
EXPLORATION OF NLP-BASED FEATURE EXTRACTION
TECHNIQUES FOR SECURITY ANALYSIS AND ANOMALY

DETECTION OF SERVICE LOGS

by

Egil Karlsen

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2023

© Copyright by Egil Karlsen, 2023

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

Chapter 2 Literature Review . 3

2.1 Summary . 6

Chapter 3 Methodology . 8

3.1 Datasets . 8
3.1.1 ECML/PKDD Dataset . 10
3.1.2 CSIC Dataset . 11
3.1.3 ISOT-CID Dataset . 12
3.1.4 Apache Access Dataset . 13
3.1.5 Harvard Web Server Dataset Description 13

3.2 Feature Extraction . 14
3.2.1 Syntactic: TF-IDF based Feature Extraction 14
3.2.2 Semantic: LLM based Feature Extraction 17

3.3 Unsupervised Learning Techniques 23
3.3.1 K-Means . 24
3.3.2 Agglomerative . 25
3.3.3 Isolation Forest . 26
3.3.4 Self-Organizing Maps . 28
3.3.5 Hierarchical Self-Organizing Maps 29

3.4 Analysis and Visualization . 30
3.4.1 t-SNE: t-Distributed Stochastic Neighbourhood Embedding . 30

3.5 Summary . 31

Chapter 4 Evaluations and Results 33

4.1 Metrics . 33

ii

4.2 Evaluation Structure . 34
4.2.1 Syntactic vs Semantic Approach Evaluation 34
4.2.2 Large Language Model Log (LLM) Evaluation 35
4.2.3 LLM Baseline vs Fine-tuned Evaluation 37
4.2.4 Evaluation on the Effect of the Log Structure 37

4.3 HyperParameters for Learning Algorithms Used 38
4.3.1 K-Means Clustering . 38
4.3.2 Agglomerative Clustering . 39
4.3.3 Isolation Forest . 39
4.3.4 Self-Organizing Maps . 39
4.3.5 Hierarchical Self-Organizing Maps 39

4.4 Semantic vs Syntactic Experiments 48
4.4.1 Results . 48
4.4.2 Case Study: ISOT Log file . 50
4.4.3 Discussion . 51

4.5 LLM Experiments . 54
4.5.1 Results . 54
4.5.2 Discussion . 60

4.6 Log Structure Experiments . 61
4.6.1 Results . 63
4.6.2 Discussion . 63

4.7 Limitations . 65

4.8 Summary . 65

Chapter 5 Conclusion and Future Work 68

5.1 Conclusion . 68

5.2 Future Work . 69

Bibliography . 70

Appendix A Appendix . 74

A.1 Appendix A . 74

iii

List of Tables

2.1 Literature Overview . 6

3.1 Summary of the datasets . 8

3.2 ECML/PKDD Dataset . 11

3.3 CSIC Dataset . 12

3.4 ISOT-CID Day-2 Dataset . 12

3.5 Apache Access Dataset . 13

3.6 NLP Characteristics of the datasets 13

3.7 Model Characteristic of the Different Large Language Models
employed . 23

4.1 HyperParameter Setting . 38

4.2 Model Training Time: Semantic VS Syntactic approaches (Sec-
onds) . 44

4.3 Semantic VS Syntactic Model Performance Results: Weighted
F1-Score . 45

4.4 Semantic vs Syntactic Feature Extraction Times (Seconds) . . 48

4.5 LLM Feature Extraction Times 54

4.6 LLM Fine-Tuning times . 55

4.7 LLM Experiment Results: Weighted F1-Score 57

4.8 Language model performance on AA dataset 58

4.9 Language model performance on CSIC dataset 58

4.10 Language model performance on PKDD dataset 58

4.11 Re-structured Log Lines Experiment Results: Weighted F1-Score 64

A.1 Semantic vs Syntactic vs Bi-Gram Feature Extraction Times
(Seconds) . 74

A.2 Model creation time for character Bi-Gram featureset 74

iv

A.3 Model performance for character Bi-Gram featureset 74

v

List of Figures

3.1 Overview of the System Framework 9

3.2 TF-IDF calculations of sample ISOT log lines 16

3.3 An example of BERT Embedding on ISOT dataset 24

4.1 LLM Baseline Experiment Methodology 36

4.2 LLM Fine-Tune Experiment Methodology 36

4.3 Construction of combined Apache access log for PKDD and
CSIC datasets . 38

4.4 Elbow study of K-Means Apache Access 41

4.5 Elbow study of K-Means ISOT 41

4.6 Elbow study of K-Means CSIC 42

4.7 Elbow study of K-Means PKDD 42

4.8 Semantic (Sem) vs Syntactic (Syn) experiment results: Weighted
F1-Score . 43

4.9 SOM Hit Map Visualizations of the datasets 46

4.10 t-SNE Visualizations of the datasets 47

4.11 Example log records from ISOT dataset 52

4.12 Baseline Fine-Tuned LLM Experiment Results: Weighted F1-
Score . 56

4.13 Pre-Processed Log Files Experiment Results: Weighted F1-Score 62

A.1 distilRoBERTa, 100,000 samples fine-tuned distilRoBERTa (apacheDis-
tilRoBERTa), and 200,000 samples fine-tuned distilRoBERTa
(apachePrime) . 75

vi

Abstract

The goal of this research is to provide security and machine learning (ML) practi-

tioners with deeper insight when selecting features and algorithms for unsupervised

log analysis. This thesis explores the effect of traditional vector space model and

state-of-the-art transformer based natural language processing (NLP) language mod-

els towards anomaly detection. Four unsupervised learning algorithms are applied

on four service log files using syntactic and semantic feature extraction techniques.

This research also explores the use of five different deep learning language models and

their impact on the performance in anomaly detection via semantic feature extrac-

tion. The results indicate that semantic feature extraction using transformer based

language models performs better than the traditional vector space model from the

lens of security analysis and anomaly detection.

vii

Acknowledgements

First and foremost, I would like to thank both my co-supervisors Dr. Nur Zincir-

Heywood, and Dr. Xiao Luo whose support and guidance was paramount to the

completion of this work. I would also like to thank Dr. Jeff Schwartzentruber, whose

continued support also made this work possible. Finally, I would like to thank Dr.

Vlado Keselj for their timely review and constructive feedback on this work.

viii

Chapter 1

Introduction

Modern day networks are expansive and highly active, particularly in the case of en-

terprise infrastructure, where applications may be servicing hundreds of thousands of

users simultaneously. In most modern implementations, network activity is monitored

via log sets, which include relevant details of network events and the timestamps at

which the events occurred. This standard pratice results in the generation of many

different historical log sets for each system in the network, where log data may take

many different forms. These log sets are typically aggregated in a central system (e.g.

SIEM) for log analysis and subsequent identification of anomalies. There exist several

different approaches for log analysis, from writing regex parsers for specific log lines

for analyzing the logs based on specific queries to supervised machine learning based

approaches for identifying outliers. NLP techniques have come into the spotlight as

an alternative method for log analysis, due to its inherent benfits of increased scal-

ability and generalizability for feature extraction in log analysis when compared to

traditional approaches [12, 6].

Evaluation of these log sets through unsupervised machine learning algorithms

are valuable in practice due to the difficulty in obtaining labelled or ground truth

data most of the time, such as identifing malicious vs. benign network traffic. Re-

search in the application of NLP techniques by Boffa et al. for feature extraction in

log analysis have identified the use of Word2Vec and TF-IDF as effective methods of

deriving vector space representations of aggregated security data from exposed honey-

pots [6]. In addition, Copstein et al. explores the use of TF-IDF in combination with

unsupervised machine learning algorithms on publicly available network traffic and

application log data, identifying it as a valid strategy for anomaly detection [12, 7].

However, exploring the efficacy of NLP-based approaches is relatively recent and have

not been fully evaluated. Thus, in this thesis the research objective is to explore the

use of both syntactic and semantic feature extraction techniques on four different

1

2

security datasets in combination with four unsupervised machine learning algorithms

as an anomaly detection solution. To achieve this, this study expands on previous

work by utilizing a syntactic extraction technique proposed in [7] based on TF-IDF

for security data. In addition to this syntactic approach, this study also extracts

semantic features by utilizing different Large Language Transformer models based on

the same log data [8]. In doing so, the objective is to explore whether one can iden-

tify techniques that are not specific to certain queries or log lines (records) but could

be applied to different types of application logs that have different characteristics.

Hence, the research contributions of this thesis include:

• Exploring both syntactic and semantic features for application log representa-

tion using NLP-based approaches;

• Evaluating four unsupervised learning techniques with syntactic and semantic

features on four different types of application logs;

• Interpreting the results through data visualization and case study;

• Evaluate five different large language models for semantic feature extraction for

log analysis;

• Compare and contrast the benefits of fine-tuning in large language models for

the task of feature extraction in log analysis.

The rest of the thesis is organized as follows: Chapter 2 reviews the literature in

this field. Chapter 3 introduces the proposed approach and discusses the datasets,

data pre-processing, feature selection, and unsupervised learning models used in this

thesis. Chapter 4 presents the evaluations and the results obtained. Finally, conclu-

sions are drawn and future work is discussed in Chapter 5.

Chapter 2

Literature Review

Log analysis is an important area of cybersecurity, where several works studied dif-

ferent log abstraction techniques for different types of log data analysis. Most of the

time, the output of an abstraction technique is used as a feature set for intrusion de-

tection (supervised learning) or anomaly detection (unsupervised learning) purposes

for data analysis [7, 12]. The generated feature sets were proposed to reduce the am-

biguity of malicious behavior visible in the log data. The success of those features was

evaluated based on performance metrics derived through the application of learning

algorithms.

Nguyen et al. [28] suggest a supervised ensemble learning system which fuses

the outputs of different supervised machine learning models together to optimize

the classification of abnormal security events. This framework is tested on both the

ECML/PKDD 2007 dataset, and the HTTP CSIC 2010 dataset using hand picked

features, and syntactic characteristics of the log line. They identify the importance

of adapting intrusion detection systems (IDSs) in heterogeneous and adversarial net-

work environments in testing this adaptive intrusion detection system. The authors

proposed A-IDS achieves 10% higher accuracy than the best of four different base-

line supervised machine learning by combining their outputs using an online learning

framework. The unsupervised machine learning algorithms that make up this A-IDS

are decision stump, Naive Bayes, RBF Network, and Bayesian Network. A major

contribution of this work is a novel expanded framework for fusing the outputs of the

four IDSs to increase accuracy and reliability. The A-IDS scores a 90.98% accuracy

in the CSIC dataset, and 92.56% in the PKDD/ECMl dataset, albeit at much higher

computational cost to perform the output fusion of the underlying models.

Bhatnagar et al. [4] benchmark the performance of four different supervised ma-

chine learning algorithms for intrusion detection. The proposed solution extracts and

learns features from the raw log data using a trained classical neural network and

3

4

deep belief network. These models enable key features to be extracted from both

the ECML/PKDD 2007 and HTTP CSIC 2010 dataset, to then have the top five

highest entropy features be selected for the featureset. In addition a bag-of-words

vector space is created to supplement these features. This hybrid featureset is then

used to train four different supervised classifiers for intrusion detection. The four dif-

ferent supervised classifiers are MLP classifier, Multinomial classifier, decision tree,

and random forest. The classifiers all score above 99% accuracy in identification of

attacks across both datasets.

Vartouni et al. explored the use of a novel feature extraction method for intrusion

detection using deep belief networks and parallel feature fusion techniques. They

explore the synthetic feature extraction and feature fusion is performed on top of

the bi-gram representation of the logsets, alongside typical dimensionality reduction

algorithm, like FICA, PCA, and KPCA. They evaluate the benefits of dimensionality

reduction, synthetic feature fusion, and baseline n-gram representation by training

unsupervised anomaly detection algorithms such as Isolation forest, Eliptic envelope,

and one class SVM and comparing the outlier detection performance using accu-

racy, and F1-score. Benchmarking is performed using both the ECML/PKDD 2007

dataset, and the HTTP CSIC datasets. The results indicate that there is deep learn-

ing neural networks, particularly fusion models can provide meaningful benefits to

feature extraction in the task of anomaly detection. The most remarkable results

show the feature fusion method at a 85.35 F1-Score in the CSIC dataset for isolation

forest, and 84.93 F1-Score using elliptic envelope on the PKDD dataset.

