 0.45% 0.65% 1.75% 1.82%
38 10 1 5 1 20 50 2.04% 4.73% 7.27% 7.40%
39 10 1 5 1 20 100 -0.74% 8.17% 10.44% 10.99%
40 10 1 5 1 20 150 5.57% 4.94% 10.78% 11.28%
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Table 5.5: Percent Improvement from GMB
ID I J G V T Supply MC GA+GMB
1 1 1 3 1 10 200 0.16% 0.31%
2 1 1 3 1 20 200 0.59% 0.66%
3 1 1 3 1 30 200 1.31% 0.66%
4 1 1 5 1 10 200 10.92% 10.46%
5 1 1 5 1 20 200 1.56% 0.19%
6 1 1 5 1 30 200 1.65% 0.19%
7 5 1 1 1 10 200 0.24% 0.24%
8 5 1 1 1 20 200 -16.32% 0.20%
9 5 1 1 1 30 200 -14.15% 0.42%
10 5 1 3 1 10 200 2.57% 0.51%
11 5 1 3 1 20 200 4.22% 0.62%
12 5 1 3 1 30 200 4.03% 0.28%
13 5 1 5 1 10 200 -3.17% 4.08%
14 5 1 5 1 20 200 -8.90% 0.43%
15 5 1 5 1 30 200 -9.34% 0.21%
16 10 1 1 1 10 200 0.06% 0.25%
17 10 1 1 1 20 200 -70.46% 0.29%
18 10 1 1 1 30 200 -207.83% 0.19%
19 10 1 3 1 10 200 0.68% 0.69%
20 10 1 3 1 20 200 3.97% 1.66%
21 10 1 3 1 30 200 3.74% 1.36%
22 10 1 5 1 10 200 -2.54% 3.27%
23 10 1 5 1 20 200 -5.14% 0.58%
24 10 1 5 1 30 200 -5.74% 0.45%
25 10 5 5 1 10 200 -1.81% 3.24%
26 10 5 5 1 20 200 -5.54% 0.62%
27 10 5 5 1 30 200 -5.75% 0.47%
28 20 1 5 1 10 200 -5.08% 3.68%
29 20 1 5 1 20 200 -11.51% 0.63%
30 20 1 5 1 30 200 -11.29% 0.65%
31 20 5 5 1 10 200 -4.14% 3.72%
32 20 5 5 1 20 200 -12.41% 0.65%
33 20 5 5 1 30 200 -12.67% 0.60%
34 10 1 5 2 10 200 100 0.08% 5.76%
35 10 1 5 2 20 200 100 -5.53% 0.60%
36 10 1 5 2 30 200 100 -5.77% 0.49%
37 10 1 5 1 20 10 -1.33% 0.07%
38 10 1 5 1 20 50 -5.64% 0.15%
39 10 1 5 1 20 100 -12.48% 0.62%
40 10 1 5 1 20 150 -5.85% 0.55%
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Table 5.6: GUROBI Results and Optimality Gap
ID I J G v T Supply GA+GMB UB LB UB to LB Gap GA+GMB to LB Gap GA+GMB to UB Gap
1 1 1 5 1 6 200 38,404 38,404 38,404 0.00% 0.00% 0.00%
2 1 1 5 1 9 200 86,135 86,011 74,695 13.20% 13.28% 0.14%
3 3 1 2 1 6 200 23,960 23,679 23,679 0.00% 1.18% 1.18%
4 3 1 2 1 7 200 27,663 27,370 27,370 0.00% 1.06% 1.06%
5 3 1 2 1 8 200 30,701 30,382 29,459 3.04% 4.05% 1.04%
6 3 1 2 1 9 200 33,330 32,776 30,327 7.47% 9.01% 1.66%
7 3 1 2 1 10 200 35,382 34,744 30,338 12.70% 14.25% 1.80%
8 3 1 5 1 6 200 260,679 258,785 254,120 1.80% 2.52% 0.73%
9 5 1 3 1 6 200 141,487 140,072 137,357 1.94% 2.92% 1.00%
10 5 1 5 1 6 200 393,211 390,571 371,422 4.90% 5.54% 0.67%
11 10 1 2 1 6 200 70,918 70,714 69,339 1.94% 2.23% 0.29%
12 10 1 5 1 10 200 1,839,876 2,027,311 701,373 65.40% 61.88% -10.19%

Table 5.7: BD Results
I J G V T Supply NI PR* GA+GMB Objective Time Iterations
2 1 1 1 10 1 10,105 9,743 9,339 9,022 0:03:57 511
3 1 1 1 10 1 18,802 18,293 18,019 18,019 0:18:48 792
4 1 1 1 10 1 22,010 21,796 21,234 21,227 0:47:05 1035
5 1 1 1 10 1 27,427 27,342 26,751 26,324 1:33:44 1233
2 1 1 1 5 2 3,630 3,745 3,603 3,603 0:00:07 82
2 1 1 1 6 2 4,771 4,853 4,651 4,651 0:01:55 244
2 1 1 1 7 2 5,988 5,985 5,694 5,694 0:34:33 732

5.2.1 Numerical Results Summary

As can be observed in Table 5.3, all the tested solution methods were able to signifi-

cantly improve the outcome of a scenario versus doing nothing in the same scenario.

In general, this improvement ranged between 40-80%, with the largest differences

occurring in problems with fewer zones and groups but more time periods. The im-

pact of additional time periods is obvious, as the more time periods considered, the

longer the disease is potentially allowed to propagate in the population. Without

intervention, each additional time period will simply add additional opportunities

for a person to become infected, until the disease has run its course. If instead some

portion of the population is vaccinated, for every additional time period considered,

additional infections that would have occurred in the case of Non-Intervention are

prevented, as the now vaccinated portion of the population is no longer a vector
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for the disease. For example, comparing Non-Intervention against vaccinating 1000

people in the first time period, it will be observed that the outcomes drift further

and further apart with each additional period until the disease has run its course.

Why is the gap larger for the problems with fewer regions and groups? The most

likely reason is simply that the supply relative to the population size shrinks with

additional zones and groups, meaning a smaller and smaller fraction of the popula-

tion can be vaccinated. This hypothesis is supported by the improvement observed

in tests 37-40, where the problem size is kept consistent but supply is varied. To

properly test this hypothesis, the supply could be kept proportional to the overall

population size for each problem. However, as previously mentioned, the point of

these tests is not to compare the same method across the set of problems, but to

compare the set of methods across the same problem. The fact that vaccines become

scarcer for larger problems does not impact that goal.

As previously mentioned, the corrected Pro-rata strategy gives a more realistic

point of comparison, compared to the unlikely scenario of doing nothing. From

Table 5.4, we generally see an 11-40% improvement using the strategies derived from

our tested solution methods when compared to the corrected Pro-rata allocation

strategy. This represents a significant improvement, and in real-world scenarios,

would support the use of these solution methods over the Pro-rata strategy. From

Table 5.4, it becomes obvious that the GA alone was unable to keep up with the

other solution methods, as it was never able to outperform any of the other solution

methods within the allotted 1000 generations. While in theory the GA could have

been left to run for longer to try to improve its objective value, comparing the run

times in Table 5.2, it becomes apparent that this improvement would not have been

worth the additional run time. Compared to the GMB or MC heuristics, the GA

will always take longer to reach a comparable objective value and there is no easy

method to predict how long it will take to do so. This is the benefit of warm starting

the GA with a solution from the GMB heuristic. It can start with a good solution
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in a fraction of the time and improve from there.

As can be seen in Table 5.5, the MC and GMB heuristics were the best-performing

individual solutions. The MC heuristic performed better on smaller problems, usually

less than 4% better compared to the GMB alone. Meanwhile, the GMB performed

better on medium to large problems, usually by 3-12%. On top of this, the MC

heuristic is significantly faster in comparison to the GMB heuristic, usually only

taking seconds to run whereas the GMB heuristic might take minutes, or running

in minutes when the GMB might take hours. This makes it a promising candidate

for use in generating a warm start for the GA. The warm start may not be as good

as the one from the GMB heuristic, but it could be found in a fraction of the time,

with the difference in quality potentially being made up for by the GA.

When given a warm start, the GA was always able to improve on the solution

of the GMB heuristic. However, as seen in Table 5.5, this improvement was less

than 1% for the majority of the test problems, though in some circumstances it was

higher. Does such a small improvement merit several hours of additional run time?

Such a small difference is almost certainly within the margins of error of the models’

predictions. At the same time, it can be seen that for some of these scenarios, there

was potential for improvement of at least 2-4% higher, as the MC heuristic was able

to achieve such a solution. Figures 5.1 and 5.2, and Table 5.8 depict an example of

the allocation pattern for both strategies where the MC heuristic outperformed the

GMB heuristic by approximately 4%.
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Figure 5.1: MC Vaccine Allocation

Figure 5.2: GMB Vaccine Allocation
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Table 5.8: Allocation Strategies using MC and GMB Heuristics

MC GMB

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

t Zone 1

1 - - 18,224 - - 18,000

2 - - 18,224 - - 18,000

3 - - 18,224 - - 18,000

4 6,884 - 11,340 6,000 - 12,000

5 18,224 - - 18,000 - -

6 18,000 - - 18,000 - -

7 18,000 - - 18,000 - -

8 7,672 10,328 0 10,000 8,000 -

9 - 18,000 - - 18,000 -

10 - 18,000 - - 18,000 -

11 - 18,000 - - 18,000 -

12 - 18,000 - - 18,000 -

13 - 2,000 - - - -

14 - - - - - -

15 - - - - - -

16 - - - - - -

17 - - - - - -

18 - - - - - -

19 - - - - - -

T Zone 2

1 - - 23,678 - - 22,000

2 13,021 - 10,657 10,000 - 12,000

3 23,678 - - 22,000 - -

4 23,678 - - 22,000 - -

5 23,678 - - 22,000 - -

6 11,311 12,367 - 12,000 10,000 -

7 - 23,678 - 2,000 20,000 -

8 - 23,678 - 2,000 20,000 -



100

Table 5.8 – continued from previous page

MC GMB

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

9 - 23,678 - 1,000 21,000 -

10 - 18,000 - - 22,000 -

11 - - - - 10,000 -

12 - - - - - -

13 - - - - - -

14 - - - - - -

15 - - - - - -

16 - - - - - -

17 - - - - - -

18 - - - - - -

19 - - - - - -

T Zone 3

1 - - 39,171 38,000 - -

2 - - 39,171 38,000 - -

3 - - 39,171 11,000 - 27,000

4 - - 39,171 - - 38,000

5 - - 39,171 - - 38,000

6 22,870 - 16,301 - - 38,000

7 39,171 - - - - 38,000

8 26,034 13,137 - 13,000 5,000 20,000

9 - 39,171 - - 38,000 -

10 - 39,171 - - 38,000 -

11 - 39,171 - - 38,000 -

12 - 34,000 - - 38,000 -

13 - - - - 10,000 -

14 - - - - - -

15 - - - - - -

16 - - - - - -

17 - - - - - -

18 - - - - - -
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Table 5.8 – continued from previous page

MC GMB

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

19 - - - - - -

T Zone 4

1 - - 41,498 - - 40,000

2 - - 41,498 - - 40,000

3 - - 41,498 - - 40,000

4 - - 41,498 - - 40,000

5 - - 41,498 - - 40,000

6 37,620 - 3,878 30,000 - 10,000

7 41,498 - - 40,000 - -

8 41,498 - - 40,000 - -

9 41,498 - - 40,000 - -

10 41,498 - - 40,000 - -

11 12,893 28,605 - 20,000 20,000 -

12 - 41,498 - - 40,000 -

13 - 41,498 - - 40,000 -

14 - 8,000 - - 40,000 -

15 - - - 1,000 20,000 1,000

16 - - - - - -

17 - - - - - -

18 - - - - - -

19 - - - - - -

T Zone 5

1 - - 47,640 - 40,000 6,000

2 - - 47,640 - - 46,000

3 - - 47,640 - - 46,000

4 30,307 - 17,333 - - 46,000

5 47640 - - 32,000 - 14,000

6 47,640 - - 46,000 - -

7 47,640 - - 46,000 - -

8 47,640 - - 46,000 - -
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Table 5.8 – continued from previous page

MC GMB

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

9 47,640 - - 46,000 - -

10 45,664 1,976 - 46,000 - -

11 241 29,759 - 42,000 - -

12 - - - - - -

13 - - - - - -

14 - - - - - -

15 - - - - - -

16 - - - - - -

17 - - - - - -

18 - - - - - -

19 - - - - - -

The overall strategy of both methods can be seen to be very similar. However,

the GMB heuristic strategy is allocated entirely in units of 1000, while the MC

heuristic is more flexible. It can also be observed that the MC heuristic will generally

allocate up to the administrative capacity of a zone when possible, whereas the GMB

heuristic will stop just before reaching that point. This leads to the GMB heuristic

requiring additional time periods to reach full vaccination of the population after

the MC heuristic has already stopped vaccination. It is unclear why exactly the

GMB heuristic behaves this way, but it can be observed that the difference between

how many vaccines are sent to a zone for the two strategies is usually less than

2000, i.e., the size of 1 lot of vaccines. Thus, one reason for the behavior of the

GMB might have been because the base ten proportioning scheme was used, and the

GMB heuristic was allocating doses in units of 10000, 1000, 100, 10, and 1. When

allocating 1000 or fewer doses at a time, the first doses would still require sending a

whole additional lot to that zone. Therefore, if the benefit of sending a partial lot

of vaccines does not outweigh the costs, the GMB heuristic will not send the lot.
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However, this idea has a problem. Up to that point, the GMB heuristic would have

been allocating partial lots at a time, and it always decided that such an action was

worth the cost. Why does it suddenly change so close to the administrative capacity

limit? In fact, up until the point that allocating a portion would cause a region to

exceed its administrative capacity, the algorithm has no way of knowing what the

administrative capacity of a region is. Perhaps once the finite number of 1000 dose

portions are exhausted, when allocating 100 dose portions, the benefits from such

a small fraction of a lot are outweighed by the costs of sending a full additional

lot. The true cause of this behavior will require additional study to identify. An

experiment to test the previous hypothesis would be to observe whether the GMB

will allocate up to the administrative capacity if there were to be no downside to

sending additional vaccines, such as by setting the weight of the costs in the objective

function to zero.

