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Abstract 

This study presents a deep learning and image processing-based machine vision system 

for sampling and sizing full-size potato tubers on post-harvest conveyors. First, we present 

a method for sampling fully visible potato tubers running on post-harvest conveyors in 

the Laboratory and the field, overcoming challenges such as occlusion and varying 

lighting conditions. This method utilizes Mask R-CNN and image feature-based machine 

learning models, achieving high sampling accuracy and segmentation quality that 

averaged over 90% even in field conditions. Subsequently, a machine vision system 

designed to estimate the size of potato tubers sampled on the post-harvest conveyor is 

proposed. To validate the efficacy of this proposed system, two distinct methods were 

employed: static and dynamic conveyor experiments. The outcomes of these experiments 

revealed a minimum coefficient of determination of 0.77 for the estimation of the minor 

diameter of the potato tubers when they were in free-rolling motion on the conveyors, 

regardless of their orientation and spatial arrangement within clusters. Furthermore, the 

dimension errors observed across all scenarios remained consistently below 10%, 

affirming the system's accuracy and robustness in size estimation. 
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Chapter 1: Introduction 

1.1 Background 

Potatoes (Solanum tuberosum) are graded commercially based on their physical attributes 

and chemical composition. This grading process entails assessing several characteristics, 

such as shape, size, surface, and interior defects, as well as the sugar and starch content of 

the tubers (Sanchez et al., 2020). These quality features are critical in determining 

the market value and potential uses of the potatoes, as different grades are used for 

specific purposes (Rady & Guyer, 2015). The physical characteristics of potato tubers, 

including their size and shape, influence their intended applications. Large and elongated 

tubers are valued for producing French fries and chips due to their uniform dimensions, 

which contribute to creating visually appealing end products (Kabira & Lemaga, 2003). 

Conversely, smaller tubers with surface defects or irregular shapes are used for other 

processed products, such as mashed potatoes or potato flakes (Abong et al., 2009; 

Marwaha et al., 2010). Therefore, grading based on physical attributes is critical for 

efficiently classifying and allocating potatoes to their respective market segments. 

The timely grading of potato tubers following harvest is essential for several reasons. 

Firstly, it allows setting appropriate prices based on crop quality, ensuring farmers are 

fairly compensated for their produce. Secondly, precise grading allows for the optimal 

distribution of potatoes to various processing factories or market channels, reducing waste 

and increasing crop utilisation. Finally, accurate grading of potato tubers provides valuable 

information for farmers and processors, allowing them to plan and organize their logistical 

operations efficiently. By having early knowledge of the quality attributes of the harvested 

crop, stakeholders can make well-informed decisions regarding storage, transportation, 

and processing requirements. This information-driven approach enhances operational 
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efficiency and helps mitigate post-harvest losses, ultimately ensuring that potatoes reach 

consumers in optimal condition. 

In the province of New Brunswick in Canada, potatoes are harvested for four weeks during 

the first two months of the Fall season to avoid damage from frost. To maximize harvest 

efficiency, the tubers are transported into storage using conveyors, with a throughput of 

approximately 545 kg per minute, thus, leading to clustering and occlusion of the tubers 

on the post-harvest conveyors. Moreover, the field environment introduces additional 

factors such as mechanical vibration, ambient light, and the presence of foreign objects, 

which can vary across different sections of the farmland, including at the harvester. As a 

result, grading potato tubers in the field is a complex task. Furthermore, grading every 

tuber harvested would be time-consuming and resource-intensive, requiring a significant 

workforce and a vast amount of time. Therefore, to simplify the grading process and make 

it more manageable, a representative sample of tubers is selected for the size grading of 

the crop (Pavlista & Ojala, 1997). 

Based on observations of post-harvest operations at the Farms of the Future of McCain 

Foods in Florenceville-Bristol, New Brunswick, a selection of approximately 35 kg of 

potato tubers per 175 tonnes is graded for quality. The selected tubers are manually 

singulated and passed one after the other through a Gocator 3D sensor (LMI Technologies, 

Vancouver, Canada) for size estimation based on laser triangulation and fringe pattern 

projection and subsequently examined for surface defects such as greening and internal 

defects such as hollow heart and blackleg. While the Gocator 3D sensor has high accuracy, 

falling within the range of 0.0018 mm to 0.0030 mm (Xiong et al., 2016), it operates at a 

fixed conveyor speed and cannot provide precise measurements when the tubers are in 
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contact with one another. Consequently, manual intervention becomes necessary, leading 

to a labour-intensive, time-consuming, and cost-intensive process, particularly during the 

harvest season when the workforce is limited. Moreover, due to the limited sampling 

frequency and sample size, the tubers selected for grading may not represent the entire 

range of harvest variability. Given these challenges, there is an evident need to explore 

alternative solutions that can enhance the assessment of quality attributes of potato tubers. 

1.2 Machine Vision 

The use of machine vision for quality grading tasks has attracted significant attention due 

to its affordability, ease of integration, and repeatability (Dolata et al., 2021; Ismail & 

Malik, 2022; Su et al., 2020). Various imaging technologies, including charge-coupled 

device (CCD) cameras, hyperspectral cameras, ultra-violet (UV) and X-ray cathode-ray 

tube (CT) cameras, and other approaches, have been previously deployed to identify 

critical potato quality features (Su et al., 2020). The physical parameters of potato tubers, 

such as their length, width, and mass, can already be estimated by machine vision systems 

(Su et al., 2017). However, implementing these machine vision systems in field conditions 

without incurring additional costs or requiring significant adjustments to the existing 

system remains challenging. 

Researchers have addressed some of the challenges of grading potato tubers in the field in 

recent years, particularly those related to complex backgrounds and unstructured lighting 

conditions. Al-Mallahi et al. (2008) studied the influence of the potato conditions (whether 

dry or wet) on tuber detection while being harvested using cameras and built a machine 

vision system to detect potatoes on the harvester (Al-Mallahi et al., 2010b) including the 

condition under which the potato tubers and clods may be clustered in-line (Al-Mallahi et 
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al., 2010a). Smith et al. (2018) also explored the use of an RGB-D camera to size-grade 

potato tubers on a harvester with customized housing, to minimize the effects of direct 

sunlight and harsh weather conditions. Similarly, Lee & Shin (2020) proposed a machine 

vision system that utilized conventional image processing techniques for estimating the 

mass of potato tubers on the field surface after being dug by a potato digger. Despite their 

promising results, these investigations are customized to specific challenges and rely on 

manually crafted image features, which may not generalize to the spatial and temporal 

variations encountered in the field. Moreover, none of the studies addressed the challenge 

of mutually occluding tubers, often encountered at different sites in the potato field. 

The application of deep learning-based machine vision systems in grading tasks has 

become increasingly popular due to their ability to learn intricate features (Koirala et al., 

2019). This capability allows them to address the variations encountered in the field 

effectively. Dolata et al. (2021) and Lee & Shin (2020) employed Mask R-CNN, a deep 

learning algorithm for instance segmentation, for yield assessment of potato tubers. Their 

respective studies aimed to overcome challenges related to the size estimation of tubers on 

the harvester and on the field surface after excavation by a potato digger. Notably, these 

studies showed the effectiveness of deep learning algorithms in handling various 

complexities, including complex backgrounds, clustering, foreign objects, and ambient 

light. Nevertheless, both studies encountered challenges in detecting potato tubers that 

were significantly occluded. Moreover, accurately assessing the occluded portion of the 

tubers is difficult. 

Instead of assessing every tuber, regardless of whether they are occluded or not, a 

pragmatic and economical approach to tackle the occlusion issue could be the development 
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of a technique that can differentiate fully visible tubers from those that are occluded. By 

exclusively utilizing information acquired from a subset of potato tubers that are fully 

visible, it becomes possible to effectively ascertain the quality of the overall harvest, 

provided that the sample size and frequency are adequate to capture the inherent variability 

in the crop. Notably, it is worth highlighting that a review of the literature yielded no prior 

investigations that have considered this approach of automating the sampling process to 

tackle the challenges encountered during the assessment of tubers in field conditions. 

1.3 Research Objectives 

Several studies have used machine vision systems for quality grading potato tubers. 

However, most studies have focused on grading tubers in a controlled environment that 

requires manual singulation, tuber washing, and artificial lighting, with very few 

addressing size estimation tasks in field conditions, which the industry considers the most 

important attribute of interest (Al-Mallahi, personal communication, June 12, 2022). 

Hence, the overall objective of this study is to develop a new grading technology for the 

size estimation of tuber crops. The specific objectives are as follows: 

i) To develop a method for visually sampling full-size potato tubers flowing on 

conveyors at the post-harvest stage. 

ii) To develop a prototype machine vision system that can be integrated into existing 

systems for size estimation of potato tubers at the post-harvest conveyors. 
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Chapter 2: Literature Review 

2.1 Potato Production 

Potato is a staple food grown in over 160 countries. It is one of the four most important 

crops in the world (together with wheat, maize, and rice) (Zarzecka et al., 2020), with an 

annual production of 359 million tonnes in 2020 ("FAO Publications Catalogue 2021," 2021; 

Potato Facts and Figures - International Potato Center, 2021). In Canada, the potato is the fifth 

most important agricultural crop (after wheat, canola, soybean, and maize), generating 

around $1.4 billion in farm cash receipts and $2 billion in potato and potato product 

exports in 2020 (Potato Market Information Review, 2020-2021 - agriculture.canada.ca, 

2022). Additionally, potato is Canada's most frequently farmed vegetable crop, accounting 

for 28% of vegetable and 16% of horticulture receipts. Most of the all-grown potatoes 

(approximately 65%) are processed as frozen French fries, potato chips, flakes, and other 

dried products  (Potato Production in Canada – Canadian Horticultural Council, 2019). 

Therefore, specific quality characteristics, such as texture, defects, tuber size and shape, 

which are crucial in potato processing, must be assessed by growers (Struik et al., 1990; 

Si et al., 2017). 

Potato tubers are available in various sizes to suit the consumers' demands. Small potato 

tubers are favoured for planting because they yield more stems per kilogramme; however, 

large potato tubers are more profitable for producing chips and fries since they yield more 

kilogrammes per tonne  (Abong et al., 2009; Marwaha et al., 2010; Potato World 

magazine, 2015). Furthermore, Farhadi & Ghanbarian (2014) explained that assessing 

potato tubers by mass was unconventional due to the mass assessment's relatively slow 

pace and high cost. Many research studies have established a substitute technique for 

mass-based potato yield estimation, such as Tabatabaeefa's (2002) finding of a substantial 
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correlation between minor diameter and mass and Su et al.'s (2018) experiment that showed 

high accuracy for potato mass prediction based on volume. Thus, estimating potato size, 

precisely the minor diameter and volume, is critical for growers to maximize profit, assess 

crop yield, and prepare for post-harvest logistics and marketing.  

Sizing potato tubers is a common practice done by visual assessment or passing the 

harvested crop through V-shaped sieves of different sizes (Mechanical Potato Graders, 

2020; Dattatraya et al., 2013 ). When visual inspection is used, inconsistencies occur due 

to varying perceptions and fatigue of the human eye. Besides its inconsistency, manual 

sizing of potato tubers is time-consuming, labour-intensive, expensive, and may be easily 

impacted by the immediate environment (Narvankar et al., 2005; Razmjooy et al., 2012). 

As a result, several studies have been conducted to automate the process of potato size 

grading to boost production speed, accuracy, and efficiency while lowering production 

costs (Elmasry et al., 2012). One of the earliest trials was proposed by Verma & Kalkat 

(1975), who designed a potato sizer with an increasing-pitch rubber spool. The prototype 

potato sizer was a conveyor with a rubber spool and two driving rollers with helical 

grooves. The performance of the expanding rubber spool potato sizer was tested at varying 

bed speeds. By slowing the feed elevator conveyor to 45 rpm and using a larger pulley, 

clustering and occlusion were removed at the start of the size bed. Most recently, Huda et 

al. (2019) engineered and fabricated a potato mechanical size grader that comprised a 

hopper, grading unit, prime mover, and catchment tray. The grader was used to classify 

potato tubers into big (>55 mm), medium (40 – 55 mm), and small (<40 mm) sizes based 

on three holes in the grading unit. The proposed system had an efficiency of 91.57% and 

a capacity of 420.10 kg per hour. While mechanical graders are more efficient than visual 
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inspection at sizing, damage to the potato tubers caused by abrasion of the surfaces is 

significant, especially at higher speeds (Valentin et al., 2016). Moreover, mechanical 

graders are expensive and require extensive modification of existing systems. 

Machine vision eliminates visual discrepancies and increases sorting efficiency by 

providing consistent judgement based on estimated parameters (Quilloy & Bato, 2015). 

Additionally, it offers a non-destructive method for assessing crops. Thus, the past few 

decades have seen researchers focus on its use for agricultural operations (Tian et al., 

2020). 

2.2 Machine Vision Systems in Agriculture 

Machine vision systems use cameras and computers to replace human visual sense and 

judgement. Machine vision-based systems generally have three stages: image capture, 

image processing, and input/output control (Ji et al., 2009). Image processing involves 

establishing studies and algorithms to evaluate and extract information from a video or 

still image about an observed object or set of items. Many imaging methods have 

been used to develop machine vision systems, each with benefits and drawbacks. Black-

and-white imaging, colour imaging, stereovision, and hyperspectral imaging are notable 

examples used in previous research. However, the performance of machine vision systems 

relies not only on the camera type but also on the algorithm, source of light, and object of 

interest. 

2.2.1 Imaging Systems 

Earlier studies have used black-and-white cameras to identify fruit based on reflectance, 

geometric, and surface aspects (Plá et al., 1993). A black-and-white camera was used to 

identify scars, fissures, and spreading tips on asparagus plants (Rigney et al., 1996). These 

basic systems recognized fruits with a high accuracy utilizing a mix of shape, texture, and 
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light absorbance features. However, Sites & Delwiche (1988) showed that with the addition 

of colour filters, the contrast between the object and the background was enhanced, 

leading to higher accuracy of fruit detection.  