Copstein et al. [7] explored the use of syntactic features based on the TF-IDF

technique for intrusion detection in application log files. TF-IDF is a simple natural

language processing technique which enables ranking of terms based on their unique-

ness in the context of the entire dataset; they suggest this feature set as a method

of extracting the form of log line data and in doing so syntactical attributes which

are important for anomaly detection. This approach was evaluated using unsuper-

vised clustering algorithms K-Means, DBScan, and EM clustering. Three datasets

were used in this research, ISOT-CID a cloud intrusion dataset, ECML/PKDD 2007

dataset and an Indonesian Apache Access security set. The syntactic approach is com-

pared and contrasted against more traditional log abstraction techniques which are

5

inflexible, indicating through benchmarking that a syntactical approach does effec-

tively and consistently disambiguate malicious behavior in traffic log data of different

forms. They record their highest performance using K-Means clustering with accu-

racy scores between 60-70% using K-Means clustering for anomaly detection across

the three datasets, with arbitrary selection of K clusters.

In more recent works, Nam et al. [27] explored the use of BERT for log analysis

in VM failure prediction. They propose a model in which BERT is used to extract

the sentence embedding representation of each log and feed that into a pre-trained

convolutional neural network to predict failure within a 2 to 30 minute window.

They achieved a 0.74 F1 score on an in-house OpenStack VM system log test and

training set. A notable beneift of this BERT-CNN model was that the embedding

representation enabled the CNN to predict VM failure in instances where the problem

was not observed in the training set.

Ott et al. [29] evaluates the use of language models BERT, GPT-2 and XL-Net

for anomaly detection in cloud system log data. They accomplish this by leverag-

ing different base language models for extracting key components of log data, and

enabling transfer learning by approximating the similarity of key log events across

different datasets with slightly altered sequences and semantic meaning. All log data

was pre-processed into a log template representation using Drain prior to semantic

feature extraction using the language models. They train two neural networks with a

regression and classification learning objective in which they prioritize mean squared

error for the anomaly detection component of this proposed solution, which takes the

sentence embedding representations as input from the language models. They evalu-

ate robustness of the use of the three different language models by gradually altering

the log input data in both semantic representation and sequence and evaluating the

change in model performance. The results for BERT and GPT-2 indicate they are

less susceptible to semantic and sequence changes in the regression based solution but

GPT-2 underperforms in the classification-based model. Additionally BERT benefits

from better transfer learning performance in the proposed solution indicating it is a

good candidate for anomaly detection in an evolving system.

Zhang et al. [40] explore the modification of the BERT base model to perform

weighted part-of-speech tagging on log templates produced by Drain and improve

6

software specific classification for log events across five different system log datasets.

They modify BERT to accept a new embedding representation in place of segment

embeddings which is the summation of the token, position and PoS weight embedding

which is gathered from a predefined table where tags are given relevant weights based

on expert advice for log classification. PoSBERt is compared to base BERT in log

software classification and the added weight PoS embedding and achieves a 0.3-5%

across four of the 5 datasets.

Table 2.1: Literature Overview
Paper Unsupervised Syntactic Semantic Application Log
[28] NO NO NO YES
[4] NO YES NO YES
[26] YES YES NO YES
[7] YES YES NO YES
[16] YES NO NO YES
[21] YES NO NO YES
[27] NO NO YES NO
[29] NO NO YES NO
[40] NO NO YES NO
This Thesis YES YES YES YES

2.1 Summary

Table 2.1 presents an overview of the literature summarized in this chapter. The

literature in feature extraction and selection for log analysis and anomaly detection

leans heavily on supervised machine learning approaches and their supporting solu-

tions to feature extraction. The inflexibility of these implementations as they explore

only one type of log data and often extract specific information provides a research

gap on which to explore new approaches to feature extraction and unsupervised ma-

chine learning for more realistic evaluation and benchmarking efforts. Furthermore,

there is even less research on the semantic feature extraction side, in terms of eval-

uating different language models on application log analysis for security purposes.

Different from the research in the literature, the goal in this thesis is to explore the

effect of syntactic and semantic features using unsupervised learning techniques for

designing and developing anomaly detection strategies on application log files. In

doing so, the aim is to benchmark and explore how different popular language models

perform when tasked with extracting meaningful sentence embedding representations

7

from security log data. Thus, the thesis extends the approach of Copstein et al. [7]

to explore the effect of syntactic and semantic features using unsupervised learning

techniques for designing and developing anomaly detection strategies on application

log files. Moreover, the focus is specifically on application log files, namely web log

files. To the best of my knowledge, this is the first work benchmarking well known

unsupervised learning algorithms with such an approach on four distinctly different

and publicly available application log files. This research also aims to explore the use

of different language models for semantic feature extraction and how they differ from

one another.

Chapter 3

Methodology

This chapter will explore the different datasets, feature extraction methods, visualiza-

tion methods, and unsupervised machine learning algorithms utilized in this research.

This section explores the components that went into the implementation of an ex-

perimental methodology for evaluation of syntactic and semantic feature extraction

techniques for security log analysis, and anomaly detection. The figure 3.1 provides

an overview of this experimental structure.

3.1 Datasets

This thesis explores the efficacy of a generalized approach to log analysis which lever-

ages the flexibility of feature engineering approaches in syntactic and semantic analy-

sis on four unique application log files. Since a primary component of this research is

to explore a generalizable approach to application log analysis for security purposes,

it is important to employ data from different sources. Therefore, four publicly avail-

able datasets are employed in this research. Each one represents a different real life

system summarized below, Table 3.1 and Table 3.6. It should be noted here that each

dataset was split into two partitions: 75% training and 25% testing, using stratified

sampling to maintain the original class distributions of the data. For the purposes

of this research the training and test sets were reduced to a binary representation of

their original classes, that is to say classes associated with malicious behavior were

all labelled as ANOMALY and safe activity were labeled as NORMAL. The details

of each dataset is described as follows:

Table 3.1: Summary of the datasets
PKDD ISOT AA CSIC

Class #Lines % #Lines % #Lines % #Lines %
NORMAL 35006 69.85% 704,226 69.88% 29,778 85.71% 36,000 59.01%
ANOMALY 15109 30.15% 303,529 30.12% 4,965 14.29% 25,000 30.99%

Total 50,115 100% 1,007,756 100% 34,743 100% 61,000 100%

8

10

3.1.1 ECML/PKDD Dataset

This dataset was created and published as training/testing data for anomaly detection

on web application data for the ECML/PKDD Discovery Challenge 2007 [11]. The

dataset contains 50,115 log records which are composed of HTTP packet information

distributed across normal and attack behaviours, Table 3.2. This dataset represent

a scenario where certain parts of data is anonymized to avoid releasing personally

identifiable information. This dataset has the highest number of words among the

ones used in this research. Hereafter, this dataset is referred to as PKDD. The features

which are present in this dataset as part of the log line representation are as follow:

1. Method

2. URL

3. Content-type

4. Content-language

5. Content-encoding

6. Content-location

7. Content-MD5

8. Content-Type

9. Expires

10. Last-Modified

11. Host

12. Connection

13. Accept

14. Accept-charset

15. Accept-encoding

16. Accept-language

17. Cache-control

18. Source IP

19. Cookie

20. Cookie2

21. Date Time

22. Etag

23. Expect

24. From

25. If-Modified-Since

26. If-Unmodified-Since

27. If-Match

28. If-None-Match

29. If-Range

30. Max-forwards

31. MIME-Version

32. Pragma

33. Proxy-Authorization

34. Authorization

35. Range

36. Referer

37. TE

38. Trailer

39. User Agent

40. UA-CPU

41. UA-Disp

42. UA-OS

43. UA-Color

44. UA-Pixels

45. Via

11

46. Transfer-Encoding

47. Upgrade

48. Warning

49. X-Forwarded-For

50. X-Serial-Number

51. Content-length

52. Content

53. URL

Table 3.2: ECML/PKDD Dataset
Class # % # %
C1 - Normal 35,006 69.84% 35,006 69.85%
C2 - Cross-Site Scripting 1,825 3.64% 15,109 30.15%
C3 - SQL Injection 2,274 4.53% - -
C4 - LDAP Injection 2,279 4.54% - -
C5 - XPATH Injection 2,279 4.54% - -
C6 - Path Traversal 2,295 4.57% - -
C7 - Command Execution 2,302 4.59% - -
C8 - SSI Attacks 1,856 3.70% - -
Total 50,115 100% 50,115 100%

3.1.2 CSIC Dataset

This dataset was created in 2010 by the Information Security Institute by the Spanish

Research National Council as an updated alternative to the KDD cup dataset from

1999 for the research and development of intrusion detection tools on web application

logs [13]. It was produced by simulating an e-commerce site, Table 3.3. The simulated

attacks include SQL injection, buffer overflow, information gathering, files disclosure,

CRLF injection, XSS, server side include, parameter tampering. This dataset is

referred as CSIC, and includes a feature list comparable to that of the PKDD dataset

without the anonymization. The features which are present in this dataset as part of

the log line representation are as follow:

1. HTTP method

2. User Agent

3. Pragma

4. Cache-control

5. Accept

6. Accept-encoding

7. Accept-charset

8. Language

9. Source IP

10. Cookie

11. Content-type

12. Connection

13. Content-length

14. Content

15. URL

12

Table 3.3: CSIC Dataset
Class # %
Benign 36,000 59.01%
Malicious 25,000 30.99%
Total 61,000 100%

3.1.3 ISOT-CID Dataset

This dataset was created and published by the ISOT lab to be used as training and

testing data for intrusion detection on cloud environments in 2018 [35]. The full

dataset is composed of 8tb of system logs, calls, traffic data at VM and hypervisor

levels and system performance data collected across 10 days. We selected the network

traffic data for day-8 because of its relatively smaller size, as shown in Table 3.4. This

log file represents the scenario of tcpdump traffic and includes both attack and normal

traffic. This is the biggest dataset used in this research. Hereafter, this dataset is

referred to as ISOT. The features which are present in this dataset as part of the log

line representation are as follow:

1. Transport Layer Protocol

2. Source IP

3. Destination IP

4. Source Port

5. Destination Port

6. Length of the packet

7. Promiscuous mode FLAG

8. Packet timestamp

9. Sequence number

10. TCP flag

Table 3.4: ISOT-CID Day-2 Dataset
Class # %
Benign 7,157,658 61.90%
Malicious 4,404,874 38.10%
Total 11,562,532 100%

13

3.1.4 Apache Access Dataset

This dataset was created and published by Indramayu State Polytechnic University

for training and testing of intrusion detection on web server access logs in 2022 [15].

The dataset is composed of 37,693 log records including attack and normal queries,

Table 3.5. This dataset represents a regular application log file, no anonymization

employed. Hereafter, this dataset is referred to as AA. The features which are present

in this dataset as part of the log line representation are as follow:

1. Source IP

2. Date Time

3. Timezone

4. URL

5. Method

6. Status Code

7. Response Size

8. User Agent

9. Country

Table 3.5: Apache Access Dataset
Class # % # %
AMA - Safe 29,778 79% 29,778 85.71%
BAH - Attack 4,965 13.17% 4,965 14.29%
DIC - Suspicious 2,950 7.83% -
Total 37,693 100% 34,743 100%

Table 3.6: NLP Characteristics of the datasets
Dataset Word Length Word Count Character Count
PKDD 11.49 92.1 1124.25
Standard Deviation 1.67 12.32 168.01
ISOT 6.35 10.47 75.96
Standard Deviation 0.21 0.50 3.28
AA 12.22 16.85 222.13
Standard Deviation 2.87 1.83 46.07
CSIC 15.94 27.55 467.02
Standard Deviation 3.50 0.90 104.13

3.1.5 Harvard Web Server Dataset Description

This dataset is composed of 10,365,152 Apache access log lines created from an Iranian

e-commerce website zanbil.ir and is publicly available on Harvard dataverse [39]. This

is 3.5 GB of raw Apache access logs gathered over a 4 day period between January

14

22 2019 and January 26 2019. This dataset is only used to finetune the selected

transformer language models.

3.2 Feature Extraction

This research explores two different NLP techniques for feature extraction with no a

priori information from the datasets. That is to say these NLP techniques are applied

without fine-tuning or specialization on the log formats seen in the data. The two

techniques extract information at different levels of NLP, one for syntactic and one

for semantic. The semantic technique attempts to extract meaning from contextual

information in the log, looking at relationships between tokens within the log. While

the syntactic approach attempts to interpret the data from its syntax representation,

identifying important words from their frequency in the scope of the entire dataset.