Table 5.2 shows the run time of each solution method for instances of varying

sizes, from which we can make several observations. First, it is clear that the MC

heuristic is, by far, the quickest solution method, outperforming all other methods for

every tested instance. It can be seen that while, in general, the run time increases

with problem size, this is not always the case for the MC heuristic, such as with

instances 18 and 20 with run times of 0:02:35 and 0:00:45, respectively. Similarly, we

can see that the run time appears to increase and decrease randomly with supply, as

seen in problems 23, 37, 38, 39, and 40. This behavior can most likely be attributed

to the looping behavior of the algorithm, where sometimes the algorithm would

bounce between several similar solutions before the algorithm detected that it was in

a loop, while other times it quickly converges onto a single solution. Meanwhile, by

examining the GA, its run time generally increases with problem size. Besides the

stopping condition, the primary factors impacting the GA run time are the time it

takes to evaluate a chromosome and the number of chromosomes to evaluate in each

generation. For the GMB heuristic, the primary factors that would impact run time
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would be the number of portions, the number of potential allocations it has to check

per portion (i.e., |I| × |G|), and how long it takes to evaluate a potential allocation.

It can be seen that thanks to the proportioning scheme used, the run time does

not tend to increase much alongside increasing supply, as the number of portions to

consider increases slowly with the overall supply. For both the GA and the GMB, in

order of impact on the run time, it seems to be the number of 1) groups, 2) zones,

3) vaccine types, 4) time periods, and 5) DCs, with the number of DCs having very

little impact. It is worth noting that we are increasing the considered time periods

from 10 to 20 to 30 in these tests, which makes the differences from time seem larger

compared to the other metrics.

From Table 5.6 we can get an estimate of the optimality gap for the GA+GMB

solution method. The gap between the LB identified by GUROBI and the solution

found using the GA+GMB solution method ranges from 0-14.25%, though most

problems are less than 5%. These values represent the absolute maximum optimality

gap that could exist between the GA+GMB solution and the true optimal. However,

there is reason to suspect that the true optimality gap is likely lower. If we look at

the gap between the UB identified by GUROBI and the solution found using the

GA+GMB solution method, it is consistently less than 2%. This represents the

absolute minimum the optimality gap could be. From this and observing the value

of the UB and LB over time while running GUROBI, where the UB does not change

very much and most of the run time is spent slowly improving the LB, it becomes

clear that the LB obtained from GUROBI is usually worse than the UB. For example,

in problem 2, there is a 13.28% gap between the GA+GMB solution and the LB, but

only a 0.14% difference between the GA+GMB solution and the UB. Thus, at least

for these small problems, it would suggest that the approximate optimality gap when

using the GA+GMB solution method is closer to 2% than 14%. These problems are

small, and its almost certainly true that the optimality gap would grow with the

problem size. However, it should not be much larger, so a 5-10% or less optimality
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gap would seem to be a fair estimate for the GA+GMB solution method.

In regards to BD (Table 5.7), it was only able to be run on problems with just

a few potential lots of vaccines, and with only a few zones and time periods. Even

for these small problems, BD takes a prolonged period to solve compared to the

other solution methods. However, in terms of the objective value, it always either

matches or outperforms the other solution methods. These problems are sufficiently

small that a commercial solver can solve them, which of course defeats the purpose of

using the BD solution method, but does allow us to verify that Benders does indeed

produce the optimal solution. It can be observed that with increasing zones and time

periods, the run time and iterations required to arrive at the optimal solution grow

rapidly. Crucially, however, it does not appear that the number of iterations is the

same as every possible combination of allocating the supply of vaccines. For example,

if every possible solution were explored for 5-1-1-1-10 with 1 lot of vaccine available

each time period, with 6 potential ways to allocate the lot per time period and 10 time

periods to consider, that would be 60,466,176 possible ways to allocate the lots, but

only 1,233 sets of cuts were required. This means that logic-based cuts can eliminate

multiple possible solutions at a time. If these cuts could be generated quickly, they

would prove incredibly useful. However, it was found that as more cuts are added,

building and solving the Benders master problem takes more and more time, until

multiple minutes are required per iteration. As currently implemented, the model is

built from scratch and solved using the GUROBI solver each time. If the build and

solve time of the Benders master problem could be improved, then potentially the

speed of the cut generation could outweigh the number of cuts required and allow

Benders to be used for larger problems. However, it will still only ever be useful in

single-risk group problems.

Figures 5.3 and 5.4 depict the convergence of the UB and LB of the BD method

for two of the test problems. Figure 5.3 only had a single lot per time period to

allocate and it can be observed that steady progress was made in improving the LB
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overtime. Figure 5.4 meanwhile had two lots of vaccine to allocate, and it can be

seen that convergence was slow up until the last few iterations where a sudden sharp

jump in the LB brought the two together.

Figure 5.3: Benders Decomposition UB and LB (5-1-1-1-10)

These results also confirmed one of the factors that makes combining the vaccine

allocation and distribution models more difficult to solve in comparison to the regular

vaccine allocation problem. Because the problem is now multi-objective, there are

potentially multiple different strategies that arrive at the same objective value. This

was best highlighted by two test runs using the PR and GMB heuristic on a small

problem. Table 5.9 shows the combined objective value, the two components of

said objective value; total new exposures and costs, as well as the total vaccines

allocated. The objective functions of these two methods are very similar, differing

by only 1,636. However, they arrive at this value from different directions. The PR

allocation uses a little over a million vaccines, and as such prevents many exposures at
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Figure 5.4: Benders Decomposition UB and LB (2-1-1-1-7)

great monetary cost. The GMB heuristic meanwhile allocates only 20,000 vaccines,

leading to many more exposures, but making up for it in terms of costs. Thus, two

completely different strategies may yield very similar results.

Table 5.9: Method Comparison: Similar Results
Method Objective Total NE Total Costs Total Vaccines Allocated
Pro-Rata 29,303 7,682 $ 21,621 000 1,029,186
GMB 30,939 30,477 $ 462,000 20,000

Difference 1,636 22,794 -$ 21,159 000 -1,009,186

5.3 Method Comparison

This section will review the performance of each solution method, including those

that ended up not working as intended, and for such methods, review why they did



108

not work, as well as whether there are potential avenues to explore them further.

5.3.1 Lagrangian Relaxation Performance

After exploring Lagrangian relaxation as a solution method, it was deemed to be

unsuitable for the task. The problem is two-fold. First, when constraint (3.32) is

relaxed, the integrity of the model is severely damaged, as the resulting models’

objective functions all compete with each other. SP1 seeks to minimize the costs

of distributing vaccines, which naturally means it wants to allocate as few vaccines

as possible. For SP2, each zone will seek to minimize its own epidemic impact by

allocating as many vaccines as possible, even if those vaccines do not exist or another

zone needs them, as the sub-problems have no connection to the supply chain or each

other anymore. It was conjectured that λ should work to correct these differences

over each iteration of the algorithm. However, experimentation has shown that this

does not occur, and instead, the algorithm will never rectify the competing interests

between the sub-problems.

The second issue is that with this method SP2 is still difficult to solve in its

own right. SP2 is still the non-convex vaccine allocation problem, and in fact in

order to run the algorithm, the sub-problem can often only be solved to obtain an

upper bound on its optimal solution, which severely impacts the quality of the final

Lagrangian bound. However, if the problem is simplified to a single risk group (i.e., a

homogeneous model), then SP2 can be solved through simulation and enumeration.

While this issue could be rectified if some efficient method could be identified to

solve SP2 to optimality, such a method could likely just as easily be applied to the

original problem. This is the crux of the issue with Lagrangian relaxation. It does

little to actually address the issues that make the problem difficult to solve.
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5.3.2 McCormick Envelope Performance

As previously stated, the performance of the McCormick Envelope method would

be dependent on the quality of the upper and lower bounds that could be obtained

on decision variables Sigt and Iigt. Unfortunately, no good bounds on these variables

could be determined. An upper bound on the infected population could be obtained

by running the model without allocating any vaccines, as there will never be any

more infected than this, as allocating vaccines can only serve to lower the number

of infected, not increase it. However it is not a very good bound and, unfortunately,

there does not seem to be a tighter upper bound, or at least one that can be obtained

easily. This is because if no vaccines are allocated to a region, which is a very plausible

outcome, then only the upper bound of the no-vaccination strategy will hold. The

lower bound is similarly very loose, as the only guaranteed infected are those who

start out infected and those who will always become infected in the first period

before vaccination begins. A tighter bound could be found if it could be proven that

exclusively vaccinating one group over another will always lead to lower overall cases

for the first group, as then a lower bound on the infected population could be said

to be the number of infected in a time period if up to that point, all resources had

gone towards vaccinating that specific group each time period. However, there is

the possibility that this assumption would not hold in all scenarios. For example,

consider a scenario with just two groups, one with more contacts per week than the

other. If we do not vaccinate the group with the larger number of weekly contacts,

the disease spreads out of control through that group. Even though a portion of the

other group has been vaccinated, there are now so many additional infected from the

first group that the protection is less than if we had vaccinated the first group. In

this way, a group can have more infected contacts under a scenario where they were

vaccinated than if some other group was vaccinated first.

A similar problem exists for the susceptible populations, as there is no good
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upper or lower bound on the susceptible population. Consider the scenario of vacci-

nating no one. There might still be some susceptible population left over at the end,

those who got lucky and never caught the disease. Then consider allocating only

one additional vaccine somewhere. The final susceptible population of that group

is decreased by one, but all groups in the zone will collectively receive a small in-

crease in protection due to the herd effect. Thus by vaccinating one group, the final

susceptible population in another group grows. If the herd effect is strong enough,

i.e., each vaccine prevents more than one additional infection, the final susceptible

population for the group it was allocated to might also increase. This means you

can end up with a larger susceptible population than when not vaccinating, thus no

upper bound can be obtained on the susceptible population. Similarly, the lower

bound on the susceptible population is not very good. By sending no vaccines, we

can obtain the susceptible population of a group in each period that would not have

caught the disease yet, which is the lowest the susceptible population can go with-

out vaccinating the group directly. Because vaccinating the group will lower their

susceptible population, the lowest the susceptible population of a given group can

be in a period is the susceptible population when letting the disease run its course

minus the vaccinated population of the group if all vaccines had been allocated in

all previous periods. This is a very loose bound that would only get worse with each

additional period considered in the model.

These poor bounds meant that the McCormick envelope would not produce a

very good approximation of the original problem.

5.3.3 Mountain Climbing Heuristic Performance

The MC heuristic solution method initially seemed to be very promising as a solution

method. As can be seen from the results on some of the small to medium-sized

problems, it frequently outperforms the other algorithms in both objective value

and solution time. In fact, it is the fastest-solving method in all scenarios tested.
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However, what is not obvious from the raw results is that for the majority of the MC

tests, the solution did not converge perfectly. Instead, it would alternate between

several solutions, of which the best performer was taken as the final solution. For

those problems where it was the best performing method, it was usually only barely

better than methods such as the GMB heuristic, with less than a 5% difference at

most, though it was able to arrive at solutions significantly faster than the GMB

heuristic (e.g., Problem 11: MC 0:00:14 GMB 0:03:26).

