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ABSTRACT:

Motor imagery, the mental rehearsal of movement, has been demonstrated to be
capable of driving motor skill acquisition. When comparing motor imagery to the more
commonly employed motor learning modality, overt execution, the underlying neural
activity highlights that motor imagery has markedly more parietal lobe activity, leading
to the belief that motor imagery is biased towards the perceptual components of
movement. Further, repetitive transcranial magnetic stimulation interventions targeting
this area have highlighted the vital importance of the inferior parietal lobes in motor
imagery for novel skill acquisition. However, due to the nature of the stimulation,
assessing the role of the inferior parietal lobes was not possible. Secondly, the task used
in the initial assessments of the inferior parietal lobe were biased towards goal and
action selection and the findings could be a result of either the task chosen or an innate
property of the modality. This thesis aimed to ascertain the role of the inferior parietal
lobe by: 1) stimulating the parietal lobe shortly after the completion of a trial to test if it
was involved in the provision of feedback about a trial, and 2) replicating the original
findings in the inferior parietal lobe in a complex movement execution task. The inferior
parietal lobes did not appear to be involved in the provision of feedback resulting from
motor imagery. This finding suggested that either the area is not involved in a role
during motor imagery performance or that its importance to learning reflects the task
used to originally study the area. However, this second possibility is not supported as a
repetitive transcranial magnetic stimulation intervention before training on a
kinematically demanding task replicated the original findings related to the importance
of the inferior parietal lobe. The combination of findings suggests that the increased
parietal lobe activity is necessary for motor imagery rather than being reflective of a task
related effect and its role is likely contained to motor imagery performance.
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CHAPTER 1: INTRODUCTION

1.1 General introduction:

Motor behaviours are the fundamental means that are used by any animal to move their
body to interact with and affect the environment around them. In order to achieve more
effective performance of movement, people adapt to allow them to expend less energy and
overcome obstacles or changes in their environment (McNamee & Wolpert, 2019; Todorov &
Jordan, 2002). The process of adapting movement to improve its performance is termed motor
learning (Krakauer & Mazzoni, 2011; Wolpert & Flanagan, 2016; Wong & Krakauer, 2019). In
practice, the study of motor learning encompasses both applied and fundamental research from
multiple fields using a variety of methodological approaches (Hardwick et al., 2013; Krakauer,
2006; Maier et al., 2019; Sandbakk & Holmberg, 2017; Scott & Kalaska, 1995). Fundamental
research is spread across every permutation of cellular, system and behavioural studies in
kinesiology, neuroscience, and psychology to improve our understanding of how the central and
peripheral nervous system interface with the muscles of the body to create movement (Cisek &
Kalaska, 2005; Dayan & Cohen, 2011; Hatfield et al., 2004; Nakamura et al., 1998; Spampinato
et al., 2017; Tanji & Shima, 1994). The applied research captures the widespread uses of motor
learning to increase training effectiveness in athletics, music, vocation, and rehabilitation (Goble
et al., 2021; Hatfield et al., 2004; Macintyre et al., 2018; Rohrmeier & Rebuschat, 2012;
Sandbakk & Holmberg, 2017).

Learning behaviours is represented at a cellular level by long term potentiation /
depression which describes the plastic ability of neurons to alter their physiology based on

precise timing and frequency of action potentials (Hebb, 1949; Kampa et al., 2006). Learning on



a global context across the brain is directed by reward prediction errors which are encoded by
the dopaminergic neurotransmitter system to represent the level of punishment or reward
associated with behaviour (Niv & Schoenbaum, 2008; Roelfsema & Holtmaat, 2018; Schultz,
2002). The provision of rewards is then mediated by attentional resources to identify what cells
were used in contribution to the behaviour such that the induced changes only affect the
relevant cells (Vartak et al., 2017). The difficulty how learning behaviourally maps to these
mechanistic changes is a result of the billions of neurons in the brain, which reduces the
practicality of expanding on our mechanistic understanding of learning beyond simple restricted
behaviours (J. S. Kim et al., 2014). Advancements in computational neuroscience have begun to
address this scope issue by using artificial neural networks to simulate the brain that rely on
units which mimic the function of neurons (McClelland & Rumelhart, 1988; Richards et al.,
2019). These methodologies are, however, plagued by the credit assignment issue whereby it is
near impossible to determine which connections in the network are important for the learned
behaviour in a biologically plausible manner (LeCun et al., 2015; Littman, 2015). Therefore, in
order understand how motor learning is represented in the brain it is vital to understand these
mechanisms in context of the governing behaviour (Krakauer et al., 2017; Lillicrap et al., 2020).

Control of movement can be loosely classified by a serial process with 3 steps: goal
selection, action selection and action execution (Krakauer et al., 2019). Goal selection refers to
the identification of a location in space that needs to be reached, a desired trajectory to be
performed or component of the environment that needs to be manipulated by an effector, the
part of the body performing movement (Deubel et al., 1998). Once the goal is selected, a

movement needs to be specified such that the effector can be used to achieve its goal with the



least effort (Todorov & Jordan, 2002; Wolpert et al., 1995; Wolpert & Ghahramani, 2000; Wong
et al., 2016). Lastly the brain sends out a command to the body to displace the effector from its
starting position to the goal of the intended movement (Li et al., 2015). The ability to learn
motor skills is derived from these building blocks which can be adapted as a function of
practice. Learning is classically thought to be a function of better action selection and improved
action execution (Lackner & Dizio, 1994; Shadmehr & Mussa-Ivaldi, 1994; Smith et al., 2006).
Improved action selection arises from our experiences whereby the outcome of previous
attempts guides our subsequent decisions about which movements are more accurate or
efficient at completing its goal (Dolan & Dayan, 2013). Improving action execution relies on
continuous monitoring of the effector(s) using a variety of senses, including vision, hearing, and
proprioception/touch, to provide feedback about how well the movement is performed (Siegel
et al., 2015). This available information can then be used as the tuning signal to correct ongoing
movement or to adapt how the movement is performed for a changing environment or the
presence of an obstacle (Shadmehr & Krakauer, 2008; Wolpert, 2014). However, movement is
not necessary for motor learning.

Motor imagery, the mental rehearsal of movement without overt execution, has the
capability of improving performance despite the lack of feedback provided from movement
execution (T. G. J. Ingram et al., 2019; S. N. Kraeutner, MacKenzie, et al., 2016). Motor imagery-
based motor learning could be likened to a famous scene from the matrix movie where Neo
(Keanu Reeves) interfaces with a computer that teaches him all the movements needed to
master Kung Fu. In this scene, Neo is unconscious in a chair and his brain simulates a lexicon of

“movement programs” that are uploaded into his brain from an external drive. When he awakes



from the simulation, he has instantaneously learned how to move his body in space to perform
the entire repertoire of movements taught in the martial arts discipline, and matter-of-factly
states “I know Kung Fu”. While the rate of learning is completely unrealistic, in motor imagery
the process of learning movement is thought to loosely parallel this fictional program: 1) select
a goal for movement (i.e., hit the target), 2) select a movement (identify a punching movement
from the program’s lexicon) and 3) “simulate” movement. This cycle would then be repeated
iteratively to drive learning. The question is, how?

Historically, motor imagery was thought to be a parallel of physical movement up until
the point of movement execution (Jeannerod, 2001). This belief, based on motor simulation
theory, has been greatly contested resulting in the creation of several new possibilities that
could explain how motor imagery can be used to drive learning, including motor emulation
theory, the motor cognitive model and the perceptual cognitive model (Frank & Schack, 2017;
Glover & Baran, 2017; Grush, 2004). These theories cite a growing body of neuroimaging and
behavioural evidence which has suggested that motor learning via motor imagery relies on
improvements to goal/action selection and is biased towards recruiting cortical regions
associated with sensory integration for movement (Frank et al., 2014; Hardwick et al., 2018; S.
N. Kraeutner, Keeler, et al., 2016). Specifically, the left inferior parietal lobe (L_IPL) has been
identified as vital to the performance of motor imagery and its function is vital to the
acquisition of novel skills via imagery (S. N. Kraeutner, Keeler, et al., 2016; Lebon et al., 2018;
Mclnnes et al., 2016). Tying the importance of this brain region to a specific role in motor
imagery-based movement has been difficult given the methodologies used in the initial

investigations and the lack of a clear mechanism for motor imagery-based learning. Additionally,



much of the neuroimaging evidence highlighting the neural networks that underlie motor
imagery performance has been generated by studies of movement that are amenable to
performance in neuroimaging devices where movement of the head can cause large artifacts in
data collection (Hardwick et al., 2018; Puce & Hamalainen, 2017). A consequence of this
decision is that the tasks used in the study of imagery could have conceivably created a bias in
the published neuroimaging literature towards patterns of activity that reflect neural resources
for control of kinematically simple tasks. Conclusions generalized to motor imagery as a
modality could thusly reflect either a bias created by the paradigms used in investigation or a
fundamental property of the modality. This ambiguity serves as the motivation for my thesis
which aimed to elucidate the role of the parietal lobe in motor imagery and determine if its
importance to the network reflects a property of the tasks used to investigate motor imagery or
a fundamental property of motor imagery as a modality for simulating movement.

This thesis comprises three studies to address its two purposes. It has been
demonstrated that imagery performance can result in self-reported endpoint error, which
theoretically could be used as a tuning signal to adapt upcoming attempts at movement,
despite the lack of feedback (Dahm & Rieger, 2019a, 2019b; T. G. J. Ingram et al., 2022). It was
posited that this error signal could be provided by the L_IPL in imagery given its role in state
estimation (Medendorp & Heed, 2019). Therefore, the first chapter aimed to identify a role for
the L_IPL in the provision of this feedback by using transcranial magnetic stimulation (TMS) to
non-invasively affect function of the L_IPL for a short duration of time after the completion of
imagery performance. In the second chapter a novel approach to looking at the outcome

measures used to quantify learning in a complex movement execution task was developed.



Typically, the outcome measure used to quantify the success of a motor behaviour is a
derivative of error which can differ depending on the behavioural paradigm, including: the
distance between a stimulus and the corresponding participant response, errors in applied
forces in differing conditions or deviations from optimal kinematics of a movement
(Buckingham et al., 2016; T. G. J. Ingram et al., 2019; Nashed et al., 2012). These measures are
able to accurately measure improvements in motor execution, however, since movement is
absent in imagery, we sought to validate the use of a correlation-based outcome measure that
is reflective of changes to action selection. This measure was then used in a study that applied
TMS to numerous brain regions to investigate the potential biases introduced by the use of
kinematically simple paradigms to measure motor behaviours. Through these chapters we
sought to validate the importance of and elucidate a role for the IPL in motor imagery-based
learning and clarify if our interpretation of the area’s role has been affected by methodological
bias. By extension, this information will further our understanding of the neural underpinnings
of how motor imagery drives motor learning, allowing people to better leverage the advantages
of imagery in its many applications.

1.2 What is Learning:

Learning is a fundamental ability of most living creatures to adapt their behaviour. This
behaviour is reflective of a series of coordinated changes across the varying scales of the brain
as it acquires new knowledge and is fundamental to most behavioural fields of psychology and
neuroscience (Hawkins et al., 2017; Hebb, 1949; Kampa et al., 2006; Ostry & Gribble, 2016;
Payeur et al., 2021; Rizzolatti & Craighero, 2004; Rosenbaum et al., 2005; Sherry & Schacter,

1987). At the cellular level learning is reliant on the brain’s plasticity; the ability to cause



physiological changes in response to a cell’s activity (Hebb, 1949). In this model of learning two
neurons can alter their physiology based on the precise timing and frequency of action
potentials measured across the synapse between the pre- and post-synaptic neurons (Kampa et
al., 2006). If the post-synaptic neuron elicits a response shortly before an action potential from
the pre-synaptic cell, then long term depression is induced, whereas if the opposite firing
pattern occurs, that is the post-synaptic cell fires after the pre-synaptic cell, then long term
potentiation is induced (Bi & Poo, 1998; Sjostrom et al., 2001). These changes can persist for
extended periods in in vivo models providing a physiological mechanism that can strengthen or
weaken communication between neurons, which at a larger multi-cellular level could provide a
neural representation of a memory in the human brain (Abraham et al., 2002; Cooke & Bliss,
2006).

However, these bi-directional changes in communication on their own would not easily
be able to lead to meaningful change without bias introduced by other overarching factors that
“steer” learning such as reward-prediction errors and selective attention (Gerstner et al., 2018;
Roelfsema & Holtmaat, 2018). Reward-prediction errors refer to the reward or punishment
signals associated with unexpected outcomes whereby a disappointing result is encoded by a
low reward-prediction error and a gratifying result would be encoded by a high reward-
prediction error (Niv & Schoenbaum, 2008). These reward-prediction errors steer learning
towards or away from an outcome using the dopaminergic system to communicate the result,
which is conferred globally across the brain (Roelfsema & Holtmaat, 2018; Schultz, 2002). Lastly,
selective attention gates learning whereby, somewhat logically, humans learn more efficiently

when we pay attention (Jiang & Chun, 2010). This effect can be demonstrated in studies using



redundant-relative cue paradigms which test the formation of stimulus-response learning
(Ahissar & Hochstein, 1993). In these paradigms multiple stimuli present redundant information
which is associated with the correct outcome meaning that participants only need to attend to
one cue to learn the task. This is indeed how the task is solved as one stimulus is learned while
the others are ignored, indicating that attention can gate which stimuli are learned (Ahissar &
Hochstein, 1993). This gating takes the form of an eligibility trace or synaptic tag which is a
biochemical marker expressed at the synapse to indicate whether the pre- and post-synaptic
neurons will undergo plasticity (Frémaux et al., 2013; Frey & Morris, 1997; Rombouts et al.,
2015). While the exact mechanisms of this tagging process have yet to be determined, it is
believed that they rely on activation of adenylyl cyclase and phospholipase C signaling cascades
as the biochemical marker that indicated that long term depression / potentiation should be
induced (Seol et al., 2007). When these two factors, synaptic tagging via attention and reward-
prediction errors, are considered in conjunction they highlight a scenario where the union of a
highly rewarding or punishing result and the result being “tagged” via selective attention is vital
for the induction of learning and, theoretically, long term depression / potentiation (Vartak et
al., 2017).

The summation of this work is an updated rule for reinforcement learning that is
extended from the principles of Hebbian plasticity originally described in 1949 (see Equation
1.1; Hebb, 1949). In this non-specific equation for long term depression / potentiation, the
change in the connection strength between two neurons (Aw; ;) is predicted by the learning
rate parameter () multiplied by functions describing activity in the pre- (f;(a;)) and post-

synaptic cell (f]-(aj)). The consideration of reward-prediction errors and selective attention then



add two new terms onto the model to control for its direction and gate learning respectively
(Equation 1.2; Roelfsema & Holtmaat, 2018). In this updated equation the direction of learning
is controlled by the sign of the reward-prediction error term (RPE), whereby the long-term
potentiation is induced by a positive term and long-term depression is induced by a negative
term. In contrast, the synaptic tagging resulting from selective attention as derived by higher
order brain structures is enacted on the post-synaptic cell (FB;) and ranges from 0:1 to indicate

whether or not learning will occur (Roelfsema & Holtmaat, 2018).

Aw;; = B fi(ay) * fi(a))

Equation 1.1: A description of long-term depression / potentiation as suggested by Hebb, 1949.

Aw;; = B * f;(a;) *fj(aj) * RPE * FB;
Equation 1.2: A updated description of long-term depression / potentiation including terms for
reward-prediction errors and selective attention developed by Roelfsema and Holtmaat, 2018.
1.2.1  Why we do not have a complete bottom-up understanding of learning:

Given our understanding of how learning occurs at a cellular level, one might be led to
believe that there is a robust mapping of learning at this level to behaviour, however this is far
from the case. Some of the most difficult questions to answer pertain to the mapping of cellular
level changes to the behaviours they hope to explain. These two approaches, “bottom up”
(discovering cellular mechanisms explaining higher order behaviours) and “top down” (using
behaviour to infer what is happening at a system or cellular level) are often considered

independently without regards for one another leading to interpretations of mechanisms that



contradict observed behaviours and behavioural theories that are improbable given the
structure and function of neurons. As such, there is a need to explore the behavioural principles
that orchestrate plasticity across the brain given our understanding of its fundamental building
blocks, neurons (Lillicrap et al., 2020).

The difficulty of using the classical “bottom up” approach is that there are a gargantuan
number of neurons, and the approach becomes impractical given limitations of tools available
to study neuronal activity in vivo in human participants. In simpler restricted computations such
as pattern generators for rhythmic movement and retinal comprehension of movement,
intracellular recordings have been used to define exacting mechanisms (J. S. Kim et al., 2014;
Marder & Bucher, 2001). However, as the functions being investigated become more
complicated and the number of cells in the network grow it becomes harder to use these
methods to define a precise mechanism (Richards et al., 2019). With recent advancements in
computational neuroscience the ability to abstractly define a ruleset that defines learning has
provided a methodology to simulate what might be happening in the brain when we learn a
skill. This process revolves around using an artificial neural network to simulate the brain by
using units that try to mimic the function of neurons (McClelland & Rumelhart, 1988). These
artificial networks are defined by user set methods and rules (structure, goal, reward,
weightings) that delineate how the artificial neural network can learn, including reinforcement
learning and deep learning (Richards et al., 2019; Williams, 1992). As such, if a model is trained
to accurately represent a complex behaviour such as human movement it could potentially be
used to provide insight into how the brain co-ordinates the changes seen in a small number of

cells to the millions of neurons needed to control and learn complex skills (Mathis et al., 2018).
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This approach however is mired by one critical issue: determining which connections in the
network are important for the learned behaviour. This is termed the credit assignment issue
(Littman, 2015). There are several methods to account for this in an artificial neural network,
however the most successful method of resolving this issue “back-propagation” has been
historically believed to be biologically implausible (Crick, 1989; LeCun et al., 2015). It was only
recently that this concept was revisited to highlight a potential avenue around the credit
assignment issue in a biologically plausible manner by using a novel spike-based learning rule
that is defined by known properties of dendrites, activity at the synapse and synaptic plasticity
(Payeur et al., 2021).

By grounding this advancement with physiology represented in equation 1.2, Payeur et
al., highlights a potential mechanism that can simulate learning in the brain (Payeur et al., 2021;
Roelfsema & Holtmaat, 2018). The physiology this advancement aims to represent is presented
visually by Roelfsema and Holtmaat (2018) in the context of movement, whereby information
about the stimulus is encoded by the sensory cortices and communicated to the motor cortex
(M1; Figure 1.1 (left); Lamme & Roelfsema, 2000). In turn the M1 uses feedback connections to
highlight information from the sensory cortices that are relevant to the process of action
selection (Figure 1.1 (middle); Moore & Armstrong, 2003). This function embodies attentional
synaptic tagging describing which synapses will undergo plasticity (Jonikaitis & Deubel, 2010;
Moore, 1999; Roelfsema & Holtmaat, 2018). These tags would then persist until the subsequent
provision of reward-prediction errors such that the direction of the plasticity, long term
depression / potentiation, will occur based on the perceived outcome of the task (Figure 1.1

(right); Roelfsema & Holtmaat, 2018). However, the recently conceived spike-based learning
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rule has only be defined and validated in a generalized setting and is untested in the context and
neurological structure of motor learning and, as such, is just a promising avenue for future
research (Payeur et al., 2021). In order understand how motor learning is represented in the
brain it is vital to understand its context (i.e., how the brain controls movement), therefore the

“top-down” approach needs to be considered (Krakauer et al., 2019).

Feedforward Feedback Neuromodulation
(sensory processing) (motor selection and (reward or punishment)
attentional tagging)

\%! T — T —
—— —
\ N
N\ N\
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coriex motor
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Input Association Output
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Figure 1.1: A potential mechanism for synaptic plasticity underlying learning in the brain taken from Roelfsema and
Holtmaat (2018). The columns from left to right describe the sequential theoretical steps controlling plasticity:
feedforward control, feedback control and neuromodulation. The flow diagrams in the bottom row describe a
simplified network structure from the sensory inputs (input layer) to the motor cortex (output Layer). In the
feedforward column information is passed towards the output layer along the lines with grey arrowheads.
Feedback control is then applied from the output layer back towards the input layer, tagging (T) the important
signals used to select the movement which will be subject to plastic change (red lines; middle column). In the right
column the signal is modulated by outcome of movement (RPE = Reward prediction error, grey = poor outcome, blue
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= positive outcome) to determine whether the tagged synapses will be reinforced (red lines) or repressed (red
dashed lines; Roelfsema & Holtmaat, 2018).

1.3 What is the context for motor learning:

What differentiates motor learning from other forms of learning, cognitive or
perceptual, is that the end point is improved movement. While this seems obvious, these
different types of learning are likely linked by similar theoretical neural underpinnings governed
by the capacity of the brain for plasticity (Cooke & Bliss, 2006; Krakauer et al., 2019). Extending
from the model presented in Figure 1.1, there are a variety of contextual factors that are not
considered: 1) What is the effect of pre-existing knowledge on this system, 2) How are
movements selected and 3) How does this network account for real-time monitoring of
movement? These questions add further layers of complexity and obscurity onto the model and
in order to garner insight into these questions, the “top-down” approach of mechanistic
inference from behaviour needs to be evaluated.

Generally, behavioural investigations of motor learning focus on improvements made to
one of three sequential stages that govern the control of movement: 1) goal selection, 2) action
selection and 3) action execution which have been informed by a variety of different classes of
behavioural tasks (Figure 1.2; Krakauer et al., 2019). The goal selection and action selection
stages of this framework are intrinsically linked to define a process of planning a movement that
achieves the goal of the task at a minimal cost (Gallivan et al., 2018; Todorov, 2004). In contrast,
they are disparate from the action execution stage which pertains to the control of overt
movement (Shadmehr & Krakauer, 2008; Todorov & Jordan, 2002). However, the “top down”
approach of modelling behaviour has resulted in competing computational theories at each of

these stages, goal selection, action selection or action execution, with the goal of accurately
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inferring how the brain completes each one (Gallivan et al., 2018; Hadjiosif et al., 2021;
McNamee & Wolpert, 2019). A thorough description of the various theories for motor control is
important for understanding the framework that produces reinforcement/depression of a
behaviour in motor learning, but it is out of the scope of this thesis and not overtly tested in the
following chapters. Instead, the most well accepted model will be described to explain which
signals the body can use to estimate the accuracy of their movement, which is a vital signal for

driving changes in motor behaviour (Krakauer et al., 2019; McNamee & Wolpert, 2019).

Laboratory tasks
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Figure 1.2: A classification for components of movement (right) and the mapping of commonly used classes of
behavioural paradigms in psychology and neuroscience (left) taken from Krakauer et al., (2019).

Figure 1.3 outlines the widely accepted model for motor control relating each stage from
Figure 1.2 (right) to a concrete example of swinging a tennis racket (Krakauer et al., 2019;
McNamee & Wolpert, 2019). The presented model is the culmination of two theories for
learning, optimal feedback control and internal models, using a Bayesian framework as a

unifying method to communicate the body’s understanding of information relating to the
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movement (Haith & Krakauer, 2012; McNamee & Wolpert, 2019; Todorov & Jordan, 2002;
Wolpert et al., 1995; Wolpert, 2014). The mapping of the stages presented in Figure 1.2 (right)
to Figure 1.3 is as follows; the goal selection stage encompasses the Perception and Simulation
panels, the action selection stage is akin to motor planning, and action execution is akin to

optimal feedback control.
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Figure 1.3: A schematic for the stages involved in generating and controlling movement adapted from McNamee
and Wolpert (2019). Subplot A demonstrates how sensory inputs to the cortex are used to perceive the endpoint of
the movement, the tennis ball, and estimate its position given characteristics such as velocity or rotation that are
not directly observable (Subplot A insert). If the object is in motion, then its future state position is to be estimated
based on the initial perception of the object such that it can be intercepted by the effector (Subplot B). A motor
plan, control policy, is then generated to align the effector with the goal of the movement (Subplot C). Finally, as
movement is executed, an efference copy is used to predict where the effector should be and is compared against
sensory afference from movement as defined by optimal feedback control to correct movement in real time (Subplot
4 and flow chart).
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1.3.1 How do we pick a goal for movement:

The process of selecting a goal for movement differs considerably based on the context
in which the movement is performed, such as the number of potential goals, whether there are
competing goals, and identifying if goals need to be sequenced. However, each context arrives
at the same outcome, identifying the endpoint for movement (Kaufman et al., 2015; Nashed et
al., 2012, 2014; Reichenbach et al., 2014). Regardless of the strategy needed to pick a goal, it
first needs to be perceived using sensory information about the state of the environment. This
input from sensory receptors contains an amount of biological noise that is overcome by
combining sensory information across short time intervals and the union of information from
multiple sources, such as vision and audition, to create tight probability distribution of where a
point / object of interest is in the surrounding environment (Jazayeri & Shadlen, 2010; Tassinari
et al., 2006). Pertinent to the example of hitting a tennis ball, some characteristics of the tennis
ball are not going to be observable such as its exact position, velocity, or spin and, as such,
these features are estimated using the senses to the highest degree of accuracy possible (see
inset of Figure 1.3a visualizing the ball’s probable location and speed). If the object of interest is
not changing in the environment, then the goal of movement is set, however this is often not
the case. If an object is moving then its future position will also need to be estimated using an
inferential model whose input is information gathered about the current state of the object
(McNamee & Wolpert, 2019). The accuracy of this simulation will depend on the precision of its
inputs, that is the sensory information and the duration of time to be predicted to align the
effector (or the tool held) with the object of interest, in this case a tennis racket and ball

respectively (Figure 1.3). Notably, if an object is stationary then this prediction does not change

16



the initial state of the object of interest and the simulation of the objects future state is
redundant and skipped (McNamee & Wolpert, 2019).
1.3.2 How do we select a movement:

After identifying the movement’s goal and endpoint, the prediction of the tennis ball’s
future position, a motor plan needs to be specified to align the effector or tool, a tennis racket,
with it. How the brain chooses what movement to perform defines the degrees-of-freedom
problem whereby there are a huge number of effector parameters (such as joint angles, rate of
muscle recruitment or effector positions) to optimize in comparison to a much smaller number
of parameters needed to explain a task and perform it accurately (Bernstein, 1967). In the
example of a tennis swing, this could represent the different variations of a forehand versus
backhand shot that could be used to return the ball across the net (Figure 1.3c). Yet despite the
near endless possible manners in which to conduct a movement, motor behaviours seem to
conform to a similar subset of kinematics/dynamics across individuals, suggesting that the
central nervous system is selecting movements on a base set of principles that optimize some
component of movement (Domkin et al., 2002; Gallivan et al., 2018; Scholz & Schéner, 1999).
The process of making this selection is, as explained by optimal feedback control, done by
specifying a control policy and a feedback controller that generates an approximation of the
most efficient motor plan to govern how movement will be performed (Todorov & Jordan,
2002). This step is of particular importance to the topic of this thesis, motor imagery-based
motor learning, as optimizing the process of action selection is thought to be the primary

method used to drive learning via motor imagery given the absence of action execution
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(discussed in section How do we learn via motor imagery and all the subsequent chapters). As
such, it is worth operationally defining what a control policy is.
1.3.3 What is a control policy:

It would be natural to think that the motor plan resulting from action selection is a
complex spatiotemporal sequence of muscle activations, but completing this task before
initiating the movement would be computationally nearly impossible given the degrees-of-
freedom problem (Bernstein, 1967; Haith & Krakauer, 2012; McNamee & Wolpert, 2019). As
such, control policies are an accepted representation of a motor plan (Todorov & Jordan, 2002).
Control policies take the form of a Bellman equation that look to minimize the metabolic costs
incurred over the course of the movement while still achieving its goal, which are defined
generally to remain applicable to any state of the effector and movement goal (Todorov, 2004).
The value of this distinction is well demonstrated by results of a perturbation reaching task
where participants were instructed to use a robotic interface to reach out to a target whose
width varied (Nashed et al., 2012). In a subset of trials, mechanical perturbations were applied
to the robotic arm resulting in a deviation from the relatively straight trajectory seen in the
unperturbed trials (Figure 1.4). Notably, efforts were only made to correct the perturbations in
the narrow target condition and not in the wide target condition (Figure 1.4). If the entire
trajectory had been specified prior to movement than any deviation from it during subsequent
execution would be classified as error to be corrected, which was not the case. The extra energy
needed to correct errors in movement was only expended if the error(s) impacted the outcome
of movement, as dictated by a control policy. Therefore, improving the accuracy of this control

policy is the temporally first encountered mechanism that can be used to improve movement

18



performance (see Improving action selection below).

a Narrow target Wide target

— Unperturbed movement
— Perturbed movement

Figure 1.4: Results of a perturbation reaching study by Nashed et al., (2012). Black trajectories are a visualization
from unperturbed trials and blue trajectories are from trials where perturbation forces were applied to the robotic
arm used to complete the movement. Notably, perturbed movements were only corrected if they affected the
likelihood of a positive outcome on the task. This figure was taken from Gallivan et al., (2018), which was adapted
from the original studly.