Numerous aspects of agricultural crop production use the colour camera as a sensing 

element since it adds layers of information to black-and-white imaging and is relatively 

cheaper than other imaging systems. Colour imaging has been proven to be effective for 

quality grading (L. Deng et al., 2017; Firouzjaei et al., 2018), fruit identification (Prasetyo 

et al., 2020), ripeness detection (Wan et al., 2018), yield prediction (Aggelopoulou et al., 

2011; Q. Wang et al., 2013), and weed sensing (Tang et al., 2000).  Throop et al. (1993) 

used colour spectral information to estimate the bruise level in apple fruits. According to 

the study's results, colour distinctions successfully distinguished injured from healthy 

tissue. Kataoka et al. (2003) also used a colour camera to estimate the growth status of 

crops from covered vegetation. Colour images have also been used in developing 

algorithms for counting marigold flowers (Sethy et al., 2019), kiwifruit (Fu et al., 2019), 

and apples (Chen et al., 2017).  The colour information in an image is crucial for 

segmentation, although it varies based on illumination. Researchers often do 

image normalization and convert images from RGB (Red-Green-Blue) to HSV (Hue-

Saturation-Value) colour space to reduce the impact of changing lighting conditions on 

colour images (Garcia-Lamont et al., 2018).  

Thermal imaging is a method of converting an object's invisible radiation pattern into 

visual pictures. Assessment of quality, detection of contaminants, detection of grades, 

detection of infectious agents, detection of damage, maturity evaluation, and inspection 

are examples of where thermal imaging is utilized (Sivaranjani et al., 2021). Stoll & Jones 
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(2007) conducted a feasibility study to determine the practicality of thermal imaging for 

monitoring stress in grapevines. According to the study, this method could deliver precise 

and sensitive indications of leaf temperature, which may then be used to calculate stomatal 

conductance. The use of thermal imaging in agricultural operations throughout the pre-

harvest and post-harvest periods as a non-contact, non-destructive technology offers 

certain benefits, such as working in low-light scenarios. However, thermal imaging has 

several limitations when compared to other imaging techniques. Costly high-resolution 

thermal imaging is required, and the accuracy of thermal readings is highly reliant on 

ambient and meteorological conditions (Ishimwe et al., 2014). 

Hyperspectral imaging is widely investigated in agricultural research because the images 

have an enormous amount of spectral information in addition to the spatial information 

other types of imaging have (Yud-RenChen & Kim, 2002). Using hyperspectral imaging, 

Zhao et al. (2008) experimented with detecting whether apples have bruises based on 

spectral data between 500 nm and 900 nm, which were assessed using principal 

component analysis. Selected images were then used to eliminate asymmetry in 

brightness. The research found that their approach correctly identified 88.57% of bruising. 

This imaging system gives far more helpful information than standard imaging 

approaches since each image surface pixel has the object's spectral information. 

Hyperspectral cameras are more costly than other cameras (Mavridou et al., 2019) and 

challenging to deploy in unstructured terrain without modifications to the existing system. 

In addition to conventional vision systems, stereo vision systems provide an alternate 

method of recognizing objects in three-dimensional (3D) space. These systems use two or 

more cameras placed a short distance apart to simulate similar binocular vision as in 
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humans. A notable application of stereoscopic cameras is in the 3D capture of plant 

structures used in crop and plant monitoring and species-discriminating applications (Lili 

et al., 2017; Mirbod et al., 2020; Wenhua et al., 2009). Although stereo vision provides 

the additional benefit of visual inspection in three dimensions, its complexity makes it 

challenging to use in an unstructured environment, such as an agricultural field. 

2.2.2 Computer Vision 

Computer vision relates to interpreting, acquiring, and evaluating objects within digital 

images. It is currently employed in various technologies, including autonomous cars and 

robots, medical diagnostics, industrial production and surveillance, and remote sensing. 

Computer vision-based systems are gaining attraction in the food and agricultural 

industries, notably for quality control. According to Bhargava & Bansal (2018), computer 

vision enables various farming operations, including land identification, recognition of 

pest-infested zones, automated categorization, and plant disease detection based on shape, 

texture, and colour. 

Yimyam (2005) developed a system for recognizing, segmenting, and analyzing mango's 

physical properties. The images were captured using a digital camera and then processed 

and segmented. The noise in the digital image was eliminated using morphological 

filtering, and a colour model of the mango samples was developed. This study used 

structural models to determine the mango's area and shape. The object's colour was also 

analyzed and classified. Their solution provided a practical alternative to manual sorting. 

Similarly, to accurately recognize grape berries and detect grape bunches, Andrés et al. 

(2017) used a visible-light camera to conduct their research. They developed a machine 

vision system based on geometry and texture using aggregated pixel patches as input. 

Despite various lighting and partial occlusion circumstances, the system performed well.  
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Computer vision has also been used to monitor plant growth and detect agricultural 

disease and nutrient shortage problems. Sannakki et al. (2011) quantified leaf disease 

using a computer vision-based method. They used a colour camera to capture images of 

pomegranate leaves and then used image scaling and Gaussian filtering to 

minimize computational load and eliminate noise. After that, they used K-means 

clustering to colour-segment the diseased leaf area. Then the diseased area was quantified 

and graded using basic object-size to pixel-area calibration and fuzzy logic, respectively. 

In a similar study, Sannakki et al. (2013)  diagnosed and classified grape leaf diseases 

using neural networks. The input data for the proposed system was an image of a grape 

leaf with a complex background. Green pixels were masked using thresholding, and 

anisotropic diffusion was employed to remove noise from the image. The disease region 

was then segmented using K-means clustering. It was shown that the best results were 

achieved when a feedforward backpropagation neural network was trained for 

classification. 

The popularity of agricultural image processing and computer vision applications has 

risen as equipment cost has decreased, computing power has improved, and interest in 

non-destructive food inspection processes has increased (Mahajan et al., 2015). On the 

other hand, their approaches are limited, and achieving flexibility and stability in a variety 

of complex situations is difficult. Numerous studies have shown varying degrees of 

limitation for computer vision applications in the agricultural setting due to the field's 

unstructured nature. 

2.3 Machine Vision for Quality Grading of Potato   

Automated quality control of food and agricultural products is quicker and more precise 

than hand grading and, as a result, has garnered considerable attention. Near-infrared 
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technology, nuclear magnetic resonance (Chen et al., 1989; McCarthy & McCarthy, 1994), 

and X-rays were among the first tools for rating the quality of food and agricultural goods 

(Shahin & Tollner, 1997). While these approaches produced impressive results, their high 

cost and complexity necessitated the development of a new generation of non-destructive 

technologies for assessing the quality of agricultural and food goods. Shape classification, 

defect identification, quality grading, and variety categorization are gaining popularity as 

applications for automated machine vision systems (Patel et al., 2012). 

Noordam et al. (2000) presented a high-speed machine vision system for the quality 

inspection and grading of potatoes based on size, shape, and external defects - greening, 

mechanical damages, Rhizoctonia, silver scab, common scab, cracks, and growth cracks. 

The system utilized Linear Discriminate Analysis (LDA) and multi-layer feed-forward 

neural network (MLF-NN) techniques for pixel classification. The accuracy of the LDA 

and MLF-NN sorting techniques for different potato varieties ranged from 86.8% to 

98.6% and 88.1% to 99.2%, respectively. In another study, Hassankhani & Navid (2012) 

developed a machine vision system for sorting potatoes based on size and colour. Their 

proposed system included a lighting chamber, lighting source, CCD camera, and a 

computer running hand-crafted feature-based computer vision software. The system 

achieved an average accuracy of 96.54% across different potato grades. Recent studies 

include Su et al. (2018), who used 3D imaging for mass estimation, and Shen et al. (2022), 

who developed an algorithm based on invariant moments, geometrics characteristics, and 

fractal dimensions for potato shape and size estimation. While these studies have tackled 

a variety of potato quality grading tasks, they have all been conducted under controlled 
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conditions with detection simplifying settings such as artificial lighting and manual 

singulation. 

2.4 Application of Deep Learning in Quality Grading of Potato 

2.4.1 Overview of Deep Learning 

Contemporary scientific studies have witnessed the rising popularity of deep learning and 

neural networks due to their ability to learn complex scenarios from context (Alazab et al., 

2020; Gadekallu et al., 2020). Deep neural networks (DNNs) enable computational models 

with multiple processing layers to learn data representations with varying degrees of 

abstraction. As data flows through the network, lower layers learn simple features close to 

the input data, while higher layers learn more sophisticated features derived from lower-

layer features (Shinde & Shah, 2018). The architecture creates a hierarchical and powerful 

representation of features, making deep learning well-suited for evaluating and extracting 

meaningful knowledge from massive amounts of data and data obtained from various 

sources (Zhang et al., 2018). These technologies have significantly advanced the state-of-

the-art in speech recognition, visual object recognition, object detection, and various other 

fields such as drug development and genomics (LeCun et al., 2015). However, deep 

learning algorithms require extensive data and massive computational power 

(Bhattacharya et al., 2021).  

The hierarchical structure of deep-learning models and their immense learning power 

enables them to perform exceptionally well at making predictions and classifications while 

being flexible and adaptable to various highly sophisticated data processing tasks (Pan & 

Yang, 2010). With the robust capability of automatic feature learning, deep learning 

methods offer a promising solution for solving complex problems in agriculture, such as 
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variety recognition, yield estimation, quality grading, growth monitoring, and disease 

detection (Yang & Xu, 2021). 

Among the deep learning methods, convolutional neural networks (CNNs) are a method 

that can learn complex image features, enabling image classification and recognition in 

complex scenarios. Therefore, CNN is preferred for computer vision tasks such as image 

and video recognition. Figure 2.1 illustrates the layers of a CNN as a sequence of 

convolutional and subsampling layers followed by a fully connected layer and a 

normalizing (e.g., softmax function) layer. Each layer in a series of several convolution 

layers captures increasingly complex information as the layers proceed from input to 

output. The typical computer vision tasks in agriculture are object classification, object 

detection, and image segmentation, and the architecture of CNN is influenced by the nature 

of the visual task. 

 

Figure 2.1: Basic structure of CNN (J. Liu & Wang, 2021) 

There are several effective and popular CNN architectures upon which researchers might 

base their models rather than beginning from scratch. Among them are AlexNet 

(Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 

2014), and Inception-ResNet (Szegedy et al., 2016), which are used for object 

classification and recognition. Other popular state-of-the-art architectures are Mask-

RCNN (He et al., 2017), FCN (Shelhamer et al., 2014), SegNet (Badrinarayanan et al., 

2015), and U-Net (Ronneberger et al., 2015) for image segmentation. For objection 
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detection, architectures such as YOLO (Redmon et al., 2015), RCNN (Girshick et al., 

2013) and SSD (W. Liu et al., 2015) are known to have good performance. Each 

architecture suits different situations, and choosing the right one is crucial (Canziani et al., 

2016). To train CNN models, datasets such as ImageNet (J. Deng et al., 2010) and COCO 

(T. Y. Lin et al., 2014) are often used for pre-training. Pre-training the models using these 

datasets allows for transfer learning, which has enabled training models with small to 

medium-sized datasets and saves training time. 

2.4.2 Deep Learning in Potato Quality Grading 

Deep learning algorithms have gained attention in several quality grading tasks. To this 

end, Chicchón & Huerta (2021) developed a machine vision system using a CNN-based 

approach for rapid volume estimation of potato tubers. They evaluated the effectiveness 

of SegNet, a deep learning architecture for image segmentation, compared to traditional 

threshold-based segmentation approaches for calculating potato volume. The deep 

learning approach accurately detected up to 99% of the potato tubers and predicted volume 

with up to 90% accuracy. It also had a processing speed of between 10 and 20 tubers per 

second and was more robust than the traditional method that required calibration 

depending on environmental parameters. 

Dolata et al. (2021) proposed a yield assessment method to estimate potato tubers' physical 

dimensions on the harvester using Mask R-CNN deep learning algorithm. They introduced 

a nonlinear softmax regression model for size estimation, calculating the minimum 

diameter of potato tubers from the ellipse fitted to its perceived contour. They trained the 

regression model using simulated data and tested it in a near-real-world setting. Results 

showed that it was possible to estimate the minimum diameter of potato tubers using a 
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single image obtained with a consumer-grade RGB camera without additional 

illumination. The proposed model had an average coefficient of determination of 0.8695 

for estimating the minimum tuber diameter compared to the actual tuber minimum 

diameter. A similar study by Lee & Shin (2020) utilized the Mask R-CNN algorithm to 

assess the size of tubers on the field surface following excavation by a potato digger. The 

researchers reported a detection accuracy of 90.8% and an average recall of 93.0%, 

highlighting the effectiveness of the Mask R-CNN algorithm in addressing challenges such 

as complex backgrounds, clustering, foreign objects, and ambient light. These findings are 

consistent with those of previous research, emphasizing the potential of the Mask R-CNN 

algorithm as a valuable tool for potato grading in various settings. Nonetheless, neither 

investigation confronts the difficulty of identifying tubers in densely crowded scenes in 

which tubers mutually occlude each other, a prevalent scenario in multiple locations within 

potato fields. 