However, on larger problems the method would seem to begin to break down,

converging on local optimum far from the other solutions. What is confusing is

that there was no obvious reason or pattern for this change. For example, as can

be seen in Table 5.5, for problems 11 (5-1-3-1-20) and 23 (10-1-3-1-30) the method

worked well, improving on the GMB heuristics by 4.22% and 3.74%, respectively.

Meanwhile, for problems 8 (5-1-1-1-20) and 24 (10-1-5-1-30) it failed, producing

objective values that were 16.32% and 5.74% worse compared to the GMB heuristic,

respectively. Therefore, although its speed and performance on some problems were

very impressive, the MC heuristic proved to be unreliable as a solution method,

especially for medium to large problems. However, if the reason for this inconsistency

could be identified and corrected, it might prove to be a very promising solution

method. Perhaps if the algorithm could be started with a near-optimal solution, such

as from the GMB heuristic, it would avoid this issue of falling into a poor solution,

though this would come at the expense of the method’s primary benefit, its run

time. Alternatively, it might prove to be useful as a method to warm start the GA.

Even though the solutions it produces are potentially worse compared to the GMB

heuristic, the speed at which they can be derived combined with the improvement

from the GA could make up for the drop in quality of the warm start solution.

Figures 5.5, 5.6, and 5.7 show the course of the MC heuristic over its run time on

three different problems. The first, depicted in Figure 5.5, is on a small problem that
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reached a good solution very quickly, without getting stuck fluctuating between solu-

tions. Figure 5.6, on the other hand, shows the algorithm became stuck fluctuating

between two points, 2,495,346.299 and 2,485,904.886. While it may appear that it

entered this state after just 6 iterations, there is actually always a small difference be-

tween each point up until iterations 15 and 17, which produced completely identical

solutions, at which point, detecting a loop, the algorithm terminated. Additionally,

it can clearly be seen that the best-performing solution was actually from the second

iteration, and the algorithm moved away from that solution with subsequent itera-

tions. Figure 5.7 displays a similar pattern, but instead of fluctuating between just

two solutions, it is fluctuating between several solutions. However, unlike the pre-

vious problem, none of these points are actually exactly the same, so the algorithm

did not stop on its own. Instead, it was manually stopped after 100 iterations. If

it was allowed to run longer, it might have eventually produced a solution that was

identical to the previous one and entered a loop. After all, as was observed with

the previous problem, it can take a few iterations before settling into a loop, and

perhaps larger problems take more time to settle into a pattern.
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Figure 5.5: MC Solution Over Time (5-1-3-1-20)
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Figure 5.6: MC Solution Over Time (10-1-5-1-20)
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Figure 5.7: MC Solution Over Time (20-1-5-1-20)
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Figure 5.8: Fixed Allocation Algorithm Solution Over Time

5.3.4 Fixed Allocation Linear Approximation Performance

It was found that solutions generated by the fixed allocation linear approximation

solution method were not very good, and the algorithm would often get stuck al-

ternating between a few different solutions far from the optimum, never able to

outperform the corrected Pro-rata strategy. On top of that, it is not a very fast

solution method and requires keeping track of whether the algorithm has got itself

stuck in a loop to determine when to terminate. Another problem that can be seen

by observing the objective value for each iteration is that the solutions do not ap-

pear to get better over time. As can be seen in Figure 5.8, for the test scenario of

10-1-5-1-20 with 200 lots of vaccines, the best-performing solution was actually the

second solution the algorithm generated. It never managed to return to that value

and does not appear to be trending toward it.

In fact, at the point of termination, many better solutions had previously been
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identified. This pattern was consistent for all tested scenarios. In theory, the best-

performing of these solutions could have been selected and treated as the final so-

lution. However, such solutions are basically equivalent to choosing a solution at

random. There is no evidence to suggest that the best-performing solutions gener-

ated over the course of the algorithm’s run-time are anywhere near optimal.

However, the method of deriving the linear formula for the new exposures from

the fixed allocation was not very sophisticated. It simply used the slope between the

new exposures and the susceptible population (see Equation (4.42)). In comparison

to other methods, less time was spent on the fixed allocation method when other

solution methods already showed promising results. If a better method of linearizing

from the results of the fixed allocation strategy could be found, the solution method

as a whole might be improved.

5.3.5 Piecewise-Linear Approximation Performance

The piecewise-linear approximation solution method was found to only complicate

the problem, rather than help solve it. In order to maintain a reasonably low approxi-

mation error, depending on the initial susceptible population, thousands or even tens

of thousands of breakpoints and decision variables are required, for each zone, group,

and time period. The total number of breakpoints and SOS2 decision variables re-

quired can be calculated using equations (5.2) and (5.3), respectively. Introducing

tens of thousands of SOS2 binary decision variables obviously makes the problem

difficult to solve, likely more so than the original formulation with the additional

disadvantage of now only being an approximation of the original. Whether these

issues can be remedied is unclear, but if not, then piecewise-linear approximation is

not a good approach to trying to solve the vaccine allocation problem.

# Break Points =
∑︂
i∈I

∑︂
g∈G

S0
ig

2
√
ϵ

(5.2)
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# SOS2 Decision Variables = |T | ∗ |V | ∗
∑︂
i∈I

∑︂
g∈G

S0
ig

2
√
ϵ

(5.3)

5.3.6 GMB Heuristic Performance

Being a heuristic method, the GMB solution method cannot guarantee an optimal

solution, only a good feasible solution, even when taking the most conservative ap-

proach possible by allocating one vaccine at a time. Experiments done by varying

the vaccine supply showed that the amount of vaccines available will impact where

vaccines will be most effective. For instance, if there are only 100 doses, it might be

best to vaccinate group X but if there were 1000 doses it might be better to vaccinate

group Y or to split them between several groups. Because the algorithm starts from

the scenario of no vaccines being allocated and allocates starting from t = 0 forward,

it considers the allocation of each portion of the vaccines in isolation, and thus only

allocates vaccines where the most immediate benefit is found, without consideration

for further vaccines or whether its previous allocations might no longer be the best.

Thus, by only ever considering portions of the vaccine supply at a time and not the

entire supply over the entire time period, the algorithm makes imperfect decisions.

A shortcoming of this approach is that it cannot make use of the storage capacity

of the DCs. Vaccines must be used in the period they are made available. This has

no impact if the vaccine supply is steady and there is always enough capacity to

distribute and administer all available vaccines. However, in the event that vaccine

supply fluctuates, i.e., there are periods of high and low supply, and during the high

points the supply outstrips capacity, those vaccines go unutilized if not stored in a

DC.

The size of the problem determines how long simulating each allocation takes, and

the number of zones and risk groups determines how many simulations are required

per allocation. The supply of vaccines and in what size portions they are allocated

determines how many allocations will need to be performed. Thus the speed and
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performance of this method are directly proportional to the supply of vaccines, the

portioning scheme used, the number of zones and risk groups, and the size of the

problem. The run time can thus be calculated using equation (5.4), making it an

O(n3) algorithm.

Run Time = ((SEIR Solve Time ∗ |G| ∗ |I|)+ (Transshipment Solve Time ∗ |I|)) ∗# portions (5.4)

The run time; while deterministic and faster than the GA for all tested scenarios,

is ultimately dependent on the number of available vaccines and the proportioning

scheme used. While using an appropriate proportioning scheme can significantly cut

down on the number of evaluations the algorithm will need to perform, for very large

quantities of vaccine, there is potential for the GA to be faster in terms of solve time,

as its solve time is independent of the vaccine supply.

Additionally, as previously mentioned, the solution quality is dependent on the

proportioning scheme. In general, a more granular search (i.e., more, smaller, por-

tions) will lead to a better solution compared to a less granular one at the expense of

time. However, where vaccines will be most effective depends on how many vaccines

are available. The concept of the herd effect and the dose-optimal vaccine fraction

[20] is relevant here, as the benefit of multiple vaccines is more than the sum of

its parts. By allocating one vaccine at a time, the compounding effect of multiple

vaccines might be lost, and thus if sending 100 vaccines to group X would lead to a

better solution in the end but each individual vaccine is more immediately effective

elsewhere, the one-by-one allocation will not capture this effect. The same problem

exists for the larger allocation sizes as well. Consider if when allocating a 100-dose

portion, the most benefit would be found at 50 doses or 500 doses. Thus, it seems

likely that there is no optimal proportioning scheme to allocate vaccines using this

method, or if there is one, finding it might be just as difficult as solving the original

problem. There is also the problem that when allocating portions that are smaller

than the size of a lot of vaccines, allocating just a few vaccines will still necessitate
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Table 5.10: Proportioning Scheme Comparison
Proportioning Scheme Objective Value Solve Time

Bulk Starting from 10,000 2,364,281 0:38:43
Bulk Starting from 100 2,500,442 7:14:46

Fewest Portions 2,357,433 0:55:19

sending an entire additional lot to the zone. Sending a whole lot and only getting

a fraction of the benefit might not be worth the incurred costs, especially for larger

values of β. This causes the algorithm to not allocate any more vaccines to that

region, whereas if it had continued to allocate to the region it would no longer incur

additional costs as the lot was already going there anyway. Table 5.10 displays the

objective value and solve time for three different proportioning schemes used on the

same problem.

The more granular proportioning scheme starting from allocating 100 dose por-

tions actually yielded the worst results of the three tests. Meanwhile starting from

allocating 10,000 vaccines at a time ended up yielding a better final objective value,

while the fewest portions did better still. These results demonstrate that while in

general, a more granular proportioning scheme is better, this is not always the case.

One idea worth exploring with the GMB heuristic method is testing different por-

tion sizes for each allocation, measuring the benefit per vaccine, and choosing the

allocation that provides the most benefit per vaccine used. This would help address

the issue of not allocating in the correct portion size. However, it would likely slow

down the heuristic considerably, multiplying the number of evaluations that need to

be performed per allocation by the number of potential portion sizes. Given that it

already performs well, this trade-off in run time might not be worth it, especially if

instead the GA can be used to improve its performance.

Through experimentation, it was found that, on its own, the GMB heuristic is the

best-performing solution method for medium to large problems. For small problems,

it is only surpassed by the MC heuristic, where it performs comparably in terms of
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solution quality, but slower in terms of run time. While additional groups, regions,

time periods, and an increased vaccine supply will lead to more opportunities for miss

allocating a portion of vaccines, harming the solution quality, the GMB heuristic has

been shown to more reliably produce near-optimal solutions, even for these larger

problems, compared to the other solution methods.

5.3.7 GA Performance

As the GA method has no known guarantee to determine if it has reached the opti-

mal solution or not, the quality of the objective value and time to solution is highly

dependent on what the specified stopping condition is for the algorithm. The stop-

ping conditions used for these experiments were imposing a limit on the number

of generations or observing less than L (1) improvement over the previous K (100)

generations. How long it takes to reach the termination condition depends primarily

on the size of the problem (|I|, |J |, |G|, |V |, |T |), as this impacts both the evalua-

tion time of each chromosome and the number of genes that need to be considered.

When running without a warm start from the GMB heuristic, the GA takes a pro-

longed period of time just to arrive at the same objective value as the heuristic on

its own, with the experiments confirming that the GA never manages to outperform

the GMB heuristic within the heuristic’s run time. Conversely, thus far there has

not been a scenario where the GA was unable to improve on the solution gener-

ated by the heuristic. The improvement from the heuristic solution is usually small

relative to the objective value of the heuristic, often representing less than a 1.5% im-

provement. However, this small improvement is indicative that the heuristic method

provides a fairly good upper bound on the optimal solution, as a near-optimal solu-

tion is harder for the GA to improve on. This combined approach represents the best

solution method identified in terms of objective value, and as demonstrated in Table

5.7 can sometimes produce the optimal solution. However, it is still only a heuristic,

with no guarantee or even expectation of optimality, and for larger problems, there
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is no method of verifying optimality.

Figure 5.9 depicts the fitness score (i.e., the objective value) of the top performing

chromosome of each generation when using the GA alone, with Figure 5.10 displaying

the improvement from the previous generation. Figures 5.11 and 5.12 are the same

graphs for the case where the GA was given a warm start by the GMB heuristic.

Without the warm start, the algorithm was seeing gradual improvement with each

subsequent generation. By the time the stopping condition was reached (1000 gen-

erations) there was still room for improvement to be made and according to Figure

5.10 the rate of improvement even appeared to be accelerating. With a warm start,

improvement can be seen to be more sporadic and gradual, with periods of very

small improvement interspersed by large jumps in the objective value performance.