1.3.4 How do we execute movement:

Once the control policy for movement is specified, the movement is initiated and
monitored for error to ensure it can be performed as accurately as possible and adjusted if
needed to try and achieve the movement’s goal (Hadjiosif et al., 2021; Shadmehr & Krakauer,
2008; Todorov & Jordan, 2002; Wolpert et al., 2011). With regards to our tennis swing example,
once the player begins to move the racket, they monitor their swing to ensure they will still
contact the ball (Figure 1.3d). If the movement seems inaccurate, then the angle of the racket
can be changed to return the ball over the net (Figure 1.3d green arrow). The most widely
accepted theory of how movement is controlled in an online fashion is optimal feedback control
which use forward models to generate predictions about movement in absence of sensory

afference (Desmurget & Grafton, 2000; Miall, 2003; Miall & Wolpert, 1996; Todorov & Jordan,
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2002). The theory of optimal feedback control has only been very recently questioned in favor
of motor control theories such as adaptive dynamic programming and direct policy learning
which question the use of forward models in motor control (Bian et al., 2020; Hadjiosif et al.,
2021). In these newer models perceived errors during movement directly update the control
policy (Bian et al., 2020; Hadjiosif et al., 2021). Optimal feedback control dictates that as motor
commands are executed, a copy of the motor command, termed the efference copy, is
maintained and passed to a forward model which translates the efference copy into a prediction
of the effector’s future position (Figure 1.3 efference copy line; Desmurget & Grafton, 2000;
Miall, 2003; Todorov & Jordan, 2002). The resulting prediction is compared to the sensory
afference from movement in a process termed a state estimation (Figure 1.3 state estimation
box; Todorov & Jordan, 2002). If there is a mismatch between the signal used in state
estimation, a sensory prediction error is recorded and the control policy is re-assessed to send a
new, adapted motor command to the effectors (Figure 1.3 downwards arrow extending from
state estimation; Todorov & Jordan, 2002). In adaptive dynamic programming and direct policy
learning the changes to this model suggest that sensory prediction errors occur by comparing
either sensory afference directly to the goal of movement to adjust the following motor
command (Bian et al., 2020; Hadjiosif et al., 2021). Only if the sensory afference is absent is the
prediction of the effector’s future position from a forward model used in its place to create a
sensory prediction error (Hadjiosif et al., 2021). With respect to motor learning, two signals are
generated during action execution that can be used to drive learning. The first is the sensory
prediction error, which can be used to reduce the task relevant variability with repeated practice

to improve action execution (see Improving action execution below) and, secondly, feedback
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about the final outcome of movement can be used to help improve the accuracy of the control
policy (see Improving action selection below).
1.4 How are motor skills learned:

As previously mentioned, motor learning refers to the process of improving skill
execution as a function of rehearsing the movement. Learning can be driven by either physically
practicing the movement or by mental rehearsal of movement (see sections 1.5 What is motor
imagery & 1.6 How do we learn via motor imagery below; Eaves et al., 2016; T. Kim et al., 2017;
Krakauer et al., 2019). Gains in skilled performance are realized through two avenues, explicit
improvements made to the processes of goal / action selection and implicit improvements to
action execution driven from the signals originating in the framework of motor control (Figures
2 and 3). This includes signals derived from feedback about the final outcome of movement and
sensory prediction errors generated during movement (Figure 1.3).

1.4.1 Improving the accuracy of the control policy:

Improvements made to the accuracy of the control policy are dictated by our past
experience and previous attempts at a movement (Dolan & Dayan, 2013). Our past experiences
of movement generate feedback and guide our decisions about which movements to perform
next. This information takes the form of task error, the difference between our expected and
attained outcome of a movement, that provides an estimate of the magnitude and direction of
error to be corrected or a more generalized knowledge of success or failure if feedback about
movement is unavailable (Taylor & Ivry, 2011). These errors are classified as reward prediction
errors (see What is learning above) that can guide our understanding of how to execute a task

using processes akin to those applied in reinforcement learning (Sutton & Barto, 1998). This

21



process of trial-and-error learning dictates one’s past experience would suggest repeating or
avoiding a specific movement and the brain would then generalize an abstracted rule, a control
policy, which can be called upon to guide upcoming attempts at the movement (Kording &
Wolpert, 2004; Todorov & Jordan, 2002). These reward errors appear to be encoded by neural
activity in the striatum whereby the dorsal striatum encodes information about the reward of a
completed action, modifying activity in the ventral striatum to reflect what the expected reward
will be on a future iteration of the task (O’Doherty et al., 2004; Schultz et al., 1997). These
representations can, in turn, be recalled to predict what the expected reward would be for a
novel movement goal, which would be vital for goal selection in movements with a choice
between two or more potential goals (Barron et al., 2013; McNamee et al., 2013; Padoa-
Schioppa & Assad, 2006).

Once the goal of a movement is specified, the control policy would dictate that the body
needs to approximate what is the most energy efficient method to accurately complete the
movement (Todorov, 2004). The drawback to this approach is that learning a control policy
through trial-and-error learning is prohibitively slow and, as such, the suggestion has been
made that movement representations are organized in a hierarchy (d’Avella et al., 2003; Haar &
Donchin, 2020; Kanai et al., 2015; McNamee & Wolpert, 2019). This suggestion indicates that
movement is represented at potentially multiple levels of abstraction where the top of the
hierarchy is the control policy that governs action selection, and the lowest level would be each
individual component of spatiotemporal series of muscle activation needed for action execution
(McNamee & Wolpert, 2019). These two hierarchal extremes, top and bottom, would then be

separated by intermediary levels termed motor chunks (Botvinick et al., 2009; Haar & Donchin,
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2020; Rhodes et al., 2004). This organization of behaviour provides a potential solution to
reduce the degree-of-freedom problem that plagues motor learning and is grounded in
behavioural observation from well-studied serial reaction time paradigms (Bernstein, 1967;
Verwey et al., 2015). In these paradigms, repetitive practice of a sequence of button presses has
demonstrated that if the sequence is long enough, a motor chunk is created in memory to
represent a sequential series of movements (Rhodes et al., 2004). This reduces the number of
features needed in memory to represent the entire sequence of movements (Verwey et al.,
2015). In turn, these chunks could be used to help create the control policy for movements that
are novel or not well understood. This mechanism is evidenced by hand path priming effects,
where participants complete a reaching movement where obstacles occasionally obstruct
straight line movement (Jax & Rosenbaum, 2007). Initial angular offset, the curvature at the
beginning of the trajectory, on unobstructed trials increased as a function of likelihood and
recency of an obstructed trial (Figure 1.5). This finding demonstrates that our past experiences
can cause deviation to the optimal strategy for movement under the circumstances where the
sub-optimal strategy for movement appears to be more energy efficient (i.e., when the
participant believes the current trial is likely to contain an obstacle; Jax & Rosenbaum, 2007).
However, the degree to which behaviours are fragmented within their hierarchal representation
and the exact mechanism of how they predict an approximation of the best course of action on
subsequent movements have yet to be elucidated (Barron et al., 2013; Haar & Donchin, 2020;

McNamee & Wolpert, 2019).
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Figure 1.5: Results of Jax & Rosenbaum (2007) demonstrating hand path priming effects. This visualization shows
the mean initial angular offsets (+1 SE) for reaches across conditions with differing likelihoods of an obstacle
impeding the reach (range = O[N] to 1[A]). The positive values on obstacle recency denote the number of
consecutive preceding trials where an obstacle was present, and the negative values denote the number of
consecutive preceding trials without an obstacle. The shape of each point denotes if an obstacle is present (circle) or
absent (square) on the current trial. In the A and N conditions recency was not a meaningful factor and the
rectangles denote the mean+1 SE across all levels of obstacle recency. Notably there was a significant interaction
between obstacle recency, state of the current trial (obstacle vs. no obstacle) and likelihood of an obstacle trial
being presented where the effect of obstacle recency was less noticeable in the 0.25 likelihood group in comparison
to the 0.5 and 0.75 groups.

1.4.2 Improving action execution:

In contrast to the process used to help improve goal and action selection, the process of
improving action execution is much more implicit in nature and involves using sensory
prediction error (see How do we execute movement) as a tuning signal to adapt to a changing
environment or correct inaccurate motor commands as action is executed (Korenberg &

Ghahramani, 2002; Martin et al., 1996; Mazzoni & Krakauer, 2006; Takahashi et al., 2001). This
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process is indifferent to the reward or punishment generated by explicit knowledge of the task’s
outcome, indicated that it is governed by a separate process (Cashaback et al., 2017; Holland et
al., 2018; Kooij et al., 2018, 2019). Given the biological noise present in sensory inputs to the
brain, estimating the compensation contains a degree of uncertainty that can impair the
accuracy of the compensatory signals (Korenberg & Ghahramani, 2002; Wei & Kording, 2009).
This feature explains why no two movements are identical, even if the same goal and action are
selected (Krakauer et al., 2019). Furthermore, along the lines of operant conditioning, high
variability between movements in the early stages of motor learning increase the rate at which
action execution is improved as a greater number of methods for executing a movement are
explored. This early exploration of movements contributes to a broader understanding of the
control policy that governs the movement and allows the most efficient movement to be more
rapidly identified (Skinner, 1981; Wu et al., 2014).

It is the combination of the implicit process of improving action execution by monitoring
sensory prediction errors and the more explicit strategies involved in goal and action selection
operating in parallel that explain the typical exponential learning rate seen in adaptation
paradigms (Huberdeau et al., 2015; Smith et al., 2006). These two components operate in
different timescales where the early rapid improvement of task performance is thought to be
reflective of improvements made to the explicit strategies used in action and goal selection and
the later, slower performance improvements are governed by implicit advancements made
during action execution (McDougle et al., 2015). While this evidence is generated on a trial-by-

trial basis it is also reminiscent of the transition in autonomy across Fitts’ laws which predicate
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an early period of explicit cognitive control transitioning into implicit movement control in the
autonomous stage of movement (Fitts & Posner, 1967).
1.5 What is motor imagery:

As introduced at the beginning of the last section, motor imagery is the mental rehearsal
of movement without physical execution (Dickstein & Deutsch, 2007). Motor imagery has
become of increasing interest due to its ability to drive motor learning in a variety of different
applications including sequence learning, trajectory creation and aiming (Gentili et al., 2010; T.
G.J. Ingram et al., 2019; W. Kim et al., 2014). Across both fundamental and applied research
methods, motor imagery practice has largely demonstrated improvements in subsequent action
execution, denoted by increased kinematic efficiency and accuracy of movement (Rienzo et al.,
2016). While motor imagery is typically believed to be best employed as an adjunct to overt
execution to maximize the rate of performance improvement, it has been demonstrated to be
capable of driving motor learning independently of prior physical practice (Bovend’Eerdt et al.,
2012; S. N. Kraeutner, MacKenzie, et al., 2016; Zhang et al., 2011). However, common across
many studies of motor learning via motor imagery is the finding that the degree of performance
improvement due to motor imagery pales in comparison to physical practice (see How do we
learn via motor imagery below; T. G. J. Ingram et al., 2019; T. Kim et al., 2017; Robin et al.,
2007). These differences likely arise from the lack of feedback inherent to motor imagery and,
as such, imagery practice must enable skill performance by different mechanisms. It has been
therefore suggested that improved movement accuracy in motor imagery likely pertains to a
better understanding of how movement is performed, governed by a control policy (T. Kim et

al., 2017; S. N. Kraeutner, Keeler, et al., 2016). These behavioural differences in combination
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with a high level of methodological variability used to study imagery contributed to an
imperfect understanding of the mechanisms underlying the modality (Hurst & Boe, 2022; Ladda
et al., 2021). A recent review of the prevailing motor imagery theories has been performed by
Hurst and Boe (2022), many of which will be described briefly in the following sections.

1.5.1 Motor simulation theory:

The historical understanding of imagery was that it represents a subset of the process
used in overt execution of a task (Jeannerod, 2001). Motor simulation theory suggests that
imagery shares the same neural processes up until the initiation of movement and both
modalities are functionally equivalent until the point of deviation, whereby action is executed in
overt execution or inhibited in motor imagery (Jeannerod, 1994). The theory was originally
evidenced by similarities in the mental chronometry between the two modalities and
overlapping cortical representations (Burianova et al., 2013; Hardwick et al., 2018; Hétu et al.,
2013; Sirigu et al., 1995). However, despite the partially overlapping neural activity in the cortex,
the claim of commonly used neural underpinnings between modalities raises questions as to
the theory’s accuracy due to notable differences in the cortical activation between modalities,
especially in the parietal and motor cortices (Hardwick et al., 2018). Further, the inhibitory
mechanism employed in motor imagery seems to be attached to the decision to engage in
motor imagery rather than transiently inhibiting a motor command as the
Bereitschaftspotential, a readiness potential for movement, commonly seen in the M1 is
notably reduced or absent in motor imagery suggesting that motor imagery and overt execution
engage different mechanisms during motor planning (Eagles et al., 2015; Shibasaki & Hallett,

2006; Solomon et al., 2019a).
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1.5.2 Motor emulation theory:

At the highest level, motor emulation theory is a translation of optimal feedback control
adapted to motor imagery in light of the lack of action execution (Grush, 2004; Todorov &
Jordan, 2002). This theory is aligned with the previous motor simulation theory but has a more
concrete mechanism to describe imagery (Grush, 2004). The fundamental mechanism in
emulation theory is that imagery uses the forward modelling process employed during action
execution to simulate movement and guide its subsequent adaptation (Krakauer & Mazzoni,
2011; Miall & Wolpert, 1996). Grush (2004) provides great detail to describe this emulation
process as a Kalman filter, an algorithm that estimates the future state of the system and its
corresponding uncertainty, further increasing its likeness to optimal feedback control that
utilizes a similar Kalman filter to derive sensory prediction errors (Grush, 2004; Todorov, 2004;
Todorov & Jordan, 2002). The primary difference between motor emulation theory and optimal
feedback control is that the sensory prediction generated by the forward model cannot be
compared to sensory afference during state estimation due to the lack of movement in imagery
(Figure 1.3 state estimation). As such, the sensory prediction error used to guide movement is
more-so a prediction error due to the lack of sensory information about movement, which has
important implication for how learning can be realized in motor imagery (see section 1.6.1 The
impact of forward models on motor imagery-based motor learning). This theory mirrors a
hypothesis made in direct policy learning which suggests that sensory prediction errors are not
calculated and, rather, sensory afference is compared directly to the goal of movement to adjust

ongoing action execution. It is only in the absence or delay of sensory afference that a forward
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model would be used to guide movement, as is the case in motor imagery (Hadjiosif et al.,
2021; Todorov & Jordan, 2002).

A further important piece of evidence supporting motor emulation theory is the result
that motor imagery engages forward models (Kilteni et al., 2018). In a somatosensory
attenuation paradigm, it was found that motor imagery engages a forward model to attenuate
the sensation of a self-touch in a manner similar to motor execution (Kilteni et al., 2018).
Somatosensory attenuation is a phenomenon whereby the sensory outcome of a self-produced
movement is diminished given that one actively predicts the sensory consequences of
movement using a forward model (Blakemore et al., 2000). In the study conducted by Kilteni
and colleagues, participants were asked to estimate the amount of force placed on their left
index finger by a small direct current motor for three seconds which varied in magnitude (Figure
1.6 a-c). In the control condition participants placed their right hand beside the direct current
motor apparatus and were asked to relax and remain at rest (Figure 1.6a). In the overt execution
condition participants were asked to use their right index to replicate the force applied to the
left index by the direct current motor on a transducer placed immediately above it, replicating
the context of self-touch (Figure 1.6b). Lastly, in the imagery condition participants placed their
right hand on the sensor and imagined replicating the force applied to the left index finger
(Figure 1.6c). Immediately after the trial, the participants were asked to use a slider connected
to the direct current motor to generate the matching force felt on the left index (Figure 1.6a-c).
Interestingly, attenuation was seen in both the overt execution and the imagery condition in
comparison to the baseline whereby reported forces were attenuated at all levels applied to the

left index (Figure 1.6d). This was taken as evidence that imagery must be employing a forward
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model as described in motor emulation theory to attenuate the externally provided force when

it is perceived to be a self-generated touch (Figure 1.6e and f; Grush, 2004; Kilteni et al., 2018).
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Figure 1.6: Select figures from Kilteni et al., (2018) modified for this visualization. Subplots a-c visualize the three
experimental conditions where participants were asked to either remain at rest beside a direct current motor while
it applied a force to their left index (control, subplot a), replicate that force on a sensor located overtop of the direct
current motor (overt execution, subplot b) or imagine replicating the force on the sensor over the direct current
motor (motor imagery, subplot c). When subsequently asked to match the force applied to the left index using a
slider (pictured in subplots a-c), participants attenuate the amount of force applied to their left finger in the overt
execution and motor imagery conditions relative to the control group (subplot d). This mechanism is visualized as
flow charts in Figures 6e, overt execution, and 6f, motor imagery, where the externally generated touch is used as a
proxy for the sensory afference that would be created in overt execution.

1.5.3 Motor cognitive model:
In contrast to the previous two theories explaining the mechanism underlying motor
imagery, the motor cognitive model presents a deviation from the architecture used to describe

the control of movement in overt execution. After the creation of a control policy to govern
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movement, the motor cognitive model suggests that motor imagery uses a separate cognitive
pathway to create an internally maintained multi-sensory simulation of the movement (Glover
& Baran, 2017). As a consequence of this decision, it was posited that if a control policy is not
well understood it is a low fidelity movement and therefore more cognitively demanding than
actions that are governed by a well-defined control policy or high-fidelity movement (Glover &
Baran, 2017). Therefore, experimental tasks that increase the executive and attentional
resources needed should be more difficult to perform via imagery than overt execution. The
authors provide evidence of this theory from a behavioural study where participants were asked
to count backwards while performing a reaching task resulting in increases to movement
duration, estimated in motor imagery, that were larger in imagery in comparison to overt
execution (Glover & Baran, 2017).

1.5.4  Perceptual cognitive model:

The perceptual cognitive model doesn’t immediately conflict with the prior models for
motor imagery however it does suggest a large change in focus whereby it postulates that
imagery is reflective of the process of movement planning (Frank & Schack, 2017). This theory
dictates that the experience of imagery is expressed through perceptual-cognitive
reorganization. Perceptual-cognitive reorganization is the process of retrieving and efficiently
organizing basic action components, kinematically simple movements and their associated
sensory consequences, into a more elaborate hierarchal structure to represent complex
movement (Frank & Schack, 2017). This theory was developed by the evaluation of expertise on
motor tasks, whereby contrasting the hierarchal structure of movement in novice versus elite

athletes revealed that athletes maintain a much more structured cognitive understanding of
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movements in which they are experts (Schack, 2004; Schack & Mechsner, 2006). In a study of a
golf swing, it was noted that both overt execution and motor imagery practice of the skill led to
the development of a more complex cognitive structure of a golf swing, however, practice by
overt execution led to better subsequent skill performance while imagery led to a more expert
like cognitive representation of movement (Frank et al., 2013, 2014).

1.6  How do we learn via motor imagery:

It is at this point that | would like to make an aside to denote a synergy between the
study of motor control and theories of motor imagery. The development of motor simulation
theory by Jeannerod in 2001 presented a significant development for the field of motor imagery
but also served as a point of divergence whereby the study of imagery could become
independent of overt execution. When motor simulation theory was formed, the prevailing
belief of motor control was feedforward control of movement since optimal feedback control
had yet to be introduced (C. M. Harris & Wolpert, 1998; Jeannerod, 2001; Todorov & Jordan,
2002). In the framework of feedforward control, it was widely believed that motor planning
resulted in an exact kinematic/dynamic plan for movement that would be enacted as an
ensemble. Therefore, when the idea of functional equivalence in motor imagery was proposed
it likely had a feedforward representation of motor planning in mind, however, due to the
vagueness of the mechanism proposed in motor simulation theory this observation is just
speculation (Hurst & Boe, 2022; Jeannerod, 2001). When the motor control literature
subsequently evolved to predicate that the outcome of motor planning is a control policy, a
general rule for guiding the efficiency of a movement from any initial state of the effector and

goal (see What is a motor plan), rather than an exact motor command, it was not explicitly
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noted in the motor imagery literature. The recent proposal made by the perceptual cognitive
model presents a surprising alignment of the motor imagery literature with the current
understanding of motor control (Frank & Schack, 2017; McNamee & Wolpert, 2019). The
perceptual-cognitive reorganization emphasized in the perceptual cognitive model is remarkably
similar to the suggested formation of behavioural hierarchies currently being recognized in the
motor control literature to suggest how a control policy can be updated while concurrently
addressing the degrees-of-freedom problem (Frank & Schack, 2017; McNamee & Wolpert,
2019). The convergence of both streams of literature on this idea of building control policies
that improve as a function of how well their hierarchal organization is understood provides a
promising, parsimonious avenue to investigate a potential shared mechanism between motor
imagery and overt execution to drive motor learning by improvements made in action selection
through perceptual-cognitive reorganization. The finding that motor imagery leads to more
accurately developed hierarchal representations of movement further highlights an important
implication for motor imagery-based learning whereby attentional resources are not split across
action selection and action execution as they are in overt execution (Frank & Schack, 2017;
Hurst & Boe, 2022). In imagery attention is only allocated to processes involved in action
selection which might contribute to the noted perceptual bias in motor imagery, bias towards
covertly performed components of movement. This bias was noticed by the diverging effects of
transfer amongst trained vs. untrained effectors and inhibitory TMS manipulations on
behavioural motor learning tasks (see What is the cortical representation of motor imagery;
Hurst & Boe, 2022; T. G. Ingram et al., 2016; S. N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner,

Ingram, et al., 2017; Solomon et al., 2021).
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1.6.1 The impact of forward models on motor imagery-based motor learning:

In addition to the improvements made to control policies as a function of motor imagery
practice, evidence suggesting that motor imagery employs forward models indicates that the
comparison of the predicted sensory consequences of movement to the movements goal could
also be used to help drive learning in imagery (Grush, 2004; Hadjiosif et al., 2021; Kilteni et al.,
2018; Todorov & Jordan, 2002). Stemming from this finding is the interesting observation that
motor imagery performance can result in errors (Dahm & Rieger, 2019a, 2019b; T. G. J. Ingram
et al., 2022). This result suggests that the forward model employed in imagery can predict
mistakes and, therefore, drive motor learning through the provision of an error signal that
represents a mismatch between the predicted sensory consequence of movement and the
movements intention as governed by the control policy (Figure 1.7 upper right (X); Dahm &
Rieger, 2019b). The question is, how does motor imagery predict a mistake? In overt execution,
state estimation generates a sensory prediction error by comparing sensory afference to the
predictions made by the forward model (Figure 1.3d; see How do we execute movement).
However, in motor imagery there is no sensory afference. This observation served as the genesis
for my first thesis chapter where it was postulated that motor imagery performance must also
involve a simulation of sensory afference to generate an error. To evidence this decision TMS
was used to transiently inhibit a brain region believed to be responsible for this function, the IPL

(see section 1.7 What is the cortical representation of Ml).
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Figure 1.7: A computational framework for motor imagery taken from Dahm and Rieger (2019). In this framework
for motor imagery the output of the forward model, the predicted sensory consequences of movement, can be
compared against the intentions of movement as the only method to drive learning in the absence of sensory
afference.

