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Abstract 

 

The human microbiome can be defined as the community of microbes that live within 

and on the human body. Modern day microbiome research relies on the use of high 

throughput deoxyribonucleic acid (DNA) sequencing to characterize and identify 

microbes and community structures associated with human disease. Indeed, the human 

microbiome has been proposed as a useful source of biomarkers for numerous human 

health conditions including cancer. Yet often, microbial biomarkers identified through 

DNA sequencing efforts are not reproducible between studies. Herein, I present my work 

on examining computation choices during microbiome experiments and applying this 

knowledge to identify novel associations with the salivary microbiome and breast, 

prostate, and colon cancer. 

 Typical DNA sequenced based surveys of microbiomes, requires numerous 

choices to be made at each step of the experimental protocol. Often theses choices are 

unclear with no current gold standard within the field. Yet, these methods are used 

interchangeably within the literature without regard for how that choice might impact the 

biological conclusions that researchers find. To help address this issue I examined how 

choices made during two computational steps for processing DNA sequencing data 

impacted the biological conclusions drawn. In doing so I highlighted critical differences 

that can be attributed to bioinformatic tool choice and suggest potential solutions for 

these issues in the future. 

 Using information from the above chapters, the second half of this thesis 

represents analysis done on salivary samples from a large population cohort to both 

characterized salivary microbiome variation and how that variation is associated with 

breast, prostate, and colon cancer. Within these chapters we show that several daily life 

factors are significantly associated with salivary microbiome composition, yet they only 

explain a small amount of total community variance. We also show that the salivary 

microbiome contains little signal in cases of breast and prostate cancer. Contrastingly our 

work did show potential salivary microbiome associations within cases of colon cancer. 

These findings show the potential for future diagnostic research into the relation between 

the oral microbiome and colon cancer development. 
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Chapter 1 – Introduction 

 

Since the advent of the microscope in the 17th century it has become clear that 

microbes play a critical role in numerous eco-systems including the human body (Dobell, 

1932). Indeed, these microbial communities and their functions termed “the human 

microbiome” are not only important during active infection, but also play critical roles in 

other aspects of human health. For example, complex carbohydrates are fermented by 

various bacteria within the large intestine to produce products such as short chain fatty 

acids, an important immune regulator (Sanna et al., 2019).  Due to the vast importance of 

these communities and their functions in our health, there has been significant interest to 

identify community characteristics associated with human diseases (Y. Fan & Pedersen, 

2021). In fact, the human microbiome has been associated with a vast array of human 

health conditions ranging from autism (Morton, Donovan, & Taroncher-Oldenburg, 

2022; Yap et al., 2021), to inflammatory bowel disease (Lloyd-Price et al., 2019), to 

multiple sclerosis (Jangi et al., 2016). For example, in the field of oncology both 

community wide composition measurements and specific microbial abundances have 

been associated with colon, prostate, breast, and pancreatic cancer (Cullin, Azevedo 

Antunes, Straussman, Stein-Thoeringer, & Elinav, 2021). Accordingly, it has been 

proposed that the human microbiome could harbor microbial biomarkers for a variety of 

different cancers. Highlighting the potential to identifying individuals at risk for disease 

progression and development through various microbial sequencing platforms (Marcos-

Zambrano et al., 2021). However, results from microbiome studies are often not reliable 

study-study making the detection of robust biomarkers difficult (Schloss, 2018).  
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This thesis will explore various reasons why microbial biomarkers are not always 

robust across studies and present potential solutions to help solve this in future 

investigations. It is a publication-based thesis, which means all the main chapters other 

than the introduction (Chapter 1) and discussion (Chapter 6) have been published or have 

been submitted for publication. As a result, this introductory chapter will provide needed 

context and complementary information to the introductory sections of each results 

Chapter (Chapters 2-5). Within this chapter I will first give a brief overview of the 

general community make up and functional potential of the human microbiome with an 

emphasis on the oral cavity. I will also discuss how the oral microbiome has been 

associated with oral health conditions such as dental caries, and more distal diseases such 

as cancer. Following this I will introduce some of the most common ways to survey the 

human microbiome using DNA sequencing and the challenges and limitations that 

accompany these types of surveys. This includes a variety of biases associated with DNA 

sequencing and the various choices researchers must make throughout microbiome 

experiments. After which an in-depth discussion on dealing with sequencing error and the 

many choices that face researchers will be highlighted. Finally, we will discuss how 

microbial communities are examined using sequencing data and how biomarkers are 

generated from measures of diversity or specific taxonomic associations. 

 Following this introductory chapter, I will present four chapters that represent 

published or submitted (Chapter 5) manuscripts discussing the above topics. Within 

Chapters 2 and 3 we will explore how bioinformatic choices can impact biological results 

in microbiome studies. Chapter 2 will highlight the impact of methodology choices when 

dealing with sequencing errors and creating analytic units of analysis in marker gene 
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sequencing. A step that is necessary during data processing but presents multiple choices 

with no clear best option. In Chapter 3 I will discuss current issues in microbiome 

differential abundance analysis, the goal of which is to find associations between specific 

microbes and their environment. This type of statistical analysis is found commonly 

within microbiome literature and is often used to indicate potential biomarkers.  

Following these two Chapters we will slightly change focus to take a dive into the 

exploration of the oral microbiome and the various anthropometric, demographic, and 

dietary metrics that can impact its composition within healthy adults. Results from this 

chapter present key information required to understand the variation of the salivary 

microbiome in the absence of disease. In Chapter 5, we will use all this information to 

attempt to identify microbial biomarkers of disease within the oral cavity of retrospective 

and prospective cases of breast, prostate, and colon cancer. The goal of which is to assess 

the oral microbiome's applicability in risk detection of these diseases in a population 

setting.  
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1.1 - Human Microbiome Structure and Community Members 

 

Despite what can be seen by the naked eye, there are trillions of microbes that live on and 

within the human body (Sender, Fuchs, & Milo, 2016). Indeed, studies dating back to the 

mid-1600s by Antonie van Leeuwenhoek, described a wide variety of different shapes 

and sizes of microbes living on our skin, in our stool, and within our saliva (Dobell, 

1932). Today we now know these microbes as bacteria, archaea, fungi, viruses, and 

microeukaryotes.  Following their discovery microbes were traditionally studied using 

various culturing techniques. These techniques uncovered their biochemical properties 

and the numerous contributions they make to various diverse ecosystems. For example, 

Alfred Nissle was the first to culture the probiotic Nissle 1917, a strain of Escherichia 

coli, after hypothesizing that microorganisms within the gut of a wounded soldier provide 

protective effects against infection (Sonnenborn, 2016). This isolate is still used today as 

a probiotic and led to the concept of colonization resistance, a key theory within modern 

day microbiota research (Buffie & Pamer, 2013). 

While monumental discoveries on both microbes and microbial communities 

were made through culturing, it became apparent that many microbes were either difficult 

or not possible to cultivate within the laboratory (Staley & Konopka, 1985). This problem 

known as “The Great Plate Count Anomaly” would be addressed by Norman Pace in 

1984 by sequencing environmental ribosomal ribonucleic acid (rRNA) genes to identify 

microbes found within hydrothermal vents (Stahl, Lane, Olsen, & Pace, 1984). Adapting 

from this work in 1996 Wilson and Blitchington compared cultured bacteria to those 

found by sequencing 16 Svedberg (16S) rRNA genes found within human stool (Wilson 

& Blitchington, 1996). This paper along with work by Kroes et al., Suau et al., and 
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Eckburg et al., showed that sequencing the 16S rRNA gene from human associated 

samples could be used to identify both culturable and nonculturable bacteria; vastly 

increasing the known diversity of the human microbiome (Eckburg et al., 2005; Kroes, 

Lepp, & Relman, 1999; Suau et al., 1999).   

Following the above early work came the revolution of high throughput 

sequencing machines that led the way to modern day microbiota research. Indeed, in 

2007 the National Institutes of Health launched the Human Microbiome Project 

(Turnbaugh et al., 2007), which was the first to publish reference data on the 

microbiomes found in 256 healthy United States volunteers (Huttenhower et al., 2012). 

The Human Microbiome Project explored several human sites including the gut, mouth, 

nose, skin, and vagina, showing the unique characteristics of each community. These 

early studies that cataloged microbial composition represented an important stride in 

understanding the ecological importance of microbial communities within the human 

body (Gilbert et al., 2018).   

 From these works it was clear that among all sites within the human body the gut, 

specifically the lower intestine, harbors the richest microbial community (Huttenhower et 

al., 2012). In fact over 1000 different bacterial species have been cultured from the gut 

microbiome of humans (Rajilić-Stojanović & de Vos, 2014). Typically, this community 

is dominated by bacteria, bacteriophages, and lower numbers of archaea, fungi, and 

single cell eukaryotes (Laforest-Lapointe & Arrieta, 2018; Yatsunenko et al., 2012). 

Indeed, the number of bacterial cells within our lower intestine is thought to be similar to 

the total number of cells that make up the human body (Sender et al., 2016). Of these 

cells over half of them belong to two phyla, Bacteroidetes and Firmicutes. Bacteroidetes 
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are made up of a diverse group of Gram-negative anaerobes while Firmicutes are 

typically Gram-positive and can be both anaerobes or aerobes depending on species 

(Paster, Dewhirst, Olsen, & Fraser, 1994; Vos et al., 2011).  Interestingly, the ratio 

between these two phyla within the gut has been associated with several aspects of 

human health such as obesity and aging. However, this result has not been generalizable 

across all cohort studies (Ley, Turnbaugh, Klein, & Gordon, 2006; Magne et al., 2020). 

These differing results are thought to be due to a number of issues, including differing 

experimental protocols and methods of analysis (Bahl, Bergström, & Licht, 2012; Vebø, 

Karlsson, Avershina, Finnby, & Rudi, 2016).  

 Along with Firmicutes and Bacteroidetes, Actinobacteria make up a large 

proportion of the bacterial members within the gut microbiota. Within the gut this 

phylum is mainly represented by Bifidobacterium, which have been linked to several 

beneficial traits and is among the earliest colonizers of the human gastrointestinal tract 

(Martino et al., 2022). Indeed, Bifidobacterium species such as Bifidobacterium longum, 

Bifidobacterium breve, and Bifidobacterium infantis have been suggested as probiotics 

due to their beneficial health effects. For example, higher abundances of B. longum has 

been associated with improved remission rates in ulcerative colitis (Furrie et al., 2005; 

Tamaki et al., 2016). Furthermore, a mixture of Bifidobacterium has also been shown to 

lead to improved responses to immune checkpoint inhibitors; a recent approached used in 

treating a variety of cancers (S. Sun et al., 2020).   

Another prominent group within the gut microbiome is the phylum Proteobacteria 

(Huttenhower et al., 2012). Proteobacteria first described as “purple bacteria and their 

relatives” by Woese in 1987 are a group of Gram-negative bacteria that can be found 
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within the skin, oral cavity, vagina, and gut of humans (Carl Richard Woese, 1987). A 

number of members within this phylum are well known human pathogens including 

Escherichia coli, Salmonella bongori, Salmonella enterica, Helicobacter pylori, Yersinia 

pestis, and various Shigella species (Rizzatti, Lopetuso, Gibiino, Binda, & Gasbarrini, 

2017).  Interestingly, the increased relative abundance of this phyla has been associated 

with a number of conditions including infectious complications during chemotherapy 

(Nearing et al., 2019), or individuals with inflammatory bowel disease (Lloyd-Price et al., 

2019; Shin, Whon, & Bae, 2015). While work using mouse models of inflammatory 

bowel disease have reflected these results, the role of this phyla during inflammation 

remains unclear. Nevertheless, it is speculated that the expansion of this phyla may be 

due to differing oxygen levels within the gut during inflammation (Rigottier-Gois, 2013).  

Several other phyla including Fusobacteria, Verrucomicrobia, Tenericutes, 

Cyanobacteria, and TM7 are also found within the gut and have been associated with 

various health conditions (Huttenhower et al., 2012). Overall, bacteria within the gut play 

diverse roles within the human body including the production of various metabolites, 

providing colonization resistance, regulating immune function, and aiding gut physiology 

(Ducarmon et al., 2019; Lloyd-Price, Abu-Ali, & Huttenhower, 2016), clearly 

highlighting their importance to human health. In fact some suggest that human 

physiology evolved closely with these microbial inhabitants leading to evolutionary 

models of human holobionts (Madhusoodanan, 2019). Despite this research, the origin of 

many of these gut microbes remains elusive, although it has been shown that at least a 

third are transferred from the oral cavity (Schmidt et al., 2019). 
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 The oral cavity is the second most diverse human microbiome after the colon 

(Huttenhower et al., 2012). It houses unique communities throughout, with specific 

microbial community compositions found on the tongue, gingival sulcus, cheek, teeth, 

soft palate, hard palate, and saliva (Hall et al., 2017; J. He, Li, Cao, Xue, & Zhou, 2015). 

In fact over 1,000 different species have been identified within the oral cavity yet each 

individual surface is only typically colonized by ~50 species (Dewhirst et al., 2010).  

 Hard surfaces such as the supragingival dental plaque are characterized by large 

proportions of Proteobacteria, Firmicutes, Fusobacteria, and Bacteroidetes, although 

other phyla such as Actinobacteria, and TM7 are also present (Xu et al., 2015). In 

contrast within the oral mucosa, microbial communities are mainly dominated by only 

two phyla, Firmicutes and Proteobacteria, which can make up to 90% of the total 

community (Xu et al., 2015).  

This has led to the idea of a “site-specialist hypothesis” indicating that despite 

these communities being in close proximity and often in contact with the same fluids they 

maintain distinct populations (Mark Welch, Dewhirst, & Borisy, 2019). This is because 

the competitiveness of bacteria within different regions of the oral cavity is dependent on 

their ability to adhere to the particular surface of interest, compete for nutrients within the 

region, and the availability of oxygen (Lamont, Koo, & Hajishengallis, 2018). Indeed, 

while teeth are smooth hard surfaces coated in enamel, the tongue check and other soft 

surfaces are covered by mucosal epithelium leading to distinctive landscapes within these 

sites. For example, Corynebacterium, a predominantly aerobic genera, is consistently 

found within plaque communities and gingival crevices of individuals. However, this 

genus is only found in trace abundances in other areas of the oral cavity (Mark Welch, 
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Rossetti, Rieken, Dewhirst, & Borisy, 2016). Contrastingly, areas of reduced oxygen 

availability such as the subgingival cavity or near the tooth base, are predominantly 

anaerobic taxa such as Fusobacterium, Porphyromonas, and Capnocyotphaga a group of 

bacteria dependent on high levels of CO2 (Lamont et al., 2018).  

While broad taxonomic differences are apparent between oral sites, even species within 

the same genera can show significant differences in relative abundance between them. 

For instance, while Actinomyces graevenitzii is found in significantly higher proportions 

on the tongue than teeth, Actinomyces massiliensis a close relative shows the opposite 

trend (Mark Welch et al., 2019). Even different subtypes within several species such as 

Haemophilus parainfluenza, and Granulicatella adiacens have been suggested to differ 

in abundance between oral sites (Costello et al., 2009).  

Yet, despite these distinct environments some microbes can still be found across 

multiple sites. For instance, work by Hall et al., showed that a number of bacterial species 

across five different phyla could be found within the same individuals tongue plaque, 

supragingival plaque, and saliva (Hall et al., 2017). This is because microbial 

communities within the oral cavity are constantly being washed and exposed to saliva, a 

free flowing fluid that not only provides aid during digestion and maintaining pH 

(Mandel, 1987), but also acts to mix and move microbes across different sites (Lamont et 

al., 2018). Thus, saliva samples from humans are typically made up of a wide variety of 

microbes both anaerobic and aerobic that originated from areas such as the teeth, throat, 

tongue, and tonsils. Although, communities inferred from saliva samples often 

correspond better with communities found on the tongue than within dental plaques 
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(Segata et al., 2012).  Due to saliva being easy to collect and its ability to contact several 

oral sites, it has become a popular sample choice for the analysis of the oral microbiome.   

Human microbiome saliva samples are typically dominated by four to five phyla: 

Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria and Actinobacteria. Other 

prominent members include TM7, Spirochaetes and Synergistes (Bik et al., 2010; Segata 

et al., 2012). In general the abundance of various taxa within the salivary microbiome is 

much more evenly distributed than other oral communities or even the gut microbiome 

(Segata et al., 2012). Although it should be noted that some genera are still represented in 

higher abundances than others including Steptococcus, Veillonella, Prevotella, Neisseria, 

Fusobacterium, Rothia and Haemophlius (Bik et al., 2010; Segata et al., 2012).  

Saliva itself is sterile when it enters the oral cavity and as previously mentioned 

only develops a microbiome signature through interaction with various oral surfaces 

(Schrøder, Bardow, Eickhardt-Dalbøge, Johansen, & Homøe, 2017). Interestingly, 

despite significant external exposure through eating and activities such as tooth brushing 

and kissing, the overall composition of the salivary microbiome has been shown to be 

temporarily stable within individuals (Caporaso et al., 2011; Leake, Pagni, Falquet, 

Taroni, & Greub, 2016). Although recent work has shown that over long periods of time 

significant changes to environmental factors, such as an Antarctic expedition, can led to 

compositional changes (Bhushan, Yadav, Singh, & Ganju, 2019).  However, despite this 

stability there remains a significant amount of variation between individuals.  

 Indeed, despite broad patterns of community composition at the phylum there 

remains significant deviation between humans at lower taxonomic ranks such as species 

and strain (Caporaso et al., 2010; Huttenhower et al., 2012). Indeed, work on the oral 
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microbiome has shown that specific taxon can be associated with both host and 

environmental factors such as demographics, physical features, and lifestyle choices (X. 

Fan, Peters, et al., 2018; Mason, Nagaraja, Camerlengo, Joshi, & Kumar, 2013; J. Wu et 

al., 2016; Y. Yang, Cai, Zheng, et al., 2019). However, only a small number of studies 

have examined how each of these factors contribute to overall variance within the oral 

microbiome.  

With the goal of identifying microbial biomarkers of disease in mind, it is 

important to understand what contributes to this variation in healthy individuals first. 

Answering this key question is the focus of Chapter 4 of this thesis. I, along with 

colleagues attempt to address this question using a large population cohort of healthy 

Atlantic Canadians. Within Chapter 4 you will also find a brief introduction on previous 

works within this area along with a discussion which puts our results into context with 

previous literature. Results from this Chapter will be critical in the assessment of salivary 

biomarkers identified in the following results Chapter.  

Unsurprisingly, variation within the salivary microbiome has also been associated 

with numerous different oral health conditions such as dental caries (Baker et al., 2021), 

periodontitis (Lundmark et al., 2019; Yong Zhang et al., 2021), and oral cancesrs (Hsiao 

et al., 2018). For example, in the case of dental caries, microbes play a critical role 

through the formation of biofilms. Biofilms on teeth if left unmanaged can propagate, 

especially during consumption of simple carbohydrates such as those found in common 

soda pops (Lamont et al., 2018). In fact, it is thought that the consumption of simple 

carbohydrates such as those found in sugary drinks is one of the leading causes of dental 

caries worldwide (Peres et al., 2019). This is because biofilm formation and expansion 
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can led to increased levels of acidogenic and aciduric bacteria (Lamont et al., 2018). 

Common microbial culprits include Streptococcus mutans, Streptococcus sobrinus, and 

various lactobacilli and bifidobacteria (Simón-Soro & Mira, 2015).  These acidogenic 

communities then begin generating various acids which can demineralize tooth enamel, 

eventually leading to the formation of caries (Simón-Soro & Mira, 2015).  

Changes in the composition of the salivary microbiome have also been associated 

with periodontitis a condition highlighted by inflammation within the gingiva. Studies on 

saliva comparing healthy controls to those with periodontitis have uncovered several 

potential microbial biomarkers with increases in the abundance of Porphyromonas 

gingivalis being one of the most common features (Belstrøm, 2020). Moreover, a recent 

study using 16S rRNA gene sequencing showed that the relative abundance of P. 

gingivalis could be used to discriminate healthy individuals from those with periodontitis, 

demonstrating an area under the receiver operator curve (AUROC) of 0.80 (Damgaard et 

al., 2019). These findings highlight the need to explore P. gingivalis in larger population-

based settings.  

A number of cancers of the mouth, throat and neck have been associated with 

changes in salivary microbiome composition (Irfan, Delgado, & Frias-Lopez, 2020). The 

most well studied of which has been oral squamous cell carcinoma (OSCC). Various 

works have identified over twenty-two different taxa associated with OSCC diagnosis 

within the oral microbiome (Irfan et al., 2020). While no clinically useful biomarkers 

have yet to be validated due to high variability between study results, exploration into the 

oral microbiome, biomarker discovery, and OSCC remains a fruitful endeavor as we 

learn more about reducing study to study bias. 
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The composition of the oral microbiome has also been associated with several 

health conditions distal to the oral cavity. These include type two diabetes mellitus 

(T2DM), obesity, and various cancers (Belstrøm, 2020). In the case of T2DM various 

reports have identified specific taxon associations, although agreement between studies is 

sparse. For example, work by Sabharwal et al., has reported decreased oral microbial 

diversity, where as Chen et al., reported the opposite (B. Chen et al., 2020; Sabharwal et 

al., 2019). Furthermore, work by Almeida-Santos et al., reported no differences in 

diversity between non-diabetics and those with T2DM (Almeida-Santos, Martins-

Mendes, Gayà-Vidal, Pérez-Pardal, & Beja-Pereira, 2021). Yet despite these differences 

high disease classification rates from oral microbiome data have been achieved in study 

specific cohorts (Omori et al., 2022). Again, these results highlight the need to 

understand how variation within the oral microbiome can impact biomarker detection and 

to what degree biological and technical variation explain these differences. 

In the case of non-oral cancers several types have been associated with 

differences in oral microbiome composition with some of the most well studied being 

pancreatic, and colon cancer (Belstrøm, 2020; X. Fan, Alekseyenko, et al., 2018; 

Vogtmann et al., 2022a). In the case of pancreatic cancer several studies have identified 

shifts in oral microbiome composition in affected patients. Studies on saliva have shown 

variable results with the most commonly associated taxa being Haemophilus and 

Porphyromonas (Irfan et al., 2020). Interestingly, signal from these taxa have not only 

been associated in saliva (X. Fan, Alekseyenko, et al., 2018; Torres et al., 2015; 

Vogtmann et al., 2020) but also tongue plaque (H. Lu et al., 2019). Furthermore, work 

within mice on pancreatic cancer has further shown that lipopolysaccharide a component 
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of the outer membrane of Gram-negative bacteria, like Porphyromonas and Haemophilus 

is sufficient to promote carcinogenesis within the pancreas (Ochi et al., 2012). These 

studies highlight a potential mechanism of association between these bacterial taxa and 

pancreatic cancer develop. However, whether these mechanisms are at play or have 

biological significance remains a question within the field. Highlighting the need for 

further mechanistic work in animal models. 

Colon cancer is the most well studied non-oral cancer in relation to the oral 

microbiome (Belstrøm, 2020; Irfan et al., 2020). Over the past decade several different 

oral taxa have been identified as potential biomarkers of disease and several studies have 

shown high classification accuracy from microbial oral samplings (Flemer et al., 2017; S. 

Zhang et al., 2020). However, the effectiveness of the oral microbiome as a biomarker for 

colon cancer development still lacks comprehensive evaluations within population-based 

settings. Furthermore, the association between disease progression and shifts within the 

oral microbiome is still not well understood. To help address these questions Chapter 5 of 

this thesis will focus on the potential relationship between the oral microbiome and both 

retrospective and prospective cases of colon cancer within a large population cohort. 

Further information on the current literature of colon cancer and the oral microbiome can 

be found within this Chapter’s introduction and discussion.  