By the time of termination, the algorithm had largely stopped making these occa-

sional large improvements, though there is no way of knowing how much potential

for improvement there still was if the algorithm was allowed to run longer. Based on

the results from Table 5.6, the optimality gap is likely to be 5-10% at most, likely

smaller, especially for problems that are not exceedingly large.
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Figure 5.9: GA Solution Over Time

Figure 5.10: GA Improvement Over Time
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Figure 5.11: GA with Warm Start Solution Over Time

Figure 5.12: GA with Warm Start Improvement Over Time
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Even without the use of the GMB heuristic, the GA has demonstrated that it can

relatively quickly identify good solutions to the vaccine allocation and distribution

problem, though not of the same quality as either heuristic method. Given sufficient

generations, the GA will invariably arrive at a near-optimal solution. When com-

bined with the GMB heuristic, it has been able to generate the best solutions of the

solution methods explored in this thesis thus far. Unfortunately, as the algorithm

approaches the optimal, improvement slows down drastically, as increasingly specific

crossover and mutation events are required to occur to improve further. However, the

fact that the GA can no longer improve on a solution, while not a guarantee of opti-

mality, does at least suggest the solution is near-optimal. As the GA makes minimal

improvements to the GMB heuristic, this also supports that the GMB heuristic on its

own has likely provided a near-optimal solution to the vaccine allocation problem. It

would be worthwhile exploring the benefits of using alternate methods of generating

the warm starts for the GA. For instance, the MC heuristic may not provide quite

as good a starting solution as the GMB heuristic, but it can find it in a fraction of

the time. The hope would be that the GA could improve the solution from the MC

heuristic to the point it is comparable to the GMB in less time than it would take

to run the GMB heuristic itself.

One potential method of improving the performance of the GA would be to

further tailor the mutations towards producing genes that tend to show up in optimal

solutions. For example, the optimal strategy often contains periods where the focus

is on a few select groups, administering as many vaccines as possible to them which

usually entails administering up to the administrative capacity of a zone. However,

it is difficult to arrive at the administrative capacity level through random chance

alone. Making some portion of the mutations set the value of a non-zero gene to

the administrative capacity and all other genes in the region to 0 would likely help

to increase the likelihood of such genes being produced in the algorithm’s run time.

As currently formulated, the GA also has the potential to waste small portions of
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the final lot of vaccines sent to a zone each period. This is because it would require

an allocation that is a multiple of the lot sizes, which the random mutations of

the algorithm do not account for, and thus not all the vaccines that get sent to

the region might get used. This obviously hurts the overall solution as vaccines are

being distributed to a region but not being utilized. This problem could be corrected

by rounding up the allocations in a region to the nearest multiple of the lot sizes,

though there would have to be some system in place to decide which groups received

these additional vaccines. However, this is likely a relatively minor issue, as given

sufficient generations and mutations, the algorithm will solve this issue on its own,

as mutations that shrink the gap between the number of vaccines distributed and

the number of vaccines allocated will be found to be beneficial and thus propagate

through the population. Other similar mutation rules could be developed to further

improve the chance of beneficial genes occurring. However, caution should be taken

to not introduce too much bias into the selection process that would tend to lead it

toward these solutions. This would defeat the original purpose for using the GA to

explore the solution space beyond what the heuristic could and consider alternative

strategies.

5.3.8 Benders Decomposition Performance

As previously mentioned, the benefit of the BD approach is the guarantee of op-

timality it provides. Each logic-based cut generated is an optimality cut that will

reduce the solution space and it can be proven that this method will always eventu-

ally return the optimal solution. However, the logic-based cuts are generally not very

good cuts, potentially only excluding a single solution from the solution space. In

the worst-case scenario, it might need to exhaust nearly every possible solution (i.e.,

every possible configuration of dividing X lots of each type of vaccine |V | amongst

|I| zones and |G| groups, for every time period |T |) taking a prohibitively long time

to solve to optimality. In addition to the poor quality of the current cuts, it was
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found that as the number of cuts grows, the Master problem’s build and solve time

slows down significantly, often taking several minutes to solve a single iteration of

the Master problem. Therefore, the run time of the algorithm for all but the simplest

of problems is intractable.

The core problem with BD as a solution method though is that, similar to La-

grangian relaxation, it does little to solve the issues that arise with trying to solve

the sub-problem, such as the non-convex constraint (4.74). If there are multiple

risk groups, the sub-problem is not made much easier to solve through the use of

BD. Some secondary solving method is required to solve the sub-problem, which if

it works, could likely just be applied to the original problem. However, because the

master problem decides how many lots a zone receives and not using a vaccine when

it has been delivered to a zone is never beneficial, the optimal policy is to administer

all delivered vaccines up to the point they exceed the administrative capacity of the

region. Thus, when there is only one group in each zone to receive those vaccines,

the optimal policy is to administer all vaccines to that one group and the outcome

of administering the entire supply of vaccines to said group can be found efficiently

using simulation. Therefore for problems with only a single risk group but multiple

independent zones, the sub-problems can be solved using simulation, allowing BD

to more easily solve such problems. This means that while this BD solution method

can, in theory, be used on the heterogeneous vaccine allocation problem, in practice

it is only really beneficial when used to solve the homogeneous vaccine allocation

problem as otherwise another solution method is required to solve the sub-problem

to the required guaranteed optimal.

If a method of generating improved cuts could be identified and the build and

solve time of the master problem could be reduced, the BD approach shows promise

as a method of solving the vaccine allocation problem for the case of a single risk

group with multiple zones. However, for problems with multiple risk groups, BD

does not address the issue of the non-convex allocation problem, and so does not
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provide much benefit for using it.

5.4 Method Comparison Summary

To summarize, the two best solution methods are the MC and GMB heuristics, with

up to 85% improvement over the NI policy and 46% improvement over the corrected

Pro-rata strategy. The MC heuristic is the fastest solution method, and it performs

comparably to the GMB heuristic in terms of solution quality for small problems

(< 4% difference) but gets outperformed for larger problems (< 16% difference).

By using the GMB heuristic to warm-start the GA, the solution can be improved

further, though the benefit is often minimal for the additional run time (< 4%

improvement from the heuristic alone). While neither the MC nor GMB heuristic

can guarantee optimality, the fact that the GA cannot improve on the objective value

supports the idea that their solutions are at least near-optimal. With experiments

on smaller problems for which GUROBI can be used to obtain a LB suggesting that

the optimality gap is likely 5-10% or less. BD can be used to solve problems with

a single risk group to the guaranteed optimality, but with the current method of

generating cuts, it is infeasible to do so for all but a few select problems.



Chapter 6

Case Study

This section applied the most promising solution methods explored in this thesis to a

case study of vaccine allocation and distribution during the COVID-19 pandemic in

the province of Ontario, Canada. Ontario was chosen for two reasons. First, from the

literature review, there is yet to be a study that has used a Canadian COVID-19 case

study. Second, Ontario has a wide array of publicly available data on the COVID-19

pandemic that makes it easier to develop a case study for it [52]. Pioneering vaccines

were first authorized for public use in Canada in December of 2020, with widespread

vaccination beginning shortly after. The case study will focus on this early period,

when few were vaccinated, and vaccines were in limited supply. Deciding how to

make the best use of these limited vaccines was a crucial decision during this time

frame.

6.1 Case Study Data

Ontario divides its health care service into 34 Public Health Units (PHU) and pub-

lishes various public health data sets broken down by PHU. PHUs cover specific

non-overlapping geographic areas. This feature makes the PHUs very convenient for

use as the population zones in the case study, as in this way, the entire provincial

population can be accounted for, not just major urban population centers. Figure

6.1 displays a map of the PHUs in Ontario colour-coded based on population.

Data is available on the population of each PHU broken down into 9 age groups:

5-11, 12-17, 18-29, 30-39, 40-49, 50-59, 60-69, 70-79, and 80+. For the case study,

129
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Figure 6.1: Population Map of PHU in Ontario. Created using Public Health On-
tario’s Easy Maps tool [53].
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Figure 6.2: Daily Contacts by Age in Canada in 2020 (Source: Brankston et al. [11])

several groups were combined to get the number of groups down to 7: 5-17, 18-29,

30-39, 40-49, 50-59, 60-69, and 70+. This was done both to simplify the case study

and to make these groups compatible with the research on contact rates between age

groups in Canada during the pandemic published by Brankston et al. [11], which can

be seen in Figure 6.2, which serves as the basis for the contact matrix. For the case

study, we use the December 2020 survey data, as this is the survey taken closest to

when the case study period begins. However, the study only provides estimates for

daily contacts, so the daily contacts are multiplied by 7 to provide weekly contacts

for our case study. Figure 6.3 shows the weekly contact matrix used for the case

study. The values for the 0-4 and 5-17 age brackets in the original study were stated

to only be estimates, as there was no data available for those age groups. This age

group has by far the highest daily/weekly contact rate, which would potentially make

them a good candidate for spreading the disease.

The initial conditions of the case study are based on the week of January 1st,

2021, which is when vaccines started to be administered in Ontario. Ontario has

publicly available information on the number of daily active (infectious) and archived

(removed) cases per PHU, which can then be distributed proportionally across the

age groups to give the initial infected and removed populations. One factor that

should be considered in how the case study handles the removed populations is that
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Figure 6.3: Case Study Weekly Contact Matrix with Heat Map

by January 1st, 2021, many had already caught and recovered from COVID-19, which

for our purposes would mean they are in the removed category. This means that once

a person has contracted COVID-19, they are no longer eligible to get vaccinated

under this model when in reality they would still want to eventually get vaccinated.

However, the purpose of the model is to decide how to best use limited resources

over a shorter time frame to save lives and minimize infections. Once a person has

contracted COVID-19, vaccination becomes less of a priority, as they will have gained

a natural immunity, at least for a while. With that in mind, it was decided to include

any recovered cases prior to Jan 1st, 2021 as our initial removed population in the

model. The initial exposed numbers are calculated as twice the initial active cases,

and the susceptible numbers can be calculated as the total population of the group

in the PHU minus the infectious, exposed, and recovered populations. A map of the

distribution of initial cases can be seen in figure 6.4. The number of infected is likely

only a low estimate of the true number of infected, as many cases would have gone

unreported.

Each PHU has at least one public health unit site within its borders; and accord-

ing to official policy for vaccine distribution in Ontario [3], these sites are where most

vaccines are kept until they are given to local clinics and vaccination centers. This
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Figure 6.4: Map of Initial Active Cases. Created using Public Health Ontario’s Easy
Maps tool [53].
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makes these public health unit sites the natural choice for the destination for the

vaccines coming in from the DCs into the PHUs. In PHUs with multiple sites, the

site listed as their headquarters was used. The DCs are major cold storage facilities,

where vaccines are first kept when they enter the province, that are equipped to store

large quantities of vaccines under safe environmentally controlled conditions for up

to several weeks at a time. For the purposes of the case study, five cold chain DCs

from around the province were selected as the DCs, located in Toronto, London,

Ottawa, Kingston, and Sudbury. These DCs represent actual cold storage facilities

that would be capable of storing vaccines and their locations were selected to pro-

vide cover over the entire province. Distances between these cold chain facilities and

the PHUs were found using the driving distance between the two sites according to

Google Maps, which can be found in Table 6.1. Cost per Km is $1.98 per 20,000

cubic inches of product shipped, which was based on estimates of average reefer truck

shipping rates [45].