1.7 What is the cortical representation of motor imagery:

While the argument is presented earlier in this thesis that the understanding of cellular
mechanisms is insufficient to explain behaviour due to a lack of context, the answers to which
behavioural frameworks are most plausible can conversely arise from the underlying anatomy
(Krakauer et al., 2017). With specific regards to the theories that define motor imagery, those
aligning with the functional equivalency hypothesis (motor simulation theory and motor
emulation theory) would suggest a high degree of overlap between the cortical representations
of motor imagery and overt execution, in comparison to those suggesting alternative
mechanisms for the two modalities (e.g., the motor cognitive model; Glover & Baran, 2017;
Grush, 2004; Jeannerod, 2001). However, these representations need to be considered in the

context of the primary behavioural difference between the imagery and overt execution, the
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presence of movement. Specifically, the impact of lack of movement in motor imagery needs to
be considered with reference to the recruitment of cortical regions involved in generating
movement as well as the potential reallocation of cognitive resources towards behaviours that
remain as part of the imagery experience, such as, perceptual-cognitive reorganization (Frank &
Schack, 2017; Hurst & Boe, 2022). As such, even if the same cortical regions are recruited for a
task, they may not be performing the same function (Poldrack, 2006). In addition to this
ambiguity, there is also a methodological bias that needs to be considered, whereby tasks
commonly selected in neuroimaging investigations of motor behaviours choose kinematically
simple movements such that the head can remain stationary in the scanner (Hardwick et al.,
2018; Puce & Hamalainen, 2017). A consequence of this decision is that the neuroimaging
accounts of motor imagery might bias the underlying networks to represent functions
associated with goal and action selection due to the high-fidelity and kinematic simplicity of
movements employed in these behavioural paradigms (Figure 1.2; Krakauer et al., 2019). It
therefore remains a possibility that other loci of activity associated with more typical
sensorimotor areas might be involved in motor imagery affecting conclusions surrounding the
degree to which imagery relies on these covert components of movement (i.e., goal, and action
selection). With both arguments in mind, mapping the areas involved in a behaviour can
identify targets for further investigation to elucidate their role in behaviour.

A meta-analysis performed by Hardwick et al., (2018) of overt execution, denoted as
motor execution in Figure 1.8, and motor imagery serves as the most updated reference for the
cortical representations for each modality (see Figure 1.8a &b). Overt execution in this analysis

revealed activity in the sensorimotor cortex, premotor cortices, IPL as well as subcortical
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structures including the thalamus, putamen, and cerebellum (Figure 1.8a; Hardwick et al.,
2018). Motor imagery recruited a more diverse collection of cortical structures including parts
of the premotor cortex, the superior and inferior parietal lobes, cerebellum, basal ganglia, and
the left dorsolateral prefrontal cortex (Figure 1.8b; Hardwick et al., 2018). The contrast of the
two modalities revealed a bias of motor imagery towards greater recruitment of the parietal
regions and selected premotor areas, whereas motor execution recruited more heavily from
areas classically associated with the production of movement including the cerebellum,
somatosensory cortex, supplementary motor area (SMA), and M1 (Figure 1.8c; Hardwick et al.,
2018). The conjunction analysis comparing similarities between both modalities produced an
overlapping activation of areas in the premotor cortex including the SMA, dorsal and ventral
premotor cortices, somatosensory cortex as well as a small cluster in the cerebellum (Figure

1.8d; Hardwick et al., 2018).
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Figure 1.8: Results of an activation likelihood estimate meta-analysis of motor imagery in contrast and in
conjunction with movement execution (overt execution) adapted from Hardwick et al., (2018). Subplots a and b
denote the cortical regions active in 142 movement execution and 303 motor imagery studies respectively. Subplot ¢
visualizes the cortical regions uniquely activated in motor imagery and movement execution respectively (motor
imagery = red, movement execution = green). Subplot d shows the results of a conjunction analysis highlighting
cortical regions activated during performance of movement in both modalities.

1.7.1 The importance of cortical regions to motor imagery-based motor learning:

From the analysis above, a few areas of the cortex become interesting targets for
investigation, specifically the parietal regions that are recruited more heavily in motor imagery,
the motor cortices that are recruited heavily in motor execution and the SMA that is jointly

recruited by both modalities (Figure 1.8c&d; Hardwick et al., 2018). The motor cortices are
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classically thought to be responsible for sending the final output of the brain to spinal motor
neurons to begin movement, however, the area has also been implicated in the retention of
learned motor skills (Grospretre et al., 2015; Richardson et al., 2006). The parietal lobes are
commonly associated with a role of sensorimotor integration vital for interpreting visual
information for movement via the dorsal visual pathway and are thought to be involved in the
process of state estimation for motor control (Andersen & Buneo, 2002; Buneo & Andersen,
2006; Goodale & Milner, 1992; Haar & Donchin, 2020; Medendorp & Heed, 2019). Regarding
state estimation, the IPL would incorporate sensory afference from movement with a sensory
prediction from the forward model, commonly associated with cerebellar function, to generate
the sensory prediction errors used to guide movement (Medendorp & Heed, 2019; Shadmehr &
Krakauer, 2008; Sokolov et al., 2017). The SMA, an area active in both overt execution and
motor imagery, is believed to be involved in several functions relating to action selection and
timing of sequential movements (Cona & Semenza, 2017; Hoffstaedter et al., 2012; Lara et al.,
2018). The area also seems to activate in response to upcoming sequences of previously
acquired movements suggesting another possible role in the creation of motor chunks as a
representation for a number of sequential actions (Tanji & Shima, 1994; Verwey et al., 2015).
To date, much of the research elucidating the functions of these areas came from
inquiries about motor control completed using overt execution and, therefore, served as
meaningful reference points to evaluate the neural mechanisms underlying motor imagery.
From 2016 to 2021 our lab performed a series of studies examining motor learning via motor
imagery using a serial reaction time task and selectively interfered with the function of the IPL,

SMA and M1 using a type of repetitive TMS prior to training on the task (Huang et al., 2005; S.
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N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner, MacKenzie, et al., 2016; S. N. Kraeutner,
Ingram, et al., 2017; Solomon et al., 2021). In line with the contrast and conjunction analyses
from Hardwick et al., (2018), stimulation to the IPL impaired sequence acquisition in motor
imagery more than overt execution, stimulation to the SMA impaired sequence acquisition in
both conditions and stimulation to the M1 impaired sequence acquisition more in overt
execution than in motor imagery (Figure 1.9; (Hardwick et al., 2018; S. N. Kraeutner, Keeler, et
al., 2016; S. N. Kraeutner, MacKenzie, et al., 2016; S. N. Kraeutner, Ingram, et al., 2017; Solomon
et al., 2021). The results indicate motor learning via motor imagery relies on brain areas
associated with mechanisms involved in goal and action selection, the IPL, and SMAs, but less so

on the M1 which is associated with action execution.
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Figure 1.9: A summary of results from a motor imagery serial reaction time task [mean + SD] used in Kraeutner,
Keeler, et al., (2016), Kraeutner, MacKenzie, et al., (2016), Kraeutner et al., (2017) and Solomon (2021). Prior to
engaging in the experimental paradigm participants received real or sham repetitive transcranial magnetic
stimulation delivered to the inferior parietal lobe, motor cortex or supplementary motor area. Note that that the
mean values reported in all groups excluding the SMA and SMA_Sham reflects the participant means, whereas
values from the two SMA groups reflect every collected trial, hence the difference in variance.

However, these conclusions came with two limitations. Firstly, due to the extended
length of the inhibitory effect of the repetitive TMS (approximately 45-60 minutes), it was not
possible to identify what the role for any of these cortical regions were. Rather, the findings
denoted the relative importance of the regions to motor learning in either modality on the
serial reaction time task. The second limitation was the task selection. While motor learning can
be assessed using a wide variety of tasks, these tasks do not rely evenly on all mechanisms used
to control movement (Figure 1.2; Krakauer et al., 2019). Specifically, serial reaction time tasks
are a variety of sequence learning tasks that rely heavily on goal and action selection and very
little on action execution which could have impacted the recruitment of cortical areas that are
needed to complete the paradigm and created a bias in the results owing to the task used.
These two factors served as further inspiration for my thesis whereby over the following
chapters | sought to investigate two questions:

1) What is the role of the IPL in motor imagery?

2) Is task selection potentially biasing our view of the mechanisms underlying motor

imagery?
1.8 Thesis chapter overview:

This thesis aimed to address these questions by altering the approach used to
transiently inhibit the brain such that a potential role for the IPL could be assessed, and by

selecting a more complex behavioural task in which to evaluate learning. The task employed in
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all the following chapters is a complex movement execution paradigm that according to the
hierarchy presented in Figure 1.2 could be classified as de novo continuous learning (T. G. J.
Ingram et al., 2019; Krakauer et al., 2019). While this progression of chapters was not as
anticipated due to the COVID-19 pandemic and the role of the IPL was not adequately
addressed, its results speak clearly to the effect of task selection in the study of motor imagery-
based motor learning and improve our understanding of the neural correlates of motor imagery.
1.8.1 Chapter 2

In the second chapter, we attempted to address both questions at once by employing a
temporally discrete single pulse transcranial magnetic stimulation method to interfere with
function of the L_IPL after each bout of the complex movement execution task (Prime et al.,
2008; Solomon et al., 2022). This approach was specifically designed to test if the region was
involved in the provision of simulated sensory afference to permit state estimation (see How do
we control movement). This study returned a null result and unfortunately its conclusion
coincided with the onset of the COVID-19 pandemic. The null result forced a re-evaluation of
the planned thesis projects, and the pandemic onset delayed the start of data collection for the
subsequent chapters.
1.8.2 Chapter 3

Since public health guidelines prevented data collection from continuing during the
pandemic, we focused our attention on methodological improvements to the complex
movement execution task. In collaboration with PhD student Austin Hurst, we improved the
accuracy of our data analysis pipeline. During this process we identified the choice of outcome

measure as a potential avenue for further improving the ability of the complex movement
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execution task to detect changes in learning resulting from motor imagery training. Specifically,
based on the belief that motor imagery helps improve action selection rather than action
execution, the choice of mean error as an outcome measure for the behavioural task
represented a bias towards action execution that could be masking the benefits of motor
imagery training (T. Kim et al., 2017). As such, the third chapter set out to test a new
correlation-based outcome measure to isolate improvements made to action selection on the
paradigm by re-analyzing the data originally collected and reported in Ingram et al., (2019). The
results indicate that the correlation-based outcome measure is able to detect changes in
learning as a result of motor imagery and overt execution training and is indifferent to absolute

spatial errors in action execution, supporting its use in subsequent studies.

1.8.3 Chapter 4

At the onset of the pandemic the methods for the fourth chapter of this thesis, originally
proposed as the third chapter, had just been piloted and data collection was set to begin. The
study comprising the fourth chapter of the thesis aimed to solely address the impact of task
selection on the contribution of cortical regions to motor imagery-based motor learning by
replicating our lab’s earlier results from the series of serial reaction time tasks on the newer
complex movement execution paradigm (S. N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner,
Ingram, et al., 2017; Solomon et al., 2021). This project used the correlation-based outcome
measures developed in chapter 3 to characterize the effect of stimulation on action selection in
an 8-group study differing on the brain region targeted by the stimulation (L_IPL, SMA, M1 and
SHAM) and practice modality (motor imagery and overt execution). Rather than using the single

pulse stimulation paradigm employed in chapter 2, a time insensitive repetitive TMS paradigm
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was used to induce a virtual lesion prior to training on the complex movement execution task.
Results of this study denoted the importance of the L_IPL to motor imagery-based motor
learning as inhibitory stimulation to this brain region impaired learning on the task. However,
Results from the M1 and SMA stimulation did not align with the prior literature. The lack of
consistent findings highlights the limitations of the current stimulation-deficit design when
applied to single tasks. From these results we suggest that interpretation of the findings from
such studies need to be limited or future studies should use a battery of behavioural tasks to
overcome the limitation noted above.

1.8.4 Contributions to Thesis Chapters:

Chapters one and five of this thesis are written by Jack Solomon and edited in
collaboration with Dr. Shaun Boe.

Chapter two reports a project devised by Jack Solomon and Dr. Shaun Boe. Data
collection and analysis was completed by Jack Solomon under the supervision of Dr. Shaun Boe
with the aid of JungWoo Lee (data collection) and Austin Hurst (data analysis). Jack Solomon
wrote the initial draft of the manuscript with editing and revisions completed in collaboration
with Dr. Shaun Boe.

Chapter three reports a re-analysis of data collected and reported in Ingram et al.,
(2019). The original project was conceived by Drs. Tony Ingram, David Westwood, and Shaun
Boe. The novel analysis was conceived and implemented by Jack Solomon and Austin Hurst. The
chapter was written by Jack Solomon with editing and revisions completed in collaboration with

Dr. Shaun Boe.
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Chapter four reports a project that was conceived by Jack Solomon and Dr. Shaun Boe.
Data collection was led by Jack Solomon under the supervision of Dr Shaun Boe and was aided
primarily by Taylor Hadskis, Darby Green, and Hannah Lee. Data analysis and manuscript writing

was completed by Jack Solomon with editing and revisions completed in collaboration with Dr.

Shaun Boe.
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CHAPTER 2: ARE OBSERVED EFFECTS OF MOVEMENT SIMULATED DURING
MOTOR IMAGERY PERFORMANCE?

A version of this chapter has been published.
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Reviewing/Editing.

2.1 Abstract:

Motor learning relies on adjusting performance of movements via error detection and
correction. How motor learning proceeds via motor imagery, the imagination of movement, is
not understood. Motor imagery-based learning is thought to rely on comparing the predicted
effect of movement, resulting from the forward model, against its intended effect. Whether
motor imagery-based learning uses the observed effect of movement, simulated in motor
imagery, to make comparisons to the intended effect to permit error detection and correction,
is an open question. To address this, transcranial magnetic stimulation was used to inhibit the
left inferior parietal lobe (L_IPL) after each trial of a task requiring participants to reproduce
complex trajectories via motor imagery. From past work, we speculated the L_IPL was a
candidate for integrating simulated feedback about task performance (simulated observed
effects), hypothesizing inhibition of the L_IPL would impair learning, suggesting simulated
observed effects of movement are used in motor imagery-based learning. Participants received
stimulation to the L_IPL or over the vertex of the head after each trial. Learning was defined as
reduced error on a repeated trajectory in comparison to randomly generated trajectories.

Regardless of group participants learned, a finding countering our hypothesis, suggesting i)
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observed effects of movement are not simulated in motor imagery; ii) the L_IPL is not involved
in integrating simulated observed effects of movement; or iii) the timing of the stimulation did
not align with the speculated role of the L_IPL. Results encourage further research probing

simulated feedback in motor imagery and its neural correlates.

2.2 Introduction:

Acquisition of novel motor skills or improvement in performance of previously acquired
skills occur via motor learning (Fitts & Posner, 1967; Newell, 1991). It is well accepted that
motor learning proceeds through repeated execution of the motor skill to be acquired, with the
identification and subsequent correction of errors ultimately resulting in better performance
(Hardwick et al., 2013; Wolpert, 2014). This error detection/correction process is driven by
neuroanatomical computations that minimizes the distance, error, between the state of the
body and its environment (i.e., the observed effect of movement) and it’s intended effect (i.e.,
the desired outcome of the movement; Blakemore et al., 2002; Dahm & Rieger, 2019b;
Shadmebhr et al., 2010; Shadmehr & Krakauer, 2008; Wolpert & Kawato, 1998). Figure 2.1A
details a framework outlining these computations; an inverse model, the sensory to motor
transformation that results in the motor command(s) necessary to achieve the intended effect,
is first created (Blakemore et al., 2002; Dahm & Rieger, 2019b). Parallel to the motor command
being sent to the effectors to execute the movement, a copy of the plan (i.e., the efference
copy) is used by the forward model which outputs a prediction of the body’s upcoming position
(i.e., the predicted effect of movement) via a motor to sensory transformation (Wolpert &
Flanagan, 2001). As the movement is executed the forward model integrates sensory

information regarding the state of the body and its environment (i.e., observed effects) in real
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time, to update and adjust the forward model to minimize the difference (error) between the
predicted effect (from the forward model) and the observed effect (Fig 1A, see circle 1;
Shadmehr & Krakauer, 2008). Upon completion of the movement, the predicted and observed
effect of movement are compared against the intended effect to identify and integrate
adjustments to the motor command to improve performance on the subsequent trial (Fig 1A,

see circles 2 and 3; Blakemore et al., 2002).

A) Q)

Intended Effects

Inverse Model

Motor Command

Intended Effects

Inverse Model

Motor Command

Intended Effects

Efference Copy Effector Activation

Forward Model
Predicted . Observed
Effects Effects

Figure 2.1: A) Framework for motor learning occurring via overt movement, adapted from Blakemore et al., (2002);
briefly, as a motor command is sent to the effectors, the efference copy is used as input to a forward model. The
forward model serves to predict the upcoming state of the effectors (predicted effect) and corrects for error (circle
1) by integrating observed effects from the movement. When the movement is completed, the observed and
predicted effects of the movement (circles 2 and 3) are compared against the intended effect of movement to
minimize the difference between them. B) A proposed framework for motor learning via motor imagery adapted
from Dahm and Rieger, (2019); briefly, since movement is not executed in motor imagery, two of three processes
used to identify error and correct movement are not utilized in motor imagery, represented by grey lines. Therefore,
learning can only occur through comparison of predicted against intended effect (circle 2). C) Theorized changes to
the Dahm and Rieger, (2019) model of motor learning in motor imagery to account for the errors in the predicted
effects of movement (grey dashed lines). In this model observed effects are simulated via motor imagery
performance alongside the predicted effects arising from the forward model enabling comparisons represented by
circles 1 (predicted vs. observed effects) and 3 (observed vs. intended effects) to contribute to learning occurring via
motor imagery.
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Forward Model
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Effects

Our understanding of motor learning as detailed above arises largely from the study of
repeated practice occurring via overt movement. Like overt movement, practice via motor
imagery has also been shown to drive motor learning, even independent of overt movement (T.
G.J.Ingram et al., 2019; T. Kim et al., 2017; Ruffino et al., 2021). The basis for the effectiveness

of motor imagery for motor learning is grounded in the motor simulation theory, which posits

64



that motor imagery and overt movement are functionally equivalent, in that similar processes
occur in the brain when engaging in a motor skill using either modality, with the major
difference being that the movement is not actually executed in motor imagery (Jeannerod,
2001). Given that the movement is not actually executed in motor imagery, a paradox is created
—if you learn a skill by identifying and correcting errors through the provision of feedback
arising from the observed effect of movement (i.e., Fig 1A), how does motor imagery facilitate
skill acquisition when the movement is not actually executed? Presumably, such a scenario
creates a circumstance where the outcome of the movement is not known, and, as a result, the
observed effect of movement cannot be used as feedback to adjust the forward model (Figure
2.1B; see circle 1). Nor could the observed effect of movement be used as a comparator to the

intended effect (Figure 2.1B; see circle 3) to adjust the motor command for the subsequent trial.

In the scenario outlined above, the only avenue providing a means for error detection
and correction would be to use the predicted outcome of movement, generated by the forward
model, and compare it against the intended effect of movement (Figure 2.1B; see circle 2). For
learning to occur in this scenario two assumptions need to be true: 1) there must be a
mechanism in motor imagery to predict the effect of movement; and 2) this prediction must
differ from the intended effect of the planned movement. These assumptions align with the
emulation theory of motor imagery, which posits that motor imagery involves a simulation of
the movement and its sensory consequences (Grush, 2004). Indeed, emulation theory provides
a framework to understand how movement outcomes are predicted in motor imagery. In its
simplest form, the emulator uses the efference copy to generate a simulation of the movement

and its sensory consequences, akin to a forward model. Until recently however, evidence was
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lacking to support the notion of forward models in motor imagery. In their elegant study, Kilteni
and colleagues provided evidence that forward models are used in motor imagery akin to overt
movement (Kilteni et al., 2018). As noted by the authors, when performed via overt movement,
the sensation associated with self-touch relative to touch by an external source is attenuated by
the forward model’s prediction of the tactile feedback (Blakemore et al., 2000). Based on this
evidence, Kilteni and colleagues provided tactile feedback to participants as they imagined
performance of a self-generated touch, with the tactile feedback serving as a substitute for the
sensory input that would result from performing the task overtly. The authors demonstrated
that both motor imagery and overt execution of the task resulted in attenuation of the
perceived force. The attenuation of the perceived force from the self-generated touch results
from the predicted effect of movement, meaning participants must utilize the forward model in

both motor imagery and overt movement.

Arising from the finding that integration of forward models in motor imagery is tenable
is the question of whether the predicted effects of movement generated in the process of doing
motor imagery are simply the motor to sensory transformation of the original motor command
(and thus a replicate of the intended effect of movement) or if the predicted effects of
movement deviate from this, i.e., do errors result from motor imagery. Results on a dart
throwing task whereby participants were to imagine themselves “hitting the bullseye” revealed
that self-report of the position of their dart on the board after motor imagery performance was
inaccurate (Dahm & Rieger, 2019b). This finding demonstrated that motor imagery performance
can result in a subjectively experienced error, in line with past work, including that

demonstrating the commission of errors in imagined typing (Dahm & Rieger, 2019a).
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Additionally, the degree of reported error on the task when performed via motor imagery was
correlated with error produced in overt execution and was additionally modulated by
experience with the task (Dahm & Rieger, 2019b). During performance of a complex motor task,
a similar finding was obtained, whereby increasing stimulus complexity and animation velocity
negatively impacted both accuracy and self-reported accuracy in the overt execution condition.
Likewise, in the motor imagery condition increasing stimulus complexity and animation velocity
negatively impacted self-reported accuracy (T. G. J. Ingram, 2021). The observation that motor
imagery performance can result in error and that this error is similarly modulated by factors
known to affect overt movement supports the theory that movement is simulated in imagery
rather than imagery being a predetermined cognitive representation of one’s knowledge of the
skill and its consequences(Grush, 2004; Pylyshyn, 2002). Additionally, the presence of errors
resulting from motor imagery gives rise to the possibility that motor imagery leverages the
comparison of the predicted and intended effects of movement to adapt behaviour on
subsequent trials to drive motor learning (Figure 2.1B, see circle 2; Dahm & Rieger, 2019b).
However, this finding and the related theory raise an interesting question as to how

performance of a movement via motor imagery produces an error.

If one assumes the model outlined in Figure 2.1B to be correct, the imagination of
movement is simply a forward model that does not benefit from the integration of sensory
information as the ‘movement’ progresses, as there would be no observed effect of the
movement, as theorized by Dahm and Rieger (Dahm & Rieger, 2019b). In this model, the
predicted effect of movement resulting from the forward model would simply be the motor to

sensory transformation of the efference copy. As the ‘movement’ progresses, subsequent
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comparison of the predicted and intended effect of movement would yield no adaptation over
time as the two signals would contain similar information. As evidence indicates motor imagery
can drive motor learning, it is more likely that forward models in motor imagery lack precision
and thus do not accurately represent the motor commands required to achieve the intended
effect. Thus the error arising from the comparison of the predicted to intended effect would
indicate that adjustments should be made to future attempts at movement (Figure 2.1B, circle

3; Dahm & Rieger, 2019b).

While the imprecision of the forward model is a possible explanation of error resulting
from motor imagery performance, it ignores the possibility that the observed effects of
movement are simulated in the process of imagining a movement (Figure 2.1C; Grush, 2004;
Shadmehr & Krakauer, 2008; Wolpert et al., 2011). According to emulation theory, motor
imagery can be represented by a simulation of both the predicted effects of movement as well
as the observed effects (Grush, 2004). Should emulation theory be true, the observed effects of
movement, simulated in motor imagery, would provide the required input for updating the
predicted effects of movement and a comparison against the intended effect of the movement
(Figure 2.1C; see circles 1 and 3 respectively). Here we make a preliminary attempt at testing
the theory that the observed effect of movement, simulated in motor imagery, is used in the

process of acquiring a novel motor skill.

One approach to testing the plausibility of this theory is to interrupt activity of the brain
region thought to be responsible for simulating observed effects in motor imagery (Figure 2.1C).

In overt movement, the process of updating a forward model is attributed predominantly to
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three regions of the brain: the motor cortex (M1), the parietal lobe, and the cerebellum
(Desmurget et al., 1999; Popa & Ebner, 2019; Schieber & Poliakov, 1997; Shadmehr & Krakauer,
2008). The M1 is largely responsible for executing the motor command which gives rise to the
efference copy that is used to generate a forward model (Kilteni et al., 2020; Wolpert &
Ghahramani, 2000). The parietal lobe integrates the state of the body with sensory information
about the surrounding environment and the goal of the movement which is relayed to the
cerebellum (Andersen & Buneo, 2002; Block et al., 2013; Caspers et al., 2010; Fogassi &
Luppino, 2005; Miall, 2003; Mutha et al., 2011; O’Shea & Moran, 2017). This sensory
information is used to form state estimations or representations of the consequences of
movement that can then be used to modulate an upcoming or ongoing motor plan realized by
reciprocal cerebro-cerebellar connections or a recently identified sensory-parietal-motor loop
(Blakemore & Sirigu, 2003; Medendorp & Heed, 2019; Pilacinski et al., 2018; Richard et al.,
2021). The cerebellum is thought to be responsible for housing and updating the forward model
(Miall et al., 1993; Miall & Wolpert, 1996). Based on the role of the parietal lobe in integrating
proprioceptive and environmental information for movement, its consistent activation during
the performance of movement via motor imagery and the inability of stroke patients to perform
motor imagery (as assessed via motor imagery ability questionnaires) when the parietal lobes
are damaged, we theorized that the parietal lobe was a likely candidate brain region that
contributes to or is the source of the simulated observed effects of movement in motor imagery
(Figure 2.1C; Burianova et al., 2013; Hardwick et al., 2018; Hétu et al., 2013; Mclnnes et al.,
2016; Sirigu et al., 1996). In addition to the above, past work has demonstrated that inhibitory

brain stimulation delivered to the left inferior parietal lobe (L_IPL) prior to practice occurring via
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motor imagery abolishes motor imagery-based learning, demonstrating the region’s importance
to skill acquisition via motor imagery (S. N. Kraeutner, Keeler, et al., 2016). However, given that
the inhibitory stimulation was delivered prior to the motor imagery-based practice and its
inhibitory effect persisted throughout the experiment, it was not possible to identify the L_IPL’s
potential role in the process of motor imagery-based motor learning (Figure 2.1C). Said another
way, this finding only highlights that the L_IPL is important to motor imagery-based learning but
does not permit insight into its possible role in integrating simulated movement outcomes
during motor imagery performance. To gain insight into the role of the L_IPL in motor imagery-
based motor learning, single pulse transcranial magnetic stimulation (TMS) applied at an

appropriate time could be used to selectively interfere with the function of the area.