Other non-oral cancers have also been associated with the oral microbiome, 

although research within this field is still emerging. For example, a recent study on lung 

cancer and the oral microbiome highlighted several taxa associated with disease 

development (Vogtmann et al., 2022b). Moreover, exploration into the oral microbiome 

and cancers previously associated with oral health or changes in the gut microbiota are 
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still lacking. Two cancers that fall into this category are prostate cancer and breast cancer. 

Prostate cancer has been not only associated with periodontal disease (Lee, Kweon, Choi, 

Kim, & Choi, 2017), but a handful of small pilot studies have identified various shifts 

within the gut microbiota of affected patients (Golombos et al., 2018; Liss et al., 2018). 

Similarity studies on breast cancer have identified shifts in the gut microbiome of patients 

(Flores et al., 2012; Goedert et al., 2018, 2015) as well as shifts in the microbial 

communities present in urine and breast tissue (Irfan et al., 2020). Due to these recent 

findings highlighted above, Chapter 5 of this thesis will examine the salivary microbiome 

of both prospective and retrospective cases of these diseases in large population cohorts.  
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1.2 - Microbiome Amplicon Sequencing and Experimental Methodology 

 

Modern-day large-scale surveys of the human microbiota are accomplished using some 

variation of DNA sequencing technology. These technologies include both long and 

short-read sequencing platforms that have revolutionized the way we study microbial 

communities (Gehrig et al., 2022). Within these categories there are two general 

approaches to conducting a DNA based microbiome survey (Nearing, Comeau, & 

Langille, 2021). These methods differ in both the resources required to perform them but 

also in the types of information that can be gained from them.  

Metagenomic shotgun sequencing is a resource intensive process where hundreds 

of millions of reads are generated from semi-randomly sheared DNA within a sample. 

This type of sequencing not only generates taxonomic information but also functional 

knowledge at the expense of high resource requirements (Douglas & Langille, 2021). On 

the other hand, marker gene sequencing, also known as amplicon sequencing, is a less 

resource intensive process that generates taxonomic information and can also be used to 

infer high level functional information (Douglas & Langille, 2021). Due to the lower 

resource requirements of marker gene sequencing, it is the primary choice in microbiome 

biomarker detection surveys. The prevalence of marker-gene sequencing is reflected in 

the literature with most large-scale surveys focusing on taxonomic biomarkers rather than 

microbial function. Although there is argument within the field that metagenomic 

shotgun sequencing may be a better way to characterize microbial communities because 

it provides insight into microbial function. Due to the reasons above along with the broad 

application and lower resource requirements, this thesis and all subsequent chapters 

within it will be focused on the discussion and use of marker gene sequencing. In 
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particular I will highlight bioinformatic processing and statistical examination of marker 

gene sequencing data in Chapters 2 and 3. 

 Marker gene sequencing uses the amplification and sequencing of specific genes 

contained within the taxa of interest to infer community composition. Genes that are 

selected for this process are known typically as marker genes and have two general 

characteristics. First, genes that are selected should be present within all taxa of the 

community of interest. Second the amplified and sequenced gene should have enough 

sequence variation between different lineages that reasonable estimates of taxonomic 

identity can be determined. The most commonly sequenced marker gene in microbiome 

studies is the 16S rRNA gene (Goodrich, Di Rienzi, et al., 2014). 

The use of the 16S rRNA gene (18S rRNA gene in eukaryotes) originates from 

pioneering work in bacterial and archaeal phylogenetics by Carl Woese and George E. 

Fox during the late 1970s (Carl R Woese & Fox, 1977). Woese and Fox identified the 

16S rRNA gene as useful in the development of prokaryotic phylogenies due to its 

favorable phylogenetic characteristics. The 16S rRNA gene is ~1550 base pairs long and 

plays an essential role in the 30S ribosomal subunit; allowing it to bind to Shine-

Dalgarno sequences on messenger RNA (mRNA). Binding of mRNA on various areas 

within the 16S rRNA gene has led to strong selection pressure (Carl Richard Woese et 

al., 1975). Areas under selection pressure from interaction requirements are known as 

conversed regions within the gene and are useful for the construction of primers to 

amplify different gene regions. Conserved regions within the 16S rRNA gene are flanked 

by nine regions of hypervariability. Hypervariable regions range from 30-100 base pairs 

in length. Due to their slow rate of base pair substitutions they not only can be used to 
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detected the relatedness between species but also their taxonomic identity (Carl R Woese 

& Fox, 1977).  

Due to the limited read length capacity of high throughput short read sequencing, 

several universal primers targeting different conserved regions of the 16S rRNA gene 

have been developed (Comeau, Douglas, & Langille, 2017). Despite substitutions within 

hypervariable regions no one region is sufficient to identify all bacteria at the species 

level (Chakravorty, Helb, Burday, Connell, & Alland, 2007). Furthermore, despite the 

high amount of conservation within conserved regions, not all 16S rRNA genes are 

bound at the same efficiency by universal primers currently in use (Comeau et al., 2017). 

Commonly used primers include those that target the first and third (V1-V3), fourth and 

fifth (V4-V5), or sixth and eighth hypervariable regions (V6-V8). Although variations 

from these primer sets do exist. Biases associated with these selections have previously 

been described by myself and lab colleagues (Nearing et al., 2021). It is now clear that 

choice of universal primer set can have a large impact on not only the taxa identified but 

also the biological conclusion drawn from a study. For example, recent work by Willis et 

al., found that the V6-V8 region was optimal for the identification of archaea in the North 

Atlantic Ocean when compared to the V4-V5 region (C. Willis, Desai, & LaRoche, 

2019). Numerous taxonomic discrepancies between these regions have been identified. 

However, each of these primer sets do target a diverse group of taxa across the 

prokaryotic tree of life. As such the sequences generated from this approach can give a 

strong understanding of the underlying prokaryotic composition within a sample.  

Several other marker genes have also been proposed and have been used in the 

study of microbial communities. For example, pioneering work in 1984 by Stahl et al., 
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amplified the 120-base pair 5S rRNA gene which is present across all domains of life 

apart from some fungi, higher animals, and protists (Szymanski, Barciszewska, Erdmann, 

& Barciszewski, 2002). This allowed the identification of several different microbial 

lineages living within hydrothermal vents (Stahl et al., 1984). However due to its limited 

size, and thus limited phylogenetic information, this gene is no longer commonly used in 

sequence-based microbiome studies. Contrastingly, fungi are commonly identified by 

sequencing internal transcribed spacer (ITS) regions located between the small and large 

subunit rRNAs (Kõljalg et al., 2005). In bacteria there is a single ITS region, (ITS1) 

between the 16S and 23S rRNA genes, however in eukaryotes a second region (ITS2) is 

located between the 5.8S and 28S rRNA genes. Unlike the 16S rRNA gene ITS regions 

undergo higher rates of insertions and deletions which often allow for better taxonomic 

resolution within fungi than the 18S rRNA gene (Schoch et al., 2012). Typically, only 

one ITS region is amplified during marker gene studies each showing bias in its ability to 

classify specific taxonomic groupings (Blaalid et al., 2013). 

Other genes that have been proposed to be useful targets for marker gene 

sequencing studies include Cpn60, gyrB, and rpoB each with their own benefits (Links, 

Dumonceaux, Hemmingsen, & Hill, 2012; Ogier, Pagès, Galan, Barret, & Gaudriault, 

2019; Peeters & Willems, 2011). For example, Cpn60, a universal chaperonin protein 

found in bacteria, has recently been shown to be a useful marker gene because it has 

larger pairwise inter- and intra-species distances than the 16S rRNA gene. Highlighting 

that Cpn60 may be more useful to identify taxa that are closely related than 16S rRNA 

gene sequencing (Links et al., 2012). Other examples include gyrB, and rpoB which have 

been shown to have stronger taxonomic resolution for specific lineages (Ogier et al., 
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2019; Peeters & Willems, 2011). However, due to the mass adoption of the 16S rRNA 

gene as the primary target for bacterial marker gene studies, a larger number of reference 

sequences are available. Indeed, the SILVA rRNA database (Version, 138.1) has over 9.4 

million rRNA gene sequences representing all three domains of life and 89 different 

bacterial phyla (Pruesse et al., 2007). The SILVA database along with others such as 

Greengenes is critical for the development and training of sequence based taxonomic 

classification tools (DeSantis et al., 2006). Furthermore, 16S rRNA gene databases, such 

as SILVA and Greengenes, also contain reference trees useful for the creation of 

phylogenetic measurements avoiding the need to create lower accuracy study specific de 

novo trees (Janssen et al., 2018).  

Clearly the choice of marker gene used during microbiome studies plays a large 

role in the biological results obtained at the end of a study. For example, those focused on 

fungi will obtain different observed communities and possibly different biological 

conclusions when using primers targeting the ITS1 or ITS2 regions (Blaalid et al., 2013). 

However, there are numerous other choices that must be made during a typical marker 

gene sequencing experiment that can impact the biological conclusions that are obtained 

(Goodrich, Di Rienzi, et al., 2014; Nearing et al., 2021). This includes steps that occur 

both before and after DNA sequencing. For example, before sequencing researchers must 

determine the sample of interest, sampling device, DNA extraction method, library 

preparation method, and sequencing platform. After sequencing multiple computational 

choices must also be made such as how to deal with low quality sequences, choosing 

analytic units, taxonomic classification tools, and statistical analysis (Figure 1.1). Each 

one of these steps can alter the observed communities within their samples and thus 
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impact their conclusions and the resulting biomarkers identified within a study. A 

previous review that I published highlights many of these choices and potential biases 

introduced into sequence based microbiome studies (Nearing et al., 2021). However, this 

thesis will be focused on steps that occur after sequencing is complete. Specifically, I will 

examine the steps involved in processing data into measurements of the observed 

microbial community.  

 

Figure 1.1: The various stages that can introduce bias in sequenced-based human 

microbiome studies. Orange boxes represent the various areas within a stage that can 

result in the introduction of systemic bias. This figure was adapted from a figure within a 

review that I published (Nearing et al., 2021). “Bleed-Through” is a bias described on 
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Illumina Miseq sequencers that can appear during sequencing when previous DNA is not 

fully washed out and is sequenced on future runs. 

Sequencing data is processed in numerous steps before microbial community 

measurements are generated. While a general workflow for marker gene data processing 

is typically followed, large variations from protocol to protocol can exist (Knight et al., 

2018). For example, sequences are often quality filter to remove low quality base scores 

that are susceptible to error. However, the basis on which a quality score threshold is 

chosen is often unclear or not well justified within studies. Indeed, a gold standard for an 

acceptable quality score does not exist in current microbiome literature and thus varies 

from study to study. This lack of ‘gold standard’ does not just stop at quality score 

thresholding. In fact, for each step within a typical marker gene sequencing pipeline 

numerous tools have been developed to address similar problems (Figure 1.2). This often 

presents to researchers as difficult choices they must make during data processing. 

Unfortunately, these choices are often unclear or given little or no rationale. This is a 

problem because analysis of the same sequencing data using different tools may result in 

remarkably different biological conclusions.  

Undoubtedly, these issues spill over into microbial biomarker detection using 

sequenced based microbiome measurements. While there are several steps within marker 

gene data processing highlighted within Figure 1.2. Two areas we hypothesized as 

creating some of the largest study-to-study biases include dealing with sequencing and 

PCR errors after quality score thresholding and the use of different differential abundance 

(DA) tools to identify microbial biomarkers. We hypothesis that these steps led to some 

of the largest bias within microbiome studies because within each step, highly different 
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tools with differing algorithms are used to accomplish similar goals. Yet within literature 

they are used interchangeably with one another. These two areas have been 

comprehensively examined in Chapters 2 and 3 of this thesis and present key information 

needed to compare previously published literature and produce robust biomarkers in 

future studies.  
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Figure 1.2: Processing of marker gene sequencing data and associated processing 

choices. Blue boxes represent the major steps of a typical data processing pipeline for 

marker gene sequencing data. Yellow boxes represent some of the various choices 

researchers must make during data processing. 
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1.3 - Dealing With Sequencing Error and the Creation of Analytic Units in Marker Gene 

Sequencing Experiments 

 

During a sequencing run, base calls are assigned quality scores to represent the likelihood 

that the sequencer made an error. For sequencing done on Illumina based platforms, the 

most common short read sequencer, these quality scores are determined through several 

proprietary parameters. These parameters include the intensity of photons captured by the 

sensor, and the signal-to-noise ratio of the captured image. Estimates of quality represent 

the probability that an error was made and can range from 1 in 10 all the way to 1 in 

10,000. While it is standard to remove low quality score reads no gold standard exists. 

Within literature quality score cut-offs can range from estimated error rates of 1 in 10,000 

to 1 in 1,000 with little to no clear best option. While quality score thresholding removes 

problematic reads; base call errors will still be present within filtered data. This is 

because typical marker gene experiments can generate anywhere from 10,000 to 100,000 

reads per sample.  

Moreover, sequencing is not the only area where base pair errors can occur. The 

amplification of the marker gene of interest using polymerase chain reactions (PCR) can 

also lead to base pair substitutions. For example, Thermus aquaticus DNA polymerases 

have an estimated error rate of 2.1 x 10-4 during typical PCR conditions (Keohavong & 

Thilly, 1989). While modern day high-fidelity polymerases have improved error rates by 

an estimated 100 fold, errors can still exist in amplified DNA products (McInerney, 

Adams, & Hadi, 2014).  

 Fortunately, a number of different solutions were developed to help address this 

problem with operational taxonomic unit (OTU) clustering and sequencing denoising 
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taking the forefront (Knight et al., 2018; Pollock, Glendinning, Wisedchanwet, & 

Watson, 2018). Both of which differing in their general approach to dealing with errors 

generated during marker gene sequencing protocols. At the time of starting my PhD no 

gold standard for these methods existed and little to no information existed on how their 

differences could impact biological conclusions. Furthermore, even within these two 

solutions various implementations existed using different heuristics, algorithms, or 

reference databases (Amir et al., 2017; Callahan et al., 2016; R. C. Edgar, 2016, 2017).  

These were the main motivations behind the analysis within Chapter 2 of this thesis.  

 Operational taxonomic units (OTUs) were first proposed by Peter Sneath and 

Robert Sokal in the 1960s to create a quantitative measurement for taxonomic 

classification. The method they proposed used trait tables with a numeric scoring system. 

Trait table scores could then be used to quantify the amount of observed difference 

between organisms and thus create taxonomic groupings (Sneath & Sokal, 1973). This 

idea has since been co-opted in marker gene sequencing experiments such as 16S rRNA 

gene sequencing. In this case DNA sequence identity represents the scoring between 

different taxa and various thresholds are used to identify new taxonomic units. Various 

nucleotide identity thresholds have been used to generate OTUs, however, the most 

common range between 97% and 99%. Indeed, early work within the field by 

Stackebrandt and Goebel coined the use of a 97% identity threshold in 16S rRNA gene 

sequencing as it was found to match with a 70% DNA reassociation value, which at the 

time was used to define bacterial species (Moore et al., 1987; Stackebrandt & Goebel, 

1994). It should be noted that since this initial work and the revolution that next 

generation sequencing brought, the definition of bacterial species has constantly been 
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evolving (Doolittle & Papke, 2006; Gevers et al., 2005). Correspondingly, various other 

OTU clustering thresholds have been proposed to better represent the underlying 

microbial communities within a sample. For example work by Robert Edgar in 2018 

found that a threshold of 99% identity for full length 16S rRNA genes to be more in line 

with the current definitions of species found within GenBank (R. C. Edgar, 2018). 

Despite this OTU identity thresholds found within the literature continue to vary due to 

numerous reasons including differing benchmarks between variable regions (J. S. 

Johnson et al., 2019).  

Identity thresholding, however, is not the only difference found between studies 

that generate analytic units using OTU clustering. In general, this procedure can be done 

in three different ways; de novo clustering, referenced based clustering, and open-

reference clustering (Nearing et al., 2021). Each of these approaches differ in the way 

sequences are clustered with one another. In the case of de novo clustering sequences are 

grouped purely on sequencing identity using various greedy algorithms implemented in 

tools such as USEARCH and VSEARCH (R. C. Edgar, 2010; Rognes, Flouri, Nichols, 

Quince, & Mahé, 2016). Unlike other clustering options de novo clustering suffers from 

two key issues. The first being that its implementation is quadratic in run time, leading to 

highly intense computational requirements as sequence count expands (Westcott & 

Schloss, 2015).  Secondarily, numerous studies have identified that not only are de novo 

OTUs not directly comparable across studies (Callahan, McMurdie, & Holmes, 2017) but 

can differ within the same study when sequence order changes (Y. He et al., 2015). On 

the other hand, de novo OTUs have been shown to generate higher quality consensus 
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sequences that represent the underlying biological community in higher detail than other 

OTU clustering approaches (Westcott & Schloss, 2015). 

Reference-based clustering groups sequences based on their similarity to those 

found within a database. Common databases used for 16S rRNA gene analysis include 

SILVA, Greengenes, and RDP (Cole et al., 2014; DeSantis et al., 2006; Quast et al., 

2013). While computational requirements to generate reference-based OTUs are lower 

and they are more easily comparable between studies, they often lack the ability to 

accurately depict the biodiversity found within a community (Westcott & Schloss, 2015). 

This is due to several reasons, including reads from potentially novel taxa being 

disregarded due to them not being in reference databases. To address this a third 

approach was developed which is a hybrid between de novo and reference-based 

clustering.  

Open reference clustering is a hybrid approach that first generates clusters in a 

reference-based manner and then uses remaining sequences to generate de novo OTUs 

(Navas-Molina et al., 2013). This approach has been commonly employed across marker 

gene sequencing studies as it highlights the strengths of both de novo and reference-based 

clustering. Although having two differing definitions of OTUs within the same analysis 

has been critiqued (Westcott & Schloss, 2015).    

Regardless of various works being done to compare these methods all three are 

commonly used across microbiome studies with various identity thresholds. Indeed, work 

has shown that using different clustering strategies or precent identity thresholds within 

the same datasets can significantly alter diversity measures while having only subtle 

effects on overall composition (Sul et al., 2011; Westcott & Schloss, 2015). As such a 
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clear choice in what identity threshold or clustering approach used often comes down to 

the biological question at hand and the need to compare results between studies.   

While OTUs have served the microbiome community well, several deficiencies in 

their use have been noted including: their inability to identify microbes at high taxonomic 

resolution, their reproducibility between studies, changing reference data, and their over 

exaggeration of microbial richness (Callahan et al., 2017; R. C. Edgar, 2017). As such 

several new methods for addressing sequencing error and creating analytic units for 

marker gene sequencing have been proposed. These new methods, known as sequencing 

denoising, aim to identify error prone reads and either remove them from consideration or 

correct them (Callahan et al., 2017).  

The initial development of sequencing denoising methods were motived by the 

fact that OTUs often fail to resolve ecologically important differences between closely 

related organisms such as differing species or strains (Eren et al., 2013). Indeed, 

Oligotyping was the first of these methods and was employed in various datasets; 

highlighting the ecological importance of uncovering exact sequences within various 

microbial communities (Eren, Borisy, Huse, & Mark Welch, 2014; Eren et al., 2013). 

Following Oligotyping, a new tool called Minimum Entropy Decomposition (MED) was 

later introduced as an unsupervised way of generating exact sequences from marker gene 

sequencing data. Following the development of MED further improvements in the 

generation of exact biological sequences referred to as amplicon sequence variants 

(ASVs) were made. This includes the use of error modeling and the inclusion of larger 

datasets when tuning parameters. 



30 

 

 This led to three separate sequence denoising algorithms to be commonly used 

within the literature DADA2 (Callahan et al., 2016), Deblur (Amir et al., 2017), and 

UNOISE3 (R. C. Edgar, 2016). Interestingly, despite similar goals of generating ASVs, 

each of these methods used unique procedures to identify and correct sequence errors. 

For example DADA2 uses a data driven approach through the construction of a 

parametric error model, while both UNOISE3 and Deblur use predefined parameters 

based on previous Illumina sequencing runs to identify error prone reads (Amir et al., 

2017; Callahan et al., 2016; R. C. Edgar, 2016). A greater discussion of these approaches 

and their differences can be found within the introduction of Chapter 2 of this thesis. 

However, critically within these descriptions is the point that no clear gold standard 

within the field was apparent. Indeed, often methods were chosen with little rational and 

were often compared interchangeable with one another. This fact along with not 

understanding how tool choice could impact biological conclusions, such as microbial 

biomarkers, were the main motivators in the research presented within Chapter 2. The 

goal of which was to identify whether the choice of sequence denoising method could 

play a significant role in study conclusions such as beta diversity, richness, and overall 

microbial profile.  
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1.4 - DNA Sequencing Based Microbiome Measurements 

 

Investigating the drivers of diversity, as well as both microbial and functional 

composition is a central aspect of understanding microbial communities. Indeed, studying 

these microbial community measurements have allowed us to investigate how microbial 

communities change with respect to different environmental pressures and contribute to 

various aspects including human health. Fortunately, sequence-based microbiome studies 

are well suited to begin to address questions surrounding microbial diversity and 

composition. Below, I will discuss common ways of investigating microbial diversity, 

and composition, using marker gene sequencing. I will also highlight how these 

sequenced based measurements of microbial communities have been proposed as 

biomarkers. Finally, while the term species will be used throughout this section, similar 

concepts can also be applied to OTUs, ASVs, or any other taxonomic classifications 

generated during marker gene data processing.  

 Various ways of measuring biodiversity within ecosystems exist. Many of which 

have been adapted from the field of classical ecology to investigate microbiomes. For 

example, classical measurements of both alpha and beta diversity have been applied to 

sequence based microbiome surveys (Tipton, Darcy, & Hynson, 2019).  Alpha diversity 

can be defined as the species diversity within a site of interest (Whittaker, 1972). In the 

case of microbiome studies sites are often defined as individual samples. There are 

several different ways of comparing alpha diversity between samples with the simplest 

form being richness - the number of species observed (Whittaker, 1972). Indeed, in 

microbiome studies measurements of richness have proven to be a powerful way of 

summarizing microbial communities. For example, in inflammatory bowel disease 
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microbial richness has been repeatedly shown to be reduced within the gut compared to 

health controls (Glassner, Abraham, & Quigley, 2020). In fact reductions in microbial 

richness have been proposed as a useful biomarker of treatment susceptibility and disease 

flares (Douglas et al., 2018; Lloyd-Price et al., 2019).  

Richness, however, is not the only parameter used to measure diversity within 

samples. Evenness, the spread of abundance across species, is also commonly considered 

when estimating alpha diversity from sequenced microbial communities. This is because 

microbial communities with the same richness can have considerably different 

distributions of abundance within them (Tipton et al., 2019). To address this issue the 

evenness of a microbiome sample can be measured, where higher scores are associated 

with samples where species share the same abundance values. By examining evenness 

researchers can identify communities that are dominated or skewed toward only a small 

number of species. Oftentimes both microbial richness and evenness can be considered 

within a single estimate of alpha diversity. Examples of this include both the Shannon 

index and Simpson index, which are commonly used alpha diversity measurements 

within microbiome studies (A. D. Willis, 2019).  

In addition to both richness and evenness, phylogenetic information can also be 

included within alpha diversity measurements. Phylogenetic diversity can help account 

for the evolutionary history between species within a sample. Various forms of 

phylogenetic diversity measurements exist with Faith’s Phylogenetic Diversity being one 

of the most common (Faith, 1992). Faith’s Phylogenetic Diversity does not consider 

evenness within a sample and simply represents the sum of branch lengths between all 

species within a sample, given a phylogenetic tree. This metric represents how far the 
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community of interest extends across the evolutionary tree of life (Matsen  IV, 2015). It 

is commonly applied to microbiome studies. For example, measurements of Faith’s 

Phylogenetic Diversity within the oral cavity have been associated with a number of 

outcomes including ancestry, diabetes, and  SARS-CoV-2 infection (Saeb et al., 2019; 

Yongjian Wu et al., 2021; Yaohua et al., 2019). Similar to measurements of richness 

other forms of phylogenetic diversity exist that consider species abundance (Allen, Kon, 

& Bar-Yam, 2009; McCoy & Matsen IV, 2013). These weighted phylogenetic 

measurements of alpha diversity have proven useful as they are less impacted by low 

abundance contaminates or sequencing artefacts. Although in the end, which metric of 

alpha diversity used within a study often comes down to the question at hand due to their 

unique views of community structure. 