Each DC has its own maximum storage capacity, vaccine acquisition cost, and

maximum volume of product it can ship in a time period, as seen in Table 6.2. Storage

was loosely based on being able to store approximately 150 lots of Pfizer-BioNTech

vaccine at a time, chosen as that represents roughly a month’s worth of Pfizer-

BioNTech vaccines. Maximum shipping volume was loosely based on being able to

ship 45 lots of Pfizer-BioNTech vaccine at a time, chosen as this represents enough

capacity for the DCs to collectively ship the maximum observed weekly supply of

vaccines. For the case study, because there is no way of knowing where the vaccines

will be coming from, to simplify the cost of getting the vaccines to the DC, each

DC has a cost multiplier parameter. This represents an additional X percentage

of the purchasing cost added to the costs to get the vaccines to the DC. Toronto

and London being large well-connected population centers have slightly lower costs,

followed by Kingstone and Ottawa. Sudbury has the highest cost multiplier, as it is

more remote compared to the other locations.
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Table 6.1: DC to PHU distance table
Distance (Km)

PHU Toronto DC London DC Ottawa DC Kingston DC Sudbury DC
ALGOMA DISTRICT 677 838 802 922 306
BRANT COUNTY 97 85 561 378 465
CHATHAM-KENT 269 124 741 550 646
CITY OF HAMILTON 62 120 525 343 430
CITY OF OTTAWA 404 612 23 190 481
DURHAM REGION 78 235 394 206 371
EASTERN ONTARIO 457 606 93 186 588
GREY BRUCE 154 198 532 440 379
HALDIMAND-NORFOLK 140 93 604 422 509
HALIBURTON, KAWARTHA, PINE RIDGE 137 294 354 148 470
HALTON REGION 43 141 503 323 408
HASTINGS & PRINCE EDWARD COUNTIES 215 372 277 70 549
HURON PERTH 123 54 595 404 499
KINGSTON, FRONTENAC, LENNOX & ADDINGTON 290 431 210 8 623
LAMBTON COUNTY 264 119 736 545 640
LEEDS, GRENVILLE AND LANARK DISTRICT 361 510 107 91 574
MIDDLESEX-LONDON 168 10 639 449 543
NIAGARA REGION 114 185 577 395 482
NORTH BAY PARRY SOUND DISTRICT 338 495 370 440 130
NORTHWESTERN 1,842 2,002 1,937 2,008 1,470
PEEL REGION 7 156 480 288 385
PETERBOROUGH COUNTY-CITY 145 306 282 172 393
PORCUPINE 683 844 730 800 299
RENFREW COUNTY AND DISTRICT 395 579 157 234 344
SIMCOE MUSKOKA DISTRICT 94 254 421 338 285
SOUTHWESTERN 175 30 647 457 552
SUDBURY AND DISTRICT 377 537 497 621 3
THUNDER BAY DISTRICT 1,374 1,535 1,470 1,619 1003
TIMISKAMING 491 653 524 594 227
TORONTO 39 185 412 273 384
WATERLOO REGION 84 107 556 366 461
WELLINGTON-DUFFERIN-GUELPH 63 113 535 344 439
WINDSOR-ESSEX COUNTY 343 197 815 608 719
YORK REGION 57 218 393 278 339

Table 6.2: DC Data Table
ID Name lat lng Storage (in3) Logistic Capacity (in3) Cost Multiplier
1 Toronto DC 43.665 -79.395 1,000,000 250,000 0.05
2 London DC 42.976 -81.278 700,000 250,000 0.05
3 Ottawa DC 45.403 -75.701 1,000,000 250,000 0.055
4 Kingston DC 44.239 -76.504 5,00,000 250,000 0.055
5 Sudbury DC 46.446 -80.995 700,000 250,000 0.075
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Table 6.3: Vaccine Data Table
ID Name Efficacy Dose Cost Lot Size Lot Vol. (in3)
1 Pfizer 0.911 19.5 4875 5500
2 Moderna 0.941 15 2400 1000
3 AstraZeneca 0.740 4 2400 800
Sources: Efficacy: [1][2][51], Dose Cost:[30], Lot Size & Volume:[26]

In Ontario, three types of vaccines were administered to the public. In order of

popularity they are Pfizer-BioNTech (63.4%), Moderna (33.1%), and AstraZeneca

(3.44%) [37]. Each vaccine has its own efficacy, cost per dose, doses per lot, and

volume requirement for shipping and storage, as seen in Table 6.3. The efficacy of

each vaccine is based on the two-dose efficacy of the vaccine in the real world, even

though this model uses a single dose. For the case study, a decision had to be made

on what constitutes a lot of vaccines. The smallest possible lot would be a vial,

where Pfizer-BioNTech contains 5 doses per vial, and Moderna and AstraZeneca

contain 10 doses per vial. However, it is not realistic to ship individual vials around

the province. One level up from vials is trays and cartons, where Pfizer-BioNTech

groups a vial into round trays of 195, while Moderna and AstraZeneca both group a

vial into cartons of 100. Then finally, Pfizer puts 25 of these trays together to make

a proper shipping unit, while AstraZeneca puts 24 cartoons together into a single

pallet. Moderna has its own cold storage device to store multiple of their cartons

but it is unclear how many fit in a single container, it is assumed to be 24, the same

as AstraZeneca. For the case study, this largest shipping size is what is considered

one lot [26].

The supply of vaccines represents the number of doses of each type of vaccine

that are made available each week. Ontario publishes the vaccines administered per

day, which can be summed over a seven-day period to give an estimate of the weekly

supply. Assuming that the province would have been trying to vaccinate as many as

they could each day, this can give a reasonable estimate as to the number of vaccines
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available at any given time. How many of each type of vaccine is administered is

not available, so instead it is assumed that the proportions are consistent with the

previously mentioned proportions of all allocated vaccines. This gives the weekly

supply in doses, which is then converted into a weekly supply in lots by rounding up

to the nearest full lot. Unfortunately, due to time restrictions, the case study was

only ever run using the Pfizer vaccine alone, rather than all three types of vaccines.

This is because the entire problem size is multiplied by the number of vaccine types.

This is particularly harsh for the GMB heuristic, as it considers each vaccine type in

isolation, and would take at least three times as long to run for three vaccine types

compared to one. A scenario with just one vaccine type already takes approximately

26 hours to run through all solution methods.

The transmission rate for COVID-19 is difficult to determine precisely, as asymp-

tomatic cases make it difficult to get exact case numbers and have a lower transmis-

sion rate. This is on top of having to consider different variants, differences between

groups, and what restrictions are currently in place, such as whether masks are being

commonly worn or not. For this case study, it is assumed there is a single trans-

mission rate of 3% (τ = 0.03) [39, 48]. Once exposed to the disease, an individual

will tend to develop symptoms in 3-7 days (α1 = 1). Once they have developed

symptoms an individual is considered infectious for the next 10 days (α2 = 10/7).

β was set to 0.001, which represents being willing to spend $1000 to prevent one

additional infection. For the cases where we are looking to minimize new exposures,

wig is equal to 1. For the case where we are looking to minimize deaths, wig are equal

to the assumed mortality rates for age group g, which starting from the youngest

age bracket are 0.0695%, 0.0309%, 0.0844%, 0.161%, 0.595%, 1.93%, and 4.28%,

respectively [67].

The described parameters are for the base case study and might differ when

testing alternate scenarios, such as altering β to put more or less weight on costs,
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changing the transmission rate, changing the infectious period, or lowering the num-

ber of weekly contacts of the youngest age bracket.

6.2 Case Study Results

The solution methods run on the case study were the MC heuristic, the GMB heuris-

tic, and the GA with a warm start from the GMB heuristic. Their performance is

compared to three alternative strategies: 1) Non-Intervention; doing nothing and let-

ting the disease run its course, 2) corrected Pro-rata; allocating vaccines proportional

to a group’s relative population size, but not allocating more vaccines than can be

used and not wasting additional vaccines once a group has been fully vaccinated, and

3) reverse sequential by age (RS); allocating vaccines starting from vaccinating the

oldest groups first and working backward through the population. Non-Intervention

provides a baseline from which any strategy can be judged. Pro-rata is a very com-

mon strategy that is used to avoid bias in vaccine allocation. Reverse sequential by

age is what was used in most countries, including Canada, during the COVID-19

pandemic, as it protects the vulnerable elderly population, who were at higher risk

from COVID-19.

The results can be seen in Table 6.4, containing the objective value, along with its

two components, epidemiological impact and cost, how many vaccines were used, and

how long the method took to run for each solution method. Tables 6.5 and 6.6 out-

line how vaccines were allocated by the best-performing solution method (GA+GMB)

when seeking to minimize new exposures and deaths, respectively. Accompanying

these tables are Figures 6.5 and 6.6 that display the allocation of vaccines amongst

the PHUs under both scenarios. Tables 6.7 and 6.8 show the new exposures and

deaths for each PHU and age bracket under the NI strategy, accompanied by Fig-

ures 6.7 and 6.8. Tables 6.9 and 6.10 show the new exposures and deaths for each

PHU and age bracket when using the strategy developed by the GA+GMB solution
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method, accompanied by Figures 6.9 and 6.11. Figures 6.10 and 6.12 depict the per-

centage reduction observed for new exposures and deaths, respectively, between the

NI strategy and that derived by the GA+GMB solution method. Figures 6.13, 6.14,

and 6.15 depict the objective value and its two components under different values

of β. It should be noted that as there are no decision variables for denoting deaths

directly, thus when referring to deaths the values are obtained by multiplying wig

(set to the mortality rate) by the new exposures (i.e., cases).
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Table 6.4: Case Study Results
Case Study Scenario

Base Line Beta = 1/1250 Beta = 1/750 Beta = 1/500 Beta = 1/250 Prevent Deaths
NI Objective Value 1,964,798 1,964,798 1,964,798 1,964,798 1,964,798 6,800

PR*

Objective Value 1,736,571 1,729,459 1,748,425 1,772,133 1,843,257 6,601
Epidemic Impact 1,701,009 1,701,009 1,701,009 1,701,009 1,701,009 5,890
Costs $ 35,562,000 $ 35,562,500 $ 35,562,000 $ 35,562,000 $ 35,562,000 $ 35,562,000
Total Vaccines 1,735,500 1,735,500 1,735,500 1,735,500 1,735,500 1,735,500

RS

Objective Value 1,969,629 1,962,515 1,981,487 2,005,203 2,076,350 6,682
Epidemic Impact 1,934,056 1,934,056 1,934,056 1,934,056 1,934,056 5,971
Costs $ 35,573,000 $ 35,573,000 $ 35,573,000 $ 35,573,000 $ 35,573,000 $ 35,573,000
Total Vaccines 1,735,500 1,735,500 1,735,500 1,735,500 1,735,500 1,735,500

MC

Objective Value 1,531,877 1,525,319 1,539,242 1,561,882 1,601,885 5,786
Epidemic Impact 1,496,323 1,496,875 1,493,701 1,500,562 1,498,819 5,357
Costs $ 35,554,000 $ 35,555,000 $ 34,155,750 $ 30,660,000 $ 25,766,500 $ 21,450,000
Total Vaccines 1,735,500 1,735,500 1,667,250 1,496,625 1,257,750 1,045,439
Solve Time 0:30:22 0:30:20 0:30:24 0:29:59 0:30:17 0:05:54

GMB

Objective Value 1,314,427 1,305,838 1,334,128 1,372,239 1,455,658 5,789
Epidemic Impact 1,286,763 1,283,706 1,303,900 1,330,492 1,398,937 5,595
Costs $ 27,664,000 $ 27,665,000 $ 22,671,000 $ 20,873,500 $ 14,180,250 $ 9,700,000
Total Vaccines 1,238,250 1,350,375 1,116,375 999,375 692,250 472,875
Solve Time 14:31:26 12:26:18 13:27:03 12:03:32 12:56:50 12:48:03

GA+GMB

Objective Value 1,310,118 1,304,770 1,325,835 1,347,400 1,427,411 5,740
Epidemic Impact 1,281,354 1,282,637 1,294,142 1,303,856 1,361,899 5,541
Costs $ 28,764,000 $ 27,666,250 $ 23,769,750 $ 21,772,000 $ 16,378,000 $ 9,950,000
Total Vaccines 1,404,000 1,350,375 1,131,000 1,062,750 799,500 492,375
Solve Time 27:57:45 17:49:36 19:52:57 19:21:55 21:52:04 13:45:59

6.3 Case Study Insights

The case study results depict a much slower spread of the disease compared to the

test data from earlier. Rather than burning through the entire population within

the 20-week period being considered, it is instead slowly but steadily working its

way through the population. This is more consistent with the behavior of COVID-

19 during the pandemic, though it is still predicting significantly higher cases than

what was observed in reality. According to this model, across all 34 PHUs it would

be expected there would be between 60,000-90,000 new cases each week, while in

reality there were closer to 24,000 cases per week [52], though this is only confirmed

positive cases. This could be corrected by adjusting either the transmission rate or

contact matrix. It is likely neither perfectly mimics reality since strict policies, such

as quarantining, were enforced to limit disease spread, which our model does not
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Table 6.5: Vaccine Allocation using GA+GMB to prevent New Exposures
5-17 18-29 30-39 40-49 50-59 60-69 70+ Total %

ALGOMA DISTRICT 0 0.00%
BRANT COUNTY 14,625 14,625 1.05%
CHATHAM-KENT 9,750 9,750 0.70%
CITY OF HAMILTON 73,832 9,043 82,875 5.94%
CITY OF OTTAWA 141,312 63 141,375 10.14%
DURHAM REGION 95,901 1,599 97,500 6.99%
EASTERN ONTARIO 28,941 309 29,250 2.10%
GREY BRUCE 0 0.00%
HALDIMAND-NORFOLK 9,749 1 9,750 0.70%
HALIBURTON, KAWARTHA, PINE RIDGE 0 0.00%
HALTON REGION 92,625 92,625 6.64%
HASTINGS & PRINCE EDWARD COUNTIES 0 0.00%
HURON PERTH 14,621 1 3 14,625 1.05%
KINGSTON, FRONTENAC, LENNOX & ADDINGTON 0 0.00%
LAMBTON COUNTY 14,624 1 14,625 1.05%
LEEDS, GRENVILLE AND LANARK DISTRICT 0 0.00%
MIDDLESEX-LONDON 67,856 10,144 78,000 5.59%
NIAGARA REGION 58,460 4,915 63,375 4.55%
NORTH BAY PARRY SOUND DISTRICT 0 0.00%
NORTHWESTERN 0 0.00%
PEEL REGION 0 0.00%
PETERBOROUGH COUNTY-CITY 0 0.00%
PORCUPINE 0 0.00%
RENFREW COUNTY AND DISTRICT 0 0.00%
SIMCOE MUSKOKA DISTRICT 0 0.00%
SOUTHWESTERN 24,375 24,375 1.75%
SUDBURY AND DISTRICT 0 0.00%
THUNDER BAY DISTRICT 4,875 4,875 0.35%
TIMISKAMING 0 0.00%
TORONTO 310,051 16,574 326,625 23.43%
WATERLOO REGION 85,125 2,625 87,750 6.29%
WELLINGTON-DUFFERIN-GUELPH 43,872 3 43,875 3.15%
WINDSOR-ESSEX COUNTY 53,625 53,625 3.85%
YORK REGION 164,750 40,000 204,750 14.69%
Total 1,308,969 85,278 3 0 0 0 0 1,394,250
% 93.88% 6.12% 0.00% 0.00% 0.00% 0.00% 0.00%
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Figure 6.5: Map of Vaccine Allocation when using GA+GMB to prevent New Ex-
posures. Created using Public Health Ontario’s Easy Maps tool [53].