Given the need for greater temporal specificity in the inhibition of the L_IPL, here we
used single-pulse TMS delivered shortly after each trial of task practice via motor imagery to
transiently inhibit the L_IPL. This paradigm specifically probes the L_IPL’s involvement in
providing the simulation of the observed effects of the movement during motor imagery as a
metric for comparison against the intended effect of movement (Figure 2.1C; see circle 3). In the
first of two sessions, participants engaged in the execution of kinematic trajectories of varying
complexity via motor imagery for four blocks of 20 trials followed by a single block of 20 trials
that were performed overtly to assess performance. The second session comprised a retention
test that was identical to the final block of session one. Participants were randomly assigned to
one of two groups who received either non-invasive inhibitory TMS to the L_IPL (‘stim’) or over
the vertex of the head (‘sham’) 100ms after each trial. This approach has been shown to

transiently alter neural processing in the region receiving the stimulation, and thus for the
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current experimental paradigm, the stimulation would interfere with the integration of the
simulated observed effects required to draw a comparison against the intended effect of
movement, contributing to motor learning (Figure 2.1C; see circle 3; Prime et al., 2008).
Specifically, we hypothesized that inhibitory single pulse TMS to the L_IPL would impair learning

relative to the group receiving stimulation over the vertex of the head.

2.3 Methodology:

2.3.1 Participants:

Forty-three participants with normal or corrected to normal hearing and vision, no
history of neurological injury, and who reported no contraindications to TMS were recruited for
the study. Of the 43 participants recruited, one withdrew from the study during the first session
and 8 were lost to technical errors leaving a final sample of 35 participants. Participants were
aged 22.4 + 3.5 (mean £ SD) years with 22 identifying as female and 13 as male. Handedness
was determined via the Edinburgh Handedness Inventory (Oldfield, 1971) and ability to perform
motor imagery assessed using the Kinesthetic and Visual Imagery Questionnaire (KVIQ; Malouin
et al., 2007). Most participants were right hand dominant (n=30) with the remaining left hand
dominant (n=4) or ambidextrous (n=1). Participants were randomly assigned to one of two
groups: ‘sham’ or ‘stim’ (see Transcranial Magnetic Stimulation below). The stim (n=17) and
sham (n=18) groups were balanced across sex (11 and 6; 11 and 7 for female and male for the
stim and sham groups respectively) age (22.5 + 3.1 and 22.2+3.9 years for the stim and sham
groups respectively) and imagery ability in the kinesthetic domain (KVIQ kinesthetic scores: 20.8

+ 3.4 and 21.5 + 3.1 for the stim and sham groups respectfully). Each participant provided
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written informed consent and were oriented to the task by the investigator. Ethical approval was

obtained from the Dalhousie University health sciences research ethics board.

2.3.2 Task Description:
We used a motor task that required repeated execution of kinematic trajectories of
varying complexity, for which learning has been previously demonstrated using both overt

movement and motor imagery (T. G. J. Ingram et al., 2019); https://github.com/LBRF/TraceLab).

Trials consisted of animation of a complex trajectory on a touchscreen followed by the
participants response. Stimuli consisted of either randomly generated trajectories or a repeated
trajectory, the latter which was to be learned. Learning is determined by comparing the
magnitude of error on repeated relative to random trajectories. For the present study, the
original paradigm was reduced in total trial number from 500 to 120 and compressed into two
study sessions (training/testing in session one and a retention test in session two; Figure 2.2).
Given this change, we confirmed via pilot testing participants ability to learn the repeated
trajectory in a single session. To accommodate the delivery of TMS, the original code was
modified to integrate control of the TMS system using the MagPy package in Python (McNair,
2017). A complete description of the task is reported in Ingram et. al. 2019. Briefly, participants
were seated upright with their chin positioned in a chin rest to both minimize muscle fatigue
and head movement during task performance and to facilitate accurate localization of the TMS.
A 24” touch screen monitor with 1080p resolution and 60Hz refresh rate (Planar Helium
PCT2485) was located approximately 12” in front of the participant, lying flat on a table. This
orientation of the touchscreen allowed for unobstructed viewing and for the participant to

comfortably reach the screen (Figure 2.3).
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2.3.3 Trial Description:

Stimuli were animated trajectories that consisted of 5 connected Bezier curves.
Trajectories started at the midline of the lower half of the touchscreen, with animation
proceeding in a clockwise direction where Bezier curves connected 4 control points (one in each
guadrant of the screen) before returning to the start point. As above, stimuli consisted of
random trajectories that were generated at the beginning of each trial and a repeated trajectory
that was generated at the outset of the first study session and remained consistent for each
participant throughout. Trajectory complexity, measured as the sum of the interior turn angles,
inherently varies as a function of the random trajectory generation, indicating that random
shapes would not likely be equally as complex as the repeated trajectory. To ensure the random
and repeated trajectories were of similar difficulty, the repeated trajectory used in this
experiment was chosen from the set of repeated trajectories utilized in Ingram et al., (2019),
which were selected based on their similarity to the mean complexity of random trajectories
generated in this paradigm. Stimuli were presented at a 1:1 (random to repeated) ratio and
trials were animated at 5 different durations (500, 1000, 1500, 2000, and 2500ms) such that
there was equal exposure across stimulus type and animation durations. In session one,
participants performed 5 blocks of 20 trials, with each block equally divided between random
trajectories and the repeated trajectory pseudo randomly presented at each animation
duration, resulting in the presentation of 50 trials each of random and the repeated trajectory
distributed evenly across animation durations. In session two, participants performed one block
of 20 trials equally divided between random and the repeated trajectory distributed evenly

across animation durations (Figure 2.2). Participant responses were made using either imagined
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or overt movement: in session one, blocks 1-4 were considered training blocks during which
participants responded using motor imagery, while block 5 was considered a testing block,
requiring participants to respond using overt movement to allow performance to be assessed.
In session two, participants responded using overt movement exclusively. Regardless of
response modality, a trial began with the participant lifting their index finger from a position in
the lower right corner of the touchscreen, at which point the participant observed a white dot
animating the stimulus (i.e., the trajectory) beginning at the start point. After the presentation
of the stimulus, a red circle appeared at the start / end point of the trajectory. For motor
imagery trials, the participant placed their index finger on the red circle, at which point it turned
green, prompting the participant to imagine themselves performing the movement (i.e.,
completing the trajectory). When they had completed the imagination of the movement,
participants lifted their finger off the screen, ending the trial. If participants moved their arm
during the trial (i.e., overtly performed the task), a mistrial resulted when their finger left the
green circle. Trials involving overt movement proceeded in the same manner as that of the
motor imagery trials, with the exception that participants performed the movement. For all
trials, participants responded with their dominant hand and were asked to match the speed at

which the stimulus was presented to the best of their ability.
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SESSION 1 SESSION 2
Training Block 1 Training Block 2 Training Block 3 Training Block 4 Test Block 1 Test Block 2
(20 trials) (20 trials) (20 trials) (20 trials) (20 trials) (20 trials)

Motor Imagery Overt Movement Overt Movement

Figure 2.2: Experimental timeline. Following informed consent, screening and questionnaires, participants
completed 4 blocks of training via motor imagery, receiving TMS 100ms after each trial to the L_IPL (stim group) or
over the vertex of the head (sham group), followed by a test block of 20 trials performed overtly (Test Block 1). The
second session consisted of an identical test block to assess learning of the task (Test Block 2). The ratio of repeated
to randomly generated trajectories in all blocks was 1:1.

Figure 2.3: Experimental set-up. Participants reproduced complex trajectories via motor imagery (practice trials)
and overt movement (assessment) on a touchscreen monitor. Inhibitory brain stimulation was delivered via
transcranial magnetic stimulation over the L_IPL (stim group only). Overt movement trial shown to demonstrate an
example trajectory. Note: trajectory shown for illustrative purposes only; feedback was not provided to participants
during overt movement trials.
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2.3.4 Transcranial Magnetic Stimulation:

Neuro-navigated TMS was performed using a BiStim? magnetic stimulator via a 70-mm
figure of eight coil (Magstim, Whitland, UK) coupled with a Brainsight™ system (Rogue Research
Inc., Montreal, Canada). For neuro-navigation, each participant’s head was co-registered to a
template magnetic resonance image (MNI152_T1_ 1mm) by digitizing three anatomical
landmarks (left and right pre-auricular points and the nasion). Consistent with prior work
showing effective inhibition of the IPL, an online inhibitory TMS protocol in which single pulses
of TMS were delivered to the L_IPL (-36, -23, 34 [X, Y, Z]; MNI space; S. N. Kraeutner, Keeler, et
al., 2016) at 60% of stimulator output (stim group; Prime et al., 2008) was used. In the sham
group, TMS was delivered to a point over the vertex of the head at 15% of stimulator output.
Single pulses were delivered with the coil held tangentially to the participants scalp at a 45°
angle to the anterior-posterior axis (Figure 2.3), with the stimulation delivered 100ms after the
conclusion of each trial (i.e., after the participant lifted their finger from the touchscreen). The
timing of the TMS pulses was controlled by the MagPy package in Python; this approach
ensured that the TMS pulse was consistently delivered 100ms post trial completion despite the
varied length of each trial (McNair, 2017). The intensity and timing of the stimulator output was
informed by the protocol used by Prime et al., (2008) who applied a similar single pulse
paradigm targeting the IPL, which noted an effect of stimulation on behaviour.

2.3.5 Experimental Protocol:

At the onset of the first study session, participants were familiarized to kinesthetic motor

imagery by a video that described this type of imagery and explained how to perform the task

via motor imagery. Kinesthetic motor imagery was used as it better facilitates motor skill
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learning relative to visual motor imagery (Stinear et al., 2006). Handedness was then
determined, and participants completed the KVIQ. Participants then completed the 5 blocks of
the experimental task. Approximately 24h later, participants returned to the laboratory to
complete a single block of the experimental task which comprised the retention test. A detailed

timeline is shown in Figure 2.2.

2.3.6  Data Analysis:

Analysis procedures were based on those of Ingram et al., (2019) apart from additional
filtering processes to remove noise introduced through various errors identified during visual
inspection as part of preliminary data analysis. These errors included: spurious data samples
from the touchscreen (i.e., touchscreen recording a sample in a random location on the screen);
multiple contact points (i.e., when a participant’s wrist and finger(s) contacted the screen at the
same time); false starts (i.e., participant having difficulty initiating a trial); and missed endpoints
(i.e., participant failing to return to the endpoint at the end of the trial). These errors were

handled via additional filtering (https://github.com/LBRF/TraceLabAnalysis) which removed the

corresponding data points from the raw data and then interpolated the missing data points. In
instances where the gap in samples due to data being removed exceeded a threshold related to
time, distance, or distance and angle, then the trial was removed from further analysis. Trials
were removed from the analysis if the time gap between any samples in the participant
response mid trajectory was longer than 170ms (indicating that at least 10 consecutive samples
were removed) or if the distance between the last sample prior to the gap and the first sample
after the gap exceeded 500 pixels. When the gaps in data in the participant’s response occurred

at the same time as a ‘corner’ in the stimulus, the time and distance filters were more
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restrictive. This filter was multilevel to identify gaps where a participant sharply changed
direction over a small distance (e.g., a change of direction >90° over a distance <180 pixels) or
when a participant made a more gradual change in direction over a longer distance (e.g., a
change of direction >120° over a distance >250 pixels). If trials met either of these criteria, they
were removed from the analysis. Trials where a participant’s response time exceeded > 2 sec of
the stimuli animation duration were also removed from the analysis. The variability in
participant’s response speed with reference to the presented stimuli in the remaining trials
were handled using dynamic time warping. The error metric for the trajectory was
operationalized as the mean Euclidean distance (pixels) between consecutive samples from the
stimulus trajectory and the participant’s response trajectories after each of these processes
were applied to the data. In addition to the calculation of the error metric for each trajectory,
the stimulus’s animation velocity was calculated for each trial by dividing the total trajectory

length (px) by the duration of time needed to animate the trajectory.

2.3.7 Statistical Analysis:

Bayesian linear mixed-effects regressions were used to make statistical inferences regarding
group performance on the task across study sessions. A linear mixed-effects model was selected
over the more traditional analysis of variance to leverage the statistical power of the full dataset
and characterize inter-participant differences (i.e., differing levels of performance [random
intercepts] as well as different rates of skill acquisition [random slopes]). All models were run
using the “brms” package for R (version 3.6.3). To ensure that participants were attending to the
task, a model was used to predict participants movement time. The duration of the participants’

responses was predicted by the stimulus duration (ms) and modality (motor imagery or overt
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movement) while controlling for random participant effects (random intercept for participant)
and the effects of movement time and modality within participants (random slopes of
participant | movement time X modality). The final model used fixed effects of trial type
(random or repeated), session (1 or 2), group (sham or stim), animation velocity (total trajectory
length/stimulus duration; px/s), and trajectory complexity (turn angle sum) to predict error (px)
while controlling for participant performance (random intercept for participant) and the effects
of animation velocity, trial type and session within participants (random slopes of participant |
animation velocity X trial type X session). If the maximum probability of effect (MPE) was >90%
for any fixed effect, then the effect was deemed credible and was selected for post hoc analyses
via the 90% highest posterior density intervals (HPDI). For effects that were near the 90% MPE,
the proportion of the posterior distribution for that effect in the region of practical equivalence
(ROPE percentage) was additionally interpreted to determine if the effect was real.
Visualizations and post-hoc comparisons were created by using draws from the posterior
probability distribution of the model, holding various predictors constant to isolate effects of
interest. Values presented for the descriptive measures are mean + standard deviation

throughout.

2.3.8 Transparency and Openness:

All data, analysis code, and research materials are available by emailing the
corresponding author. Data were analyzed using R, version 3.6.3 (R Core Team, 2023) and the
packages tidyverse version 1.3.1 (Wickham, 2014), vegan 2.5-7, TSEntropies 0.9, brms 2.16.1,
tidybayes 3.0.1, parameters 0.14.0 and emmeans 1.6.3. This study’s design and its analysis were

not pre-registered.

79



2.4 Results:

2.4.1 Movement time:

After controlling for within participant effects on each stimulus duration, statistical
testing revealed credible main effects of modality and stimulus duration and an interaction
between modality and stimulus duration at the 1000ms level of stimulus duration. The main
effect of stimulus duration revealed that participants modulated the length of their movements
in response to the increasing length of the stimulus (1000[MPE =1, 90% HPDI: 0.62 to 0.48,
ROPE Percentage = 0], 1500[MPE =1, 90% HPDI: 0.98 to 0.82, ROPE Percentage = 0], 2000[MPE
=1,90% HPDI: 1.32 to 1.16, ROPE Percentage = 0] and 2500[MPE =1, 90% HPDI: 1.56 to 1.38,
ROPE Percentage = 0], all comparisons against the 500ms level, Figure 2.4). Participants were
consistently slower during motor imagery in comparison to overt movement, a finding
consistent with previous results using this paradigm (MPE = 0.96, 90% HPDI: -0.01 to -0.36,
ROPE Percentage = 0.21, Figure 2.4; T. G. J. Ingram et al., 2019). There was also an interaction
effect, whereby at the 1000ms duration motor imagery was slower than overt movement by a
larger margin than reported at other levels (MPE = 0.96, 90% HPDI: -0.02 to -0.25, ROPE

Percentage = 0.34, Figure 2.4).
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Figure 2.4. Scatter plot of participants’ movement times at different stimulus durations in each modality (black:
motor imagery; grey: overt movement) after controlling for within participant effects. Thick vertical bars indicate
60% HDPIs and thin vertical bars indicate 90% HPDIs.

2.4.2  Error:

Error on the random and repeated trajectories in the sham group was 96.0+38.2px and
92.2+26.4px in session one and 101.6+47.4px and 91.4+25.4px in session two. For the stim
group, error on the random and repeated trajectories was 96.1+32.3px and 89.8+21.5px in
session one and 100.3+39.0px and 88.5+24.5px in session two (Table 2.1, Figure 2.5A). After
controlling for the effects of trajectory complexity and animation velocity the mean error for
participants in the sham group in session one was estimated from the model’s posterior
distribution to be 94.7+7.2px and 85.4+6.2px (mean + 90% HPDI) and 95.6+9.2px and
85.8+8.0px (for random and repeated trajectories respectively) in session two. In the stim
group, the mean error on random and repeated trajectories were estimated to be 93.6+7.0px
and 84.6+6.5px in session one and 94.1+9.4px and 85.1+7.8px in session two (Table 2.1, Figure

2.58B).
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Table 2.1. Mean trajectory error calculated from the observations (mean + SD) and drawn from the posterior
distribution of the Bayesian model, and error controlling for animation velocity and trajectory complexity
(mean+90% HDPI) for each group separated by trial type.

Group Trial type Raw Error (mean + SD) Controlled Error (mean + 90% HPDI)
Session 1 Session 2 Session 1 Session 2
Sham Random 96.0%£38.2px | 101.6+47.4px | 94.7+7.2px 95.6+9.2px
Repeated 92.2+26.4px | 91.4+25.4px | 85.416.2px 85.818.0px
Stim Random 96.1+£32.3px | 100.3+£39.0px | 93.6+7.0px 94.1+9.4px
Repeated 89.8+21.5px | 88.5+24.5px | 84.616.5px 85.1+7.8px
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Figure 2.5. A) Scatter plot of the effects of figure type (black: random; grey: repeated) within the Sham and Stim
groups across both experimental sessions on raw error. Vertical bars indicate standard error. B) Scatter plot of the
effects of figure type (black: random; grey: repeated) within the Sham and Stim groups across both experimental
sessions on trajectory error after controlling for the effects of animation velocity and complexity. Thick vertical bars
indicate 60% HDPIs and thin vertical bars indicate 90% HPDIs.

The model highlighted several highly credible main effects including trial type, animation

velocity and trajectory complexity (Figure 2.6A-C), five separate two-way interactions (trial type

X animation velocity, session X trajectory complexity, session X trial type, session X animation
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velocity, animation velocity X trajectory complexity) and a three-way interaction (group X
animation velocity X trajectory complexity). The main effect of trial type demonstrates that
participants performed better on the repeated trajectory than on the randomly generated
trajectories (MPE = ~1, 90% HPDI: 0.20 to 0.12, ROPE Percentage = 5.0X107, Figure 2.6A). The
effects of both animation velocity and trajectory complexity indicate that participants had a
greater difficultly producing the stimulus trajectories as the stimulus animation velocity
increases (MPE: ~1, 90% HPDI: 0.65 to 0.46, ROPE Percentage = 0, Figure 2.6B) and as the
stimulus becomes increasingly complex (MPE: ~1, 90% HPDI: 0.21 to 0.06, ROPE Percentage =
0.19, Figure 2.6C). All of the posterior distributions for the credible two- and three-way
interactions were mostly contained within the region of practical equivalence (>50% within the
ROPE) and were not interpreted: 1) trial type X animation velocity (MPE= 0.96, 90% HPDI: 0.15
to 7.34X103, ROPE Percentage = 0.67), 2) session X trajectory complexity (MPE= 0.96, 90%
HPDI: 0.15 to 3.38X10°3, ROPE Percentage = 0.71), 3) session X trial type (MPE= 0.92, 90% HPDI:
0.01 to -0.11, ROPE Percentage = 0.93), 4) session X animation velocity (MPE= 0.90, 90% HPDI:
0.02 to -0.13, ROPE Percentage = 0.82), 5) animation velocity X trajectory complexity (MPE=
0.92, 90% HPDI: 0.13 to -0.15, ROPE Percentage = 0.72) and 6) group X animation velocity X

trajectory complexity (MPE=0.97, 90% HPDI: 3.81X103 to -0.17, ROPE Percentage = 0.58).
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Figure 2.6. A) The distribution (grey shaded area) of differences between trajectory error on random and repeated
trajectories controlling for all other predictor variables. The thick horizontal bar indicates 60% HDPIs and thin
horizontal bar indicates 90% HPDIs. B) The effect of animation velocity on trajectory error controlling for all other
predictor variables. The grey shaded area represents the 90% HDPI. C) The effect of trajectory complexity on
trajectory error controlling for all other predictor variables. The grey shaded area represents the 90% HDPI.

The model also revealed two higher order interactions between session, group, trial type,
animation velocity and trajectory complexity that were moderately or weakly credible but were
narrowly above or below our threshold for credible findings (MPE >90%). Like the credible
interaction effects, the posterior distribution of the HPDI for these effects were largely
contained within the region of practical equivalence and as such were not interpreted. These

higher order interactions included session X trial type X animation velocity (MPE= 0.88, 90%
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HPDI: 0.02 to -0.13, ROPE Percentage = 0.86) and group X session X trajectory complexity

(MPE=0.83,90% HPDI: 0.03 to -0.11, ROPE Percentage = 0.91).

2.5 Discussion:

The purpose of this study was to determine if the observed effect of movement,
simulated in motor imagery, is used in the process of acquiring a novel motor skill. Given prior
evidence, we postulated that the L_IPL is a reasonable candidate region responsible for the
generation of the simulated observed effects of movement required to permit comparison
against the intended effect of movement (Figure 2.1C, see circle 3). To investigate this query,
participants received inhibitory TMS 100ms after each trial at either 60% of stimulator output
to their L_IPL or 15% of stimulator output over the vertex of the head while repeatedly
executing kinematic trajectories via motor imagery. Learning on the task was assessed
immediately after training and on a subsequent day by comparing participant’s performance on
a trajectory that was continually presented to the participant during training (the repeated
trajectory) to trajectories that were randomly generated. The more accurate a participant was
at producing the repeated trajectory in comparison to random ones indicated the degree of
learning. We confirmed adherence to the task as the main effect of stimulus duration indicates
that movement time in both motor imagery and overt execution scaled as a function of
increasing stimulus duration. Both conditions were slowed in comparison to stimulus duration
as the path length of the random stimuli were not controlled and some shapes were too long to
be drawn in the appropriate time consistent with previous findings (T. G. J. Ingram et al., 2019).
The main effect of trial type indicates participants learned the task, a finding consistent with

our prior work. We attributed the change in performance observed here to motor imagery-
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based learning as our prior work demonstrated the magnitude of learning via motor imagery
was greater than that observed for a perceptual (control) condition (T. G. J. Ingram et al., 2019).
Consistent with motor learning literature, factors which varied task difficulty in the present
study, animation velocity and trajectory complexity, impacted participant performance as

increasing either resulted in greater mean error.

Our a priori hypothesis stated that TMS delivered to the L_IPL would interfere with
learning on this task as represented by a significant interaction between group and trial type.
However, the null hypothesis was not rejected as these two factors did not significantly
interact. Four plausible explanations exist to explain this null finding. Firstly, it could be
concluded that the model for motor learning occurring via motor imagery is as reported by
Dahm and Rieger, whereby only the comparison of predicted and intended effects drives motor
learning (Figure 2.1B). Secondly, the L_IPL is not involved in the process of generating simulated
observed effects of movement for comparison against its intended effect (Figure 2.1C, see circle
3). Thirdly, there could be incongruency between the proposed function of the L_IPL and the
timing of the stimulation that was intended to interrupt it. Finally, the stimulation could have

been ineffective in that it did not have the desired inhibitory effect.

Since movement is not performed in motor imagery it is still possible that solely using
the forward model to predict the effect of movement is the method in which motor imagery
drives learning (Dahm & Rieger, 2019b). In this framework, the predicted effects of movement
generated from the forward model would not be altered in real time by simulated observed

effects of movement and thus ultimately would be an unaltered motor-to-sensory
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transformation of the efference copy. Since it has been demonstrated that motor imagery can
result in the prediction of errors, the motor plan representing the movement would inherently
need to contain an error as there is no avenue to modify the predicted outcome of the
movement once the forward model is created (Dahm & Rieger, 2019b). We think that this
explanation is unlikely; alternatively, a more plausible explanation is that the observed effects
of movement are simulated alongside the predicted effects of movement, as suggested by the
emulation theory of motor imagery. The process detailed in emulation theory provides a means
for the forward model to be altered when a movement is ‘performed’ via motor imagery.
Essentially, a participant initiates the motor plan and errors arise as the movement is
‘performed’ via motor imagery (see section 2.2 Introduction for elaboration on this idea). A key
guestion then is what part of the brain is responsible for the simulated observed effects of

movement in motor imagery.

The null finding observed would suggest the L_IPL is not involved in generating the
simulated observed effects of movement required to make a comparison against the intended
effect of movement. Based on its role in adjusting forward models during overt movement,
another candidate region to be involved in this process would be the cerebellum (Miall, 2003;
Popa & Ebner, 2019; Shadmehr & Krakauer, 2008). The cerebellum can influence activity of the
M1 via the dentatothalamocortical pathway and has been reported as being active during
motor imagery performance, although to a lesser degree than during overt movement
(Burianova et al., 2013; Hardwick et al., 2018; Horne & Butler, 1995). Recent evidence has
suggested that the cerebellum can inhibit areas in the sensorimotor cortex and may be

responsible for limiting the output from the contralateral M1 in motor imagery (Cengiz &
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Boran, 2016). In the context of learning, the cerebellum is thought to be responsible for online
movement control by interpreting proprioceptive feedback about the movement and location
of the effector to update the forward model (Shadmehr et al., 2010). However, in motor
imagery, it is possible that the IPL does not provide proprioceptive information to the
cerebellum as the movement is not performed, and the forward model is updated absent that
input (Figure 2.1C, circle 1). That the cerebellum may update the forward model absent input
from sensory association regions gives rise to a proposed mechanism in which learning in motor
imagery is driven exclusively by the cerebellum (Galea et al., 2011; Wolpert et al., 1998). Future
research could probe this potential mechanism in motor-imagery based learning by inhibiting
the cerebellum using either a battery of conditions providing transient inhibition at different
timepoints during motor imagery performance or using inhibitory TMS protocols (e.g.,

continuous theta burst stimulation).

