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Abstract

While attempting to solve 2-dimensional grid world maze tasks, it was observed that

genetic programming is limited by its random initialization and no use of local reward.

This thesis proposes a hybrid algorithm called QTRB, team-based region building

with q-learning, which attempts to integrate genetic programming and reinforcement

learning to use local reward during evolution. During evolution, QTRB constructs

programs based directly on local environmental reward; programs are then passed to

a reinforcement learning agent to learn on as a model. QTRB was tested to solve

variously sized 2-dimensional maze tasks, hypothesizing that policy can be derived

from an agent learning from this model. The results suggest that QTRB can derive

policy on the given tasks, with fewer direct environment queries than traditional

q-learning as the task size scales.

xiv



Acknowledgements

I’d like to start this section by acknowledging the wisdom, support, and guidance of

my supervisor, Dr. Malcolm Heywood. I am beyond grateful for the opportunity

you have provided, and cannot stress enough that this work would not be possible

without you.

Special thanks to Dr. Khurram Aziz, Dr. Mohammad Etemad, Dr. Christian

Blouin, Dr. Joseph Malloch, and Dr. Raghav Sampangi for the many opportunities

at Dalhousie. I’m also very grateful for my professors throughout my time here,

especially Dr. Simon Gadbois, Dr. Vlado Keselj, and Dr. Thomas Trappenberg for

inspiring me to pursue AI and learning systems.

I’d also like to thank the NIMS lab for always having a desk open at any hour of

the day (or night). A very special thanks Ryan Amaral and Amous Qiu for offering

lots of help throughout my research.

I’d like to acknowledge the passion and grittiness of the team at Virtual Hallway;

from the founders to the devs, and everyone in between. I am very thankful for the

opportunity you have all provided and the accommodations as I wrote my thesis in

parallel.

I’d like to lastly thank my friends and family for all of the love and support

throughout my endeavours. I attribute my work ethic to them and ultimately my

competitive drive to my brothers. Finally; I am especially grateful for my mum and

dad (and aunts) for always having a spectacular amount of belief in anything I do.

Thank you, I hope you enjoy :)

xv



Chapter 1

Introduction

1.1 Definitions

There are a few concepts that require defining before stepping into the current discus-

sion. This section will provide those definitions. It should be noted that all definitions

are with respect to the current project, and will be used throughout the rest of this

thesis. This section will be kept brief; more formal definitions can be found in the

Background chapter.

1.1.1 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a family of machine learning algorithms typically

focused on solving control tasks. The learner, or agent, aims to derive a policy which

maps states of the task to actions [24]. It inherits the psychological theory that the

frequency of an agent’s behaviour is proportional to the reward that the behaviour

receives. Thus, the agent creates policy with respect to environmental feedback,

typically some sort of local reward. Unlike supervised or unsupervised learning tasks,

RL implies that a learning agent actively interacts with a task environment. The

underlying goal is for the agent to maximize the cumulative reward received from the

environment.

There exists a subset of RL algorithms in which the agent learns from a model,

known as model-based RL [24]. The model can be anything that gives the agent some

observability of the task. A model can range from simply knowing the next local

reward, to a fully simulated abstraction of the task itself. Naturally, the learning

agent might alternate between using the model to reduce the number of interactions

with the environment (planning) and actively extending the model to incorporate

new properties of the environment (learning).

1
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1.1.2 Local Reward

This project heavily investigates environmental reward signals, specifically local re-

ward. Local reward simply refers to the feedback each state yields in a given task

environment. The local reward is therefore the reward immediately received when

in a particular state. For example, a goal state may yield a very high local reward,

whereas a state that puts the learner in danger may yield a very low, or even negative

local reward. A central question of this thesis is whether local rewards can be used

to incrementally adapt the representation of GP agents as deployed in 2-dimensional

grid worlds.

1.1.3 Genetic Programming (GP)

Genetic Programming (GP) is a family of algorithms from the field of Evolutionary

Computation (EC). EC algorithms consist of a population of solutions evolving over

a sequence of generations [2]. This evolution is inspired by the biological concept of

natural selection [5].

Unlike most machine learning, GP maintains multiple candidate solutions (agents),

or the population P. At each generation some subset of the population survives, defin-

ing a parent pool, PP. A breeder model of evolution is assumed, so the offspring pool

is defined by first choosing (P − PP ) agents from the parent pool and cloning them.

Variation operators modify the cloned parents to define offspring. The union of the

parent and offspring pools represents the new population. The process is elitist if the

environment and performance function are non-random. Traditionally, the variation

operators are stochastic.

1.1.4 Hybrid Algorithms (RL + GP)

In the context of the current project, hybrid algorithms refer to algorithms that in

some way integrate components of both GP and RL.

1.2 Machine Learning Algorithms

There are three main components to consider when designing a machine learning

algorithm [6].
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1. Representation. This refers to how the algorithm expresses a solution. Tradi-

tionally, GP initializes individuals using some form of stochastic process for choosing

instructions from an instruction set (often designed with a particular application in

mind). However, the representation itself is re-configurable. This means that the

topology of a solution’s representation is subject to modification as well as the pa-

rameters. Thus, the instructions, arguments, order of instructions, and the number

of instructions are all subject to variation. Many GP representations have been pro-

posed that have these properties such as tree-structured GP [14], linear GP [4], push

GP [20], grammatical evolution [18], Graphs [13] [1], Cartesian GP [17].

2. Performance or fitness function. This research has a specific formulation in

RL scenarios in which the general objective is to discover a policy that maximizes

the cumulative reward a learning agent receives during the training episode. An

episode is defined as the sequence of interactions between the task environment and

learning agent that take place between the start and terminal conditions. One of

the premises of traditional approaches to RL is that the local reward received as

a result of the learning agent interacting with the task can be immediately used for

credit assignment. Conversely, GP only performs credit assignment after the terminal

condition is encountered. Addressing this limitation for the specific case of grid world

navigation tasks represents a goal of this thesis.

3. Credit Assignment. This refers to the process by which credit is assigned to

different parts of the candidate solution’s representation. There are two competing

aspects to credit assignment: exploration versus exploitation. Greedy credit assign-

ment implies that a single variation (to the agent’s representation) is adopted that

improves the performance of the agent. Stochastic credit assignment accepts changes

to an agent’s representation that do not necessarily result in immediate improvement

in performance. In practice, credit assignment is never fully greedy or stochastic.

GP is a population-based search in which P solutions are simultaneously maintained.

Thus, the first instance of credit assignment identifies which candidate solutions sur-

vive and reproduce. The second instance of credit assignment defines how offspring

are constructed.1 The final form of credit assignment establishes who from the parent

1For example, crossover interchanges program snippets between two parents, and mutation ran-
domly changes instructions in an offspring.
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Figure 1.1: A high-level depiction of the model developed in the current project. A
program holds information about the environment in the region as well as a reward. A
module holds a program and a corresponding action-set, along with some information
for RL. The team holds a variable number of modules as well as a fitness score, which
acts as a candidate solution in evolution. A champion team will contain modules with
regions that form a path from the start of the grid world to the goal.

and offspring pools will appear in the next population.2

The current project proposes a machine learning algorithm which integrates ge-

netic programming and reinforcement learning, which (as mentioned), are referred to

as hybrid algorithms. The current project focuses on investigating representation and

credit assignment with respect to the field of hybrid algorithms.

The representation of the project will be limited to solving 2-dimensional grid

world tasks. Within these tasks, teams of modules containing a parameterized in-

struction set and corresponding actions act as candidate solutions. The project’s rep-

resentation will be summarized in Section 1.4, but a general depiction of the model

can be found in Figure 1.1.

In the scope of the current project, credit assignment is the method by which a

team’s module is parameterized by local reward. Moreover, teams are incrementally

constructed, module by module, over multiple generations. This use of a local reward

2For example, the performance of the offspring is measured and only the fittest P of both parent
and offspring pools survive.
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aims to provide novel findings in the field of hybrid algorithms.

Where the evolution is built somewhat specifically for the given tasks, the RL

elements of QTRB are much more similar to traditional RL. The champion teams

from GP will act as a model for traditional Q-learning to use for learning, rather

than the actual environment itself. Q-learning is used to assess the quality of the

entire model as currently developed by the learning agent. Conversely, local reward

will be used to parameterize modules as they are incrementally added to candidate

solutions. The following sections will discuss the difference in representation and

credit assignment of traditional GP and the proposed approach, in order to illustrate

the thesis’s questions and hypotheses.

1.3 Traditional GP

Traditional GP algorithms possess two limitations that the current project aims to

address; random initialization and no use of local reward. These limitations prevent

programs from carrying the contextual meaning of the local environment, making it

difficult for such algorithms to solve control tasks without the use of subgoals.

The issues in question are demonstrated during the implementation of GP on a

simple 5 × 5 maze task. The goal of the task is to maneuver through the obstacles

from the starting state to the goal. Canonical GP assumes that the representation

employed by candidate solutions:

1. decomposes the state space of the task into different local regions, and

2. assigns an action to each local region that is able to move the agent across the

corresponding region.

However, candidate solutions are randomly initialized, thus there is no guarantee

that:

1. regions actually align with the properties of the grid world, or

2. the actions suggested by the agent are capable of ’navigating’ a local region.

Canonical GP instead assumes that the population of candidate solutions is able to

sample enough different parameterizations of the task for some of the region-action

pairs to align with those of the task. The lack of environmental context in this

initialized population does not give the programs enough environmental meaning to

solve the task.
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Downing addressed the action to region selection problem by using Q-learning

to select actions to regions using local rewards [7]. However, random initialization

of candidate solutions was still assumed, thus the resulting decomposition of the

state space still resulted in regions that did not reflect properties of the grid world.

Solutions could only be found if meaningful subgoals were included, i.e. agents were

rewarded for partially solving a task. The agents providing partial solutions were

retained and used as “building blocks” for generating new agents. This thesis aims

to avoid the use of any type of subgoals.

Now that the problem has been demonstrated, this section will introduce a solution

which the current project implements.

1.4 Proposed Solution

This thesis addresses the discussed issues relating to both representation and credit

assignment in traditional GP. A team of modules, which involve programs, will be

deployed to solve a 2-dimensional grid world task. In regards to representation, a

program is constructed in a non-random way; building a region to represent a section

of the grid world. In regards to credit assignment, a fitness value is assigned to each

program using an environmental reward signal, or local reward.

As mentioned, the project’s representation is shown in Figure 1.1. The follow-

ing is a breakdown of each component of the figure. Finer detail relating to the

representation, and algorithm, can be found in the Methodology chapter.

1.4.1 Program

The program directly parameterizes a portion of the grid world in a locally consistent

way. It carries the actual contextual meaning of the grid world as defined by the local

reward provided by the task environment within a region. The program’s region itself

acts as a small abstraction of the world.

The program’s instruction set is what parameterizes the region. In the specific

case of 2-dimensional grid worlds (the focus of this thesis), each region, depending on

the selected axis, takes the form of a range in x (y) and a fixed value in y (x). These

values must be positive integers and cannot exceed the number of cells in the grid

world. Thus, the region represents a 1-dimensional sliver of the grid world itself.
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1.4.2 Module

A module pairs a region to the subset of actions necessary to traverse the region.

Put another way, the actions represent those actions that produce the region under

the delimiting feedback provided by the environment in the form of local rewards.

Note that modules need not lead the agent in the direction of the overall objective.

Modules are just guaranteed to represent locally consistent regions of the grid world

state space and define the action pairs that are sufficient for navigating such a local

region.

1.4.3 Team

The team is a collection of modules. A champion team should compile these modules

into an abstraction of the world, where a subset of modules creates a pathway (of

regions and associated actions) from the start of the task to the goal. Once a module

is added to a team that encounters the goal state, the team has the potential to form

a path from start to goal. RL is then performed on the modules comprising this

team’s representation in order to:

1. discover a sequence of modules and actions necessary to complete the path,

and

2. determine the efficiency of such a path.

Such a process assumes that the modules comprising a team represent a plan. All

the credit assignment is performed relative to the modules comprising the plan. Thus,

there is no interaction with the environment during team optimization. Environment

interactions only take place to parameterize the properties of each module.

1.5 Research Questions

This section will present some research questions relating to the identified shortcom-

ings of traditional GP, as well as a proposed solution:

1. Are local rewards sufficient for parameterizing states and actions into useful

modules from which entire policies can be constructed?

2. Once a module encounters the goal state, is Q-value propagation sufficient for

optimizing the plan defined by the set of modules comprising the team?
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3. What implications are there for the sample efficiency of the resulting population

of teams?

The thesis aims to answer these questions by testing the performance of the pro-

posed QTRB with various metrics. The Background chapter will provide hypotheses

in the scope of these questions after presenting a more thorough review of the GP,

RL, and hybrid algorithms. The Methodology chapter will then discuss the specifics

of the algorithm’s implementation and the tasks it was tested to solve. Finally, the

Results (and Appendix) and Conclusion chapters will present and analyze the algo-

rithm’s performance, as well as discuss limitations and potential future work for this

project.



Chapter 2

Background

There exist several algorithms which integrate genetic programming (GP) and re-

inforcement learning (RL) to solve a variety of tasks. This project aims to expand

on the field and fill in some gaps while preserving principles that previous research

shares. This chapter will present a summary of prior work in the field of GP, RL, and

hybrid algorithms in order to set a foundation for the current project.

An example will be followed throughout the background section to further illus-

trate the basic mechanics of the concepts presented. This example depicts a robot

finding a way to walk back to its docking area, after being dropped at the start of a

maze. Walking back consists of many paths, some containing obstacles that may be

dangerous to the robot. The parameters of this example will be defined specifically

for each concept presented with it. It should also be noted that the analogies used in

this example are not fully representative to the exact process of each concept but are

simply to provide a higher level conceptual understanding of the mechanisms at play.

2.1 Project Overview

Rather than integrating GP or RL into an existing algorithmic counterpart, this

project builds from the ground up with the two concepts in focus. This project in-

vestigates parameterizing GP fitness using environmental reinforcement signals (local

reward), to evolve an individual with a representation, or model, that RL can use

to derive a policy. This is all to investigate the use of both reinforcement signals

and model-based RL when integrated with GP. This project hypothesizes that an

algorithm of such nature will not only successfully solve grid world tasks, but solve

them in fewer environment queries than other model-free, or GP-free, RL algorithms.

This project aims to contribute novel findings to the field of integrated GP and RL

systems. This will be achieved by showing how environmental reinforcement signals

can be utilized to evolve models for RL to learn policy on. The following sections

9
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provide a summary of background research in the fields, to highlight the general

nature of these integrated algorithms, as well as some gaps in research in the field

that this project aims to fill.