Deep learning algorithms have also been applied in machine vision systems for the non-

intrusive detection of potato surface defects due to the wide variety of tuber shapes and 

defects (C. Wang & Xiao, 2021). A study by Pandey et al. (2019) developed computer vision 

software for size grading and surface defect detection of potatoes using CNNs and image 

processing techniques. The software utilized U-Net architecture to semantically segment 

images with 50-60 potato tubers from the background and then apply distance 

transformation and watershed segmentation to obtain the tuber's skin. The method 

achieved a minimum size distribution accuracy of 97.2% and a defect classification 

accuracy of 89% on the validation dataset. Marino et al. (2019) used a weakly-supervised 

learning strategy to classify, localize, and segment potato defects by capturing images of 
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healthy and defective potatoes in a laboratory environment. They used state-of-the-art 

CNN architectures to classify defects and a coarse-to-fine segmentation method to 

determine the precise position of the defect. When evaluated using a multi-label multi-

class dataset, the system achieved an average precision of 91% and an average recall of 

90%. A recent study by Arshaghi et al. (2021) used CNNs and machine learning to 

accurately classify potato surface defects, using 5000 images from different sources. Their 

CNN network included convolutional and fully connected layers, achieving 100% 

accuracy in classifying surface defects, surpassing typical machine learning techniques. 

Table 2.1 summarizes some studies that have applied deep learning in the quality grading 

of potato tubers in the last 5 years.  
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Table 2.1: Applications of deep learning for quality grading of potato 

S/N Application Architecture used 
Reported 

performance 
Reference 

1 Mass estimation 
YOLOv5 and 

DeepSORT 

Accuracy: 95.2% 

RMSE error: 9% 
Jang et al. (2023) 

2 
Disease 

identification 

MobileNet V2 

with LSTM and 

GRU 

Accuracy: 99% Faria et al. (2023) 

3 
Classification of 

diseases 

CNN and 

Modified SVM 
Accuracy: 99% 

Samatha et al. 

(2023) 

4 
Identification of 

hollow heart 

ResNet50 and 

Shallow FCN 

AUC: 90% 

Precision: 90% 

Recall: 90% 

Abbasi et al. (2021) 

5 
Rapid estimation of 

tuber volume 
SegNet Accuracy: 90% 

Chicchón & Huerta 

(2021) 

6 
Tuber size 

estimation 

Mask RCNN 

Nonlinear 

regression model 

Quality: 88.9% 

Determination 

coefficient: 0.869 

Dolata et al. (2021) 

7 
Surface defect 

classification  

SSD Inception 

V2, ResNet101, 

and others  

Accuracy - 98.7% Wang & Xiao (2021) 

8 
Classification of 

surface defects  
CNN Accuracy - 100% 

Arshaghi et al. 

(2021) 

9 

Quality grading 

based on size and 

appearance 

CNN and 

softmax 

regression (SR) 

Accuracy: 86.6% 

Loss: 0.304 
Su et al. (2020) 

10 
Size estimation of 

potato tubers 
Mask R-CNN 

Accuracy: 90.8% 

Recall: 93.0% 
Lee & Shin (2020) 

11 

Surface defect 

classification 

includes damaged 

tubers. 

AlexNet, VGG-

16, GoogLeNet, 

and others  

Precision: 92% 

Recall: 91% 

Marino et al. 

(2019) 

12 

Size grading and 

surface defect 

detection  

U-Net and 

VGG16  

Accuracy: 97.2% 

for size; 89% for 

defects 

Pandey et al. 

(2019) 

 



20 
 

2.5 Summary 

Automated quality assessment of food and agricultural products through machine vision 

is gaining prominence due to its efficiency and precision. Machine vision systems can be 

employed for diverse applications such as shape classification, defect identification, size 

grading, and variety categorization. Recent research efforts have explored the use of 

different imaging systems for various grading concerns. Image features, such as invariant 

moments, geometric characteristics, edge-based features, and fractal dimension, have been 

utilized for potato grading tasks in controlled environments and field conditions. 

Nonetheless, most proposed solutions that leverage handcrafted image features are tailored 

to address specific challenges that do not generalize to a wide range of variations, such as 

ambient light, clustering and occlusion, and the presence of foreign objects (Chen et al., 

2021).  

Deep learning algorithms such as SegNet and Mask R-CNN have gained considerable 

attention in various quality grading tasks in recent years. These approaches have 

performed well in outdoor field conditions characterized by spatial and temporal 

variations. For instance, they have successfully detected surface defects on potato tubers, 

predicted volume, and estimated the minimum diameter of potato tubers with high 

accuracy. However, only a few studies have conducted field experiments to assess the 

feasibility of their proposed solutions in field conditions. Furthermore, the challenge of 

deep occlusions, where more than half of an object is not visible, which is prevalent at 

different sites in potato fields, has not been adequately addressed in any of the studies.  
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Chapter 3: Sampling full-size potato tubers in large-scale clusters 

3.1 Introduction 

Machine vision has emerged as a prominent tool for evaluating agricultural yield, 

primarily due to its cost-effectiveness (Ismail & Malik, 2022). However, adopting machine 

vision is contingent upon minimizing supplementary expenses that may arise from 

extensive modifications to existing systems. As such, rather than suggesting a mechanical 

overhaul of the potato post-harvest conveyor system, this research was based on obtaining 

quality information of potatoes as they pass under a camera by sampling potato tubers on 

the post-harvest conveyor. This research can be considered successful as long as the 

sampling size is larger than what can be achieved by manual sampling. This chapter 

describes the software method for sampling potatoes on the conveyor on-the-go at different 

clustering scenarios. 

3.2 Overview of the sampling method 

The method encompasses a series of sequential procedures, commencing with detecting 

potato tubers in images to ensure the selection of fully visible tubers. For this purpose, 

instance segmentation of the images is performed using the Mask R-CNN deep learning 

algorithm. Subsequently, image features are extracted by computing Hu invariant 

moments and colour and edge-based image features. These extracted features are 

subsequently utilized to select either one or five tubers per image frame. Figure 3.1 

provides an overview of the proposed methodology. 

Sampling comprises two primary stages: instance segmentation and tuber sampling, both 

of which are reliant on supervised machine learning. As such, the availability of annotated 

datasets is critical for effective model training. In this regard, images of potato tubers 

captured under laboratory and field conditions were manually labelled to develop the 
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requisite datasets. The dataset of images obtained under laboratory conditions was 

employed for training and evaluating the Mask R-CNN model, whereas the datasets aimed 

at developing and assessing the sampling techniques were created by meticulously 

labelling each potato tuber depicted in the images as either fully or partially visible. 

Finally, the preferred sampling technique was evaluated using images obtained under field 

conditions to gauge its feasibility and applicability in practical scenarios.  
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Figure 3.1: Detecting and selecting five tubers from a cluster of potato tubers flowing on 

a conveyor in the lab. An intermediate process of segmenting all tubers before choosing 

fully visible based on Mask R-CNN is implemented on any cluster type. 

Instance segmentation 

Tuber sampling 
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3.3 Image Acquisition and Dataset Creation 

The images were taken using an RGB camera (DSC-RX0M2, Sony, Tokyo, Japan), which 

is cost-effective and easy to use. Additionally, it is a small, rugged, high-resolution RGB 

camera resistant to vibration, dampness, and shock. These properties made it a good 

choice, given that it was also used outdoors in the field on the post-harvest conveyor. 

High-Definition images (1920×1080 pixels) were captured at the Engineering Laboratory, 

Faculty of Agriculture, Dalhousie University, and McCain's Farms of the Future, 

Riverbank, New Brunswick, Canada. The outdoor images were taken at various times of 

the day during the potato harvesting season in 2021 and 2022, encompassing morning, 

afternoon, and evening, to ensure that varying lighting conditions in the field are captured. 

To achieve this, 60 minutes of video data were captured for prevailing circumstances, 

while 15 minutes were captured for rare cases (see Appendix A-1).   

VGG annotator (Dutta & Zisserman, 2019) was used to annotate 36 images obtained in the 

Laboratory, which comprised three clustering conditions: dense, moderate, and sparse, as 

shown in Figure 3.2. Every potato tuber was annotated, whether fully or partially visible. 

In the dense, moderate, and sparse clustering conditions, the average number of tubers per 

frame was 148, 79, and 54, respectively. Additionally, 54 images obtained outdoors from 

post-harvest conveyors at the Farms of the Future were annotated to evaluate the proposed 

methodology under field conditions, incorporating the various clustering scenarios and 

three lighting conditions: sunny, cloudy, and shaded. For the outdoor images, the average 

number of tubers per frame was 231, 116, and 53 for dense, moderate, and sparse 

clustering scenarios, respectively, across all lighting conditions. To ensure its applicability 

across the two main potato cultivars for French fries and chips, the software was 
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developed using the Caribou potato cultivar under controlled indoor conditions and 

evaluated using the King Russet cultivar in field settings. Table 3.1 shows the dataset, 

which includes information regarding the number of images for different clustering and 

lighting scenarios and data partitions.  

 

(a) (b) (c) 

Figure 3.2: Images of the tubers acquired on laboratory conveyor belts showing (a) 

sparse clustering, (b) moderate clustering, and (c) dense clustering scenarios. 

Table 3.1: Datasets used for the proposed method showing the number of images, 

clustering and lighting scenarios, and the data split. 

Lighting 

conditions 
Variety 

 
Data split Clustering scenario 

Artificial 

(Indoor) 

   Sparse Moderate Dense 

Caribou 

 Training 5 5 6 

 Validation 1 2 2 

 Testing 5 5 5 

Sunny 

Russet king 

 Testing 6 6 6 

Shaded  Testing 6 6 6 

Cloudy  Testing 6 6 6 

 

3.4 Instance Segmentation 

One of the critical problems of this study was identifying an effective technique for 

segmenting potato tubers from one another (instance segmentation) and the conveyor 

(semantic segmentation). Image segmentation is necessary before estimating the size of 

the tubers, as the segmentation quality influences the size estimation accuracy. The Mask 

R-CNN (He et al., 2017) deep learning algorithm, an enhanced version of Faster R-CNN, 
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was employed for instance segmentation. The architecture consists of two main stages: the 

backbone stage and the head stage. The former is constructed using FPN (feature pyramid 

network) (T.-Y. Lin et al., 2017) and ResNet (He et al., 2016), as well as a Regional 

Proposal Network (RPN) (Ren et al., 2015) and an ROI (Region of Interest) align layer 

(Girshick, 2015). This stage proposes regions in the image that might contain potato tubers. 

The latter consists of fully connected layers where the classification, bounding box and 

mask predictions take place using the proposed regions of each potato tuber as input from 

the first stage. 

To ensure the reproducibility of the instance segmentation model, the original structure of 

the implementation was followed utilizing the detectron2 library (Wu et al., 2019), which 

offers advanced segmentation and detection algorithms. It is an improvement to both 

detectron and maskrcnn-benchmark whose library is built on PyTorch (Paszke et al., 

2019), a widely used deep learning framework based on the Python programming 

language. This choice of library and framework provides the advantage of seamless 

compatibility with the remaining components of the computer vision software. 

The Mask R-CNN models were trained on a cloud platform offered by the Digital Research 

Alliance of Canada. The training dataset split of indoor images was used for training the 

models leveraging available Graphics Processing Units (GPU). To expedite training time 

and reduce the reliance on extensive training data, three pre-trained weights from the 

Detectron2 model repository were employed. These weights corresponded to three distinct 

pre-trained Mask R-CNN models: mask_rcnn_R_101_FPN_3x (based on ResNet-101), 

mask_rcnn_R_50_FPN_3x (based on ResNet-50), and mask_rcnn_50_C4_3x (based on 

ResNet-50 backbone with convolution head). The models were adapted to the task by 
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leveraging the transfer learning technique. Consequently, this research compared the three 

models in terms of their effectiveness in detecting and segmenting potato tubers. 

3.5 Image Feature Extraction 

The extraction of valuable features from the detected tuber instance is critical for 

differentiating fully visible tubers from partially visible ones. In this study, 14 image 

features were extracted from each tuber instance detected by the Mask R-CNN model to 

find the appropriate set of features for tuber selection. 7 out of the 14 features were the Hu 

moments of the image, while the others were based on edge and colour image processing. 

3.5.1 Hu Moments 

Image moments are used in computer vision to characterize the shape of an object within 

an image. The properties of a target can be represented through moments of different 

orders. Basic shape characteristics can be captured by low-order moments, while high-

order moments can provide detailed and complex information. A more complete and 

accurate representation of the target's properties can be achieved by utilizing low and high-

order moments. Thus, all seven image invariant moments obtained from the HuMoments 

method (see Appendix C) of the OpenCV Python library were considered. 

3.5.2 Colour and Edge-based Image Features 

Figure 3.3 illustrates the components employed for the development of image features 

extracted from the detected potato tuber based on colour and edge-based image processing. 

The Mask R-CNN model was utilized to derive a binary mask of the detected tuber. In 

conjunction with the tuber mask, the Mask R-CNN model generates a bounding box (bbox) 

that encompasses the detected region of the tuber within the image. While the bbox 

generated by the Mask R-CNN model provides valuable information on the location of the 

detected potato tuber in the image, it does not offer insights into the tuber's orientation. 
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An angle-adjusted bbox was introduced to capture the angular projection of the tuber. This 

adjustment involved precisely fitting a bbox onto the tuber mask, enabling the 

incorporation of the tuber's orientation into the image analysis. Furthermore, to gain 

insights into the shape characteristics of the detected potato tuber, an ellipse was fitted to 

the external contour of the tuber mask. The deviation of the detected potato tuber from an 

idealized elliptical shape was assessed by fitting an ellipse to the contour. An overview of 

these handcrafted image features is provided below:  

 

(a) (b) (c) (d) 

Figure 3.3: Detected tuber masks (white) showing (a) avg_val_bbox, which are the 

purple straight lines on the detected bbox (red) and S/N_1, which is the ratio of grey vs 

white pixels; (b) S/N_2 which is the ratio of the grey vs white pixels; (c) Ellipticalness 

and ellipse ratio; (d) convexity defect which is the deviation of the tuber contour (blue) 

from the convex hull (green) and the circularity which the ratio of the area enclosed by 

the tuber contour (blue) to the area enclosed by the circle (red). 