3.2.1 Syntactic: TF-IDF based Feature Extraction

In the study by Copstein et al. TF-IDF, a lightweight syntactical feature extraction

technique, is developed for security log analysis and evaluated against the traditional

and computationally expensive log abstraction methods [1]. Thus given a log line, d

with tokens ts, and a log set, D, composed of N , a TF-IDF vector representation can

be calculated by first deriving the token frequency using Eq. 3.1. Then deriving the

inverse log line frequency of the token using Eq. 3.2. Finally, the product of Eq. 3.1

and 3.2 provides the TF-IDF for one token t in the log line, shown as Eq. 3.3 [1].

tf(t, d) = freq(t, d) (3.1)

idf(t,D) = log(
N + 1

count(k ∈ D : t ∈ k) + 1
) + 1 (3.2)

tfidf(t, d,D) = tf(t, d) × idf(t,D) (3.3)

Since the TF-IDF representation of each log line can be verbose and vary greatly

for some security log types, in the interest of conformity, model training times and

generalization, the average, minimum and maximum TF-IDF values are calculated

from each log line as the three TF-IDF features in the short syntactic feature set [7].

15

TF-IDF is calculated for each log line for every term including numbers since they are

of significant importance to log lines. Other than these three features derived from

TF-IDF, four additional syntactic features are produced from each log line to build

the syntactic representation of it. The four additional syntactic feature are calculated

as follows:

• Alphanumeric Ratio: Ratio of alphanumeric characters over the total number

of characters in the log line [7]

• Average Character: Average of the numeric ASCII representation of each char-

acter in the log line

• Character Count: Total number of characters in the log line

• Word Count: Total number of words (character sequences separated by whites-

pace) in the log line

TF-IDF is a Natural Language Processing technique in which sentences are trans-

late into vector value representation through analysis of individual terms and their

frequency relative to the full logset. This technique is predicated on the fact that

the document (log line) belongs to a larger document model (logset) on which the

components of TF-IDF can be calculated for each term.

Thus given a document (log line), d, and a document model (log set), D, composed

of N documents and a term, t; a TF-IDF vector representation can be calculated by

first deriving the term frequency using the equation 3.1. Then deriving the inverse

document frequency of the term using the equation 3.2. Finally, the product of the

two provides the TF-IDF for one term in that document seen in equation 3.3.

Evaluation of TF-IDF provides an understanding that as the frequency of a term

in its given document increases and its frequency in the context of the rest of the

document model decreases, TF-IDF for that term will increase — and vice versa.

Thus, a term with high TF-IDF score is uncommon and by extension an outlier.

The TF-IDF vector representation of each log line is generated by turning the

log set into a document model, composed of each log line as documents and then

computing the TF-IDF value for each word present. This is all performed exclusively

on the log line data. Since the TF-IDF representation of each log line can be verbose

16

Figure 3.2: TF-IDF calculations of sample ISOT log lines

17

and vary greatly on the application log types, in the interest of model training times

and generalization the average, minimum and maximum TF-IDF values are selected

from each log line as the three TF-IDF features in the short syntactic feature set

employed in this thesis.

3.2.2 Semantic: LLM based Feature Extraction

For the semantic approach this study utilizes the state-of-the-art Bidirectional En-

coder Representation from Transformers model (BERT) to derive the embedding

representation of each log line [8]. Originally released in 2018, the BERT model uti-

lizes the transformer architecture to learn the contextual relationship between words

in text. The use of BERT on security log data was previously explored in a study by

Guo et al. [14] where they use the BERTs ability to perform next sentence prediction

and fill in missing data in order to identify anomalous events in log information. This

study primarily focused on system logs.

3.2.2.1 BERT

The BERT model stands for bidirectional encoder representations from transformers,

this is an open source machine learning framework for natural language processing

produced by Google in 2018 [8]. The purpose of which is to enable computers to better

understand ambiguous text, by looking at the context and structure of the language.

This understanding of context is enabled by the unique bidirectional property of

BERT models, which allows the model to process text not only left-to-right or right-

to-left but both simultaneously.

The BERT model is based on the transformer architecture which enables neural

networks to be trained without fixed sequences. Transformer architectures were in-

troduced by Google as well in 2017, and the benefits of the unordered training data

requirements for the transformer architecture provided the opportunity to train on a

massive corpus of data [38]. This was how the original BERT model was pre-trained

using a 16GB corpus of text from Wikipedia and the brown corpus using both masked

language modeling and next sentence prediction.

18

3.2.2.1.1 Model Architecture

The original BERT model was trained on a vast dataset of over 3.3 Billion words

gathered from various sources including Wikipedia and BooksCorpus on the principle

that by pre-training an unsupervised multilayer transformer model on written text

from a variety of sources where words will have different contextual meanings the

model will be better equipped to interpret the contextual meaning of a word [8]. The

resulting model has a transformer architecture which utilizes multilayer transformer

encoders to derive embedding information using a variety of different text features.

The base BERT model has 12 transformer layers each with 768 hidden states, which

essentially represent the output of each encoding layer. Prior to going through the

different encoding layers of the model the input text is transformed into its embedding

representation which describes different characteristics of the sentence. These are the

segment embedding, positional embedding, token embedding. These three embedding

representations are summed up to provide the input for the transformer encoding

layers. The hidden state output of each encoding layer can then be used as semantic

information. The hidden state that is produced by the final layer of the BERT model

can then be used as the semantic representation of the input text.

3.2.2.1.2 Sentence Embedding Extraction

Sentence or sequence level analysis using BERT and BERT like models is accom-

plished by extracting the hidden states or token embedding of the final layer of the

BERT model and performing mean pooling on that token level representation. This

effectively compresses the token embeddings into a fixed length sequence which can

represent the meaning of the input sequence [31]. Therefore, in order to successfully

extract the sentence embedding from the language models utilized in this thesis a

mean pooling layer is added following the final layer of each model. Please refer to

Figure 4.2 for a visualization of the appropriate model architecture to extract sentence

embeddings.

19

3.2.2.1.3 Wordpiece Tokenization

BERT processes text by performing tokenization with the WordPiece algorithm,

where an underlying vocabulary is extracted from the pre-trained corpus which in-

cludes every character present in the text as well as characters which are preceded by

other characters [8]. For example, the word “giraffe” would be split into the following

“g” “”##i” “##r” “##a” “##f” “##e” where every character inside the word is

preceded by a prefix of “##”. Then in order to expand the vocabulary, merge rules

are extracted from the corpus to define longer sequences of tokens which are prevalent

in the text.

3.2.2.1.4 Masked Language Model

One mechanism used to pre-train the BERT model is the attention mechanism or

masked LM which masks 15% of keywords in the text prior to being fed into the model

so as to enable the model to train in accurately predicting the masked word based

on contextual information gathered from the rest of the text [8]. This masked LM

mechanism is predicated on the implementation of a classification layer on top of the

encoding layer which attempts to assign the correct word to masked words, as well as

transformation of the embedding matrix output into their vocabulary representation

and finally computing the probability for each word using the softmax layer. This

explanation can be seen in Figure 4.2.

3.2.2.1.5 Next Sentence Prediction

The other mechanism utilized in pre-training the BERT model is next sentence predic-

tion [8]. This mechanism utilizes the different embedding representations, especially

the segment embeddings to have the model predict the consequent sentence of a given

sentence. During training 50% of the inputs are paired with their subsequent sentence

in their original documents, another 50% is paired with a random sentence that is

not its original subsequent sentence. The goal here in next sentence prediction is that

the sentences paired with an incorrect subsequent sentence are correctly identified

as not pairs. This mechanism is implemented at the softMax layer where the model

will produce a confidence interval for determining if the two sentences separated as

20

segments are subsequent sentences. While the BERT model produced by Google pro-

vided an entirely new method of approaching NLP tasks, there have since been many

adaptations made on the BERT framework to improve its performance in tasks in

different ways. This study explores some of the unique transformer style language

models that have been released since 2018 for the task of semantic analysis of security

log data.

3.2.2.1.6 Fine-tuning

BERT model fine-tuning is performed in much the same way as pre-training. Masked

language modeling is used to adapt the language model to a specific domain or task

during fine-tuning [8]. In the context of this research each model was fine-tuned

without freezing, which is the practice of ensuring some layers of the transformer

models are not updated during fine-tuning. Every layer in the context of this study

was impacted during fine-tuning.

3.2.2.2 Roberta

The RoBERTa model is a BERT-style language model produced by the Facebook AI

division in 2019 [23]. This model differs from the original BERT model in a number

of ways and stands for Robustly Optimized BERT Approach. The model authors at

Facebook AI made key decisions to improve on the original BERT model architecture

and outperform it in several NLP tasks like text classification, and translation. The

following is a list of unique characteristic and key design choices for the RoBERTa

model as compared to the original BERT model.

1. Pre-training data: RoBERTa was trained on 160GB of text which includes

the 16GB corpus used for BERT and the rest from web and news related text

sources.

2. Dropped NSP: RoBERTa has had the next sentence prediction component of

the architecture stripped from it since research suggested it did not contribute

meaningfully to the overall performance of the BERT model.

3. Difference in Pre-Training Configuration: RoBERTa had much larger batch sizes

with singificantly fewer steps. Larger batch sizes and fewer steps led to improved

21

performance in terms of perplexity, and greater oppurtunity for parallelization

and faster pre-training.

4. Dynamic Masking: RoBERTa dynamically changes the location of the masked

token in the input sequence during masked language modelling training unlike

BERT which utilizes static masking.

5. BPE Tokenization: RoBERTa utilizes a vocabulary of greater than 50,000 to-

kens as compared to BERT with just over 30,000 as a result of its use of a more

comprehensive tokenization algorithm in the form the Byte Pair Encoding algo-

rithm which sacrifices compression for better detail, and emphasis on learning

merge set rules for tokens.

3.2.2.3 DistilRoberta

NLP and Machine Learning researchers have not only attempted to adapt the archi-

tecture of BERT-style language models for better performance, they have also made

advances towards improving the efficiency of those models. A process known as dis-

tillation was developed and explored in a study by Sanh et al. in 2019 [32]. This is

a process in which large language models are used to train smaller models using a

teacher-student compression technique where the aim is to perform knowledge trans-

ference and distillation. In the case of language models like BERT or RoBERTa

knowledge distillation is performed by training a smaller model to mimic the output

of those original models. The student models training loss function is determined

by how its output relates to the teachers output, and minimizing the difference on a

given pre-training dataset. This process of knowledge distillation has been applied to

several language model architectures. The benefits of knowledge distillation is that

the number of layers, parameters and pre-training time can be reduced significantly

enabling faster inference while replicating the same output as that of a larger model.

The distilRoBERTa model contains only 6 layers, 768 dimensions and 12 heads to

to total 82 million parameters which is 12 layers, 768 dimensions and 12 heads for a

total of 125 million parameters [32]. The reduction in model size enables double the

inference time for DistilRoBERTa.

22

3.2.2.4 GPT-2

The GPT-2 model is an open source language model produced by OpenAI in 2019,

this model differs significantly from the BERT-style models previously outlined [30].

GPT-2 was designed to perform translation, text generation and question answering

and has an autoregressive decoder style transformer architecture. Decoder style trans-

former architecture differs from the encoder style transformer of BERT-style models

in that they perform unidirectional input processing and generate each output token

individually. GPT-2 is an autoregressive model which aims to predict subsequent

tokens using a set of input words, while BERT utilizes autoencoding with its masked

language modeling tasks. Autoregressive decoder styler transformer models like GPT-

2 are referred to as causal language models. GPT-2 is trained on 40 GB of textual

data extracted from web pages, and the original model has 1.5 billion parameters,

though smaller models exist and for the purposes of this study a 124 million param-

eter model was used. Much like the RoBERTa model the GPT-2 model utilizes BPE

tokenization, and has a similar size vocabulary to that of RoBERTa with just over

50,000 tokens.

Since the architecture of GPT-2 differs from that of the BERT style models, there

are some changes that must be made to the model in order to perform sentiment

analysis [30]. Causal language models don’t typically need end of sequence tokens to

identify the end of input sentences, and so in order to generate fixed length sentence

embeddings from the final decoder layer of GPT-2 model, these tokens must be added.

Furthermore addition of padding, unknown and beginning tokens is also required in

order to map input sequences to a fixed length sentence embedding. After this change

the output of the final layer can be seen as the token embedding representation of any

input sequence and fed into a mean pooling layer to extract the sentence embedding

representation. This is how sentiment analysis can be performed with causal language

models.

3.2.2.4.1 Fine-tuning

Causal language models differ in the way in which fine-tuning and pre-training are

performed [30]. Rather than attempting to fill in unknown masked words in a se-

quence, these language models attempt to predict the next word in the sequence

23

Table 3.7: Model Characteristic of the Different Large Language Models employed
Model Characteristics

Language Model Word Embedding Space Parameters Training Data Size
Bert-base-cased 768 110M 16 GB
RoBERTa 768 123M 160 GB
DistilRoBERTa-base 768 82M 40 GB
GPT-2 768 124M 40 GB
GPT-NEO 2048 1.3B 800 GB

given a stub taken from the training corpus. The training goal here is to correctly

guess the subsequent words/tokens.