2.2 Evolutionary Algorithms

Evolutionary computation (EC) is a research area of computer science that deals with

individuals evolving toward solutions [2]. This research area is modelled after the

biological principle proposed by Darwin known as natural selection [5]. A population

of individuals compete for survival based on a function that relates to how capable

they are of solving a given task. The individual’s capability, known as fitness, drives

the population to converge onto solutions. The following example is typically the

model an EC algorithm is based from [9]:

1. Randomly initialize a population of individual candidate solutions. Initialize a

generation counter at zero.

2. Select individuals based on assigned fitness functions within the scope of the

solution. The lesser-fit individuals are removed as candidate solutions. The surviving

solutions constitute the parent pool for the next step.

3. From the parent pool, sample and clone individuals until the original population

size is reached. This is the offspring pool. Variation operators are then applied to the

offspring pool to define individuals that are “genotypically” distinct from the parent

pool. The variation operators can transfer parts of the genotype between pairs of

offspring (sexual operator) or be limited to a single individual (asexual operator). 1

4. If the stop criterion is not met, go back to 2 and increment the generation

counter.

5. If the stop criterion is met, stop, and choose the fittest candidate as the

champion solution. A typical stop criterion is a limit on the number of generations.

These higher-level EC concepts can be easily visualized following the example of

the robot walking home.

Rather than focusing on just one individual robot, EC functions by assessing the

performance (and evolution) of a whole population of robots. In order to manage this

population, the fitness function is established. The specifics of such a function are

1Genotype refers to the representation assumed for defining individuals.
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irrelevant for this example except that it favours the robot who solves the task, with

a bonus for avoiding danger.

Each candidate robot is tested against the fitness function. Through this, each

will derive a solution for the task. Once the whole population has found a solution,

those whose solutions had the highest-scoring fitness functions are selected. These

selected robots reproduce, implying the application of the aforementioned variation

operators, such as the crossover of genes, as well as gene mutation. The union of

the parent and offspring pools defines the robot population for the next generation.

This cycle of life continues until some external stop criterion is reached; perhaps the

experiment is only run for 50 generations.

Two subfields within the field of evolutionary computation are genetic algorithms

(GA) and genetic programming (GP); both will be discussed below.

2.2.1 Genetic Algorithms (GA)

First proposed by Holland [11], one of the distinguishable features of GAs is the use

of crossover for producing variation in offspring [2]. The most classical examples of

GA also represent individuals as bit-string encodings of the solution [9].

GA algorithms are the most aligned with the general principles of EC; they are

biologically sound and intuitive [8]. The general structure of a GA closely follows the

structure of an EC algorithm. GAs usually deal with fixed systems. In order to create

offspring during evolution, a fixed number of parents are randomly paired up for re-

production. For some of these pairs, crossover randomly occurs. In order for crossover

to be applied, “gene alignment” takes place. Given that all individuals have the same

number of genes, then gene alignment is merely a process of aligning pairs of genes

at the same location between each parent. Offspring resulting from this reproduction

will go through some bit mutation, then replace the parent population [9].

GA excels at optimizing solutions on high-dimensional tasks, but only with the

correct selection of the individual’s representation length [11]. Individuals in GA

algorithms are represented by fixed-length strings, to emulate the representation of

a genotype. The length of the string determines the different number of possible

genotypes within the population. The goal of GA is to find the optimal phenotype,

or combination of bits in the string, by evolving based on the fitness of the phenotype.
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GA sets a strong foundation within the realm of ECs [2], but representing geno-

types as fixed-length strings is not always ideal for finding solutions. Koza argues

that a GA individual’s fixed-length encoding of a solution can severely limit their

observability into it [14].

String length is an especially problematic parameter for some tasks as the opti-

mal representation of an individual to solve the task is unknown before it is found

[14]. Koza argues that without this prior knowledge, individuals need the freedom

to reshape their representation as they evolve. On top of this, restrictions set to the

representation of the genome can further limit the way individuals observe the task.

2.2.2 Genetic Programming (GP)

GP is an extension of GA [2], proposed by Koza, which offers a solution to the

representation problem appearing in GA. As mentioned, in GA, fixed-length strings

are used to represent individuals. GP, on the other hand, allows individuals, called

programs, to assume a variable length genotype. Thus, the number of instructions

comprising individuals do not need to be the same. The general structure of GP

algorithms follows that of GA.

To return to the robot walking home example, “GP-based robots” would follow

a very close process to the “EC-based robots”. The main difference would be how

the specific thinking and processing of their candidate solutions. The GP robots de-

veloped by this thesis, for instance, will assume a modular approach to constructing

the representation. Different modules will then be added throughout offspring devel-

opment. Moreover, these robots will be modular in a task-specific way. Robots will

define a module by applying an action relative to their current location. The “dimen-

sion” of the module will be a function of the rewards received from the environment.

This represents a very important distinction from previous research applying GP to

RL tasks.

The algorithm designed in this project takes on an approach of GP that most

closely resembles that of Linear GP (LGP). LGP is a form of GP which implements

solutions using linear representations of programs, rather than the popular tree-based

approach [4].
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Linear Genetic Programming (LGP)

Brameier & Banzhaf’s original intention with linear GP (LGP) was to develop a

new form of GP representing programs as a series of instructions from an imperative

programming language [4]. Brameier & Banzhaf found that LGP could perform on

par compared to neural networks on classification and generalization tasks with a

standardized set of health care data [4].

Specifically, individual programs were represented as simply C code snippets of

varying lengths [4]. The code snippets were based on an instruction set which could

operate on two variables, or one and a constant value. The instruction types involved

arithmetic operations, conditional branches (inequalities), and function calls.

The importance of linear genetic programming is that it shows that programs do

not explicitly require tree-based representations. Brameier & Banzhaf introduce an

important paradigm to consider throughout this project; as the programs built from

the GP proposed in this project do not conform to the traditional representation of

tree-based GP [4]. The programs in this project are represented closer to the programs

found in LGP.

Additionally, the conditional branch (inequality) instruction type is especially

important to the foundation of this project’s GP. The programs used throughout the

current project only operate using inequality instruction; these take on the form of

checking if an agent is within a given module’s region of the environment. This type

of instruction type is important while passing on the context of the real environment,

as the inequalities are able to carry information relating to a given state.

Optimization vs Modelling

In Eiben’s work [9], an observation is made that many other types of EC solutions

are used for optimization, while GP is used for finding fit models as solutions.

The difference between optimization and modelling is based on what is known

about the problem before implementing a solution. Optimization problems involve

a known model and output. The goal of optimization is to find the parameters

for the prior model such that a performance criterion is satisfied. A GA would

represent a suitable choice for optimization tasks because the number of parameters

for optimization has already been set [9]. On the other hand, modelling problems
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only know the input and output. The goal is to find a formula or prediction tool

(model) that maps the given input to the given output [9]. GP represents a suitable

choice for modelling because the number of parameters and the parameter values are

unknown.

Although Eiben was explicitly referring to tree-based GP at the time, this can

also be applied to LGP. LGP aims to manipulate an instruction set which solves the

problem; it creates a model which maps inputs to outputs (i.e. model is synonymous

with program where the instruction set is given, but the sequencing and number of

instructions is unknown). In the current project, the model is an instruction set for

an RL agent to use to navigate the world. It is important to build this instruction

set as it acts as an abstracted version of the environment that is detailed enough for

the RL agent to form an accurate policy.

In the current project, the sole purpose of using GP is to search for a decomposition

of the environment (modules) that an RL agent can learn from as a substitute for the

direct environment. The paradigm of using LGP as a tool for building a model aligns

with its use in this project. Although the output is not necessarily explicitly known,

the agent is used to not just learn a policy to solve the task, but also to verify that

the model produced by GP was parameterized in a way which allows for a solution

to be found.

2.3 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a branch of artificial intelligence that predominately

deals with giving a learner, known as an agent, a control task to learn in order

to solve. The fundamental theory comes from reinforcement learning in the field

of psychology. The idea follows that the frequency of an individual’s behaviour is

directly proportional to the amount of positive (or negative) feedback assigned to

that behaviour.

As mentioned, the individual learner in RL is known as the agent. RL differs

from many other machine learning paradigms as an RL agent does not learn from a

given data set (regardless of the label). Instead, the RL agent learns from direct (or

indirect) interactions with the given environment (or model of the given environment).

The environment is the task where the agent is deployed, it provides a reinforcement
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signal, known as a reward, from which the agent learns. To derive rewards from the

environment, the agent moves from state to state, transitioning with actions. This

RL loop moves through discrete time steps starting from t = 0.

This section will first cover various introductory concepts of reinforcement learn-

ing, before introducing the concepts and algorithms that were used for this project.

2.3.1 Policy

The goal of the reinforcement learning agent is to maximize the amount of reward

signal received from the environment [24]. If configured correctly, this maximized

reward signal is typically found by solving the given task within the environment.

After learning, the agent represents their found solutions as policies. The policy is a

mapping of states to actions [24], in other words it is the strategy the agent learns to

solve the given task. The policy, whether deterministic or stochastic, is the foundation

of the behaviour of the agent; if a possible state is input to the policy, it will output

the agent’s corresponding action [24].

A stochastic policy is formally defined as the probabilities of actions being exe-

cuted given a state. As the agent learns, the policy’s distributions over each state

should sample actions in such a way that solves the given task.

The policy, in the case of the robot example, simply determines what the robot

will do given the state it finds itself in. The optimal policy for the robot would yield

the best actions given each state throughout its walk home. As the robot learns, the

ultimate goal is to find an optimal policy. This optimal policy may involve the robot

taking some sort of path that maximizes the amount of positive reward the robot can

collect on its way home.

The foundation of the agent’s objective throughout learning should consist of

deriving a policy which solves the given task.2

2.3.2 State, Action, Reward, and the Markov Decision Process (MDP)

The environment of the task which the agent is deployed into is composed of a set

of states. Upon visiting each state, the environment returns a new state, as well as

some reward signal for visiting that state. The reward establishes the ability of the

2The case of value functions in RL will be discussed below.
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agent to learn through reinforcement learning. The relationship between the agent,

the states, and reward can be described using a Markov Decision Process (MDP) [19].

As shown in Figure 2.1, the key to this MDP is that the next state of the environment

is purely dependent on the previous state and completely independent of anything

else.

Each step along the path on the walk home from the robot example can be con-

sidered a new state. Each new state has a distinct reward signal depending on the

context of the given state. For example, a state with a dangerous obstacle will yield

a negative reward signal, while a safer state will yield some positive reward. The goal

state, the robot’s docking area, will yield a much larger amount of reward signal than

anything else. This large reward is indicative of the agent, in this case, the robot,

“winning”, or solving, the task.

Figure 2.1: Shown is a Markov Decision Process. It is observed that the environment
returns a new state and some reward signal based solely on the action of the agent.
Cited from [24]

Figure 2.1 describes not just the relationship between state, action, and reward

for the agent and environment, but also highlights key elements of the general rein-

forcement learning algorithm. These have been touched on previously, but the rest

of the section aims to formally define them.

In RL, the agent is the main learner. It is deployed into the environment with

the goal of deriving a policy (state action mapping) that possesses the capability of

solving the given task. As mentioned, the environment is the set of states which the

agent interacts with. The environment is typically comprised of a start state, goal
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state, and various states in between, each with their own assigned reward signals.3

The time step t marks each interaction between the agent and environment, given a

system of discrete time steps. The action At is the selected action of the agent at

time step t, executed onto the environment. The state, St and St+1 represent the

starting and resulting state of the given action at time steps t. The rewards, Rt and

Rt+1 represent the reward signals yielded by a particular state at time step t and time

step t+ 1.

2.3.3 Value Approximation and Learning

Another key element of reinforcement learning is the approximation of the value an

agent assigns to each state while learning. The foundation of learning depends on

the agent’s perception of the value of a given state, this is referred to as the value

function.

The value function represents the agent’s estimate of the long-term value a state

has under a specific policy. It can be generalized to judging the relative value of

the current state relative to its neighbouring states. The value function differs from a

reward signal as a reward signal is immediate and does not quantify the quality of the

state relative to its neighbours. Beyond that, the reward signal does not define how

close to the goal the state is. The reward signal might just quantify the difference

between a positive (no fail) versus a negative (fail) state. Though value function

differs from reward signal, it also depends on it. The reward signal itself can be

somewhat misleading, as it lacks the foresight to tell if a state is a good long-term

solution; it simply gives what that exact state is independent of neighbouring states

or context.

Following the robot agent example, the reward signal alone may not be sufficient

feedback to learn the best possible path to the docking bay. As stated before, the

best way home, or the optimal policy, should find a path that efficiently covers states

to maximize the amount of positive reward collected. Judging path quality on just

reward signal fails when the robot is presented with a path that has an immediately

safe path, and another slightly more dangerous path that actually leads to a much

faster way home. If every decision is based on immediate reward alone, the robot will

3In the scope of this thesis, these state-level reward signals are considered local reward.
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always choose the path with no danger, losing out on the much larger reward in the

other path. The value function acts as a method of assigning the larger reward path

value, despite seeming as an immediate danger locally. When the robot’s learned

policy is based on the trajectory of each state, rather than the immediate reward

signal alone, the obvious choice is the path with a slightly higher chance of danger,

but much larger reward.

Expanding off of the value function, it is also useful to know the estimate of the

value returned for executing a particular action on a given state. This would show

the trajectory of value the given agent has in the current state while executing the

suggested action. This is known as the action value function, denoted as Q(s, a)

[24]. If the action value function is chosen under some policy π, it is denoted as

Qπ(s, a). The action value function, or Q(s, a) represents the quality of a given state-

action pair. There are many ways to estimate the action value function, Q, using

reinforcement learning; the method used in this project is known as Q-learning. Q-

learning optimizes its Q-values through the use of Temporal Difference (TD) learning;

both concepts will be briefly discussed in the following subsections.

2.3.4 Temporal Difference (TD) Learning

Policy iteration is a form of dynamic programming which involves a set of algorithms

used to improve an agent’s policy. Temporal difference (TD) learning is a policy

iteration method where an agent learns from experience [22].

Monte Carlo search is another popular form of policy iteration, where the value

function is updated at the end of the run. TD Learning will instead update the value

function on each new time step. This key difference between TD and Monte Carlo

methods is quite monumental when it comes to improving the speed of convergence

in RL methods [24].

Following the work on Sutton and Barto [24], the general formula for value function

updates in TD Learning is: V (St) ← V (St)+α[Rt+1+γ(V (St+1))−V (St)]. Algorithm

1 describes a general TD Learning update following the same authors [24]. The given

example performs a value function update at every time step.