Common to all measurements of diversity is the need to investigate each 

community with the same amount of observation effort. For example, ecologists counting 

lions on a savannah are likely to count more lions if they spend ten days in the savannah 

compared to five. While this is a macroscopic example, similar situations apply to 

sequence based microbial community surveys. This is because total read counts can vary 

arbitrarily from one sample to another and thus lead to unequal observation effort 

between samples (Gloor, Macklaim, Pawlowsky-Glahn, & Egozcue, 2017). Without 

correcting this issue, measurements of diversity such as the number of species within a 

sample will be biased toward samples with larger read counts. Highlighting the potential 

to identify spurious findings and or biomarkers (A. D. Willis, 2019).  

Multiple solutions to unequal observation efforts in sequencing have been 

proposed with the issue traditionally being dealt with using rarefaction (S. Weiss et al., 
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2017). In the context of ecology, rarefaction was first suggested by Howard Sanders in 

1968 who suggested randomly discarding samples until the observation effort was the 

same across all observed communities (Sanders, 1968). In the case of our savannah lion 

example this might involve randomly discarding data from five of the ten days of our 

field work. In the case of microbiome studies this means we must randomly discard reads 

from each sample so that all samples are of equal read depth (McMurdie & Holmes, 

2014). This approach has been used to great success within the microbiome field 

uncovering differences in alpha diversity across not only the human body but also soil, 

water, and built environments. However, this practice has come under significant 

criticism due to the amount of data being unused and the disregard for measurements of 

uncertainty (McMurdie & Holmes, 2014; A. D. Willis, 2019). Indeed, others have argued 

that read counts represent the certainty in which we can estimate the diversity within a 

sample, a sensible conclusion given the relation between read depth and discovery of 

novel taxa. Methods that exploit read count information have been developed to model 

both the number of observed and unobserved species within a population (A. Willis, 

Bunge, & Whitman, 2017). While these methods are not as commonplace, improvements 

in their estimations could significantly benefit our understanding of microbiome 

diversity.  

 Beta diversity is another common category of diversity metrics used to describe 

and compare microbial communities. Beta diversity can be defined as measuring the 

diversity between groups of samples and is often represented by various dissimilarity and 

distance metrics (Tipton et al., 2019). In this case, samples with the exact same microbial 

profiles are measured with a distance or dissimilarity of 0 and reach closer to 1 as they 
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differ from one another. Beta diversity metrics are commonly used to describe how 

groupings of microbiome samples differ in their overall community profile or structure 

(Pollock et al., 2018). Like alpha diversity metrics, beta diversity metrics can also 

consider both the presence/absence of species and/or their abundance profiles. For 

example, the Jaccard distance of a group of samples only considers whether a microbe is 

present or absent and is thus considered an unweighted beta diversity metric (Parks & 

Beiko, 2013). Contrastingly, Bray-Curtis dissimilarity considers both the 

presence/absence of species as well as their abundance. Because it considers both 

abundance and presence/absence it is thought of as a weighted beta diversity metric. 

Debate on which metrics better represent microbial communities have been ongoing 

within the field, however, each has its own benefits (Parks & Beiko, 2013). For example, 

unweighted measurements give a better understanding of how microbial communities 

differ when both are dominated by similar species. However, like measures of pure 

richness it is thought to be at higher risk for technical bias due to the equal weighting of 

low abundance contaminants or sequencing artifacts. Nonetheless, both have been useful 

for helping to identify microbial populations that could potentially harbor biomarkers of 

disease (Goodrich, Di Rienzi, et al., 2014).  

 It is common in microbiome literature to add phylogenetic information into beta 

diversity metrics. Both weighted and unweighted UniFrac were first proposed by 

Louzpone et al. to allow researchers to capture information on how similar microbial 

communities are in the context of evolutionary history (C Lozupone & Knight, 2005; 

Catherine Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011). These techniques 

are particularly powerful in marker gene studies as common targets such as the 16S 
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rRNA gene can capture a significant amount of phylogenetic information between 

species. Both weighted UniFrac and unweighted UniFrac are ubiquitously used across the 

microbiome field in conjunction with rarefaction to address issues of unequal sampling 

efforts as described above. For example, work has shown that gut microbiota unweighted 

UniFrac profiles of individuals with colon cancer are significantly different from health 

controls (Flemer et al., 2017).   

Traditionally rarefaction is used to address differences in observation efforts when 

calculating beta diversity metrics. However this practice has recently come under scrutiny 

(Cameron et al., 2019; McMurdie & Holmes, 2014). Accordingly, new ways of 

measuring beta diversity without the use of rarefaction have been proposed. The majority 

of which depend on compositional data (CoDa) analysis techniques first proposed by 

Aitchison to resolve issues of compositionality (Aitchison, 1982). Indeed, microbiome 

profiles observed through DNA sequencing are inherently compositional in nature and as 

such are generally measured in relative abundances. This is because sequencing 

instruments have a maximum capacity in the number of unique DNA fragments, they can 

process. Accordingly, when this maximum is reached, reads sequenced from one species 

must take up space in the maximum capacity resulting in a lower number of available 

reads for the remainder (Gloor et al., 2017). This is important because increases in 

relative abundance do not necessarily mean that there is a corresponding increase in 

absolute abundance, a common issue highlighted within CoDa literature.  

To help address this issue microbiome profiles have been represented using 

various different normalizations based on ratios (Morton et al., 2019). The most common 

of which is the center-log-ratio which compares the read counts of each species within a 
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sample to the geometric mean read count across all species within that sample. In this 

scenario we can begin to interpret microbiome profiles by comparing how species 

increased or decreased compared to the “average microbe” rather than examining 

differences in proportions. Center-log-ratio normalization techniques along with others 

such as the iterative-log-ratio have been not only used to normalize microbiome profiles 

but also to generate various beta diversity measures (Cameron et al., 2019; Silverman, 

Washburne, Mukherjee, & David, 2017; Washburne et al., 2017).  

Unfortunately, the use of ratio normalizations and CoDa analysis is not without its 

own faults. For example, center-log-ratio methods cannot deal with zeros in the 

numerator and as such must either use some form of a heuristic or a pseudo-count. 

Unfortunately, the use of pseudo-counts is not without fault and remains an active area of 

research (S. Weiss et al., 2017). Another example is the use of additive log ratios which 

focus on a single taxon as the reference frame or ratio denominator. In this case choosing 

a single taxon to do this can often be difficult due to the high sparsity of microbiome data 

and the uncertainty of the underlying microbial abundances. However, solutions to this 

issue have been proposed including the use of multiple reference frames or known spike-

in quantities (McLaren, Nearing, Willis, Lloyd, & Callahan, 2022; Morton et al., 2019).   

Overall, there is no one way of analyzing microbial diversity and often it is 

unclear which metric may be best suited for the question at hand. This leaves researchers 

with yet another choice in how to view the observed microbial communities within their 

sample. 

A second approach to identify differences in microbial community structure is 

through the use of various machine learning algorithms. Machine learning has proven to 
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be useful in the microbiome field in several instances. Chiefly machine learning has been 

used in microbiome literature to either identify different community types, or classify 

samples based on microbial profile. Although numerous other applications exist 

including in taxonomic classification (Qiong, M., M., & R., 2007), and protein structure 

prediction (Jumper et al., 2021).  

 Eco-typing or community typing is a common technique used in microbiome 

studies to identify whether samples fall within similar community profiles. For example, 

one community type may be characterized by the high abundance of several phyla while 

another may be dominated by a single species. Community typing is generally done using 

various unsupervised machine learning algorithms with k-means clustering being one of 

the most common. The use of community typing has led to several interesting results 

including the identification of specific microbial patterns associated with infant probiotic 

usage and microbiome maturation (Samara et al., 2022). Overall, community typing 

represents a powerful technique to identify whether broad community patterns are 

associated with environmental or host conditions. 

 Machine learning has also been successfully applied to microbiome data in 

numerous cases to classify host phenotypes (Marcos-Zambrano et al., 2021). Various 

different supervised machine learning algorithms have been applied to microbiome data 

including support vector machines, artificial neural networks, and Random Forests 

(Marcos-Zambrano et al., 2021). In practice these algorithms have been applied to both 

taxonomic data as well as functional data to classify various sample characteristics 

(Douglas & Langille, 2021). Common examples of supervised learning with microbiome 

data include the prediction of individuals with and without disease. For instant Flemer et 
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al., used oral microbiome data and Random Forest modeling to classify individuals with 

and without colorectal cancer (Flemer et al., 2017). Underscoring their potential use in 

diagnostic applications. Moreover, machine learning algorithms such as Random Forest 

can also be used to identify species/functions or groups of species/function that carry 

signal with the host phenotype of interest. This is nicely illustrated by Thomas et al., who 

used Random Forest modelling across seven different studies to identify associations 

between colon cancer and choline trimethylamine-lyases gene abundance within the gut 

microbiome (Thomas et al., 2019).   

In addition to using machine learning to identify taxa of interest, various 

bioinformatic tools have been developed with the single purpose of identifying taxa-

metadata relations. Indeed, one of the most common questions that is asked during a 

microbiome study is whether particular taxa are associated with host characteristics 

(McLaren et al., 2022). Common examples of this might include comparing the 

abundances of microbes within the oral cavity of healthy individuals to individuals with 

disease to uncover microbial biomarkers. In the most general form these types of 

analyzes are referred to as differential abundance (DA) analysis. Indeed, DA analysis has 

been applied to numerous microbiome studies ranging from the association of specific 

microbes to pH levels, to whether taxa are associated with human cancers. Interestingly, 

despite how straightforward DA analysis may seem, a number of different tools have 

been developed specifically for this purpose (Morton et al., 2019). In fact various 

normalizations based on quantiles (Law, Chen, Shi, & Smyth, 2014; Love, Huber, & 

Anders, 2014), means (Calgaro, Romualdi, Waldron, Risso, & Vitulo, 2020; Robinson & 

Oshlack, 2010), rarefaction (S. J. Weiss et al., 2015), and ratios (Fernandes et al., 2014b; 
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Mandal et al., 2015) have been proposed to be used in microbiome DA analysis. 

Moreover, differing modelling strategies have also been proposed using various 

distributions including beta-binomial (B. D. Martin, Witten, & Willis, 2020), negative 

binomial (Love et al., 2014), normal, and zero-inflated normal (Paulson, Stine, Bravo, & 

Pop, 2013). These differences highlight the variability among microbiome DA methods, 

yet they are often used interchangeable within the literature. We believe that the 

interchangeable use of DA methods has contributed to difficulties in reproducing 

microbiome associations between studies of the same disease.  

 Despite these differences, in general DA tools fall within into two differing 

categories; those that adhere to CoDa principals using ratio normalizations and those that 

are count based. Tools that use CoDa principals include ALDEx2 (Fernandes et al., 

2014a) and ANCOM (Mandal et al., 2015) which use either center-log-ratios or additive 

log ratios by default. Contrastingly, count based tools attempt to identify taxon 

associations by examining proportions or normalizing read library sizes across the 

samples of interest. Clearly these different strategies are attempting to address 

fundamentally different questions, with CoDa tools examining the abundance of taxa 

relative to another feature and count based tools examining either proportional changes or 

normalized counts. Whether a particular normalization is best for the identification of 

microbiome-based biomarkers is unclear. For example, multiple studies have examined 

the gut microbiome and colon cancer with differing results (Cheng, Ling, & Li, 2020). 

While there are several reasons as to why their results may not align such as differences 

in DNA extraction or variable region, another contributing factor could be the usage of 
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differing DA tools. This highlights the need to identify how DA tool choice might impact 

the biomarkers being detected within the same study.  

While previous works have already shown that the specificity and sensitivity 

could differ between tools during simulations of different microbiome profiles (Calgaro 

et al., 2020; Cappellato, Baruzzo, & Di Camillo, 2022; Ma et al., 2021; S. Weiss et al., 

2017). They lacked comprehensive investigations into what degree DA tool choice could 

impact the results from data generated from true microbiome specimens. To help address 

this, myself and colleagues examined 38 16S rRNA gene sequencing datasets within 

Chapter 5 of this thesis. The overarching goal of this analysis was to determine how 

similar results were between DA tools and the consistency of those results.  
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1.5 - Outlook 

 

Based on the number of decisions and the lack of clear gold standards within DNA based 

microbiome data analysis, there will clearly be at least some minor differences between 

studies. However, these differences have not been well characterized for numerous steps 

across experimental protocols, especially with regards to computational analysis. Indeed, 

several studies have now compared differing DNA extraction kits (Shaffer et al., 2021), 

sequencing primers (C. Willis et al., 2019), and even sequencer platforms (D’Amore et 

al., 2016) to begin to identify how they systematically differ from one another. Yet the 

number of computational choices, a researcher must make during microbiome 

investigations represents a plethora of combinations. Seemingly the hope of researchers is 

that the biomarkers and conclusions we draw from studies are robust to these 

computational choices. 

The goal of this thesis was twofold. One to attempt to begin characterizing how 

critical bioinformatic tool choices are to microbial biomarker detection, and to then 

attempt to use this information to find more robust biomarkers within the salivary 

microbiome of breast, prostate, and colon cancer. To address the former goal, two 

different steps in microbiome biomarker inference were selected to be examined for 

impacts on the biological conclusions drawn. Both of which represent what we 

hypothesize as being some of the most critical choices made during the computational 

analysis of microbiome sequencing data. The first choice we examined was how 

researchers address sequencing error using OTUs or different sequence denoising 

methods. Results from this investigation are highlighted within Chapter 2. Following this 
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we were also interested in DA analysis and accordingly examined DA tool choice in 

Chapter 3. 

Following these investigations, we attempted to identify our own salivary 

biomarkers by first characterizing the microbial variation within the saliva of healthy 

adults (Chapter 4). We then applied this knowledge to identify biomarkers of cancer in 

Chapter 5.  

My hope is that by reading this thesis researchers will be more aware of the 

impact of the choices they make on the biological conclusions that they draw from 

microbiome studies. I also hope that some of the biomarkers identified with Chapter 5 of 

this thesis can be applied on a broader scale to validate their findings and potentially lead 

to novel risk factors for the development of prostate, colon, and breast cancer.  
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Chapter 2 - Denoising the Denoisers: An Independent Evaluation of 

Microbiome Sequence Error-Correction Approaches 

 

This chapter is a reproduction of the paper of the same named published in the journal 

PeerJ (Nearing, Douglas, Comeau, & Langille, 2018). I was first author on this work and 

was the primary contributor toward designing the project, collecting data, and analyzing 

the results. I wrote the paper while receiving constructive feedback from my co-authors. 

The co-authors on this paper were: Gavin M. Douglas, André M. Comeau, and Morgan 

G.I. Langille. 

This paper was published under the terms of the Creative Commons Attribution 

License, which permits unrestricted use, distribution, reproduction, and adaptation in any 

medium and for any purpose provided this it is properly attributed. Original declarations 

of competing interests, author contributions, funding, and data availability are available 

within the original publication. All supplemental figures and files referred to in this 

chapter are freely available as part of the publication on the PeerJ journal website. Access 

to these supplemental files can be found at the following link: 

https://doi.org/10.7717/peerj.5364. 
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2.1 - Abstract 

 

High-depth sequencing of universal marker genes such as the 16S rRNA gene is a 

common strategy to profile microbial communities. Traditionally, sequence reads are 

clustered into operational taxonomic units (OTUs) at a defined identity threshold to avoid 

sequencing errors generating spurious taxonomic units. However, there have been 

numerous bioinformatic packages recently released that attempt to correct sequencing 

errors to determine real biological sequences at single nucleotide resolution by generating 

amplicon sequence variants (ASVs). As more researchers begin to use high resolution 

ASVs, there is a need for an in-depth and unbiased comparison of these novel 

“denoising” pipelines. In this study, we conduct a thorough comparison of three of the 

most widely-used denoising packages (DADA2, UNOISE3, and Deblur) as well as an 

open-reference 97% OTU clustering pipeline on mock, soil, and host-associated 

communities. We found from the mock community analyses that although they produced 

similar microbial compositions based on relative abundance, the approaches identified 

vastly different numbers of ASVs that significantly impact alpha diversity metrics. Our 

analysis on real datasets using recommended settings for each denoising pipeline also 

showed that the three packages were consistent in their per-sample compositions, 

resulting in only minor differences based on weighted UniFrac and Bray–Curtis 

dissimilarity. DADA2 tended to find more ASVs than the other two denoising pipelines 

when analyzing both the real soil data and two other host-associated datasets, suggesting 

that it could be better at finding rare organisms, but at the expense of possible false 

positives. The open-reference OTU clustering approach identified considerably more 

OTUs in comparison to the number of ASVs from the denoising pipelines in all datasets 
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tested. The three denoising approaches were significantly different in their run times, 

with UNOISE3 running greater than 1,200 and 15 times faster than DADA2 and Deblur, 

respectively. Our findings indicate that, although all pipelines result in similar general 

community structure, the number of ASVs/OTUs and resulting alpha-diversity metrics 

varies considerably and should be considered when attempting to identify rare organisms 

from possible background noise. 
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2.2 - Introduction 

 

Microbiome studies often use an amplicon sequencing approach where a single genomic 

region is sequenced at a sufficient depth to provide relative abundance profiles of the 

microbes present in a sample. The 16S rRNA gene (16S) is usually chosen as a marker 

gene for sequencing of bacterial communities due to its unique structure that contains 

both conserved and variable regions and presence in all known Bacteria and Archaea 

species. This sequencing approach is often used to avoid the high cost of shotgun 

metagenomic sequencing or to avoid problems with sequencing non-microbial DNA from 

host contamination. However, sequencing errors make it difficult to distinguish 

biologically real nucleotide differences in 16S sequences from sequencing artefacts. To 

avoid this issue sequences are often clustered into operational taxonomic units (OTUs) at 

a particular identity threshold (e.g. 97%) to avoid the problem of differentiating 

biological from technical sequence variations; however, this comes at the cost of 

taxonomic resolution. Recently, many new bioinformatic sequence “denoising” 

approaches have been developed to address this issue by attempting to correct sequencing 

errors thus improving taxonomic resolution. These pipelines differ in how they correct 

sequencing errors. DADA2 generates a parametric error model that is trained on the 

entire sequencing run and then applies that model to correct and collapse the sequence 

errors into what the authors call amplicon sequence variants (ASVs) (Callahan et al., 

2016). This approach is advantageous as it builds unique error models for each 

sequencing run. Deblur aligns sequences together into “sub-OTUs” and, based on an 

upper error rate bound along with a constant probability of indels and the mean read error 

rate, removes predicted error-derived reads from neighboring sequences (Amir et al., 
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2017). Deblur employs a sample-by-sample approach which reduces both memory 

requirements and computational demand. UNOISE3 employees a one-pass clustering 

strategy that does not depend on quality scores, but rather two parameters with pre-set 

values that were curated by its author to generate “zero-radius OTUs” (R. C. Edgar, 

2016). The advantage of a one-pass clustering strategy is that it saves on the 

computational time required to analyze the sequences in the provided study. Note that 

ASVs, sub-OTUs, and zero-radius OTUs are synonymous and the term ASV will be used 

henceforth. Denoising approaches provide improved resolution and they avoid having to 

make a choice between various OTU strategies which may result in differing results (R. 

C. Edgar, 2017). In addition, ASVs can be identified by their unique biological sequences 

instead of relying on per-study IDs, which allows for easier comparison across datasets 

(Callahan et al., 2017).  

Although there have been several bioinformatic comparisons of OTU-based 

approaches (Allali et al., 2017; Plummer & Twin, 2015), a thorough third-party 

comparison of denoising pipelines has yet to be conducted. In this chapter, we compare 

the strengths and weaknesses of the DADA2, UNOISE3, and Deblur packages along with 

a comparison to an open-reference 97% OTU-based approach (Rognes et al., 2016), 

while following the recommended default settings. We assess the accuracy of these 

approaches using several mock communities including both bacterial and fungal 

amplicons. In addition, we compare the results of the four pipelines on three previously-

published real human, mouse, and soil datasets. 
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2.3 - Materials and Methods 

 

2.3.1 - Sequence Acquisition 

The HMP mock community (which has even expected abundances) and the 

ZymoBIOMICS Microbial Community Standard (referred to as the Zymomock 

community) were sequenced by the Integrated Microbiome Resource at Dalhousie 

University using an Illumina MiSeq on separate sequencing runs, as previously described 

using the V4-V5 16S rRNA gene region (Comeau et al., 2017). Reads were then 

uploaded to the European Nucleotide Archive (ENA) under accession number 

PRJEB24409. The Extreme dataset (mock-12) originally presented in the DADA2 paper 

and the fungal ITS1 dataset (mock-9) were retrieved from the Mockrobiota project 

(Bokulich et al., 2016). The Extreme dataset was sequenced using an Illumina MiSeq 

(Callahan et al., 2016) and the fungal mock community was sequenced using an Illumina 

HiSeq (Bokulich et al., 2016). The soil data set collected from blueberry fields (available 

under NCBI SRA PRJNA389786) and the exercise dataset collected from stool of mice 

that exercised plus controls (ENA accession PRJEB18615) (Lamoureux, Grandy, & 

Langille, 2017) as well as the human-associated dataset of intestinal biopsies of pediatric 

Crohn's disease patients plus controls (ENA accession PRJEB21933) (Douglas et al., 

2018) were sequenced at the Integrated Microbiome Resource at Dalhousie University.  

2.3.2 - Filtering 

All sample data was filtered using the Microbiome Helper filtering scripts (Comeau et al., 

2017). In summary, primers were trimmed off all reads using Cutadapt (v 1.14) (M. 

Martin, 2011) and GNU Parallel (Tange, 2011). Primer-free sequences were then input 

into the dada2_filter.R script available in Microbiome Helper. This script takes in the 
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maximum expected number of errors allowed as well as a truncation length. The HMP 

mock community and the Zymomock community were truncated to read lengths of 270 

and 210 base pairs for the forward and reverse reads respectively to remove low quality 

bases at the end of the reads. The shorter length for the reverse reads is a result of their 

lower overall quality compared to the forward reads. Note that for DADA2, and Deblur 

to work properly reads need to be of the same length. The single-end reads from the 

Extreme mock community and the fungal mock community were truncated to 80 base-

pairs. The three real datasets: soil, mouse, and human-associated, were truncated to 270 

and 210 base-pairs for the forward and reverse reads, respectively. The number of 

expected errors allowed were defined as three different filtering stringencies: 5 (low), 3 

(medium), and 1 (high). 

  

2.3.3 - DADA2 Pipeline 

The DADA2 pipeline was run using Microbiome Helper scripts, which wraps the core 

algorithms of the DADA2 pipeline (Callahan et al., 2016). Filtered reads were input into 

the wrapper script dada2_inference.R which runs the DADA2 inference algorithm. Once 

ASVs are determined, they are passed into DADA2’s chimera-checking algorithm which 

was run using the wrapper script dada2_chimera_taxa.R to screen out chimeric 

sequences. The output objects containing ASV sequences and abundances counts were 

then converted into BIOM table format using convert_dada2_out.R. All DADA2 wrapper 

scripts were run with default settings.  
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2.3.4 - UNOISE3 Pipeline 

Filtered reads were input into USEARCH’s (v 10) (R. C. Edgar, 2010) fastq_mergepairs 

command if they were paired-end reads or concatenated together into one FASTQ if they 

were single-end reads. Next, the merged FASTQ file was converted into a FASTA file 

using the Microbiome Helper script run_fastq_to_fasta.pl and then used as input for 

USEARCH’s fastx_uniques command which generated a FASTA containing all the 

unique sequences and their abundance. Finally, the FASTA containing unique sequences 

was used as input into USEARCH’s unoise3 (R. C. Edgar, 2016) command generating a 

BIOM table and representative ASVs that were used in subsequent analyses. All 

USEARCH scripts were run with default settings. 