143

Table 6.6: Vaccine Allocation using GA+GMB to prevent Deaths
5-17 18-29 30-39 40-49 50-59 60-69 70+ Total %

ALGOMA DISTRICT - - - - - - - - 0.00%
BRANT COUNTY 2,176 14 13 2 1,169 1,333 162 4,869 1.00%
CHATHAM-KENT - - - - - - - - 0.00%
CITY OF HAMILTON 19,500 - - - - - - 19,500 4.00%
CITY OF OTTAWA - - - - - - - - 0.00%
DURHAM REGION - - - - - - - - 0.00%
EASTERN ONTARIO 4,875 - - - - - - 4,875 1.00%
GREY BRUCE - - - - - - - - 0.00%
HALDIMAND-NORFOLK - - - - - - - - 0.00%
HALIBURTON, KAWARTHA, PINE RIDGE - - - - - - - - 0.00%
HALTON REGION - - - - 74 68,436 4,611 73,121 15.00%
HASTINGS & PRINCE EDWARD COUNTIES - - - - - - - - 0.00%
HURON PERTH - - - - - - - - 0.00%
KINGSTON, FRONTENAC, LENNOX & ADDINGTON - - - - - - - - 0.00%
LAMBTON COUNTY 4,875 - - - - - - 4,875 1.00%
LEEDS, GRENVILLE AND LANARK DISTRICT - - - - - - - - 0.00%
MIDDLESEX-LONDON 14,625 - - - - 24,375 - 39,000 8.00%
NIAGARA REGION 19,500 - - - - - - 19,500 4.00%
NORTH BAY PARRY SOUND DISTRICT - - - - - - - - 0.00%
NORTHWESTERN - - - - - - - - 0.00%
PEEL REGION - - - - - - - - 0.00%
PETERBOROUGH COUNTY-CITY - - - - - 4,534 318 4,852 1.00%
PORCUPINE - - - - - - - - 0.00%
RENFREW COUNTY AND DISTRICT - - - - - - - - 0.00%
SIMCOE MUSKOKA DISTRICT - - - - - - - - 0.00%
SOUTHWESTERN 9,750 - - - - 4,875 - 14,625 3.00%
SUDBURY AND DISTRICT - - - - - - - - 0.00%
THUNDER BAY DISTRICT - - - - - - - - 0.00%
TIMISKAMING - - - - - - - - 0.00%
TORONTO 97,321 - - - 16 140 - 97,477 20.00%
WATERLOO REGION - - - - - - - - 0.00%
WELLINGTON-DUFFERIN-GUELPH 4,875 - - - - 14,625 - 19,500 4.00%
WINDSOR-ESSEX COUNTY 24,375 - - - - 19,500 - 43,875 9.00%
YORK REGION 19,500 - - - - 121,875 - 141,375 29.00%
Total 221,372 14 13 2 1,259 259,693 5,091 487,444
% 45.41% 0.00% 0.00% 0.00% 0.26% 53.28% 1.04%
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Figure 6.6: Map of Vaccine Allocation when using GA+GMB to prevent Deaths.
Created using Public Health Ontario’s Easy Maps tool [53].
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Table 6.7: Case Study New Exposures for NI
5-17 18-29 30-39 40-49 50-59 60-69 70+ Total %

ALGOMA DISTRICT 454 233 176 129 133 94 44 1,263 0.06%
BRANT COUNTY 7,046 3,701 2,933 2,155 1,850 1,079 457 19,220 0.99%
CHATHAM-KENT 4,566 2,298 1,804 1,366 1,393 916 429 12,771 0.66%
CITY OF HAMILTON 34,273 22,971 18,929 12,784 11,529 6,564 2,983 110,031 5.66%
CITY OF OTTAWA 34,469 22,479 17,234 11,864 9,730 5,072 2,174 103,022 5.30%
DURHAM REGION 32,999 17,838 14,399 10,828 9,238 4,738 1,845 91,886 4.72%
EASTERN ONTARIO 9,961 4,684 4,011 3,097 3,249 2,028 884 27,913 1.43%
GREY BRUCE 2,314 1,034 866 608 650 468 215 6,156 0.32%
HALDIMAND-NORFOLK 5,019 2,617 2,029 1,489 1,584 1,070 464 14,271 0.73%
HALIBURTON, KAWARTHA, PINE RIDGE 2,366 1,180 928 713 853 617 295 6,952 0.36%
HALTON REGION 40,165 19,652 14,853 14,153 11,063 5,111 2,420 107,417 5.52%
HASTINGS & PRINCE EDWARD COUNTIES 1,424 688 564 413 433 285 130 3,938 0.20%
HURON PERTH 4,893 2,372 1,785 1,320 1,288 853 393 12,905 0.66%
KINGSTON, FRONTENAC, LENNOX & ADDINGTON 2,924 1,869 1,402 944 894 545 257 8,835 0.45%
LAMBTON COUNTY 7,012 3,938 2,976 2,244 2,248 1,651 761 20,829 1.07%
LEEDS, GRENVILLE AND LANARK DISTRICT 2,155 1,001 803 649 730 475 213 6,026 0.31%
MIDDLESEX-LONDON 30,627 21,393 15,864 10,622 9,294 5,344 2,452 95,596 4.91%
NIAGARA REGION 26,217 16,782 11,981 9,371 9,643 5,994 3,038 83,025 4.27%
NORTH BAY PARRY SOUND DISTRICT 863 451 350 259 279 182 79 2,463 0.13%
NORTHWESTERN 1,627 724 536 388 351 219 83 3,927 0.20%
PEEL REGION 22,495 14,838 10,511 6,999 5,522 2,638 1,026 64,029 3.29%
PETERBOROUGH COUNTY-CITY 7,941 6,390 4,447 3,387 4,076 3,270 1,979 31,491 1.62%
PORCUPINE 3,632 1,844 1,399 1,044 991 625 239 9,775 0.50%
RENFREW COUNTY AND DISTRICT 914 420 388 255 249 163 73 2,462 0.13%
SIMCOE MUSKOKA DISTRICT 1,412 717 585 423 395 224 95 3,851 0.20%
SOUTHWESTERN 17,107 8,808 7,272 5,670 5,315 3,210 1,516 48,898 2.51%
SUDBURY AND DISTRICT 1,578 885 648 496 462 277 118 4,464 0.23%
THUNDER BAY DISTRICT 3,231 1,909 1,377 969 929 611 250 9,276 0.48%
TIMISKAMING 1,355 683 543 420 430 302 133 3,867 0.20%
TORONTO 151,661 140,511 127,032 75,496 60,269 31,407 15,208 601,585 30.92%
WATERLOO REGION 21,749 14,739 10,557 7,073 5,635 2,888 1,205 63,847 3.28%
WELLINGTON-DUFFERIN-GUELPH 21,749 14,739 10,557 7,073 5,635 2,888 1,205 63,847 3.28%
WINDSOR-ESSEX COUNTY 35,200 25,163 15,996 13,275 13,300 7,821 3,754 114,510 5.89%
YORK REGION 59,290 38,494 28,387 24,276 22,681 7,273 4,692 185,093 9.51%
Total 600,691 418,043 334,124 232,254 202,320 106,902 51,107 1,945,441
% 30.88% 21.49% 17.17% 11.94% 10.40% 5.50% 2.63%
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Figure 6.7: Map of New Exposures for NI. Created using Public Health Ontario’s
Easy Maps tool [53].
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Table 6.8: Case Study Deaths for NI
5-17 18-29 30-39 40-49 50-59 60-69 70+ Total %

ALGOMA DISTRICT 0 0 0 0 1 2 2 5 0.08%
BRANT COUNTY 5 1 2 3 11 21 20 63 0.95%
CHATHAM-KENT 3 1 2 2 8 18 18 52 0.78%
CITY OF HAMILTON 24 7 16 21 69 127 128 390 5.86%
CITY OF OTTAWA 24 7 15 19 58 98 93 313 4.71%
DURHAM REGION 23 6 12 17 55 91 79 283 4.26%
EASTERN ONTARIO 7 1 3 5 19 39 38 113 1.70%
GREY BRUCE 2 0 1 1 4 9 9 26 0.39%
HALDIMAND-NORFOLK 3 1 2 2 9 21 20 58 0.88%
HALIBURTON, KAWARTHA, PINE RIDGE 2 0 1 1 5 12 13 34 0.50%
HALTON REGION 28 6 13 23 66 99 104 337 5.07%
HASTINGS & PRINCE EDWARD COUNTIES 1 0 0 1 3 5 6 16 0.24%
HURON PERTH 3 1 2 2 8 16 17 49 0.73%
KINGSTON, FRONTENAC, LENNOX & ADDINGTON 2 1 1 2 5 11 11 32 0.48%
LAMBTON COUNTY 5 1 3 4 13 32 33 90 1.35%
LEEDS, GRENVILLE AND LANARK DISTRICT 1 0 1 1 4 9 9 26 0.39%
MIDDLESEX-LONDON 21 7 13 17 55 103 105 322 4.83%
NIAGARA REGION 18 5 10 15 57 116 130 352 5.28%
NORTH BAY PARRY SOUND DISTRICT 1 0 0 0 2 4 3 10 0.15%
NORTHWESTERN 1 0 0 1 2 4 4 12 0.18%
PEEL REGION 16 5 9 11 33 51 44 168 2.52%
PETERBOROUGH COUNTY-CITY 6 2 4 5 24 63 85 189 2.84%
PORCUPINE 3 1 1 2 6 12 10 34 0.51%
RENFREW COUNTY AND DISTRICT 1 0 0 0 1 3 3 9 0.14%
SIMCOE MUSKOKA DISTRICT 1 0 0 1 2 4 4 13 0.20%
SOUTHWESTERN 12 3 6 9 32 62 65 188 2.83%
SUDBURY AND DISTRICT 1 0 1 1 3 5 5 16 0.24%
THUNDER BAY DISTRICT 2 1 1 2 6 12 11 34 0.50%
TIMISKAMING 1 0 0 1 3 6 6 16 0.25%
TORONTO 105 43 107 122 359 606 651 1,993 29.94%
WATERLOO REGION 15 5 9 11 34 56 52 181 2.72%
WELLINGTON-DUFFERIN-GUELPH 15 5 9 11 34 56 52 181 2.72%
WINDSOR-ESSEX COUNTY 24 8 14 21 79 151 161 458 6.88%
YORK REGION 41 12 24 39 135 140 201 592 8.90%
Total 417 129 282 374 1,204 2,063 2,187 6,657
% 6.27% 1.94% 4.24% 5.62% 18.08% 30.99% 32.86%
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Figure 6.8: Map of Deaths for NI. Created using Public Health Ontario’s Easy Maps
tool [53].
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Table 6.9: Case Study New Exposures using GA+GMB
5-17 18-29 30-39 40-49 50-59 60-69 70+ Total %