1. Average pixel count on detected bbox edges (avg_val_bbox): The number of 

pixels on each of the four edges of the detected bounding box for the tuber mask 

was computed, and their average was taken. This provided an estimate of the 

average density of tuber mask pixels along the edges of the bbox. These pixels are 

highlighted as purple in Figure 3.3 (a).  

2. Signal-to-Noise ratio 1 (S/N_1): This ratio is the number of tuber mask pixels 

divided by the total number of pixels enclosed by the detected bbox (red), 

including the white and gray pixels shown in Figure 3.3 (a). The signal component 
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is the number of tuber mask (white) pixels. The outer contour of the mask was 

extracted by performing binary thresholding with a pixel value of 200 to remove 

the detected bbox and then applying the findContours method of the OpenCV 

library to get the outline of the tuber mask, which was then utilized to calculate 

the number of tuber mask pixels.  

3. Signal-to-Noise ratio 2 (S/N_2): This ratio is the number of tuber mask pixels 

divided by the total number of pixels enclosed by the angle-adjusted bbox (red), 

as shown in Figure 3.3 (b). The signal is determined using the same approach as 

that for S/N_1. In contrast, the noise component is obtained by calculating the 

product of the width and height of the angle-adjusted bbox fitted to the external 

contour of the segmented tuber mask. The angle-adjusted bbox considers the 

projection angle of the segmented tuber mask and is generally smaller than the 

detected bbox; thus, it typically has a higher value than S/N_1. 

4. "Ellipticalness": This is the ratio of the area of an ellipse fitted to the external 

contour of tuber mask pixels to the number of tuber mask pixels. The area of the 

fitted ellipse is calculated using the ellipse area formula that considers the major 

(green) and minor (blue) diameters of the fitted ellipse shown in Figure 3.3 (c). 

The area of the ellipse is calculated using Equation 3.1. 

                                                        𝐴 =  π𝑎𝑏,                                  (3.1)      

where a and b are the lengths of the major and minor axes of the ellipse fitted to 

the tuber mask, respectively, and A is the area of the fitted ellipse.  

5. "Ellipse ratio": It is the ratio of the number of tuber mask pixels enclosed by the 

contour of the fitted ellipse to the area of the tuber mask. It differs from 
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"ellipticalness" since it uses the number of tuber mask pixels enclosed by the fitted 

ellipse instead of the area of the ellipse. 

6. Circularity: This parameter evaluates how closely the shape of a segmented tuber 

resembles that of a circle. The circularity (C) was calculated by using the estimated 

area (S) and perimeter (P) of the segmented tuber mask, using Equation 3.2 

                 C =
4𝜋×S

P2                                (3.2) 

7. Convexity defect: This parameter is the deviation of the tuber mask contour (blue) 

from its convex hull (green), as shown in Figure 3.3 (d). 

The handcrafted image features can be divided into two categories: area-based features, 

namely S/N_1 and S/N_2, and edge-based features, which comprise the five other features 

that pertain to the shape of the segmented tuber mask. The circularity and convexity 

defects were derived using the pre-existing functionalities of the OpenCV python library, 

while custom code was developed using the OpenCV and sci-kit-image python libraries 

to obtain the remaining features. 

3.6 Tuber Sampling Techniques 

Using the validation dataset of indoor images, 536 detected tuber masks were obtained, 

comprising 140 fully visible tubers and 396 partially visible ones. This dataset was utilized 

for developing two sampling techniques, as discussed in the following subsections. 

3.6.1 Threshold-based Sampling  

The primary objective was to find the threshold value for each handcrafted feature that 

distinguishes between fully and partially visible potato tubers. The threshold values were 

set based on the 25th, 50th, and 75th percentiles of each feature as well as the mean, 

maximum, and minimum values across the fully and partially visible tubers. Additionally, 
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the point-biserial correlation was calculated between each independent and the dependent 

variable to select only those features that could discriminate fully visible tubers from 

partially visible ones. However, the avg_val_bbox was not employed as a thresholding 

parameter; instead, it was utilized to sort and select the top one or five tubers that satisfied 

the thresholding criteria for all features. This was because the fully visible tuber masks 

typically had fewer pixels on the edges of the bounding box. Moreover, the avg_val_bbox 

served provided a way to eliminate tubers at the edge of the image that the camera did not 

see completely. Therefore, if two tubers had similar values for the other features, the one 

with fewer average pixels on the bounding box edges was preferred for sampling.  

3.6.2 Machine Learning-based Sampling 

The application of machine learning algorithms can facilitate the identification of the 

relationship between independent and dependent variables; it could be used to predict 

whether a given potato tuber is fully visible based on the handcrafted image features. In 

this study, three machine learning models, namely random forest, support vector 

machines, and logistic regression, were trained using a 4-fold cross-validation approach 

for binary classification purposes (i.e., distinguishing between fully and partially visible 

potato tubers).  

Breiman (2001) proposed the random forest (RF) algorithm, an ensemble-based machine-

learning technique that utilizes a collection of decision trees. In the RF algorithm, decision 

trees are trained on randomly sampled subsets of the data, and the resulting predictions 

are averaged to obtain a posterior class probability. The use of multiple decision trees 

trained on random subsets of the dataset introduces multiple sources of bias, which 

effectively counteract the over-fitting challenge commonly encountered in the decision 
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tree algorithm. The number of decision trees was set to 100 to train the RF classifier, and 

the maximum depth, which is the longest path between the root node and the leaf node in 

a decision tree, was set to None (nodes are expanded until all leaves are pure). It is worth 

noting that selecting a high maximum depth or a low number of decision trees could result 

in over-fitting, as the model may become overly complex and fail to generalize to new 

data or suffer from high variance due to a small number of trees.  

Logistic regression (LR) is a parametric algorithm that belongs to the family of 

Generalized Linear Models (GLMs). The algorithm employs a sigmoid function to model 

the likelihood of the binary target variable. The formula for logistic regression (LR) is 

given in Equation 3.3. Before training the LR model, a standard scaling technique was 

applied to normalize the dataset. This technique transforms each feature in the data into a 

distribution with a mean value of 0 and a standard deviation of 1 using Equation 3.4. 

Standardizing the dataset is necessary for LR since the L2 (ridge) and L1 (lasso) 

regularisers assume that all features are centred around 0 and have a comparable variance. 

Failure to standardize the dataset may result in issues where certain features dominate the 

objective function due to their higher variance, leading to an estimator that fails to learn 

correctly from other features. The L1 regularisation (Lasso regression) was used as the 

penalty as it adds the absolute value of the magnitude of the coefficient to the loss 

function. This approach helps reduce the model's complexity and avoid over-fitting, 

thereby ensuring better generalizability of the LR model. As a result, the preference for 

L1 regularization over L2 regularization (Ridge regression) was based on the 

prioritization of model simplicity and generalizability. 

                             𝑃(𝑌 = 1|𝑋) =
1

1+𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝)
                   (3.3) 
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where Y is the binary response variable, X is the vector of predictor variables, 𝛽0 is the 

intercept, 𝛽1, 𝛽2, … , 𝛽𝑝 are the coefficients for the predictor features. 

                              𝑧𝑖𝑗 =
𝑥𝑖𝑗−𝜇𝑗

𝜎𝑗
                                   (3.4) 

where 𝑧𝑖𝑗 represents the normalized value of the feature 𝑥𝑖𝑗, which, in turn, denotes the 

original value of the feature j in the ith sample, μ𝑗 is the mean of feature j across all 

samples, and 𝜎𝑗  is the standard deviation of feature j across all samples.  

Support Vector Machines (SVMs) have gained popularity in discrimination tasks due to 

their ability to effectively combine many features and identify an optimal separating 

hyperplane based on kernel trick. In the implementation, the default radial basis function 

(RBF) kernel was used, which is based on Euclidean distance optimization and has the 

same form as the Gaussian probability density function kernel (Heikamp & Bajorath, 2013), 

as described in Equation 3.5. Consequently, dataset standardization was done using 

Equation 3.4 before training the SVM model.  

                                          RBF(𝑥, 𝑐, 𝛼) = exp (−
|𝑥−𝑐|2

2𝛼2 )                        (3.5) 

where x represents the input vector, c is the centroid of the RBF function, |⋅| denotes the 

Euclidean distance, and 𝛼 is a hyperparameter that controls the "spread" of the kernel and 

is set as shown in Equation 3.6.  

                                               𝛼 =
1

𝑛∗𝜎2
                                                    (3.6)  

where n is the number of features in the dataset, and  𝜎2 is the variance of the data.  
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The scikit-learn library, a library in Python for predictive data analysis, was leveraged in 

implementing all three machine learning algorithms. The prediction probabilities 

generated by the machine learning models for each segmented potato tuber mask were 

then utilized to select the top one or five tubers per frame. 

3.7 Feature Selection 

Feature selection was applied to achieve the following objectives: (1) to identify a subset 

of features capable of effectively discriminating fully visible tubers from partially visible 

ones, (2) to remove redundant features, and (3) to reduce the processing time required for 

selecting a subset of fully visible tubers. In this regard, Sequential Forward Feature 

Selection (SFFS) was employed to increase the handcrafted features' relevance by 

eliminating redundancy. This procedure entails adding features (forward selection) in a 

greedy manner to create a feature subset. Based on the cross-validation score, the 

estimator selects the best feature to add or remove at each stage. This research employed 

a supervised learning approach based on the RF classifier as an estimator, with the area 

under the receiving operating curve (AUROC) as the scoring metric (see Appendix D). 

The SFSS was implemented using the SequentialFeatureSelector method of the machine 

learning extensions (Mlxtend) Python library. 

3.8 Performance Evaluation Metrics 

The computer vision metrics of average precision (AP) and average mean intersection 

over union (mIoU) were employed to evaluate the performance of the three trained Mask 

R-CNN models based on the validation dataset of indoor images. Subsequently, the best-

performing model was assessed across the three clustering scenarios using the test dataset 

of indoor images. 
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Furthermore, the test dataset of indoor images was utilized to evaluate the effectiveness 

of the two proposed tuber sampling techniques. The evaluation was based on two metrics: 

the average mIoU and the sampling accuracy of the selected tubers in various clustering 

scenarios. These metrics were used to assess the accuracy and reliability of the sampling 

techniques in accurately selecting well-segmented, fully visible tubers.  

To compare the performance of the three machine learning models trained to discriminate 

between fully visible and partially visible tubers, the recall, precision, and AUROC were 

evaluated using a 4-fold cross-validation. The precision used in assessing the machine 

learning-based sampling technique is unrelated to the AP used to evaluate the Mask R-

CNN model, although both are measures of recognition quality; AP for tubers whether 

fully or partially visible and precision for fully visible tubers.  

The AP was employed to assess the object detection proficiency of the Mask R-CNN 

model, while the average mIoU was utilized to evaluate the segmentation quality. These 

metrics constitute fundamental evaluation criteria for the task of tuber size estimation. 

When assessing characteristics such as size, models exhibiting a higher average mIoU are 

generally preferred as the precision of the parameters becomes increasingly accurate with 

better segmentation of the potato tubers. 

3.9 Results of Instance Segmentation 

The Mask R-CNN models were trained for 500 epochs, utilizing the GPU (Tesla 4, 32 

GB) available on the Digital Research Alliance of Canada. The training process took 

approximately 6 hours to complete. Subsequently, the validation dataset consisting of 

indoor images was used to assess the AP and average mIoU metrics, as presented in Table 

3.2. Among the three trained models, the Mask R-CNN model trained on the 
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mask_rcnn_R_101_FPN_3x pre-trained weight exhibited slightly superior performance 

compared to the other two evaluated models. This finding aligns with the results of (He 

et al., 2017) regarding the enhanced performance of the Mask R-CNN model when 

ResNet-101 is used as the backbone. As a result, the model built on 

mask_rcnn_R_101_FPN_3x was selected as the most preferred model and carried out 

further evaluations, focusing on the various clustering scenarios. 

Table 3.2: AP, AR, and Average mIoU for all potato tubers for the three Mask R-CNN 

models using the validation dataset of indoor images. 

Weight AP (%) AR (%) Avg. mIoU (%) 

mask_rcnn_R_101_FPN_3x 73.16 81.00 90.40 

mask_rcnn_R_50_FPN_3x 73.09 82.11 89.50 

mask_rcnn_50_C4_3x 71.19 82.06 89.30 

 

Figure 3.4 shows the average mIoU values for various clustering scenarios, indicating a 

consistent and high segmentation quality achieved by the Mask R-CNN model. However, 

examining the AP metric, which assesses the model's detection accuracy, reveals a 27% 

decline in dense clustering compared to sparse clustering. This reduction in detection 

accuracy can be attributed to the Mask R-CNN model's inability to detect all instances of 

tubers amidst significant clustering and occlusion challenges. These findings align with 

the observations made by Dolata et al. (2021), who also reported a decline in the detection 

accuracy of the Mask R-CNN model when confronted with the upper quarter of the image 

characterized by significant clustering and occlusion of tubers. 

Nevertheless, despite the impact of clustering conditions on the number of tubers detected 

by the model, it can accurately segment the tubers it detects, as indicated by the relatively 

high average mIoU values. This consistency in achieving high mIoU is noteworthy since 

certain quality grading tasks, such as size estimation and shape recognition, require 
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precise segmentation of the target object. However, as depicted in Figure 3.4, not all 

detected tubers are fully visible and accurately segmented, presenting challenges in 

relying solely on the Mask R-CNN model's detections for tuber grading purposes. 

 

Figure 3.4: AP and Average mIoU of Mask R-CNN model based on different clustering 

scenarios using the test dataset of images acquired in the Laboratory. 

 

 

Figure 3.5: (a) Instance segmentation of a densely clustered image obtained from the 

laboratory showing (b) a partially visible tuber that appears elliptical and (c) poorly 

segmented tubers (two tubers detected as one). 
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3.10 Results of Sampling 

Two sampling techniques were employed to address the challenges associated with 

detecting tubers in densely clustered scenarios: thresholding and machine learning. They 

were applied to select a subset of fully visible tubers among those detected by the Mask 

R-CNN model. The following sections present the results derived from applying these 

sampling techniques, accompanied by a rationale for selecting one technique over the 

other. 