 

2.3.5 - Deblur Pipeline 

Paired-end filtered reads were stitched together using the Microbiome Helper wrapper 

script run_pear.pl which wraps the program PEAR (v 0.9.10) (J. Zhang, Kobert, Flouri, & 

Stamatakis, 2014). This step was skipped for filtered single-end reads. Next, reads were 

renamed to match a format that was compatible with QIIME2 (Caporaso et al., 2010) and 

converted into a QIIME2 artifact. Samples were then run through QIIME2’s built-in 

deblur command using the 16S setting, which uses Greengenes 13_8 (DeSantis et al., 

2006) for positive filtering. A separate analysis to test the effect of positive filtering was 

conducted by using the non-positive filtered output files (“all.biom” and “all.seqs.fa”) 

from the stand alone version of Deblur. Fungal reads were run using the “other” setting 

and the UNITE 10.10.2017 database (Kõljalg et al., 2013). Finally, the representative 
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ASV sequences and a BIOM table were exported from the QIIME2 artifact. All other 

Deblur scripts were run with default settings. 

 

2.3.6 - Open Reference OTU Pipeline 

Filtered reads were stitched and imported into a QIIME2 artifact as previously described 

in the Deblur pipeline. The imported sequences were then dereplicated using the QIIME2 

VSEARCH  plugin. Dereplicated sequences were filtered for chimeras using the QIIME2 

VSEARCH UCHIME reference-based chimera filtering (R. C. Edgar, Haas, Clemente, 

Quince, & Knight, 2011) using the Greengenes13_8 97% OTU database for reference. 

Chimera-checked sequences were then clustered at 97% in an open-reference fashion 

using the QIIME2 VSEARCH cluster-features-open-reference plugin. The Greengenes 

13_8 97% OTU database was used as the reference database during open-reference OTU 

picking. Finally, singleton OTUs were removed from the OTU table and the table was 

exported in BIOM format along with its representative sequences in FASTA format. 

 

2.3.7 - Run Time and Memory Analysis 

The soil dataset was filtered using the low-stringency filter and then individual samples 

were rarefied to either 5000, 10000, 20000 or 30000 reads per sample. The different read-

depth sets were then run through the three denoising pipelines and user time and 

maximum memory usage was determined using the GNU time (v 1.7) command. 
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2.3.8 - ASV and OTU Analysis of Mock Communities 

ASVs and OTUs were compared against the expected sequences provided with each of 

the mock communities. This comparison was done using the command-line BLASTN (v 

2.7.10) (Altschul, Gish, Miller, Myers, & Lipman, 1990) tool against the expected 

sequences from each community. This allowed us to determine the number of full length 

100% matches and 97% matches. All ASVs and OTUs that did not match these criteria 

were then compared against the SILVA 16S rRNA gene database (v 128) (Pruesse et al., 

2007) or the UNITE 10.10.2017 database to find all full length 100% and 97% matches. 

Any ASVs or OTUs that did not match these databases were then labeled as 

“Unmatched”. The number of unique expected sequences for each mock community was 

determined by slicing out the amplified regions using a custom Python (v 3.6.1) script 

(slice_amplified_region.py, available on GitHub) from the expected sequences of each 

mock community and then finding the number of unique sequences from this output 

using USEARCH10’s fastx_uniques command. In addition to analysis done with no 

abundance filtering, we also compared how filtering of low abundance ASVs/OTUs 

affected the type and amount of ASVs/OTUs called by each pipeline. This was done by 

applying a 0.1% minimum abundance filter to each approach and dataset except for the 

Extreme mock community where a 0.0004% minimum abundance filter was applied. The 

0.1% minimum abundance filter was chosen based on the known 0.1% bleed through 

between Illumina MiSeq runs. A lower minimum abundance filter of 0.0004% was 

chosen for the Extreme mock community since some of the expected sequences had a 

lower expected abundance than 0.1%. Histograms with sequence identity to the expected 

sequences were generated for each pipeline and each mock community except for the 
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fungal mock community due to the community missing some expected sequences from 

its expected sequence list. All sequences that showed less than 75% identity were binned 

together. 

 

2.3.9 - Abundance Data Analysis of Mock Communities 

For the HMP, Zymomock and Extreme datasets all ASVs/OTUs that matched at 97% 

identity or greater with the provided expected sequences based on a BLASTN search 

were added to the abundance of the corresponding expected taxa. Stacked bar charts of 

expected taxa relative abundances were created using the ggplot2 (v 2.2.1) (Wickham, 

2009) R (v 3.4.3) (R Development Core Team, 2008) package and the cowplot (v 0.9.2) 

R package (see Data Deposition for exact scripts).  

 Due to the incomplete nature of the expected sequences for the fungal mock 

community, UNITE database hits at 97% or greater to an expected species within the 

community were considered as expected ASVs/OTUs. All other ASVs/OTUs were 

classified as “Non-Reference” hits.   

  

2.3.10 - Analysis of Real Datasets 

Sequences from the three real datasets; soil, human-associated, and exercise were filtered 

using medium stringencies (allowing up to 3 expected errors per sequence) for each 

package and rarified to 5215, 3000 and 4259 reads, respectively. These rarefaction levels 

were chosen as they were the lowest read count above 2000, after the DADA2 pipeline 

was complete. ASV abundance tables output by all approaches were combined into a 
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single table where each biological sample was represented multiple times (once for each 

pipeline). ASVs/OTUs not called by a specific pipeline were given an abundance of zero 

in their column (e.g. ASVs only called by Deblur for sampleA were given zero 

abundances in the columns for DADA2’s and UNOISE3’s outputs of sampleA). 

Representative sequences were aligned against the Greengenes 13_5 99% OTU aligned 

sequences and placed on the Greengenes 13_5 99% OTU tree using SEPP (Mirarab et al., 

2011). Weighted UniFrac and unweighted UniFrac distances at the ASV/OTU level were 

then generated using the QIIME1 beta_diversity.py command and principal coordinates 

were generated using the QIIME1 prinicpal_cordinates.py command. 

 The Bray-Curtis distance matrix at the genus level was generated by assigning 

taxonomy to the resulting ASV/OTUs from each package using the RDP classifier (Cole 

et al., 2014) with the assignTaxonomy function available in the DADA2 package and the 

rdp_train_set_16 database. Distances were then generated using the summarize_taxa.py 

and beta_diversity.py commands in QIIME1. Ordination was generated using the 

metaMDS function in the vegan R package (Oksanen et al., 2018).  

 Mantel correlations between each distance matrix for each pipeline and each beta-

diversity metric (weighted/unweighted UniFrac and Bray-Curtis) were generated using 

the vegan R package. The number of observed OTUs/ASVs per sample for each real 

dataset were generated using the rarified combined OTU/ASV tables and the 

alpha_diversity.py command in QIIME1 using observed OTUs as the metric option. 
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2.4 – Results 

 

2.4.1 - Differences in Methodology and Availability Between Different Denoising 

Pipelines 

There are important aspects other than accuracy that need to be considered when 

determining which denoising package a researcher should use for their project. Both 

DADA2 and UNOISE3 are suggested to be run in a pooled-sample workflow, where all 

sequences are pooled together during the denoising process (Table 2.1). This allows them 

to better account for batch errors across multi-run experiments. Deblur, on the other hand, 

runs its denoising process sample-by-sample. This approach helps lower Deblur’s 

computational requirements, but at the cost of reducing its ability to correct multi-run 

batch effects. Both DADA2 and Deblur are open source projects, whereas UNOISE3 is a 

closed-source project which has a free 32-bit academic version with a 4 Gb memory cap 

and a full 64-bit version that costs between $885-1485 USD (Table 2.1). Another major 

difference is that the built-in Deblur function in QIIME2 has a positive filtering process. 

This default setting causes Deblur to discard reads that do not reach a length-scaled bit 

score and an e-value threshold to any sequence in the 88% representative sequences 

Greengenes database. Note the default database can be changed using the “other” version 

of the Deblur plugin in QIIME2, an important feature when working with fungal or 

eukaryotic data. It is also important to note that the stand-alone version of Deblur outputs 

both positively filtered and non-filtered results by default, unlike the QIIME2 plugin 

which, only outputs the positively filtered results. Currently, the functionality of both 

DADA2 and Deblur can be accessed through a graphical user interface as plugins in 
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QIIME2 Studio, whereas UNOISE3 does not support a graphical user interface (Table 

2.1). 

 

Table 2.1: Qualitative comparison of DADA2, Deblur, and UNOISE3 

Pipeline 
Implemented 

In 
Open 

Source 
*Pooled 

Sampling 
**Positive 
Filtering 

Version 
Tested 

GUI via 
QIIME2 

Publication 
Date 

DADA2 R Yes Yes No 1.6 Yes 
April 13 

2016 

Deblur Python Yes No Yes 1.0.2 Yes 
March 7, 

2017 

UNOISE3 C++ No Yes No 3 No 
Oct 15, 
2016 

 

* When all sequences from all samples are denoised at the same time (in contrast to 

running each sample separately). 

** Compares resulting ASVs to a database (Greengenes for Deblur) and discards reads 

if they do not match a certain identity threshold (88% for Deblur). 

 

2.4.2 - Total Number of ASVs/OTUs Vary Across Approaches in Mock Communities 

We processed four different mock communities with the DADA2, UNOISE3, and Deblur 

denoising pipelines as well as an open-reference 97% OTU clustering pipeline to 

compare the resulting ASVs/OTUs from each approach. Focusing on the number of 

called ASVs from each denoising pipeline, we found no approach consistently called 

more ASVs. DADA2 called the most ASVs in two mock communities (HMP: 42, 

Extreme: 78) and UNOISE3 called the most ASVs in the other two mock communities 

(Fungal: 38, Zymomock: 43) under medium stringency filtering (Figure 2.1, 

Supplemental Table 1). Overall, open-reference OTU clustering output the most 

ASVs/OTUs for all four mock communities (HMP: 453, Extreme: 8891, Fungal: 96, 
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Zymomock: 294). None of the approaches were capable at outputting all expected 

sequences at 100% identity in any of the mock communities that were processed and, in 

all datasets, at least one denoising pipeline output more ASVs than expected sequences. 

All four approaches output at least one ASV/OTU at 97% or greater identity from all 

organisms in the HMP mock community and the Zymomock community (Supplemental 

Tables 2-3). DADA2 output nine more ASVs with 97% or greater identity matches to 

expected sequences in the Extreme dataset (read depth of 11.6 million reads) than the 

other two denoising pipelines (Supplemental Table 4). Six of the nine taxa that DADA2 

called, and the other pipelines did not call, had expected relative abundances of only 

0.000427% (Supplemental Table 4). Of the other three taxa not found by Deblur or 

UNOISE3, one was at an expected abundance of 0.00427% and two had an expected 

abundance of 0.0427% (Supplemental Table 4). Interestingly, open reference OTU 

clustering called OTUs corresponding to these nine expected taxa along with two more 

expected taxa that DADA2 missed, both of which were in the lowest possible expected 

abundance range (0.000427%). One organism was missed by all pipelines in the Extreme 

community (C. methylpentusum), which was also in the lowest possible expected 

abundance range. Sequence identity histograms were constructed for the HMP, 

Zymomock and Extreme communities (Supplemental Figures 1-3). In the HMP 

community, no ASV was found to have below 80% identity by the denoising pipelines, 

but open reference OTU clustering found 21 OTUs below 80% identity. Furthermore, the 

OTU pipeline called 324 OTUs below 99% identity whereas all denoising approaches 

called less than 15 ASVs (Supplemental Figure 1). In the Extreme community, most 

ASVs were found in the 99-100% identity range whereas the majority of OTUs found by 
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open-reference OTU clustering were in the 95-97% identity range (Supplemental Figure 

2).  

 

Figure 2.1: Total number of ASVs/OTUs identified by each sequence processing 

method for four different mock communities. Amplicon sequence variants/Operational 
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taxonomic units (ASVs/OTUs) were compared to a database of full-length amplicon 

sequences for just the microbes supposedly in the community (“Expected”) and against 

the full SILVA or ITS databases (“Database”) using BLASTN at 97% and 100% identity 

cut-offs. “Unmatched” sequences did not match an expected sequence or the SILVA/ITS 

databases at 97% identity or greater. Dotted lines indicate the total number of 

ASVs/OTUs expected, accounting for 16S copy variation within genomes. Note that the y-

axis for open-reference OTU clustering is different than the y-axis on the denoising 

methods. (A) Human Microbiome Project equal abundance mock community; (B) 

Extreme dataset; (C) Fungal ITS1 mock community; (D) Zymomock community. 

Due to the expected sequences for the fungal community being incomplete, we 

included any UNITE database hits as expected sequences if the matching sequence was 

from a species that was included in the fungal community. This resulted in almost all the 

fungi present in the community to be found by all four pipelines except for Penicillium 

allii and P. commune. Open-reference OTU clustering did find P. allii, although at an 

Extremely low abundance of 0.004% compared to its expected abundance of 6.25%.  

 Given that some of the above potential spurious ASVs would be removed by 

sequence bleed-through (Illumina, n.d.) or low-abundance filters in typical workflows, 

we applied an abundance cutoff filter of 0.1% to each mock community except for the 

Extreme community, where an abundance filter of 0.0004% was applied (Supplemental 

Figure 4). This lower abundance filter was chosen due to some expected sequences being 

in abundance of 0.000427%. Application of the abundance filter to the HMP community 

resulted in all 10 unmatched ASVs (those that did not match either the expected or 

SILVA by 97% or greater) called by DADA2 to be discarded, but none of the four 
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unmatched reads in UNOISE3 to be discarded (Supplemental Figure 4). A similar 

phenomenon was seen in the Zymomock community with all 12 of Deblur’s unmatched 

reads being discarded (along with one database hit) and UNOISE3 only discarding one of 

19 unmatched reads it called. The largest effect that the application of the filters had was 

the removal of a significant amount of OTUs found in each mock community by the 

open-reference OTU pipeline. The most drastic change was seen in the Extreme 

community that started with 8891 OTUs and was reduced to 1248 OTUs (Supplemental 

Figure 4). In the fungal community the number of OTUs found by open-reference OTU 

clustering (27) became less than the number of ASVs found by UNOISE3 (36).  

To determine how read quality filtering affects the number of ASVs called by 

each pipeline, we ran each denoising pipelines using two additional quality filtering 

stringencies, low and high (see Methods). The different quality filter stringencies used 

made only small impacts on the numbers of ASVs called by each pipeline for the HMP, 

Extreme and fungal datasets (Supplemental Table 1). A difference of six ASVs was the 

largest between the high and medium stringencies on the HMP community and was 

output by UNOISE3 (Supplemental Table 1). In the Zymomock community, the number 

of ASVs called by DADA2 only varied by one for all three stringencies, but Deblur 

varied by as much as 12 ASVs and UNOISE3 varied by as much as 16 ASVs being 

outputted between the high and medium filter stringencies (Supplemental Table 1).  

2.4.3 - Denoising Pipelines are Consistent in Determining Mock Community 

Composition 

Despite the different ASV counts between each pipeline in the mock community, the 

relative abundances of the expected taxa are strikingly similar (Figure 2.2). In both the 
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HMP and Zymomock communities, only a small portion of ASVs called by DADA2 and 

Deblur did not match the expected sequences by 97% identity or greater. In contrast, 

UNOISE3 identified multiple (8 in HMP, 20 in Zymomock) sequences that summed 

together to make up 2.9% and 4.8% of the relative abundance in the HMP and 

Zymomock communities, respectively (Supplemental Tables 1-3). Open-reference OTU 

clustering found 6783 non-reference OTUs (Supplemental Table 1) in the Extreme 

community that summed together to make up 2.6% of the community, whereas the 

denoising approaches all found non-reference abundances less than or equal to 0.3% 

(Supplemental Table 4). None of the approaches were good at distinguishing the proper 

abundances of the two Parabacteroides distasonis strains with denoising pipelines 

finding similar proportions of both strains and the open-reference OTU pipeline finding 

dominance of the 13400 strain and not the 13401 strain (Figure 2.2B, Supplemental Table 

4). None of the approaches performed well at matching the expected abundance of the 

Zymomock community or the fungal community (Figure 2.2). All three denoising 

pipelines called over-abundances of Lactobacillus fermentum in the Zymomock 

community, with Deblur calling the most (44.5%) and UNOISE3 calling the least 

(37.6%) (Supplemental Table 3). Similarly, all approaches called non-reference hits in 

greater than 9% abundance in the fungal community (Supplemental Table 5), with 

UNOISE3 calling the most non-reference hits (12.4%) and Deblur calling the least 

(9.8%). Due to all four pipelines producing similar proportions of non-reference hits in 

the fungal community, this could suggest that either the mock compositions are not in the 

expected proportions, the four pipelines are similarly biased, or that an upstream process 

during sequencing caused the introduction of unexpected sequences. 
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Figure 2.2: Relative abundances of taxa generated by each sequence processing 

method for four different mock communities. All ASVs/OTUs that matched with 

expected sequences at 97% or greater identity were assigned taxonomy using a BLASTN 

search against the expected sequences provided for the Extreme, Human Microbiome 

Project, and Zymomock mock communities. All ASVs/OTUs that matched an expected 

species with 97% or greater identity to the UNITE database were classified as expected 

sequences in the fungal mock community. Non-reference refers to the abundance of 

ASVs/OTUs that did not match expected sequences with 97% or greater identity. (A) 

Human Microbiome Project equal abundance mock community; (B) Extreme dataset—it 

is important to note that some organisms are not displayed in this figure due to their very 

low abundances; (C) Fungal ITS1 mock community; (D) Zymomock community. 

  

2.4.4 - Weighted Beta-Diversity Results from Different Approaches are Indistinguishable 

in Real Soil and Host-Associated Communities 

After comparing each pipeline using mock communities, we next wanted to investigate 

how comparable the results between pipelines were for real 16S datasets. We compared 

the pipelines on a soil dataset (soil) due to its high diversity (Fierer & Jackson, 2006) a 

mouse exercise stool dataset (exercise) and a gut biopsy sample dataset from Crohn’s 

Disease patients plus controls (human-associated). The intra-sample distances based on 

weighted UniFrac measurements were comparable between each approach among all 

three datasets (Figure 2.3). In general, we found the intra-samples distances to be small, 

ranging between median values of ~0.09 and ~0.15. There were no consistent differences 

seen between all three datasets. Looking at the soil dataset, we found that all three 
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denoising pipelines had similarly small intra-sample distances (~0.11) (Figure 2.3A), 

while the open-reference OTU clustering pipeline was slightly further away from 

UNOISE3 and Deblur (~0.13). Despite this observation, it is important to note that this 

difference is still relatively small. Furthermore, when each sample was plotted onto a 

PCoA we found that samples tended to group by biological origin rather than the 

approach used to process the sequences, suggesting that a relatively similar PCoA plot 

would be generated by each pipeline (Figure 2.3D-F). The Mantel correlations between 

each weighted UniFrac distance matrix were all highly correlated (correlation values 

ranging from 0.764 to 0.975), which suggests similar weighted UniFrac profiles between 

each approach (Supplemental Tables 6-8).  
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Figure 2.3: Weighted UniFrac intra-sample distances between sequence processing 

methods based on three real datasets.  (A–C) The weighted UniFrac distances between 

the same biological samples based on ASVs/OTUs outputted by each of the different 

sequence processing methods on the soil, human associated and exercise datasets, 

respectively. (D–F) Principal coordinates analysis of the weighted UniFrac distances of 

all the samples in the soil, human associated, and Exercise datasets, respectively. The 

four different sample profiles generated for each biological sample are colour-coded and 

are joined by an interconnecting line. 

 Looking at Bray-Curtis dissimilarity, another metric that takes in abundance 

information, we found that intra-sample distances based on genus-level assignment were 

similar among different approaches (Supplemental Figure 5). In general, the intra-sample 

distances were relatively low, with median values ranging from ~0.04 to ~0.20, 

indicating a high amount of agreement between approaches. Interestingly, we found that 

the intra-sample distances seemed to increase across datasets based on how diverse the 

samples within them were (Supplemental Figure 5). In two of the three datasets (soil and 

BISCUIT), we found that DADA2 and UNOISE3 tended to be closer together in distance 

than Deblur was to DADA2 or UNOISE3, indicating a slightly higher amount of 

agreement between DADA2 and UNOISE3 at the genus level. Again, these differences 

were relatively small and would have minimal impacts on biological results obtained 

from them.  Plotting the Bray-Curtis dissimilarity matrices onto an NMDS plot resulted 

in similar findings as weighted UniFrac, with samples grouping by biological origin 

rather than the pipeline used to process them. Furthermore, we found that the Bray-Curtis 
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dissimilarity matrices were extremely well correlated with each other, ranging in values 

between 0.956-0.995 (Supplemental Tables 6-8).   

We next compared unweighted UniFrac distances, which is a metric that 

considers the presence or absence of ASVs/OTUs and their phylogenetic distance. We 

found that the median intra-sample distance between each pipeline was much greater, 

ranging between ~0.40 to ~0.79 (Supplemental Figure 6). Similar to our results focused 

on Bray-Curtis dissimilarity, we also found that the median intra-sample distance 

between samples tended to increase with sample diversity (0.72-0.79 for soil; 0.40-0.55 

for human-associated; 0.60-0.70 for exercise. The PCoA plot based on these distances 

resulted in samples grouping together based on pipeline, rather than biological origin, 

indicating large differences between the different approaches (Supplemental Figure 6). 

  To look at how much of a difference the positive filtering process had on the 

profiles generated by Deblur and to see if the slight difference in Bray-Curtis 

dissimilarity among the denoising approaches was caused by this filter, we ran the stand-

alone version of Deblur and examined the non-positive filtered results. We found that the 

intra-sample distances based on any of the three metrics tested (weighted/unweighted 

UniFrac and Bray-Curtis dissimilarity) between any of the pipelines did not vary 

(Supplemental Figure 7). 

2.4.5 - Alpha-Diversity Metrics Vary Between Denoising Pipelines 

We next investigated how the number of ASVs/OTUs called in a real dataset differed 

between processing pipelines. In the soil dataset, DADA2 called 16609 ASVs, UNOISE3 

called 11613 ASVs, Deblur called 8270 ASVs and open-reference OTU clustering called 

21297 OTUs (Figure 2.4A). Across all datasets, we found that DADA2 called the most 



69 

 

ASVs among the denoising pipelines and that open-reference OTU clustering called the 

most ASVs/OTUs overall (Figure 2.4A, 2.4C, 2.4E). On average, DADA2 called 727 

more ASVs than Deblur and 532 more ASVs than UNOISE3 while open-reference OTU 

clustering called 3135 more OTUs/ASVs than DADA2. In all datasets, Deblur called the 

least amount of ASVs/OTUs. Looking at the number of OTUs called per sample, we 

found that DADA2 did not correlate well with UNOISE3 or open-reference OTU 

clustering and in the soil dataset the correlation between DADA2 and UNOISE3 was not 

found to be significant (p=0.054) (Figure 2.4B, 2.4D, 2.4F). This is a concerning result as 

it indicated the possibility of different biological results based on the pipeline that was 

chosen to process the data. 
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Figure 2.4: Total number of ASVs/OTUs called by each processing method and the 

per-sample observed ASV/OTUs correlation between each sequence processing 

method.  (A, C, E) The total numbers of ASVs/OTUs determined by each method on the 

soil, exercise, and human associated datasets, respectively. (B, D, F) Heatmaps of the 

Spearman correlations between the numbers of observed ASVs/OTUs per sample between 
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different sequence processing methods. Significant p-values (p < 0.05) are indicated by 

*. 