ALGOMA DISTRICT 454 233 176 129 133 94 44 1263 0.10%
BRANT COUNTY 3,647 3,112 2,404 1,797 1,645 950 413 13,968 1.09%
CHATHAM-KENT 2,162 1,835 1,400 1,079 1,184 770 372 8,803 0.69%
CITY OF HAMILTON 11,745 16,031 12,887 8,891 8,816 4,950 2,348 65,668 5.12%
CITY OF OTTAWA 17,600 20,028 15,030 10,503 9,084 4,696 2,052 78,992 6.16%
DURHAM REGION 15,011 14,981 11,812 9,047 8,260 4,195 1,677 64,983 5.07%
EASTERN ONTARIO 4,462 3,811 3,180 2,499 2,812 1,738 780 19,282 1.50%
GREY BRUCE 2,314 1,034 866 608 650 468 215 6,156 0.48%
HALDIMAND-NORFOLK 2,438 2,104 1,585 1,185 1,355 906 405 9,978 0.78%
HALIBURTON, KAWARTHA, PINE RIDGE 2,366 1,180 928 713 853 617 295 6,952 0.54%
HALTON REGION 16,226 15,427 11,272 10,961 9,303 4,246 2,081 69,515 5.43%
HASTINGS & PRINCE EDWARD COUNTIES 1424 688 564 413 433 285 130 3,938 0.31%
HURON PERTH 3,007 2,167 1,604 1,200 1,220 803 376 10,376 0.81%
KINGSTON, FRONTENAC, LENNOX & ADDINGTON 2,924 1,869 1,402 944 894 545 257 8,835 0.69%
LAMBTON COUNTY 2,346 2,701 1,959 1,512 1,671 1,211 583 11,984 0.94%
LEEDS, GRENVILLE AND LANARK DISTRICT 2,155 1,001 803 649 730 475 213 6,026 0.47%
MIDDLESEX-LONDON 10,793 15,144 11,003 7,524 7,221 4,096 1,958 57,739 4.51%
NIAGARA REGION 9,143 11,908 8,268 6,606 7,461 4,575 2,417 50,376 3.93%
NORTH BAY PARRY SOUND DISTRICT 863 451 350 259 279 182 79 2,463 0.19%
NORTHWESTERN 1,627 724 536 388 351 219 83 3,927 0.31%
PEEL REGION 22,495 14,838 10,511 6,999 5,522 2,638 1,026 64,029 5.00%
PETERBOROUGH COUNTY-CITY 7,941 6,390 4,447 3,387 4,076 3,270 1979 31,491 2.46%
PORCUPINE 3,632 1,844 1,399 1,044 991 625 239 9,775 0.76%
RENFREW COUNTY AND DISTRICT 914 420 388 255 249 163 73 2,462 0.19%
SIMCOE MUSKOKA DISTRICT 1,412 717 585 423 395 224 95 3,851 0.30%
SOUTHWESTERN 6,310 6,307 5,005 3,978 4,088 2,434 1,197 29,319 2.29%
SUDBURY AND DISTRICT 1,578 885 648 496 462 277 118 4,464 0.35%
THUNDER BAY DISTRICT 2,793 1,876 1,349 951 921 605 248 8,743 0.68%
TIMISKAMING 1,355 683 543 420 430 302 133 3,867 0.30%
TORONTO 44,694 91,735 79,617 48,415 43,000 22,070 11,226 340,755 26.59%
WATERLOO REGION 11,028 12,979 9,139 6,216 5,226 2,657 1,131 48,376 3.78%
WELLINGTON-DUFFERIN-GUELPH 5,650 7,280 5,449 4,038 4,023 2,114 951 29,503 2.30%
WINDSOR-ESSEX COUNTY 11,233 17,440 10,604 8,960 9,902 5,721 2,865 66,725 5.21%
YORK REGION 27,678 31,110 23,167 20,172 20,292 9,940 4,411 136,770 10.67%
Total 261,422 310,930 240,882 172,663 163,932 89,058 42,468 1,281,355
% 20.40% 24.27% 18.80% 13.48% 12.79% 6.95% 3.31%
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Figure 6.9: Map of New Exposures when using GA+GMB to prevent New Exposures.
Created using Public Health Ontario’s Easy Maps tool [53].



151

Figure 6.10: Map of the percent reduction in New Exposures using GA+GMB strat-
egy compared to NI. Created using Public Health Ontario’s Easy Maps tool [53].
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Table 6.10: Case Study Deaths using GA+GMB
5-17 18-29 30-39 40-49 50-59 60-69 70+ Total %

ALGOMA DISTRICT 0 0 0 0 1 2 2 5 0.09%
BRANT COUNTY 4 1 2 3 9 17 17 54 0.97%
CHATHAM-KENT 3 1 2 2 8 18 18 52 0.94%
CITY OF HAMILTON 14 6 12 16 57 104 107 317 5.71%
CITY OF OTTAWA 24 7 15 19 58 98 93 313 5.66%
DURHAM REGION 23 6 12 17 55 91 79 283 5.11%
EASTERN ONTARIO 5 1 3 4 17 35 34 100 1.81%
GREY BRUCE 2 0 1 1 4 9 9 26 0.46%
HALDIMAND-NORFOLK 3 1 2 2 9 21 20 58 1.05%
HALIBURTON, KAWARTHA, PINE RIDGE 2 0 1 1 5 12 13 34 0.61%
HALTON REGION 28 6 12 22 64 47 93 272 4.91%
HASTINGS & PRINCE EDWARD COUNTIES 1 0 0 1 3 5 6 16 0.29%
HURON PERTH 3 1 2 2 8 16 17 49 0.88%
KINGSTON, FRONTENAC, LENNOX & ADDINGTON 2 1 1 2 5 11 11 32 0.58%
LAMBTON COUNTY 3 1 2 3 10 24 25 67 1.21%
LEEDS, GRENVILLE AND LANARK DISTRICT 1 0 1 1 4 9 9 26 0.47%
MIDDLESEX-LONDON 14 6 11 14 48 75 91 258 4.66%
NIAGARA REGION 9 4 7 11 44 87 101 263 4.74%
NORTH BAY PARRY SOUND DISTRICT 1 0 0 0 2 4 3 10 0.18%
NORTHWESTERN 1 0 0 1 2 4 4 12 0.22%
PEEL REGION 16 5 9 11 33 51 44 168 3.03%
PETERBOROUGH COUNTY-CITY 5 2 4 5 24 45 79 163 2.94%
PORCUPINE 3 1 1 2 6 12 10 34 0.62%
RENFREW COUNTY AND DISTRICT 1 0 0 0 1 3 3 9 0.17%
SIMCOE MUSKOKA DISTRICT 1 0 0 1 2 4 4 13 0.24%
SOUTHWESTERN 7 2 5 7 25 42 51 139 2.51%
SUDBURY AND DISTRICT 1 0 1 1 3 5 5 16 0.29%
THUNDER BAY DISTRICT 2 1 1 2 6 12 11 34 0.61%
TIMISKAMING 1 0 0 1 3 6 6 16 0.30%
TORONTO 54 32 76 87 275 460 511 1,496 26.99%
WATERLOO REGION 15 5 9 11 34 56 52 181 3.26%
WELLINGTON-DUFFERIN-GUELPH 10 3 6 8 29 42 47 145 2.61%
WINDSOR-ESSEX COUNTY 11 5 9 14 57 79 113 288 5.19%
YORK REGION 41 12 24 39 135 140 201 592 10.69%
Total 311 108 231 313 1,043 1,646 1,888 5,541
% 5.61% 1.95% 4.18% 5.65% 18.83% 29.71% 34.07%
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Figure 6.11: Map of Deaths when using GA+GMB to prevent Deaths. Created using
Public Health Ontario’s Easy Maps tool [53].
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Figure 6.12: Map of the percent reduction in Deaths using GA+GMB strategy com-
pared to NI. Created using Public Health Ontario’s Easy Maps tool [53].
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Figure 6.13: Case Study Objective Value for different values of 1/β
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Figure 6.14: Case Study Total New Exposures for different values of 1/β
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Figure 6.15: Case Study Total Costs for different values of 1/β



158

account for, as well as there being unknown numbers of asymptomatic or unreported

cases at any given time. A variable transmission rate depending on the risk group

might also have been useful to consider, as some groups would have been more or

less likely to transmit the disease. However, useful insights can still be gained from

these results, even if they do not perfectly reflect the real world.

As can be seen in Table 6.5, the results of the case study clearly highlight the

importance of vaccinating the youngest age bracket (5-18 years old) when seeking to

minimize case numbers. This age bracket received over 90% of administered vaccines

using the allocation strategy from the GA+GA. This is unsurprising, as according

to Table 6.7, this age group had by far the most infections, accounting for 30.88%

of all cases. These high case numbers are caused by the group’s extremely high

intra-group contact rate, meaning the entire group will quickly become infected, and

thus is a large vector for spreading the disease to other groups, if not vaccinated

quickly. Comparing Tables 6.9 and 6.7, total cases dropped across all age brackets,

even those that did not receive a single dose of vaccines themselves. By vaccinating

those who are the most likely to catch and spread the disease, not only are they

themselves protected, but others are indirectly protected as well. Additionally, after

implementing the GA+GA allocation strategy it can be observed that the youngest

age bracket no longer accounts for the most infections, and instead, the age bracket

of 18-29 makes up the majority of cases, who were beginning to be prioritized for

vaccination by the end of the 20 week period. These results align with other literature

on the subject [63], and the strategy of vaccinating the younger population is very

common when trying to slow the spread of a disease precisely because that age range

is such a potential vector for transmitting the disease. This effect would only be

exasperated if schools were still open during an outbreak, as then this age bracket

would have hundreds of contacts per week, as an outbreak would quickly spread

through the close contact environment of a classroom.

All solution methods developed this same strategy of prioritizing vaccinating
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the youngest age group in order to prevent infections. However, they did differ

slightly in deciding where to vaccinate and how many vaccines to use. With the

GMB heuristic and GA using fewer lots of vaccines overall compared to the MC

heuristic (6.4). Additionally, even though the MC heuristic used more vaccines

overall, it actually still experienced more cases than the GA+GA method, which

further demonstrates the importance of where vaccines are allocated and not just

how many are administered. As can be seen in Table 6.5 and Figure 6.5, only 19

of the 34 PHUs received a single lot of vaccines during the 20-week period. Even

amongst these 19, 48% of the entire vaccine supply was allocated to just three PHUs,

Toronto, York, and Ottawa. Why was this the case? As can be seen in Table

6.9 and Figure 6.9, many of these PHUs, such as Peel Regional and Peterborough

County saw higher total new exposures compared to neighboring regions but did

not receive a single lot of vaccines. At first, it was thought this might have been

caused by the location of the DCs, as the two cheapest DCs are located in Toronto

and London and perhaps it simply was not cost-effective to send vaccines further.

However, this idea does not hold up under scrutiny as lots were sent to Ottawa

and Thunder Bay, and when the weight of the costs in the objective function was

lowered, a similar allocation pattern still emerged. The second hypothesis was that

highly populated regions were prioritized. Comparing Figures 6.1 and 6.9, while

some of the highly populated regions were vaccinated, others such as Peel Regional,

the second most populous region after Toronto, were ignored. In fact, several of

the least populated PHUs, such as Chatham-Kent and Haldimand-Norfolk received

multiple lots. Similarly, comparing against Figure 6.4, highly populated regions with

high initial case counts were ignored in favor of vaccinating other PHUs. It is likely

there is no single deciding factor but multiple different interconnecting factors in play

for this discrepancy in allocation, especially for the strange aversion to vaccinating

Peel Regional.

When looking to prevent deaths, the results change significantly, with the different
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solution methods actually producing two different strategies for solving the problem.

The MC heuristic focused heavily on vaccinating Toronto (Toronto received over

66% of allocated vaccines) and focused exclusively on vaccinating the two oldest

population brackets. Meanwhile, the GMB heuristic combined with the GA used

fewer vaccines overall while spreading them across more PHUs. The two PHUs that

received the most vaccines were York (29%) and Toronto (20%) with the remaining

51% being spread over 11 other PHUs. Additionally, the GMB heuristic did not

exclusively focus on vaccinating the two oldest brackets and instead would vaccinate

both the youngest (5-17) and second oldest (60-69) age brackets, using 45.41% and

53.28% of vaccines on the 5-17 and 60-69 brackets, respectively. The 60-69 and 70+-

year-old age brackets are both at an elevated risk from COVID-19, but the 60-69-year-

old bracket makes up a larger percentage of the population, thus vaccinating them

prevents more deaths overall. Additionally, the indirect effect of vaccinating the 5-17

age bracket prevented enough additional infections to bring down the deaths in the

older populations. As can be seen in Table 6.6, in Toronto where the younger bracket

was especially prioritized, deaths amongst the two oldest age brackets fell from 606

and 651 (Table 6.8) to 460 and 511, respectively (Table 6.10). However, it should be

noted, that while the GMB heuristic with the GA did outperform the MC heuristic

in terms of overall objective value if comparing the number of deaths, it can be seen

that the MC heuristic’s strategy saved more lives, but incurred additional costs for

the larger quantity of vaccines it used compared to the other strategy. It would be

tempting to say that this makes the MC heuristic a better solution, but with the

specified parameter values, saving fewer lives overall is the better approach according

to the objective value. Additionally, it should be noted that neither strategy used

all the vaccines available to it. This suggests that for β = 1/50000, i.e., preventing

one additional death is worth spending an additional $50 000, the value-to-benefit

ratio of vaccination is on the cusp of not being worth it. Indeed, when experimenting

with higher values of β before settling on 1/50 000, the optimal strategy according
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to all solution methods would be to send no vaccines, as the incurred cost was not

seen as worth the payoff. Even at β = 1/50000, both solution methods decide to not

send any vaccines for several time periods. Trying to assign a monetary value to a

life saved is part of the difficulty with using deaths and costs in the same problem

and why it might be beneficial to utilize an alternate model where we instead impose

a vaccination budget rather than define the trade-off between the two competing

objectives, as discussed in section 3.4.