3.2.2.5 GPT-Neo

The GPT-NEO model is a Eleuther AI replication of the closed source GPT-3 model

produced by Open AI and is an autoregressive decoder style language model [5]. This

model is also a casual language model and utilizes a slightly modified autoregressive

decoder style architecture to that of GPT-2. GPT-NEO differs from GPT-2 in that

it utilizes local attention between every other layer, and was trained on the 825 GB

dataset the pile. The pile training is composed of a wide variety of different text

sources including books, github repositories, webpages, chat logs, as well as research

papers from a number of STEM fields. The GPT-NEO model comes in a variety of

different model sizes as well ranging from 2.7 billion parameters to 125 Million. For

the purposes of this research the 1.3 BIllion parameter model was utilized.

This causal language model also requires the addition of end of sentence, beginning

of sentence, padding and unknown tokens in order to generate fixed length sentence

embeddings from the input sequences [5].

3.3 Unsupervised Learning Techniques

In this research, the unsupervised learning techniques used include Self Organizing

Maps, K-means, Isolation Forest, and Agglomerative Hierarchical clustering. They

are chosen based on the works reported in the literature, Section 2. Further details

regarding unsupervised learning and clustering can be found in Alpaydin et al. [2].

24

Figure 3.3: An example of BERT Embedding on ISOT dataset

3.3.1 K-Means

The K-Means algorithm is a well-established iterative clustering algorithm [3, 24]. The

algorithm attempts to cluster/group data points, and is widely used in fields such as

computer vision, data science, and cybersecurity. The underlying principle for K-

Means is to ensure that similar data points are clustered together and dissimilar ones

are separated, and this is accomplished by minimizing the sum of distances between

each data point and their corresponding cluster centroid. The following is a walk

through of how the K-Means clustering algorithm works.

1. Initialization: In this first step the algorithm starts with a k randomly selected

cluster centroids, where k represents the number of clusters

2. Assignment: The Euclidean distance is then calculated between every data

point and every centroid in order to find which data points belong to which

cluster centroids. The formula for Euclidean distance can be seen in equation

3.4. where pi and qi are the i-th coordinates of points p and q, respectively, and

d is the number of features. The symbol
∑

represents the summation over all

features.

3. Update: Once every data point has been assigned to a cluster centroid, the

25

position of each cluster centroid is updated too the mean of all data point

belonging to its cluster.

4. Re-assignment: After updating the centroids each data point must once again

have its closest centroid computed, and assigned to.

5. Repeat: The Update, and Re-assignment steps are repeated until there is little

to no change in the centroid positions anymore, or until a user specified number

of iterations has been reached. This is where convergence of the model can be

reached, though it may not always be the global optimum.

d(p, q) =

√

√

√

√

d
∑

i=1

(pi − qi)2 (3.4)

The outcome of this algorithm is a set of K cluster centroids with data points

assigned to them. The low computational cost of computing distance calculations and

updating the positions of the centroids makes k-means a highly effective unsupervised

machine learning algorithm for performing clustering larger datasets.

3.3.2 Agglomerative

The agglomerative clustering algorithm is a bottom-up hierarchical clustering algo-

rithm [41], [10]. Hierarchical algorithms perform clustering by starting with either

one or n clusters, and merging or splitting to cluster data points, since agglomera-

tive is bottom-up it performs hierarchical clustering by starting with n clusters and

merging until a stopping criterion is met. The following is a step-by-step description

of how the agglomerative algorithm performs clustering [41].

1. Initialization: Each data point is assigned to a cluster

2. Calculate Distance Matrix: The pairwise distance between each cluster is com-

puted in this step. Distance between cluster can be calculated in many different

ways in the context of this research ward linkage was used exclusively. This algo-

rithm aims to calculate the distance between two clusters as the sum of squared

differences in the clusters variance after the two clusters are combined. See

equation 3.5 which computes the ward linkage distance between two clusters A

26

and B. In this equation |A| |B| are the number of points that have been put in

clusters A and B, x̄A and x̄B is the cluster points means, and ||x̄A− x̄B||2 is the

euclidean distance between the means. Euclidean distance can be swapped for

another distance metric however for the purposes of this reserach only euclidean

distance was used.

3. Find Nearest Neighbouring Clusters: Use the distance matrix to determine

which two clusters are closest together

4. Merge Nearest Neighbouring Clusters: Merge the nearest neighbouring clusters

according to one cluster

5. Update: Re-calculate the distance matrix now that a new cluster has been

created from two

6. Repeat: Iterate on the the last three steps until the user defined stopping

criterion is met, which could be a fixed number of data points per cluster,

number of clusters, and a maximum distance threshold.

dAB =

√

√

√

√

|A||B|

|A| + |B|
· ||x̄A − x̄B||2 (3.5)

The agglomerative clustering algorithm can be produce a visualization that rep-

resents the hierarchy of clusters, called a dendrogram, and this representation can

allow the user to cut the model at different heights limiting the number of clusters.

This algorithm is more computationally expensive than the K-Means algorithm

but can yeild insight on unique nested structures within data [10].

3.3.3 Isolation Forest

The Isolation Forest algorithm prioritizes outlier/anomaly detection by isolating anoma-

lous data points from normal ones [22]. The algorithm accomplishes this task of

identifying anomalies by generating binary trees from the input feature space and

partitioning those trees recursively, until each data point is isolated in a partition

leaf node of the tree. The following is a step-by-step description of how the isolation

forest algorithm works.

27

1. Pre-selection of Data Point: On every recursive iteration of this algorithm a

random subset of data points is selected from the dataset

2. Construct Isolation Tree (iTree): From that randomly selected subset of the

data points construct a binary tree that partitions itself by randomly splitting

the feature space along different directions. The feature that will be split is

randomly selected and is split by selecting a random threshold value between

the minimum and maximum range of that feature. The tree is constructed by

adding data points to the left or right of the tree based on the splitting criterion.

Perform this splitting until each data point is isolated on a partitioned leaf node,

or a user-specific maximum tree depth has been reached.

3. Repeat: The first two steps are repeated until a desired number of trees is

reached and hopefully the model has converged. Convergence usually occurs

within 100 iTrees [22].

4. Anomaly Score: After construction of the forest the anomaly score of each data

point can be calculated. This is an aggregated value determined by the average

path length to reach the data point in each iTree in the forest. It follows that

anomalous data would be much more easily isolated from the rest, therefore

they would not have to travel as deep into each iTree in order to find isolation.

5. Contamination: A user defined threshold between (0,0.5] helps to determine

whether an anomaly score is indicative of the data point being an outlier/anomaly.

This value is called contamination and indicates the percentage of anomalies as-

sumed to be present in the dataset.

The isolation forest algorithm benefits from being able to identify outliers without

significant computational costs in high dimensional data [22]. The process of com-

puting each iTree is the most costly step but the identification of anomalous data by

how easily it is isolated from the rest of the data holds true, and provides a unique

approach to anomaly detection.

28

3.3.4 Self-Organizing Maps

The Self Organizing Map (SOM) is an artificial neural network based unsupervised

learning algorithm [18][19]. SOM produces a lower-dimensional representation of high

dimensional data which preserves the pairwise distance relationship of the original

data. The goal of SOM learning algorithm is to cause different parts of the neural

network to respond similarly to certain input pattern mappings. During mapping,

there is a single winning neuron whose weight vector lies closest to the input vector,

e.g. Euclidian distance.

That is to say the topology of the original dataset is maintained during dimen-

sionality reduction and in addition eventually more deep insight into the relationship

between similar data points is annealed through this approach. This is accomplished

by first defining a single layer neural network grid of size A × B = C where each

neuron in this grid has a randomized weight vector. The grid is structured such that

each neuron has a neighboring set of neurons described by the connectivity pattern

parameter defined on instantiation. It can be assumed for this research that the con-

nectivity pattern is ‘hexagonal’, so every neuron has at most six neighboring neurons.

For each data point in the dataset on which this neural grid is trained a winning

neuron is selected, this is the neuron by which the neuron weight vector and data

point have minimal distance, in the case of this research the distance metric used

is Gaussian [18]. For a winning neuron the weights, the weights within its neigh-

borhood according to the neighborhood function. Neighboring neurons are selected

first at its largest neighborhood dimension. For example, all topologically connected

neurons within two hops can be updated, that is to say 19 neurons are updated (sum

of neighbors within 2 hops: 12, 1 hop:6, 0 hops:1). As time t increases the dimen-

sion of topologically neighboring neurons decays to one hop away from the winning

neuron. Eventually the neighborhood is reduced to only the winning neuron being

updated. The value update is determined by the learning rate which is influenced

by the epoch parameter and decays over time. This process iterates until the desired

number of epochs is reached and with the correct number of iterations convergence is

reached.[18] With this iterative training process for the SOM eventually the network

organizes the network to represent the original datas topology and eventually given

enough time to anneal the neighborhood size, neurons will respond to increasingly

29

specific characteristics of the data. This algorithm has seen success in a variety of

areas, most significantly in the case of this study’s NLP approach to log analysis is

the success of SOM in text mining [19].

3.3.5 Hierarchical Self-Organizing Maps

As for a hierarchical SOM (HSOM), it is a multi-layered representation of the pre-

viously described SOM implementation. This is an adaptation in which a single

layer SOM is analyzed post-training to steadily build more abstract features as the

number of SOM layers increase [17] [9] [33]. That is to say, the hypothesis is that

features learned at the initial layers of a hierarchy may still be interpreted in terms of

recognizable basic measured properties, whereas features at the highest level in the

architecture will capture aspects synonymous with normal or attack behaviors. The

general method of building a hierarchical SOM is described below:

1. Train First Layer SOM: Train the first layer and label the neurons, while gath-

ering metrics on the distribution of ANOMALY:NORMAL hits each neuron

receives.

2. Select Mixed Neurons: Using the metrics gathered while labeling the neuron

map, for each neuron identify which ones are mixed neurons and should be

opened into the second layer based on a selection criteria composed of a hit

count, and ratio of ANOMALY:NORMAL. For the purposes of this research

the criterion was to have at minimum 5 hits, and maximum 80% of one class.

3. Split Training Set: Split the training set based on whether it hits a mixed

neuron and map it to the neuron index, to create individual training sets for

each second layer map.

4. Train Second Layer: Using each individual training set begin training and la-

beling each of the second layer SOMs.

This approach requires some labeled data in order to make the selection of mixed

neurons and as such strays from the unsupervised focus of this research. However,

labeled data is only important in training, for testing the list of mixed neurons identi-

fied during training is referenced when a validation data point hits a neuron in order

30

to identify if it should then go through to the second layer SOM trained for that

mixed neuron to identify its predicted label.

3.4 Analysis and Visualization

In this research, two visualization algorithms are utilized, SOM Hit maps and t-SNE,

to discover the clusters or distributions of the data using different representations of

the syntactic and semantic feature sets. The t-SNE algorithm is a non-linear dimen-

sionality reduction technique which attempts to preserve small pairwise distances [37].

Whereas SOM visualization is built-in with the SOM learning algorithm. A feature of

the the SOM algorithm employed in this study is the ability to generate the neuron

map it produces, which can then be used to visualize high dimensional data on a

two-dimensional plane [18]. The SOM maps can also use hit frequency counts for the

neurons in order to produce hit maps, which provide information about the topology

of the map. The t-SNE and SOM visualizations using hit maps are shown in Figure

4.9.

3.4.1 t-SNE: t-Distributed Stochastic Neighbourhood Embedding

The t-Distributed Stochastic Neighborhood Embedding algorithm is a non-linear

dimensionality reduction algorithm typically used for visualization, feature extrac-

tion and clustering [36]. The algorithm is particularly useful in visualizing high-

dimensional data in low dimensionality representations while preserving the distances

between widely separated points. This preserves the underlying structure of the data.

The following is a summarization of the different steps in the t-SNE algorithm.

1. Compute Pairwise Similarity: Compute the pairwise similarity measure between

every data point in the input dataset. This is typically accomplished by per-

forming using Gaussian kernel on the euclidean distances of each pair of data

points

2. Initialize Low-Dimensional Space: Initialize a low-dimensional space with ran-

domized value for each data point.

31

3. Compute Pairwise Similarity of Low-Dimensional Space: Using the same pair-

wise similarity algorithm compute the pairwise similarity of the low-dimensional

representation.

4. Compute similarity mismatch: Using the pairwise similarity matrix of the

low-dimensional and high-dimensional spaces compute the differences using

Kullback-Liebler divergence. Kullback-Liebler divergence measures the differ-

ences between probability distributions.