3.10.1 Threshold-based Sampling 

In threshold-based sampling, the threshold values of handcrafted image features were 

computed by calculating their mean, range, 25th, 50th, and 75th percentile values for both 

fully visible and partially visible tuber classes. Furthermore, the point biserial correlation 

coefficient was computed between each standardized feature and the target variable to 

identify the features for tuber selection. Accordingly, the avg_val_bbox was used as a 

sorting parameter to select a subset of tubers meeting the defined threshold criteria. 

Based on the distribution of each feature and the correlation coefficient, seven features 

were selected as thresholding parameters; two Hu image moments (H3 and H4) and five 

colour and edge-based image features (S/N_1, S/N_2, ellipticalness, circularity, convexity 

defect). These parameters were chosen because they had a correlation coefficient of 0.2 

or higher with the dependent variable with acceptable statistical significance (p-value < 

0.05). The point biserial correlation coefficient was utilized because the dependent 

variable was naturally binary, while the independent variables were continuous. 

Moreover, this correlation coefficient is robust against slight deviations from normality. 

After the threshold values were determined for the handcrafted features, the test dataset 

of images acquired in the Laboratory was used to evaluate the performance of the 
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sampling technique based on the sampling accuracy and the average mIoU of choosing 

one or five tubers per frame. The results are presented in Table 3.3.  

Table 3.3: Sampling accuracy and Average mIoU for the threshold-based sampling of 

indoor images based on selecting 1 and 5 tubers per image.   
Sampling 1 tuber per image Sampling 5 tubers per image 

 Tubers 

Fully visible/ Sampled 

Avg. mIoU  

(%) 

Tubers 

Fully visible/ Sampled 

Avg. mIoU  

(%) 

Dense 5/5 91.67 15/19 ± 0.09 92.40 

Moderate 5/5 93.89 21/21 ± 0.00 93.33 

Sparse 5/5 95.30 12/13 ± 0.13 94.20 

 

The utilization of threshold-based sampling yielded a sampling accuracy of 100% in the 

selection of a singular tuber per frame. Consequently, this sampling rate translates to an 

approximate sampling size of 0.7% of the overall harvest, based on the dense scenario, at 

1fps. This represents a possible increase of 3400% compared to the current practice 

observed at McCain's Farm of the Future, where less than 0.02% of the harvested tubers 

are selected for grading the yield. Furthermore, the average mIoU consistently remained 

high when one or five tubers were sampled per frame, indicating successful segmentation 

of the chosen tubers and their potential suitability as representative samples for grading. 

Nevertheless, when choosing five tubers per frame, the sampling accuracy of the 

threshold-based approach decreased by 21% (accuracy of 78.95% with a 95% confidence 

interval of 69.99% to 87.91%) in the densely clustered scenario compared to the 

moderately clustered one, where 100% sampling accuracy was achieved. Also, when five 

tubers were selected, the sampling technique selected 48 tubers across 15 frames, which 

is 64% of the expected sample size of 75 (5 tubers per frame for 15 frames). However, 

this would not cause problems as the rigorous threshold values ensure the selection of 

only fully visible tubers when only a single tuber is selected per frame.  
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3.10.2 Machine Learning-based Sampling 

The challenges of limited sample size and reduced sampling accuracy associated with 

using fixed thresholds resulted in exploiting machine learning algorithms. These machine-

learning models were all implemented using scikit-learn, a library in Python for predictive 

data analysis. Initially, all 14 features were used for training the models. The results of the 

performance of the trained models are summarised in Table 3.4.  

Table 3.4: Comparison of machine learning models for sampling based on the average of 

4-fold cross-validation using the validation dataset on all features. 

Machine learning model Recall (%) Precision (%) F1-Score (%) AUROC (%) 

Random Forest 82.81 84.11 83.46 95.13 

Support Vector Machines 70.83 73.90 72.33 88.50 

Logistic Regression 71.35 73.42 72.37 88.80 

The random forest classifier performed best in all evaluated classification measures 

compared to the other two classifiers. The discrimination capability of a model can be 

assessed using the AUROC. An AUROC of 50% indicates an inability to distinguish fully 

visible tubers from partially visible ones, while values between 70% and 80% are 

considered acceptable, 80% to 90% are excellent, and values exceeding 90% are 

remarkable (Mandrekar, 2010). Considering these criteria, all three models performed 

well across the various clustering scenarios.  b 

Nevertheless, utilizing all 14 features for sampling may not be desirable due to potential 

redundancies and increased processing time, as explained in Section 3.7. Therefore, 

sequential forward feature selection was employed to identify a subset of features with 

the highest predictive power using the random forest classifier as the estimator. The 

individual contribution of each feature to the estimator calculated as the decrease in node 

impurity weighted by the probability of reaching that node is presented in Figure 3.6. 

Furthermore, Figure 3.7 illustrates the relationship between the AUROC and the number 
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of features, demonstrating how the AUROC varies with the inclusion of additional 

features.  

 

Figure 3.6: Relative feature importance of all handcrafted features obtained from the 

random forest model. 

 

Figure 3.7: AUROC variation with the number of features in the training dataset. 

The results presented in Figure 3.6 shows that the convexity defect, which quantifies the 

deviations of the tuber contour from its convex hull, had the highest contribution to the 

random forest model, accounting for 16.8% of the relative feature importance. 

Additionally, the combined influence of features related to the resemblance of the tuber 
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mask (ellipse_ratio and ellipticalness) to an ellipse proved to be the most predictive in 

distinguishing between fully visible and partially visible tubers, contributing a total of 

30% relative feature importance. Despite the conceptual relationship between the 

ellipse_ratio and ellipticalness, their Pearson correlation coefficient was estimated to be -

0.14, indicating minimal association. However, the Hu moment features exhibited low 

predictiveness, a similar insight obtained using the point biserial correlation coefficient 

for feature selection in the threshold-based technique.  

Furthermore, the analysis depicted in Figure 3.7 reveals that there is only a marginal 

increase in the AUROC when the number of features surpasses six. Therefore, to optimize 

the AUROC, the SequentialFeatureSelector method from the Mlxtend library in Python 

was employed to select an optimal combination of features, including the convexity 

defect, ellipse_ratio, ellipticalness, circularity, avg_val_bbox, and S/N_1 as the most 

predictive features. The results of using these selected features for training the three 

machine learning models are shown in Table 3.5. 

Table 3.5: Comparison of the machine learning models for sampling based on the average 

of 4-fold cross-validation using the validation dataset on selected features. 

Machine learning 

model 
Recall (%) Precision (%) F1-Score (%) AUROC (%) 

Random Forest 85.42 84.61 85.01 95.29 

Support Vector 

Machines 
73.45 66.67 69.90 86.75 

Logistic Regression 68.75 74.89 71.69 88.01 

 

Comparing the performance of the machine learning models using the complete set of 14 

features (Table 3.4) with the selected subset of features (Table 3.5), it is observed that the 

differences in performance are marginal. The random forest classifier performed slightly 
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better when only seven features were used. This can be attributed to the removal of 

redundant features, leading to improved generalization and a reduced risk of overfitting. 

As a result, the model achieved better performance when applied to unseen datasets. 

Among the evaluated models, the random forest classifier trained on a subset of features 

outperformed the others, exhibiting the most favourable performance. Consequently, this 

classifier was selected as the preferred choice for further development and testing. The 

sampling accuracy and average mIoU were evaluated to assess its effectiveness based on 

the test dataset of indoor images. The specific results of this evaluation can be found in 

Table 3.6. 

Table 3.6: Sampling accuracy and Average mIoU for random forest-based sampling using 

the testing split dataset of indoor images based on selecting 1 and 5 tubers per image.  
 Sampling 1 tuber per image Sampling 5 tubers per image 

 

Tubers 

Fully visible/ 

Sampled  

Avg. mIoU 

(%) 

Tubers 

Fully visible/ 

Sampled  

Avg. mIoU 

(%) 

Dense 5/5 93.37 24/25 ± 0.05 93.11 

Moderate 5/5 94.87 24/25 ± 0.05 94.47 

Sparse 5/5 96.16 25/25 ± 0.00 95.18 

 

As seen in Table 3.6, implementing the random forest model for sampling purposes 

resulted in a higher average mIoU across the various clustering scenarios than that 

obtained using the threshold-based technique. Furthermore, since the sampling technique 

involved selecting the first few elements in an array sorted in descending order by the 

model's prediction probabilities, the number of samples obtained was equivalent to 100% 

of the expected selected tubers, resulting in a 56% increase in the sampling size when 

compared with the threshold-based technique. Moreover, the model had a 21.61% 

improvement in sampling accuracy (with a 95% confidence interval of 90.9% to 100%) in 

the dense scenario compared to threshold-based sampling. For the grading of potato tubers, 
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the greater the sample size and sampling accuracy, the more accurately the samples 

represent the population; hence, the random forest model was chosen for in-field 

evaluation over the threshold-based technique.  

3.11 Sampling in Field Conditions 

To test the algorithms outdoors, the test dataset of images acquired at the post-harvest 

conveyor at the farms of the future during the 2022 harvest was used to assess the random 

forest-based sampling technique in terms of the average mIoU and the sampling accuracy. 

Figure 3.8 shows the result of the instance segmentation and sampling of densely clustered 

potato tubers in cloudy scenario, while Table 3.7 summarises the results for all scenarios 

evaluated using the random forest model for sampling. 

 
(a) (b) 

Figure 3.8: Densely clustered image in a cloudy scenario showing (a) tuber segmented 

image and (b) 5 fully visible tubers sampled from those detected. 

 

Table 3.7: Average mIoU and sampling accuracy for different lighting and clustering 

scenarios using the dataset of images acquired from the field when 5 tubers are sampled. 

 

 Sunny Shaded Cloudy 

 

Tubers 

Fully visible/ 

Sampled 

Avg. 

mIoU 

(%) 

Tubers 

Fully visible/ 

Sampled  

Avg. 

mIoU 

(%) 

Tubers 

Fully visible/ 

Sampled 

Avg. 

mIoU 

(%) 

Dense 26/30 ± 0.11 92.23 23/30 ± 0.16 93.53 26/30 ± 0.11 93.77 

Moderate 27/30 ± 0.10 91.47 27/30 ± 0.10 92.68 30/30 ± 0.00 93.88 

Sparse 29/30 ± 0.05 93.23 27/30 ± 0.10 93.09 30/30 ± 0.00 92.84 

 

The results in Table 3.7 demonstrate that the sampling accuracy exhibits higher variance 

than the average mIoU. Specifically, the shaded and dense condition yielded the most 
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unfavourable sampling accuracy, which was 23.33% lower than the optimal case, where 

the accuracy was 100%. In contrast, the worst average mIoU was only 2.6% lower than 

the best case, achieving the lowest value of 91.47%. This disparity between the sampling 

accuracy and average mIoU can be attributed to the Mask R-CNN model's ability to 

precisely segment fully and partially visible tubers. 

Despite the observed variability in sampling accuracy, the lowest value obtained was still 

relatively high at 76.67% (with a 95% confidence interval of 66.17% to 87.27%), 

corresponding to the successful sampling of approximately four fully visible tubers out of 

five sampled per frame. Notably, across all scenarios, the sampling accuracy and mIoU 

exceeded 90%, demonstrating the applicability of the proposed sampling approach in the 

field. 

The significance of sampling is evident in the dense clustering scenario. However, further 

investigation reveals that the approach is also beneficial in the sparse scenario, where the 

Mask R-CNN model occasionally detects the shades (yellow bbox) of the tubers as potato 

tubers, as illustrated in Figure 3.9. This further emphasizes the importance of the proposed 

method in ensuring that only actual potato tubers are selected for tuber assessment. 

Moreover, the method can enhance the size assessment of tubers by ensuring that the 

sample size and frequency capture the variability in harvested tubers. Additionally, 

utilizing a machine learning approach for sampling provides flexibility in increasing the 

sample size by varying the number of tubers selected per frame. 
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Figure 3.9: Segmented image in sparse with shade scenario showing detection of tuber 

shade (Inside the yellow boxes) by the Mask R-CNN model. 

3.12 Conclusion 

 

The results in this chapter demonstrate the ability to sample fully visible potato tubers -- 

the first step in the quality grading process. The proposed method utilizes the Mask R-

CNN deep learning algorithm and an image feature-based machine learning model to 

accurately segment images of potato tubers and select up to five fully visible tubers per 

frame. The method demonstrates a sampling accuracy of 90.74% and an average mIoU of 

93% in real-world scenarios, even under challenging conditions such as varying lighting 

and clustering. These results mean that the physical quality attributes obtained from the 

sampled tubers can be trusted as they will be taken from fully visible tubers. 
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Chapter 4: Machine vision system for size estimation  

4.1 Introduction 

This chapter demonstrates the development of a machine vision system to estimate the 

lengths of potato tubers using the sampling method described in Chapter 3. The machine 

vision system was validated in a laboratory setting using static and dynamic conveyors, 

demonstrating its accuracy and potential to enhance size grading in the potato industry. 

4.2 Assembly of the machine vision system 

The block diagram in Figure 4.1 depicts the interconnection of all electronic components 

in the machine vision system. The RGB camera, which served as the sensing element, was 

connected to a frame grabber (HDR Capture Card, MYPIN, Guangdong, China) that 

transfers the images to an industrial computer (Nuvo-7006E, Neousys, Taipei, Taiwan). 

To switch the camera on, a breakout board (Arduino UNO Revision 3, Somerville, USA) 

as programmed to extend and retract the arm of a linear servomotor (PQ-12-r, Actuonix, 

British Columbia, Canada) that pressed the power button whenever the computer was 

turned on. The camera and servo motor were housed in a box (Figure 4.2b), while the 

computer was housed in another box (Figure 4.2c).  