 One interesting result was that, despite DADA2 calling the most total ASVs 

among the denoising pipelines, it called the least amount per sample (Supplemental 

Figure 8-10) and, among denoising pipelines, UNOISE3 tended to call the most 

(Supplemental Fig 8-10). However, open-reference OTU clustering called the most 

OTUs/ASVs overall per sample among all approaches that were tested with the exception 

of the soil dataset.  

2.4.6 - Computational Requirements are Vastly Different Across Denoising Pipelines 

Knowing that all three of these pipelines resulted in similar relative abundance profiles 

on mock communities and small intra-sample distances on real 16S communities, we 

next investigated how the run time and memory usage differed between the denoising 

approaches. We found that UNOISE3 (4.6 minutes) was 1273 times faster than DADA2 

(5834 minutes) and 15 times faster than Deblur (69.3 minutes) at a total read count of 

1,926,000 reads evenly distributed across 103 samples (Figure 2.5A). Run times for all 

pipelines increased as the number of reads per sample increased. Deblur used a static 

amount of memory (611 Mb) as reads per sample increased, whereas in general the other 

two pipelines increased in memory usage as the number of reads per sample increased, 

with the exception of DADA2 run at 1,926,000 reads (Figure 2.5B). Deblur used the 

smallest amount of memory at the maximum read count of 1,926,000 reads. We found 

that DADA2 had the highest amount of memory usage (4071 Mb at 1,287,000 reads) 

among the three pipelines. Interestingly, this usage was more than the amount used at the 
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maximum read count (3600 Mb). In addition, none of the runs exceeded the 4 Gb 

memory cap on the 32-bit free academic version of USEARCH10.  



73 

 

 



74 

 

Figure 2.5: Run time and memory usage of each denoising pipeline on a dataset of 

varying size. The time in seconds (A) and memory in megabytes (B) to run varying 

amounts of reads through the three different denoising methods. Note time is on a log_10 

scale. 
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2.5 – Discussion 

 

Despite the differences between the underlying algorithms, all four approaches 

were comparable based on weighted UniFrac and Bray-Curtis distances. However, the 

tools varied greatly when looking at unweighted or raw number of ASVs/OTUs found. It should 

be noted that all denoising pipelines were run using their recommended settings, limiting 

our comparison to only looking at the default settings for each pipeline. Adjusting of 

parameters within each sequence analysis pipeline would allow users to tailor towards 

more sensitivity and specificity as desired. Furthermore, each package uses individual 

chimera filtering methods which may affect the overall accuracy of the entire pipeline.   

During mock community data processing, no denoising approach consistently 

called more ASVs than another, however open-reference OTU clustering found more 

OTUs than any of the three denoising approaches before abundance filtering (Figure 2.1). 

In many cases, the number of OTUs found was vastly greater than the number of 

expected sequences, which is consistent with previous literature reporting that OTU 

clustering tends to exaggerate the number of unique organisms found within a sample (R. 

C. Edgar, 2017).  No pipeline was able to call all expected sequences for any of the mock 

communities at 100% identity (Figure 2.1), which indicates that some may not have been 

present or that preparation steps show large bias towards specific 16S rRNA gene 

variants within an organism.  Each sequence processing pipeline was able to detect every 

organism in the HMP community (note S. aureus and S. epidermidis are collapsed 

together as they have the same sequenced region) and the Zymomock community. 

However, one odd result was that observed abundances within the HMP community were 

comparable to the expected abundances within the HMP community, but not the 
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Zymomock community (Figure 2.2A, 2.2D). This again most likely indicates bias during 

library preparation but could also be due to similar bias among pipelines. In the Extreme 

dataset, all denoising pipelines missed P. buccalis, C. methylpentusum and P. sp._D13 

(Figure 2.2B, Supplemental Table 4). All three of these organisms had very low expected 

abundances (less than 0.00427%) which may explain why they were difficult to detect 

(Supplemental Table 4). We do not believe it was an issue with sequence depth as the 

single sample in the mock community was sequenced at a depth of 11.6 million reads and 

open-reference OTU clustering only missed one organism (C. methylpentusum). Deblur 

and UNOISE3 both failed to detect 9 of the 27 expected taxa in the Extreme dataset at 

97% identity, which were all detected by DADA2 and open-reference OTU clustering. 

Again, these nine organisms were at very low abundances (less than 0.05%) 

(Supplemental Table 4). As mentioned above, open-reference OTU clustering did find 2 

more expected taxa than DADA2, however, this came at the cost of significantly 

increased numbers of non-reference sequences being detected. Differences in detection 

between DADA2 and the other two denoising pipelines suggests that it is better at 

detecting organisms that are very rare without the cost of finding significantly more non-

reference hits that plagues the open-reference OTU clustering pipeline. Whether finding 

rare organisms is truly advantageous is debatable, as many of these low-abundance 

organisms would be removed by typical filtering cut-offs and/or contribute little to 

weighted beta-diversity metrics such as UniFrac or Bray-Curtis dissimilarity.  

In all mock datasets, a large number of Unmatched OTUs were found by open-

reference OTU clustering and, in some of the datasets, different denoising pipelines also 

found a relatively large amount of Unmatched ASVs (Figure 2.1). This could have been 
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due to errors in sequencing or mutations during PCR amplification of the 16S rRNA gene 

as most sequences did show over 90% identity to the expected sequences, indicating that 

they originated from a 16S rRNA gene (Supplemental Figure 1-3). It is also possible that 

many of these sequences are contaminants from the environment, while others may have 

been from chimeras that were not detected by each pipeline’s individual chimera-

checking algorithms. We also found a high proportion of matches to the reference 

database but not the expected sequences. There are several reasons why this could have 

occurred. Some of these sequences may be contaminants introduced during mock 

community preparation or sequencing as they match with 100% identity to a sequence 

within the Greengenes database indicating that they are a real 16S rRNA gene sequence. 

However, due to different pipelines identifying different numbers of these unexpected 

sequences, it could also suggest that some of these contaminants are likely either 

chimeric sequences that can be found within the Greengenes database, or sequencing 

errors/mutations during PCR amplification that could not be corrected for by the 

respective pipelines. Unsurprisingly, the highest sequence depth mock community 

(Extreme) had the most Unmatched OTUs (Figure 2.1), most likely due to the increased 

absolute abundance of sequencing errors and the increased likelihood of finding minor 

contaminants. Furthermore, DADA2 found a significantly greater number of sequences 

under or at 75% sequence identity, when compared to the other denoising pipelines, 

highlighting the trade-off that it makes to find lower-abundance ASVs (Supplemental 

Figure 2). 

In all cases, the open-reference OTU clustering had greatly increased numbers of 

OTUs found when compared to ASVs found by denoising pipelines (Figure 2.1). To try 
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and address this issue, we applied an abundance filter of 0.1% minimum abundance 

(except for the Extreme community 0.0004% minimum abundance) to all four different 

pipelines over all the datasets (Supplemental Figure 4). The largest effect that this filter 

had was the reduction of the number of OTUs called by the open-reference OTU 

clustering. These significant changes in the number of OTUs by open-reference OTU 

clustering highlight the importance of removing low-abundance OTUs during analysis 

and demonstrate the stability of denoising approaches after abundance filtering. The filter 

cutoff did have an impact on the number of Unmatched ASVs called by DADA2 in the 

HMP mock community (Supplemental Figure 4A) and the Unmatched ASVs called by 

Deblur in the Zymomock community (Supplemental Figure 4E) but had little effect on 

the number of ASVs called by UNOISE3 on these communities, indicating UNOISE3’s 

tendency to call ASVs of higher abundance. No differences were seen in the Extreme 

community on ASV output by denoising approaches, most likely due the relatively low 

cutoff of 0.0004%. Overall, results on the mock communities showed that Deblur tended 

to call the least amount of ASVs/OTUs among all pipelines and open-reference OTU 

clustering called the most.  

The relative abundances determined for each study on the mock communities 

were similar to each other irrespective of which pipeline processed the data (Figure 2.2). 

This finding suggests that biological conclusions based on microbial relative abundance 

data should be unaffected by the choice of denoising pipeline. One trend that was noticed 

in the relative abundance data was that UNOISE3 tended to call higher abundances of 

non-reference ASVs/OTUs in each mock community except for the Extreme community 

where open-reference OTU clustering found the highest abundance of non-reference hits. 
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Interestingly, the lowest identity match for any of these ASVs called by UNOISE3 in 

both the Zymomock and HMP mock communities was still found to be above 90% 

identity to the expected sequences (Supplemental Figure 1,3) and was classified as 

Gammaproteobacteria by the RDP classifier using a 70% confidence threshold, 

suggesting it is a 16S rRNA sequence that may have been introduced by contamination, 

sequencing bleed-through or acquired an error early on in PCR amplification.  

The relative abundances determined within the Zymomock and fungal 

communities were highly similar between pipelines, but markedly differed from the 

expected result. This finding suggests that either the expected abundances of sequences 

from these communities may be incorrect or all four pipelines are similarly biased. This 

non-agreement could also be due to steps during the sequencing processes such as PCR 

amplification, which may be causing primer bias (Aird et al., 2011) or the inclusion of 

contaminant organisms. In the case of the fungal community, it is possible that none of 

these approaches work well with ITS1 data which are more variable than 16S data. 

Additional fungal mock communities should be analyzed in the future to better explore 

this issue.  

 Benchmarking relative abundance profiles from different pipelines with mock 

communities can be useful, however, they tend to lack the diversity that is found in many 

real sample datasets. To address this issue, we compared resulting microbial 

compositions from each pipeline across three real datasets (exercise, human-associated, 

and soil). Weighted UniFrac, unweighted UniFrac and Bray-Curtis dissimilarity distances 

between the same biological samples for each approach were examined. In both cases the 

weighted UniFrac and Bray-Curtis intra-sample distances between all pipelines for all 
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three datasets were small (less than a median of 0.21) (Figure 2.3, Supplemental Figure 

5). This complemented our previous results, showing that each pipeline had comparable 

microbial compositions for the mock communities. Furthermore, plotting the samples on 

a PCoA or NMDS resulted in the same biological samples from each pipeline grouping 

together (Figure 2.3, Supplemental Figure 5). This indicated that a similar plot would be 

observed whether the researcher was using the Deblur, UNOISE3, DADA2 or open-

reference OTU clustering. Interestingly, Deblur did not agree with the DADA2 or 

UNOISE3 as much as they agreed with each other on multiple occasions, based on Bray 

Curtis dissimilarity at the genus level (Supplemental Figure 5A,5B). This result is 

interesting, as one of the main differences between Deblur and the other two denoising 

pipelines is its positive filtering feature, and so we expected this feature to be driving this 

difference. However, when we compared the other three approaches to Deblur and 

Deblur without positive filtering, we found no difference (Supplemental Figure 7). Due to 

the similar weighted UniFrac results (Figure 2.3) between the denoising pipelines, we 

believe that this difference is most likely due to highly similar sequences being classified 

into slightly different genera. 

 Comparing the three denoising pipelines to the open-reference OTU picking 

pipeline, we found that Deblur agreed the least with the OTU pipeline of all the denoising 

pipelines (Supplemental Figure 5). In most cases, OTUs had similar intra-sample 

distances between pipelines in both weighted UniFrac and Bray Curtis dissimilarity as 

denoising pipelines had amongst each other. The relatively small differences seen in the 

abundance-based metrics indicates that choice of pipeline would have minimal impact 

when looking at weighted beta-diversity metrics. Although, due to denoising pipelines 
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capability of single nucleotide resolution, they may provide more strain information than 

OTU clustering at 97% would. 

 Unweighted UniFrac beta-diversity metrics were highly variable between 

pipelines indicating different bias between pipelines when determining low abundance 

sequence (Supplemental Figure 6A-C). When pipelines were plotted together on a PCoA 

plot we found that the samples separated by approach, rather than sample, indicating that 

interpretation from unweighted UniFrac data would most likely be impacted based on the 

pipeline chosen to process any set of given data. We wish to highlight, however, that 

recent evidence has emerged that the unweighted version of UniFrac analysis can give 

misleading results (Wong, Wu, & Gloor, 2016), therefore these patterns should be 

interpreted with caution. 

 To follow up on the vastly different unweighted UniFrac profiles of samples, we 

looked at the alpha-diversity between the same samples run by each pipeline and the total 

number of ASVs/OTUs called by each pipeline in the real datasets. We found that 

DADA2 called the most ASVs among all denoising approaches, but overall open-

reference OTU clustering found the most (Figure 2.4). This was not surprising, as it 

agreed with the analysis of the mock communities. Interestingly, despite DADA2 finding 

the most ASVs overall for all three denoising pipelines, it found the least amount of 

ASVs per sample (Supplemental Figure 8-10). We suspect this is due to DADA2’s ability 

to create pooled error profiles and then pick ASVs sample by sample. Overall, open-

reference OTU clustering found more OTUs per sample than ASVs found by any 

denoising pipelines. This indicated that the number of different organisms found within a 

sample is directly impacted by the choice of processing pipeline, emphasizing the 
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difficulty in determining the true number of different organisms a sample contains. It 

should be noted that all of the denoising pipelines provide parameters that could be 

altered to increase or decrease sensitivity in identifying rare/spurious ASVs depending on 

a user’s targeted application. One alarming result we found was the poor correlation 

between the number of observed OTUs/ASVs found by DADA2 and both open-reference 

OTU clustering and UNOISE3 (Figure 2.4). This is concerning as major differences in 

biological signal would be seen depending on the approach that was chosen to process the 

data (i.e. a sample could have relatively low numbers of ASVs based on DADA2 

analysis, but have relatively high numbers of ASVs/OTUs based on UNOISE3 or an 

OTU analysis). This issue highlights that the approaches are all very good at identifying 

highly abundant sequences but vary when identifying low-abundance sequences which 

will impact metrics that do not take into account the abundance of OTUs/ASVs. 

A major difference between the three denoising pipelines was their computational 

run time. UNOISE3 was magnitudes faster than both DADA2 and Deblur. This is most 

likely due to both the programming language that UNOISE3 is implemented in (C++), as 

well as its simple one-pass denoising pipeline. DADA2 was the slowest pipeline and, 

although computation time could be inconvenient for those with limited computational 

power, it did not reach times that were impractical even when running almost 2 million 

total reads. Memory usage for each program also did not reach impractical amounts when 

running close to 2 million reads, with DADA2 using a maximum amount of 1024 Mb of 

memory which is a reasonable amount for modern computers. Memory usage by 

UNOISE3 did not come close to reaching the 4 Gb memory cap on the 32-bit version, 

even after running 103 samples at a total read depth of 2 million reads. This suggests that 
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for most moderately sized 16S datasets the 32bit version of UNOISE3 should be 

sufficient.   

2.6.1 – Conclusion 

 

In conclusion, all four pipelines are comparable when looking at weighted results 

that are based on the relative abundances of ASVs/OTUs while using default settings. 

However, the approaches do vary when looking at the number of ASVs/OTUs found and 

unweighted metrics such as unweighted UniFrac, while using the default settings for each 

denoising pipeline. The number of ASVs called did not differ between denoising 

pipelines in a consistent way across mock communities, suggesting that determining 

species richness within low-diverse samples could be problematic. However, we did find 

that open-reference OTU clustering consistently called more OTUs than ASV-calling 

pipelines. Analysis of the real datasets showed that DADA2 consistently called more 

ASVs than the other two denoising pipelines and that, again, open-reference OTU 

clustering called the most overall. More importantly, in the soil dataset and in the 

Extreme dataset DADA2 and the open-reference OTU clustering pipeline were capable 

of finding more low-abundance organisms, but DADA2 could do this without the cost of 

significantly increasing the number of non-reference hits. The most alarming result was 

the poor correlation in the number of ASVs/OTUs per sample found between DADA2 

and UNOISE3 or open-reference OTU clustering. From this, we believe that choice of 

approach will have large impacts on determining the alpha-diversity between different 

samples. Looking at computational run time, we found that DADA2 was by far the 

slowest denoising pipeline, whereas UNOISE3 was the fastest, processing datasets more 
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than 1200 times faster than DADA2. In the end, the choice of approach did not play a 

large role in weighted analyses based on microbial abundances, but did have implications 

on unweighted results and alpha-diversity metrics. We believe this is promising, as it 

indicates that no matter the choice of approach, a similar weighted biological signal will 

be seen. On the other hand, extreme caution is required when looking at unweighted 

results and alpha-diversity metrics between different pipelines.   
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Chapter 3 – Microbiome Differential Abundance Methods Produce Different 

Results Across 38 Datasets 

 

This chapter is a reproduction of the paper of the same name published in the journal 

Nature Communications (Nearing et al., 2022). I was co-first author on this work with 

Dr. Gavin M. Douglas, a former PhD student supervised by Dr. Morgan Langille. My 

contributions to this project including the initial project proposal, data collection along 

with other co-authors, data processing, and the code to run each dataset through each 

differential abundance tool. Gavin, participated in the construction of preliminary code to 

run a subset of tools. Data analysis was conducted in a joint fashion with Gavin taking 

lead in section 3.4.4 and myself taking lead in the remaining sections. All results sections 

received critical feedback and code from both authors. All sections of the paper were 

jointly written by both me and Gavin while receiving feedback from all other co-authors. 

 Additional co-authors on this manuscript include Molly G. Hayes, Jocelyn 

MacDonald, Dhwani K. Desai, Nicole Allward, Casey M.A. Jones, Robyn J. Wright, 

Akhilesh S. Dhanani, André M. Comeau, and Morgan G.I. Langille.  

 This paper was published under a Creative Commons Attribution 4.0 International 

License, which permits use, sharing, adaptation, distribution, and reproduction in any 

medium or format, as long as you give appropriate credit to the original author(s) and the 

source, provide a link to the Creative Commons license, and indicate if changes were 

made. To view a copy of this license visit: http://creativecommons.org/licenses/by/4.0/  

 The original author funding statements, author contributions breakdown, 

acknowledgements and data availability statements are also available in the original 
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publication. All code used to generate results for this chapter can be found at: 

https://github.com/nearinj/Comparison_of_DA_microbiome_methods. All supplemental 

and additional files referred to in this chapter are freely available as part of the 

publication on the Nature Communications website and can be found at this link: 

https://doi.org/10.1038/s41467-022-28034-z. 

https://github.com/nearinj/Comparison_of_DA_microbiome_methods
https://doi.org/10.1038/s41467-022-28034-z
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3.1 – Abstract 

Identifying differentially abundant microbes is a common goal of microbiome studies. 

Multiple methods are used interchangeably for this purpose in the literature. Yet, there 

are few large-scale studies systematically exploring the appropriateness of using these 

tools interchangeably, and the scale and significance of the differences between them. 

Here, we compare the performance of 14 differential abundance testing methods on 38 

16S rRNA gene datasets with two sample groups. We test for differences in amplicon 

sequence variants (ASVs) and operational taxonomic units (OTUs) between these groups. 

Our findings confirm that these tools identified drastically different numbers and sets of 

significant ASVs, and that results depend on data pre-processing. For many tools the 

number of features identified correlate with aspects of the data, such as sample size, 

sequencing depth, and effect size of community differences. ALDEx2 and ANCOM-II 

produce the most consistent results across studies and agree best with the intersect of 

results from different approaches. Nevertheless, we recommend that researchers should 

use a consensus approach based on multiple differential abundance methods to help 

ensure robust biological interpretations. 
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3.2 – Introduction 

 

Microbial communities are frequently characterized by DNA sequencing. Marker gene 

sequencing, such as 16S rRNA gene sequencing, is the most common form of 

microbiome profiling and enables the relative abundances of taxa to be compared across 

different samples. A frequent and seemingly simple question to investigate with this type 

of data is: which taxa significantly differ in relative abundance between sample 

groupings? Newcomers to the microbiome field may be surprised to learn that there is 

little consensus on how best to approach this question. Indeed, there are numerous 

ongoing debates regarding the best practices for differential abundance (DA) testing with 

microbiome data (Allaband et al., 2019; Pollock et al., 2018). 

One area of disagreement is whether read count tables should be rarefied (i.e., 

subsampled) to correct for differing read depths across samples (S. Weiss et al., 2017). 

This approach has been heavily criticized because excluding data could reduce statistical 

power and introduce biases. In particular, using rarefied count tables for standard tests, 

such as the t-test and Wilcoxon test, can result in unacceptably high false positive rates 

(McMurdie & Holmes, 2014). Nonetheless, microbiome data is still frequently rarefied 

because it can simplify analyses, particularly for methods that do not control for variation 

in read depth across samples. For example, LEfSe (Segata et al., 2011) is a popular 

method for identifying differentially abundant taxa that first converts read counts to 

percentages. Accordingly, read count tables are often rarefied before being input into this 

tool so that variation in sample read depth does not bias analyses. Without addressing the 

variation in depth across samples by some approach, the richness can drastically differ 

between samples due to read depth alone. 
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 A related question to whether data should be rarefied is whether rare taxa should 

be filtered out. This question arises in many high-throughput datasets, where the burden 

of correcting for many tests can greatly reduce statistical power. Filtering out potentially 

uninformative features before running statistical tests can help address this problem, 

although in some cases this can also have unexpected effects such as increases in false 

positives (Bourgon, Gentleman, & Huber, 2010). Importantly, this filtering must be 

independent of the test statistic evaluated (referred to as Independent Filtering). For 

instance, hard cut-offs for the prevalence and abundance of taxa across samples, and not 

within one group compared with another, are commonly used to exclude rare taxa 

(Schloss, 2020). This data filtering could be especially important for microbiome datasets 

because they are often extremely sparse. Nonetheless, it remains unclear whether filtering 

rare taxa has much effect on DA results in practice. 

Another contentious area is regarding which statistical distributions are most 

appropriate for analyzing microbiome data. Statistical frameworks based on a range of 

distributions have been developed for modelling read count data. For example, DESeq2 

(Love et al., 2014) and edgeR (Robinson & Oshlack, 2010) are both tools that assume 

read counts follow a negative binomial distribution. To identify differentially abundant 

taxa, a null and alternative hypothesis are compared for each taxon. The null hypothesis 

states that the same setting for certain parameters of the negative binomial solution 

explain the distribution of taxa across all sample groupings. The alternative hypothesis 

states that different parameter settings are needed to account for differences between 

sample groupings. If the null hypothesis can be rejected for a specific taxon, then it is 

considered differentially abundant. This idea is the foundation of distribution-based DA 
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tests, including other methods such as corncob (B. D. Martin et al., 2020) and 

metagenomeSeq (Paulson et al., 2013), which model microbiome data with the beta-

binomial and zero-inflated Gaussian distributions, respectively. 

 Finally, it has recently become more widely appreciated that DNA sequencing 

data is compositional in nature (Gloor et al., 2017). Highlighting the fact that read counts 

only provide relative abundance information rather than absolute quantities. This is 

because a sequencer can only read a maximum number of reads during any single 

sequencing run. This results in read counts being proportional to an arbitrary maximum 

read count for each sample that is sequenced. A characteristic that can led to false 

inferences when standard statistical methods, intended for absolute abundances, are used 

with taxonomic relative abundances. Compositional data analysis (CoDa) methods 

circumvent this issue by reframing the focus of analysis to ratios of read counts between 

different taxa within a sample (Aitchison, 1982; Morton et al., 2019).The difference 

among CoDa methods considered in this thesis is what abundance value is used as the 

denominator, or the reference, for the transformation. The centered log-ratio (CLR) 

transformation is a CoDa approach that uses the geometric mean of the read counts of all 

taxa within a sample as the reference/denominator for that sample. In this approach all 

taxon read counts within a sample are divided by this geometric mean and the log fold 

changes in this ratio between samples are compared. An extension of this approach is 

implemented in the tool ALDEx2 (Fernandes et al., 2014a) . The additive log-ratio 

transformation is an alternative approach where the reference is the count abundance of a 

single taxon, which should be present with low variance in read counts across samples. In 

this case the ratio between the reference taxon chosen (denominator) and each taxon in 
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that sample are compared across different sample groupings. An additive log ratio 

strategy is implemented by the tool ANCOM by testing all possible taxonomic 

denominators for each taxa of interest (Mandal et al., 2015). 