Rather than reflecting on the path taken once the robot reaches the docking bay,

TD learning involves the example robot reflecting and updating its beliefs on what
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Algorithm 1 Example of general TD learning update. Cited from [24]

1: Input: the policy π to be evaluated

2: Algorithm parameter: step size α ∈ (0, 1]

3: Initialize V (s), for all s ∈ S+, arbitrarily except that V (terminal) = 0

4: for each episode do

5: Initialize S

6: for each step of the episode do

7: A ← action given by π for S

8: Take action A, observe R, S ′

9: V (S) ← V (S) + α[R + γV (S ′)− V (S)]

10: S ← S ′

11: if S is terminal state then

12: break

13: end if

14: end for

15: end for

makes a good path every step of the way. Although there is a lot more updating,

the robot is able to converge to an idea of an optimal path sooner, with a finer

understanding of the path itself.

2.3.5 Q Learning

Q-Learning is an off-policy reinforcement learning algorithm that is used to efficiently

estimate Q-value (action value function) with the use of TD-Learning. Unlike other

reinforcement learning algorithms, Q-learning does not learn directly using the pol-

icy. Q-learning will instead approximate the optimal action-value function with the

learned action-value function [25]. Q-learning will essentially iteratively update each

action-value function until they converge to the optimal Q-value.

Similar to TD updates, this example update from the work of Sutton and Barto

[24] demonstrates the update used in Q-learning. Q(St, At) ← Q(St, At) + α[Rt+1 +

max(Q(St+1, a)) − Q(St, At)]. Additionally, a sample Q-learning algorithm is shown

in Algorithm 2 [24]. Overall, this highlights the importance of TD learning in the
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Q-learning algorithm, as well as provides context into the method of estimating state-

action values used in this project.

Algorithm 2 Example of a general Q-learning algorithm. Cited from [24]

1: Algorithm parameters: step size α ∈ (0, 1], small ε > 0

2: Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that

Q(terminal, ∗) = 0

3: for each episode do

4: Initialize S

5: for each step of the episode do

6: Choose A from S using policy derived from Q (such as ε-greedy)

7: Take action A, observe R, S ′

8: Q(S,A) ← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]

9: S ← S ′

10: if S is terminal state then

11: break

12: end if

13: end for

14: end for

Q-Learning simply involves the example-robot learning directly from its environ-

ment. The robot will act on past experiences throughout its walk home.

2.3.6 Model-Based Planning

To introduce an algorithm such as DynaQ, Sutton and Barto first differentiate model-

free and model-based RL. The primary component of model-free RL is learning, while

model-based relies on planning [23]. Although there are some differences between both

planning and learning, they both mainly revolve around updating value approxima-

tions based on feedback from the state space.

The model can be anything the RL agent is able to use to predict the behaviour

of the real state space. That is, given a state and action input, the model can predict

the real environment’s state and output [24]. In the scope of the current project, an

abstraction of the state space found in GP is used as the model. The GP part of the



21

proposed algorithm is in some ways simply planning the RL agent’s model.

Within the context of their work, Sutton and Barto define planning as “any com-

putational process that takes a model as input and produces or improves a policy for

interacting with the modelled environment” [24]. These processes share two common

traits:

1. These processes involve deriving policy by approximating value functions.

2. The value functions are derived through simulated experience [24].

Taken from the same discussion, Algorithm 3 shows how an algorithm which uses

planning can converge to an optimal policy. This is evidence enough that a model-

based, or planning, algorithm is suitable for an agent to learn a policy within a given

MDP.

Algorithm 3 Generalized tabular Q-planning algorithm, shown to converge to the

optimal policy. Cited from [24]

1: while true do

2: Select a state, S ∈ S, and an action, A ∈ A(S), at random

3: Send S,A to a sample model, and obtain a sample next reward, R, and a sample

next state, S ′

4: Apply one-step tabular Q-learning to S,A,R, S ′:

Q(S,A) ← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]

5: end while

DynaQ

DynaQ is a reinforcement learning algorithm that adds a planning mechanic to tra-

ditional Q-learning. The algorithm will continuously both plan from a model as well

as directly approximate the value function.

The algorithm will store the returned state and reward of actions within a model

so that when they are queried again, the model can simply return the recording.

During planning, Q-learning is randomly applied only on state-action pairs which are

saved in the model. This way, the model is learned from real experience, which can

then be used for simulation [24]. Direct action onto the environment allows for both

contributing to the model and the value function approximation. During training,
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both direct action and planning will occur continuously, contributing to the value

function approximation.

Taken from Sutton and Barto’s work, Algorithm 4 shows the general DyanQ

algorithm [24]. It is also worth mentioning that DynaQ without any planning steps

is simply Q-learning. From the experiments of Sutton and Barto, DynaQ was able to

solve a grid world maze task in significantly fewer steps than a non-planning agent

(Q-learning) [24].

Algorithm 4 General DynaQ algorithm. Cited from [24]

1: Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A(s)

2: while true do

3: S ← current (nonterminal) state

4: A ← ε-greedy(S,Q)

5: Take action A: observe resultant reward, R, and state, S ′

6: Q(S,A) ← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]

7: (e) Model(S,A) ← R, S ′ (assuming deterministic environment)

8: for Repeat n times do

9: S ← random previously observed state

10: A ← random action previously taken in S

11: R, S ′ ← Model(S,A)

12: Q(S,A) ← Q(S,A) + α[R + γmaxaQ(S ′, a)−Q(S,A)]

13: end for

14: end while

A planning algorithm such as DynaQ acts as a good benchmark for comparison

with the current project’s implemented algorithm. Both algorithms involve develop-

ing a model, whether it be from planning or state-space abstraction, for a Q-learning

agent to derive a policy from.

Overall, these algorithms are hypothesized to reduce the number of direct envi-

ronment steps taken to learn policy compared to traditional Q-learning. Thus, the

amount of direct environmental queries during learning stands as a good metric while

comparing traditional tabular Q-learning, DynaQ, and QTRB.
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2.4 Hybrid Algorithms

As the following agent example will show, although the GP robots were able to cover a

lot of ground faster, the RL robot would be able to have finer control over optimizing

its way home. For example, the fitness of an individual robot may not account exactly

for the level of safety in each individual state, whereas the value function of a learning

RL agent may. There is an issue with finding such a fine value function and policy

though, as the robot must take its time on the walk home, pondering every small

signal yielded by its environment. This shows the trade-off of using both styles of

learning but also gives rise to how they may potentially be able to complement each

other.

There have been numerous studies relating to hybrid models that combine some

form of GP and RL to solve tasks. The remainder of this section will discuss some

notable observations from a survey of these works, in the scope of the current project.

2.4.1 Drugan

Drugan’s survey work in the realm of hybrid algorithms sets a good stage for the work

previously published in this field. Other than surveying the field for notable hybrid

algorithms, Drugan offers to classify algorithms which use EC to assist RL. A notable

classification from this list of subtypes is model-based RL algorithms that learn from

an associated model of the environment with GP [8].

2.4.2 Maravall et al.

Maravall et al. introduce a hybrid algorithm of RL and GP in [16]. They propose a

method of solving obstacle-based 2d control tasks with L-shaped multi-linked robots.

These robots used Q-learning, which learned to optimize a situation-action-based

lookup table derived through means of an evolutionary algorithm [16]. The use of the

situation-action lookup table was to provide reference to the RL agent to counter the

curse of dimensionality problem; thus, allowing the agent to learn the environment,

without having to waste many resources exploring solutions for larger problems.

Maravell et al. [16] suggest some noteworthy rationale for proposing a hybrid

algorithm. They argue that although both RL and GP alone have many advantages,
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they both fall short in areas where one can help the other.

Although RL is a good choice for learning on online applications, it suffers when

the state space is too large.4 As mentioned, most RL algorithms learn by slowly

stepping along the state space directly. The mentioned learning takes an increasingly

long time as the state space increases. In other words, classical RL is afflicted by the

curse of dimensionality.

Evolutionary computation, on the other hand, provides powerful offline optimizers,

especially in the types of high dimensional problems where RL tends to struggle.

Given this advantage, EC struggles with online applications.

It is apparent from Maravell et al. argument that one type of algorithm tends to

thrive where the other struggles, and vice versa. This rationale provides support for

most applications of hybrid algorithms.

2.4.3 Downing

One of the most influential studies (for hybrid algorithms) comes from Downing [7]

who combines tree-based GP with reinforcement learning to solve grid world prob-

lems. The tree-based solutions would decompose the state space into regions using

inequality operators, where each terminal node would contain a choice between two

actions. Downing identified each action on the terminal nodes as state-action pairs,

which could be updated with a value approximation according to some reward signal

from the environment.

Figure 2.2 shows an example of an environment decomposed into a tree-based

representation to further demonstrate Downing’s Reinforced Genetic Programming

(RGP). Figure 2.3 shows the corresponding program for this representation. As

shown, the environment is broken down into various regions according to the given

program. The terminal nodes on the program’s tree contain two actions to navigate

the region that their branch of the tree occupies.

The representation of Downing’s programs allowed for an important modification

to the applied Q-learning. The tree-based decomposition of the state space typically

reduces the number of possible states an agent can be in, as being within the range

4Deep reinforcement learning algorithms represent an alternative approach for scaling to high-
dimensional state spaces, with the trade-off of having a high computational cost.
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Figure 2.2: Example tree-based environment decomposition from Downing’s Rein-
forced Genetic Programming [7]

of a region is considered within a single state. Due to this, instead of making a TD

update at every time step, the update occurs at every transition of the program’s

branch. The amount of information stored on the Q-table is reduced, going from the

environment’s length× width to the varying amount of regions the programs evolve

into.

With this, Downing states the purpose of both evolution and learning in this

algorithm. Evolution decomposes the state space into regions, forming a new repre-

sentation of the environment for learning; while learning itself finds the best action

for each of the evolved regions.

Although traditional RL was able to outperform RGP in the grid worlds, Downing

hypothesizes this was due to the small nature of tasks he used for experimentation

[7]. Despite this, Downing does state that RGP provides benefits to both GP and RL.

The benefit relevant to this project is that GP can be used with RL to create proper

state abstractions [7]. As search spaces become larger, these state abstractions have
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Figure 2.3: Program corresponding to Figure 2.2 from Downing’s Reinforced Genetic
Programming [7].

the power to reduce the amount of exploration required by the agent itself.

RGP relates to this project as it shows that GP can be used as a conduit between

the environment and RL in order to reduce the complexity of the environment. In fact,

one of the main advantages Downing points out is the savings this state abstraction

has over the typical large search spaces of traditional RL on large-scale mazes [7].

To do this, the evolved programs must have some sort of context in the environment

that is greater than randomly initialized programs. Downing, however, was not able

to move beyond the use of randomly initialized programs. This meant that in order

to find solutions, it was necessary to introduce subgoals into the mazes for providing

additional intermediate levels of credit assignment.

This work gives rise to programs that store the context of the environment and

select an action based on such context. This project expands on this concept, using

an alternative approach, which is the rationale behind the region-building algorithm

presented in the Chapter 3. In order for reward signals to dictate evolution, the

evolution must in some way reflect the given context of the environment. This context

allows evolution to decompose the environment in such a way that RL is more efficient

in both time and space.

2.4.4 Iba

Iba et al. [12] argue that some learning simulators for real robots are imprecise, and

that to capture the noise of real life, a robot must learn directly from its environment

for at least some learning. Due to this real robot component of learning, the simulator

where the rest of the learning first occurs does not need to be as precise as it would

be without direct environmental learning.
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The methods of Iba et al.’s algorithm start with a population of programs learn-

ing the task on a simplified simulation of the environment. RL is then conducted,

using the fittest program to act as the agent. This allows a decomposition of the

environment, established during GP, to be passed onto the RL agent to speed up

learning. Similar to the current project, the RL algorithm used throughout the study

is Q-learning.

This project is important to the current work as it shows an interesting speed-up

in keeping RL out of the main evolution loop. Rather, it takes the champion of the

given evolution process and uses only this to train on a more direct implementation

of the environment. The champion program also has an advantage from evolution,

as it has a decomposed plan of a simulated version of the environment. This reduces

the time that would be otherwise spent in time step by time step exploration by a

classical RL agent. This work introduces a core concept for the current project; using

GP to plan and RL to optimize.

2.4.5 Elfwing et al.

Elfwing et al. trained a hierarchical RL (MAXQ) agent to solve various foraging

tasks on real robots [10]. Hierarchical RL involves designing a number of subtasks

based on a larger task for an agent to learn a policy of the larger task. The difference

between normal hierarchical RL and this study was that rather than a human subtask

designer, Elfing et al. used GP to design the sub-tasks [10].

It is also mentioned that the evolutionary search in GP constructs an abstracted

representation of the state space, which is increasingly useful as the number of di-

mensions in the state space increases [10].

Similar to Iba’s work, Elfwing et al. show an abstracted form of planning in order

to make RL more efficient.

2.4.6 Mabu et al.

Mabu et al. propose an algorithm called Genetic Network Programming (GNP),

which is a fundamental extension of GP, where programs are represented as graphs.

A GNP program is comprised of judgement and processing nodes. Judgement nodes

will determine which node is executed next based on some condition while processing
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nodes will execute an actual action [15]. Nodes are preserved between programs,

the genes for each program in the population are different combinations of node

connections. This creates programs that are compact and efficient for evolution [15].

GNP is initialized by choosing the nodes, then randomly selecting connection genes

for each program in the population.

On top of GNP, Mabu et al. propose a variation which uses RL, called RLGNP,

to introduce online learning to derive a policy which acts as a path of execution with

a program [15]. This is actually an extension of another online GNP algorithm they

created, which was inefficient due to the large size of its Q-table. RLGNP programs

create their own Q-tables, as each of a program’s nodes is considered a state, and

actions involve choosing which function on a node to execute. Each node contains

multiple functions which are executed according to the agent’s policy.

This variant of GNP thus evolves skeletons of programs, which RL optimizes by

finding a path of execution to solve the given task [15]. An advantage to this is that

evolution carries the weight of finding a diverse population of candidate solutions

for RL to optimize; GP and RL work together to compensate for inefficiencies they

otherwise have.

The GP in this algorithm establishes graph structures representing a subset of

functions (actions) out of a broader selection of functions. In some ways, this is just

another use of GP decomposing the state-action space in order to reduce the size of

the Q-table for RL. RL is then used to find a policy which guides the execution of

the program to solve a given task.

Overall, there are some important observations to be taken from Mabu et al. that

contribute to the current work:

1. GP excels in broad, parallel searches that have the ability to find diverse

populations of programs.

2. RL excels in intensified searches for optimizing local systems.

3. Storing information relating to Q-values and policy on a decomposed repre-

sentation of the environment saves a substantial amount of space compared to the

tabular Q-table; especially while dealing with large state spaces.
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2.4.7 Summary

This subsection is meant to provide a summary of the findings relating to hybrid

algorithms. The summary will be presented as a series of key points to be analyzed

in the following section.