  

Figure 4.1: Block diagram of the machine vision system 
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4.3 Indoor apparatus 

Figure 4.2 illustrates the configuration of the indoor machine vision system, encompassing 

the mechanical mount, a series of four conveyors (RCO, New Brunswick, Canada) and the 

electronic components associated with the imaging system. In Figure 4.2a, conveyors (ii), 

(iii), and (iv) exhibit uniform characteristics, featuring a length of 4m and a maximum 

speed of 1.14m/s. These conveyors are driven by 2 hp industrial 3-phase motors 

(GRA0024D-TC-01, Techtop, British Columbia, Canada). Conversely, the conveyor (i) 

served as a temporary storage unit for the tubers and has a length of 4.43m. It is powered 

by a 3 hp industrial 3-phase motor (GRA0024D-TC-01, Techtop, British Columbia, 

Canada), enabling it to operate at the same maximum speed as the other conveyors. The 

utilization of all four conveyors enabled the creation of different clustering scenarios by 

applying varying speeds across each conveyor.  

 

Figure 4.2: Machine vision system set-up in the Laboratory showing (a) the conveying 

system and the mechanical mount; (b) computer box housing the frame grabber and 

computer; (c) camera box housing the RGB camera, servo motor, and Arduino UNO. 

 

                                      𝑓 =  0.5 ×  𝑣                                         (4.1) 

 

Figure 4.2: Machine vision system set-up in the Laboratory showing (a) the conveying 

system and the machine vision mount; (b) computer box housing the frame grabber and 

computer; (c) camera box housing the RGB camera, servo motor, and Arduino UNO. 
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(c) 
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The electronic components of the machine vision prototype were mounted on a mechanical 

structure attached to the conveyor (iv) in Figure 4.2a. This mechanical mount is assembled 

from metallic slotted angles to position the camera 1.1m above the conveyor belt. As a 

result, the camera's field of view spans a width of 0.8m and a length of 1.3m. Shock-

absorbing pads were placed between the conveyor body and the mechanical mount to 

mitigate the adverse effects of conveyor vibrations. 

4.4 Frame Rate Synchronization with Conveyor Speed 

The conveyor speed was monitored using the magnetic shaft sensor (590060, Reed, 

Wisconsin, USA) to adjust the frame rate regularly. The computer read the sensor data 

serially to enable the adjustment of the camera frame rate based on conveyor speed. This 

step was necessary to prevent the repetition of frames with the same tubers. The image 

length per frame was 1.3m, and to avoid tuber repetition in the image, a frame acquisition 

speed of 1 frame per 2 seconds was used when the conveyor speed was 1.14 m/s, which 

was the maximum speed. For a conveyor speed of 0.57m/s, a frame rate of 1 frame per 4 

seconds was used. At this rate, it is guaranteed that no same tuber will be sized more than 

once. Equation 4.1 provides the relationship between the conveyor speed (v) and the frame 

rate (f) used in this study. 

                                    𝑓 =  0.5 ×  𝑣                                         (4.1) 

4.5 Size Estimation and Calibration 

To estimate the major and minor diameters of the fully visible tubers, the external contour 

of each tuber selected by the machine vision system was fitted with an ellipse using the 

fitEllipse method from the OpenCV library after edge enhancement based on the Canny 

algorithm. Upon obtaining the major and minor diameters from the fitted ellipse, a linear 

regression coefficient was estimated between the actual tuber lengths, measured using a 
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Vanier calliper, as shown in Figure 4.3, and the estimated tuber lengths derived from the 

proposed software. This estimation was performed for 20 tubers randomly positioned on 

the conveyor belt. Equation 4.2 gives the calibration equation between the measured and 

software-estimated tuber lengths, where l is the millimetre length and n is the number of 

pixels. 

                𝑙 = 0.659 𝑥 𝑛                                       (4.2) 

 

(a) (b) 

Figure 4.3: Measurement of the (a) major diameter; (b) minor diameter of potato tubers 

in the Laboratory.  

The application of Equation 4.2 had the minimal error in destimating the diameters when 

the camera was mounted 1100 mm over the converyor, at where the equation was 

calibrated. Table 1 shows that the error of both diameters increase gradually as the distance 

between the camera and conveyor drops.   

Table 4.1: Size estimates error at different camera heights from the conveyor.  

Height above conveyor 

(mm) 

Absolute minor diameter 

error (mm) 

Absolute major diameter 

error (mm) 

1100.00 1.08 0.16 

1050.00 3.49 3.65 

1000.00 4.06 9.70 

950.00 5.52 13.73 
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4.6 Experiment for Tuber Size Validation 

The size distribution within a representative 22.68 kg bag of potatoes containing 138 

tubers was examined to gain insights into the distribution patterns. The tubers were 

classified into three size classes: big, medium, and small. The results obtained from 

analyzing a single 50 lb bag are summarized in Table 4.2, showing that the major and 

minor diameters are directly proportional on average. 

An experiment was conducted under two conditions to validate the length estimates from 

the proposed method: static and moving conveyor belts. The static conveyor experiment 

aimed to investigate the effect of different clustering scenarios on size estimation 

accuracy. On the other hand, the moving conveyor experiment aimed to determine 

whether the motion of the conveyor affects the accuracy of the size estimates. The results 

of both experiments would provide insights into the applicability of the proposed method 

in different scenarios where there may be varying degrees of clustering and perspective 

distortion of potato tubers on the post-harvest conveyors. 

Table 4.2: Average minor and major diameters across the different size grades obtained 

from a single 50 lb bag. 

Size grade Number of tubers 
Average 

minor (mm) 

Average 

major (mm) 

Small 112 50 90 

Medium 21 60 103 

Big 5 68 152 

 

4.6.1 Validation of Size Estimation on Static Conveyor 

The potato tubers from three 22.68 kg bags were arranged on the conveyor belt to form 

the three clustering scenarios, as shown in Figure 3.2. To replicate the perspective 

distortion observed in real-life scenarios, the tubers were arranged randomly by moving 

them back and forth on the conveyors shown in Figure 4.2 and ensuring significant 
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occlusion and clustering were present in the dense scenario. The proposed machine vision 

system was employed to estimate the sizes of five randomly sampled tubers per frame for 

18 frames, with six frames allocated to each clustering scenario. To establish a ground 

truth for comparison, the 90 selected tubers sized by the proposed system were physically 

measured using a Vanier calliper. Figure 4.4 shows a densely clustered image in the static 

conveyor experiment showing the tubers selected for size estimation in yellow bounding 

boxes.  

 

Figure 4.4: Densely occluded image acquired in the static conveyor experiment with the 

five software-selected tubers in yellow bounding boxes.  

4.6.2 Validation of Size Estimation on Moving Conveyor 

The proposed method for size estimation of potato tubers utilizes static images captured 

during conveyance, but it is essential to evaluate the effect of tuber orientation caused by 

the motion of the conveyor on the accuracy of size estimation. Within this experiment, a 

batch of 50 tubers was placed onto conveyor (i), shown in Figure 4.2a, which operated at 

a speed of 0.57 m/s. Conveyors (ii), (iii), and (iv), on the other hand, were set to speeds 
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of 0.285 m/s, 1.14 m/s, and 0.57 m/s, respectively. By manipulating the conveyor speeds 

in this manner, it was ensured that the tubers on conveyor (iv) assumed random 

orientations, thereby enabling the evaluation of the proposed system regarding tuber 

perspective distortion. 

The estimation of the minor and major diameters of the tubers followed a methodology 

similar to that outlined in Section 4.6.1. However, in contrast to the static conveyor 

experiment, where five software-selected tubers per frame were utilized, all tubers present 

in each frame, as shown in Figure 4.5, were used.  

 

Figure 4.5: Image of tubers acquired for the moving conveyor experiment.  

4.7 Performance Evaluation 

The size estimates obtained from the software for the major and minor diameters of the 

tubers were assessed using the measured lengths as ground truth. The root mean square 

error (RMSE), the normalized root mean square error (nRMSE), Lin's Concordance 

correlation (CCC) and the coefficient of determination (R2) were evaluated to determine 
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if the software-estimated lengths closely followed the measured lengths of the tubers. 

Given that the CCC score considers both measurement error and variation, it provides a 

more comprehensive evaluation of the proposed method, particularly in replacing the 

existing size estimation system. 

4.8 Results of Size Estimation on Static Conveyor 

Figures 4.6 – 4.8 show the R2 for the dense, moderate, and sparse clustering scenarios. The 

analysis of the results revealed that the proposed system better estimates the major 

diameter than the minor diameter, irrespective of the clustering scenario.  The disparity in 

the accuracy of measurements can be attributed to the inherent ellipsoidal shape of potato 

tubers, which gives rise to two minor diameters. To ensure consistency, the maximum of 

these two minor diameters was used as the ground truth measurement, which may not 

always be visible to the camera. Moreover, the clustering scenario impacted the estimation 

of the minor diameter, especially in the dense clustering scenario.  This can be attributed 

to the susceptibility of the minor diameter to perspective distortion, which is further 

compounded by its smaller size; hence it is more sensitive to variations in the height of the 

tuber pile, thereby affecting the pixel-to-length calibration given by Equation 4.2. 

Consequently, the accurate estimation of the minor diameter is subject to additional 

complexities than the major diameter estimation. 

Combining the CCC scores from Table 4.2 and the R2 scores from Figure 4.6 – 4.8 

indicated that the dense clustering performed worst, measuring 0.77 in R2 and 0.85 in 

CCC for the minor diameter. These results suggest that the estimated minor diameter 

explains approximately 77% of the observed variation in the measured minor diameter in 

the worst-case scenario. Moreover, within the 95% confidence interval of the CCC, from 
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0.68 to 0.95, the CCC value implies a substantial level of concordance between the 

measured and estimated diameters. 
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Figure 4.6: Regression analysis of the estimated diameters for dense clustering 

scenario.  
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Figure 4.7: Regression analysis of the estimated diameters for moderate clustering 

scenario.  
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Figure 4.8: Regression analysis of the estimated diameters for sparse clustering 

scenario.  

The CCC score was consistently higher than the R2 because it considers both deviations 

from the 45-degree line and the variation (Crawford et al., 2007), whereas the R2 only 

measures how much a variation in one variable leads to the variation in another. This 

suggests that some unexplained variations observed in the measured diameters may be 

attributed to random errors, which could be mitigated by increasing the number of 

observations, using a 1:1 pixel camera, and ensuring more consistent ground-truth 

measurements. However, upon analyzing Figure 4.10, it becomes evident that a partial 

linear association exists between the residual and estimated minor diameters, exhibiting a 

Pearson correlation coefficient (r) of 0.47. This finding implies that the errors associated 

with the minor diameter estimation exhibit a lower degree of randomness when compared 

to those associated with the major diameter (with r = 0.06). Therefore, introducing a new 
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feature, such as the distance of the tuber from the camera, can enhance the accuracy of 

the minor diameter estimates.  

Table 4.3: CCC, RMSE, and nRMSE for the estimated lengths based on static conveyor 

experiment. 

Clustering 

condition 

Minor diameter Major diameter 

CCC (-) RMSE 

(mm) 

nRMSE 

(%) 

CCC (-) RMSE 

(mm) 

nRMSE 

(%) 

Dense 0.85 4.47 7.83 0.92 7.00 6.70 

Moderate 0.91 3.93 6.46 0.98 3.81 3.45 

Sparse 0.94 2.23 4.05 0.97 3.68 3.58 

  

Two metrics were utilised to evaluate the error associated with estimating both major and 

minor diameters: the RMSE and the nRMSE, as shown in Table 4.3. Like the R2 and CCC 

results, the dense clustering scenario yielded the highest error for estimating the 

diameters, with a maximum value of 7.83% for the minor diameter. However, the 

moderate clustering scenario yielded only about 17.85% improvement in the nRMSE in 

the minor diameter estimation compared to the dense clustering scenario. This finding 

suggests that while the clustering scenario primarily influences the estimation of the major 

diameter, the presence of two minor diameters in potato tubers, which are randomly 

visible to the camera, further contributes to the error in estimating the minor diameter. 

Nonetheless, it is significant to note that all errors observed in both minor and major 
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diameter estimations remained below 10%. This implies that the proposed system 

maintains an acceptable margin for accurately grading the size of potato tubers. 

 

 

 
Figure 4.9: Residual scatter plots for the estimated major and minor diameters. 

4.9 Results of Size Estimation on Moving Conveyor 

The evaluation metrics, including the R2, CCC, RMSE, and nRMSE scores, are 

summarized in Table 4.4. In accordance with the findings from the static conveyor 

experiment, the proposed system demonstrates a higher level of accuracy in estimating 
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the major diameter of tubers compared to the minor diameter. Moreover, as the total 

number of tubers used for assessment is increased to 50, notable improvements in R2 and 

CCC scores for both the minor and major diameters are observed when compared to the 

results obtained from the static conveyor experiment. This suggests that the number of 

sampled tubers influences the accuracy of the measurements, indicating the presence of 

random errors. Similarly, the nRMSE, which quantifies the deviation in the estimated 

dimensions, indicates that the proposed system provides a more precise estimation of the 

major diameter of the tubers. Nevertheless, despite the perspective distortion and varying 

orientations resulting from running the tubers on multiple conveyors at different speeds, 

the nRMSE for both the major and minor diameters remains below 10%, which can give 

a precise size quality representation of the harvested crop. 

Table 4.4: Evaluation of the estimated dimensions for the moving conveyor experiment. 