 Regardless of the above choices, evaluating the numerous options for analyzing 

microbiome data has proven difficult. This is largely because there are no gold standards 

to compare DA tool results. Simulating datasets with specific taxa that are differentially 

abundant is a partial solution to this problem, but it is imperfect. For example, it has been 

noted that parametric simulations can result in circular arguments for specific tools, 

making it difficult to assess their true performance (Hawinkel, Mattiello, Bijnens, & 

Thas, 2019). It is unsurprising that distribution-based methods perform best when applied 

to simulated data based on that distribution. Nonetheless, simulated data with no expected 

differences has been valuable for evaluating the false discovery rate (FDR) of these 

methods. Based on this approach it has become clear that many of the methods produce 

unacceptably high numbers of false positive identifications (Calgaro et al., 2020; Thorsen 

et al., 2016; S. Weiss et al., 2017). Similarly, based on simulated datasets with spiked 

taxa it has been shown that these methods can drastically vary in statistical power 

(Hawinkel et al., 2019; Thorsen et al., 2016). 

 Although these general observations have been well substantiated, there is less 

agreement regarding the performance of tools across evaluation studies. Certain 

observations have been reproducible, such as the higher FDR of edgeR and 

metagenomeSeq. Similarly, ALDEx2 has been repeatedly shown to have low power to 

detect differences (Calgaro et al., 2020; Hawinkel et al., 2019). In contrast, both ANCOM 

and limma voom (Law et al., 2014; Ritchie et al., 2015) have been implicated as both 
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accurately and poorly controlling the FDR, depending on the study (Calgaro et al., 2020; 

Hawinkel et al., 2019; S. Weiss et al., 2017). To further complicate comparisons, 

different sets of tools and dataset types have been analyzed across evaluation studies. 

This means that, on some occasions, the best performing method in one evaluation is 

missing from another. In addition, certain popular microbiome-specific methods, such as 

MaAsLin2 (Mallick et al., 2021), have been missing from past evaluations. Finally, many 

evaluations limit their analysis to a small number of datasets that do not represent the 

breadth of datasets found in 16S rRNA gene sequencing studies. 

 Given the inconsistencies across these studies it is important that additional, 

independent evaluations be performed to elucidate the performance of current DA 

methods. This is particularly important as these tools are typically used interchangeably 

in microbiome research. Accordingly, herein we have conducted additional evaluations of 

common DA tools across 38 two-group 16S rRNA gene datasets. We first present the 

concordance of the methods on these datasets to investigate how consistently the methods 

cluster and perform in general, with and without the removal of rare taxa. Next, based on 

artificially subsampling the datasets into two groups where no differences are expected, 

we present the observed FDR for each DA tool. Lastly, we present an evaluation of how 

consistent biological interpretations would be across diarrheal and obesity datasets 

depending on which tool was applied. Our work enables improved assessment of these 

DA tools and highlights which key recommendations made by previous studies hold in an 

independent evaluation. Furthermore, our analysis shows various characteristics of DA 

tools that authors can use to evaluate published literature within the field.  
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3.3 – Methods 

 

3.3.1 - Dataset Processing 

Thirty-eight different datasets were included in our main analyses for assessing the 

characteristics of microbiome differential abundance tools. Three additional datasets were 

also included for a comparison of differential abundance consistency across diarrhea and 

obesity-related microbiome datasets. All datasets presented herein have been previously 

published or are publicly available (Alkanani et al., 2015; Baxter, Ruffin, Rogers, & 

Schloss, 2016; Chase et al., 2016; De Tender et al., 2015; Dinh et al., 2015; Douglas et 

al., 2018; Dranse et al., 2018; Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017; Frère et 

al., 2018; Gonzalez et al., 2018; Goodrich, Waters, et al., 2014; Hoellein et al., 2017; Ji, 

Parks, Edwards, & Pruden, 2015; Kesy, Oberbeckmann, Kreikemeyer, & Labrenz, 2019; 

Lamoureux et al., 2017; C. A. Lozupone et al., 2013; McCormick et al., 2016; Mejía-

León, Petrosino, Ajami, Domínguez-Bello, & de la Barca, 2014; Nearing et al., 2019; 

Noguera-Julian et al., 2016; Oberbeckmann, Osborn, & Duhaime, 2016; Oliveira et al., 

2018; Papa et al., 2012; Pop et al., 2014; Rosato et al., 2020; Ross et al., 2015; 

Scheperjans et al., 2015; Scher et al., 2013; Schneider et al., 2017; Schubert et al., 2014; 

Singh et al., 2015; Son et al., 2015; Turnbaugh et al., 2009; Vincent et al., 2013; L. Wu et 

al., 2019; Yurgel et al., 2017; Zeller et al., 2014; L. Zhu et al., 2013) (Supplemental Data 

1). Most datasets were already available in table format with ASV or operational 

taxonomic unit abundances while a minority needed to be processed from raw sequences. 

These raw sequences were processed with QIIME 2 version 2019.7 (Bolyen et al., 2019) 

based on the Microbiome Helper standard operating procedure (Comeau et al., 2017). 

Primers were removed using cutadapt (M. Martin, 2011) and stitched together using the 
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QIIME 2 VSEARCH (Rognes et al., 2016) join-pairs plugin. Stitched reads were then 

quality filtered using the quality-filter plugin and reads were denoised using Deblur 

(Amir et al., 2017) to produce amplicon sequence variants (ASVs). Abundance tables of 

ASVs for each sample were then output into tab-delimited files. Rarefied tables were also 

produced for each dataset, where the rarefied read depth was taken to be the lowest read 

depth of any sample in the dataset over 2000 reads (with samples below this threshold 

discarded).  

 Chimeric ASVs were identified with the UCHIME2 and UCHIME3 chimera-

checking algorithms (R. Edgar, 2016) implemented in VSEARCH (v2.17.1) (Rognes et 

al., 2016). Both the UCHIME2 and UCHIME3 de novo approaches were applied in 

addition to the UCHIME2 reference-based chimera checking approach. For this latter 

approach we used the SILVA v138.1 short-subunit reference database (Quast et al., 

2013). We used the default options when running these algorithms. 

3.3.2 - Differential Abundance Testing 

We created a custom shell script (run_all_tools.sh) that ran each differential abundance 

tool on each dataset within this study. As input the script took a tab-delimited ASV 

abundance table, a rarefied version of that same table, and a metadata file that contained a 

column that split the samples into two groups for testing. This script also accepted a 

prevalence cut-off filter to remove ASVs below a minimum cut-off, which was set to 

10% (i.e., ASVs found in fewer than 10% of samples were removed) for the filtered data 

analyses we present. Note that in a minority of cases a genus abundance table was input 

instead, in which case all options were kept the same. When the prevalence filter option 
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was set, the script also generated new filtered rarefied tables based on an input rarefaction 

depth. 

Following these steps, each individual differential abundance method was run on 

the input data using either the rarefied or non-rarefied table, depending on which is 

recommended for that tool. Rarefaction was performed using GUniFrac (version 1.1) (J. 

Chen et al., 2012).The workflow used to run each differential abundance tool (with 

run_all_tools.sh) is described below. The first step in each of these workflows was to 

read the dataset tables into R (version 3.6.3) with a custom script and then ensure that 

samples within the metadata and feature abundance tables were in the same order. An 

alpha-value of 0.05 was chosen as our significance cutoff and FDR adjusted p-values 

(using Benjamini-Hochberg adjustment) were used for methods that output p-values 

(with the exception of LEfSe which does not output all p-values by default) (Benjamini & 

Hochberg, 1995). 

3.3.2.1 - ALDEx2 

We passed the non-rarefied feature table and the corresponding sample metadata to the 

aldex function from the ALDEx2 R package (version 1.18.0) (Fernandes et al., 2014a) 

which generated Monte Carlo samples of Dirichlet distributions for each sample, using a 

uniform prior, performed CLR transformation of each realization, and then performed 

Wilcoxon tests on the transformed realizations. The function then returned the expected 

Benjamini-Hochberg (BH) FDR-corrected p-value for each feature based on the results 

the different across Monte Carlo samples. 

3.3.2.2 - ANCOM-II 

We ran the non-rarefied feature table through the R ANCOM-II (Kaul, Mandal, Davidov, 

& Peddada, 2017; Mandal et al., 2015) (https://github.com/FrederickHuangLin/ANCOM) 

https://github.com/FrederickHuangLin/ANCOM
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(version 2.1) function feature_table_pre_process, which first examined the abundance 

table to identify outlier zeros and structural zeros (Kaul et al., 2017). The following 

packages were imported by ANCOM-II: exactRankTests (version 0.8.31), nlme (version 

3.1.149), dplyr (version 0.8.5), ggplot2 (version 3.3.0) and compositions (version 1.40.2). 

Outlier zeros, identified by finding outliers in the distribution of taxon counts within each 

sample grouping, were ignored during differential abundance analysis, and replaced with 

NA. Structural zeros, taxa that were absent in one grouping but present in the other, were 

ignored during data analysis and automatically called as differentially abundant. A 

pseudo count of 1 was then applied across the dataset to allow for log transformation. 

Using the main function ANCOM, all additive log-ratios for each taxon were then tested 

for significance using Wilcoxon rank-sum tests, and p-values were FDR-corrected using 

the BH method. ANCOM-II then applied a detection threshold as described in the 

original paper (Mandal et al., 2015), whereby a taxon was called as DA if the number of 

corrected p-values reaching nominal significance for that taxon was greater than 90% of 

the maximum possible number of significant comparisons.  

3.3.2.3 - corncob 

We converted the metadata and non-rarefied feature tables into a phyloseq object (version 

1.29.0) (McMurdie & Holmes, 2013), which we input to corncob’s differentialTest 

function (version 0.1.0) (B. D. Martin et al., 2020). This function fits each taxon count 

abundance to a beta-binomial model, using logit link functions for both the mean and 

overdispersion. Because corncob models each of these simultaneously and performs both 

differential abundance and differential variability testing (B. D. Martin et al., 2020), we 

set the null overdispersion model to be the same as the non-null model so that only taxa 

having differential abundances were identified. Finally, the function performed 
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significance testing, for which we chose Wald tests (with the default non-bootstrap 

setting), and we obtained BH FDR-corrected p-values as output. 

3.3.2.4 - DESeq2 

We first passed the non-rarefied feature tables to the DESeq function (version 1.26.0) 

(Love et al., 2014) with default settings, except that instead of the default relative log 

expression (also known as the median-of-ratios method) the estimation of size factors 

was set to use “poscounts”, which calculates a modified relative log expression that helps 

account for features missing in at least one sample. The function performed three steps: 

(1) estimation of size factors, which are used to normalize library sizes in a model-based 

fashion; (2) estimation of dispersions from the negative binomial  likelihood for each 

feature, and subsequent shrinkage of each dispersion estimate towards the parametric 

(default) trendline by empirical Bayes; (3) fitting each feature to the specified class 

groupings with negative binomial generalized linear models and performing hypothesis 

testing, for which we chose the default Wald test. Finally, using the results function, we 

obtained the resulting BH FDR-corrected p-values. 

3.3.2.5 - edgeR 

Using the phyloseq_to_edgeR function (https://joey711.github.io/phyloseq-

extensions/edgeR.html), we added a pseudocount of 1 to the non-rarefied feature table 

and used the function calcNormFactors from the edgeR R package (version 3.28.1) 

(Robinson & Oshlack, 2010) to compute relative log expression normalization factors. 

Negative binomial dispersion parameters were then estimated using the functions 

estimateCommonDisp followed by estimateTagwiseDisp to shrink feature-wise 

dispersion estimates through an empirical Bayes approach. We then used the exactTest 

for negative binomial data (Robinson & Oshlack, 2010) to identify features that differ 

https://joey711.github.io/phyloseq-extensions/edgeR.html
https://joey711.github.io/phyloseq-extensions/edgeR.html
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between the specified groups. The resulting p-values were then corrected for multiple 

testing with the BH method with the function topTags. 

3.3.2.6 - LEfSe 

The rarefied feature table was first converted into LEfSe format using the LEfSe script 

format_input.py (Segata et al., 2011). We then ran LEfSe on the formatted table using the 

run_lefse.py script with default settings and no subclass specifications. Briefly, this 

command first normalized the data using total sum scaling, which divides each feature 

count by the total library size. Then it performed a Kruskal-Wallis (which in our two-

group case reduces to the Wilcoxon rank-sum) hypothesis test to identify potential 

differentially abundant features, followed by linear discriminant analysis (LDA) of class 

labels on abundances to estimate the effect sizes for significant features. From these, only 

those features with scaled LDA analysis scores above the threshold score of 2.0 (default) 

were called as differentially abundant. This key step is what distinguished LEfSe from 

the Wilcoxon test approach based on relative abundances that we also ran. In addition, no 

multiple-test correction was performed on the raw LEfSe output as only the p-values of 

significant features above-threshold LDA scores are returned by this tool. 

3.3.2.7 - limma voom 

We first normalized the non-rarefied feature table using the edgeR calcNormFactors 

function, with either the trimmed mean of M-values (TMM) or TMM with singleton 

pairing (TMMwsp) option. We choose to run this tool with two different normalization 

functions as we found the standard TMM normalization technique to struggle with highly 

spare datasets despite it previously being shown to perform preferentially in DA testing. 

Furthermore, the TMMwsp method is highlighted within the edgeR package as an 

alternative for highly sparse data. During either of these normalization steps a single 
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sample was chosen to be a reference sample using upper-quartile normalization. This step 

failed in some highly sparse abundance tables; in these cases, we instead chose the 

sample with the largest sum of square-root transformed feature abundances to be the 

reference sample. After normalization, we used the limma R package (version 3.42.2) 

(Ritchie et al., 2015) function voom to convert normalized counts to log2-counts-per-

million and assign precision weights to each observation based on the mean-variance 

trend. We then used the functions lmFit, eBayes, and topTable in the limma R package to 

fit weighted linear regression models, perform tests based on an empirical Bayes 

moderated t-statistic (Phipson, Lee, Majewski, Alexander, & Smyth, 2016) and obtain 

BH FDR-corrected p-values.  

3.3.2.8 - MaAsLin2 

We entered either a rarefied or non-rarefied feature table into the main Maaslin2 function 

within the MaAsLin2 R package (version 0.99.12) (Mallick et al., 2021). We specified 

arcsine square-root transformation as in the package vignette (instead of the default log) 

and total sum scaling normalization. For consistency with other tools, we specified no 

random effects and turned off default standardization. The function fit a linear model to 

each feature’s transformed abundance on the specified sample grouping, tested 

significance using a Wald test, and output BH FDR-corrected p-values. 

3.3.2.9 - metagenomeSeq 

We first entered the counts and sample information to the function newMRexperiment 

from the metagenomeSeq R package (version 1.28.2) (Paulson et al., 2013). Next, we 

used cumNormStat and cumNorm to apply cumulative sum-scaling normalization, which 

attempts to normalize sequence counts based on the lower-quartile abundance of features. 

We then used fitFeatureModel to fit normalized feature counts with zero-inflated log-
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normal models (with pseudo-counts of 1 added prior to log2 transformation) and perform 

empirical Bayes moderated t-tests, and MRfulltable to obtain BH FDR-corrected p-

values.    

 

3.3.2.10 - t-test 

We applied total sum scaling normalization to the rarefied feature table and then 

performed an unpaired Welch’s t-test for each feature to compare the specified groups. 

We corrected the resulting p-values for multiple testing with the BH method. 

 

3.3.2.11 - Wilcoxon test 

Using raw feature abundances in the rarefied case, and CLR-transformed abundances 

(after applying a pseudocount of 1) in the non-rarefied case, we performed Wilcoxon 

rank-sum tests for each feature to compare the specified sample groupings. We corrected 

the resulting p-values with the BH method. 

 

3.3.3 - Comparing Numbers of Significant Hits Between Tools 

We compared the number of significant ASVs each tool identified in 38 different 

datasets. Each tool was run as described above using default settings with some 

modifications suggested by the tool authors, as noted above. A heatmap representing the 

number of significant hits found by each tool was constructed using the pheatmap R 

package (version 1.0.12) (Kolde, 2012). Spearman correlations between the percent of 

significant ASVs identified by a tool and the following dataset characteristics were 

computed using the cor.test function in R: sample size, Aitchison’s distance effect size as 
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computed using a PERMANOVA test (adonis; vegan, version 2.5.6) (Dixon, 2003), 

sparsity, mean sample ASV richness, median sample read depth, read depth range 

between samples and the coefficient of variation for read depth within a dataset. In 

addition, for the unfiltered analyses, we also computed Spearman correlations with the 

percent of ASVs below 10% prevalence in each dataset (i.e., the percent of ASVs that 

would be removed to produce the filtered datasets). Correlations were displayed using the 

R package corrplot (version 0.85) and gridExtra (version 2.3). Dataset manipulation for 

plotting and reshaping were conducting using the following R packages: doMC (version 

1.3.5), doParallel (version 1.0.15), matrixStats (version 0.56.0), reshape2 (version 1.4.4), 

plyr (version 1.8.6) and tidyverse (version 1.3.0).  

3.3.4 - Cross-Tool, Within-Study Differential Abundance Consistency Analysis 

We compared the consistency between different tools within all datasets by pooling all 

ASVs identified as being significant by at least one tool in the 38 different datasets. The 

number of methods that identified each ASV as differentially abundant were then tallied. 

A second way of examining the between method consistency without choosing a specific 

significance threshold was to examine the overlap between the top 20 ASVs identified by 

each DA method. To do this ASVs were ranked for each DA method depending on their 

significance value apart from ANCOM-II, where its W statistic was used for ranking. 

Like the above analysis, we than tallied the number of methods that identified each ASV 

as being in its top 20 most differentially abundant ASVs. Multi-panel figures were 

combined using the R package cowplot (version 1.0.0) and ggplotify (version 0.0.5). To 

get another view of the data principal coordinate analysis plots were constructed using 

the mean inter-tool Jaccard distance across the 38 main datasets. Distances were 
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computed by averaging over the inter-tool distance matrices for all individual datasets to 

weight each dataset equally using the R packages vegan (version 2.5.6) and parallelDist 

(version 0.2.4). Labels were displayed using the R package ggrepel (version 0.8.1).  

3.3.5 - False Positive Analysis 

To evaluate the false positive rates of each DA method, eight datasets were selected for 

analysis  based on having the largest sample sizes, while also being from diverse 

environment types. In each dataset, only the most frequent sample group was chosen for 

analysis to help ensure similar composition among samples tested. Within this grouping, 

random labels of either case or control were assigned to samples and the various 

differential abundance methods were tested on them. This was replicated 100 times for 

each dataset and tool combination aside from ALDEx2, ANCOM-II, and Corncob. These 

were run using 100 replicates in only 3 of the 8 datasets (Freshwater – Arctic, Soil – 

Blueberry, Human - OB (1)) with 100 ALDEx2 replications also being run in the Human 

- HIV (3) dataset. This was due to the long computational time required to run these tools 

on all datasets. The remaining datasets were replicated 10 times for each of these three 

tools. After this analysis was completed, the number of differentially abundant ASVs 

identified by each tool was assessed at an alpha value of 0.05. Boxplots for this data was 

constructed using the R packages ggplot2 (version 3.3.0), ggbeeswarm (version 0.6.0), 

and scales (version 1.1.0).  

3.3.6 - Cross-Study Differential Abundance Consistency Analysis 

For this analysis we acquired two additional pre-processed datasets that were not used for 

other analyses, which are the GEMS1 (Pop et al., 2014) and the dia_schneider (Schneider 

et al., 2017), datasets (Supplemental Data 1). The processed data for these datasets was 
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acquired from the MicrobiomeDB (Oliveira et al., 2018) and the microbiomeHD 

(Duvallet et al., 2017) databases, respectively. These datasets were combined with three 

of the datasets used elsewhere in this chapter (Human – C. diff [1 and 2] and Human – 

Inf.), to bring the number of diarrhea-related datasets to five. These three pre-existing 

datasets all related to enteric infections that had all been previously demonstrated to show 

a distinct signal of microbial differences driven by diarrhea in patient samples (Duvallet 

et al., 2017). 

 For the obesity cross-study analysis we leveraged four datasets that were part of 

the core 38 datasets: Human – OB (1-4) (Goodrich, Waters, et al., 2014; Ross et al., 

2015; Turnbaugh et al., 2009; L. Zhu et al., 2013). We also included an additional obesity 

dataset, ob_zupancic (Zupancic et al., 2012), that we acquired from the microbiomeHD 

database. 

The ASVs in each of these datasets were previously taxonomically classified and 

so we used these classifications to collapse all feature abundances to the genus level. 

Note that taxonomic classification was performed using several different methods, which 

represents another source of technical variation. We excluded unclassified and sensu 

stricto-labelled genus levels. We then ran all differential abundance tools on these 

datasets at the genus level. These comparisons were between the diarrhea and non-

diarrhea sample groups. The same processing workflow was used for the supplementary 

obesity dataset comparison as well. 

 For each tool and study combination, we determined which genera were 

significantly different at an alpha of 0.05 (where relevant). For each tool we then tallied 

the number of times each genus was significant, i.e., how many datasets each genus was 
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significant in based on a given tool. The null expectation distributions of these counts per 

tool were generated by randomly sampling genera from each dataset. The probability of 

sampling a genus (i.e., calling it significant) was set to be equal to the proportion of 

actual significant genera. This procedure was repeated 1000 times, with genus replicates 

equal to the actual number of tested genera (218 and 116 for the diarrhea and obesity 

datasets, respectively). For each replicate we tallied the number of times the genus was 

sampled across datasets. Note that to simplify this analysis we ignored the directionality 

of the significance (e.g., whether it was higher in case or control samples). We also 

excluded genera never found to be significant. We computed the mean of these 1000 

distributions to generate an empirical distribution of the expected mean number of studies 

where a genus would be called as significant, given random sampling. We determined 

where the observed mean values lay on each corresponding distribution to calculate 

statistical significance. 

3.3.7 - Discriminatory Analysis 

We calculated the discriminatory value of each ASV (i.e., the extent to which the ASV 

can be used to distinguish the sample groups) based on the area under the curve (AUC) of 

the receiver operator curve (ROC) for that ASV. This was performed independently for 

both non-rarefied relative and CLR abundances. For each ASV in a dataset the abundance 

of that ASV along with metadata groupings was used as input into the prediction function 

in the ROCR R package (Sing, Sander, Beerenwinkel, & Lengauer, 2005). Multiple 

different optimal abundance cut-offs were then used to classify samples based on the 

input ASVs abundance. Classifications were then compared to the true sample groupings 

to generate ROCs for each ASV within the 38 tested datasets. For each tool the mean 
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AUC of all ASVs identified as being differentially abundant in each dataset was 

computed, based on both relative and CLR abundances separately. We then calculated the 

precision, recall and F1 scores of each tool for the tested datasets when AUC cut-offs of 

0.7 or 0.9 were used. In each case the “true positives” were treated as features that were 

above the specified AUC threshold.   
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3.4 – Results 

 

3.4.1 - Microbiome Differential Abundance Methods Produce a Highly Variable Number 

of Significant ASVs Within the Same Microbiome Datasets 

 

To investigate how different DA tools impact biological interpretations across 

microbiome datasets, we tested 14 different DA testing approaches (Table 3.1) on 38 

different microbiome datasets with a total of 9,405 samples. These datasets corresponded 

to a range of environments, including the human gut, plastisphere, freshwater, marine, 

soil, wastewater, and built environments (Supplemental Data 1). The features in these 

datasets corresponded to both ASVs and clustered operational taxonomic units, but we 

refer to them all as ASVs below for simplicity.  