Despite this study’s null finding, the literature has demonstrated that the IPL is vital for
motor imagery-based performance and learning. Given the role of the IPL in integrating sensory
information with the goal of movement, its dense connections with frontal regions of the brain
including the premotor cortices, its consistent activation during motor imagery and the noted
modulation of activity in the L_IPL over the course of learning new motor skills, we postulated
that this region is vital for the simulation of movement during motor imagery (Andersen &
Buneo, 2002; Fogassi et al., 2005; Fogassi & Luppino, 2005; Hardwick et al., 2018; Hétu et al.,
2013; Ruffino et al., 2017). The importance of the L_IPL and its potential role in simulating
movement and its outcome is further reinforced by impairment in the ability to perform motor

imagery or learn via motor imagery in participants that have damage to the left parietal lobe or
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were subject to the effects of repetitive TMS causing inhibition of that region (S. N. Kraeutner,
Keeler, et al., 2016; Mclnnes et al., 2016). However, the limitation of the study of patients with
damage to the parietal lobe or participants subjected to repetitive TMS is that while the overall
importance of the damaged or inhibited brain region to a task or process can be assessed, its
specific role is difficult to assess given the blanket nature of the disruption of activity. An
approach such as single-pulse TMS permits more targeted assessment of a regions specific role
as it allows temporal specificity in relation to the process being probed. For instance, in
reaching tasks, single-pulse TMS to the IPL 250ms after the presentation of a movement goal
and prior to the corresponding reaching action has been shown to impair the representation of
a reach vector by disrupting the estimation of the initial hand position (Vesia et al., 2008).
Similarly, in mental rotation tasks short trains of TMS applied 400-600ms post stimulus
presentation also negatively impacted participant performance (I. M. Harris & Miniussi, 2003).
From this (and other) research, it is evident the timing of the stimulation to the IPL will impact
on whether the process being probed is disrupted or not, and ultimately then on our ability to
make inferences about the role of the IPL in said process. In the present study, the primary
limitations were the timing of the single-pulse TMS and the lack of a control condition. To
ensure that the single pulse stimulation was interfering with function of the L_IPL, the original
paradigm from Prime et al., (2008) would have needed to be replicated. As such, it is possible
that the stimulation in this study did not produce the desired effect on the cortex, leading to
the null result. Additionally, it is possible that the chosen time of stimulation, 100ms after the
conclusion of movement, may not align with the provision of the simulated observed effects of

movement to the subsequent comparators (Figure 2.1C, circles 1 and 3). Small differences in
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the timing of application of TMS can have significant effects on the observed behaviour; Mars
et al., (2009) showed that 50ms changes in the timing of stimulation applied to the pre-
supplementary motor area caused significant changes in the size of a subsequent motor evoked
potential, highlighting the importance of the timing of TMS in probing the proposed function of
a brain region (Mars et al., 2009). It could be that the L_IPL is only active during the imagination
of the movement (i.e., motor imagery performance) and as such providing the inhibitory
stimulation 100ms after the conclusion of the movement did not disrupt this role. Given this,
the conclusion of the study is more accurately stated as the L_IPL is not involved in the
provision of the simulated observed effects of movement for comparison against the
movement’s intended effects 100ms post motor imagery performance (Figure 2.1C, circle 3).
Future research could vary the timing of the single-pulse TMS applied in this task to confirm or
refute the role of the L_IPL in simulating the observed effects of movement in motor imagery.
Finally, it is important to note that the stimulator output was fixed for all participants. This
approach is consistent with prior work contending that the use of motor threshold for
determining individual stimulus intensity in non-motor areas of the brain may not be
appropriate (Prime et al., 2008). With that said, it is possible this approach resulted in variability

in the TMS-induced electrical field and in-turn an inconsistent dose of TMS across participants.

2.6 Conclusion:

The present study sought to investigate if the L_IPL was involved in the process of
simulating the observed effects of movement for comparison against the movement’s intended
effects in motor imagery-based learning through transient inhibition of the region after each

trial performed via motor imagery. Results of the study failed to reject the null hypothesis as the
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inhibition of the L_IPL did not impair learning of the task. As such, it was concluded that either
the L_IPL is not involved in simulating the observed effects of movement in motor imagery, or

the timing of the simulation was incongruent with the theorized role of the L_IPL in motor

imagery-based motor learning.
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Chapter 3: ESTABLISHING AN OUTCOME MEASURE REPRESENTING THE QUALITY

OF A MOTOR PLAN

3.1 Abstract:

Motor skills are learned through two processes: a faster explicit process of identifying
the movement to be performed, action selection, and a slower implicit process that represents
improvements in movement acuity, action execution. In motor imagery these improvements are
thought to be driven by changes to the perceptual understanding of the task, improving action
selection. In contrast to this hypothesis most motor learning studies use an outcome of action
execution, error, to assess the quality of task performance. However, action execution is notably
absent in motor imagery and therefore this study sought to establish a measure of performance
that was more indicative of action selection. Specifically, correlations were explored to measure
the similarity between stimulus and participant response as they are unaffected by the absolute
distance between the two and are therefore less reflective of inaccuracies in action execution.
This study re-analyzed data from Ingram et al., (2019) using an updated data analysis pipeline to
investigate the potential use of a correlation-based outcome measure. Results of this study
overcome several limitations of the original analysis while minimally affecting the quantitative
conclusions drawn from the statistical model. Additionally, the correlation-based outcome
measure demonstrated a meaningful improvement resulting from imagery training on the
complex movement execution task relative to the perceptual control group and serves as a
promising approach to evaluating the accuracy of the control policy used to govern movement

in future applications of this task.
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3.2 Introduction:

Recent interpretations of motor imagery, the mental rehearsal of movement, have
highlighted a bias of the modality towards using improvements to the accuracy of the control
policy governing movement to drive motor learning through improvements in action selection
(Frank & Schack, 2017; Hardwick et al., 2018; S. N. Kraeutner, Keeler, et al., 2016; Krakauer et
al., 2019; Todorov & Jordan, 2002). The control policy is a rule which takes the form of a
Bellman equation that balances the energy expenditure required to move against the accuracy
of movement to emphasize the efficiency of movement in obtaining an accurate result
(McNamee & Wolpert, 2019). However, due to the degrees-of-freedom problem, it is extremely
slow to learn these policies through simple trial and error (Bernstein, 1967). Instead, it is
suggested that smaller elements of movements known to the learner are grouped together to
create a motor chunk. A motor chunk then is a singular representation for a sequence of these
simpler movements that reduces the number of constructs needed to understand and learn
complex movement (McNamee & Wolpert, 2019; Schack, 2004; Schack & Mechsner, 2006;
Verwey et al., 2015). Learning motor skills is generally believed to be governed by this rapid,
more explicit process of identifying what movement is to be performed and a slower, implicit
process that represents improvements to movement acuity (Martin et al., 1996; Taylor & Ivry,
2011). In motor imagery, learning can be derived from two signals: a forward modelling process
that predicts the position of the effector’s imagined performance, and a reward prediction error
that encodes the outcome of the imagined movement (Dahm & Rieger, 2019b; Kilteni et al.,
2018). Despite the lack of movement in motor imagery evidence suggests that the outcome of

an Imagined movement is encoded as motor imagery can result in self-reported error, a reward
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prediction error, that could be used to drive adaptation (Dahm & Rieger, 2019b, 20193a; T. G. J.
Ingram et al., 2022; McNamee & Wolpert, 2019). The combination of a reward prediction error
and evidence of improved perceptual-cognitive reorganization contributes to the understanding
that motor imagery emphasizes the perceptual processes involved in action selection over its
subsequent execution (Frank & Schack, 2017; Hurst & Boe, 2022). This perceptual bias in motor
imagery has been reinforced by behavioural evidence identifying the resilience of learned skills
via motor imagery to effector transfer tasks, the reliance of the modality on the parietal lobes,
and a notable lack of involvement of the motor cortex (M1) in the network underlying motor
imagery performance (T. G. Ingram et al., 2016; S. N. Kraeutner, Keeler, et al., 2016; S. N.
Kraeutner, Ingram, et al., 2017). However, the outcome measures commonly used to assess
motor learning are largely based on metrics that result from overt execution of a skill, an aspect
of movement that is by definition absent in motor imagery.

Paradigms used to investigate motor learning often examine outcome measures
associated with the magnitude of errors or consistency of responses when assessing
improvement on a motor skill. Frequently used measures are: physical distance of an effector or
object from a goal (i.e. the final position of a dart from the bullseye or the distance of a finger
from a goal box), the consistency of responses (i.e. grouping of the end position of golf balls
after putting), kinematic proximity to an optimal movement (i.e. deviations from an optimal
reaching trajectory), or dynamic proximity to an optimal movement (i.e. lifting or grasping tasks)
(Buckingham et al., 2016; Dahm & Rieger, 2019b; Frank et al., 2013; Nashed et al., 2012). These
measures are logical choices for analyzing improvements in performance on a motor task and

are often considered ‘gold standards’ for assessing motor learning. However, when learning is
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achieved through motor imagery, where physical execution of the skill is not practiced, it is
worthwhile to explore if alternative measures can be used to represent the more explicit
cognitive strategies used to help select which actions to perform (Krakauer et al., 2019). In the
motor imagery literature, attempts have been made to quantify the improvements made to
motor planning processes emphasized during imagery training, notably through clustering
analyses of basic action components (Frank et al., 2014). The clustering analyses employed in
the study of imagery have been used to create dendrograms of basic action components. By
comparing dendrograms before and after training the organization of movement can be
guantified by identifying the number of significant clusters and their size (Schack, 2004). In this
analysis, the greater number of correct clusters and the larger size of each cluster, the more
organized the practiced movement is.

In the complex movement execution task employed in this study (described in detail in
chapters 2,4 and in the methods below) the outcome measure used in all publications to date
has been error, a derivative of the distance between the participants responses and the stimuli.
In this task the recorded data are pixel location of either the cursor (stimulus) or participant’s
finger (response) sampled at 60Hz (T. G. J. Ingram et al., 2019). Two steps have been included in
the analysis of this data in an attempt to account for variability in the speed of participant
responses and the orientation of the response relative to the stimuli: dynamic time warping
(DTW) and Procrustes analysis (Giorgino, 2009; Goodall, 1991). Dynamic time warping was used
to account for the variability in the speed of participant responses by minimizing the distance
between samples of the participants response and the samples from the corresponding stimuli

(Giorgino, 2009). Critically, DTW uses a step pattern which describes which possible pairing of
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finger and cursor positions can be evaluated to minimize the error across the whole trial (Mori
et al., 2006). The effect of this step was most noticeable in the ‘corners’ (where the stimulus
abruptly changes direction) of a response where participants slow down their movement,
clustering points around the change of direction despite the stimulus they are reproducing
being animated at a constant speed. Once DTW is applied, the response is then rotated,
translated, and scaled to best align it with the stimulus using a Procrustes analysis (Goodall,
1991). This step was an attempt to correct for errors related to the execution of the selected
action. This analysis was used by Ingram et al., (2019) to demonstrate that motor imagery can
lead to better learning of a novel complex motor task in comparison to a perceptual control
group. Despite the efforts made to correct for variable participant response speeds and
execution mistakes, the outcome measure of the task is still reliant on the participant’s ability to
accurately execute the drawn trajectory, a skill noticeably not practiced in motor imagery
training. In short, the analysis applied to this complex motor task may not be reflective of what
a participant is learning via motor imagery, namely improvements in motor planning.

The purpose of this re-analysis of data was twofold: 1) to provide improved control over
the variability in the speed of participant’s responses and 2) to establish an outcome measure
that is a better representation of the control policy generated during action selection. To
achieve this end, the data collected in Ingram et al., (2019) was re-analyzed using novel
methodology to compute the correlation in turn angles between the participant response and
corresponding stimuli. In this updated analysis an additional interpolation step is introduced to
account for variance in the speed of participant responses before the turn angles are calculated

and used to guide DTW. Finally, the Procrustes transformations are applied to the participant
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response to minimize the distance between stimulus and response trajectories. By comparing
the error attained from the end of this analysis to the analysis applied in Ingram et al., (2019),
the inter-group differences should be consistent when the same Bayesian linear mixed model is
applied with a term for the analyses used. The study’s second purpose was to create an
outcome measure that is resilient to errors in action execution such that it better reflects
improvements made to action selection. With the current dataset, it would not be possible to
apply a clustering analysis akin to methodology used in Frank et al., (2013) so instead we
explore the possibility of measuring the similarity between the turn angles of stimulus and
response trajectories using a correlation-based measure. Validation of this correlative-based
measure would be evident in its ability to highlight the improvements in skill execution after a

period of imagery training in comparison to engagement in a perceptual control task.

3.3 Methodology:

3.3.1 Dataset:

Sixty-six participants completed training for 5 sessions over 5 days on a trajectory task
where each session was comprised of 5 blocks of 20 trials. At trial onset participants were
pseudo-randomized into one of four conditions indicating the modality and level of feedback
they were to receive during training. Two groups performed the task physically: one received
feedback regarding their performance after each trial (physical practice feedback, PPFB) while
the other did not (physical practice, PP). The third group performed the task using first person
kinaesthetic motor imagery (M) in the first four sessions and then responded physically in
session 5. The last group served as a perceptual control (PC) whereby they simply attended to

the stimuli and responded to a question during the first four sessions (description below in

103



section 3.3.2 Task) and then responded physically during session 5. The data used in this
analysis pertains solely to overt execution of the task, the relationship of the stimulus to
participant responses when present, and the analysis of movement time and perceptual control
tasks are not addressed. This left data from all 5 sessions for the PP and PPFB groups and data

from the fifth session for the Ml and PC groups.

3.3.2 Task:

The complex movement execution task is described in detail in Ingram et al., (2019).
Briefly, trials consist of two phases: stimulus presentation and participant response. During the
stimulus presentation a white dot traces out a series of 5 Bezier curves on a touchscreen in a
clockwise direction. Each trajectory is closed such that the fifth Bezier curve ends where the first
one began. The trajectories animate at one of five durations (ranging from 500-2500ms) such
that there was an equal exposure to all durations across each block of the experiment.
Additionally, one stimulus was presented repeatedly to each participant over the course of their
training (‘repeated trajectory’, the trajectory to be learned), such that they saw the repeated
trajectory in 50% of trials and random trajectories the other 50%. Random trajectory stimuli
were generated at the onset of the trial. The presentation of the repeated trajectory was also
randomized across the experiment with the constraint that they saw an equal number of the
repeated and random trajectories within each block.

The subsequent participant response phase of each trial differed depending on group
allocation. In the MI, PP and PPFB groups, the start of this phase was denoted by a red circle
appearing on the screen as a start point. Participants then pressed on the start point circle,

whereby it turned green and then either physically traced the stimulus trajectory matching the
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speed of the animation (PP and PPFB) or imagined doing so (Ml). When the participant returned
their hand to the start point circle (PP and PPFB) or lifted their finger when they were done
imagining their movement (MI) the start point circle would disappear and the trial would end.
The PPFB group would then be shown an image overlapping their response on the stimulus
trajectory to guide their learning, whereas the other groups received no feedback. In the PC
group, rather than responding by re-creating the trajectory, participants counted the number of
times the cursor bounced in a given direction during the presentation of the stimulus. During

the participant response phase they would provide an answer to this query.

3.3.3 Analysis:

In the original article, the analysis process for the participant responses contained 3 steps to
ascertain the error, Euclidean distance (px), between cursor and finger locations in the stimulus
and participant responses respectively. Firstly, responses or stimuli were down sampled to the
length of the shortest vector to facilitate a simple point by point comparison. Subsequently, the
resulting vectors were subjected to DTW to correct for variations in the participant responses.
This was completed using a step pattern, symmetric2, that allows for points from both the
stimulus and response to be endlessly repeated in order to minimize the error on a given trial
(Giorgino, 2009). Finally, a Procrustes analysis was applied to rotate, transform, and scale the
participant response such that they align with the stimulus to again minimize the error between
both trajectories. The current analysis uses similar tools however reassigns the purpose of each
analytical step to differing goals. Rather than using DTW to correct for variability in the speed of
participant responses, both the stimuli and participant responses are interpolated such that

there are an equal number of points in each trajectory spaced evenly along their length. The
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length of the interpolated vector is set as the length of the longer of the two input trajectories,
the response or the stimulus. Subsequently, the change in turn angle is calculated as the change
in the trajectories interior angle (relative to the closed trajectory) between consecutive points.
The difference in turn angles is then minimized between the stimulus and response using DTW
and the “mori2006” step pattern which constrains the number of times DTW can reuse
elements of the stimulus or response trajectories (Giorgino, 2009). This step creates
comparisons between the stimulus and response trajectories that is based on the features
(corners, loops, convex or concave curves) present in each trajectory. Subsequently the
Procrustes analysis is used to align the response to the stimulus trajectory of the newly
generated comparison mapping from DTW. The result of this analysis is error as well as the
correlation between the change in turn angles between points in the stimulus and response
trajectories. We believe that this correlation measure is a better representation of the intended
movement as correlations are not affected by the physical space between or orientation of the
response to stimulus trajectories; instead, this correlation-based measure represents the degree
of similarity between features in each trajectory.

3.3.4 Statistical Analysis:

Each outcome measure was assessed using the same hierarchal Bayesian linear mixed
effect models using stan and brms (version 2.19.0; Biirkner, 2017). All variables were scaled to
unit variance (mean=0, SD=1) and log transformations were used when appropriate. Weakly
informed regularizing priors were used for all models under the assumption that the mean for
each coefficient would fall within 2 standard deviations of the data. The models tested the

differences in performance (error (px)) between the employed analyses (original and updated),
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assessing any interactions between the analysis and other independent variables in the model
including figure type (random and repeated), group (PP, PPFB, Ml and PC), trajectory complexity
(the sum of the interior turn angles), and the stimulus animation velocity (px/s; Equation 3.1).
Note that the model supports interactions between all terms except the interaction of
complexity and figure type, as the repeated trajectories only had one level of complexity for
each participant. This model also included a random intercept term for each participant and
random slopes for the analysis used: stimulus animation velocity and figure type. A half sum
contrast was used for all variables, including group whereby each experimental group was
contrasted against the perceptual control group.

A second model was used to determine if the effects of motor imagery training could be
realized using a turn angle correlation-based outcome measure predicted using block (1:5),
figure type (random and repeated), group (PP, PPFB, Ml and PC), trajectory complexity (the sum
of the turn angles) and stimulus animation velocity (px/s; Equation 3.2). In this model the Ml
group’s performance on the 5 session was compared to the 5 session of the PC group and the
1%t session of the PPFB and PP groups as these timepoints represent the first exposure for each
of the four groups to overt execution of the task. This model also included a random intercept
term for each participant and random slopes for stimulus animation velocity and figure type. A
half sum contrast was again used for all variables, including group where each experimental
group was contrasted against the Ml group. The posterior distribution was then sampled and
transformed back to their original scale to visualize the credible effects, which were assessed
according to the Bayesian Analysis Reporting Guidelines (Kruschke, 2021). For the first model,

visualizations of credible effects were constrained to those involving the term for analysis used
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to determine the effect of the analysis and in the second model all credible effects were
visualized.
Error; = N(u;,0)
u; = BAnalysis[i] * BCondition[i] * BFigure Typel[i] * BAnimation Velocity|i] + BComplexity[i]
+ BComplexity:Analysis[i] + BComplexity:Condition[i]
+ BComplexity:Animation Velocity|i] + BComplexity:Analysis:Condition[i]
+ BComplexity:Analysis:Animation Velocityl|i]
+ BComplexity:Condition:Animation Velocity|i]
+ BAnalysis:Condition:Complexity:Animation Velocity|i] + (1 + BAnalysis[i]
* BFigure Typeli] * BAnimation Velocity|i] IBParticpant[i] /)
BeffectNN(O»Z)
BparticipantNN(O» O-participant)
O-participantNExponential(1)
o~Exponential(1)
Equation 3.1: The full model specification used to compare the two analyses’ ability to predict
error from the complex movement execution paradigm.

Correlation; = N(u;, 0)
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u; = BBlock[i] * BCondition[i] * BFigure Typel[i] * BAnimation Velocity|i] + BComplexity[i]
+ BComplexity:Block[i] + BComplexity:Condition[i] + BComplexity:Animation Velocity|i]
+ BComplexity:Block:Condition[i] + BComplexity:Block:Animation Velocity|i]
+ BComplexity:Condition:Animation Velocity|i]
+ BComplexity:Block:Condition:Animation Velocity|i] + (1 + BFigure Typeli]
* BAnimation Velocity|i] |BParticpant[i] /)
BeffectNN(O»Z)
Bparticipant"'N(of O-participant)
O-participantNExponential(1)
o~Exponential(1)
Equation 3.2: The full model specification used to determine the effect of motor imagery

training on subsequent overt execution using a correlation-based outcome measure.

3.4 Results:

3.4.1 Participants and descriptive results:

After removing participants who didn’t complete the protocol or had too many
erroneous trials, fifty-six participants were left in the final analysis spread across the four groups
(Table 3.1). The larger number of participants dropped relative to Ingram et al., (2019) reflects
the stricter criteria of the step pattern used in DTW, which caused an additional 5 participants to
be removed from the analysis. The analyses produced differing values of error, whereby the
magnitude of error was higher on trials processed using the updated analysis, however the
differences between figure type for each group remained similar across analyses (Figure 3.1).

The most notable improvement of the analysis is best described by a visual inspection of
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example trials where features of the stimulus are much better aligned with the corresponding
features in the participants’ responses (Figure 3.2). Figures 3.2A-C demonstrate limitations of
the original analysis process that are overcome with the updated analytic approach whereby: 1)
there was a tendency to endlessly reuse points due to the unconstrained step pattern (Figure
3.2A), 2) points were paired based on spatial proximity rather than the features of the trajectory
(Figure 3.2B) and 3) a severe lack of samples in trajectories that were animated at higher speeds

(Figure 3.2C).
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Table 3.1: Demographic information of the 4 experimental groups.

GROUP SAMPLE SIZE AGE (meanzSD) SEX (F:M) HANDEDNESS
(L:R)

PC 15 22.1+2.8 F=12:M=3 L=1:R=14

Ml 16 24.2+5.7 F=11:M=5 L=1:R=15

PPFB 13 23.7+4.2 F=7:M=6 L=0:R=13

PP 12 23.4+4.0 F=8:M=4 L=1:R=11

Original Updated
200 1

Figure Type
150 e Random

A Repeated

<
o -
S Condition
o PC
1001 e
-»- PPFB

PP

50

1 2 3 4 5 1 2 3 4 5
Session

Figure 3.1: A visualization of the descriptive results separated by session and the categorical variables in the
analysis. The subplot on the left represents the original analysis from Ingram et al., (2019) and the subplot on the
right represents the updated analysis. Error is reported across each session and organized into each group in the
study (PC: red, MI: green, PPFB: blue, PP: purple).
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Figure 3.2: Visualizations of the error calculations for a trial resulting from each analysis. Figures 2A and B visualize
trials with one of the repeated stimulus trajectories and 2C visualizes performance on a random stimulus trajectory
from 3 different participants. In each figure, the results of the original analysis from Ingram et al., (2019) is pictured
on the left and the updated analysis is on the right. The participant response is denoted by the red series of dots and
the stimulus trajectory is represented by the blue series. Error on a given trial is represented by the length of the
black lines whereby the average line length is the error metric used in subsequent statistical modeling.

3.4.2 Effects of the updated analysis:

The comparison of the two analyses revealed a credible effect of the analysis used (beta

coefficient (3): -0.31 [89% highest posterior density interval (HPDI): -0.34:-0.27], maximum

probability of effect (MPE): 1, percent overlap with the region of practical equivalence (ROPE):

0) and credible interaction between the analysis used and the stimulus animation velocity (R:

0.18 [0.15:0.22], MPE: 1, ROPE: 0). An additional three-way interaction denoted a probable
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effect of the analysis used and figure type on the comparison of the PPFB to PC group, but the
effect was partly contained within the region of practical equivalence (R: -0.22 [-0.47:0.01],
MPE: 0.93, ROPE: 0.18). For interpretation only the highest order effects were visualized. The
main effect of the analysis demonstrates that the updated analysis resulted in a higher mean
error on trials in comparison to the original analysis from Ingram et al., (2019), which was
realized largely by increased error in trials where the stimulus was presented slowly to
participants (Figure 3.3). The three-way interaction between the PPFB and PC group in the
updated analysis, and figure type demonstrated that the learning effect (i.e., the difference
between figure types), in the PPFB group is more pronounced in comparison to the PC group

when using the updated analysis (Figure 3.4).

1601

Error (px)
3

80 1

40
1000 2000 3000 4000 5000
Stimulus Animation Velocity (px/s)

Figure 3.3: A visualization of the credible interaction between stimulus animation velocity and analysis used on
error. The dashed line represents median error from the updated analysis and the solid line represents the median
error attained from the original analysis. The ribbon represents the 60" and 90" quantiles.
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Figure 3.4: Visualizations of the interaction between figure type, analysis used, and the PPFB and PC groups on
error. Error is reported as the median #[60 and 90%HPDIs]. The subplot on the left represents the original analysis
from Ingram et al., (2019) and the subplot on the right represents the updated analysis. Error is reported across
each group (PC and PPFB) and organized by figure type (Random: red, Repeated: blue).

3.4.3 Correlation-based analysis:

Using the correlation between consecutive turn angles as the dependent variable
instead of error there are discernable differences between the Ml group and both the PC and
PPFB groups. Specifically, there was a credible main effect of figure type (B: -0.44 [-0.58:-0.29],
MPE: 1, ROPE: 0) and a probable interaction of figure type and the contrast between the PC
and Ml groups (3: 0.47 [-0.01:0.96], MPE: 0.94, ROPE: 0.09) that were captured in a credible
three-way interaction of the contrast between the Ml and PC groups, stimulus animation

velocity and figure type (R: 0.57, [0.18:0.96], MPE: 0.99, ROPE: 0) (Figure 3.5). This effect
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denotes that in the Ml group participants had higher correlations on the repeated trajectories
that were more resistant to increases in stimulus animation velocity (Figure 3.5). Additionally,
there was a probable interaction between the contrast of the Ml and PPFB groups with stimulus
animation velocity and figure type that was sightly contained in the ROPE (13: -0.28 [-0.65:0.10],
MPE: 0.88, ROPE: 0.18) (Figure 3.5). This interaction demonstrates that the correlation between
the random trajectories and the corresponding stimulus was similar in both groups across the
range of stimulus animation velocities, but the repeated trajectory correlations were higher in
the PPFB group and seem to increase slightly as stimulus animation velocity increased in
contrast to the Ml group where correlations decreased with faster stimulus animation velocities
(Figure 3.5). Lastly, there was also a probable main effect of complexity, whereby correlations
decreased as a function of increasing complexity (3: -0.15 [-0.21:-0.09], MPE: 1, ROPE: 0.06)
(Figure 3.6).

PC PPFB Mi
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©
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Stimulus Animation Velocity (px/s)

Figure 3.5: Visualizations of the interactions between group, stimulus animation velocity and figure type. Red series
denote the median correlation between stimulus and response on random figures and the blue lines represent the
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median correlation for the repeated trajectories across the range of stimulus animation velocities. The visualization
is divided into facets based on group. The ribbon represents the 60" and 90" quantiles.
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Figure 3.6: A visualization of the effect of complexity (sum of turn angles) on the correlation between stimulus and
response. The line represents the median correlation values a ribbon representing the 60" and 90" quantiles.