Dimension R2 (-) CCC (-) RMSE (mm) nRMSE (%) 

Minor 0.93 0.96 2.29 4.55 

Major 0.98 0.99 1.55 1.60 

  

Considering all clustering scenarios in the moving conveyor experiment was not feasible 

due to the inherent challenge of precisely tracking a randomly sampled tuber within a 

moving cluster. However, the findings derived from the static conveyor experiment, in 

conjunction with the consistently high average mIoU guaranteed by the proposed 

sampling technique, indicate that the proposed machine vision system can accurately 

estimate the size of tubers irrespective of the clustering condition and perspective 

distortion. 
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4.11 Conclusion 

This chapter describes the machine vision system's hardware and the method of evaluating 

its software performance to estimate the lengths of tubers. Two methods were used to 

validate the proposed system: static and moving conveyor experiments. The results 

showed high accuracy in estimating the tuber dimensions when they are free rolling on 

the conveyors at any orientation and within clusters, as the dimension errors remained 

below 10% in all scenarios. Estimating the major diameter was better than the minor 

diameter due to the susceptibility of the minor diameter to perspective distortion. 

However, increasing the number of tubers for assessing the proposed system reduced the 

random errors and led to better estimations of the minor and major diameters. 
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Chapter 5: Conclusion 

5.1 On-the-go Deployment of the Machine Vision System in the Field. 

The proposed machine vision system was designed with specific constraints to ensure its 

practicality for use in the field. The primary constraints were related to the system's 

integration into existing post-harvest conveyors without disrupting farm operations and 

ensuring system reliability. To achieve seamless integration with farming operations, the 

proposed system was designed to be autonomous by leveraging the systemd on the Linux 

OS for automating software execution and using the speed of the conveyor to start/stop 

image capturing and adjust the camera frame rate. Moreover, the mechanical mount was 

assembled to fit different conveyors without needing significant modifications to the 

existing system, as seen in Figure 5.1.  Table 5.1 presents an illustrative output obtained 

from the proposed machine vision system. The Sample ID serves as a unique identifier 

assigned to each tuber assessed by the system. It is generated by combining the datetime 

information (year, month, day, hour, minute, and second) corresponding to when the frame 

was captured with the specific sample number. Consequently, this formulation enables 

tracking each graded tuber back to a precise moment in time and its corresponding frame. 

The provided measurements include the length, denoting the major diameter of the tuber, 

and the width, representing its minor diameter. 
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Figure 5.1: Test-mounting the machine vision system set-up at McCain Farms of the 

Future 

Table 5.1: Sample output of the proposed machine vision system  

Sample ID Length (mm) Width (mm) 

2023_05_19_08_53_27_01 133.98 73.80 

2023_05_19_08_53_27_02 123.75 81.75 

2023_05_19_08_53_27_03 138.21 93.14 

2023_05_19_08_53_27_04 111.16 76.96 

2023_05_19_08_53_27_05 114.93 64.46 

2023_05_19_08_53_28_01 101.69 67.72 

2023_05_19_08_53_28_02 116.37 65.35 

2023_05_19_08_53_28_03 129.19 81.03 

2023_05_19_08_53_28_04 122.20 71.55 

2023_05_19_08_53_28_05 133.38 79.27 

 

The reliability of machine vision systems can be assessed by evaluating several factors, 

such as measurement accuracy, system throughput speed, and robustness to varying field 

conditions. Sections 3.3 and 4.3 present the results related to the accuracy and robustness 

of the proposed machine vision system, which was above 90% in terms of sampling, 

segmentation quality, and size measurement accuracy. Moreover, the system throughput 

was evaluated by measuring the processing time of the computer vision software, which 
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ranged from image acquisition to size estimation of five tubers per frame, as shown in 

Table 5.1.  

Time-performant software is critical to achieving on-the-go sampling and size estimation. 

As explained in Section 4.4, to avoid grading the same set of tubers more than once, it 

was necessary to process images at one frame every two seconds when the conveyor speed 

was 1.14m/s. However, as seen in Table 5.2, the computer vision software processes one 

frame in approximately 12 seconds, which could reduce the sample size. Therefore, 

computational multithreading was employed to address the challenge of acquiring images 

at a frame rate aligned with the conveyor speed while concurrently processing data read 

from an image queue in other parts of the software. This ensures the continuous 

acquisition of images on-the-go which are then continuously processed in the background, 

guaranteeing the expected sample size by the end of one day of post-harvest operation. 

Table 5.2: Time performance-based software analysis using 1 densely occluded image.  

Software part Execution time (s) 

Image acquisition 0.01 

Instance segmentation 6.00 

Feature creation 4.30 

Sampling 0.01 

Write data 1.42 

Total 11.74 

 

The current approach for size grading tubers involves using only about 0.1% of the yield 

and requires human labour. It takes approximately five days to grade 100 hectares of a 

potato field, as observed at McCain's Farms of the Future. With the proposed machine 

vision system, the sample size can be increased to approximately 3.5% with a regular 

sampling frequency. Moreso, utilising a GPU-enabled computer can significantly reduce 

processing time. This improvement is particularly evident in the performance of the Mask 
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R-CNN model, which currently requires approximately 6 seconds to detect tuber 

instances. Additionally, implementing parallel computing techniques can further expedite 

the process of creating handcrafted features. Consequently, these advancements open up 

the possibility of achieving real-time sampling and size estimation, providing a substantial 

leap forward regarding system capabilities. 

While the computer vision software was developed and tested on two different varieties 

of potatoes, generalizing the application for all varieties, which might significantly deviate 

from an ellipsoid, cannot be verified without testing. Nevertheless, it would be possible 

to apply techniques such as transfer learning to smoothly increase the scope of varieties 

detected successfully using this software without the need for complete retraining of the 

Mask R-CNN model. Recognizing the inherent limitations and taking necessary measures 

to adapt the software, the machine vision system can be successfully utilized for accurate 

size estimation across a wide range of potato cultivars. Moreover, with appropriate 

modifications, there is potential to extend its application to other crops, expanding its 

usefulness in diverse agricultural contexts. 

5.2 Perspectives towards a Comprehensive Non-Destructive Quality Grading of Potato 

Tubers  

The proposed system has potential applications beyond size grading, including shape 

determination and surface defect detection quality tasks, which can be performed in two 

dimensions. Additionally, estimating the specific gravity of sampled tubers becomes 

feasible by integrating depth information and mass flow rate data from load cells. This 

could be achieved by synchronising load cell-derived mass per frame, size estimates of the 

sampled tubers obtained from the proposed software, and volume per frame derived from 

the depth camera, allowing for the calculation of density and subsequent determination of 
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specific gravity through regression analysis. More so, incorporating a depth camera within 

the machine vision system enables the calculation of the distance between the potato pile 

and the camera. This distance can serve as an additional parameter in the calibration 

equation, enhancing the accuracy of the diameter estimates while eliminating the 

requirement for different calibration equations for varying camera heights. 

One challenge of the current system is the use of RGB cameras, which are restricted to the 

visible range of the electromagnetic spectrum. This makes using these cameras for non-

destructive internal defect grading complex. Replacing RGB cameras with more versatile 

hyperspectral cameras that can capture a wider range of wavelengths, including the visible 

near-infrared range, may be necessary to overcome this challenge. This approach can be 

leveraged for the sampled tubers' chemical and physical quality grading, although it will 

require careful synchronization of the sampled tubers to their respective spectral and 

spatial information. 

In addition to the quality grading of potato tubers, farmers need to have a comprehensive 

understanding of the distribution of these quality attributes in the storage facility. This 

information is critical for efficient planning and logistics. To address this issue, a potato 

quality map can be developed, which provides a spatial representation of the quality 

distribution within the storage facilities. This map can help farmers to identify specific 

locations where tubers with desired quality attributes can be retrieved, leading to better 

decision-making and efficient use of resources.  

5.3 Conclusion 

Quality assessment of potato tubers during harvesting is essential to ensure the 

classification and allocation of potatoes to specific market segments to optimize their 

utilization and ensure fair compensation for farmers. One such quality assessment carried 
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out is estimating the tuber size, as this influences the end-use of the tubers. Thus, this 

research focused on developing a machine vision system for size-grading potato tubers on 

post-harvest conveyors.  

The machine vision system presents practical and compelling prospects for improving the 

efficiency and precision of size grading operations within the potato industry. Through the 

automation of tuber size estimation processes in the field, this system can bolster 

operational efficiency, minimize costs by eliminating reliance on human labour and 

transportation of tubers for grading, and facilitate improved logistics planning. 

Additionally, the proposed sampling method has the potential to supplant manual 

sampling, a procedure that is often prone to size-related biases and susceptibilities arising 

from human habits. 
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Appendix A: Additional Tables 

Table A-1: Matrix for Image Collection at McCain Farm of the Future 

 Sunny Shaded 
Fluctuating 

light 
Cloudy 

Morning 60 mins 60 mins 15 mins 15 mins 

Afternoon 60 mins 60 mins 15 mins 15 mins 

Evening 60 mins 60 mins 15 mins 15 mins 

 

Table A-2: Parameter name, value, and description of each hyper-parameter used for the 

Mask R-CNN model. 

Parameter Name Value Description 

BACKBONE 

ResNet-

101 

ResNet-50 

The convolutional neural network used in 

the first stage of the Mask R-CNN. Two 

(i.e., mask_rcnn_R_50_FPN_3x and 

mask_rcnn_50_C4_3x) of the three pre-

trained weights were based on ResNet-50. 

NUM_WORKERS 2 

Number of GPUs used for training the 

model. A higher number can improve the 

training speed. 

IMS_PER_BATCH 2 

The number of images fed per batch 

during training. A higher value 

corresponds to higher memory usage. 

MAX_ITER 500 
The maximum number of training 

iterations. 

WARMUP_ITERS 1000 
The total number of warm-up iterations at 

the beginning of training. 

STEPS 
1000, 

1500 

The iteration number to decrease the 

learning rate by GAMMA. 

GAMMA 0.5 

Determines the factor by which to 

decrease the learning rate at each step. A 

larger value means that the learning rate 

will be reduced more quickly, which can 

lead to a suboptimal solution. 

BASE_LR 0.00025 

The learning rate for every group by 

default. A larger value can result in early 

convergence. 

BATCH_SIZE_PER_IMAGE 128 
The number of regions per image used to 

train the RPN. 

NUM_CLASSES 1 Number of foreground classes 

EVAL_PERIOD 500 
The period (in terms of steps) to evaluate 

the model during training. 
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Table A-3: Pseudo-code of the image pre-processing steps for creating the avg_val_bbox 

 

Algorithm: Image pre-processing for creating avg_val_bbox  

 

Input: path of image dataset of potato tubers  

 

Step 1: initialize variables  

    x ← [] {x coordinates of the detected bbox} 

    y ← [] {y co-ordinates of the detected bbox} 

    arr1 ← [] {array of 1s and 0s for the bottom edge of the bbox} 

    arr2 ← [] {array of 1s and 0s for the top edge of the bbox} 

    arr3 ← [] {array of 1s and 0s for the left edge of the bbox} 

                arr4 ← [] {array of 1s and 0s for the right edge of the bbox} 

Step 2: load data 

    Image ← image; {input image with grayscale} 

                cv ← openCV2; {python library for computer vision task} 

Step 3: image binarization 

               Image ← cv.threshold (Image, threshold); {image binarization} 

Step 4: find contours and obtain the detected bbox co-ordinates from the pre-processed 

image. 

                contours ← cv.findContours; {contour consists of four co-ordinates of the 

bbox} 

                for each contour in contours do 

                       for each i and j value in contour do 

                               x ← x.append(i); 

                               y ← y.append(j); 

Step 5: find the mask pixels on the detected bbox edges 

               for each i in range(min(x), max(x)+1) {scan through the horizontal bbox 

edges} 

                      if Image[min(y) + 1, i] == 255 {1 pixel from the bottom edge if pixel 

value is 255} 

                              arr1 ← arr1.append(1); 

                      else  

                              arr1 ← arr1.append(0); 

                      if Image[max(y) - 1, i] == 255 {1 pixel from the top edge if pixel value 

is 255} 

                               arr2 ← arr2.append(1); 

                      else  

                              arr2 ← arr2.append(0); 

               for each i in range(min(y), max(y)+1) {scan through the vertical bbox edges} 

                      if Image[i, min(x) + 1] == 255 {1 pixel from the left edge if pixel value 

is 255} 

                              arr3 ← arr3.append(1); 

                      else  

                              arr1 ← arr1.append(0); 
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Algorithm: Image pre-processing for creating avg_val_bbox  

 

                      if Image[i, max(x) - 1] == 255 {1 pixel from the right edge if pixel value 

is 255} 

                               arr4 ← arr4.append(1); 

                      else  

                              arr4 ← arr4.append(0); 

Step 6: find the average pixel count on detected bbox edges 

              avg_val_bbox ← mean(mean(arr1), mean(arr2), mean(arr3), mean(arr4)); 

 

Table A-4: Computer specifications  (Nuvo 7006E) 

Attribute Value 

Brand Name Nuvo 

Series 7000E/7000DE/7000P 

Model Number 7006E 

Item Dimensions 240 mm (W) x 225 mm (D) x 90 mm (H) 

Item Weight 3.58 kg 

Operating Temperature -25°C/+70°C 

Processor Type Intel® 8th-Gen Coffee Lake Core™ 

Number of Processors 6 

Memory Size 32 GB 

Memory Type DDR4 

Hard Disk Size 500 GB 

Hard Disk Interface Solid State 

Operating System Linux Ubuntu 22.04 
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Appendix B: Additional Figures  

 

(a) (b) 

Figure B-1: (a) Laboratory set-up for image acquisition and (b) annotated image sample 

of tubers on the laboratory conveyor (section 3.2.2) 

 

 

Figure B-2: Architecture of Mask R-CNN for instance segmentation (Kandimalla, 2021) 
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Appendix C: Hu Moments 

The invariant image moments of an image of order (p + q) can be achieved using central 

moments, which are defined as follows:  