107 

 

Table 3.1: Differential abundance tools compared in this study. 

Tool  

(version) 

 

 

Input Norm. Trans. Distribu-

tion 

Co-

vari-

ates 

Ran-

dom 

Ef-

fects 

 

 

Hypothe-

sis test 

 

 

FDR 

Corr. 

CoDa Dev. 

For 

ALDEx2 

(1.18.0) 

Counts None CLR Dirichlet-

multino-

mial 

Yes* No Wilcoxon 

rank-sum 

Yes Yes RNA-

seq, 

16S, 

MGS 

ANCOM-II 

(2.1) 

Counts None ALR Non-para-

metric 

Yes Yes Wilcoxon 

rank-sum 

Yes Yes MGS 

Corncob 

(0.1.0) 

Counts None None Beta-bi-

nomial 

Yes No Wald (de-

fault) 

Yes No 16S, 

MGS 

DESeq2 

(1.26.0) 

Counts Modified 

RLE 

(default is 

RLE) 

None Negative 

binomial 

Yes No Wald (de-

fault) 

Yes No RNA-

seq, 

16S, 

MGS 

edgeR 

(3.28.1) 

Counts RLE 

(default is 

TMM) 

None Negative 

binomial 

Yes* No Exact Yes No RNA-

seq 

LEFse Rarefied 

Counts 

TSS None Non-para-

metric 

Sub-

class 

factor 

only 

No Kruskal-

Wallis 

No No 16S, 

MGS 

MaAsLin2 

(1.0.0) 

Counts TSS AST (de-

fault is log) 

Normal 

(default) 

Yes Yes Wald Yes No MGS 

MaAsLin2 

(rare) 

(1.0.0) 

Rarefied 

counts 

TSS AST (de-

fault is log) 

Normal 

(default) 

Yes Yes Wald Yes No MGS 

meta-

genomeSeq 

(1.28.2) 

Counts CSS Log Zero-in-

flated 

(log-) 

Normal 

Yes No Moder-

ated t 

Yes No 16S. 

MGS 

limma 

voom 

(TMM) 

(3.42.2) 

Counts TMM Log; Preci-

sion 

weighting 

Normal 

(default) 

Yes Yes Moder-

ated t 

Yes No RNA-

seq 

limma 

voom 

(TMMwsp) 

(3.42.2) 

Counts TMMwsp Log; Preci-

sion 

weighting 

Normal 

(default) 

Yes Yes Moder-

ated t 

Yes No RNA-

seq 

t-test (rare) Rarefied 

Counts 

None None Normal No No Welch’s 

t-test 

Yes No N/A 

Wilcoxon 

(CLR) 

CLR abun-

dances 

None CLR Non-para-

metric 

No No Wilcoxon 

rank-sum 

Yes Yes N/A 

Wilcoxon 

(rare) 

Rarefied 

counts 

None None Non-para-

metric 

No No Wilcoxon 

rank-sum 

Yes No N/A 
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* The tool supports additional covariates if they are provided. ANCOM-II automatically 

performs ANOVA in this case, ALDEx2 requires that users select the test, and edgeR 

requires use of a different function (glmFit or glmQLFit instead of exactTest).  

Abbreviations: ALR, additive log-ratio; AST, arcsine square-root transformation; CLR, 

centered log-ratio; CoDa, compositional data analysis; CSS, cumulative sum scaling; 

FDR Corr., false-discovery rate correction; MGS, metagenomic sequencing; RLE, 

relative log expression; TMM, trimmed mean of M-values; Trans., transformation; TSS, 

total sum scaling 

 

We also investigated how prevalence filtering each dataset prior to analysis 

impacted the observed results. We chose to either use no prevalence filtering (Figure 

3.1A) or a 10% prevalence filter that removed any ASVs found in fewer than 10% of 

samples within each dataset (Figure 3.1B).  

We found that in both the filtered and unfiltered analyses the percentage of 

significant ASVs identified by each DA method varied widely across datasets, with 

means ranging from 3.8-32.5% and 0.8-40.5%, respectively. Interestingly, we found that 

many tools behaved differently between datasets. Specifically, some tools identified the 

most features in one dataset while identifying only an intermediate number in other 

datasets. This was especially evident in the unfiltered datasets (Figure 3.1A).  

Despite the variability of tool performance between datasets, we did find that several 

tools tended to identify more significant hits (Supplemental Figure 1C-D). In the 

unfiltered datasets, we found that limma voom (TMMwsp; mean: 40.5%; SD: 41% / 

TMM; mean: 29.7%; SD: 37.5%), Wilcoxon (CLR; mean: 30.7%; SD: 42.3%), LEfSe 

(mean: 12.6%; SD: 12.3%), and edgeR (mean: 12.4%; SD: 11.4%) tended to find the 

largest number of significant ASVs compared with other methods. Interestingly, in a few 
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datasets, such as the Human-ASD and Human-OB (2) datasets, edgeR found a higher 

proportion of significant ASVs than any other tool. In addition, we found that limma 

voom (TMMwsp) found the majority of ASVs to be significant (73.5%) in the Human-

HIV (3) dataset while the other tools found 0-11% ASVs to be significant (Figure 3.1A). 

Disturbingly, we found that both limma voom methods identified over 99% of ASVs to 

be significant in several cases such as the Built-Office and Freshwater-Arctic datasets. 

This is most likely due to the high sparsity of these datasets causing the tools’ reference 

sample selection method (upper-quartile normalization) to fail.  Such extreme findings 

were also seen in the Wilcoxon (CLR) output, where more than 90% of ASVs were 

called as significant in eight separate datasets. We found similar, although not as extreme, 

trends with LEfSe where in some datasets, such as the Human-T1D (1) dataset, the tool 

found a much higher percentage of significant hits (3.5%) compared with all other tools 

(0-0.4%). This observation is most likely a result of LEfSe filtering significant features 

by effect size rather than using FDR correction to reduce the number of false positives. 

We found that two of the three compositionally aware methods we tested identified fewer 

significant ASVs than the other tools tested. Specifically, ALDEx2 (mean: 1.4%; SD: 

3.4%) and ANCOM-II (mean: 0.8%; SD: 1.8%) identified the fewest significant ASVs. 

We found the conservative behavior of these tools to be consistent across all 38 datasets 

we tested.  
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Figure 3.1: Variation in the proportion of significant features depending on the 

differential abundance method and dataset.  Heatmaps indicate the numbers of 

significant amplicon sequence variants (ASVs) identified in each dataset by the 
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corresponding tool based on a unfiltered data and b 10% prevalence-filtered data. Cells 

are colored based on the standardized (scaled and mean centered) percentage of 

significant ASVs for each dataset. Additional colored cells in the left-most six columns 

indicate the dataset characteristics we hypothesized could be driving variation in these 

results (darker colors indicate higher values). Datasets were hierarchically clustered 

based on Euclidean distances using the complete method. Abbreviations: prev., previous; 

TMM, trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton 

pairing; rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source 

Data file. 

Overall, the results based on the filtered tables were similar, although there was a 

smaller range in the number of significant features identified by each tool. All tools 

except for ALDEx2 found a lower number of total significant features when compared 

with the unfiltered dataset (Supplemental Figure 1C-D). As with the unfiltered data, 

ANCOM-II was the most stringent method (mean: 3.8%; SD: 5.9%), while edgeR (mean: 

32.5%; SD: 28.5%), LEfSe (mean: 27.5%; SD: 25.0%), limma voom (TMMwsp; mean: 

27.3%; SD: 30.1% / TMM; mean: 23.5%; SD: 27.7%), and Wilcoxon (CLR; mean: 

25.4%; SD: 31.7%) tended to output the highest numbers of significant ASVs (Figure 

3.1B). 

 To investigate possible factors driving this variation we examined how the 

number of ASVs identified by each tool correlated with several variables. These variables 

included dataset richness, variation in sequencing depth between samples, dataset 

sparsity, and Aitchison’s distance effect size (based on PERMANOVA tests). As 

expected, we found that the number of ASVs identified by all tools positively correlated 
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with the effect size between test groups with Spearman correlation coefficient values 

ranging between 0.35-0.72 with unfiltered data (Figure 3.2A) and 0.31-0.56 for filtered 

data (Figure 3.2B). We also found in the filtered datasets that the number of ASVs found 

by all tools significantly correlated with the median read depth, range in read depth, and 

sample size. There was much less consistency in these correlations across the unfiltered 

data. For instance, only the t-test, both Wilcoxon methods, and both limma voom 

methods correlated significantly with the range in read depth (Figure 3.2B). We also 

found that edgeR was negatively correlated with mean sample richness in the unfiltered 

analysis. The percentage of ASVs in the unfiltered datasets that were lower than 10% 

prevalence was also significantly associated with the output of several tools. We also 

investigated if chimeras could influence the number of significant ASVs detected with 

results showing very limited impact (Supplemental Figure 2).  
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Figure 3.2: Dataset characteristics associated with percentage of significant amplicon 

sequence variants. The correlation coefficients (Spearman’s rho) are displayed by size 

and color for the a unfiltered and b prevalence-filtered data. Each dots size and color 

both correspond to its correlation coefficient. These correspond to the dataset 

characteristics correlated with the percentage of significant amplicon sequence variants 

identified by that tool per dataset. Only significant correlations before multiple 

comparison correction (p < 0.05) are displayed. Abbreviations: prev., previous; TMM, 

trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton pairing; 

rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source Data file. 

We next investigated whether the significant ASVs identified by the tested DA 

tools were, on average, at different relative abundances.  The clearest outliers were 

ALDEx2 (median relative abundance of significant ASVs: 0.013%), ANCOM-II 
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(median: 0.024%), and to a lesser degree DESeq2 (median: 0.007%), which tended to 

find significant features that were at higher relative abundance in the unfiltered datasets 

(Supplemental Figure 1A; the medians for all other tools ranged from 0.00004-0.003%). 

A similar trend for ALDEx2 (median: 0.011%) and ANCOM-II (median: 0.029%) was 

also apparent in the filtered datasets (Supplemental Figure 1B; the medians for all other 

tools ranged from 0.005-0.008%). 

 Finally, we also examined the discriminatory value of the significant ASVs 

identified by each tool in the filtered datasets. By discriminatory value we are referring to 

how well the sample groups can be delineated by a single ASV using hard cut-off 

abundance values. For this analysis we used either the relative abundances (Supplemental 

Figure 3A) or the CLR abundances (Supplemental Figure 3B) of each significant ASV 

input into receiver operator curves (ROC) predicting the groups of interest. Raw 

abundance values were used as input and multiple optimal cut-off points were selected to 

produce ROCs comparing sensitivity to specificity. We then measured the area under this 

curve (AUC) of each significant ASV and calculated the mean value across all ASVs 

identified by each tool. We found that ASVs identified by either ALDEx2 or ANCOM-II 

had the highest mean AUROC across the tested datasets using both relative abundances 

and CLR abundances as input (Supplemental Figure 3). Despite this trend, there were 

instances where these tools failed to identify any significant ASVs despite other tools 

achieving relatively high mean AUROCs for the ASVs they identified. For example, in 

the human-IBD dataset several tools found mean AUROCs of the ASVs they identified 

ranging from 0.8-0.9 using either CLR or relative abundances as input while both 

ALDEx2 and ANCOM-II failed to identify any significant ASVs.  
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As the above analysis has the potential to penalize tools that call a higher number of 

ASVs that are of lower discriminatory values we also investigated the ability of the tested 

DA methods to identify ASVs above specific AUC thresholds (Supplemental Figure 4). 

An important assumption of this analysis is that to accept the exact performance values 

all ASVs above and below the selected AUROC threshold must be true and false 

positives, respectively. Although this strict assumption is almost certainly false, it is 

likely that ASVs above and below the AUC threshold are at least enriched for true and 

false positives, respectively. We found that at an AUROC threshold of 0.7 both 

ANCOM-II and ALDEx2 had the highest precision for both relative abundance (medians: 

0.99; SD: 0.36 and median: 0.82, SD:0.39) and CLR data (medians: 1.0; SD:0.35 and 

median: 0.83, SD:0.35). However, they suffered lower recall values based on both 

relative (medians: 0.17 and 0.02) and CLR-based (medians: 0.06 and 0.01) abundances 

when compared to the recall scores of tools such as LEfSe and edgeR on relative 

abundance (median: 0.96 and 0.69) and CLR data (medians: 0.50 and 0.34). When 

examining CLR data as input we found that limma voom (TMMwsp) had one of the 

highest F1 scores (median: 0.47) only being outcompeted by the Wilcoxon (CLR) test 

(mean: 0.70). Examining the data at a higher AUC threshold of 0.9 showed that all tools 

had relatively high recall scores, apart from some tools such as ANCOM-II, corncob, and 

t-test (rare) on CLR data (medians: 0.5, 0.5, and 0.20). The precision score of all tools at 

this threshold was low on both relative abundance (range: 0-0.01) and CLR data (range: 

0-0.2). This result is unsurprising as in practice we would expect DA tools to identify 

features that are below a discriminatory threshold of 0.9 AUC. 
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3.4.2 - High Variability of Overlapping Significant ASVs 

We next investigated the overlap in significant ASVs across tools within each dataset. 

These analyses provided insight into how similar the interpretations would be depending 

on which DA method was applied. We hypothesize that tools that produce significant 

ASVs that highly intersect with the output of other DA tools are the most accurate 

approaches. Conversely, this may not be the case if tools with similar approaches produce 

similar sets of significant ASVs and end up identifying the same spurious ASVs. Either 

way, identifying overlapping significant ASVs across methods provides insights into 

their comparability.  

Based on the unfiltered data, we found that limma voom methods identified 

similar sets of significant ASVs that were different from those of most other tools (Figure 

3.3A). However, we also found that many of the ASVs identified by the limma voom 

methods were also identified as significant based on the Wilcoxon (CLR) approach, 

despite these being highly methodologically distinct tools. Furthermore, the two 

Wilcoxon test approaches had highly different consistency profiles, which highlights the 

impact that CLR-transforming has on downstream results. In contrast, we found that both 

MaAsLin2 approaches had similar consistency profiles, although the non-rarefied method 

found slightly lower-ranked features. We also found that the most conservative tools, 

ALDEx2 and ANCOM-II, primarily identified features that were also identified by 

almost all other methods. In contrast, edgeR and LEfSe, two tools that often identified the 

most significant ASVs, output the highest percentage of ASVs that were not identified by 

any other tool: 11.4% and 9.6%, respectively. Corncob, metagenomeSeq, and DESeq2 

identified ASVs at more intermediate consistency profiles. 
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 The overlap in significant ASVs based on the prevalence-filtered data was similar 

overall to the unfiltered data results (Figure 3.3B). One important exception was that the 

limma voom approaches identified a much higher proportion of ASVs that were also 

identified by most other tools, compared with the unfiltered data. Nonetheless, similar to 

the unfiltered data results, the Wilcoxon (CLR) significant ASVs displayed a bimodal 

distribution and a strong overlap with limma voom methods. We also found that overall, 

the proportion of ASVs consistently identified as significant by more than 12 tools was 

much higher in the filtered data (mean: 38.6%; SD: 15.8%) compared with the unfiltered 

data (mean: 17.3%; SD: 22.1%). In contrast with the unfiltered results, corncob, 

metagenomeSeq, and DESeq2 had lower proportions of ASVs at intermediate 

consistency ranks. However, ALDEx2 and ANCOM-II once again produced significant 

ASVs that largely overlapped with most other tools. 
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Figure 3.3: Overlap of significant features across tools and tool clustering.  a, b The 

number of tools that called each feature significant, stratified by features called by each 

individual tool for the a unfiltered and b 10% prevalence-filtered data. Results are shown 

as a percentage of all ASVs identified by each tool. The total number of significant 

features identified by each tool is indicated by the bar colors. For example, based on the 

unfiltered data these bars indicate that almost 40% of significant ASVs identified by 

ALDEx2 were shared across all other tools, while ALDEx2 did not identify any 
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significant ASVs shared by fewer than eight tools. Note that when interpreting these 

results that they are dependent on which methods were included, and whether they are 

represented multiple times. For instance, two different workflows for running MaAslin2 

are included, which produced similar outputs. c, d Plots are displayed for the first two 

principal coordinates (PCs) for both c non-prevalence-filtered and d 10% prevalence-

filtered data. These plots are based on the mean inter-tool Jaccard distance across the 38 

main datasets that we analyzed, computed by averaging over the inter-tool distance 

matrices for all individual datasets to weight each dataset equally. Abbreviations: TMM, 

trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton pairing; 

rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source Data file. 

A major caveat of the above analysis is that each DA tool produced substantially 

different numbers of ASVs in total. Accordingly, in principle all of the tools could be 

identifying the same top ASVs and simply taking varying degrees of risk when 

identifying less clearly differential ASVs. To investigate this possibility, we identified the 

overlap between the 20 top-ranked ASVs per dataset (Supplemental Figure 5), which 

included non-significant (but relatively highly ranked) ASVs in some cases. The 

distribution of these ASVs in the 20 top-ranked hits for all tools was similar to that of all 

significant ASVs described above. For example, in the filtered data we found that, t-test 

(rare) (mean: 6.2; SD: 3.8), edgeR, (mean: 6.5; SD: 4.6), corncob (mean: 6.0; SD: 4.1), 

metagenomeSeq (mean: 5.2; SD: 4.7) and DESeq2 (mean: 4.7; SD: 4.5) had the highest 

number of ASVs only identified by that particular tool as being in the top 20. On average 

only a small number of ASVs were amongst the top 20 ranked of all tools in both the 

filtered (mean: 0.21; SD: 0.62) and unfiltered (mean: 0.11; SD: 0.31) datasets 
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(Supplemental Figure 5).The above analyses summarized the consistency in tool outputs, 

but it is difficult to discern which tools performed most similarly from these results alone. 

To identify overall similarly performing tools we conducted principal coordinates 

analysis based on the Jaccard distance between significant sets of ASVs (Figure 3.3C-D). 

These analyses provide insight into how similar the results of different tools are expected 

to be, which could be due to methodological similarities between them. However, this 

does not provide clear evidence for which tools are the most accurate. One clear trend for 

both unfiltered and filtered data is that edgeR and LEfSe cluster together and are 

separated from other methods on the first principal coordinate. Interestingly, corncob, 

which is a methodologically distinct approach, also clusters relatively close to these two 

methods on the first principal component. This may reflect that the distributions that 

these two methods rely upon become similar when considering the parameter values 

often associated with microbiome data. 

The major outliers on the second principal coordinate differ depending on 

whether the data was prevalence-filtered. For the unfiltered data, the main outliers are the 

limma voom methods, followed by Wilcoxon (CLR; Figure 3.3C). In contrast, ANCOM-

II is the sole major outlier on the second principal component based on filtered data 

(Figure 3.3D). These visualizations highlight the major tool clusters based on the 

resulting sets of significant ASVs. However, the percentage of variation explained by the 

top two components is relatively low in each case, which means that substantial 

information regarding potential tool clustering is missing from these panels 

(Supplemental Figure 6 and Supplemental Figure 7). For instance, ANCOM-II and 
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corncob are major outliers on the third and fourth principal coordinates, respectively, of 

the unfiltered data analysis, which highlights the uniqueness of these methods.  

3.4.3 - False Discovery Rate of Microbiome Differential Abundance Tools Depends on 

the Dataset  

We next evaluated how the DA tools performed in cases where no significant hits were 

expected. These cases corresponded to sub-samplings of eight of the 38 datasets 

presented above. For each dataset we selected the most frequently sampled group and 

within this sample grouping we randomly reassigned them as case or control samples. 

Each DA tool was then run on this subset of randomly assigned samples and results were 

compared. Due to the random nature of assignment and the similar composition of 

samples from the same metadata grouping (e.g. healthy humans) we would expect tools 

to not identify any ASVs as being differential abundant. Through this approach we were 

able to infer the false positive characteristics of each tool. In other words, we determined 

what percentage of tested ASVs was called as significant by each tool even when there is 

no difference expected between the sample groups. 

The clearest trend for both unfiltered and filtered data is that certain outlier tools 

have relatively high FDRs in this context while most others identify few false positives 

(Figure 3.4). Most strikingly, both limma voom methods output highly variable 

percentages of significant ASVs, especially based on the unfiltered data (Figure 3.4A). In 

5/8 of the unfiltered datasets, the limma voom methods identified more than 5% of ASVs 

as significant on average due to many high value outliers. Only ALDEx2 and t-test (rare) 

consistently identified no ASVs as significantly different in the unfiltered data analyses. 

However, both MaAsLin2 and Wilcoxon (rare) found no significant features in the 



122 

 

majority of tested datasets (6/8 and 7/8 respectively).  Two clear outliers in the filtered 

data analyses were edgeR (mean: 0.69% - 27.9%) and LEfSe (mean: 3.4% - 5.1%) which 

consistently identified more significant hits compared with other tools (Figure 3.4B). 

However, it should be noted that in some datasets Corncob, DESeq2 and the limma 

methods also performed poorly.  

 Overall, we found that the raw numbers of significant ASVs were lower in the 

filtered dataset than in the unfiltered data (as expected due to many ASVs being filtered 

out), and that most tools identified only a small percentage of significant ASVs, 

regardless of filtering procedure. The exceptions were the two limma voom methods, 

which had high FDRs with unfiltered data, and edgeR and LEfSe, which had high FDRs 

on the filtered data. Although these tools stand out on average, we also observed that in 

several replicates on the unfiltered datasets, the Wilcoxon (CLR) approach identified 

almost all features as statistically significant (Figure 3.4A). This was also true for both 

limma voom methods, which highlights that a minority of replicates are driving up the 

average FDR of these methods.  

We investigated the outlier replicates for the Wilcoxon (CLR) approach and 

found that the mean differences in read depth between the two tested groups were 

consistently higher in replicates in which 30% or more of ASVs were significant 

(Supplemental Figure 8). These differences were associated with similar differences in 

the geometric mean abundances per-sample (i.e., the denominator of the CLR 

transformation) between the test groups. Specifically, per dataset, these outlier replicates 

commonly displayed the most extreme mean difference in geometric mean between the 

test groups and were otherwise amongst the top ten most extreme replicates. 
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Interestingly, the pattern of differential read depth was absent when examining outlier 

replicates for the limma voom methods (Supplemental Figure 8).  

 

Figure 3.4: Distribution of false discovery rate simulation replicates for both unfiltered 

and filtered data. The percentage of amplicon sequence variants that are significant after 

performing Benjamini–Hochberg correction of the p-values (using a cut-off of 0.05) are 

shown for each separate dataset and tool. Interquartile range (IQR) of boxplots represent 

the 25th and 75th percentiles while maxima and minima represent the maximum and 
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minimum values outside 1.5 times the IQR. Notch in the middle of the boxplot represent 

the median. Note that the x-axis is on a pseudo-log10 scale. a Represents unfiltered 

datasets while b represents datasets filtered using a 10% prevalence requirement for 

each ASV. Datasets and tools were run 100 times while randomly assigning samples from 

the same environment and original groupings to one of two new randomly selected 

groupings. Differential abundance analysis was then performed on the two random 

groupings. Note that in the unfiltered datasets 100 replicates was only run 3 of the 8 

datasets (Freshwater—Arctic, Soil—Blueberry, Human—OB (1)) with 100 ALDEx2 

replications also being run in the Human - HIV (3) dataset. All other unfiltered datasets 

were run with 10 replicates due to computational limitations. Abbreviations: TMM, 

trimmed mean of M-values; TMMwsp, trimmed mean of M-values with singleton pairing; 

rare, rarefied; CLR, center-log-ratio. Source data are provided as a Source Data file. 