5. Optimize Low-Dimensional Space: Adjust the position of the low-dimensional

space to minimize KL divergence using gradient descent.

6. Repeat: Perform the last three steps until KL convergence is at a minimum.

The goal of this optimization is to find a low-dimensional space which preserves

the pairwise similarities of the orginal dataset as much as possible.

t-SNE aims to preserve the pairwise similarities of the original dataset by map-

ping a low-dimensional space to the high-dimensional representation of the data [36].

This process of iterating to find an optimal low-dimensional space is computation-

ally intensive, particularly for large highly dimensional datasets. The algorithm does

produce visualizations can reveal unique underlying structures in the dataset.

3.5 Summary

In this chapter, the overall methodology of the thesis is presented including the

datasets, feature extraction techniques, and unsupervised machine learning algo-

rithms used. Also further discussion is provided on the different language models

used in this thesis, their respective architectures as well as the fine-tuning approach

including the training corpus used. There are four datasets used in this research,

namely ISOT, PKDD, AA, and CSIC, to evaluate the various apporaches intro-

duced. It should also be noted here that there is an additional dataset, Harvard

dataset, which is only used for the fine-tuning of the chosen language model. Collec-

tively, these datasets represent a unique selection of application logs relating to cloud

and web systems. Moreover, the unsupervised learning algorithms used are K-Means,

Isolation Forest, Agglomerative Hierarchical Clustering, Self-Organizing Maps, and

32

Hierarchical Self-Organizing Maps. The feature extraction techniques include syntac-

tic and semantic approaches. The syntactic approach utilizes seven syntactic features

extracted from each log line, namely minimum, maximum, and average TF-IDF scores

over the terms of the log files. The semantic approach utilizes large language mod-

els to extract meaningful sentence embedding representations from the final layer of

the neural network. There are five language models employed in this thesis, namely

Bert, RoBERTa, DistillToBERTa, GPT2 and GPT-NEO. In short, this research ex-

plores how well semantic and syntactic feature extraction techniques work and differ

from each other in terms of representing application log files from the lens of security

analysis and anomaly detection. Thus, a comprehensive benchmarking approach is

employed to evaluate each feature extraction approach using five unsupervised learn-

ing algorithms over four publicly available application log files. Moreover, for the

semantic approach, five different language models are evaluated with and without

fine-tuning in order to understand the strengths and limitations of the semantic fea-

ture extraction approach on application logs. Finally, the impact of the log structure

is also analyzed from the lens of the semantic feature extraction approach.

Chapter 4

Evaluations and Results

4.1 Metrics

The performance metrics used in this research are F1-score, Precision and Recall.

Given all the datasets employed have labels already provided by the datasets authors,

the following metrics could be used post training and post testing for measuring the

performance for each evaluation done in this thesis. Thus, these metrics could be

calculated using the resulting confusion matrixes of the training and test evaluations

for each technique used in the thesis.

The F1-score is a traditional method for measuring the model accuracy on a

particular dataset, it is computed using Precision and Recall. Precision gives an

indication of the percentage of true positives (inclass) which are relevant while Recall

gives an indication of the percentage of true positives out of all the true positives

available in the data. The formulae for Precision, Recall and F1-score are given in

the following equations 4.1, 4.2 and 4.3 [25].

P =
TP

TP + FP
(4.1)

R =
TP

TP + FN
(4.2)

F1 =
2PR

P + R
(4.3)

Macro F1-Score is used to calculate the unweighted mean of all per-class F1-

scores, calculated by summing the F1-score for each class label over the total number

of classes n. This is calculated with the following formulae in Eq. 4.4.

F1macro =

∑

F1class

n
(4.4)

33

34

Weighted F1-Score is used to calculate the per class weighted mean of all F1-

scores, that is to say the average F1-score where per class proportion, S of the dataset

is considered. This is calculated with the following formulae in Eq. 4.5.

F1weighted =
∑ F1class

Sclass

(4.5)

Micro F1-Score is used to calculate the total average F1-score by first calculat-

ing the total true positives, false negatives and false positives across all classes and

computing the F1-score using the following formulae in Eq. 4.6.

F1micro =
∑ 2PcumulativeRcumulative

Pcumulative + Rcumulative

(4.6)

In the remaining of the thesis, the decision of “best” performing algorithm is based

on the Weighted F1-scores obtained during evaluations.

4.2 Evaluation Structure

4.2.1 Syntactic vs Semantic Approach Evaluation

For the purposes of exploring the anomaly detection with either the syntactic ap-

proach or the semantic approach to log data feature extraction, a benchmark using

different unsupervised machine learning techniques was performed. This study pro-

vided a comparison of the semantic and syntactic feature representation of the four

different datasets, ISOT, PKDD, CSIC and AA, after using five different unsuper-

vised machine learning algorithms for anomaly detection. The unsupervised machine

learning techniques were trained and fit using a 75% training set split of the original

datasets, and then subsequently tested using the remaining portion, 25%, of each

dataset.

The classification results for the models was calculated in the case of the K-

Means, and Agglomerative algorithms by labeling the clusters using majority vote,

the clusters identified by the model were labeled exclusively based off of the class

with the prevailing amount of representation in it during training.

In the case of Isolation forest a classification report was generated by identify-

ing if ANOMALY labeled data was classified as abnormal, and much the same for

NORMAL data.

35

For SOM algorithms classification metrics were calculated by labeling each neuron

based on the labels of the data which hit the neuron during training, a majority vote

algorithms is used here as well to identify the winning label for a given neuron. Much

like a single layer SOM the HSOM used a majority vote for labeling neurons in the

second layer. In both SOM implementations an attempt was made to mitigate the

number of empty labeled neurons, once the map had been labeled using majority

vote, an algorithm would label empty neurons based on the nearest neighbors label.

In order to effectively compare the different feature extraction techniques the

time required to extract the information and build each model was also collected.

Feature extraction time and inference time are important factors in log analysis since

the veracity, velocity and volume of the data is quite high, so being able to rapidly

identify abnormal events in logs is important.

4.2.2 Large Language Model Log (LLM) Evaluation

Exploration of the semantic feature extraction technique in the first portion of this

study and the wide variety of language models that are publicly available led to an

interest in ascertaining which language models were more appropriate for the unique

task of log analysis and anomaly detection. Thus another study was performed in

which five large language models were evaluated in their ability to extract meaningful

data in the sentence embedding representations of log lines pulled from three of the

datasets, AA, PKDD, CSIC. In this study only the K-Means unsupervised machine

learning algorithms was used to perform the anomaly detection component. The

experiment structure was as follows:

1. Extract sentence embeddings from different language models, BERT, RoBERTa,

DistilRoBERTa, GPT-2, GPT-NEO. Record the time taken to extract features.

2. Split the sentence embedding representation into 75% training and 25% test.

3. Train K-Means clustering algorithm using the training set split. Record the

time taken to generate the K-Means model.

4. Label K-Means clusters using majority vote.

5. Evaluate model performance with testing set.

36

Figure 4.1: LLM Baseline Experiment Methodology

Figure 4.2: LLM Fine-Tune Experiment Methodology

37

Performing these steps on each dataset across the five different models produced

a baseline for which models without any further adaptation can perform the task of

log analysis. Though this leads into the next important question which is how can

the language models be adapted to better perform log analysis.

4.2.3 LLM Baseline vs Fine-tuned Evaluation

Establishing a baseline for these language models provides an opportunity to explore

the benefits of fine–tuning of language models specifically for log analysis. Fine-

tuning of language models is often referred to as domain adaptation and describes

the method of adapting the large language models using different model dependant

techniques, most commonly masked language modelling. In masked language model-

ing the language model is fed a masked corpus of text where the model is tuned to

make better predictions of the masked keywords. This process can often provide a

1-3% boost in domain specific tasks [8]. For the purposes of this study the harvard

Apache access dataset [39] had 100,000 random logs sampled from it and used as

the fine-tuning dataset for all five of the different language models outlined previ-

ously. The same experiment setup as in the previous section was then repeated using

the now fine-tuned language models in order to identify which models provided the

largest fine-tuning benefits. The same data points were collected so as to provide a

comparison between baseline language models and their fine-tuned counterparts.

4.2.4 Evaluation on the Effect of the Log Structure

The structures of the different log datasets vary significantly, AA has a more typical

Apache web server log line structure while PKDD and CSIC have 53 and 15 features

respectively, which could be taken from network and application logs, and follow a

key value pairing structure for each log line. Thus PKDD and CSIC produce more

verbose and mixed single line log lines when fed into the language models, cursory

exploration of the baseline and fine-tuned language models identified AA as the best

performing dataset and so a new question was raised. How does the structure of

the log line impact the effectiveness of semantic feature extraction? In order to

explore this question the PKDD and CSIC dataset were converted into Apache like

log lines following the typical structure of default Apache webserver logs. These two

38

Table 4.1: HyperParameter Setting
Algorithm PKDD ISOT AA CSIC
HSOM Top Grid = 40*40, Bottom Grid = 6*6, Epochs = 10000
SOM Grid = 40*40, Epochs = 10000
K-Means k=100 k=100 k=100 k=100
Agglomerative c=10 c=50 c=100 c=50
Isolation For-
est

i=0.3 i=0.3 i=0.15 i=0.3

Apache like representations of PKDD and CSIC would be known as apachePKDD

and apacheCSIC. They were both evaluated using the language model benchmarking

experiment methodology with both fine-tuned and baseline language models.

Figure 4.3: Construction of combined Apache access log for PKDD and CSIC datasets

The performance of each of these models is evaluated by labelling the clusters post-

training. This results in an unsupervised model which can be used for prediction on

the test datasets. As mentioned before, the training/testing split of 75% to 25% is

used. Since all three datasets are unbalanced datasets, weighted precision, recall and

F1-score are used for measuring the performance. The hyperparameters are tuned on

each model for each dataset. Table 4.1 shows the hyperparameters that are chosen.

4.3 HyperParameters for Learning Algorithms Used

The following section outlines the process of how the hyperparameters are tuned on

each model for each dataset. Table 4.1 shows the hyperparameters that are chosen.

4.3.1 K-Means Clustering

The best value of k in k-means was derived through generating k-means models with

increasing k number of clusters and comparing training classification performance

39

across the resulting models. An elbow study was performed for this model in par-

ticular in order to derive an optimal value of k across all datasets. The figures 4.4,

4.5, 4.7, and 4.6 show the results of this study. The power law curve was used to

approximate the change in F1-score as k increases consistently showing a plateau in

difference between 90 and 110 clusters acrosss the different datasets. Thus, k value

100 was selected for all experiments in which K-means was employed. The Table 4.1

reflects this choice.

4.3.2 Agglomerative Clustering

The best value of c in the agglomerative hierarchical clustering algorithm was derived

through evaluating the performance of agglomerative models with increasing values

of c. Weighted F1-score was used here again to identify the optimal value of c for

each feature set across all the datasets. Table 4.1 identifies these best performing

values of c.

4.3.3 Isolation Forest

The primary tunable parameter in this ensemble technique is the contamination ratio

which identifies the proportion of anomalies present in the dataset. In order to derive

this parameter the proportion of ANOMALY labeled data points is calculated. This

metric is derived for the feature set on model generation and the resulting contami-

nation settings can be seen in Table 4.1.

4.3.4 Self-Organizing Maps

SOMs have a variety of different parameters for tuning which can impact its overall

performance. Exploration of varying map/grid sizes with both the syntactic and

semantic feature sets across all the datasets identified the parameterization outlined

in Table 4.1 as consistently high performing.

4.3.5 Hierarchical Self-Organizing Maps

The hierarchical SOMs expand on the single layer models parameterization previ-

ously outlined with new second layer related parameters. These include second layer

40

map size, topology, neighborhood function and most importantly the mixed neuron

selection heuristic which is used to identify mixed neurons which are then candi-

dates for further exploration in the second layer. This heuristic evaluates the ratio of

ANOMALY:NORMAL data hitting that top level neuron and the total hit count of

that neuron. Hierarchical SOM parameterization is seen in Table 4.1.