                                 𝑚𝑢𝑝𝑞 =
∑ ∑ (𝑥−𝑥̅)𝑝(𝑦−𝑦̅)𝑞𝐼(𝑥,𝑦)𝑦𝑥

(∑ ∑ 𝐼(𝑥,𝑦)𝑦𝑥 )
(𝑝+𝑞)/2+1                                     (C-1) 

where 𝐼(𝑥, 𝑦) is the intensity of the pixel at location (𝑥, 𝑦) in the image, and 𝑥̅ and 𝑦̅ are 

the coordinates of the centroid of the image, which are given by: 

                                       𝑥̅ =
∑ ∑ 𝑥𝑦 𝐼(𝑥,𝑦)𝑥

∑ ∑ 𝐼(𝑥,𝑦)𝑦𝑥
                                                       (C-2) 

                                        𝑦̅ =
∑ ∑ 𝑦𝑦 𝐼(𝑥,𝑦)𝑥

∑ ∑ 𝐼(𝑥,𝑦)𝑦𝑥
                                                       (C-3) 

The seven Hu moments are obtained using the following formulas: 

                                ℎ1 = (𝑚𝑢20 + 𝑚𝑢02)                                                     (C-4) 

                           ℎ2 = ((𝑚𝑢20 − 𝑚𝑢02)2 + 4 ∗ 𝑚𝑢112)0.5                          (C-5) 

                       ℎ3 = ((𝑚𝑢30 − 3𝑚𝑢12)2 + (3𝑚𝑢21 − 𝑚𝑢03)2)0.5              (C-6) 

                          ℎ4 = ((𝑚𝑢30 + 𝑚𝑢12)2 + (𝑚𝑢21 + 𝑚𝑢03)2)0.5               (C-7) 

ℎ5 = (𝑚𝑢30 − 3𝑚𝑢12)(𝑚𝑢30 + 𝑚𝑢12)((𝑚𝑢30 + 𝑚𝑢12)2 − 3(𝑚𝑢21 + 𝑚𝑢03)2) +

(3𝑚𝑢21 − 𝑚𝑢03)(𝑚𝑢21 + 𝑚𝑢03)(3(𝑚𝑢30 + 𝑚𝑢12)2 − (𝑚𝑢21 + 𝑚𝑢03)2)   (C-8) 

ℎ6 = (𝑚𝑢20 − 𝑚𝑢02)((𝑚𝑢30 + 𝑚𝑢12)2 − (𝑚𝑢21 + 𝑚𝑢03)2) + 4𝑚𝑢11 ∗

(𝑚𝑢30 + 𝑚𝑢12) ∗ (𝑚𝑢21 + 𝑚𝑢03)                                                                                      

(C-9) 
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h7 = (3mu21 − mu03)(mu30 + mu12)((mu30 + mu12)2 − 3(mu21 + mu03)2) −

(mu30 − 3mu12)(mu21 + mu03)(3(mu30 + mu12)2 − (mu21 + mu03)2)  (C-10)
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Appendix D: Evaluation metrics for the Mask R-CNN model and sampling 

technique 

• Sampling Accuracy (Equation D-1) is a study-specific measure of the recognition 

quality of the sampling techniques calculated by finding the fraction of correctly 

predicted fully visible tubers out of all sampled tubers.  

                                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of fully visible sampled  tubers

Total number of sampled tubers
                    (D-1) 

• Recall is the ratio of all true positives to all predicted, which measures how well 

the machine learning model accurately predicts fully visible tubers. It is calculated 

using Equation D-2. In this research, true positive refers to the number of fully 

visible tubers that the model correctly predicted, while false negative is the number 

of tubers that were wrongly predicted to be partially visible. 

                                          𝑅𝑒𝑐𝑎𝑙𝑙 =
True positive

True positive + False negative
                               (D-2) 

• Precision is the ratio of all true positives (fully visible tubers predicted correctly) 

to all actual positives (all fully visible tubers present). It is calculated using 

Equation D-3. False positive is the number of tubers wrongly predicted to be 

fully visible. 

                                   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True positive

True positive + False positive
                               (D-3) 

• AUROC measures how well the model can discriminate between fully visible and 

partially visible tubers. The higher the AUROC, the better the sampling model is 

at predicting fully visible tubers as fully visible tubers and partially visible tubers 

as partially visible tubers. Mathematically, this can be computed with Equation D-



86 
 

4, which estimates the area of the curve that plots the true positive rate (TPR) 

against the false positive rate (FPR) at various classification thresholds (t). 

                                           𝐴𝑈𝑅𝑂𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑡))𝑑𝑡
1

0
                            (D-4) 

• Average mIoU measures the similarity between the predicted segmentation masks 

and the corresponding ground truth masks. This metric assessed the Mask R-CNN 

model and the two sampling techniques. Equation D-5 shows how the IoU is 

calculated. The mIoU is the average of all detected tubers' IoUs in an image.  

                                         𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓𝑂𝑣𝑒𝑟𝑙𝑎𝑝 

𝐴𝑟𝑒𝑎 𝑜𝑓𝑈𝑛𝑖𝑜𝑛
                                                   (D-5) 

• Average precision evaluates the accuracy of the Mask R-CNN model in detecting 

potato tubers by measuring the detected tubers' precision and recall at different 

confidence threshold levels. The AP is computed as the area under the Precision-

Recall (PR) curve, as seen in Equation D-6, constructed by plotting the precision 

values against the corresponding recall values at different IoU thresholds. 

 

                                                              𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
                                            (D-6) 

 where 𝑝(𝑟) is the precision at recall level 𝑟
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Appendix E: Statistical properties of the image features 

Table E-1: Summary statistics of the Hu moments features showing the threshold value for each feature. 

Feature Class 25th 

percentile 

Median 

 

75th 

percentile 

Range Mean Point 

biserial 

correlation 

Threshold 

value 

H1 0 6.80 x 

10−4 

 

7.28 x 

10^-4 

8.04 x 10^-

4 

(0.63 -

1.46) x 

10^-3 

7.64 

x10^4 

-0.08 x 

1 6.96 x 

10^-4 

7.32 x 

10^-4 

7.73 x 10^-

4 

(0.64 - 

1.00) x 

10^-3 

7.44 x 

10^-4 

H2 0 0.49 x 

10^-7 

1.14 x 

10^-7 

2.25 x 10^-

7 

(0.05 -

121.00) x 

10^-8 

1.74 x 

10^-7 

-0.03 x 

1 0.88 x 

10^-7 

1.42 x 

10 ^-7 

2.05 x 10^-

7 

(0.91 – 

61.08) x 

10^-8 

1.64 x 

10^-7 

H3 0 0.43 x 

10^-11 

1.45 x 

10^-11 

4.09 x 10^-

11 

(0.09 -

717) x 

10^-12 

3.66 x 

10^-11 

-0.27 (0.13 – 

0.61) x 

10^-11 

1 0.13 x 

10^-11 

0.28 x 

10^-11 

0.61 x 

10^11 

(0.01 -

31.1) x 

10^-12 

0.47 x 

10^-11 

H4 0 1.44 x 

10^-13 

8.56 x 

10^-13 

41.25 x 

10^-13 

(0.08 – 

12238.55) 

x 10^-14 

59.88 x 

10^-13 

-0.20 (0.76 – 

4.84) x 

10^-13 

1 0.76 x 

10^-13 

1.54 x 

10^-13 

4.84 x 10^-

13 

(0.11 – 

627.44) x 

10^-14 

4.26 x 

10^-13 

 

8
7
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Feature Class 25th 

percentile 

Median 

 

75th 

percentile 

Range Mean Point 

biserial 

correlation 

Threshold 

value 

H5 0 -136.92 x 

10^-28 

935.60 

x 10^-

28 

125.42 x 

10^-25 

(-735.32 – 

15415.13) 

x 10^-24 

240.73 x 

10^-24 

-0.09 x 

1 -9.90 x 

10^-28 

236.75 

x 10^-

28 

2.89 x 10^-

25 

(-4.21 – 

87.150 x 

10^-24 

1.23 

x10^-24 

H6 0 -0.01 x 

10^-15 

0.01 x 

10^-15 

0.47 x 10^-

15 

(-245.85 – 

607.12) x 

10^-16 

1.65 x 

10^-15 

-0.11 x 

1 -0.01 x 

10^-15 

0.01 x 

10^-15 

0.07 x 10^-

15 

(-3.93 – 

31.34) x 

10^-16 

0.10 x 

10^-15 

H7 0 -10.18 x 

10^-25 

0.01 x 

10^-25 

10.97 x 

25^-25 

(-276.42 – 

1866.81) 

x 10^-23 

16.21 x 

10^-23 

-0.05 x 

1 -0.70 x 

10^-25 

0.02 x 

10^-25 

0.62 x 10^-

25 

(-0.98 – 

1.40) x 

10^-23 

0.01 x 

10^-23 

8
8
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Table E-2: Summary statistics of the Edge and colour-based image features showing the threshold value for each feature. 

Feature Class 25th 

percentil

e 

Median 75th 

percentil

e 

Range Mean Point 

biserial 

correlation 

Threshold 

value 

S/N_1 0 0.60 0.67 0.73 0.36 -0.84 0.66 0.19 0.64 – 0.69 

1 0.64 0.69 0.74 0.48 -0.81 0.69 

S/N_2 0 0.73 0.76 0.80 0.50 -0.91 0.76 0.32 0.78 – 0.79 

1 0.78 0.79 0.81 0.73 -0.89 0.79 

Ellipse_ratio 0 2.32 2.69 3.19 1.45 - 3.92 3.05 -0.08 x 

1 2.08 2.34 2.64 1.41 - 3.51 2.38 

Ellipticalness 0 0.00 1.05 1.09 0.00 -1.29 0.76 0.28 1.03 - 1.05 

1 1.03 1.04 1.05 0.00 - 1.20 1.02 

Circularity 0 0.68 0.75 0.80 0.42 - 0.89 0.73 0.23 0.61 – 0.78 

1 0.74 0.78 0.82 0.61 - 0.88 0.78 

Convexity 

defect 

0 558.50 1180.00 2251.25 238 - 8934.00 1673.87 -0.34 385.00 – 

750.00 1 383.50 545.50 747.00 269 - 2888.00 673.34 

8
9 
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Tables E-1 and E-2 summarise the fundamental statistical properties associated with the 

features alongside the corresponding threshold values chosen, where class 1 is fully 

visible, and class 0 is partially visible. The feature that demonstrated the most significant 

contribution in discriminating between fully visible and partially visible tubers was the 

convexity defect, exhibiting a correlation coefficient of -0.34. This negative correlation 

suggests that tubers with more convexity defects are more likely to be partially visible. A 

specific range was chosen to establish threshold values for each variable, typically 

between the 25th and 75th percentiles across the fully visible class. The aim was to 

identify values within this range that minimized the overlap between fully visible and 

partially visible tubers. For example, the threshold range for the "ellipticalness" feature 

was set between 1.03 and 1.05. This range captured 50% of fully visible tubers while 

encompassing 0% of partially visible ones. 

Although the threshold range used for "ellipticalness" guaranteed 0% of partially visible 

tubers based on the validation dataset, depending solely on a single feature for tuber 

selection proved impractical, primarily because the correlation coefficient exhibited a 

maximum value of merely 0.34. More so, each feature had a unique contribution to the 

discrimination of the fully visible tubers from partially visible ones. For instance, the 

signal-to-noise ratios provide information about whether the tubers were fully visible or 

not and whether the tubers were also well segmented since poorly segmented tubers had 

considerably higher signal-to-noise ratios. As a result, a subset of seven features, selected 

based on their distinct discriminatory capabilities between fully and partially visible 

tubers, as indicated by their distributions and correlation coefficients, was utilized as 
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thresholding parameters. This approach aimed to improve the accuracy of the sampling 

process by effectively identifying and selecting well-segmented and fully visible tubers. 
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Appendix F: Evaluation metrics for the size estimation regression models. 

• Root Mean Square Error (RMSE) measures the average deviation of the software-

estimated tuber lengths from the measured values. It is calculated with Equation 

4.4.  

                      𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1                       (F-1) 

where 𝑦𝑖  is the observed value,  𝑦𝑖̂ is the predicted value, and 𝑛 is the number of 

observations. 

• Normalized Root Mean Square Error (nRMSE) allows for comparing models in 

different scales. It helps to understand if the proposed method estimates the major 

diameter better than the minor diameter or vice versa. The formula for calculating 

the nRMSE is given in Equation F-2.  

                     nRMSE =
RMSE

y̅
=

√
1

n
∑ (yi−ŷi)2n

i=1

1

n
∑ i=1nyi

             (F-2) 

where y is the actual value, yî is the predicted value, y̅ is the average of actual 

values, and n is the number of observations. 

• The coefficient of determination (R2) is a statistical measurement that tells how 

the variation in one variable results from the variation in another. It is calculated 

as the ratio of the model square of squares (MSS) to the total sum of squares (TSS), 

as shown in Equation F-3.  

                          R2 = 1 −
SSres

SStot
= 1 −

∑ (yi−ŷi)2n
i=1

∑ 1i=1n(yi−y̅)2           (F-3) 

where SSres is the sum of squared residuals, and SStot is the total sum of squares. 

• Lin's Concordance correlation (CCC) is the product of the Pearson correlation 

coefficient between the measured and estimated lengths and a bias correction 
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factor that adjusts for the systematic difference between the measurements. It 

accounts for the variation and deviation of the measured and estimated lengths of 

the tubers, as shown in Equation 4.7.  

                         ρc =
2⋅cov(y,ŷ)

Var(y)+Var(ŷ)+(y̅−y̅̂)
2                  (F-4) 

where y is the vector of actual values, ŷ is the vector of predicted values, cov(y, ŷ) 

is the covariance between y and ŷ, Var(y) and Var(ŷ) are the variances of y and 

ŷ, and y̅ and y̅̂ are their means, respectively. 