3.5 Discussion:

The updated analyses employed in this study provide a novel method for evaluating data
produced by the complex movement execution paradigm which results in a promising
alternative to the standard error-based metrics for evaluating performance on a continuous
motor task. The updated analysis resulted in higher error on slowly animated trajectories and
suggests a larger benefit of the PPFB training in comparison to the original analysis (Figures 3
and 4). While this did not achieve the objective for success as the updated analysis seems to be

minimally affecting the differences in the interactions between the other predictors, we believe
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that this difference is acceptable in light of the examples provided in Figure 3.2, where the turn
angle-based application of DTW both appears qualitatively to be producing more accurate
comparisons between stimulus and response trajectories in a variety of instances. With respect
to the goal of establishing a new outcome measure for this paradigm, the correlations of turn
angles denoted a hierarchical impact of group on the similarity of the repeated trajectory across
stimulus animation velocities whereby the PPFB group produces the most similar trajectories
across the different stimulus animation velocities followed by the Ml and the PP group and,
lastly, while the PC group had the worst performance across the different stimulus animation
velocities (Figure 3.5). This effect aligns with the published findings of Ingram et al., 2019 that
note the most effective performance, as defined by the steepest point of an error based non-
linear speed accuracy function, occurred in the PPFB group, followed by the Ml and PP group

and the worst performance was obtained by the PC group (T. G. J. Ingram et al., 2019).

3.5.1 Updated Analysis:

Firstly, interpretation of the model describing the impact of the analysis used was
constrained only to the credible effects and interactions of the analysis term used due to
difficulties in comparing a linear mixed effect model against the statistical approach used in
Ingram et al., (2019). The differences in the model specification and outcome measures
between this study and the original publication limited our ability to meaningfully compare
results of the different modelling approaches as they use different terms to account for the
predictors of interest in different manners. We believe that the model used in the original study
is @ more accurate representation of the data, thus the current re-analysis of the data

constrained its interpretation to terms that evaluate the benefits of the updated analysis. To
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address the purpose of this study, we tested for the presence of interactions between the
analysis term and other categorical predictors would violate the a-priori objective of consistent
inter group differences between the two analysis pipelines. The updated analysis did not meet
this objective as there was the interaction between figure type and the comparison of the PPFB
to PC groups. Specifically, the updated analysis suggests an increased benefit of the PPFB
group’s training on learning (i.e., the difference between performance on random and repeated
trajectories within group), relative to the PC group. This deviation from the objective of
consistent inter group differences between analyses seems acceptable since the updated
analysis appears to be more sensitive to the learning in the PPFB group which was already the
most effective condition for learning (T. G. J. Ingram et al., 2019). Additionally, we believe this
analysis is a vast improvement over the original analysis as it better addresses several
limitations of the previous paradigm (Figure 3.2A-C). Due to the natural distribution of samples
in response trajectories where more samples are recorded in corners rather relative to
straighter lines, the unconstrained step-pattern used in DTW identified “anchor” samples in the
response trajectories that get re-used for many comparisons in the subsequent Procrustes
analysis. The unintended effect of this decision was that the Procrustes transformations would
be heavily biased towards these anchor points and ignore other features the response
trajectory. The combination of using interpolation to evenly spread the distance between
samples and the use of the mori2006 step pattern in DTW eliminates this issue as confirmed via
visual inspection of Figure 3.2A whereby each sample in the stimulus trajectory is only reused
once or twice at most to compare to the response trajectory. As a result, the Procrustes analysis

better centers the response trajectory to the stimulus in comparison to the original analysis

118



where the response trajectory gets tilted towards two heavily sampled points in the lower left-
hand corner of the trajectory and two points in the uppermost section (Figure 3.2A). Using DTW
to pair samples from the stimulus to response trajectories appears to create more logical
comparisons and also explain the increased error obtained when using the updated analysis.
Using Figure 3.2B as an example of this effect, the original analysis minimizes error between the
two trajectories causing pairings of the two crests of the curves in the uppermost portion of the
stimulus trajectory to the valleys of the curve in the corresponding response trajectories. When
using DTW to minimize the turn angle between consecutive samples in each trajectory the new
analysis aligns samples at the crest of the curves in the repeated trajectory to those in the
response trajectory. Although this pairing introduces a greater amount of error on the trial, we
believe that the corresponding pairing of samples from each trajectory is more logical. Lastly,
the updated analysis is able to better capture error on quickly animated trials as the
interpolation step allowed the stimulus to be up sampled to the length of the response
trajectory. The original analysis had much fewer samples in the stimulus trajectories
contributing to the aforementioned anchoring issue. Figure 3.2C visualizes the benefit of
interpolation whereby the stimulus trajectory can be up sampled to facilitate a better pairing

with the response trajectory on the trial.

3.5.2 Correlation outcome measure:

The purpose of the novel turn angle correlation outcome measure was to quantify
improvements made in action selection by evaluating the control policy that governs movement
separately from the execution of the produced motor commands (Krakauer et al., 2019;

McDougle et al., 2015; Taylor & Ivry, 2011; Todorov & Jordan, 2002). Since learning in motor
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imagery is thought to be reflective of this process, in part due to the lack of overt execution, it
would be advantageous to select an outcome measure that measures the accuracy of a control
policy regardless of how accurately it was performed (Dahm & Rieger, 2019b; Frank & Schack,
2017; S. N. Kraeutner, Keeler, et al., 2016). The complex movement execution task provides a
unique situation to create a measure that addresses the above statement by comparing the
degree of similarity between the stimulus and response trajectory via correlations. We believe
that a correlation is a good measure of what the control policy is for a movement as it is
independent of the spatial differences between the stimulus and response trajectories and, as
such, is a better representation of the selected movement than an error-based metric. In this
study the correlation metric revealed three meaningful effects: 1) complexity of the stimulus
shape negatively impacted the correlation of turn angles between stimulus and response, 2)
correlations between the responses and the repeated trajectory were retained across stimulus
animation velocities in the MI group relative to the PC group, and in turn, 3) correlations
between the responses and the repeated trajectory were retained across stimulus animation
velocities in the PPFB group relative to the PC group. These effects align with the finding of
Ingram et al., (2019) which demonstrate benefits of motor imagery training over a perceptual
control group and overt execution training. Further, the above-noted effects indicate this
updated analysis achieved the present study’s second objective, which was to establish an
outcome measure that is a better representation of the control policy generated during action
selection. Surprisingly, the slope of the relationship between correlation and stimulus animation
velocity for the repeated trajectory in the PPFB group has a slight positive slope indicating that

the correlations increased minimally as a function of time. This result is unintuitive but given
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that a horizontal line drawn through the intercept is barely contained in the 60% quartile at all
levels of stimulus animation velocity, the direction of this slope is likely not worth interpreting,
and rather, the conclusion drawn from this result is that stimulus animation velocity didn’t
strongly impact the correlations in this group. The resulting interaction between the comparison
of the PPFB and Ml group, stimulus animation velocity, and figure type demonstrated that over
100 trials of overt execution with the provision of feedback, participant’s performance on the
repeated trajectory eclipsed the performance of participants that performed 400 previous
imagery trials. This conclusion again aligns with Ingram et al., (2019) whereby the magnitude of

learning is significantly increased by performing the task overtly and the provision of feedback.

3.6 Conclusion:

The updated analysis employed in this study did not meet the a-priori objective for
analysis as it mediated effects of other factors used to predict performance on the task in a
manner dissimilar to the original analysis. However, the deviation was not impactful on the
conclusions drawn from the results and the qualitative improvements to the resulting error
calculations validate its use in future studies. Additionally, the novel outcome measure met its
objective by demonstrating a meaningful improvement of imagery training on the complex
movement execution task relative to the perceptual control group and serves as a promising
approach to evaluating the accuracy of the control policy used to govern movement in future

applications of this paradigm.
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Chapter 4: Cortical regions involved in motor imagery-based motor learning

4.1 Abstract:

Motor imagery performance is underpinned by a network of cortical regions including
the inferior parietal lobe and premotor regions. Past research has investigated the role of these
regions by impairing their function using repetitive transcranial magnetic stimulation (TMS) and
observing the effect on motor imagery-based motor learning. These studies found that
stimulation delivered to the left inferior parietal lobe (L_IPL) and supplementary motor area
(SMA) impairs motor imagery-based motor learning but stimulation to the M1 did not. A caveat
to this result is that the employed task, a version of the serial reaction time task, is biased
towards improvements in goal and action selection rather than action execution due to the
kinematic simplicity of the required movement. As such, past findings could be reflective of the
cognitive nature of the task used rather than the nature of M, thus confounding the results and
their subsequent interpretation. Here we use the same design as the original studies whereby
repetitive TMS was applied to each of the same cortical regions (L_IPL, M1, SMA), but rather
than using a task biased to goal and action selection, participants performed a task emphasizing
action execution. Results from the L_IPL aligned with past literature, demonstrating a negative
effect of L_IPL inhibition on motor learning, whereas stimulation to the SMA and M1 facilitated
motor imagery-based motor learning. This inability to reproduce previous results speaks to the
importance of using a battery of tasks when making inference about the modalities used to
learn motor skills, as only results from the L_IPL are likely to reflect a function that is critical to

motor imagery performance.
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4.2 Introduction:

Motor imagery is capable of driving performance improvement or motor skill acquisition
(Bonassi et al., 2020; T. G. J. Ingram et al., 2019; Solomon et al., 2022). While motor imagery has
been thought to be a parallel process to overt execution, recent studies have demonstrated that
imagery relies more on perceptual components of movement to drive motor learning than
overt execution (T. G. Ingram et al., 2016; Jeannerod, 2001; T. Kim et al., 2017). This has led to a
number of theories that seek to explain the mechanisms behind motor imagery, with these
theories broadly placed into two positions based on their belief that the motor system is
engaged in motor imagery or if it is more perceptual in nature (see section 1.5 What is motor
imagery; Glover & Baran, 2017; Grush, 2004; Jeannerod, 2001; T. Kim et al., 2017). These
perceptual components of motor control are often referred to as the planning stage where
important variables such as goal and action selection are specified to generate a control policy,
a ruleset that governs subsequent action execution, that minimizes the movement cost and
maximizes the chance of a successful movement outcome (Gallivan et al., 2018; Krakauer et al.,
2019). Behavioural studies have investigated how motor imagery can drive changes in the
control of movement and demonstrated that motor imagery training leads to better structuring
of movement dendrograms than overt execution, highlighting motor imagery’s bias towards
improving the accuracy of action selection (T. Kim et al., 2017). These behavioural biases are
accompanied by differences in the underlying functional anatomy that highlights motor
imagery’s reliance on premotor and parietal regions of the cortex involved in state estimation,
sensorimotor integration, action selection and movement sequencing (Haar & Donchin, 2020;

Hardwick et al., 2018; Lara et al., 2018).
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However, activation of a cortical region is ineffective in assessing its role as the region
could be involved in a variety of different functions for a given behaviour or represent an
abstracted role in a broader set of unmeasured behaviours (Poldrack, 2010). Therefore, the
importance of several regions in motor execution and imagery networks, including the left
inferior parietal lobe (IPL), motor cortex (M1) and supplementary motor areas (SMA), were
assessed in previous literature by observing the effectiveness of skill acquisition when the
excitability (and in turn function) of a given brain region was transiently reduced by repetitive
transcranial magnetic stimulation (TMS; Huang et al., 2005; S. N. Kraeutner, Keeler, et al., 2016;
S. N. Kraeutner, Ingram, et al., 2017; Solomon et al., 2021). In these paradigms, repetitive TMS
was delivered to one of the highlighted cortical regions prior to engaging in a serial reaction
time task (SRTT) to inhibit the target region before the participants trained on the task. The
stimulation group was then compared to a control condition that either did not receive
stimulation or received sham stimulation to determine if behaviour was affected. The results
obtained using this method suggest that the L_IPL was integral to motor imagery-based learning
but M1 was not (S. N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner, Ingram, et al., 2017). The
role of the SMA was ambiguous as transient impairment of SMA function negatively impacted
the acquisition of stimulus response mappings in the task but had no effect on improvements in
action execution (Solomon et al., 2021). The summation of this body of work supports the
existing neuroimaging evidence that motor imagery relies on perceptual processes to drive
motor learning, though the exact roles of these areas in motor imagery remain unclear
(Poldrack, 2006). The role of these cortical region was not discernible from the previous

literature as the form of repetitive TMS used in the original studies inhibited the target cortical
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regions for 45-60min rendering it impossible to ascribe a precise mechanism to areas seemingly
involved in motor imagery-based motor learning, the L_IPL and SMA (Huang et al., 2005). To
elucidate the roles of these areas, a much more temporally precise form of stimulation would
need to be applied to momentarily interfere with an areas function while performing a task as
each area is likely to be involved in several functions over the course of repeated movement.
Given the importance of the L_IPL to motor imagery-based motor learning, a recent study
inhibited this area immediately after each trial during motor imagery training with little effect
on motor learning (see Chapter 2; Solomon et al., 2022).

Stemming from the null result from Solomon et al., (2022) is the unknown effect of task
complexity on the neuroanatomical demands of imagery (Hardwick et al., 2018). Many studies
of motor learning that employ neuroimaging methodologies use simple tasks, such as SRTTs, as
they are well established and are amenable to perform alongside neuroimaging as the
movements are smaller in magnitude and less likely to cause head movements which can create
artifacts in the neuroimaging data (Puce & Hamaldinen, 2017). In these tasks, participants are
exposed to and respond to a seemingly random sequence of cues with a button press. A subset
of these cues repeats throughout the experimental session interlaced with randomly generated
cues (Robertson, 2007; Schwarb & Schumacher, 2012). After training, participants learn to
respond faster to the repeated cues in comparison to the randomly generated ones by
strengthening the relationship between a stimulus and the subsequent (well-practiced)
response, a button press (S. N. Kraeutner, Gaughan, et al., 2017; Robertson, 2007; Schwarb &
Schumacher, 2012; Wilkinson & Shanks, 2004). The SRTT and variations on the SRTT rely on

improvements to goal and action selection in contrast to more typical, complex motor tasks
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seen in vocational, athletic, musical or rehabilitation settings that rely on improvements to
action execution (Krakauer et al., 2019). Rather than relying on stimulus response associations,
tasks that rely on improvements to action execution use the process of monitoring movement
throughout its performance and knowledge of the movement’s result to guide learning (Haar &
Donchin, 2020; McNamee & Wolpert, 2019; Shadmehr & Krakauer, 2008; Wolpert & Flanagan,
2016). Given that the importance of the L_IPL to motor imagery-based learning was elucidated
in an experiment using an SRTT, it is conceivable that the tasks used to investigate the nature of
motor imagery is creating a bias in the literature where the perceptual nature of motor imagery
is over-emphasized. These tasks often rely on stimulus response mappings as opposed to ones
that require improvements in action execution emphasizing the importance of functional brain
activity in areas supporting goal and action selection (S. N. Kraeutner, Gaughan, et al., 2017,
Schwarb & Schumacher, 2012).

To test if a task related bias is impacting the generalizability of the conclusion that motor
imagery is more perceptual in nature, this study aimed to determine if the results of repetitive
TMS applied to the L_IPL, M1 and SMA would be the same for a complex motor task (see the
complex movement trajectory described in Chapter 2 and 3), which relies on improvements in
action execution, as the results found for the modified SRTT used in the original experiments (S.
N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner, Ingram, et al., 2017; Solomon et al., 2021).
One hundred and fifty-six participants were recruited to engage in a complex movement
execution task over two sessions. Prior to performing the task in the first session participants
received either sham stimulation over the vertex of their head or continuous theta burst

stimulation to their L_IPL, M1 or SMA. They would subsequently perform 80 training trials using
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motor imagery or overt execution before finishing the session with a 20-trial overt execution
test block. In the second session participants repeat the test block from session 1 to assess
retention. Performance on the task was compared between stimulation and sham conditions to
see if the stimulation affected performance. Based on the original series of studies that used an
SRT-like task, separate hypotheses were made for each cortical region of interest. Specifically, it
was hypothesized that in motor imagery, stimulation to the L_IPL will reduce the degree of
learning on the task, whereas in the overt execution condition stimulation to the M1 will impair

performance, aligning with the finding of Kraeutner et al., (2016) and (2017).

4.3  Methodology:

4.3.1 Participants:

One hundred and fifty-six participants with normal or corrected to normal hearing and
vision, no history of neurological injury, and who reported no contraindications to TMS were
recruited for the study. Handedness was determined via the Edinburgh Handedness Inventory
(Oldfield, 1971) and ability to perform motor imagery assessed using the Kinesthetic and Visual
Imagery Questionnaire (KVIQ; Malouin et al., 2007). Participants were randomly assigned to one
of six groups based on a combination of modality (overt execution or motor imagery) and
stimulation target (L_IPL, M1 or SMA). If resting motor threshold (RMT) could not be found for a
participant (see section 4.3.4. transcranial magnetic stimulation for details) they were then
rolled into a sham condition, creating 8 total groups in the study (ME_SHAM, MI_SHAM,
ME_IPL, MI_IPL, ME_SMA, MI_SMA, ME_M1, MIl_M1). Resting motor threshold is not always
found for each participant due to a variety of factors including but not exclusive to inter-

participant differences in in their sensitivity to TMS, skull thickness, poor co-registration with
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the template MRI and hairstyles that prevent the coil from resting on the scalp. Each participant
provided written informed consent and were oriented to the task by the investigator. Ethical

approval was obtained from the Dalhousie University Health Sciences Research Ethics Board.

4.3.2 Task Description:

The task used in this study requires participants to re-create animated trajectories on a
touch screen with their index finger using either motor imagery or execution depending on the
group designation (T. G. J. Ingram et al., 2019); this task was also used in Chapter 2 and 3;

https://github.com/LBRF/TracelLab). Participants used a 24” touch screen monitor with 1080p

resolution and 60Hz refresh rate (Planar Helium PCT2485) located approximately 12” in front of
them, lying flat on a table, to complete the task. This orientation of the touchscreen allowed for
unobstructed viewing and for the participant to comfortably reach the screen. Each trial
consisted of two phases: a stimulus presentation, and a participant response. During the
stimulus presentation a white dot would trace out a trajectory built of 5 connected Bezier
curves, which started and ended on an indicated point on the midline of the screen. Stimuli
were grouped into one of two classes, random and repeated. Random trajectories were
generated at the beginning of each trial, whereas the repeated trajectory, a single trajectory,
was decided at the onset of the experiment and interspersed evenly throughout each block of
the experiment at a 1:1 ratio with random trajectories. Each trajectory was animated in a
clockwise direction at one of five durations, 500, 1000, 1500, 2000, and 2500 milliseconds (ms),
such that participants were exposed evenly to each combination of animation duration and
trajectory class. Participant responses were made using motor imagery or execution as

appropriate for the block (see experimental overview). Participant responses began by a red
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circle appearing on the touchscreen appearing on the start / end point of the trajectory.
Participants responding via imagery would then place their index finger on the red circle, at
which point it turned green, prompting the participant to imagine themselves performing the
movement at the speed that it was animated (i.e., completing the trajectory at one of the five
animation durations). Once participants imagined their hand returning to the start / end point
of the trajectory they would lift their hand off the screen ending the trial. Reponses via overt
execution occurred in a similar manner to motor imagery except that participants would

physically trace the trajectory on the touch screen matching the animation duration.

4.3.3 Experimental Overview:

At the onset of the first study session, participants were familiarized to kinesthetic motor
imagery by a video that described this type of imagery and explained how to perform the task
via motor imagery. Kinesthetic motor imagery was used as it better facilitates motor skill
learning relative to visual motor imagery (Stinear et al., 2006). Handedness was then
determined, and participants completed the KVIQ. Transcranial magnetic stimulation was then
used to obtain the participant’s resting motor threshold (RMT) and continuous theta burst
stimulation was subsequently delivered to inhibit the region of the brain corresponding to the
group designation (see Transcranial Magnetic Stimulation below). If RMT could not be found on
the participant, they were rolled into a sham group and stimulation was given to participants
over the vertex of their head. A 10-minute break was then taken before participants engaged in
the behavioral task. In session one, participants performed 5 blocks of 20 trials, with each block
equally divided between random trajectories and the repeated trajectory pseudo randomly

presented at each animation duration. This block organization resulted in 50 trials of both the
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random and the repeated trajectory distributed evenly across animation durations. The first
four blocks of the experiment were completed using motor imagery or execution as per the
participant’s group designation and the final block, the test block, was completed using overt
execution. Approximately 24 hour later, participants returned to the laboratory to complete a
retention test, which was a replication of the test block at the end of session 1. A detailed

timeline is shown in Figure 4.1.

SESSION 1 SESSION 2
Training Block 1 Training Block 2 Training Block 3 Training Block 4 Test Block 1 Test Block 2
(20 trials) (20 trials) (20 trials) (20 trials) (20 trials) (20 trials)
Repetitive
Transcranial Motor Imagery Overt Movement Overt Movement
Magnetic Stimulation

Figure 4.1: Experimental timeline. Following informed consent, screening and questionnaires, participants were
given rTMS to either their L_IPL, M1 or SMA depending on group designation or SHAM stimulation, and then
completed 4 blocks of training via motor imagery, followed by a test block of 20 trials performed overtly (Test Block
1). The second session consisted of an identical test block to assess learning of the task (Test Block 2). The ratio of
repeated to randomly generated trajectories in all blocks was 1:1.

4.3.4 Transcranial Magnetic Stimulation:

Neuro-navigated TMS was performed using an air-cooled 70-mm figure of eight coil
connected to a SuperRapid?Plus? system (Magstim, Whitland, UK) coupled with a Brainsight™
system (Rogue Research Inc., Montreal, Canada). For neuro-navigation, each participant’s head
was co-registered to a template magnetic resonance image (MNI152_T1 1mm) by digitizing
three anatomical landmarks (left and right pre-auricular points and the nasion). Resting motor
threshold was determined by measuring the peak-to-peak amplitude of the motor evoked
potential induced by the application of TMS. Motor evoked potentials were obtained using a

baseline corrected signal from EMG electrodes overlying the first dorsal interosseous muscle
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using vendor supplied hardware (Brainsight2™ EMG Isolation Unit and Amplifier Pod).
Identification of RMT was facilitated by superimposing a 5x5 grid with 7.5 mm spacing on the
template magnetic resonance image with the center of the grid overlying the ‘hand knob’ of the
primary M1. Points on the grid were stimulated to identify the location where the lowest
stimulator intensity produced motor evoked potentials of >50 uV on 5 of 10 stimuli. This
location was determined to be the ‘hotspot’ (Kleim et al., 2007). Throughout, the TMS coil was
positioned tangentially to the participant’s scalp at a 452 angle to the anterior-posterior axis.
After RMT was determined, participants received inhibitory stimulation to either the L_IPL (-36,
-23,34 [X, Y, Z]; MNI space; S. N. Kraeutner, Keeler, et al., 2016), M1 (at the hotspot identified
for that participant’s first dorsal interosseous) or SMA (x= -6, y=-16, z= 75; Solomon et al.,
2021). If participants were unresponsive to the stimulation, they were given sham stimulation in
lieu of inhibitory stimulation. Inhibitory stimulation delivered to the SMA followed an
established continuous theta burst stimulation protocol (Huang et al., 2005; Oberman et al.,
2011) consisting of bursts of three stimuli at 50Hz pulses, repeated at intervals of 200ms for a
total of 600 pulses delivered at 90% of the participants RMT (Nyffeler et al., 2008). Sham
stimulation consisted of the same continuous theta burst stimulation protocol with stimulation
intensity set to 20% of stimulator output and the TMS coil placed over the vertex of the head.
4.3.5 Data Analysis:

Analysis procedures were based on those reported in Chapter 3 (see section 3.3.3 Data
Analysis). Briefly, trials were screened for a variety of touch screen related artifacts. The
variability in participant’s response speed with reference to the presented stimuli in the

remaining trials were handled by interpolating points across each trajectory such that they were
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equidistant to each other and equally dispersed across the length of the trajectories. The turn
angle between consecutive samples in each trajectory were then calculated and used to guide
dynamic time warping to pair appropriate samples from the response and stimulus trajectories
(Giorgino, 2009). The resulting pairings were used in a Procrustes analysis that optimally
translate, rotate, and scale the response trajectory to best align it with the stimulus (Goodall,
1991). Two outcome measures were used for this study, the first was error (operationalized as
the mean Euclidean distance (pixels)) between the stimulus and response trajectories and the
second was the correlation of turn angles between stimulus and response trajectories, reported
on in Chapter 3. In addition to the calculation of the error metric for each trajectory, the
stimulus’s animation velocity was calculated for each trial by dividing the total trajectory length

(px) by the trial’s animation duration.

4.3.6 Statistical Analysis:
Two hierarchal Bayesian linear mixed-effects regressions were used to make statistical
inferences regarding group performance on the task across study sessions, one for each

outcome variable. All models were run using the “brms” package for R (version 4.3.0).

Each outcome measure was assessed using the same predictor variables (see Equations
4.1 and 4.2 below). Each model used fixed effects of stimulation site (L_IPL, SMA, M1 and
SHAM), practice modality (overt execution and motor imagery), figure type (random and
repeated), session (1 and 2), stimulus animation velocity (see Data Analysis) and complexity
(sum of the trajectories interior turn angles) to predict each outcome measure. All fixed effects

were allowed to interact less complexity as the repeated trajectory only had one level of
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complexity (see Equations 4.1 and 4.2). Each participant was assigned a random intercept and
random slopes for stimulus animation velocity, session, figure type and their interactions. All
variables were scaled to unit variance (mean=0, SD=1) and log or square root transformations
were used when appropriate. Weakly informed regularizing priors were used for all models
under the assumption that the mean for each coefficient would fall within 2 standard deviations
of the data. A half sum contrast was used for all variables, including stimulation site whereby
each site was contrasted against the SHAM condition. The posterior distribution was then
sampled and transformed back to their original scale to visualize the credible effects, which
were assessed according to the Bayesian Analysis Reporting Guidelines (Kruschke, 2021). Due to
the number of fixed effect terms in the model (97), only the credible effects were reported and
of those effects only the highest order interaction effects are visualized.
Error; = N(u;,0)

W; = Bstimulation site[i] ¥ Bpractice Modality[i] ¥ Bsession[i] * Brigure Type[i] ¥ Banimation velocityli]

+ Bcomplexity[i]

+ (1 + BAnalysis[i] * BFigure Typel[i] * BAnimation Velocity|i] BParticpant[i])

Beffece~N(0,2)
Bparticipant~N(0f Uparticipant)
Oparticipane~Exponential (1)
o~Exponential(1)
Equation 4.1: The full model specification used to determine the effect of stimulation site on

overt execution and motor imagery training using an error-based outcome measure.
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Correlation; = N(u;, 0)
U; = Bstimuiation site[i] * Bpractice Modality[i] * Bsession[i] * Brigure rype[i] * Banimation velocityli]
+ Bcomplexityli]
+ (1 + Banaysisii) * Brigure Typeli] * Banimation vetocitylil|Brarticpant(i1)
Befrect~N(0,2)
Bparticipant~N(0f Uparticipant)
Gparticipane~Exponential (1)
o~Exponential(1)
Equation 4.2: The full model specification used to determine the effect of stimulation site on
overt execution and motor imagery training using a correlation-based outcome measure.
4.3.7 Transparency and Openness:
Data were analyzed using R version 4.3.0 (R Core Team, 2023) and the packages tidyverse
version 2.0.0 (Wickham, 2014), vegan version 2.6-4 (Oksanen et al., 2023), TSEntropies version
0.9, rStan version 2.26.22 (Stan Development Team, 2023), brms version 2.19.0 (Biirkner, 2017),
tidybayes version 3.0.4 (Kay, 2023), parameters version 0.21.0 (Liidecke et al., 2020), and
emmeans version 1.8.5 (Lenth et al., 2023). This study was not pre-registered. All data and
analysis code will be publicly available (Github and Open Science Framework) at the time of

publication.