44

Table 4.2: Model Training Time: Semantic VS Syntactic approaches (Seconds)

Model Training Time

AA ISOT CSIC PKDD

Unsupervised ML Syntactic Semantic Syntactic Semantic Syntactic Semantic Syntactic Semantic

Isolation Forest 19 58 37 80 44 73 30 73

Agglomerative 25 197 53 420 60 471 54 429

K-Means 3 35 4 60 5 84 5 102

SOM 346 1,300 458 1,847 480 2,068 531 1,906

HSOM 431 1,401 631 2,183 535 2,739 673 2,524

45

Table 4.3: Semantic VS Syntactic Model Performance Results: Weighted F1-Score

Testing Weighted F1 - Score

AA ISOT CSIC PKDD

Unsupervised ML Syntactic Semantic Syntactic Semantic Syntactic Semantic Syntactic Semantic

Isolation Forest 0.845 0.82 0.63 0.63 0.67 0.730 0.680 0.710

Agglomerative 0.75 0.775 0.600 0.630 0.435 0.58 0.585 0.565

K-Means 0.935 0.955 0.80 0.885 0.765 0.765 0.720 0.805

SOM 0.955 0.965 0.840 0.930 0.920 0.825 0.760 0.825

HSOM 0.970 0.970 0.840 0.940 0.965 0.830 0.715 0.810

48

Table 4.4: Semantic vs Syntactic Feature Extraction Times (Seconds)
Feature Extraction Time (Seconds)

Extraction Technique AA ISOT CSIC PKDD
Semantic 44 60 138 217
Syntactic 5 4 11 27

4.4 Semantic vs Syntactic Experiments

The following section outlines the results and discussion/analysis of the semantic vs

syntactic experiments.

4.4.1 Results

Figure 4.8 shows the weighted F1-score classification results for the unsupervised

machine learning techniques employed in this work for both semantic and syntactic

feature sets of all four datasets. The results indicate that in AA, ISOT, and PKDD a

semantic feature extraction technique is more successful in disambiguating anomalous

events. All three datasets show that semantic feature extraction outperforms relative

to syntactic independently from the unsupervised machine learning model used. In

contrast, for the case of the CSIC dataset the syntactic method outperforms it’s

semantic counterpart when using the SOM and HSOM algorithms. The difference

of 13% between the CSIC syntactic and semantic when using HSOM and 10% in

SOM is notable since it represents the largest difference in performances between

the two feature extraction techniques across all results excluding the abnormally low

syntactic performance of agglomerative clustering for the very same dataset. Another

observation is the unique case of the PKDD dataset, where semantic feature extraction

sees a lead of 10% in HSOM, 6% in SOM, and 8% in K-Means over syntactic. The

ISOT results also reflect a similar favor for semantic feature extraction with 10%, 9%,

and 8% in HSOM, SOM, and K-Means respectively.

The performance of isolation forest and agglomerative clustering is low across the

board with unremarkable results relative to the K-Means model which according to

the literature, in particular Copstein et al. represents the current best performing

unsupervised algorithm for short syntactic feature extraction. Since the syntactic

49

feature set does not outperform K-Means on these models and presents no additional

benefits, such as visualization through the SOM hitmaps, they can be comfortably

overlooked as strong candidates for effective anomaly detection using these feature

extraction techniques. The semantic results for these models also pale in comparison

to the K-Means, HSOM, and SOM results.

Upon inspection of the t-SNE and SOM hit map visualizations for all of the

datasets seen in Figures 4.10 and 4.9, in both the semantic and syntactic forms, a

similar story unfolds. The semantic feature sets in t-SNE form see much more con-

sistent separation between anomalous and normal labeled data. This is particularly

the case for the ISOT dataset, where the semantic feature set represents presents

with clearly defined clusters of anomalous data in the t-SNE, and good separation

in the SOM hit map. Empty neurons in the SOM hit map for the semantic ISOT

featureset contribute to this separation, and outline defined islands of neurons with

high anomalous activity. The syntactic ISOT SOM and t-SNE visualizations by con-

trast see significant amounts of overlap and ambiguity. The string-like formations,

and tiny mixed clusters in the t-SNE plot point to low variance in the short syntactic

representation of the dataset. This is also seen in the SOM hit map representation

where a lot of highly mixed activity is occurring on the labeled neurons.

Inspection of the CSIC syntactic featuresets visualizations provides some insight

on the distribution of normal labeled data since both the t-SNE and SOM hit map

show significant overlap of normal data. The SOM hit maps in particular show that

while the dataset has a 70/30 normal/anomaly distribution the number of normal

labeled neurons does not match, indicating the syntactic representation of CSIC has a

low degree of variance. The t-SNE plot presents an interesting contrast to that of the

ISOT one, in that it shows the same string-like formations, unlike ISOT these forma-

tions have formed as clusters of similarly labeled data types. The disambiguation of

anomalous behavior seen in the visualizations of CSIC in its syntactic representation

reflect the results of the learning models, particularly in the case of the SOM and

HSOM.

The PKDD visualizations for both syntactic and semantic feature sets make it

immediately apparent that this dataset is noisy, and there is a challenge in effectively

50

separating normal and abnormal behavior. The t-SNE plot of the syntactic repre-

sentation of PKDD shows a haphazard mix of normal and anomalous data for the

majority of the plots, with few individual clusters of anomalous data. The semantic

model reflects this mixed bag of data, but with a unique cluster of entirely anomalous

data floating left. The SOM hit maps for syntactic and semantic also reflect this

very mixed activity. However, similarly to the t-SNE plot the semantic feature set

does have some grouping of anomalously labeled neurons in the top left. The mixed

behavior reflects the learning model results and is likely due to the loss of information

in anonymization.

The Apache Access visualizations compliment the learning model performance

results in that clusters can be clearly identified. The t-SNE visualizations for both

syntactic and semantic feature sets of AA have distinguishable clusters. Addition-

ally, the SOM hit maps indicate disambiguation of anomalous behavior with obvious

isolated groups of neurons with strong anomalous activity. Not unsurprising given

the AA dataset is the consistently best performing dataset in this research with both

syntactic and semantic learning models performing above 0.90 F1-score.

4.4.2 Case Study: ISOT Log file

In the context of the ISOT dataset it becomes immediately clear through the perfor-

mance results given in Figure 4.8 and dataset characteristics in Table 3.6 that log type

influences the success of these NLP inspired techniques. The ISOT dataset being the

output of TCPdump executed on cloud infrastructure provides highly structured log

data. Some examples of ISOT logs can be seen in Figure 4.11. Thus this structure

does not provide unique Syntactic features that are differentiable. The information

columns in the log line responsible for limited separation in the syntactic approach

are highlighted in green and yellow in Figure 4.11, green indicating that that data is

either completely ubiquitous or has very little variation and yellow indicating data

which contributes very little because they are trivially unique to that log line, from

a syntactic standpoint. The Semantic approach on the other hand is able to extract

more meaningful information from these records. In this case, the language model

DistilRoBERTa provides a feature set of 768 embeddings. The difference between

the semantic and syntactic features in terms of its variation is shown visualizations

51

in Figure 4.9 and 4.10. The logs presents information on the different ports and IPs

as well as packet size and flag information. These log representations provide limited

meaningful syntactic information because the information is either highly specific and

therefore entirely unique to that log (ie. packetSize, sequenceNumber, ackNumber) or

almost entirely ubiquitous throughout the whole dataset (ie. flags, fragmented, pro-

tocol). Therefore of the 10 data points per log line, three of them will likely occupy

the Minimum-TF-IDF feature, three of them will likely occupy the Maximum-TF-

IDF feature, and the remaining four data points may influence the average TF-IDF

feature but not as significantly as the former six. The remaining general syntactic

features of the log line (AlphaNumericRatio, AverageCharacter, CharacterCount and

WordCount) also provide minimal unique log line information because the number of

words, characters and alphanumeric ratio are fairly consistent due to the simple rigid

structure of TCPdump information. This essentially means that the process of iden-

tifying anomalous events in this form of log data for the proposed syntactic approach

hinges on the two features; average TF-IDF and average character, even in these fea-

tures the variation is highly limited, again due to the simple log line representation.

This limitation of the syntactic approach is clearly visualized in its T-SNE visual-

ization and SOM hit map in figures 4.10 and 4.9. The extracted feature data sees a

significant amount of overlap thus creating the almost ‘string-like’ representation in

those visualizations. The semantic approach on the other hand is able to evaluate the

entire context of the log line enabling it to more effectively derive information from

the different components. DistilRoBERTa, as a BERT-style model provides a much

more complex featureset (768 embeddings) which is then able to take full advantage

of the entire log line, thus enabling the semantic approach to outperform syntactic

features. The difference between the semantic and syntactic features in terms of its

variation is clearly seen in the contrast between the T-SNE and SOM visualizations

in figures 4.10 and 4.9.

4.4.3 Discussion

In summary thus far this study has explored the utilization of four different unsuper-

vised machine learning techniques, using two NLP inspired feature extraction tech-

niques on four distinctly different datasets, where each represents a different type of

53

different algorithms. The feature extraction times can be seen in Table 4.4, and model

training times can be seen in Table 4.2. The semantic feature extraction technique re-

quires significantly more time to gather the sentence embedding representation from

the large language model than it takes to compute syntactic characteristics. The

sentence embedding representation is also many times larger at 768 dimensions than

that of the short syntactic representations with only 7 dimensions. This larger feature

set size means model creation time is exponentially longer, as seen in Table 4.2. The

semantic feature set may outperform the syntactic feature sets in three out of the four

dataset but it’s sometimes marginally higher performance comes at a much higher

cost. Alternately, the syntactic feature extraction techniques relies on having already

collected a dataset in order to compute the TF-IDF values for tokens, whereas the

semantic feature extraction using a pre-trained large language model can perform a

cold start with no data required to begin successfully extracting the sentence em-

bedding representation of the log line. Evaluation of both the computational costs,

and performances indicate that K-Means remains a strong performer with a very low

cost, not outperforming the SOM and HSOM methods in terms of performance met-

rics but certainly cost to performance ratio. The SOM and HSOM algorithms on the

other hand provide an innate advantage of also producing much need visualization

and interpretability to the log data in the form of SOM hit maps.

The selection of a better performer between the two feature extraction techniques

is another debate entirely. The semantic feature extraction technique outperforms

the syntactic in three out of four of the datasets but does so at a relatively high

computational cost, with sometimes unconvincing marginal improvement on syntac-

tic performance, particularly in the case of the AA dataset. Since semantic feature

extraction requires usage of large language models to extract embedding representa-

tions an opportunity presents itself for continued exploration of how to best adapt

these models for the use of log analysis and anomaly detection. Domain adaptation

of the underlying language model may yield more significant improvement over that

of the syntactic extraction technique. Additionally the unique observation about the

structure of datasets being important to the success of syntactic and semantic fea-

ture extraction techniques brings into scope some new avenues for exploration. The

semantic feature extraction technique and by extensions the language model which

54

Table 4.5: LLM Feature Extraction Times
Feature Extraction Time (Seconds)

Language Model AA CSIC PKDD
Bert-base-cased 83 266 387
RoBERTa 73 239 385
DistilRoBERTa-base 44 138 217
GPT-2 79 263 657
GPT-NEO 727 2,581 5,960
apacheBERT 82 267 384
apacheRoBERTa 91 237 382
apacheDistilRoBERta 45 138 213
apacheGPT-2 80 265 656
apacheGPT-NEO 807 2,643 6,018

underlies it clearly benefits from a more consistent input sequence structure in the case

of the ISOT dataset, would this also be the case for the hybrid network/application

log sets of PKDD and CSIC? Further analysis follows in the sections below.

4.5 LLM Experiments

In order to explore language model domain adaptation for the purposes of log analysis,

this study has evaluated five different transformer architecture language models on

three of the datasets, specifically the three application log datasets, AA, CSIC, and

PKDD. The five language models are BERT, RoBERTa, DistilRoBERTa, GPT-2, and

GPT-NEO. The literature for benchmarking multiple language models in semantic

analysis of security logs for the purposes of anomaly detection is underdeveloped,

thus initially it was important to establish a baseline for each model. This meant

extracting the model-specific sentence embedding representation of each dataset, and

then training a k-means model for anomaly detection on each of these representations.

The results of this set of experiments can be seen in Figure 4.7, and the computational

cost for extracting the sentence embedding can be seen in Table 4.5.

4.5.1 Results

All five language models produce a unique sentence embedding representation of

the logsets, and therefore produce differing results in the performance of the learning

algorithm. For the case of the AA dataset, which was consistently the best performing

55

Table 4.6: LLM Fine-Tuning times
LLM Fine-tuning Computation Cost (Seconds)
Bert-base-cased 8,739
RoBERTa 7,099
DistilRoBERTa-base 7,073
GPT-2 6,944
GPT-NEO 41,531

dataset in the previous set of experiments, BERT, RoBERTa, and DistilRoBERTa

which are all BERT-style models see good results, all above 0.95 in weighted F1-

score, and relatively low computational cost. The DistilRoBERTa model sees the

fastest feature extraction time with 44 seconds, likely owing to its smaller model size

being a distilled language model. GPT-2, and GPT-NEO perform the worst in F1-

score in this dataset, with below 0.95, and the GPT-NEO feature extraction time

peaks at 727 seconds, see Table 4.5. The slow feature extraction time of the GPT-

NEO model is due to its much larger model size, with 1.3 Billion parameters, see

Table 3.7. This GPT-NEO model also produces a larger sentence embedding vector

with 2048 features as opposed to the rest of the models which generate 768 features.