The reverse sequential by age rule-of-thumb strategy closely mirrors the strategy

that was employed in reality, prioritizing vaccinating the older age brackets while

distributing vaccines roughly equally across the PHUs. According to the results of

this case study, this would suggest that this was not the optimal policy, both for

preventing cases and for preventing loss of life. What is more, the differences are

fairly large, with 1,934,056 versus 1,281,354 cases and 5,971 versus 5,541 deaths over

a 20-week period. However, it is worth remembering that this model is relatively

simple compared to the complexities experienced in a real pandemic scenario. For

starters, it predicts far more cases than are observed in reality, and this can be for

any number of reasons. Perhaps the contact matrix and transmission rate are not

accurate to what was experienced at the time. Restrictions, public health guidelines,

and quarantining were also in effect at the time being modeled and their impact is

not captured by this model. A quarantined individual would have a drastically lower

contact rate compared to others, and someone following public health guidelines

might be less likely to catch or transmit the disease. If these factors were taken into

account it would almost certainly slow the predicted spread of the disease. Especially

if quarantining was taken into effect, meaning fewer infected individuals would not be

in the general population, it might impact the optimal strategy such that prioritizing

the more vulnerable populations becomes the optimal strategy.

In terms of the DCs, only the Toronto and London DCs were used as they were the

cheapest, close to regions that received the majority of vaccines, and had more than
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sufficient capacity to handle the volume of vaccines for this 20-week period. In fact,

several weeks only required one DC to operate. However, because this case study

only considers the first 20 weeks of 2021, it only has to consider the very limited

supply of vaccines available during that time. Shortly after this initial 20 weeks,

larger quantities of vaccines started arriving in the province, with vaccine supply

going from 10-40 lots per week to over 100 lots per week by week 32. This level of

vaccines might have begun to require the use of additional DCs, especially if the other

two vaccine types were included as well as was originally intended. This would have

brought the peak vaccine supply to 330 lots in a single week, representing over one

million vaccines being allocated and distributed per week. It would be interesting

to see how the strategies would change if the case study was extended to include

these later weeks once the vaccine supply picked up. This additional supply also

would have likely allowed for many of the high-priority groups to be fully vaccinated

and it would be interesting to see how the remaining vaccines would be allocated.

For instance, if the entire younger age bracket of Toronto is vaccinated, is it best to

continue vaccinating Toronto’s other age brackets or is it better to begin vaccinating

the younger age bracket of a different PHU? As it currently stands, in the case

study the logistical capacity constraints are not the limiting factor on the model as

there is not sufficient supply nor administrative capacity in the regions to exceed

this capacity. Instead, costs are the primary limiting factor in how many vaccines

get distributed. Additionally, because the model is capable of utilizing all vaccines

available to it in a time period, there is never a need to utilize the storage at the DCs.

If vaccines are available and a zone has the capacity to use them, it will always be

preferable to use them in an earlier time period rather than storing them for later.

If supply was higher and fluctuated more, potentially with weeks of high supply

followed by no supply, logistical capacity, and storage would be more of a factor.
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6.4 Additional Case Study Scenarios

There are numerous additional scenarios that could be explored with this case study.

One that would be interesting to explore would be to lower either the weekly intra-

group contacts of the youngest age bracket or significantly reduce their weight in

the objective function, so they no longer dominate the allocation of vaccines. The

inclusion of a variable transmission rate depending on the risk group might also

have been useful to consider so that even if a certain group might catch the disease

they might not be as likely to pass it on compared to another group. Similarly,

in the base case study scenario, vaccine allocation is concentrated on just a few of

the PHUs, but this imbalance in allocation would be undesirable in the real world.

Therefore, one potential scenario to explore would be introducing some form of equity

enforcing constraints on the allocation of vaccines amongst zones to see how they

impact the overall performance, such as seeking to minimize (or enforcing a limit on)

the maximum difference between the vaccinated portions of the population between

each zone and/or group. Alternatively, we could seek to minimize the maximum

difference between the number of cases relative to population size between all zones

and groups. Even just enforcing a minimum vaccination level requirement for each

zone and group (so long as it is feasible to do so) could be a way of encouraging the

equal allocation of vaccines. However, equal allocation of available vaccines across

the population should not be confused with equity in allocation. Some people are

inherently more at risk from the disease due to their age or other underlying factors,

as well as where they live if it is a potential hotbed for the disease. Thus, the most

equitable vaccination strategy might be to ignore the lower-risk areas in favor of

high-risk areas. After all, sending vaccines where they will have less impact so as to

not seem to be ignoring areas for the benefit of others would just be ignoring the

areas those vaccines would have gone to without said intervention for the benefit of

those new areas.
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It would be interesting to explore different planning horizons for the case study.

The epidemic is still underway by the end of the 20 weeks the case study covers

(i.e., there are still new exposures each week), so the model is only considering a

portion of the entire outbreak and thus only optimizing for that time period. If a

longer time period was considered, say long enough for the disease to basically die

out, the optimal strategy might change from what is currently observed. The longer

the time period modeled, the larger the impact each individual vaccine will have,

as the effects of earlier vaccination propagate out with time, preventing additional

cases. However, considering too long of a period might prove counterproductive, as

there is always going to be a deviation between reality and what the model predicts,

and this deviation will only grow with each additional period considered. Thus, the

most useful way to utilize the model might be to consider the full duration of the

outbreak when allocating vaccines, but only make allocation decisions for the next

few immediate periods, not the entire modeled period. That way the model can

optimize for the long term by just considering a few periods at a time when it has

the most accurate information to work with. However, knowing there will be more

vaccines available in the future would impact the optimal allocation as well, as if you

know you will receive more vaccines next period it might impact how you utilize your

current supply, so the decisions would still be impacted by the shortened allocation

time frame.

Finally, it would have been useful to perform sensitivity analysis on parameters

such as the transmission rate, the contact matrix, the initial conditions of the model,

and the supply of vaccines, to observe how optimal allocation behavior changes under

different scenarios.



Chapter 7

Conclusion

In conclusion, this thesis makes four contributions:

First, we developed an integrated SEIR epidemiological and vaccine supply chain

model that is capable of handling both heterogeneous and homogeneous problems for

use in allocating and distributing vaccines over multiple periods. Because the vaccine

allocation and distribution models are integrated, the vaccine allocation problem is

subject to the limitations of the vaccine supply chain, including supply, logistical,

and administrative constraints. This model has been demonstrated to be effective

at modeling disease dynamics and the effect vaccination has on the population, as

well as estimating the cost of distributing vaccines. However, the vaccine allocation

problem is non-convex and discrete by time, making it computationally difficult to

solve (NP-hard).

There exist several possibilities for future extensions to improve the model’s abil-

ity to model epidemic scenarios. One such change could be to introduce vaccinated

compartments, rather than simply moving the vaccinated to the removed compart-

ment. This vaccinated population could still catch and transmit the disease but at

a lower transmission rate and a lower mortality rate. If the vaccinated still con-

tributed to the spread of the disease, just in a reduced capacity, it would almost

certainly impact the optimal vaccination strategy. With such an extension it might

likewise be useful to consider incorporating multiple doses to achieve full vaccina-

tion. Another useful extension would be to add another compartment to incorporate

quarantining into the model. If some portion of the infected would go to quarantine

rather than mixing with the general population, the spread of the disease could be
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greatly reduced. Finally, it would be interesting to allow the model to account for

how policy and behavior might change over time, as well as how the disease itself

might evolve over time, such as becoming more infectious but less deadly. Varying

the contact matrices, transmission rates, mortality rates, quarantining rates, etc.,

over time could be used to represent these factors. Potentially decision variables

could even be introduced to represent whether certain policies are in place or not

that impact these parameters and allow the model to decide whether to activate or

deactivate said policies, at a cost.

Second, in order to use the model to identify optimal vaccination strategies for

a given scenario, we explored eight different solution methods. These eight methods

were: 1) Lagrangian relaxation, 2) McCormick Envelopes, 3) the MC heuristic, 4)

the fixed allocation linear approximation, 5) a Piecewise-Linear approximation of the

bilinear terms, 6) the GMB heuristic, 7) a GA, and 8) a logic-based BD. Of these

solution methods, four returned promising results. The MC heuristic is by far the

fastest of the explored algorithms and works well on small problems, but it begins

to break down as the problem size increases. In general, the solutions it provides are

still relatively good and can outperform simple rule-of-thumb allocation strategies

such as Pro-rata or reverse sequential by age, but will be outperformed by other

solution methods. The GMB heuristic is slower than the MC heuristic but performs

comparably in terms of solution quality on small problems and outperforms it on

medium and larger problems. The GA is slow when used alone but can be combined

with either of the heuristics to improve on the quality of the heuristic solutions.

Even though this improvement is often relatively small, the fact that the GA cannot

easily drastically improve on the solutions suggests they are at least near optimal,

with experiments on small problems suggesting that the optimality gap somewhere

between 5-10% or less. Finally, the logic-based BD solution method was shown to

be able to solve small homogeneous problems to the guaranteed optimal. However,

the number of cuts and time required to build and solve the master problem increase



167

exponentially with problem size, especially with an increasing supply of vaccines,

making it infeasible on all but the smallest of problems.

There exists potential to further explore the solution methods outlined in this

thesis. The fixed allocation heuristic did not end up yielding very promising results

using our simplistic linear approximation method, however, an alternate approach

to linearization may yield better results. The GMB heuristic could be improved by

exploring multiple potential portion sizes per allocation rather than a single portion,

though this would come at a large increase in run time. If the reason behind the

MC heuristic’s inconsistent solution quality could be identified and corrected its

significantly improved run time compared to the other methods would make it a very

appealing solution method. Additionally, while not explored in this thesis, using the

MC heuristic to warm start the GA might be more beneficial than using the GMB

heuristic as it can be used to generate a warm start in a fraction of the time while

the GA can make up for the slight drop in solution quality. The GA can itself be

improved by further tailoring the mutation and crossover methods to take advantage

of the structure of the problem and what genes are known to likely occur in better-

performing solutions, though caution should be taken to not introduce excessive bias

into the algorithm. Finally, the logic-based BD method could be improved both with

better quality cuts and a faster method of building and solving the master problem.

Third, the model and the most promising solution methods (MC heuristic, GMB

heuristic, and the GA with a warm start) were applied to a novel case study using

real data from the Canadian province of Ontario during the COVID-19 pandemic.

They were able to outperform simple rule-based vaccination strategies such as Pro-

rata and reverse sequential by population in terms of both total cases and deaths,

as well as the cost to acquire and distribute the necessary vaccines.

Finally, From the application of the solution methods to the case study, we were

able to derive insights into the best practices for vaccine allocation and distribution

when seeking to minimize total cases and deaths. For the tested scenario, when



168

seeking to minimize cases, the best practice would have been to focus on vaccinating

the 5-17-year-old age bracket, as they have the most contacts per week and are a

super spreader of the disease, both to their own group and others. The best-identified

strategy lead to a 35% reduction in cases compared to a policy of Non-Intervention

and a 25% reduction in cases over a Pro-rata allocation of vaccines. When seeking to

minimize deaths, the best practice is to vaccinate a combination of the 60-69-year-

old and the 5-17-year-old age brackets. The 60-69 and 70+-year-old age brackets are

both at an elevated risk from COVID-19, but the 60-69-year-old bracket makes up a

larger percentage of the population so vaccinating them prevents more deaths overall.

Meanwhile, by vaccinating the 5-17 age bracket, we can indirectly protect the rest

of the population and prevent more deaths by simply preventing cases that would

have occurred if we only vaccinated the oldest groups alone. The best-identified

strategy lead to a 16% reduction in deaths compared to Non-Intervention and a

13% reduction in deaths compared to Pro-rata allocation. Additionally, with such

limited supplies of vaccines, the model found that focusing on a few key regions

would prevent more cases and deaths compared to spreading the supply across the

province. However, such a policy would likely not be considered very favorable in

the real world by both decision-makers and the general public, as this inequitable

distribution of vaccines could be seen as favoring specific regions to the detriment of

others. A future extension of this work could explore introducing some form of equity

enforcing constraints into the model, while still trying to keep cases and deaths to a

minimum.
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