The first key point is that GP excels at searching for diverse populations of can-

didate solutions in a large environment. The compact representation of programs

allows for efficient evolution amongst many programs. Moreover, GP’s credit assign-

ment may only commence after a termination condition is encountered (or episodic

updating). RL, on the other hand, excels at optimizing local solutions through credit

assignment over local rewards. These two components complement each other, as

GP can decompose the state space to make RL more efficient, while RL can optimize

candidate champion solutions constructed during evolution through online learning.

The second key point observed from the review is that saving policy information,

such as Q-values, on decomposed representations of state spaces, reduces the required

physical space for a Q-table. Traditional Q-tables must save information for every

state-action pair, which is often redundant (when the state space is abstracted) and

can lead to scaling issues on larger tasks. A proper decomposed representation of a

task is able to maintain all key features while reducing the number of actual states

to explore; compensating for the curse of dimensionality RL suffers from.

Lastly, hybrid algorithms have the capability of using planning mechanisms similar

to DynaQ [24]. This involves the GP part of the algorithm using evolution to search

for an abstracted representation of the environment, to be used as a model for RL. RL,

in these cases, then only has to find solutions from the champions of evolution; thus

bringing RL outside of the evolution loop. For this type of implementation, the RL

agent learns within a simulation of the real environment (the searched model) rather

than directly from the environment itself. As shown in Elfwing et al’s work, this also

eliminates the need for any sort of human designer of the model, for model-based

learning [10].
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2.5 Implications to Current Work

For context going into the remainder of this chapter, the current project’s general

structure can be found in Figure 1.1 in the previous chapter. To review, a team

is comprised of a varying number of modules. A module holds a program, a cor-

responding action-set, and a Q-table to pair them during RL. The program itself is

comprised of a 1-dimensional region, as well as an associated fitness score. The region

is abstracted directly from the environment during evolution (region construction) in

GP. A champion team should compile these modules into a complete abstraction of

the world, where a subset of modules creates a pathway (of regions) from the start of

the world to the goal. As mentioned, it is up to the RL agent to derive a policy that

maps that subset.

This section will review the key points introduced regarding GP, RL, and hybrid

algorithms. After that, the section will discuss the current project with respect to

the presented background.

GP is a family of algorithms within the realm of EC which involves a population of

programs evolving toward a solution. GP is particularly advantageous as it allows for

variable-length representations of solutions. These algorithms are offline, meaning

the quality of a candidate solution will be assessed after performing over a whole

generation, usually with an ability-judging function known as fitness. GP algorithms

will typically initialize a randomly seeded population of programs and manage their

evolution toward a solution over many generations. GP solutions excel at broad

searches of large spaces in order to achieve a diverse population of solutions.

RL algorithms typically involve a single agent learning a policy in environments

that can be described with MDPs. A policy is a state-action mapping over the

whole environment which acts as the main decision-maker for the agent. The policy

itself is usually derived using some sort of approximation of the actual value of the

current state of the agent. The environments themselves will return some local reward

signal and new state with each input action to drive learning for the agent. A specific

example of RL, Q-learning, derives policy to directly approximate the optimal action-

value function, independent of policy; all while using TD updates to support online

learning [24]. To track the Q-value for each state-action pair, a typical Q-learning

solution may store these values in Q-tables. The disadvantages to RL are that it
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does not typically train multiple agents within one training session, and a lot of

resources may have to be allocated toward exploring the given environment. Q-

learning itself struggles with space efficiency while dealing with larger Q-tables within

larger environments. RL, and Q-learning, do however thrive in intensified, local

searches in order to optimize some sort of action-selection process.

In this project, the scope of hybrid algorithms is algorithms which combined RL

and GP. The hybrid algorithms presented typically involve optimizing some sort of

action selection process within an evolved, or evolving, program. This project has a

particular focus on hybrid algorithms that search, or plan, using GP, then use RL to

find an efficient solution from the evolution’s champions (outside of evolution). The

current project uses the strategy present in various hybrid studies which involve effi-

ciently searching for an array of candidate programs through evolution, to optimize

a path of execution within the champions. This method highlights the advantages of

both GP and RL, while also allowing each algorithm to rely on the other to compen-

sate in the areas where they lack capacity.

It is usually observed that the evolutionary search process from GP creates pro-

grams which act as a decomposed representation of the state space. This concept will

be discussed again, but it is important to also note the advantages this yields for Q-

learning. Q-learning is no longer cursed by the dimensionality of a larger state space.

The algorithm’s modules can now act as the source of action-value information, which

alleviates the need for an ever-growing Q-table. Thus, the modules themselves are

considered to be developing these smaller Q-tables, as they will contain a subset of

the original state space, with a reduced amount of actions available for selection. This

advantage is also highlighted by Mabu [15]. Q-updates are also more efficient as they

are directly on the program, rather than requiring a potentially expensive number of

Q-table look-ups.

Overall, the current literature on hybrid algorithms provides a look at the advan-

tages of a pipeline which executes GP and RL. The current project aims to utilize

these concepts to expand on these ideas, as well as fill in some gaps that are present

within this area. The concepts the current project will focus on will be discussed for

the remainder of the section, first by unpacking the project’s hypotheses. The motive

behind the current project will be demonstrated in the two hypotheses presented in
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the following sections.

2.5.1 First Hypothesis: Abstracted Preservation of Local

Environmental Information for Policy

To act as a candidate solution during evolution, a team must provide some sort of

representation of the task in order to give a meaningful solution. For a team to pro-

vide this meaning, it must collect and save information about the environment with

respect to the current solution. A program can save this information within the in-

ternal parameters of its region. In the current project, regions will be parameterized

from the local reward signal within the environment, to be directly contextualized

by the environment. During evolution, regions will be constructed as 1-dimensional

region sets to act as abstracted states, specifically for the RL agent. These regions

will accumulate local reward to contribute to fitness, in order to preserve the environ-

mental context that the local reward provides the task. In most of the reviewed work

relating to EC and GP, programs are initialized with random parameters (random

solutions), thus no context of the environment itself. It is hypothesized that build-

ing out candidate solutions based on the context of the current environment (local

reward) will allow an RL agent to learn policy using champion solutions as models of

the environment. This context is important to be maintained in solutions as the RL

agent will use them to learn. This environmental context can thus be moved through

the algorithm via local reward to further couple programs and RL.

The programs in this project use inequality operators to create regions in order to

further decompose the state space. This representation will break the 2-dimensional

state space into a set of 1-dimensional regions, where RL will be used to select one

action for each region, treating each region as a state. Downing’s GP [7] follows a

similar structure, as shown in Figure 2.2, where the state space is broken into regions.

However, there are some differences between this algorithm and Downing’s work:

1. The search spaces in the current project will not use subgoals to further push

programs or agents toward making meaningful regions and policies.

2. The regions formed by programs will strictly be one dimension lower than

the task. That is to say, the modules correspond to 1-dimensional regions of a 2-

dimensional grid world in which pairs of actions can be applied to traverse the region.
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With stricter regions and a lack of subgoals, the current project must use other

techniques to pass environmental context from the environment onto the agent.

2.5.2 Second Hypothesis: Reduction of Direct Environmental

Interaction

It is hypothesized that the champion teams will provide abstracted representations

sufficient enough to preserve environmental information for a learning RL agent. As

mentioned, the local reward signals are passed through as the reward held on the

program (summed to team fitness), allowing the environmental feedback to remain

accurate even with a model. This use of model-based RL should also reduce the direct

environment interactions the hybrid algorithm makes during learning because there

are no longer any direct RL interactions with the environment. The metric of direct

environmental interaction was not one often discussed in the reviewed research. This

lack of mention is despite reduced interactions being a potential strength of these

types of algorithms, as evolutionary algorithms are able to abstract state space for

RL. The closest use of this hybrid model-based learning technique was applied while

evolving solutions to save on real robot interactions [12]. As the tasks attempted in

this project do not deal with real-life noise, the agent can base learning entirely on the

evolved model. Although noise is not used in the current project’s tasks, the evolved

solutions come directly from the environment; any context, such as noise, that could

be lost using another simulation should not apply.

As mentioned for the current project, programs are not randomly initialized but

subject to parameterization through local rewards in an attempt to achieve a closer

relationship between the module’s region and the local reward signal. This is so RL

will be able to learn directly from the team as a model. Instead, the search process

during evolution (detailed in Chapter 3) builds modules from the ground up; they

start at the starting state of the task and iteratively grow from there. This further

couples the built program’s region and the reward signals in the state space, as the

proposed GP algorithm builds programs by directly slicing up the state space, and

assigning fitness according to the actual reward signal. As mentioned, this state space

context that is carried through allows RL to learn simply using the teams of modules

as a model of the original environment. It is hypothesized that this will significantly
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reduce the amount of direct environmental queries required while learning, as:

1. The RL agent will never directly touch the environment.

2. The GP search efficiently covers a lot of exploration so the agent can focus on

the intensified search of optimizing the champion solutions.

Overall, this project aims to build programs (thus teams) from the ground up via

iterative region construction (evolution) in order to keep a close relationship between

the regions and the local reward signal from the state space. This relationship is

important as the champion teams will act as models for the RL agent to learn a

policy appropriate for the real state space. Overall, it is hypothesized that an RL

agent should learn a policy from teams that represent the environment’s state space.

This type of team-based (model-based) learning is also expected to reduce the amount

of direct environmental queries needed for the agent to derive a policy, compared to

RL algorithms such as classic Q-learning and DynaQ [24].



Chapter 3

Proposed Technique

As discussed in the previous chapter, the current project has two main hypotheses.

The first hypothesis is that representation in GP will preserve the environmental

context of a task if local reward is used directly for credit assignment. The second is

that there will be a reduction in direct environment queries when RL is trained using

GP’s abstraction as a model. To test these hypotheses, an algorithm was developed,

called QTRB, that first evolves GP to construct a set of programs parameterized via

local reward, known as teams, which are passed to a Q-learning agent to be used as

a model to learn a policy for the given task.

As shown in previous chapters, Figure 3.1 depicts a high-level representation of a

sample solution based on QTRB’s implementation. To reiterate, a candidate solution,

or team, is comprised of a varying number of modules. The team is built iteratively

through evolution; a champion solution is a team that is able to solve the given task

with a relatively high fitness score. The module itself is made up of a program and an

action-set. The module also holds information relating to the pairing of the program

and action-set during RL. Lastly, the program is comprised of a 1-dimensional region

and a fitness score, which are both constructed during GP.

The following sections will discuss the finer details of this structure, as well as

describe exactly how GP and RL are applied to it in the current project.

3.1 QTRB Overview

This section will provide a detailed overview of QTRB to investigate the current

project’s hypotheses. The terminology presented throughout will be relative to the

scope of the model, depicted in Figure 3.1.

During GP, a population of teams evolved according to specified stop criteria,

constructing modules throughout. The component of the module that was most

relevant to GP was, of course, the program. As mentioned, each program had a

35



36

Figure 3.1: As shown in the Introduction chapter, a high-level depiction of the model
developed in the current project. A program holds information about the environment
in the region, along with a reward. A module holds a program and a corresponding
action-set, along with some information for RL. The team holds a variable number
of modules as well as a fitness score, which acts as a candidate solution in evolution.
A champion team will contain modules with regions that form a path from the start
of the grid world to the goal.
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region, thus after evolution, a team would have a set of programs (regions) which

covered the environment from the starting state to the goal. The fitness of each

region was parameterized by local reward directly from the environment. A fully

developed set of modules, or champion team, could thus be used as a model to deploy

an RL agent. The fitness of each module was used as reinforcement signals for the

Q-learning agent during this model-based learning. Using these reinforcements, the

Q-learning agent assigned each module’s action a Q-value in relation to its region.

This ultimately associated action value with specific regions (within each module), to

derive policy. This policy allowed the agent to successfully navigate the task, using

a subset of modules from a champion team. Algorithm 5 provides an overview of

QTRB’s learning pipeline.

Algorithm 5 QTRB Overview. The team will construct a set of modules, each

program having a fitness based on environmental (local) reward signals. The RL

agent will then use that team as a model to learn the environment. Given a champion

team, the agent uses module fitness as reinforcement and assigns Q-values to the

module’s action-set to derive a policy. Local reward is passed through each step of

the algorithm, driving both evolution and learning.

1: Initialize reinforcement signals onto the local environment

2: GP module-building, fitness derived from local reward

3: RL Q-Learning, Q-values derived from module fitness

The result of QTRB, shown in Algorithm 5, involves GP developing a team to act

as a model of the environment for the RL agent to learn from. The respective fitness

of each module was used as reinforcement signals for the agent, as they were directly

derived from the environment’s local reward signals. This team-based learning ap-

proach reduces the number of Q-values required for the agent, as a single Q-value

was assigned to couple an action to a module’s whole region, rather than to each

individual state of the task. The agent can confidently couple an action to a region

because regions are 1-dimensional and should move the agent along in a single direc-

tion; it would be redundant to assign the same action to each individual state within

a region. As shown in Chapter 4, this team-based learning also allowed the agent to

learn from a model of the environment rather than learning from directly querying

the environment itself.
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The next sections of this chapter will provide an overview of each component

illustrated in Algorithm 5.

3.2 Reinforcement Signals

Although only requiring a brief discussion, reinforcement signals are extremely impor-

tant for deriving policy using parameterized programs. Reinforcement signals from

the environment, or local reward, will be passed from start to finish of QTRB. When

properly configured, these signals drive both evolution and learning throughout this

algorithm.

3.3 GP & Team Building

In the scope of QTRB, the goal of GP is to develop an abstract representation of the

original environment for an RL agent to learn from. GP is the only learning mecha-

nism of QTRB which directly interacts with the environment, so this representation

must capture enough environmental context for the RL agent to accurately learn.

Each champion team from GP consists of a constructed set of modules that can act

as such a model. This set of modules should contain a subset of modules that can

be used to make a path from the start state of the environment to the goal state.

Thus, GP’s goal is to iteratively expand its module-set so it is capable of solving the

given task set, all by constructing a single new module for every team in the current

population at each generation. Team building is still stochastic because regions can

be split, while still constructed through interaction with the environment. Since GP

is directly deployed onto the given environment, its fitness can be derived using the

reward at each state of the local environment itself. Algorithm 6 shows the process

in which a population of teams evolves to develop these module-sets.

The following subsections discuss various aspects of Algorithm 6.

3.3.1 Modules

During GP, a team’s fitness was assessed based on the sum of the fitness of the

programs in their module-set. These components of GP will be discussed, but it is
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Algorithm 6 Module Building GP Overview

1: Initialize and seed population

2: for gen in gens do

3: for team in population do

4: if team is not champion then

5: child = copy(team)

6: child.search()

7: if win then

8: child = champion

9: end if

10: population.compete(child)

11: end if

12: end for

13: end for

important to first introduce the module itself, as it is such a core part of this project’s

GP.