4.4 Results:

4.4.1 Demographics and Descriptive Results:
Of the 156 participants recruited, 32 didn’t complete both experimental sessions, 1 participant

failed to produce enough usable trials in the second session, 3 participants were removed as
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they failed to match the stimulus animation speed during responses and 2 participants were

removed based on observation of overt execution during motor imagery training. The final

sample included 118 participants (Table 4.1). Mean error and turn angle correlations from both

sessions revealed improved performance on the repeated relative to the random trajectories

whereby error is lower, and the correlations are higher and contain less variance (Table 4.2,

Figures 4.2 and 4.3).

Table 4.1: Demographic information from the final sample separated by stimulation site and training modality. All
means are reported +SD

Stimulation | Practice Size | Age Kinesthetic | Sex Handedness
Site Modality KVIQ

SHAM Motor Imagery 15 21.1+2.4 | 22.3+2.5 F:11/M:4 | R:14/L:1/A:0
SHAM Overt Execution | 15 20.9+2.4 | 20.0+3.8 F:7/M:8 |R:15/L:0/A:0
IPL Motor Imagery 14 23.7+4.8 | 22.61+2.2 F:10/M:4 | R:13/L:1/A:0
IPL Overt Execution | 15 23.745.0 | 20.9+4.6 F9/M:6 |R:14/L:1/A:1
SMA Motor Imagery | 14 23.5+4.1 | 21.613.4 F9/M:5 |R:13/L:0/A:1
SMA Overt Execution | 15 24.145.2 | 22.2+3.0 F9/M:6 |R:15/L:0/A:0
M1 Motor Imagery | 15 21.3+2.4 | 21.1+4.1 F:8/M:7 |R:14/L:0/A:1
M1 Overt Execution | 15 23.61+5.1 | 20.5+4.6 F.7/M:8 |R:15/L:0/A:0
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Table 4.2: Mean error (Px) and correlations (Pearson’s R) for random and repeated figure types, separated by
stimulation site, practice modality and session. All means are reported +SD

Stimulation Practice Session | Random Trajectory Repeated Trajectory
Site Modality
Correlation | Error Correlation | Error
SHAM Motor 1 0.7740.10 | 135.81£51.4 | 0.81+0.06 | 115.9+27.2
Imagery 2 0.7710.10 | 131.0+47.1 | 0.82+0.05 | 107.1+21.8
SHAM Overt 1 0.77+0.12 | 131.6+54.0 | 0.83+0.08 | 94.0+28.0
Execution 2 0.7710.12 | 135.1456.1 | 0.85+0.02 | 82.8+19.7
IPL Motor 1 0.7740.13 | 135.9148.7 | 0.79£0.09 | 124.2+38.2
Imagery 2 0.7740.13 | 144.0+£58.6 | 0.78+0.11 | 123.3+33.0
IPL Overt 1 0.76+0.12 | 139.81£57.3 | 0.83+0.07 | 101.0+32.7
Execution 2 0.78+0.09 | 139.6+58.1 | 0.83+£0.06 | 96.9+26.8
SMA Motor 1 0.78+0.13 | 137.6+£53.1 | 0.83+0.03 | 108.2+21.2
Imagery 2 0.78+0.09 | 142.7159.6 | 0.84+0.03 | 108.5+20.9
SMA Overt 1 0.77+0.13 | 131.8+53.1 | 0.84+0.05 | 92.7+23.0
Execution 2 0.78+0.12 | 134.8+60.3 | 0.84+0.05 | 88.8+19.6
M1 Motor 1 0.78+0.13 | 131.0+56.6 | 0.83+0.06 | 105.2+26.9
Imagery 2 0.78+0.10 | 134.0+£52.1 | 0.83+0.06 | 97.7+25.1
M1 Overt 1 0.7610.11 | 140.1+61.4 | 0.82+0.06 | 104.1+25.0
Execution 2 0.76+0.10 | 135.2+£50.9 | 0.83+£0.04 | 99.3+22.0
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Figure 4.2: Mean error on each experimental session across stimulation site (columns) and practice modality (rows).
Accuracy on the random trajectories is denoted by the red series and accuracy on the repeated trajectories is
denoted by the blue series. All means are reported +SD
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Figure 4.3: Mean turn angle correlation on each experimental session across stimulation site (columns) and practice
modality (rows). Performance on the random trajectories is denoted by the red series and performance on the
repeated trajectories is denoted by the blue series. All means are reported +SD
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4.4.2 Error:

The model predicting error revealed 14 credible and probable effects (Table 4.3). Of
these effects, two main effects and two higher order interactions can explain the different
combinations of predictors in this model: A) Stimulation Sitey_ip-sham) (Figure 4.4), B)
Complexity (Figure 4.5), C) Stimulation Sitepm1-s1am) : Practice Modality : Session : Figure Type :
Stimulus Animation Velocity (Figure 4.6) and D) Stimulation Site[sma-siamj : Practice Modality :
Session : Figure Type : Stimulus Animation Velocity (Figure 4.7). The main effect of stimulation
to the L_IPL demonstrates that stimulation impairs the accuracy of participant responses (Figure
4.4). The main effect of complexity demonstrates that increased stimulus complexity leads to
less accurate participant responses (Figure 4.5). The M1 and SHAM stimulation site contrast,
practice modality, session, figure type and stimulus animation velocity shows an effect, whereby
stimulation to M1 impairs accuracy on all trajectories after overt execution practice but
facilitates higher accuracy in the Ml condition, especially on the repeated trajectory (Figure
4.6A). This effect leads to a decreased degree of learning on session 2 after overt execution
practice and a facilitation of learning in both sessions after motor imagery practice (Figure 4.6B).
In motor imagery this learning effect is largest on quickly animated trajectories in session 1 and
slowly animated trajectories on session 2 (Figure 4.6B). The final interaction of the SMA and
SHAM stimulation site contrast, practice modality, session, figure type and stimulus animation
velocity reveal that the stimulation slightly impairs accuracy after overtly practicing the skill,
except on slowly drawn trajectories in session 2, but minimally impacts learning on the task in
this modality (Figure 4.7A and B). In motor imagery practice, the largest effect of stimulation to

the SMA is facilitated accuracy of the repeated trajectory in session one which disappears in
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session 2 (Figure 4.7A). This suggests that the improved accuracy resulting from stimulation to
the SMA is realized in the first session, in contrast to the SHAM condition where accuracy of

participant responses is aided by consolidation of the skill from session 1 to 2 (Figure 4.7B).

Table 4.3: Summary of the posterior distribution for credible effects derived from Equation 4.1, predicting error.
Each effect is denoted with a median beta value and an associated 89% highest posterior density interval (HPDI),
the maximum probability of effect (MPE) and region of practical equivalence (ROPE).

Parameter Median MPE ROPE
Stimulation Siteq_ipL-sHam 0.26 [0.10:0.42] 0.99 0.03
Practice Modality 0.25[0.15:0.34] 1 0
Figure Type 0.98 [0.92:1.05] 1 0
Stimulus Animation Velocity 0.28 [0.26:0.30] 1 0
Complexity 0.23 [0.21:0.25] 1 0
Stimulation Sitemi-swam; : Practice Modality -0.54 [-0.86:-0.23] 1 0
Practice Modality : Figure Type -0.46 [-0.57:-0.34] 1 0
Figure Type : Stimulus Animation Velocity 0.31[0.27:0.35] 1 0
Stimulation Sitepwi-swam : Practice Modality: Figure Type 0.60 [0.20:1.00] 0.99 0

Stimulation Site[sma-snami : Figure Type : Stimulus Animation
Velocity 0.22 [0.08:0.37] 0.99 0.06

Stimulation Sitemi-swam : Practice Modality : Session : Figure Type | -0.57 [-1.08:-0.05] 0.96 0.05

Stimulation Sitemi-swam : Session : Figure Type : Stimulus
Animation Velocity 0.38[0.14:0.62] 0.99 0.01

Stimulation Sitewi-swamy : Practice Modality : Session : Figure Type
: Stimulus Animation Velocity 0.47 [-0.01.:0.96] 0.94 0.08

Stimulation Site(sma-snamy : Practice Modality : Session : Figure
Type : Stimulus Animation Velocity 0.45 [-0.03:094] 0.93 0.10
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The dark and light ribbons represent the 60" and 90 quantiles respectively.
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Figure 4.6: Median error attained across the 10" to 90" quantiles of stimulus animation velocity of a trial. Each
subplot is a facet of practice modality and session. In A) the red series represents accuracy on random trajectories
and the blue series denotes accuracy on the repeated trajectory. The solid line indicates accuracy of participants
who received stimulation to their M1, and the dashed line represents the accuracy of SHAM participants. The dark
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figure types is calculated from the red and blue series in A. The layout of the visualization is otherwise consistent.
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Figure 4.7: Median error attained across the 10" to 90" quantiles of stimulus animation velocity of a trial. Each
subplot is a facet of practice modality and session. In A) the red series represents accuracy on random trajectories
and the blue series denotes accuracy on the repeated trajectory. The solid line indicates accuracy of participants
who received repetitive TMS to their SMA and the dashed line represents the accuracy of SHAM participants. The
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two figure types is calculated from the red and blue series in Figure A. The layout of the visualization is otherwise
consistent.

4.4.3 Correlations:
The model predicting turn angle correlations revealed 12 credible and probable effects
(Table 4.4). Of these effects, 1 main effect and 3 higher order interactions can explain the

different combinations of predictors in this model which will be visualized in turn. The main
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effect of complexity demonstrates that as the stimuli become increasingly complex, the turn
angle correlation between stimulus and response decreases (Figure 4.8). The first interaction
denotes an effect of stimulation delivered to the M1 as it interacts with practice modality. In this
interaction, stimulation to the M1 prior to motor imagery practice improves the correlations
between stimulus and response whereas stimulation to the M1 prior to overt execution practice
impairs the attained correlations (Figure 4.9). The final two interactions involve each predictor
in the linear model and stimulation site contrast between the SMA and SHAM and L_IPL and
SHAM groups respectively (Figures 4.10 and 4.11). The interaction containing the SMA to SHAM
stimulation suggests that in stimulation prior to motor imagery practice facilitates the turn
angle correlations of both repeated and random trajectories, but the effect is most noticeable
on repeated trajectories in session 1 and random trajectories in session 2 (Figure 4.10A). As a
result, it appears that learning is facilitated in session 1 in this condition but impairs the
consolidation process, largely driven by improvements on the random trajectory in session 2
(Figure 4.10B). In the overt execution practice modality, stimulation to the SMA impairs turn
angle correlations on random trajectories in session 1, leading to a larger learning effect in that
session (Figure 4.10A and B). The credible effect containing each predictor and the L_IPL and
SHAM stimulation site contrast reveals that stimulation to the L_IPL impairs turn angle
correlations in motor imagery, except on random trajectories in session 1, and is most
noticeable on repeated trajectories in session 2 (Figure 4.11A). This suggests that stimulation to
the L_IPL impaired learning on this task (Figure 4.11B). After overt execution practice,
stimulation to the L_IPL also inhibited turn angle correlations, except on random trajectories in

session 2 where the stimulation improved the attained correlations on rapidly animated stimuli

146



(Figure 4.11A). This effect suggests that the L_IPL stimulation impairs learning on session 2

(Figure 4.11B).

Table 4.4: Summary of the posterior distribution for credible effects derived from Equation 4.2, predicting turn angle
correlations. Each effect is denoted with a median beta value and an associated 89% highest posterior density
interval (HPDI), the maximum probability of effect (MPE) and region of practical equivalence (ROPE).

Parameter Median MPE ROPE
Stimulation Siteq_ipi-sHam -0.24 [-0.42:-0.05] 0.98 0.1
Figure Type -0.70 [-0.77:-0.63] 1.00 0
Complexity -0.13 [-.15:-0.10] 1.00 0.02
Stimulation Sitemi-swam : Practice Modality 0.42 [0.07:0.78] 0.97 0.05
Stimulation Sitey_pi-sham; : Practice Modality -0.43 [-0.80:-0.07] 0.97 0.05
Stimulation Sitey_pi-siam; : Figure Type 0.39[0.16:0.61] 1.00 0
Practice Modality : Figure Type 0.29[0.15:0.42] 1.00 0
Figure Type : Stimulus Animation Velocity -0.14 [-0.19:-0.09] 1.00 0.08

Stimulation Sitey_pi-snam : Practice Modality : Session : Stimulus
Animation Velocity 0.46 [0.11:0.80] 0.98 0.02

Stimulation Site[sma-snamy : Session : Figure Type : Stimulus
Animation Velocity -0.41 [-0.78:-0.05] 0.96 0.06

Stimulation Site[sma-snamy : Session Structure : Session : Figure
Type : Stimulus Animation Velocity -0.61 [-1.30:-0.11] 0.92 0.07

Stimulation Sitey_pi-sHam : Session Structure : Session : Figure
Type : Stimulus Animation Velocity 1.13[0.42:1.84] 0.99 0
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Figure 4.8: Median turn angle correlation attained across the 10t to 90" quantiles of the sum of turn angles
(complexity) of a trial. The dark and light ribbons represent the 60" and 90" quantiles respectively.
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bars represent the 60" and 90" quantiles respectively.
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Figure 4.10: Median turn angle correlations attained across the 10" to 90" quantiles of stimulus animation velocity
of a trial. Each subplot is a facet of practice modality and session. In A) the red series represents performance on
random trajectories and the blue series denotes performance on the repeated trajectory. The solid line indicates
performance of participants who received stimulation to their SMA, and the dashed line represents the
performance of SHAM participants. The dark and light ribbons represent the 60" and 90" quantiles respectively. In
B) the relative difference between the two figure types is calculated from the red and blue series in A. The layout of
the visualization is otherwise consistent.
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Figure 4.11: Median turn angle correlations attained across the 10" to 90" quantiles of stimulus animation velocity
of a trial. Each subplot is a facet of practice modality and session. In A) the red series represents performance on
random trajectories and the blue series denotes performance on the repeated trajectory. The solid line indicates
performance of participants who received stimulation to their L_IPL and the dashed line represents the performance
of SHAM participants. The dark and light ribbons represent the 60" and 90" quantiles respectively. In B) the

visualized relative difference between the two figure types is calculated from the red and blue series in A. The layout
of the visualization is otherwise consistent.

4.5 Discussion:
The purpose of this study was to replicate early findings of the effects of repetitive TMS
on motor imagery-based motor learning using a kinematically complex task to determine if the

task used impacted contemporary views of the nature of motor imagery (S. N. Kraeutner, Keeler,
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et al., 2016; S. N. Kraeutner, Ingram, et al., 2017; Solomon et al., 2021). In the original series of
studies, it was found that repetitive TMS applied to the L_IPL before motor imagery training
impaired motor imagery-based motor learning to a greater degree than overt execution, and
further that stimulation to the M1 did not affect motor imagery-based motor learning. Finally,
transient inhibition of the SMA affected stimulus response mapping in imagery but not overt
execution of the SRTT-like paradigm used (S. N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner,
Ingram, et al., 2017; Solomon et al., 2021). In this experiment we replicate the experimental
manipulation whereby repetitive TMS was applied to the same three regions (i.e., the L_IPL, M1
and SMA) prior to engaging in a multi-articular trajectory production task (T. G. J. Ingram et al.,
2019). Be it that the purpose of the study was replication in a different task, the hypotheses
made aligned with the published findings. Treating each tested region as a separate hypothesis
largely revealed a replication of the findings for stimulation to the L_IPL but not for the M1 or
SMA. Repetitive TMS delivered to the L_IPL impaired accuracy similarly across all experimental
variables as evidenced by the main effect of the stimulation site contrast between the L_IPL and
SHAM groups (Figure 4.4). In overt execution this finding is supported by a uniform decrease in
turn angle correlation across the repeated trajectory (Figure 4.11A). In motor imagery, there is a
large drop in the turn angle correlation on the repeated trajectory from session 1 to 2
suggesting that the stimulation negatively impacted the consolidation of the control policy
governing movement (Figure 4.11A and B). These findings indicate that stimulation seems to
impair performance in both conditions and has a larger impact on consolidation, loosely
aligning with conclusions from Kraeutner et al., (2016). Stimulation to the M1 impaired accuracy

and reduced turn angle correlations on the task and limited consolidation of the learned skill in
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overt execution but in imagery this trend is inverted and stimulation to the M1 improved the
accuracy of the repeated trajectory, facilitating learning (Figure 4.6 and 9). This finding is
interesting as it suggests that uninhibited function of the M1 impairs motor imagery-based
motor learning in this task (see section 4.5.3 Impact of task and considerations for future
research below), contrasting findings of Kraeutner et al., (2017). Lastly, stimulation to the SMA
inhibited the accuracy on the task in overt execution, whereas after motor imagery practice,
stimulation to the SMA facilitated resulted in improved accuracy during session 1 (Figure 4.7A
and B). These differences correspond with improved turn angle correlations in session 1 post
imagery practice and impaired correlation on the random trajectories during session 1 after

overt execution practice (Figure 4.10A and B).

4.5.1 Inferior Parietal Lobe:

The IPL has been of particular interest to the field of motor imagery given its
involvement in the cortical network underlying imagery, and in turn its probable importance to
motor learning via motor imagery and its roles in state estimation and sensory integration for
movement (Haar & Donchin, 2020; Hardwick et al., 2018; S. N. Kraeutner, Keeler, et al., 2016;
Medendorp & Heed, 2019). These previous TMS findings in the motor imagery literature have
led to the creation of multiple theories describing the behavioural mechanisms that are
grounded in the concept that motor imagery relies on areas of the brain that support the covert
components of movement control, goal, and action selection (Frank & Schack, 2017; Glover &
Baran, 2017; Krakauer et al., 2019). However, the tasks used to generate these findings are
relatively simple in nature and, as such, the bias towards the critical importance of the L_IPL to

motor imagery might arise because of the nature of the tasks used to study them. Results of this
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study provide additional support for the belief that the functions subserved by the L_IPL is
crucial for motor imagery as repetitive TMS to the L_IPL impaired skill acquisition in this
kinematically complex motor task. Specifically, results from this study imply a role for the L_IPL
in motor learning of a generalized skill and, in motor imagery, the consolidation of a practiced
movement. The main effect of stimulation to the L_IPL supports the conclusion that the area is
involved in generalized execution of the task in both modalities (Figure 4.4). However, by
evaluating the correlations of turn angles between stimulus and participant responses, the
degradation of accuracy is accompanied by a large drop in turn angle correlation in session 2 in
motor imagery that is notably absent in overt execution (Figure 4.11A). The contrast between
motor imagery and overt execution would suggest that in overt execution the degradation of
performance is likely caused by errors in execution of the selected action, whereas in motor
imagery inaccuracies in the consolidated control policy contributed to impaired performance on
the task. This finding aligns with the previous conclusions Kraeutner et al., (2016) where
inhibition of the L_IPL impairs learning on a SRTT in imagery more than overt execution, further
supporting the understanding that motor imagery-based motor learning relies on
improvements to the covert components of movement, goal, and action selection (Frank &
Schack, 2017).

However, the timing of the effect on turn angle correlation is noticeably different
between the studies as the effects of stimulation on learning manifest by the end of the first
and only session in the Kraeutner et al., (2016) study, whereas, in the current study, the effects
of stimulation on learning appear in session 2. The differences in timing of this effect creates

ambiguity around the role of the L_IPL in motor imagery, which could speculatively be due to
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the novelty of movement in the current task. Since drawing complex trajectories on a touch
screen is not a well-practiced movement in comparison to pressing buttons on a keyboard, the
control policy governing action execution in the current task would not be well established at
the end of session 1. In contrast the control policy for button presses used in a SRTT would be
well-established prior to the participants engaging in the paradigm. Given that stimulation to
the L_IPL demonstrated the largest impact on turn angle correlation in session 2, the region
could therefore be involved in refining known control policies but may not be as vital in the

formation of novel ones.

4.5.2 Motor Cortex and Supplementary Motor Area:

Unlike the L_IPL, results attained after repetitive TMS delivered to the M1
contradicts the findings of past research in motor imagery but not in overt execution (S. N.
Kraeutner, Ingram, et al., 2017; Krakauer et al., 2019). Stimulation to the M1 in overt execution
was intended as a control condition to ensure that the stimulation was interfering with the
area’s known role in the consolidation of motor skills (Krakauer et al., 2019; Muellbacher et al.,
2002; Richardson et al., 2006). Results from this study largely align with this theory as inhibition
of M1 in overt execution impaired accuracy of both random and repeated trajectories and the
corresponding turn angle correlations in overt execution, (Figure 4.6A and 9), and impaired
consolidation of the learned skill where the magnitude of the difference between trajectory
types was reduced in session 2 (Figure 4.6B). However, in motor imagery, stimulation to the
area improved accuracy of participant responses to the repeated trajectory and improved the
corresponding turn angle correlations, facilitating skill acquisition (Figure 4.6A and 9). This result

contrasts against results from Kraeutner et al., (2017) whereby stimulation to the M1 did not
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affect skill acquisition and further contrasts against earlier TMS studies targeting the M1
demonstrating impairments to motor imagery performance of a hand laterality judgment task
(Pelgrims et al., 2011a). This complete spectrum of behavioural results is further contrasted
against neuroimaging evidence that has found that the M1 is not active during motor imagery
performance and therefore shouldn’t play an active role in motor imagery-based motor learning
(Hardwick et al., 2018; Kasess et al., 2007; Solomon et al., 2019b).

Results of stimulation to the SMA are also contrasting to results from the previous study
using a SRTT-like paradigm. In this previous study, stimulation to the SMA impaired learning on
the task in both overt execution and motor imagery by slowing reaction times to the repeated
sequence to a greater extent than randomly generated cues (Solomon et al., 2021). In the
current study this trend is inverted, whereby stimulation to the SMA improved the accuracy of
participant responses to the repeated trajectory in session 1 after motor imagery practice
(Figure 4.7A). These changes are associated with improvement of the turn angle correlations in
session 1 as a result of stimulation (Figure 4.10A). Similarly, the results of SMA stimulation after
overt execution are also in contrast with the previous results as the accuracy of responses to
both trajectory types was impaired, indicating that the region seems to be involved in action
execution of the task but doesn’t seem to contribute to learning (Figure 4.7A and B). These
changes in accuracy after overt execution practice were accompanied by decreasing similarity in
turn angle correlations on random trajectories in session 1 that was not seen in session 2,
indicating that the reduced accuracy on the task is likely a function of the SMA’s involvement in

action execution (Figure 4.10A and B). In summary, the effects of stimulation to the SMA seem
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to mirror those of M1 stimulation whereby repetitive TMS to either area is facilitating

performance in imagery and impairing performance in overt execution of complex trajectories.

4.5.3 Impact of Task and Considerations for Future Research:

Given the contrasting results from stimulation of the SMA and M1 and the additional
confound of the lack of M1 involvement in motor imagery, the most plausible explanation for
the lack of a repeatable outcome is that the tasks employed to investigate learning have
differing demands on these regions of the cortex. For instance, the hand laterality judgement
task, a task where participants identify if pictures of hands oriented at different directions are
left or right hands, relies on implicit motor imagery which recruits a different neural network
than conscious motor imagery performance (Hétu et al., 2013). Serial reaction time tasks only
rely on the M1 to store and execute representations of the individual, discrete movements
required to perform the task and the learned behaviour, and the ordering of these discrete
actions is reliant on the premotor and parietal cortices (Schwarb & Schumacher, 2012; Wong &
Krakauer, 2019; Yokoi & Diedrichsen, 2019). The current task has only been used once in
conjunction with neuroimaging (in this instance electroencephalography) and a small
magnitude of activity noted for the sensorimotor regions of the brain during motor imagery
performance thought to be representative of the task’s focus on action execution (T. G. J.
Ingram, 2021). This finding provides some evidence to indicate that the M1 is involved in motor
imagery of the task but fails to explain why it’s inhibition would lead to facilitation of learning.
Given the similarity between the results obtained after stimulation to the SMA and M1, it is
likely that both of these regions are involved in a similar mechanism related to the complex

movement execution paradigm. One hypothesis could be that the current task relies not only on
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recalling the covert components of movement to perform imagery of the task but has additional
demands on memory to maintain a representation of the stimulus. This memory function could
be relying on areas of the sensorimotor region that are otherwise involved in motor imagery-
based motor learning. As such, this could create a potential scenario where there is competition
for neural resources in the sensorimotor region involving processes related to mapping the
recalled stimulus to an associated, previously unperformed action that ends up limiting learning
via motor imagery on the task. As such, when the M1 or SMA were inhibited, the conflict
between behavioural processes is eliminated and learning on the task improves. Although this
conclusion is purely conjecture, it would be easily testable by performing the experiment again
but leaving the stimulus on screen during imagery performance to remove the memory

demands of the task.