This larger vector space leads to a more expensive model creation time, see Table 4.5.

57

Table 4.7: LLM Experiment Results: Weighted F1-Score

Testing Weighted F1-Score

Language Model AA CSIC PKDD

Bert-base-cased 0.955 0.775 0.785

RoBERTa 0.960 0.775 0.8150

DistilRoBERTa-base 0.955 0.7650 0.805

GPT-2 0.935 0.700 0.725

GPT-NEO 0.945 0.780 0.775

apacheBERT 0.945 0.765 0.785

apacheRoBERTa 0.955 0.775 0.815

apacheDistilRoBERta 0.960 0.770 0.800

apacheGPT-2 0.880 0.715 0.705

apacheGPT-NEO 0.940 0.790 0.775

58

Table 4.8: Language model performance on AA dataset
Model Weighted F1 Fine-Tuned Weighted F1 % Change
Bert-base-cased 0.955 0.945 -1.0%
RoBERTa 0.960 0.955 -0.5%
DistilRoBERTa-base 0.955 0.960 +0.5%
GPT-2 0.935 0.880 -5.5%
GPT-NEO 0.945 0.940 -0.5%

Table 4.9: Language model performance on CSIC dataset
Model Weighted F1 Fine-Tuned Weighted F1 % Change
Bert-base-cased 0.775 0.765 -1.0%
RoBERTa 0.775 0.775 0.0%
DistilRoBERTa-base 0.765 0.770 +0.5%
GPT-2 0.700 0.715 +1.5%
GPT-NEO 0.780 0.790 +1.0%

Table 4.10: Language model performance on PKDD dataset
Model Weighted F1 Fine-Tuned Weighted F1 % Change
Bert-base-cased 0.785 0.785 0.0%
RoBERTa 0.815 0.815 0.0%
DistilRoBERTa-base 0.805 0.800 -0.5%
GPT-2 0.725 0.705 -2.0%
GPT-NEO 0.775 0.775 0.0%

59

Alternatively, the CSIC dataset also seen in Figure 4.12 sees the BERT-style mod-

els once again perform well in disambiguating anomalous behavior with the learning

model results all 0.77. DistilRoBERTa has the fastest feature extraction time again

here with 138 seconds, almost half of the computation cost of the other two BERT-

style models, and GPT-2. GPT-2 is the worst performer in this dataset with 0.7

weighted F1-score. GPT-NEO on the other hand has the best performance on this

dataset, marginally beating out BERT, and RoBERTa, at the cost of a significantly

higher feature extraction time of 2,581 seconds, almost 20 times the computation

cost of the DistilRoBERTa model. Model size is clearly a huge factor in sentence

embedding extraction.

The PKDD dataset sees the RoBERta, and DistilRoBERTa model outperform

BERT, and GPT-NEO, with F1-scores that push over 0.8. DistilRoBERta still has

the fastest feature extraction time with 217 seconds. GPT-2 once again underper-

forms with a 0.725 F1-score. GPT-NEO performs worse than the BERT-style models

with 0.775 F1-score, and the feature extraction time is an astounding 5,690 seconds,

DistilRoBERTa performs better and accomplishes feature extraction in 4̃% of the

time.

After establishing the baseline for these models for each dataset, they are each

fine-tuned using 100,000 sample log lines from the Harvard Dataverse Apache logset.

The fine-tuning time can be seen in Table 4.6. The GPT-NEO model takes 41,531

seconds to perform fine-tuning with only 5 epochs. The same set of experiments

is then repeated using these newly fine-tuned models, in order to determine which

models are able to adapt best to the task of performing log analysis on application

logs.

The performance on the AA dataset with fine-tuned models sees only the Dis-

tilRoBERTa model outperform it’s baseline performance, and only by 0.5%. More

interestingly the fine-tuned GPT-2 model gets 5̃.5% worse in performance. Other

models like BERT, RoBERTa, and GPT-NEO suffer a performance drop as well but

only 1-0.5%. The initial observation here is that fine-tuning does not always yield

better task-specific performance, particularly in the case of log analysis.

For the CSIC dataset, the fine-tuned models outperform their baseline models in

all but two models, BERT and RoBERTa see a 1-0.5% drop. Remarkably GPT-2 sees

60

the largest jump in performance with a 1.5% increase. DistilRoBERTa still maintains

a 0.5% improvement in performance.

Finally, for the PKDD dataset, none of the fine-tuned models outperform their

baseline model performance significantly, marginal improvements or losses are gained

with less than 0.5% drop or gains in performance.

4.5.2 Discussion

The baseline results indicate that the BERT-style encoder transformer models out-

perform the autoregressive decoder transformer GPT models in semantic analysis of

these application security logs. While GPT-NEO does perform on par or slightly

better in some instances, its feature extraction time is significantly longer. The Dis-

tilRoBERTa model performs at near and around the top of the five language models

on all three datasets, has half the feature extraction time, and it’s fine-tuned model

is better for both AA, and CSIC. The smaller model architecture lends itself well to

more efficient feature extraction. GPT-2 by contrast underperforms consistently, and

the fine-tuning of that model causes more unpredictability, as it drops 5̃% in perfor-

mance for AA and improves by 1.5% in CSIC for its fine-tuned variation. The poor

performance of GPT-2, and underwhelming performance of GPT-NEO may be in part

due to the unidirectional component of the model architecture. BERT-style models

seem to lend themselves well to the task of semantic analysis of logs for anomaly

detection.

The language model experiments yield more questions than answers, domain adap-

tation through fine-tuning with another publicly available application logset does not

seem to consistently provide an improvement in these models for these datasets.

The dataset used for fine-tuning is an Apache-style log, and maintains a consistent

structure to that of a default configuration Apache access log, perhaps if the CSIC,

and PKDD datasets were structured more similarly to that of the Apache log they

would see a better performance. This reflects the second question asked at the end

of the syntactic vs semantic experiments. This moves into the next area of study in

this research. Explore how re-structuring the datasets improve the language mod-

els ability to extract meaningful sentence embeddings and subsequently improve the

performance of the anomaly detection.

61

4.6 Log Structure Experiments

After re-structuring the CSIC, and PKDD datasets to reflect a more Apache style

log structure the experiment methodology performed for the LLM benchmarking was

performed again. The goal of which was to evaluate the impact of log structure on

the semantic feature extraction technique. apacheCSIC, and apachePKDD became

the pre-processed Apache-style versions of CSIC, and PKDD, and were as close to

the Apache structure of logs as could be reasonably accomplished with the features

provided by those datasets. The Figure A.1, and Table 4.11 shows the impact of

re-structuring of the datasets on language model semantic feature extraction.

63

4.6.1 Results

In the case of the PKDD dataset, excluding the unique fine-tuned GPT-2 result, all

learning model performance in anomaly detection was improved by 3.5-7.5%. All three

BERT-style models performed at 0.85 for their baselines, their fine-tuned improved on

this by 1-1.5%. The expected fine-tuning benefits were finally coming to light, in the

case of the BERT-style language models, GPT-2 on the other hand lost performance

yet again in the fine-tuning, but alongside GPT-NEO received a 5-7.5% boost in

baseline performance with the restructuring. In the case of this anonymized dataset

the language models were much better able to extract sentence embeddings that

enabled disambiguation of anomalous events.

In the case of the CSIC dataset, all language model performance was increased

by 1-6% with re-structuring of the logset. Baseline still outperformed on this dataset

more than that of the fine-tuned models but clearly log structure was playing a

larger role in the semantic feature extraction using these language models then was

previously anticipated.

4.6.2 Discussion

After adapting the PKDD, and CSIC datasets to fit an Apache-style of log more

similar to the fine-tuning log, and AA, an improvement is seen in the language models

ability to extract meaningful sentence embeddings for anomaly detection. The up to

7.5% improvement seen in the PKDD dataset, and 6% in CSIC was unprecedented

and indicates that there may be a way to continue improving the results if an optimal

structure of log line can be ascertained. This improvement due to restructuring and

removal of some features goes against the typical method of log analysis in which it

can be assumed that the more features, and data you have the better the entropy

is for identifying anomalous behavior. In the case of log analysis using semantic

feature extraction, being able to make the log line tell a consistent story without as

much noise in the form of some ubiquitous features provides improvement in anomaly

detection.

64

Table 4.11: Re-structured Log Lines Experiment Results: Weighted F1-Score

Weighted F1-Score

PKDD apachePKDD % Change CSIC apacheCSIC % Change

bert-base-cased 0.785 0.850 +6.5% 0.775 0.795 +2%

RoBERTa 0.815 0.850 +3.5% 0.775 0.785 +1%

DistilRoBERTa-base 0.805 0.85 +4.5% 0.765 0.785 +2%

GPT-2 0.725 0.80 +7.5% 0.700 0.760 +6%

GPT-NEO 0.775 0.845 +7.0% 0.780 0.785 +0.5%

apacheBERT 0.785 0.850 +6.5% 0.765 0.790 +2.5%

apacheRoBERTa 0.815 0.865 +5% 0.775 0.795 +2%

apacheDistilRoBERTa 0.800 0.860 +6% 0.770 0.785 +1.5%

apacheGPT-2 0.705 0.65 -5% 0.715 0.755 +4%

apacheGPT-NEO 0.785 0.845 +6.0% 0.790 0.790 0.0%

65

4.7 Limitations

As previously outlined the semantic feature extraction is accomplished by utilizing

the sentence embedding output produced by performing mean pooling on the output

(final) layer of LLM. This presents a fixed length sentence embedding representation

for any input sequence, in this case a log line. This sentence embedding representation

is effectively the deep learning models interpretation of the input sequence and it

represents it as a high dimensional vector representation. This vector representation

is 768 float values between −1 and 1. This highly dense vector representation does

not provide significant opportunity for human-interpretability. While there exists

methods of improving interpretability like LIME, or SHAP [20], [34], they require

that a supervised classifier be trained for sentiment analysis as a down stream task in

the language model. Since this research focused on unsupervised methods of anomaly

detection, and adaptation of the methodology for unsupervised algorithms would take

significant time this method was not feasible to implement within the scope of this

research. Thus, for the semantic feature extraction research, an emphasis was placed

on interpretation of the t-SNE, and SOM visualizations as well as the performance of

the unsupervised machine learning models trained on the featuresets. These methods

provide adequate information on the language models abilities to extract meaningful

sentence embedding representation for disambiguation of anomalous behavior in the

security datasets.

4.8 Summary

In summary, this chapter provides an overview of the experiments performed in this

study, the parameterization, results, and discussion thereof. The first set of exper-

iments which explored the comparison of syntactic and semantic feature extraction

techniques using the four datasets, and four different unsupervised machine learn-

ing approaches, identified that the semantic approach outperformed syntactic con-

sistently, apart from in the case of the CSIC dataset where K-Means, and syntactic

feature extraction saw better disambiguation of anomalous events. Semantic outper-

formed syntactic, albeit at a higher cost to feature extraction time, and model creation

66

times. The unsupervised machine learning algorithms saw SOM, HSOM, and K-

Means perform the best consistently across both syntactic, and semantic techniques,

though K-Means came with significantly reduced computation cost, particularly in

comparison to HSOM. This set of experiment results led to two further questions,

which continued the exploration of semantic feature extraction using LLMs with the

following questions.

1. How do different LLMs impact the performance of semantic feature extraction-

based log analysis and anomaly detection? Does fine-tuning improve it further?

2. How does the structure of the log line impact the success of the semantic feature

extraction technique?

The second set of experiments explored the use of five different large language

models for semantic feature extraction on the three application log datasets using

K-Means for anomaly detection. This experiment also explored the impact of fine-

tuning by individually fine-tuning each language model with 100,000 Apache log lines,

and then evaluating the resulting language models semantic feature extraction. The

results of this set of experiments indicate that DistilRoBERTa has the most consistent

performance, and marginal improvement in fine-tuning, though all BERT-style models

perform well in this experiment. More notably the two GPT models underperform in

this benchmark, with remarkably high compuation cost for GPT-NEO with negligable

improvement in performance, while GPT-2 underperforms consistently and also sees

significant drop in performance after fine-tuning.