As mentioned, a single module consists of a set of directions, or actions, and a

program. The program consists of a region and a reward (as received upon param-

eterizing the region). The module also contains a table to pair Q-values between a

program’s region and the module’s action-set. A team developing the module, or

agent learning within the module, will only be able to move in any of the directions

given in the action-set. In this project, an action-set can either be North-South or

East-West.

The region within a program defines the range of movement an agent in the module

can travel to still be considered “within” the given module. For example, shown in

Figure 3.2, a given module has a direction set containing values for North and South,

and (4, 2) and (4, 4) of a two-dimensional grid world as its region’s lower and upper

bound, respectively. Within the grid world, an agent in this module would be able

to move to states (4, 2), (4, 3), and (4, 4), in the North-South direction. Every other

state of the grid world is considered to be outside of this particular module’s region.
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Figure 3.2: Shown is an example of a module in a 5 × 5 grid world. This module’s
region is highlighted in green and has an action-set of North-South. Given the selected
module, an agent would only be able to move within the highlighted cells to be
considered “within this module’s region”.

Establishing Action-sets

The logic behind the strict N-S or E-W action-sets comes from the program’s re-

gion always being a projection of a lower-dimensional region of the environment. As

this project only features 2-dimensional grid worlds, a region will only ever be 1-

dimensional. Within these 1-dimensional regions, action-sets will only ever take on

one of two directions, North-South or East-West.

3.3.2 Seeding population

During GP, a child is created as a copy of its parent, the selected team. For this cycle

of evolution to start, the population must be seeded with starting teams.

During this project, a team is seeded in the population with an empty region. The

action-set of this seeded team is important though, as it will determine the direction

in which the child can move.
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As mentioned, the teams in this project are limited to two options of action-

sets, North-South or East-West. A child will always sample the opposite direction

set of its most recently constructed module, thus the most recent module its parent

constructed.

3.3.3 Search

In this project’s scope, the search function refers to a team searching for (constructing)

a new module. This involves the given individual building and parameterizing a region

directly from the environment. Thus every time a team executes the search function,

a new module is added to that team’s individual module-set.

To add to the set of modules, the given individual must construct the action-set

and region. As mentioned, the action-set is found by sampling the opposite action-set

from the module created in the team’s most recent search.

The region itself is developed through several environment queries. First, the team

samples a starting state for its search based on the most recently constructed module.

On an implementation level, this may require splitting up the most recent module into

two modules, to compensate for the new region’s insertion. The new module will then

take steps on the environment according to the first action in the action-set. This

will repeat until the environment yields some negative reward signal. This negative

feedback indicates either the upper or lower bound for the module’s movement with

the chosen action in that particular part of the environment. The module will then

move using the other action in their action-set (always in the opposite direction of

the previous movement) until the environment yields another negative signal. Once

again, this marks either a lower or upper bound for the module’s developing region.

By testing the modules’s limits this way, the upper and lower bounds of movement

within the region on the environment are established given the directions of the

module’s action-set. Throughout a single search, the fitness of a given module is the

sum of all local reward accumulated from all states within that module’s region. This

algorithm is shown in Algorithm 7. Visual examples of this development process are

shown in Figures 3.3 and 3.4.

As mentioned, the nature of GP makes the overall module-building process an
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Algorithm 7 Search function in QTRB. Steps 1-5 initialize a starting point for the

module’s region, while the remainder is spent searching for the bounds of the region.

Note here that a state being “greater” than another state means it is further North

or East, depending on the direction of the module. Similarly, a state being “lesser”

than another state means it is further South or West.
1: env.curr = random(mostRecentlyMadeRegion)

2: if env.curr not mostRecentlyMadeRegion.lowerBound or mostRecentlyMadeRe-

gion.upperBound then

3: mostRecentFirstHalf = Program(min = mostRecentlyMadeRe-

gion.lowerBound, max = env.curr-1, fitness = mostRecent.fitness)

4: mostRecentSecondHalf = Program(min = env.curr+1, max = mostRe-

cent.max, fitness = mostRecent.fitness)

5: end if

6: min, max = env.curr

7: flip = 0

8: while flip < 2 do

9: (st+1), (rt+1) = env.step(actionSet[flip])

10: if state > max then

11: max = state

12: end if

13: if state < min then

14: min = state

15: end if

16: if rt+1 < 0 then

17: flip ++

18: else

19: env.curr = state

20: end if

21: R += rt+1

22: end while

23: team.module.program.region.max = max

24: team.module.program.region.min = min

25: team.module.program.rregion = R
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Figure 3.3: An example of searching with a North-South module. The grey squares
represent cells that yield some negative local reward signal, while the yellow squares
represent the module’s developing region; each column is a new action execution.
As shown, the module will sample a start state, then execute its first action until
a negative local reward signal is received. The module will then switch actions and
continue executing until a negative reward signal is received again. The result is the
module’s region.
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Figure 3.4: An example of searching with an East-West module. The grey squares
represent cells which yield some negative local reward signal, while the yellow squares
represent the module’s developing region; each row is a new action execution. As
shown, the module will sample a start state, then execute its first action until a nega-
tive local reward signal is received. The module will then switch actions and continue
executing until a negative reward signal is received. The result is the module’s region.
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iterative solution. This allows a snapshot of the parent to be preserved in the popu-

lation, in case the child’s module is not progressive in solving the overall task. Due to

this, the search each child partakes in acts as a sort of source of genetic variation to

the parent and their module-set. If this variation is valuable to solving the solution,

the child will survive in the population. If not, the child may be left behind while the

previous snapshot of it, the parent, could very well survive to the next generation;

having another chance at reproduction. Overall this allows children to experiment

with many different new module compositions while posing no damage to the original

structure of the parent.

3.3.4 Competition

After developing the new module, the child will compete against all other teams in

the population. This competition is based purely on the overall fitness of the given

team. As mentioned, the fitness of a team is the sum of the fitness of the programs

in its set of modules.

The team with the lowest fitness is removed from the population, and the rest

move on to the next round of sampling and searching until all teams from the current

generation’s starting population have reproduced. The process repeats according to

the given stop criterion of GP.

3.4 RL Part

Throughout the GP part of the algorithm, any team that solves the task is saved as a

champion. Once the GP stop criterion is satisfied, an RL agent will be deployed upon

the champion’s module-set to learn a policy to solve the task. Thus, the champion’s

module-set is used as a model for the RL agent to learn. The agent makes use of Q-

values to determine the value for each of a module’s actions associated with its region.

These Q-values are assessed at a region level, rather than for each cell covered in the

model, thus they can be stored on the module itself. The two main components of RL

in this project were the agent’s interactions with each module, and the way Q-values

were stored, both will be discussed in the following subsections.
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3.4.1 Module Interaction

During RL, a GP champion’s module-set acts as a model of the environment. Thus

through this model-based learning, the agent will never actually directly interact

with the environment, but rather with a champion’s abstracted representation of the

environment.

By deploying the agent onto the module-set, it can derive the value of region-action

pairs. As mentioned, the winning action is assigned to the whole region, rather than

each state within it. This is logically sound as cells in a 1-dimensional region will

always share the same direction, thus action, towards the goal. Thus, Q-learning finds

not so much the action of a region but the optimal direction for it. The overall goal

of this is to configure a subset of modules from the champion to “stitch” together a

path of regions (that move in the right direction) that go from the starting state of

the environment to the goal; this is the agent’s policy.

The agent selects actions within each region with ε − greedy action selection,

with the agent’s available actions being only those in the given module’s action-set.

ε− greedy action selection involved also choosing the action from the action set with

the higher q-value, unless an ε variable was sampled under a given threshold, in which

case the other action was sampled. It should also be noted that ε − greedy action

selection only occurred during training, otherwise, the agent just chose the action

with the highest q-value. This use of ε− greedy action selection will drive the agent

towards the higher value direction most of the time, but also leave room for some

exploration of the champion’s module-set.

The agent can transition between modules, to form the path from start to goal.

Module transitions are a core component of the RL in QTRB; it is the driving me-

chanic of “stitching” two modules together as it is when Q-value updates occur. The

policy will ultimately be a collection of module transitions that form a path from

start to goal. The nature of TD-learning will form a gradient of Q-values ranging

from start to goal, once the large reward from the goal is collected.

Transitions occur when the agent steps outside of the selected module’s region.

When this occurs, the agent will find all modules with regions (of the selected team)

that contain the agent’s current position in the model. The new module will be
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Figure 3.5: A conceptual breakdown of a region from the RL agent’s perspective. T1
and T2 are the cells in which a transition occurs, while between them is the region
itself.

randomly sampled from that set of modules. The agent’s selected module will transi-

tion to this sampled module. As mentioned, the transition is also where the Q-value

updates (stitching) occur, which will be discussed in the next subsection.

Figure 3.5 shows an example of how a module is represented during this process,

transitions occur when the agent reaches the denoted transition space. This decom-

poses every program during RL into the region itself and two “transition” cells. These

transition cells (T1 and T2 in Figure 3.5) will trigger on the first step the agent takes

that is outside its currently selected program’s region.

3.4.2 Q-Learning

Q-Learning is at the heart of this QTRB’s RL, without the ability to assign value to

a module’s actions, a module-set would otherwise be nothing more than a random

set of regions. The derived policy is simply a set of modules stitched together by Q-

values. The value the module-set brings to Q-learning is that Q-values are assigned

to an action associated with a whole region rather than to each cell within one. On

top of this, the Q-value is stored on the module itself. This is highly efficient for

module-action value look-ups, compared to a tabular approach.

It should be first noted that, because RL uses a model developed during GP, it

does not need to query the environment for reinforcements. Instead, reinforcements

are based on feedback from this model.

Throughout learning, the RL agent will assign the mentioned reinforcements only

to the actions in the action-set of the given module. It should be clarified that this
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reinforcement is simply used for inner-module action selection. As mentioned, e-

greedy action selection is used, which follows Equation 3.1. Following Equation 3.1,

β is the selected module’s action-set, and Q(*) are the keys associated with the

selected module’s action value pairs. ε-greedy action selection is incorporated as after

transitioning into a new region, the initial point within the new region might be

in the middle rather than at an end. More efficient schemes for investigating these

conditions are discussed in Chapter 5.

action =

{
argmaxa∈βQ(Mi, a) 1− ε

rnd(a ∈ β) otherwise

}
(3.1)

On the module level, the Q-value that matters is the action-region value assigned

to each module the agent transitions out of during RL. This value will represent the

winning action for the region from its module-set. Thus, the agent will know which

action to execute depending on which region it finds itself in, outside of training.

The action-region values are assigned using just the reinforcement given to the

agent upon a transition. Once again, action-region value updates occur here to avoid

having updates upon each state transition. The updates also support backpropagation

of Q-values, so that with enough training epochs, the action-region values will make

it clear not only which action to take given a module, but also which sequence of

modules must be taken to solve the given task. As mentioned, TD-learning will

create a gradient of Q-value from start to goal, such that following the increase in

gradient will lead to the goal. This explains the logic behind the concept of “stitching”

modules together and is the basis of deriving policy. The transition updates follow

Equation 3.2. In Equation 3.2, Q(*) are the keys to the values associated with the

values table stored on the module itself. Note that storing these values on the modules

rather than a larger table significantly reduces the time to query values.

Q(Rt, at) ←− Q(Rt, at) + α{rt+1 + γmax
a

Q(Rt+1, a)−Q(Ra, at)} (3.2)

Overall, Q-learning is used to ultimately derive policy as its backpropagation

mechanisms allow it to “stitch” a subset of modules together to create a directional

path from the start of the task to the goal. Figure 3.6 shows the regions in Q-value

space, further showing the value gradient that moves within modules from the goal
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Figure 3.6: The Q-space representation from how an RL agent learned a solution from
a GP champion’s model on a 5×5 grid world. Concerning the figure, the environment
start state is at (4, 0) and its goal is at (2, 4). The figure highlights the gradient of
Q-values formed as the value is backpropagated through a stitched-together subset
of modules. As shown, the modules closer to the start have a diminished return
compared to the Q-values received near the goal. The trajectory of the value function
is highlighted in this example.

back to the start. This also highlights the trajectory of the value function of an RL

agent after learning.1

3.5 Direct Environment Queries

As previously discussed, the RL agent learns from a model of the environment. This

model-based learning saves the algorithm from ever directly querying the environment

during RL.

A major strength of QTRB is highlighted when total environmental queries per

run are considered. All environment queries occur during module-building (GP),

where a model is developed. This use of model-based RL significantly reduces the

number of direct environment queries that would otherwise be necessary.

The total amount of environment queries per run follows:

1Note that Q-values are common to the same region, with the action of the module associated
with the region defining how to transition across the region.
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total direct queries = # iterations ∗GP each individual step

Where # iterations represent each time the population goes through a round of

searching.

Overall, the QTRB was designed with reducing environment queries in mind. The

module-building acts as a viable strategy to plan out a model in which an RL agent

can freely learn from without any cost to the total amount of direct environment

queries.



Chapter 4

Experimental Results

4.1 Results Overview

As discussed, the goal of this thesis is to develop an approach for incorporating local

rewards into genetic programming (GP) integrated with reinforcement learning (RL);

referred to as Team-based Region Builder with Q-learning, QTRB. QTRB involves

constructing teams by means of local reward (from interaction with the environment

during evolution), to be used as a learning model for an RL agent to derive policy. This

is a divergence from previous practices in which rewards are not used interactively

to adapt program representation (only used to rank individuals after an episode of

interactions ends). It is important to keep in mind that the tasks are limited to

2-dimensional grid worlds with North-South and East-West action-sets.

Along with an introduction to the environments, this chapter will develop various

thesis outcomes to support the project’s hypothesis that such policies can be found

efficiently. Specifically, this chapter includes some sample results for QTRB from a

variety of tasks, the average environment queries per run for each of those tasks, and

results from DynaQ for comparison.

Additionally, results are highlighted that illustrate the optimality of paths (poli-

cies) discovered, comparing different stop criteria in GP, and superimposing results

over many runs of a task in an attempt to map every state of the world with action.

Overall, these results act to show both the strengths and shortcomings of the QTRB.

4.2 Environments & Parameters

A wide array of experiments were executed to test the QTRB algorithm as described

in Chapter 3. As mentioned, QTRB was designed to solve 2-dimensional grid world

tasks. This project tested QTRB on a variety of such tasks, scaling in size and

difficulty. In total, experimental results have been recorded for two 5 × 5 tasks, two

51
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10× 10 tasks, fifteen combinations of 20× 20 tasks, and five combinations of 50× 50

tasks. The objective of all of these tasks is to move from the starting state to the

goal, all while avoiding obstacles and staying within the environment’s boundaries.