4.6 Conclusions:

Results of the current study support the previously established theory that motor
imagery-based motor learning relies on the function of the L_IPL and highlights a potential role
for this area in the consolidation of the control policy for movement (S. N. Kraeutner, Keeler, et
al., 2016). However, these suggestions are made in light of inconsistencies in the effects of
stimulation to the SMA and M1 in comparison to past literature (S. N. Kraeutner, Ingram, et al.,
2017; Solomon et al., 2021). These differences highlight an important realization that the nature
of the task used likely has a large impact on results in the study of motor learning, particularly
when the modality used for learning is motor imagery. In overt execution, the impact of task
selection has been classified based on their contribution to different stages of motor control,

but this mapping has yet to be investigated in the study of motor imagery (Krakauer et al.,
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2019). One of the contributing factors to this problem is the lack of consensus as to the overlap
between control of movement between overt execution and motor imagery (Frank & Schack,
2017; Hurst & Boe, 2022; O’Shea & Moran, 2017). As such, it is difficult to restrict the
interpretation of results obtained from a specific task to components of motor learning in motor
imagery. This scenario increases the probability of over generalizing one’s findings from a single
task to motor imagery as a modality. Rather, using a battery of tasks to investigate learning
effects within participants would be an achievable alternative solution to mitigate the impact of
task in the study of motor learning via motor imagery. Consistent findings across tasks would
therefore be more likely to represent meaningful properties of the modality employed for
training and in-turn learning. Applying this logic to the results obtained from this study
highlights the reliance of motor imagery-based motor learning on the L_IPL, in contrast to
inconsistent findings resulting from stimulation to the SMA and M1 which may reflect effects

specific to the employed paradigm.
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Chapter 5: DISCUSSION

5.1 Purpose:

The overall objective of this thesis was to address methodological limitations of previous
investigations of motor imagery probing the role of the inferior parietal lobes (IPL) and explore
the possibility that task selection is impacting the generalizability of the findings. The IPLs have
notable importance to motor imagery based on their consistent involvement in the neural
network underlying its performance, and the consistent finding that inhibitory stimulation to
the left inferior parietal lobe (L_IPL) impairs motor imagery-based motor learning more so than
overt execution (Hardwick et al., 2018; S. N. Kraeutner, Keeler, et al., 2016). However, the use of
repetitive TMS in Kraeutner et al., (2016) caused a lasting inhibitory effect on the cortex
(approximately 45-60 minutes) and, as such, the importance of the L_IPL to motor imagery
could be gleaned but not its role in a specific mechanism (Huang et al., 2005). Additionally, like
many past investigations of the contributions of cortical regions to motor imagery, the
Kraeutner et al., (2016) study used a kinematically simple paradigm to investigate motor
learning as driven by motor imagery (Hardwick et al., 2018; Puce & Hamaldinen, 2017). A
consequence of this decision is that the SRT-like task used doesn’t rely on all components of
motor control (see section 4.2 Introduction for details) but rather emphasizes the goal and
action selection components (Krakauer et al., 2019). As such, it is possible that task selection
influenced conclusions drawn from the study and is contributing to the belief that motor
imagery-based motor learning relies on improvements to goal and action selection (rather than
execution) to drive learning (Figure 1.2; Frank et al., 2023; Krakauer et al., 2019). To address

these issues, this thesis investigates the role of the L_IPL using different TMS approaches before
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or during performance of a complex movement execution task that emphasizes action
execution to drive learning (Huang et al., 2005; T. G. J. Ingram et al., 2019; Prime et al., 2008).
The first study in this thesis used a temporally constrained single pulse TMS paradigm to test a
specific role of the L_IPL in the provision of simulated feedback that would permit the detection
of errors resulting from motor imagery performance (Figure 1.7; Dahm & Rieger, 2019b; Prime
et al., 2008). The second study explored improvements to the data and statistical analysis
approaches used to investigate motor learning via motor imagery using the complex movement
execution paradigm and introduced a correlation-based outcome measure to represent the
similarity between the stimulus and participant response that is thought to be representative of
the control policy governing the movement. Lastly, the third chapter replicated a series of
studies using repetitive TMS to investigate the effects of inhibition on different cortical regions
important to motor learning, including the L_IPL, using the complex movement trajectory task
to measure the impact of task selection on conclusions made about the nature of motor
imagery-based learning (Huang et al., 2005; S. N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner,
Ingram, et al., 2017; Solomon et al., 2021). The results of each study will be summarized
sequentially in the following section before discussing the role of the L_IPL in more detail and

discussing the impact of task selection in the study of motor imagery.

5.2  Summary of empirical chapters:

5.2.1 Chapter 2:
In this chapter, single pulse TMS was delivered 100ms after each trial of a complex
movement execution task to interrupt the L_IPL’s proposed function of providing simulated

feedback during motor imagery. Specifically, the theory for learning via motor imagery proposed
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by Dahm and Rieger, 2019 (Figure 1.7) lacks a clear mechanism to describe how errors are
generated in motor imagery. In this chapter we proposed an alternative mechanism for imagery
that relies on a simulation of the observed effects of movement and suggested that the IPL was
involved in the comparison of this simulation against the intended effect of movement (Figure
2.1C). The study showed no effects of stimulation. Given the multitude of findings in the
literature denoting the importance or involvement of the area in motor imagery, this null
finding was likely to be a function of the timing of the stimulation or that the prescribed
function of the L_IPLs involvement in motor imagery was incorrect (Solomon et al., 2022).
Stemming from this study, the question of tasks effects was brought forward as potential
contributors to the differences between the obtained results and the past literature. As such,
the focus of the following chapters pivoted away from the role of the L_IPL and focused on
establishing consistent conclusions across tasks in the motor imagery literature.

5.2.2 Chapter 3:

The first step in evaluating task related effects in the literature was to establish
confidence in the measures used to quantify learning in the complex movement execution task
used across each study in this thesis (T. G. J. Ingram et al., 2019). The purpose of the analysis
employed in Ingram et al., (2019) for the complex movement execution task was to help
compensate for the variable speed of the participant responses and differences in the execution
of the responses in comparison to the stimuli. The result was theoretically an error-based
measure that should represent improvements to the control policy to govern movement
ignoring errors in execution of the response, including inappropriate scaling, rotation, or

translation. This chapter re-analyzes the data collected by Ingram et al., 2019 using a new
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analysis approach that improved the process of controlling for the variable speed of participant
responses by using interpolation functions rather than DTW. Subsequently, DTW is applied to
the turn angles between consecutive samples to accurately compare the stimulus and response
on a given trial. The novel analysis overcame a variety of limitations of the original analysis
(Figure 3.2A-C) and importantly only minimally affected the conclusions drawn from each
analysis approach. Additionally, a new correlation-based outcome measure, turn angle
correlation, was introduced as what we considered to be a better measure of the control policy
governing movement as turn angle correlation is unaffected by issues believed to be resulting
from action execution: scaling, rotation, and translation. An analysis of this novel measure
revealed improvements of motor imagery and physical practice training in comparison to the
perceptual control group on the control policy governing movement. These findings were
consistent with those of the original analysis by Ingram et al., (2019). With this updated analysis
approach and new outcome measure, a reproduction of earlier investigations of the
involvement of different cortical regions in motor imagery-based motor learning was conducted
to determine if task selection was biasing which cortical regions were found to be important for
task performance.

5.2.3 Chapter 4:

This study sought to determine if task selection was biasing the interpretation of results
from the study of the importance of different cortical regions to motor imagery. To achieve this
goal, the study attempted to replicate the findings of an earlier series of studies using repetitive
TMS to inhibit the L_IPL, M1 or SMA prior to learning a series of button presses in a SRT-like task

(S. N. Kraeutner, Keeler, et al., 2016; S. N. Kraeutner, Ingram, et al., 2017; Solomon et al., 2021).
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The study reported in Chapter 4 used the same TMS paradigm and cortical targets but used the
complex movement execution task instead of the SRT-like task. The intent here was to use a task
that emphasized action execution through the use of a continuous, novel, multi-joint movement
as opposed to goal selection and action planning components of movement control. Results
from each cortical region targeted were considered separately and revealed partial replication
of the previous findings. Namely, we found an effect of stimulation to the L_IPL consistent with
prior work, but dissimilar findings for the M1 and SMA. Stimulation to the L_IPL decreased
accuracy of the participant responses and was associated with impaired consolidation of the
control policy in motor imagery but not in execution. This finding suggests that motor imagery
relies on function of the L_IPL for learning aligning with past literature (S. N. Kraeutner, Keeler,
et al., 2016). However, the results from stimulation to the M1 and SMA are in stark contrast to
previous literature: where the current results suggest that the stimulation facilitated
performance of the skill when learned via imagery and impaired performance when training
using overt execution (S. N. Kraeutner, Ingram, et al., 2017; Pelgrims et al., 2011b; Solomon et
al., 2021). The effects of M1 stimulation are especially surprising given the noted lack of
involvement of this region in the neural network underlying motor imagery performance
(Hardwick et al., 2018). These conflicting results are likely a product of a noted task related bias
in the neuroimaging literature as previous electroencephalography investigations of this task
have demonstrated recruitment of the sensorimotor cortex involvement during imagery
(Hardwick et al., 2018; T. G. J. Ingram, 2021). Likewise, the lack of M1 involvement noted in the
previous literature could be due to the kinematic simplicity of the tasks used. As an example,

activity in the M1 recorded during SRTTs is only reflective of single, previously known elements
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and the learned behaviour, the ordering of these elements, is represented widely across the
cortex (Wong & Krakauer, 2019; Yokoi & Diedrichsen, 2019). The direction of the stimulation
effects is also surprising as it suggests that in this task, unaffected function of the M1 and SMA
are limiting the rate of learning in the complex movement execution task. It is possible that this
task specifically could be involved in a separate cognitive process that has to recall the stimulus
on a trial from memory before integrating it into the planning process which could result in
interference that limits motor imagery-based motor learning. However, the most valuable
conclusion from this study is that motor imagery continues to rely on the function of the L_IPL
to drive learning as this effect generalizes across tasks in contrast to stimulation at the other

targets of interest.

5.3 The role of the left inferior parietal lobe in motor imagery:

The primary contribution of this thesis to the understanding of the nature of motor
imagery is that the L_IPL is vital to the network underlying imagery. This result was a replication
of prior work obtained largely from kinematically simple movements and supports the
generalization of this finding to motor imagery (Burianova et al., 2013; Hardwick et al., 2018;
Hétu et al.,, 2013; S. Kraeutner et al., 2014; S. N. Kraeutner, Keeler, et al., 2016). In overt
execution, the parietal lobes are proposed to be involved in representing movement within the
construct of the task (Haar & Donchin, 2020). The area’s role in creating these movement to
state relationships has been evidenced through a variety of potential functions including
sensorimotor integration for visually guided movements, state estimation in optimal feedback
control, high-order sensorimotor information integration and conscious motor intentions

(Buneo & Andersen, 2006; Desmurget & Sirigu, 2012; Fogassi & Luppino, 2005; Shadmehr &
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Krakauer, 2008; Wolpert & Ghahramani, 2000). Based on these functions, the wealth of
neuroimaging and TMS investigations of the L_IPL in motor imagery has concluded that motor
imagery relies on these associated functions and is therefore biased towards these perceptual
components of motor control, although the exact role of the L_IPL in motor imagery is still
debated (Hardwick et al., 2018; S. N. Kraeutner, Keeler, et al., 2016).

Given the role of the parietal lobes in creating movement to state relationships and the
L_IPLs involvement in the networks underlying motor imagery, the L_IPL could be involved in
the process of simulating the overt effects of movement (see Chapter 2: Introduction; Haar &
Donchin, 2020). This theory was presented in light of the realization that motor imagery
performance can result in self-reported errors (Dahm & Rieger, 2019b; T. G. J. Ingram et al.,
2022). These errors arise from the comparison of the predicted effects of movement against the
intended effect of movement (Figure 2.1B; Dahm & Rieger, 2019b). While the mechanism that
results in a predicted error from motor imagery is not well understood, it is hypothesized to be
the result of forward modeling during motor imagery performance (Kilteni et al., 2018).
However, this hypothesis would not explain how the predicted effects of movement could
contain an error. In overt execution, the prediction of movement generated by the forward
model is compared against sensory afference from movement using a process called state
estimation to recognize errors such that they can be corrected (Todorov & Jordan, 2002). This
process of state estimation has typically been associated with the function of the parietal lobe
(Haar & Donchin, 2020; Shadmehr & Krakauer, 2008; Wolpert & Ghahramani, 2000). Since
movement is not performed in motor imagery, there is no sensory input permitting errors to be

recognized and, as such, in Chapter 2 we hypothesized that the overt effects of movement
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would be simulated in place of overt execution. The simulated observed effects of movement
would provide a measure to allow for state estimation to occur and for errors to be recognized,
explaining how participants performing motor imagery could recognize deviations from the
expected performance. Furthermore, we believed this function to be tied to the L_IPL based on
the parsimony driven assumption that the region would be performing an analogous function in
both motor imagery and overt execution. This chapter produced a null result precluding the
ability to assign the L_IPL responsibility for generating simulated feedback in motor imagery and
playing a role in an error detection and correction mechanism.

However, given the importance of the L_IPL to motor imagery noted in other empirical
studies, meta-analyses, and the results from Chapter 4 of this thesis, it is unlikely that the region
has no ascribed function in imagery of the complex movement execution task (Hardwick et al.,
2018; Hétu et al., 2013; S. N. Kraeutner, Keeler, et al., 2016). Therefore, the most plausible
interpretations of the null result from chapter 2 remain 1) the L_IPL is performing a function
other than that hypothesized, or 2) the timing of the stimulation did not align with the timing of
the hypothesized process for generating simulated feedback, the function ascribed to the L_IPL.
Should the region not be involved in the process of simulating the observed effects of
movement, another potential candidate region that could be involved in this mechanism is the
cerebellum, as it is thought to be responsible for online control of movement (Miall, 2003; Popa
& Ebner, 2019; Shadmebhr et al., 2010; Shadmehr & Krakauer, 2008). In this scenario, the
cerebellum would be receiving a state estimation from another source in the cortex or would be
performing that function in addition to the forward modelling process. The second

interpretation of the null result from chapter 2 could suggest that the L_IPL is not involved in a
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comparative function after the cessation of a trial, and rather could only be active during motor
imagery performance. The timing of the inhibitory stimulation in chapter 2 was 100ms after the
cessation of each trial; this timing was selected to attempt interruption of the comparison of
the simulated observed effects of movement (generated by the L_IPL) against the intended
effects. To investigate if the issue was related to timing of the inhibitory stimulation, a follow-up
study was pursued in which the timing of stimulation to the L_IPL was altered, including two
groups that received stimulation during motor imagery performance (25% and 50% of the
duration of the stimulus animation). Data collection as of July 2023 is nearly complete, and we
expect the results to speak to the involvement of the L_IPL more definitively in the simulation of
the observed effects of movement. Should the null hypothesis be rejected in this study, the
findings would highlight another potential congruency between motor imagery and overt
execution whereby the role of the L_IPL could be the same in both modalities. In overt
execution the parietal lobes are believed to play a function in state estimation which is an
essential comparison for online motor control (Haar & Donchin, 2020; Shadmehr & Krakauer,
2008). By demonstrating impaired learning after single pulse TMS delivered to the L_IPL during
motor imagery performance, a more specific role for the area could be elucidated aligning the
function of the region in the provision of sensory prediction errors (Figure 2.1C; Solomon et al.,
2022). The only difference between the two modalities is that in overt execution sensory
information regarding movement is available as the movement is actually performed, whereas

that same sensory information would need to be simulated in motor imagery.

173



5.4 Theories of motor imagery

Based on the evidence generated in Chapters 2 and 4 of this thesis, it appears that the
L_IPL is vital for motor learning to occur via motor imagery and further that this region is active
during motor imagery performance. While the studies herein cannot define an exact role for the
L_IPL in motor imagery, the area has noted involvement in several components of controlling
movement including sensorimotor integration, state estimation, high-order sensorimotor
information integration and conscious motor intentions (Buneo & Andersen, 2006; Desmurget &
Sirigu, 2012; Fogassi & Luppino, 2005; Shadmehr & Krakauer, 2008; Wolpert & Ghahramani,
2000). If one accepts the parsimonious argument that this region is performing analogous or
similar functions in both overt execution and motor imagery, then the parietal lobes should be
involved in all stages of motor control from goal and action selection to action execution. The
role of the parietal lobes in sensorimotor integration in action selection and execution align well
with the motor cognitive model and the perceptual cognitive model, both of which suggest that
imagery does not engage the motor system and might serve to explain the increased emphasis
placed on the L_IPL during motor imagery in comparison to overt execution (see Chapter 4;
Glover & Baran, 2017; Hardwick et al., 2018; T. Kim et al., 2017; S. N. Kraeutner, Keeler, et al.,
2016). Extending this understanding to learning would further imply that behavioural
improvements that result from training reflects improvements to the control policy that governs
movement, formed in action selection, which aligns with the decreased turn angle correlation
seen in Chapter 4 resulting from inhibition via repetitive TMS. Furthermore, while overt
execution of movement is noticeably absent in motor imagery there is a bevy of behavioural

studies to suggest that motor imagery engages in the forward modelling process and can
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generate a predicted outcome for movement that may contain a self-reported error (Dahm &
Rieger, 2019b; T. G. J. Ingram et al., 2022; Kilteni et al., 2018). As outlined in section 2.2 of the
Introduction to this thesis, this error can only be recognized if the prediction from a forward
model is compared against some sensory afference resulting from movement (McNamee &
Wolpert, 2019). This sensory information is integrated with the position of the body to detect
error in online movement through the process of state estimation, which is yet another
proposed function of the parietal lobes (Haar & Donchin, 2020; Shadmehr & Krakauer, 2008).
Since sensory afference is lacking in motor imagery, as posited in Chapter 2, we theorized that
this information is being simulated during motor imagery performance (see Chapter 2).
Therefore, it is also possible that the involvement of the L_IPL in motor imagery-based motor
learning in Chapter 4 reflects a role for the region in state estimation and would therefore
support alternate theories of motor imagery, such as motor emulation theory (Grush, 2004).
However, it is important to note that these two camps of motor imagery theories are not
exclusive and could be reflective of components that form a hybrid theory for motor imagery.
Once such possibility could be the combination of the motor cognitive model and motor
emulation theory (Hurst & Boe, 2022). It is in this writer’s opinion that this combination of the
perceptual cognitive model and motor emulation theory presents the most plausible model for
imagery as it encapsulates how imagery could lead to better control policies for movement than
overt execution by using forward models and some form of simulated state estimation to
generate a reward prediction error that in turn reinforces or punishes the selected movement
(Hurst & Boe, 2022; Kilteni et al., 2018; T. Kim et al., 2017). Notably many of these mechanisms

align with proposed functions of the parietal lobes and would account for why imagery might
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rely so heavily on this area of the cortex (Haar & Donchin, 2020; Hardwick et al., 2018;

Shadmehr & Krakauer, 2008).

55 The influence of task on cortical networks:

The second purpose of this thesis was to explore the impact of task selection on our
understanding of motor imagery-based motor learning. The results of the study highlight that
task selection is indeed affecting the conclusions made from individual studies. Specifically, with
regards to the three targeted cortical regions, only results from the L_IPL replicated findings of
the previous literature, noting a negative effect of inhibition on motor imagery-based motor
learning (S. N. Kraeutner, Keeler, et al., 2016). Inhibitory stimulation to the M1 and SMA
demonstrated a facilitation of task performance after motor imagery training and impairment of
performance overt execution training. The results in overt execution mirror the literature after
stimulation to the M1 supporting its role in the consolidation of learned motor behaviours
(Krakauer et al., 2019; Muellbacher et al., 2002; Richardson et al., 2006). In the SMA, the results
did differ from previous literature where inhibitory stimulation impacted learning, but not
performance of a learned skill whereas the opposite trend was seen in chapter 4 (Solomon et
al., 2021). The results of stimulation to the M1 and SMA in imagery not only contrast against the
previous literature but indicate credible findings in the opposite directions of the previous
literature that denoted no effects or impaired learning as a result of inhibitory stimulation (S. N.
Kraeutner, Ingram, et al., 2017; Pelgrims et al., 2011b; Solomon et al., 2021). These contrasting
results are the primary evidence for the effects of task selection on the generalization of the

results from a singular paradigm to a motor imagery.
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It is unsurprising to consider that different tasks have unique representations at the level
of the cortex (Genon, Reid, Langner, et al., 2018; Ito & Murray, 2023). Historically, to determine
how task performance is represented in the brain, neuroimaging is used to identify which areas
of the brain are active and, subsequently, lesion studies can be used to identify if the activity in
a region is important to the behaviour (Friston & Price, 2011). However, the result of this line of
investigation has led to multiple functions being associated with the same cortical regions
making it near impossible to disentangle what the function of any particular region is (Genon,
Reid, Langner, et al., 2018). This point is well demonstrated by the heterogeny of results seen
when stimulating the M1 while engaging in a variety of different tasks including a hand laterality
judgement task, SRTT and the complex movement execution task employed in this thesis. In the
hand laterality judgement task virtual lesions induced by stimulation impaired performance,
whereas a virtual lesion prior to motor imagery training on a SRTT had no effect on
performance, and finally, a virtual lesion prior to motor imagery training on a complex
movement execution task facilitated performance (see Chapter 4; S. N. Kraeutner, Ingram, et al.,
2017; Pelgrims et al., 2011b). The different effect of the virtual lesion to M1 on subsequent task
performance arise in light of differing levels of M1 activity noted from neuroimaging studies of
each paradigm whereby the M1 is not active during motor imagery performance of simple
motor tasks, nor during performance of the hand laterality judgement task, but is active during
motor imagery of the complex movement execution paradigm (Hardwick et al., 2018; Hétu et
al.,, 2013; T. G. J. Ingram, 2021). The results of stimulation prior to the hand laterality judgement
task make less sense in light of the lack of activity in the M1 associated with that task (Hétu et

al., 2013; Pelgrims et al., 2011b). In contrast, the null effect of stimulation prior to motor
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imagery training on the SRTT aligns with the lack of M1 activity associated with motor imagery
performance of kinematically simple motor tasks but might also reflect the minimal recruitment
of M1 associated with the task (Hardwick et al., 2018; S. N. Kraeutner, Ingram, et al., 2017; Yokoi
& Diedrichsen, 2019). Likewise, the facilitation of performance associated with M1 stimulation
prior to motor imagery training on the complex movement execution task aligns with noted
activity in the sensorimotor regions during imagery performance (T. G. J. Ingram, 2021).
However, the lack of consistency across this continuum of results makes it impossible to tell
what the role of the M1 is in motor imagery, if it plays a role at all, as the data accrued to date
on M1 involvement is dependent on task and may or may not be reflective of a function that
sub-serves motor imagery or an additionally recruited cognitive function required to perform

the task.

5.6 Limitations and future directions:

Future investigations of motor imagery should seek to overcome the limitations of the
‘stimulation deficit design’ where TMS is used to induce a virtual lesion and the effects of the
virtual lesion are measured on a single behaviour (Genon, Reid, Langner, et al., 2018). The
comparison of the results from chapter 4 to the past literature clearly highlights this limitation.
Specifically, results from the M1 and SMA do not align with previous literature, introducing
ambiguity pertaining to their role or importance in Ml. As such, interpreting the results from
this thesis that contrast the previous literature would only serve to provide an increasingly
complex function of the targeted brain regions that is likely due the specific demands of the task
used rather than a consistent function of the corresponding region in motor imagery.

Accordingly, the only result that likely reflects a meaningful feature of motor imagery-based
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motor learning is that it relies on the function of the L_IPL based on consistency of the finding
with the past literature (Hardwick et al., 2018; S. N. Kraeutner, Keeler, et al., 2016). Interpreting
the other credible results of this thesis, in the M1 and SMA, to identify why divergent results
occurred is not a fruitful endeavour as the interpretation would only add to an already muddied
list of potential functions performed by each area (Bhattacharjee et al., 2021; Nachev et al.,
2008). Rather this body of research can be used as an example of the limitations of the
stimulation deficit study design and highlights a much-needed change in methodological
approach to tie the function of the brain to behaviour.

To overcome the limitation of the stimulus deficit study design, the variability of the
measured behaviours needs to be addressed to permit for more consistent inference regarding
modalities for motor learning. Two suggestions to produce more consistent findings are: 1) the
interpretation of studies could be restricted to distinct components of the behaviour they
measure or 2) multiple tasks can be used to identify consistent trends that represent a
generalizable result. In the motor control literature, a number of serial conceptual steps have
been identified to represent movement and they have been associated with classes of
commonly used motor paradigms (Figure 1.2; Krakauer et al., 2019). However, these
relationships between paradigms and the behavioural mechanisms can only be established
though years of repeated use and a well-established mechanism for motor control, optimal
feedback control, which does not exist in the study of motor imagery (Todorov & Jordan, 2002).
As such, the alternative solution of using multiple tasks becomes a more viable alternative to
reducing the impact of task selection on the generalization of results to the modality of imagery.

These methodological aggregation efforts have already been established in the neuroimaging
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literature in several open-source initiatives, BrainMap and Neurosynth, that compile results
across published data to permit for hypothesis testing across tasks (Fox & Lancaster, 2002; Laird
et al., 2005; Yarkoni et al., 2011). While these databases have existed for years, they permit for
the use of more advanced analytical techniques that focus on identifying consistency in the
behavioural paradigms that activate a given brain region rather than asking which cortical
regions are active in support of a behaviour. In taking this approach, these initiatives produce
more consistent findings that are less susceptible to epiphenomenon related to experimental
methodology (Genon, Reid, Langner, et al., 2018; Genon, Reid, Li, et al., 2018; Poldrack, 2010).
This change in methodological approach could be applied to the study of motor imagery, and
studies looking to make a claim about the neural mechanisms underlying the modality should
use multiple paradigms to ensure that there is consistency of results across tasks. By doing so,
future work would increase the probability that inference made about motor imagery from an
individual study’s result is indeed reflective of a property of the modality and not a by-product

of the task, such as an imagined button presses or drawn shapes on a touch screen.

57 Conclusion:

In summation, this thesis highlights an incongruence in the behavioural mechanisms
explaining how motor imagery can result in an error (Dahm & Rieger, 2019b; T. G. J. Ingram et
al., 2022). Based on findings that indicate that a forward model is used during motor imagery
performance, akin to overt execution, we posit that state estimation is likewise being performed
in imagery and the function has the same cortical representation, the parietal lobes (Haar &
Donchin, 2020; Kilteni et al., 2018). While there was not any evidence generated in support of

this hypothesis (see Chapter 2), repetitive TMS of the L_IPL revealed that the area is important
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for motor imagery-based motor learning consistent with findings from past stimulation and
neuroimaging evidence (Hardwick et al., 2018; S. N. Kraeutner, Ingram, et al., 2017). This result
likely means that the null result in chapter 2 was due to a mismatch between the stimulation
timing and the proposed function of the L_IPL and is being further investigated. However, the
lack of reproducibility in the other cortical regions inhibited in Chapter 4, the M1 and SMA,
demonstrate clear evidence of task related bias and makes interpretation of the findings
challenging in light of previously published results (S. N. Kraeutner, Ingram, et al., 2017;
Solomon et al., 2021). As such, future investigations of the neural mechanisms underlying motor
imagery would be able to limit the impact of task selection by employing a battery of tasks and

investigating for consistent effects across them.
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