The third set of experiments explored the use of the same five different language

models and the five fine-tuned variants while also re-structuring the security log data

to match a Apache-style structure. This meant re-structuring PKDD, and CSIC

to fit into a default Apache log line matching the form of the finetuning log data.

This provided a 5-7.5% improvement in performance for the PKDD dataset, with

1-1.5% additional improvement in the fine-tuned models, and a 1-6% improvement

in performance for the CSIC dataset using the language models, tough performance

was still lost in the fine-tuned models. The boost provided by just re-structuring the

log lines indicates opportunity for improved pre-processing of log lines for optimal

67

semantic feature extraction, since clearly the structure of the log line is impacting the

success of semantic feature extraction method.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This research has explored the efficacy of semantic and syntactic feature extraction

techniques in combination with unsupervised machine learning algorithms across four

different application log sets, as well benchmarking five different large language mod-

els for semantic analysis and anomaly detection. The research has provided com-

pelling justification for NLP techniques to be adapted for use in log analysis. This is

clearly seen in the case of the AA dataset, in which the learning models perform well

on both the syntactic and semantic feature representations. By contrast the rigid

structure of simplistic logs seen in ISOT lend themselves well to semantic feature

extraction, and identify the limitations of the syntactic featuresets. Of the unsu-

pervised machine learning algorithms exploration of SOMs provides a unique way of

interpreting the featureset representations in the form of the hit map visualization.

The SOM and HSOM models also yield improved performances in anomaly detection

over K-Means, albeit at much higher computational cost. Alternately, agglomerative

and isolation forest models in this research provided lower performance to that of K-

Means. This exploration of syntactic and semantic feature representation of security

log data led to two further questions which aimed to improve the semantic feature

extraction methodology, since even though it outperformed the tf-idf based syntactic

methodology in most cases it came at high computational cost.

This difference in performance for anomaly detection under different log repre-

sentation is also explored with the domain adaptation of language models for log

analysis. Evaluation of BERT, RoBERTa, DistilRoBERTa, GPT-2, and GPT-NEO

on the three application logs identifies BERT-style architectural models as being

more consistently capable of extracting sentence embedding representations which

lend themselves to disambiguation of anomalous behavior. The performance of the

largest model evaluated in this study, GPT-NEO brings into focus the limitations

68

69

of large models, in that the time required to perform semantic feature extraction is

significantly higher than that of the smaller models, with little to no advantage in

performance. This is obvious when the DistilRoBERTa model takes 4% of the time

to extract features to that of the GPT-NEO and also outperforms it. The two GPT

style models underperform in the task of semantic feature extraction log analysis,

and continue to do so even after fine-tuning. The fine-tuning of the BERT-style mod-

els yeilds unconvincing improvement in generating meaningful log representations.

Only providing less than 1% improvement in most cases. This changes when the log

representation of the two hybrid logs CSIC, and PKDD is adapted and re-structured.

Re-structuring of the PKDD dataset in particular enables the language models

to improve considerably in extracting meaningful semantic information, and this is

reflected in the up to 6% improvement in F1-Score. The fine-tune and baseline im-

provement here with the apachePKDD, and apacheCSIC is more noticeable indicating

that the fine-tuning process does enable slightly improved semantic feature extraction

when the input sequence more closely resembles the dataset used in fine-tuning.

5.2 Future Work

Given the results of this research, in order to further improve upon the area of NLP-

based feature extraction in log analysis more exploration of LLM based semantic

feature extraction is necessary. This study was able to identify some of the limita-

tions of current state of the art language models in log analysis, which include high

computation times, a link between log structure and performance as well as unimpres-

sive fine-tuning results. Future work should also explore smaller models for improved

feature extraction times, and optimization of log representation. On the syntactic

side, the results of the small feature representation with only seven features indi-

cate that even with minimal computation time, and a much smaller representation,

disambiguation of abnormal behavior can still be performed within 10-15% of the

much more computationally heavy semantic methods. Exploration of new syntactic

characteristics to add to this syntactic representation may improve the entropy of the

features selected and could potentially close the gap in performance.

Bibliography

[1] Akiko Aizawa. An information theoretic perspective of tf-idf measures. Infor-
mation Processing Management, 39:45–65, 01 2003.

[2] E. Alpaydin. Introduction to Machine Learning, second edition. Adaptive Com-
putation and Machine Learning series. MIT Press, 2009.

[3] G. H. Ball and David J. Hall. Isodata, a novel method of data analysis and
pattern classification. 1965.

[4] Mansi Bhatnagar, Gregor Rozinaj, and Puneet Kumar Yadav. Web intrusion
classification system using machine learning approaches. In 2022 International
Symposium ELMAR, pages 57–60, 2022.

[5] Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo:
Large Scale Autoregressive Language Modeling with Mesh-Tensorflow, March
2021. If you use this software, please cite it using these metadata.

[6] Matteo Boffa, Giulia Milan, Luca Vassio, Idilio Drago, Marco Mellia, and Zied
Ben Houidi. Towards nlp-based processing of honeypot logs. pages 314–321,
2022.

[7] Rafael Copstein, Egil Karlsen, Jeff Schwartzentruber, Nur Zincir-Heywood, and
Malcolm Heywood. Exploring syntactical features for anomaly detection in ap-
plication logs. it - Information Technology, 64(1-2):15–27, 2022.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2018.

[9] Michael Dittenbach, Dieter Merkl, and Andreas Rauber. Growing hierarchical
self-organizing map. volume 6, pages 15 – 19 vol.6, 02 2000.

[10] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2nd Edition). Wiley-Interscience, 2 edition, November 2000.

[11] ECML/PKDD. Ecml/pkdd 2007 discovery challenge, September 2021.
https://gitlab.fing.edu.uy/gsi/web-application-attacks-datasets/

-/tree/master/ecml_pkdd.

[12] Brian Gallagher and Tina Eliassi-Rad. Classification of http attacks: A study
on the ecml/pkdd 2007 discovery challenge. 01 2009.

[13] Carmen T Giménez, Alejandro P Villegas, and Gonzalo Á. Marañón. HTTP
Dataset CSIC 2010, 2010.

70

71

[14] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection
via bert. pages 1–8, 2021.

[15] Muhammad Anis Al Hilmi, Kurnia Adi Cahyanto, and Muhamad Mustamiin.
Apache web server - access log pre-processing for web intrusion detection, 2020.

[16] Gunes Kayacık, A. Zincir-Heywood, and Malcolm Heywood. A hierarchical som-
based intrusion detection system. Engineering Applications of Artificial Intelli-
gence, 20:439–451, 06 2007.

[17] Gunes Kayacık, A. Zincir-Heywood, and Malcolm Heywood. A hierarchical som-
based intrusion detection system. Engineering Applications of Artificial Intelli-
gence, 20:439–451, 06 2007.

[18] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(1):1–6, 1998.

[19] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojarvi, Jukka Honkela,
Vesa Paatero, and Antti Saarela. Self organization of a massive document collec-
tion. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 11:574–85, 02 2000.

[20] Enja Kokalj, Blaž Škrlj, Nada Lavrač, Senja Pollak, and Marko Robnik-Šikonja.
BERT meets Shapley: Extending SHAP explanations to transformer-based clas-
sifiers. In Proceedings of the EACL Hackashop on News Media Content Analysis
and Automated Report Generation, pages 16–21, Online, April 2021. Association
for Computational Linguistics.

[21] Md Tahmid Rahman Laskar, Jimmy Xiangji Huang, Vladan Smetana, Chris
Stewart, Kees Pouw, Aijun An, Stephen Chan, and Lei Liu. Extending isolation
forest for anomaly detection in big data via k-means. ACM Trans. Cyber-Phys.
Syst., 5(4), sep 2021.

[22] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. pages 413–422,
2008.

[23] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[24] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[25] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
Machine Learning. The MIT Press, 2012.

[26] Ali Moradi Vartouni, Mohammad Teshnehlab, and Saeed Sedighian Kashi.
Leveraging deep neural networks for anomaly-based web application firewall.
IET Information Security, 13(4):352–361, 2019.

72

[27] Sukhyun Nam, Jae-Hyoung Yoo, and James Won-Ki Hong. Vm failure prediction
with log analysis using bert-cnn model. pages 331–337, 2022.

[28] Hai Thanh Nguyen and Katrin Franke. Adaptive intrusion detection system
via online machine learning. In 2012 12th International Conference on Hybrid
Intelligent Systems (HIS), pages 271–277, 2012.

[29] Harold Ott, Jasmin Bogatinovski, Alexander Acker, Sasho Nedelkoski, and Odej
Kao. Robust and transferable anomaly detection in log data using pre-trained
language models. CoRR, abs/2102.11570, 2021.

[30] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[31] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. CoRR, abs/1908.10084, 2019.

[32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108, 2019.

[33] Suseela Sarasamma, Qiuming Zhu, and Julie Huff. Hierarchical kohonenen net
for anomaly detection in network security. IEEE transactions on systems, man,
and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man,
and Cybernetics Society, 35:302–12, 05 2005.

[34] Mateusz Szczepański, Marek Pawlicki, Rafa l Kozik, and Micha l Choraś. New
explainability method for bert-based model in fake news detection. Scientific
Reports, 11, 12 2021.

[35] University of Victoria. Isot-cid cloud security, October 2021. https:

//www.uvic.ca/ecs/ece/isot/datasets/cloud-security/index.php?

utm_medium=redirect&utm_source=/engineering/ece/isot/datasets/

cloud-security/index.php&utm_campaign=redirect-usage.

[36] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9:2579–2605, 2008.

[37] Laurens van der Maaten and Geoffrey Hinton. Viualizing data using t-sne. Jour-
nal of Machine Learning Research, 9:2579–2605, 11 2008.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017.

[39] Farzin Zaker. Online Shopping Store - Web Server Logs, 2019.

73

[40] Jing Zhang, Zezhou Li, Xianbo Zhang, Feng Lin, Chao Wang, and Xingye Cai.
Posbert: Log classification via modified bert based on part-of-speech weight.
pages 979–983, 2022.

[41] Ying Zhao, George Karypis, and Usama Fayyad. Hierarchical clustering algo-
rithms for document datasets. Data Min. Knowl. Discov., 10:141–168, 03 2005.

Appendix A

Appendix

A.1 Appendix A

Table A.1: Semantic vs Syntactic vs Bi-Gram Feature Extraction Times (Seconds)
Feature Extraction Time (Seconds)

Extraction Technique AA ISOT CSIC PKDD
Semantic 44 60 138 217
Syntactic 5 4 11 27
Character Bi-Gram 1393 1534 3961 5688

Table A.2: Model creation time for character Bi-Gram featureset
Model Training Time (Seconds)

Unsupervised ML AA ISOT CSIC PKDD
Isolation Forest 18,576 21,452 21,894 24,341
Agglomerative 21,561 25,823 27,950 29,411
K-Means 6,381 7,707 8,103 8,984
SOM 54,454 78,301 85,801 102,351
HSOM 81,163 115,430 127,412 155,708

Table A.3: Model performance for character Bi-Gram featureset
Weighted F1-Score

Unsupervised ML AA ISOT CSIC PKDD
Isolation Forest 0.78 0.56 0.64 0.58
Agglomerative 0.66 0.52 0.58 0.48
K-Means 0.81 0.76 0.73 0.68
SOM 0.91 0.85 0.83 0.78
HSOM 0.93 0.87 0.83 0.80

74

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Literature Review
	Summary

	Methodology
	Datasets
	ECML/PKDD Dataset
	CSIC Dataset
	ISOT-CID Dataset
	Apache Access Dataset
	Harvard Web Server Dataset Description

	Feature Extraction
	Syntactic: TF-IDF based Feature Extraction
	Semantic: LLM based Feature Extraction

	Unsupervised Learning Techniques
	K-Means
	Agglomerative
	Isolation Forest
	Self-Organizing Maps
	Hierarchical Self-Organizing Maps

	Analysis and Visualization
	t-SNE: t-Distributed Stochastic Neighbourhood Embedding

	Summary

	Evaluations and Results
	Metrics
	Evaluation Structure
	Syntactic vs Semantic Approach Evaluation
	Large Language Model Log (LLM) Evaluation
	LLM Baseline vs Fine-tuned Evaluation
	Evaluation on the Effect of the Log Structure

	HyperParameters for Learning Algorithms Used
	K-Means Clustering
	Agglomerative Clustering
	Isolation Forest
	Self-Organizing Maps
	Hierarchical Self-Organizing Maps

	Semantic vs Syntactic Experiments
	Results
	Case Study: ISOT Log file
	Discussion

	LLM Experiments
	Results
	Discussion

	Log Structure Experiments
	Results
	Discussion

	Limitations
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Appendix A