This section will discuss these tasks, as well as the parameters used for QTRB itself.

Before introducing the grid worlds, and discussing the difference in properties for

each size, it should be noted that all grid worlds define local reward in the same

way. For each legal move, the grid worlds yield a reinforcement of 0.1, while illegal

moves, such as bumping into walls, yield -0.01. Finally, the goal state of the grid

worlds, hence solving the task, yielded a reinforcement of 100. This reward function

is summarized in Equation 4.1.

rt+1 =

⎧⎪⎪⎨
⎪⎪⎩

100 if st+1 = Goal state

−0.01 if st+1 = Illegal state

1.0 otherwise

(4.1)

4.2.1 5× 5 and 10× 10 Grid Worlds

Shown in Figure 4.1 is a set of grid worlds (5× 5 and 10× 10 respectively) that come

from the discussed Downing’s work [7], and were implemented to compare his findings

with QTRB. As established in Chapter 1, the main difference between Downing’s

work and QTRB is that QTRB does not utilize subgoals to aid solution discovery.

Most importantly, QTRB interacts with the environment to discover modules that are

explicitly compatible with the task. These features provide QTRB with additional

abilities and potential biases that are investigated with a wider portfolio of mazes

than those used by Downing.

Figure 4.2 shows a custom 5×5 and 10×10 created for the sake of experimentation

during the project. The left of Figure 4.2 is a copy of Figure 4.1 (left) that is slightly

modified (the obstacle at (3, 2) is removed). This was to test the module-building

part of QTRB, the results of Figures 4.1 (left) and 4.2 (left) will be compared later

in the chapter.

Figure 4.2 (right) is a 10× 10 grid world which was implemented to challenge the

module-building nature of QTRB. In this figure, a team must find the exact opening

within an enclosed area to reach the goal. This figure was thought to be challenging as

module-building would have to rely on sampling a region’s starting state in the same
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Figure 4.1: Left: 5 × 5 grid world task with start state (0, 0) and goal state (4, 2)
(the bottom left corner is (0, 0)). Right: 10× 10 grid world task with start state (3,
0) and goal state (9, 4) (the bottom left corner is (0, 0)).

1-dimensional plane as one of the openings. This task may be easier for a traditional

RL agent, which would simply rely on exploration of each state to find the goal, so

finding the opening would be much less based on random chance.

4.2.2 20× 20 and 50× 50 Grid Worlds

Both the 20 × 20 and 50 × 50 grid worlds contained various aspects of random gen-

eration, overall to avoid any human bias that the creator of the task may have. The

start, goal, and obstacles were randomly displaced within the available grid world

space. The environments were generated with 20% obstacle coverage, 80 cells for the

20×20 and 500 cells for the 50×50 tasks. To further combat the chance of the QTRB

passing on a “lucky start and goal”, the start and goal state of each task was sampled

five times, thus each 20× 20 and 50× 50 “map” generated had five different versions.

The only human interaction while generating these worlds was a final approval to

ensure there was indeed a possible path from start to goal.

Figure 4.3 shows the 20 × 20 (left) and 50 × 50 (right) grid worlds that QTRB

was deployed within to find the results that will be shown in this section. The rest

of the 20× 20 and 50× 50 tasks can be found in the Appendix section at the end of

the thesis.
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Figure 4.2: Left: Modified version of Figure 4.1 (left). It is the same everywhere
except it has a “hole in the wall”, the obstacle at (3, 2) was removed. Right: 10× 10
grid world task with start state (4, 0) and goal state (4, 4) (the bottom left corner is
(0, 0)).

4.2.3 GP and RL Parameters

The parameters used to collect these results, organized by task size, are shown in

Table 4.1; each parameter will be briefly described for reference. The task size specifies

the length of each dimension of the grid world in the given task. # Runs are the

number of runs the full algorithm (GP to RL) was run on the given task, most results

are presented as an average over this parameter. # Gens refers to the maximum

number of generations the GP part of QTRB could run for before stopping. Max

Population is the maximum number of teams that can exist in the population at any

given time during a run. # of Epochs refers to the number of steps the RL agent has

in each episode during learning, this thus determines the number of value function

updates it can make. α represents the learning rate of the RL agent, from Equation

3.2. From the same equation, γ refers to the rate at which the value of reward in

future time steps are being passed back to the given Q-value is diminished. Lastly,

ε refers to the chance of the RL agent selecting a random action, as described in

Equation 3.1.
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Figure 4.3: Left: 20 × 20 task. Right: 50 × 50 task. Both tasks were used to find
results presented in the Results chapter, to represent their respective task size. A
larger image of the 50× 50 as well as additional tasks with these sizes can be found
in the Appendix.

Table 4.1: Parameters used for both GP and RL parts of QTRB, grouped by envi-
ronment size.

Task Size # Runs # Gens Max Pop. # Epochs α γ ε

5× 5 30 50 5 5 0.5 0.9 0.1
10× 10 30 100 5 10 0.5 0.9 0.1
20× 20 30 150 5 20 0.5 0.9 0.1
50× 50 30 200 5 50 0.5 0.9 0.1

4.3 QTRB Results

This section will provide insight into QTRB’s performance from GP to RL. It will

provide fitness curves, as well as sample policy and Q-value maps for each figure

specifically discussed in the previous section.1 These runs all follow the parameters

above, using a generational stop criterion for GP. These policy maps will be used

frequently throughout this chapter to show the results of RL on QTRB, so it should

be noted here that a question mark represents states on the task QTRB did not visit

during exploration of the task, and an X on the map represents an obstacle. The

1The fitness curves are based on the sum of reward described in Equation 4.1
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Figure 4.4: QTRB Results from Figure 4.1 (left). Shown from left to right: GP fitness
curve, policy map, and Q-value map. The starting action was East.

Figure 4.5: QTRB results from Figure 4.1 (right). Shown from left to right: GP
fitness curve, policy map, and Q-value map. The red boxes were added to better
visualize the path found by Q-learning The starting action was West.

Appendix provides these QTRB results for the tasks listed there as well. The results

are shown in panels, from Figure 4.4 to Figure 4.10.

These base results alone support the hypothesis that parameterizing programs via

local reward signals can be used as a model to derive task-solving policies. This is

especially evident in the policy maps themselves, as they show the paths the agent

has formed from the start to finish.

The fitness curves simply show the convergence of GP onto a solution, usually in

fewer generations than provided. Future work may include minimizing the number

of generations needed to create a viable module-set, to further reduce the number of

environmental queries taken during GP. Needless to say, the number of generations

used for each run was not heavily tuned throughout this thesis, so the parameter used



57

Figure 4.6: QTRB results from Figure 4.2 (right). Shown from left to right: GP
fitness curve, policy map, and Q-value map. The red boxes were added to better
visualize the path found by Q-learning The starting action was West.

Figure 4.7: QTRB results from Figure 4.3 (left). Shown from left to right: GP fitness
curve and Q-value map. The corresponding policy map can be found in Figure 4.8
for ease of visualization.
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Figure 4.8: Policy map for Figure 4.3 (left). The red boxes were added to better
visualize the path found by Q-learning. The starting action was West.
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Figure 4.9: QTRB results from Figure 4.3 (right). Shown from left to right: GP
fitness curve and Q-value map.

might not be optimal.

The Q-value maps themselves show the Q-value gradient being passed down from

region to region of a team. The nature of the Q-learning updates will give the re-

gion which reaches the goal the most value, but that value will “trickle down” (TD

learning) into the regions which were visited on the way to the goal, as shown in

the Q-value maps of Figures 4.5 and 4.6. This visualization provides support to

the previously discussed concept of modules being “stitched” together during RL, to

form a viable path from start to goal. Additionally, different paths are clearly being

considered using the Q-values associated with different module regions. Overall this

provides evidence of the importance of the use of reinforcement signals throughout

this project.

With reference to the policy maps in Figures 4.5 and 4.6, QTRB is exploring the

grid world while also being capable of discovering the shortest paths. The approach

QTRB adopts for parameterizing modules can result in large steps to different parts

of the grid world. On the other hand, this does not prevent those modules from being

divided up to discover different paths through the grid world.
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Figure 4.10: Policy map for Figure 4.3 (right). The red boxes were added to better
visualize the path found by Q-learning. The starting action was East.
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4.4 Optimal Paths

This section will provide insight into the quality of the paths the selected champions

were able to find throughout QTRB’s experimentation. In the scope of the current

project, the optimal path simply refers to the shortest possible path from the start

of the task to the goal. The optimal step count was derived from finding the optimal

path from start to goal in the given task, and counting how many cells (steps) were

in the given path. Table 4.2 provides the number of steps within the optimal path for

each task. The number of steps taken from start to goal in a chosen sample policy

for each task will be provided for comparison. These samples were chosen out of all

other policies based on which had the shortest number of steps. It should be noted

that these paths align with the sample policies presented for each task, in both this

chapter as well as the Appendix, the tables will provide pointers to each figure for

ease of reference.

The sample QTRB policy step counts presented in Table 4.2 highlight the capa-

bility of QTRB high-quality paths, but are biased towards just the best results. In

order to broaden the scope of this metric, Table 4.3 presents some statistics for all

policies (in a given task); depicting the quality of the average path found for each

task. Though never as accurate as the step counts of the “champion of champions”

from Table 4.2, the average step count for QTRB as a whole is typically not far from

the theoretical optimal step count.

4.5 DynaQ Results

As discussed in the Background chapter, the DynaQ algorithm has a look-ahead

planning mechanism that allows it to learn from a model of the environment. In this

project, DynaQ was deployed on the previously mentioned tasks to set up a suite of

results to compare the results of QTRB. For each task, DynaQ was deployed with

planning steps of 0%, 2%, and 5% of the total cell count. It should be noted that

DynaQ with 0% planning steps is just traditional tabular Q-learning; this allowed for

a base RL algorithm to be analyzed as well.

Figure 4.11 shows the DynaQ on Figure 4.1 (left). Figure 4.12 shows the DynaQ

on Figure 4.1 (right). Figure 4.13 shows the DynaQ on Figure 4.2 (right). Figure 4.14
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Figure 4.11: Log base 10 steps per episode curve for DynaQ deployed on Figure 4.1
(left) at varying numbers of planning steps.

shows the DynaQ on Figure 4.3 (left). Figure 4.15 shows the DynaQ on Figure 4.3

(right). The number of environment queries taken to solve each task will be compared

with QTRB in the next section.

4.6 Average Direct Environment Queries Comparison

For the scope of this project, a direct environment query refers to any single inter-

action a team or agent makes with the environment during any part of QTRB. The

most common example is an agent stepping through an environment during learning,

to yield the new state given the step, as well as some reinforcement signal representing

the value of the step.

A clear advantage of the GP-model-based RL used in this project is the reduced

number of environmental queries needed to derive policy. As mentioned in previous

chapters, this is because the “module-stitching” (policy building) in RL is free in

terms of direct environment queries. RL can also trust that a team’s model is an

accurate representation of the task, as the team’s modules are parameterized directly

from the local reward abstracted directly from the original task.
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Figure 4.12: Log base 10 steps per episode curve for DynaQ deployed on Figure 4.1
(right) at varying numbers of planning steps.

Figure 4.13: Log base 10 steps per episode curve for DynaQ deployed on Figure 4.2
(right) at varying numbers of planning steps.
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Figure 4.14: Log base 10 steps per episode curve for DynaQ deployed on Figure 4.3
(left) at varying numbers of planning steps.

Figure 4.15: Log base 10 steps per episode curve for DynaQ deployed on Figure 4.3
(right) at varying numbers of planning steps.
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The total direct environment query per run for each of the previously discussed

tasks is shown in Table 4.4 for both QTRB, as well as the mentioned DynaQ al-

gorithm at various planning steps. As shown, this algorithm uses significantly fewer

environment queries, especially compared to DynaQ at 0% planning steps (traditional

Q-learning).

Moreover, the tasks in Figures A.10 and A.44 are instances of 20× 20 and 50× 50

maze configurations, respectively. The cost of applying DynaQ under the larger

mazes is clearly considerable. However, it should also be noted that introducing

other heuristics into DynaQ such as Prioritized Sweeping or Trajectory Sampling

would improve the sampling of DynaQ [24].

4.7 No Reinforcement Signals

To further show the importance of the environment’s local reward signals to use as

evidence to support the QTRB efficiency hypothesis, an experiment was conducted

to test how having no reinforcement signals would affect policy.

For the sake of simple visualizations, the experiment was deployed on Figure 4.1

(left), as the effect on the smaller task would be easily obvious. Any accumulation of

local reward by regions was set to 0. All other parameters used in this experiment

were the same as those used for deploying QTRB during the base experiments.

Figure 4.16 (left) shows the resulting superimposed policies of (non-champion)

teams from this experiment. Additionally, Figure 4.16 (right) shows the fitness curve

for this instance of evolution. Figure 4.16 (left) is the best representation of the result

for this experiment, as it clearly shows that the agent was not able to form a policy

robust enough to solve the task, nor even escape the first row of the maze. On top

of that, Figure 4.16 (right) further shows that the team’s fitness solely relies on local

reward. The importance of reinforcement signals is shown in contrast between this

policy map and the policy map shown for the base results on the same task in Figure

4.4. Overall, this shows the importance of local reward signals for both GP and RL

in QTRB.
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Figure 4.16: Policy map and fitness curve of QTRB deployed onto the task on the left
of Figure 4.1. The task was modified so that any accumulation of reward by regions
was set to 0.

4.8 Stop Criteria

The figures shown in the base results section were based on GP with a generation

count stop criteria. This means that if QTRB has not found a solution within a

certain number of generations, it will fail. With that being said, many other stop

criterion can be used during GP, which may result in benefits to the quality of the

policy found in Q-learning. An alternative stop criterion that was briefly investigated

was the population’s average region coverage. For example, GP would stop only

when the average region coverage (of the given grid world) amongst teams in the

population was 80%. The resulting policy for this case is shown in Figure 4.17, for

QTRB deployed onto Figure 4.1 (left). Once again, this figure was chosen for sake of

visual simplicity.

The benefit of a region coverage stop criterion is that it can be used to minimize

the number of modules used in a champion team. This is because a team with a

relatively small stop coverage will only ever reach the goal if it finds an optimal path.

This however results in many teams developing module-sets that cover too much

space; thus unable to ever reach the goal. This particular stop criterion can thus

be used to precisely find optimal paths, with the caveat of populations as a whole

having much less success, compared to the generational stop criteria. An example
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Figure 4.17: Example policy derived from average coverage stop criteria on task shown
in Figure 4.1 (left). The starting action was East.

of this is shown in Figure 4.18, where a very efficient policy was found in Figure 4.1

(right). This solution had a reduced number of steps compared to many other possible

solutions, using only 243 environmental queries to solve the task. The stop criterion

was set to stop when teams averaged 40% coverage. Although this single team was

able to find a highly efficient policy, it was the only team in the population over 30

runs to be able to solve the task. Overall this shows the strengths and weaknesses of

this particular stop criterion. Furthermore, there are many possible stop functions to

be examined in possible future work, all having trade-offs affecting policy.

4.9 Superimposed Over Many Runs

Another interesting trait QTRB possesses is the ability to construct paths to the goal

from many visited states during Q-learning. This is especially interesting when the

policies from champion teams over many runs are superimposed into one policy map.

Two examples of this are shown in Figures 4.19 and 4.20. The two tasks shown in

this figure were chosen to demonstrate this feature for two reasons:

1. visual simplicity

2. more importantly, different solutions exist within the tasks.

For both tasks, QTRB was deployed 30 times, all superimposed to one policy map.

The superposition operator takes the form of the action direction corresponding to the
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Figure 4.18: Policy map of algorithm deployed on the task shown in Figure 4.1 (right)
set to stop GP at 40% average population region coverage. The total environmental
query for this run was 243 queries. The starting action was West.
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Figure 4.19: Superimposed policy maps over 30 runs of QTRB for the task shown in
Figure 4.2 (left). The starting action was East. This figure shows QTRB’s ability to
reach the goal from a large percentage of states it has visited during RL, though at
a trade-off of the sum of environmental queries over all runs. 100% of the actionable
states can make it to the goal in this task.

majority of the non “?” actions suggested for that cell. Naturally, other superposition

operators could be defined.

Though these superimposed solutions show a policy that leads the majority of

states to the goal, there are some drawbacks. There is a trade-off in the efficiency of

QTRB while creating these figures. The environmental query totals are increased by

a multiple of the number of runs on QTRB, making the total query efficiency:

total queries = # runs ∗# gens ∗GP individual steps

This is ultimately due to the nature of GP in QTRB; most champion teams in

a population of a single run will converge to a single solution. This typically results

in similar policies among agents from the same run. While this trade-off must exist

in this project due to the hard converging nature of GP, recommended future work

suggests the introduction of some genetic variation operators. As discussed further

in Chapter 5, this would allow QTRB to have a variety of policies within a single

population of champions after Q-learning. Overall genetic variation operators may

eliminate the drawback in efficiency these superimposed solutions currently have.
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Figure 4.20: Superimposed policy maps over 30 runs of QTRB for the task shown in
Figure 4.1 (right). The starting action was West. This figure shows QTRB’s ability
to reach the goal from a large percentage of states it has visited during RL, though at
a trade-off of the sum of environmental queries over all runs. 94% of the actionable
states made it to the goal in this task. The red boxes were added to better visualize
the optimal path from start to goal.
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Table 4.2: Number of steps needed for the shortest possible path from start to finish
(optimal path) compared with the number of steps the sampled champions teams
policies contained. The comparison is provided for each presented task in this project
(see Appendix).

Task Optimal
Step Count

Sample Policy Policy Step
Count

Generation

5× 5 Maze
4.1 (left) 10 4.4 10 5
4.2 (left) 6 4.19 6 4

10× 10 Maze
4.1 (right) 20 4.5 20 47
4.2 (right) 10 4.6 10 14

20× 20 Maze
A.1 18 A.3 18 5
A.4 19 A.6 19 14
A.7 9 A.9 13 7
A.10 21 4.8 29 45
A.11 9 A.13 9 12
A.14 20 A.16 20 49
A.17 20 A.19 28 76
A.20 29 A.22 29 27
A.23 10 A.25 10 21
A.26 19 A.28 23 33
A.29 16 A.31 16 15
A.32 13 A.34 15 33
A.35 17 A.37 17 9
A.38 20 A.40 20 16
A.41 8 A.43 8 4

50× 50 Maze
A.44 73 4.10 75 89
A.45 57 A.47 69 42
A.48 44 A.50 60 33
A.52 46 A.54 46 130
A.55 36 A.57 40 45
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Table 4.3: Number of steps needed for the shortest possible path from start to finish
(optimal path) compared with the average steps over the task’s RL winners. The
comparison is provided for each presented task in this project (see Appendix).

Task Optimal Step Count Step Count Average Step Count
Std. Dev.

5× 5 Maze
4.1 (left) 10 10 0
4.2 (left) 6 7.4 1.9

10× 10 Maze
4.1 (right) 20 24.5 3.2
4.2 (right) 10 15.8 5.4

20× 20 Maze
A.1 18 22.8 4.1
A.4 19 25.1 5
A.7 9 23.5 10
A.10 21 29.7 5
A.11 9 11.2 3.4
A.14 20 33.8 9.5
A.17 20 35.9 2.6
A.20 29 31.5 2.6
A.23 10 19 11
A.26 19 24.7 3.2
A.29 16 24.45 10.5
A.32 13 25 4.6
A.35 17 27.2 7.2
A.38 20 30.2 10.1
A.41 8 12.8 7.9

50× 50 Maze
A.44 73 85.9 6.7
A.45 57 80 5
A.48 44 62 7
A.52 46 61.7 12.9
A.55 36 59.25 11.8
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Table 4.4: Total environment queries on various tasks for various algorithms for
comparison.

Task QTRB DynaQ 0% DynaQ 2% DynaQ 5%

Fig 4.1R 2444 17320 4506 3775
Fig 4.1L 409 1961 1944 1108
Fig 4.2R 1962 4077 1936 1196
Fig A.10 2828 27115 4107 4360
Fig A.44 7041 340717 21288 14009



Chapter 5

Conclusion

5.1 Summary

This thesis consisted of developing a novel algorithm that is able to use Q-learning to

derive policy from teams of modules parameterized with local reward signal. Named

QTRB, the algorithm was able to solve a variety of grid worlds, ranging in size from

5× 5 to 50× 50.

As discussed in previous chapters, the original rationale behind developing QTRB

was to address shortcomings observed in traditional GP algorithms. GP solutions are

typically randomly initialized for learning, thus there is no guarantee they will align

with the properties of the task they set out to solve. During evolution in QTRB,

solutions are built from the ground up in order to reflect the physical structures and

laws of the task. Local reward is what drives this non-random construction, which

conveniently allows RL algorithms, such as Q-learning, to derive information from

the evolved solutions in order to find optimal paths within them. Given the structure

of candidate solutions, this learning is usually much more efficient than traditional

tabular RL.

The thesis set out to answer the following research questions with respect to the

mentioned rationale:

1. Are local rewards sufficient for parameterizing states and actions into useful

modules from which entire policies can be constructed?

2. Once a module encounters the goal state, is Q-value propagation sufficient for

optimizing the plan defined by the set of modules comprising the team?

3. What implications are there for the sample efficiency of the resulting population

of teams?

The next section will provide the findings in relation to each of these questions

in reference to the presented results in the previous chapter. The sections to follow

are the implications of such discussion, then recommended future work to improve

74
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QTRB.

5.2 Interpretations

This section aims to analyze the results presented in the previous chapter, with respect

to the main research questions of this study.

Are local rewards sufficient for parameterizing states and actions into

useful modules from which entire policies can be constructed?

The original hypothesis paired with this question was that local rewards would indeed

be sufficient for constructing such modules. The collected results for QTRB support

this hypothesis. This was touched on in the results section, but to reiterate, the

policy figures for each task (shown in Chapter 4 and Appendix A), provide sufficient

evidence that entire policies can be derived by the teams constructed in QTRB.

The fitness curves shown for each task also support the success of the iterative

module-building nature of QTRB. As the stop criteria (generations or task coverage)

went on, the fitness curves typically increased and usually converged at a value close

to the goal value. This implies that the modules built around the environment were

able to grow from start to goal; obtaining enough of a meaningful abstraction of the

environment for the Q-learning agent to use to derive policy. The exceptions to the

fitness rules will be discussed in the following section.

Additionally, the local reward was shown to play a crucial role in parameterizing

the modules. This is highlighted in Figure 4.16, where the policy derived by QTRB

without reward parameterization of modules is next to nonsensical in the context of

the environment. This supports the theory that local reward is the driving factor of

linking constructed modules with environmental meaning.

Once a module encounters the goal state, is Q-value propagation

sufficient for optimizing the plan defined by the set of modules

comprising the team?

The hypothesis for this research question was that Q-value propagation would be

sufficient in optimizing a team’s set of modules. The so-called “bucket brigade” effect
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of reward being passed from region to region, though diminished in each pass, is

clearly shown in the Q-value map figures for each task. This clearly supports the

hypothesis as most of the thesis Q-value maps roughly resemble a clear path from

start to goal, and occasionally even go as far as being copies of the policy figures

themselves.

The Q-value propagation highlights that Q-learning can indeed be used to not

only stitch together the modules constructed during evolution but find the best path

of modules to take from start to goal. This is shown in the policy figures throughout

but is best visualized in both Table 4.2 and 4.3, which shows the cell counts of the

optimal path for a task, compared to the length of the path a QTRB run was able

to find. Although QTRB becomes somewhat less accurate as the task size scales

(still usually within 20 cells), overall the paths Q-value finds for policies are either

optimal or very close to it. Though originally unintended, this finding goes beyond

the original hypothesis and is quite an impressive metric of success for QTRB.

The last set of results that supports the effective use of Q-value propagation is the

figures and tables relating to the superimposed module-sets after RL. This supports

the overall effectiveness of Q-learning in QTRB in a less concentrated way than the

optimal path search does. Although much less efficient to find than those of a single

run, the superimposed figures show the QTRB’s ability to abstract environmental

meaning from anywhere in the task. Once again, these findings were not an original

intention of QTRB, but further highlight the effectiveness of pairing the GP technique

and Q-learning.

What implications are there for the sample efficiency of the resulting

population of teams?

Given the nature of QTRB, the hypothesis for the final question was efficiency would

be a strength of the algorithm in terms of total direct environmental queries needed

to derive policy. As mentioned, Q-learning can be deployed on the module-set rather

than the actual environment itself. This allows for the agent to learn from a model,

which reduces the need for any actual direct environment queries taken during any RL

in QTRB. Thus, the direct environmental queries taken during evolution are the only

queries that contribute to the total environmental queries in each task. It should also
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be noted that the totals can drastically change as the maximum team population

increases; this should be considered during hyperparameter tuning if maintaining

efficiency is of interest.

The query totals taken during evolution in QTRB are displayed in tables through-

out the Results chapter. In order to test these totals with another RL algorithm, Dy-

naQ was deployed on various tasks. DynaQ is discussed in depth in the Background

chapter, but it was chosen as it has various available planning mechanisms [24], which

drew some parallels to the nature of QTRB when its evolution is considered as a form

of planning. Overall, the comparison supports the claim that as the size of the en-

vironment scales up, QTRB takes significantly fewer direct environmental queries.

This is a discussed drawback of RL, as it must spend a great number of resources to

explore a solution space before being able to derive policy. QTRB provides the RL

agent with an abstracted model of the environment, freeing up the resources needed

for otherwise direct environmental exploration.

5.3 Implications

Overall, the research questions drove the development of QTRB. QTRB was able to

use local reward to construct module-sets in which an RL agent could derive policy

from using Q-value propagation. This model-based RL allowed agents to conserve

direct environment sample efficiency while learning. Given these findings, this section

will briefly discuss the implications of QTRB.

The most notable finding of this thesis is that programs can be built in a non-

random way in order to create meaningful abstractions of a given environment. This

is especially important in direct reference to Downing’s discussed work, and can even

be thought of as an advancement in what he set out to do [7]. QTRB successfully

combines GP and RL in order to solve grid world tasks, without the use of subgoals

throughout the environment. This is important as it fills in some gaps in the field of

hybrid algorithms, pairing GP closer to RL than before, as a local reward now drives

both program and policy development.

Another important finding of this study further supports the efficiency of planning

and model-based RL. As shown, the number of direct environment queries QTRB

made compared to traditional RL was significantly fewer. These findings are especially
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relevant to any application of RL which requires as few direct environmental queries

as possible. Overall, letting the agent learn on an abstracted version of the real

environment avoids numerous direct environment queries.

5.4 Limitations

5.4.1 Fitness Function

The main limitation of local reward-driving GP was the relationship between iterative

team development and the fitness function. The fitness function was based simply

on the total local reward collected by a team during evolution. Thus, teams which

developed aimlessly without ever reaching the goal would “bloat”, despite finding

very high fitness scores. These bloated teams would cause the fitness curves to trail

off toward values much higher than what a successful team would actually achieve.

Although fitness was high in these solutions, they realistically had little chance of

ever solving the task.

Booth et al. discuss performance function and their alignment with the given

task [3]. Throughout their study, Booth et al. highlight the difficulty of finding

a reward function which fits a task, even finding that reward functions are usually

overfit for particular tasks and agents. This thesis is a good example of Booth et al.’s

work generalizing to GP. It implies that the fitness function does not always predict

actual performance, which is observed here. The remainder of this subsection will

discuss potential fixes for this limitation, all revolving around redefining aspects of

the evolution of the fitness function to combat team bloat.

The step count penalty was actually implemented to combat these trailing fitness

functions, which did somewhat solve the issue, but occasionally caused the whole

population of teams to completely drop off. This drop-off was present in runs that

even had champion solutions, which implies that there is some “tipping point” during

the evolution of QTRB where a solution is between being underdeveloped and bloated.

This tipping point implies that through iterative development, the first champion

solution may be the “peak” within their “family”, as their children begin to drop off

due to too many steps. This claim is supported by the tipping point shown in various

fitness curves. Additionally, the majority of optimal solutions were found before half
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of their task’s respective generation count, which perhaps points to optimal teams

developing earlier in evolution, before this tipping point.

After all, the step penalty itself was more or less a bandage over this issue, a

real solution may be found by investigating the way the local reward is accessed by

developing modules or changing the fitness function itself. As for solutions relating

to accessing local reward, a system which limits the amount of local reward a module

can access when a state is visited may suffice. For example, a cell can only assign

local reward to one module in the team’s module-set. This would certainly limit the

amount of local reward assigned to each team, avoiding trailing fitness. This would

perhaps also lead to the development of mechanisms involving modules competing

for the yielded reward of a given shared state.

An alternative solution is redefining the fitness function itself to better reflect

the task. A fitness function with the ability to judge candidate solutions on metrics

separate from just local reward accumulation may be able to produce far superior

teams. An example metric this function could keep an eye on would be team size;

deleting any bloated teams from the population. More research is required to judge

whether this is worthwhile, but as of now, the hypothesis is that there exists a rede-

fined fitness function that is able to judge teams better than the simple accumulation

of local reward over iterative development. Revisiting the work of Booth et al., it is

important to be mindful to not overfit the performance function to QTRB itself to

avoid biases in seemingly successful results [3].

5.4.2 Hanging Regions

As shown throughout Chapters 4 and 6, the rate at which the RL agent solves the

task with the team’s model, or win-rate, is low, especially as the task scales in size.

After some observation, about half of these losses are attributed to “hanging regions”.

This is a consequence of region-building; where after RL, a region’s q-value may be

relatively high as it is on winning path, but only, say, half of the region is on the

winning path. The rest of the region “hangs”, and due to the region’s high q-value,

other more important regions with lower q-values (closer to the start) are blocked

from getting on the winning path. An example of this is shown in Figure 5.1, where

the left moving region (in red) is blocking the right moving region (in green). The key
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properties of these regions are that the green is the starting region, so it will usually

have a much lower q-value despite being part of the winning path, and half of the red

region is also actually leading to the goal, which would contribute to a higher q-value

for that region.

Similar to the fitness function limitation, there are a variety of solutions for the

hanging regions for future work. One solution involves implementing penalties for the

q-learning agent, which assigns penalties to regions that can potentially block winning

regions. As these penalties could only be assigned once the final solution is known,

these penalties would have to at least run after evolution. This may suggest that

QTRB needs some sort of region clean-up step between GP and RL. Additionally,

this given solution is only applicable in problems where the solution is already known,

such as grid worlds. Future work may also involve expanding on this concept for cases

where the solution is not known.

5.4.3 Novel Algorithm

Lastly, another obvious limitation of QTRB is it is a novel algorithm. A lot of mech-

anisms within the algorithm were a product of requirement during iterative design,

shaped around the research questions. The continuous development of features and

improvements for QTRB will overall improve the robustness of the algorithm, hope-

fully someday hosting it as a piece of “out-of-the-box” software. The next section

provides insight into the next best set of tasks for future work, but other general

improvements to QTRB include a proper development testing suite, increased per-

formance tracking, and more runs against more variants of larger grid worlds.

Though this section discussed larger issues with the project, the next section will

provide some additional limitations, but with direct suggestions for future work to

amend them.

5.5 Future Work

This section will review improvements that can be implemented into the current

project in the future. QTRB is a novel algorithm, so there are a lot of possibilities

for future work to advance this project. However, two main improvements will be
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Figure 5.1: An example of a hanging region, where the red outlined region blocks the
green outlined region from moving to the winning path.
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focused on for the remainder of the section. The improvements relate to population

diversification in evolution and exploration in RL.

5.5.1 Diversifying Emerging Populations during Evolution

The GP used in the project converges quite hard into the first champion solution that

emerges from evolution. Although other solutions occasionally emerge to increase the

variety within the population, there is typically not too much difference between

champion solutions. This is not so much an issue on smaller tasks, where a smaller

set of actual solutions exist, but becomes more relevant as the size of the grid world

grows, thus the number of varying solutions grow too. The lack of diversification may

also be contributing to the previously discussed issue of teams becoming bloated.

Overall, this observation is somewhat expected, as there are no diversity operators

present in the current implementation of QTRB.

The obvious future improvement for the problem is to add some sort of diversity

mechanic to the evolving population. It is hypothesized this improvement would give

room for more emerging solutions, creating a much more diverse champion pool at

the end of a run compared to the current implementation.

There are no specific diversity mechanisms planned for implementation, but an in-

teresting example comes from the NEAT algorithm [21]. Simply put, before assessing

each population pool during evolution, NEAT will organize solutions into “species”,

and have solutions compete only within their own species. This allows emerging

solutions that go against the status quo to live for further development, while still

allowing the strongest solutions to dominate most of the population.

Additionally, this improvement is hypothesized to further reduce the total envi-

ronment query time of the QTRB in the superimposed case shown in the Results

and Appendix chapters. A diversified module-set from a single run could potentially

cover the entire task with visited regions, thus fewer QTRB runs would be required

to produce such coverage.

5.5.2 Exploration

As mentioned, the weakest point of the result set seems to be the RL win-rate metric.

To reiterate, as shown in various tables throughout the Results and Appendix chapter,
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the RL win rate represents the amount of champion module-sets the RL agent was

able to solve. This subsection will propose a mechanism which is hypothesized to

improve this win rate.

The current implementation of QTRB uses “out-of-the-box” Q-learning, where

agent exploration exists on the state level; the agent rolls for ε-greedy action selection

at each cell of the grid world. This is an issue since QTRB’s agents execute mean-

ingful movement on the region level, where the Q-value updates occur. The issue is

highlighted when the agent rolls to choose a random, or exploratory, action in the

middle of a region. The current implementation of the agent will take that random

action within the region, then continue on with mostly exploitative actions. Other

than edge cases, these random actions are not occurring frequently enough to actually

drive any meaningful random movement for the agent to properly explore.

The implementation of this improvement would involve the learning agent ever

only existing in a region’s lower bound or the region upper bound. All other cells

within a region are actually redundant, as the policy will always assign them the

action (and fitness) from the lower or upper bound. Thus it is theorized that the

agent is not exploring the module-set frequently enough, and is occasionally even

getting stuck in exploitative loops that do not result in completing the task within

the specified number of time steps.

From this analysis, it is hypothesized that the RL win rate will increase if the

current implementation of the Q-learning agent functioned solely on a region level.

An auxiliary hypothesis for this work is that the overall number of steps needed for

the RL agent to solve the task will decrease compared to the current implementation.

The mentioned number of steps is predicted to decrease because most steps in a region

would be reduced by the number of cells in that given region. Overall, changing the

agent to operate at the region level seems like a step in further coupling the GP and

RL in QTRB, while also improving the overall efficacy and efficiency of the learning

agent.
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Appendix A

A.1 20× 20 Figures

This section contains any 20 × 20 tasks discussed, but not explicitly mentioned,

throughout the Results chapter. For a quick reference, the red dot in each figure

is the start state while the blue square is the goal state. For the policy maps, the red

boxes were added to better visualize the path found by Q-learning.

Table A.1 and Table A.2 show various performance statistics from QTRB’s runs

on the given tasks. In Table A.1, the average step count refers to the number of

environmental queries QTRB made in total, averaging over 30 runs. The # of RL

runs refers to the number of champion teams GP produced for RL to learn on. %

of RL wins refers to the win rate of RL on the given champion teams. Step Penalty

refers to the number of steps a given team could take in GP before receiving large

negative reinforcements. In Table A.2, # Superimposed Actionable Cells refers to

the number of cells containing an action when all champions teams over all runs were

superimposed onto the given task. The % Superimposed cells leading to the goal

refers to the subset of those actionable cells that were connected to a path that led

to the goal.

A.2 50× 50 Figures

This section contains any 50 × 50 tasks discussed, but not explicitly mentioned,

throughout the Results chapter. For a quick reference, the red dot in each figure

is the start state while the blue square is the goal state. For the policy maps, the red

boxes were added to better visualize the path found by Q-learning.
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Figure A.1: 20× 20 grid world task with start state (4, 17) and goal state (8, 5) (the
bottom left corner is (0, 0)).
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Figure A.2: QTRB results from Figure A.1. Shown from left to right: GP fitness
curve and Q-value map.

Table A.1: Performance data for QTRB, all averaged over 30 runs for each given task.

Task Figure Average Step
Count

# RL Runs % RL wins Step
Penalty

A.1 3283 479 70 400
A.4 3233 122 86 400
A.7 2521 161 58 400
A.10 4374 77 72 400
A.11 2301 166 75 400
A.14 2735 115 43 1000
A.17 3102 94 54 1000
A.20 4786 37 57 1000
A.23 2624 106 60 1000
A.26 4243 41 44 1000
A.29 5187 36 86 1000
A.32 4206 164 57 1000
A.35 2683 110 70 1000
A.38 5091 30 63 1000
A.41 1400 131 61 1000
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Figure A.3: Policy map for Figure A.1. The starting action was East.
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Figure A.4: 20×20 grid world task with start state (15, 15) and goal state (8, 3) (the
bottom left corner is (0, 0)).
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Figure A.5: QTRB results from Figure A.4. Shown from left to right: GP fitness
curve and Q-value map.

Table A.2: Shown are the number of actionable cells each task had once champion
solutions from each run of a given task were superimposed onto one grid world. The
percentage of cells that were connected to a path which lead to the goal of the task
is also shown.

Task Figure # Superimposed Actionable
Cells

% Superimposed cells leading
to goal

A.1 237 99
A.4 246 95
A.7 286 94
A.10 254 95
A.11 282 96
A.14 308 64
A.17 243 100
A.20 203 63
A.23 265 62
A.26 299 100
A.29 273 76
A.32 285 94
A.35 293 91
A.38 261 87
A.41 291 71
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Figure A.6: Policy map for Figure A.4. The starting action was South.
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Figure A.7: 20 × 20 grid world task with start state (19, 12) and goal state (13, 9)
(the bottom left corner is (0, 0)).
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Figure A.8: QTRB results from Figure A.7. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.9: Policy map for Figure A.7. The starting action was West.
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Figure A.10: 20× 20 grid world task with start state (17, 15) and goal state (15, 0)
(the bottom left corner is (0, 0)). This figure is in reference to the results presented
in the Results Chapter.
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Figure A.11: 20× 20 grid world task with start state (11, 15) and goal state (7, 10)
(the bottom left corner is (0, 0)).
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Figure A.12: QTRB results from Figure A.11. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.13: Policy map for Figure A.11. The starting action was West.
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Figure A.14: 20 × 20 grid world task with start state (14, 15) and goal state (7, 2)
(the bottom left corner is (0, 0)).
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Figure A.15: QTRB results from Figure A.14. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.16: Policy map for Figure A.14. The starting action was West.
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Figure A.17: 20 × 20 grid world task with start state (2, 10) and goal state (18, 6)
(the bottom left corner is (0, 0)).
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Figure A.18: QTRB results from Figure A.17. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.19: Policy map for Figure A.17. The starting action was East.
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Figure A.20: 20 × 20 grid world task with start state (15, 0) and goal state (0, 14)
(the bottom left corner is (0, 0)).
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Figure A.21: QTRB results from Figure A.20. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.22: Policy map for Figure A.20. The starting action was West.
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Figure A.23: 20×20 grid world task with start state (4, 9) and goal state (0, 15) (the
bottom left corner is (0, 0)).
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Figure A.24: QTRB results from Figure A.23. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.25: Policy map for Figure A.23. The starting action was North.
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Figure A.26: 20 × 20 grid world task with start state (16, 14) and goal state (5, 8)
(the bottom left corner is (0, 0)).
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Figure A.27: QTRB results from Figure A.26. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.28: Policy map for Figure A.26. The starting action was West.
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Figure A.29: 20× 20 grid world task with start state (16, 16) and goal state (19, 3)
(the bottom left corner is (0, 0)).



116

Figure A.30: QTRB results from Figure A.29. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.31: Policy map for Figure A.29. The starting action was South.
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Figure A.32: 20 × 20 grid world task with start state (9, 7) and goal state (10, 17)
(the bottom left corner is (0, 0)).
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Figure A.33: QTRB results from Figure A.32. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.34: Policy map for Figure A.32. The starting action was North.
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Figure A.35: 20×20 grid world task with start state (2, 3) and goal state (14, 0) (the
bottom left corner is (0, 0)).
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Figure A.36: QTRB results from Figure A.35. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.37: Policy map for Figure A.35. The starting action was North.
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Figure A.38: 20× 20 grid world task with start state (13, 0) and goal state (18, 15)
(the bottom left corner is (0, 0)).



125

Figure A.39: QTRB results from Figure A.38. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.40: Policy map for Figure A.38. The starting action was East.



127

Figure A.41: 20×20 grid world task with start state (8, 1) and goal state (14, 3) (the
bottom left corner is (0, 0)).
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Figure A.42: QTRB results from Figure A.41. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.43: Policy map for Figure A.41. The starting action was East.
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Figure A.44: 50× 50 grid world task with start state (43, 1) and goal state (15, 44)
(the bottom left corner is (0, 0)). This task is in reference to the results shown in the
Results Chapter, and is shown in Figure 4.3 (right).
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Figure A.45: 50× 50 grid world task with start state (46, 16) and goal state (1, 20)
(the bottom left corner is (0, 0)).
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Figure A.46: QTRB results from Figure A.45. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.47: Policy map for Figure A.45. The starting action was East.



134

Figure A.48: 50× 50 grid world task with start state (12, 3) and goal state (43, 14)
(the bottom left corner is (0, 0)).
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Figure A.49: QTRB results from Figure A.48. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.50: Policy map for Figure A.48. The starting action was South.
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Figure A.52: 50× 50 grid world task with start state (17, 37) and goal state (46, 20)
(the bottom left corner is (0, 0)).
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Figure A.53: QTRB results from Figure A.52. Shown from left to right: GP fitness
curve and Q-value map.



139

Figure A.54: Policy map for Figure A.52. The starting action was East.
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Table A.3 and Table A.4 show various performance statistics from QTRB’s runs

on the given tasks. In Table A.3, the average step count refers to the number of

environmental queries QTRB made in total, averaging over 30 runs. The # of RL

runs refers to the number of champion teams GP produced for RL to learn on. %

of RL wins refers to the win rate of RL on the given champion teams. Step Penalty

refers to the number of steps a given team could take in GP before receiving large

negative reinforcements. In Table A.4, # Superimposed Actionable Cells refers to

the number of cells containing an action when all champions teams over all runs were

superimposed onto the given task. The % Superimposed cells leading to the goal

refers to the subset of those actionable cells that were connected to a path that led

to the goal.

Table A.3: Performance data for QTRB, all averaged over 30 runs for each given task.

Task Figure Average Step
Count

# RL Runs % RL wins Step
Penalty

A.44 7486 69 35 3500
A.45 9159 5 40 3500
A.48 9064 15 47 2500
A.52 8868 33 46 7000
A.55 6191 114 47 3000

Table A.4: Shown are the number of actionable cells each task had once champion
solutions from each run of a given task was superimposed onto one grid world. The
percentage of cells that were connected to a path which lead to the goal of the task
is also shown.

Task Figure # Superimposed Actionable
Cells

% Superimposed cells leading
to goal

A.44 1481 58
A.45 859 75
A.48 772 35
A.52 1300 47
A.55 1494 54
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Figure A.55: 50× 50 grid world task with start state (11, 20) and goal state (25, 42)
(the bottom left corner is (0, 0)).
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Figure A.56: QTRB results from Figure A.55. Shown from left to right: GP fitness
curve and Q-value map.
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Figure A.57: Policy map for Figure A.55. The starting action was West.