3.4.4 - Tools Vary in how Consistently They Identify the Same Significant Genera 

Within Diarrhea Case-Control Datasets 

Separate from the above analysis comparing consistency between tools on the same 

dataset, we next investigated whether certain tools provide more consistent signals across 

datasets of the same disease. This analysis focused on the genus-level across tools to help 

limit inter-study variation. We specifically focused on diarrhea as a phenotype, which has 

been shown to exhibit a strong effect on the microbiome and to be relatively reproducible 

across studies (Duvallet et al., 2017). 

We acquired five datasets for this analysis representing the microbiome of 

individuals with diarrhea compared with individuals without diarrhea (see Methods). We 

ran all DA tools on each individual filtered dataset and restricted our analyses to the 218 
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genera found across all datasets. Like our ASV-level analyses, the tools substantially 

varied in terms of the number of significant genera identified. For instance, ALDEx2 

identified a mean of 17.6 genera as significant in each dataset (SD: 17.4), while edgeR 

identified a mean of 46.0 significant genera (SD: 12.9). Tools that generally identify 

more genera as significant are accordingly more likely to identify genera as consistently 

significant compared with tools with fewer significant hits. Accordingly, inter-tool 

comparisons of the number of times each genus was identified as significant would not be 

informative. 

Instead, we analyzed the observed distribution of the number of studies that each 

genus was identified as significant in compared with the expected distribution given 

random data. This approach enabled us to compare the tools based on how much more 

consistently each tool performed relative to its own random expectation. For instance, on 

average edgeR identified significant genera more consistently across studies compared 

with ALDEx2 (mean numbers of datasets that genera were found in across studies were 

1.67 and 1.54 for edgeR and ALDEx2, respectively). However, this observation was 

simply driven by the increased number of significant genera identified by edgeR. Indeed, 

when compared with the random expectation, ALDEx2 displayed a 1.35-fold increase (p 

< 0.001) of consistency in calling significant genera in the observed data. In contrast, 

edgeR produced results that were only 1.10-fold more consistent compared with the 

random expectation (p = 0.002). 

 ALDEx2 and edgeR represent the extremes of how consistently tools identify the 

same genera as significant across studies, but there is a large range (Figure 3.5). Notably, 

all tools were significantly more consistent than the random expectation across these 
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datasets (p < 0.05) (Table 2). In addition to ALDEx2, the other top performing 

approaches based on this evaluation included limma voom (TMM), both MaAsLin2 

workflows, and ANCOM-II. 

Table 3.2: Comparison of observed and expected consistency in differentially abundant 

genera across five diarrhea datasets. 

Tool 

 
 

No. sig. 

genera 

Max 

overlap 

Mea

n 

exp. 

Mea

n 

obs. 

Fold 

diff. 

p 

 
 

ALDEx2 57 3 1.14

1 

1.54

4 

1.35

3 

< 0.001 

limma voom (TMM) 76 4 1.22 1.61

8 

1.32

6 

< 0.001 

MaAsLin2 (rare) 74 3 1.20

4 

1.59

5 

1.32

5 

< 0.001 

ANCOM-II 15 3 1.03

3 

1.33

3 

1.29 < 0.001 

MaAsLin2 79 3 1.21

5 

1.55

7 

1.28

1 

< 0.001 

Wilcoxon (rare) 88 4 1.26

9 

1.62

5 

1.28

1 

< 0.001 

metagenomeSeq 66 3 1.16

4 

1.48

5 

1.27

6 

< 0.001 

Wilcoxon (CLR) 82 3 1.22 1.54

9 

1.27 < 0.001 

limma voom (TMMwsp) 85 
 

4 
 

1.23

9 
 

1.56

5 
 

1.26

3 
 

< 0.001 
 

t-test (rare) 62 3 1.14

5 

1.40

3 

1.22

5 

< 0.001 

corncob 87 5 1.27

5 

1.55

2 

1.21

7 

< 0.001 

DESeq2 82 4 1.24

6 

1.51

2 

1.21

3 

< 0.001 
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Tool 

 
 

No. sig. 

genera 

Max 

overlap 

Mea

n 

exp. 

Mea

n 

obs. 

Fold 

diff. 

p 

 
 

LEfSe 119 5 1.40

8 

1.61

3 

1.14

6 

< 0.001 

edgeR 138 5 1.50

9 

1.66

7 

1.10

5 

0.002 

Column descriptions: 

No. sig. genera: Number of genera significant in at least one dataset 

Max overlap: Maximum number of datasets where a genus was called significant by this 

tool 

Mean exp.: Mean number of datasets that each genus is expected to be significant in (of 

the genera that are significant at least once) 

Mean obs.: Mean number of datasets that each genus was observed to be significant in 

(of the genera that are significant at least once) 

Fold diff.: Fold difference of mean observed over mean expected number of times 

significant genera are found across multiple datasets 

p: p-value based on one-tailed permutation test that used the “Mean obs.” as the test 

statistic. Note that < 0.001 is indicated instead of exact values, because 0.001 was the 

minimum non-zero p-value we could estimate based on our permutation approach. 
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Figure 3.5: Observed consistency of significant genera across diarrhea datasets is 

higher than the random expectation overall. These barplots illustrate the distributions 

of the number of studies for which each genus was identified as significant (excluding 

genera never found to be significant). The random expectation distribution is based on 

replicates of randomly selecting genera as significant and then computing the 
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consistency across studies. Abbreviations: TMM, trimmed mean of M-values; TMMwsp, 

trimmed mean of M-values with singleton pairing; rare, rarefied; CLR, center-log-ratio. 

Source data are provided as a Source Data file. 

We conducted a similar investigation across five obesity 16S rRNA gene datasets, 

which was more challenging to interpret due to the lower consistency in general 

(Supplemental Table 1). Specifically, most significant genera were called in only a single 

study and only MaAslin2 (both with non-rarefied and rarefied data), the t-test (rare) 

approach, ALDEx2, and the limma voom (TMMwsp) approach performed significantly 

better than expected by chance (p < 0.05). The MaAsLin2 (rare) approach produced by 

far the most consistent results based on these datasets (fold difference: 1.23; p = 0.003). 
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3.5 – Discussion 

 

Herein we have compared the performance of commonly used DA tools on 16S rRNA 

gene datasets. While it might be argued that differences in tool outputs are expected 

given that they test different hypotheses, we believe this perspective ignores how these 

tools are used in practice. In particular, these tools are frequently used interchangeably in 

the microbiome literature. Accordingly, an improved understanding of the variation in 

DA method performance is crucial to properly interpret microbiome studies. We have 

illustrated here that these tools can produce substantially different results, which 

highlights that many biological interpretations based on microbiome data analysis are 

likely not robust to DA tool choice. These results might partially account for the common 

observation that significant microbial features reported in one dataset only marginally 

overlap with significant hits in similar datasets. However, it should be noted that this 

could also be due to numerous other biases that affect microbiome studies (Nearing et al., 

2021). Our findings should serve as a cautionary tale for researchers conducting their 

own microbiome data analysis and reinforce the need to accurately report the findings of 

a representative set of different analysis options to ensure robust results are reported. 

Importantly, readers should not misinterpret our results to mean that 16S rRNA gene data 

is less reliable than other microbiome data types, such as shotgun metagenomics. We 

expect similar issues are affecting analyses with these data types, as they have similar or 

even higher levels of sparsity and inter-sample variation. Nonetheless, despite the high 

variation across DA tool results, we were able to characterize several consistent patterns 

produced by various tools that researchers should keep in mind when assessing both their 

own results and results from published work. 
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Two major groups of DA tools could be distinguished by how many significant 

ASVs they tended to identify. We found that limma voom, edgeR, Wilcoxon (CLR), and 

LEfSe output a high number of significant ASVs on average. In contrast, ALDEx2 and 

ANCOM-II tended to identify only a relatively small number of ASVs as significant. We 

hypothesize that these latter tools are more conservative and have higher precision, but 

with a concomitant probable loss in sensitivity. This hypothesis is related to our 

observation that significant ASVs identified by these two tools tended to also be 

identified by almost all other differential abundance methods, which we interpret to be 

ASVs that are more likely to be true positives. Furthermore, it was clear that in most, but 

not all, cases these two methods tended to identify the most discriminatory ASVs that 

were found by other tools. We believe that the lower number of ASVs identified by these 

approaches could be due to multiple reasons. ALDEx2’s conservative nature is most 

likely due to its Monte Carlo Dirichlet sampling approach which down weights low 

abundance ASVs. On the other hand, ANCOM-II’s conservative nature could be 

attributed to its large multiple testing burden. Furthermore, the variance in the number of 

features identified could also be attributed to pre-processing steps several tools use to 

remove potential ASVs for testing. This includes corncob that does not report 

significance values for ASVs only found in one group or ANCOM-II’s ability to remove 

structural zeros. While it is unclear why some methods have much higher significance 

rates than other tools it could be due to several reasons. These include LEfSe’s choice not 

to correct significance values for false discovery or Wilcoxon (CLR)’s inability to 

consider differences in sequencing depth between metadata groupings. It should be noted 

that in some cases authors haven chosen to apply FDR p-value correction to LEfSe 
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output, when not including a subclass, however, this is not the default behavior of this 

tool (Rooks et al., 2014).  

 Given that ASVs commonly identified as significant using a wide range of 

approaches are likely more reliable, it is noteworthy that significant ASVs in the 

unfiltered data tended to be called by fewer tools. This was particularly evident for both 

limma voom approaches and the Wilcoxon (CLR) approach. Although it is possible that 

many of these significant ASVs are incorrectly missed by other tools, it is more likely 

that these tools are simply performing especially poorly on unfiltered data due to several 

reasons, such as data sparsity. 

This issue with the limma voom approaches was also highlighted by high false 

positive rates on several unfiltered randomized datasets, which agrees with a past FDR 

assessment of this approach (Hawinkel et al., 2019). We believe that this issue is most 

likely driven by the inability for TMM normalization methods to deal with highly sparse 

datasets as filtering the data resulted in performance more in line with other DA methods 

(Robinson & Oshlack, 2010). It is important to acknowledge that our randomized 

approach for estimating FDR is not a perfect representation of real data; that is, real 

sample groupings will likely contain some systematic differences in microbial 

abundances—although the effect size may be very small—whereas our randomized 

datasets should have none. Accordingly, identifying only a few significant ASVs under 

this approach is not necessarily proof that a tool has a low FDR in practice. However, 

tools that identified many significant ASVs in the absence of distinguishing signals likely 

also have high FDR on real data.  
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Two additional particularly problematic tools based on this analysis were edgeR 

and LEfSe. The edgeR method has been previously found to exhibit a high FDR on 

several occasions (Hawinkel et al., 2019; Thorsen et al., 2016) Although metagenomeSeq 

also has been flagged as such (Hawinkel et al., 2019; Thorsen et al., 2016), that was not 

the case in our analysis. This agrees with a recent report that metagenomeSeq (using the 

zero-inflated log-normal approach, as we did) appropriately controlled the FDR, but 

exhibited low power (Lin & Peddada, 2020). There have been mixed results previously 

regarding whether ANCOM appropriately controls the FDR (Hawinkel et al., 2019; S. 

Weiss et al., 2017), but the results from our limited analysis suggest that this method is 

conservative and controls the FDR while sometimes potentially missing true positives, as 

evident in our discriminatory analysis. 

 Related to this point, we found that ANCOM-II performed better than average at 

identifying the same genera as significantly DA across five diarrhea-related datasets 

despite only identifying a mean of four genera as significant per dataset. Nonetheless, the 

ANCOM-II results were less consistent than ALDEx2, both MaAsLin2 workflows, and 

limma voom (TMM). The tools that produced the least consistent results across datasets 

(relative to the random expectation) included the t-test (rare) approach, LEfSe, and 

edgeR. The random expectation in this case was quite simplistic; it was generated based 

on the assumption that all genera were equally likely to be significant by chance. This 

assumption must be invalid to some degree simply because some genera are more 

prevalent than others across samples. Accordingly, it is surprising that the tools produced 

only marginally more consistent results than expected.  
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Although this cross-data consistency analysis was informative, it was interesting 

to note that not all environments and datasets are appropriate for this comparison. 

Specifically, we found that the consistency of significant genera across five datasets 

comparing obese and control individuals was no higher than expected by chance for most 

tools. This observation does not necessarily reflect that there are few consistent genera 

that differ between obese and non-obese individuals; it could instead simply reflect 

technical and/or biological factors that differ between the particular datasets we analyzed 

(Pollock et al., 2018).  

 We believe the above observations regarding DA tools are valuable, but many 

readers are likely primarily interested in hearing specific recommendations. Indeed, the 

need for standardized practices in microbiome analysis have recently become better 

appreciated (Hill, 2020). One goal of our work was to validate the recommendations of 

another recent DA method evaluation paper, which found that limma voom, corncob, and 

DESeq2 performed best overall of the tools they tested (Calgaro et al., 2020). Based on 

our results, we do not recommend these tools as the sole methods used for data analysis, 

and instead would suggest that researchers use more conservative methods such as 

ALDEx2 and ANCOM-II. Although these methods have lower statistical power (Calgaro 

et al., 2020; Hawinkel et al., 2019), we believe this is an acceptable trade-off given the 

higher cost of identifying false positives as differentially abundant. However, MaAsLin2 

(particularly with rarefied data) could also be a reasonable choice for users looking for 

increased statistical power at the potential cost of more false positives. We can clearly 

recommend that users avoid using edgeR (a tool primarily intended for RNA-seq data) 

and LEfSe (without p-value correction) for conducting DA testing with 16S rRNA gene 
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data. Users should also be aware that limma voom and the Wilcoxon (CLR) approaches 

may perform especially poorly on unfiltered data that is highly sparse. This is particularly 

true for the Wilcoxon (CLR) approach when read depths greatly differ between groups of 

interest. 

 More generally, we recommend that users employ several methods and focus on 

significant features identified by most tools, while keeping in mind the characteristics of 

the tools presented within this chapter. For example, authors may want to present 

identified taxonomic markers in categories based on the tool characteristics presented 

within this thesis or the number of tools that agree upon its identification. Importantly, 

applying multiple DA tools to the same dataset should be reported explicitly. Clearly this 

approach would make results more difficult to biologically interpret, but it would provide 

a clearer perspective on which differentially abundant features are robust to reasonable 

changes in the analysis. 

A common counterargument to using consensus approaches with DA tools is that 

there is no assurance that the intersection of the tool outputs is more reliable; it is possible 

that the tools are simply picking up the same noise as significant. Although we think this 

is unlikely, in any case running multiple DA tools is still important to give context to 

reporting significant features. For example, researchers might be using a tool that 

produces highly non-overlapping sets of significant features compared with other DA 

approaches. Even if the researchers are confident in their approach, these discrepancies 

should be made clear when the results are summarized. This is crucial for providing 

accurate insight into how robust specific findings are expected to be across independent 

studies, which often use different DA approaches. Similarly, if researchers are most 
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interested in determining if signals from a specific study are reproducible, then they 

should ensure that they use the same DA approach to help make their results more 

comparable. 

 How and whether to conduct independent filtering of data prior to conducting DA 

tests are other important open questions regarding microbiome data analysis (Schloss, 

2020). Although statistical arguments regarding the validity of independent filtering are 

beyond the scope of this work, intuitively it is reasonable to exclude features found in 

only a small number of samples (regardless of which groups those samples are in). The 

basic reason for this is that otherwise the burden of multiple-test correction becomes so 

great as to nearly prohibit identifying any differentially abundant features. Despite this 

drawback, many tools identified large numbers of significant ASVs in the unfiltered data. 

However, these significant ASVs tended to be more tool-specific in the unfiltered data 

and there was much more variation in the percentage of significant ASVs across tools. 

Accordingly, we would suggest performing prevalence filtering (e.g., at 10%) of features 

prior to DA testing, although we acknowledge that more work is needed to estimate an 

optimal cut-off rather than just arbitrarily selecting one (McMurdie & Holmes, 2014). 

 Another common question is whether DA tools that require input data to be 

rarefied should be avoided. It is possible that the question of whether to rarefy data has 

received disproportionate attention in the microbiome field: there are numerous other 

factors affecting an analysis pipeline that likely affect results more. Indeed, tools that 

took in rarefied data in our analyses did not perform substantially worse than other 

methods on average. More specifically, the most consistent inter-tool methods, ANCOM-

II and ALDEx2, are based on non-rarefied data, but MaAsLin2 based on rarefied data 
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produced the most consistent results across datasets of the same phenotype. Accordingly, 

we cannot definitively conclude that DA tools that require input data to be rarefied are 

less reliable in general. It should be noted that we are referring only to rarefying in the 

context of DA testing: whether rarefying is advisable for other analyses, such as prior to 

computing diversity metrics, is beyond the scope of this work (McMurdie & Holmes, 

2014; S. Weiss et al., 2017). 

Others have investigated the above questions by applying simulations to various 

DA methods, which has yielded valuable insights (Calgaro et al., 2020; Hawinkel et al., 

2019; Thorsen et al., 2016; S. Weiss et al., 2017).  However, we believe this does not 

provide the full picture of how these DA tools perform. This is because it has been 

highlighted that in many scenarios simulations can led to circular arguments where tools 

that are designed around specific parameters perform favorably on simulations using 

those parameters (Hawinkel et al., 2019). Without better knowledge of the range of data 

structures that microbiome sequencing can result in these types of simulation analyses 

can be difficult to interpret. As such we believe that it was important to test these 

methods on a wide range of different real-world datasets in order to gain an 

understanding of how they differed from one another. By doing so we have highlighted 

the issues of using these tools interchangeably within the literature. Indeed, the question 

“which taxa significantly differ in relative abundance between sample groupings?” may 

be too simple and need further parameterization before it can be answered. This includes 

information such as what type of abundance the authors are comparing and the tools they 

plan to use within their analysis. Unfortunately, the variation across tools implies that 
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biological interpretations based on these questions will often drastically differ depending 

on which DA tool is considered.  

In conclusion, the high variation in the output of DA tools across numerous 16S rRNA 

gene sequencing datasets highlights an alarming reproducibility crisis facing microbiome 

researchers. While we cannot make a direct simple recommendation of a specific tool 

based on our analysis, we have highlighted several issues that authors should be aware of 

while interpreting DA results. This includes that several tools have inappropriately high 

false discovery rates such as edgeR and LEfSe and as such should be avoided when 

possible. It is also clear from our analysis that some tools designed for RNA-seq such as 

limma voom methods cannot deal with the much higher sparsity of microbiome data 

without including a data filtration step. We have also highlighted that these tools can 

significantly differ in the number of ASVs that they identify as being significantly 

different and that some tools are more consistent across datasets than others. Overall, we 

recommend that authors use the same tools when comparing results between specific 

studies and otherwise use a consensus approach based on several DA tools to help ensure 

results are robust to DA  
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Chapter 4 – Assessing the Variation Within the Oral Microbiome of Healthy 

Adults 

 

This chapter is a near reproduction of the paper of the same named published in the 

journal mSphere (Nearing, DeClercq, Van Limbergen, & Langille, 2020). I was first 

author on this work and was the primary contributor to the data analysis, figure creation, 

and writing. I also participated in study design along with my co-authors Vanessa 

DeClercq, Johan Van Limbergen, and Morgan G.I. Langille.  

 This paper was published under a Creative Commons Attribution 4.0 International 

License and allows for the reproduction and adaptation with attribution 

(https://creativecommons.org/licenses/by/4.0/). The original acknowledgements of this 

paper can also be found within its original publication. All additional files and 

supplemental information referred to in this chapter are freely available as part of the 

original publication on the mSphere journal website and can be found at the following 

link: https://doi.org/10.1128/mSphere.00451-20.  

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mSphere.00451-20
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4.1 – Abstract 

 

Over 1000 different species of microbes have been found to live within the human oral 

cavity where they play important roles in maintaining both oral and systemic health. 

Several studies have identified the core members of this microbial community, however, 

the factors that determine oral microbiome composition are not well understood. In this 

study we exam the salivary oral microbiome of 1049 Atlantic Canadians using 16S rRNA 

gene sequencing to determine which dietary, lifestyle, and anthropometric features play a 

role in shaping microbial community composition. Features that were identified as being 

significantly associated with overall composition were then additionally examined for 

genera, amplicon sequence variants, and predicted pathway abundances that were 

associated with these features. Several associations were replicated in an additional 

secondary validation dataset. Overall, we found that several anthropometric 

measurements including waist-hip ratio (WHR), height, and fat free mass, as well as age 

and sex, were associated with overall oral microbiome structure in both our exploratory 

and validation cohorts. We were unable to validate any dietary impacts on overall 

taxonomic oral microbiome composition but did find evidence to suggest potential 

contributions from factors such as the number of vegetable and refined grain servings an 

individual consumes. Interestingly, each one of these factors on their own was associated 

with only minor shifts in the overall taxonomic composition of the oral microbiome 

suggesting that future biomarker identification for several diseases associated with the 

oral microbiome may be undertaken without the worry of confounding factors obscuring 

biological signal. 
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4.1.1 – Importance 

The human oral cavity is inhabited by a diverse community of microbes known as the 

human oral microbiome. These microbes play a role in maintaining both oral and 

systemic health and as such have been proposed to be useful biomarkers of disease. 

However, to identify these biomarkers, we first need to determine the composition and 

variation of the healthy oral microbiome. Within this report we investigate the oral 

microbiome of 1049 healthy individuals to determine which genera and amplicon 

sequence variants are commonly found between individual oral microbiomes. We then 

further investigate how lifestyle, anthropometric, and dietary choices impact overall 

microbiome composition. Interestingly, the results from this investigation showed that 

while many features were significantly associated with oral microbiome composition no 

single biological factor explained a variation larger than 2%. These results indicate that 

future work on biomarker detection may be encouraged by the lack of strong 

confounding factors.  
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4.2 – Introduction 

 

The human oral cavity is colonized by numerous bacteria, fungi, viruses and archaea that 

make a rich microbial community known as the oral microbiome. This microbial 

community is one of the most diverse sites of microbial growth within the human body; 

only the colon houses a more diverse consortia of microbes (Huttenhower et al., 2012). 

To date over 1000 different bacterial species have been found to colonize the oral cavity 

(Dewhirst et al., 2010) on various surfaces including the tongue, teeth, cheek, and 

gingivae (Huttenhower et al., 2012). These communities of microbes are responsible for 

various functions that can both maintain and deplete oral health. For example, the 

presence of biofilms containing bacterial species such as Streptococcus mutans and other 

aciduric bacteria can damage hard dental surfaces and lead to dental caries (Takahashi & 

Nyvad, 2010; Wade, 2013). Furthermore, the oral microbiome is known to play a role in 

a myriad of other oral diseases including oral cancer (Karpiński, 2019), periodontitis 

(Kumar et al., 2003; Socransky, Haffajee, Cugini, Smith, & Kent Jr., 1998), and 

gingivitis (Kolenbrander et al., 2006; Murray, Prakobphol, Lee, Hoover, & Fisher, 1992). 

In addition to well-established associations between oral and cardiac health (Shungin et 

al., 2019), recent work has also begun to show that the oral microbiome may play a role 

in the health of other distal sites within the human body. For example, the enrichment of 

both Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans has been 

associated with a higher risk of pancreatic cancer (X. Fan, Alekseyenko, et al., 2018). 

Furthermore, several oral bacteria including Streptococcus and Prevotella species have 

been found to be in higher abundance among individuals with colorectal cancer (Flemer 

et al., 2017). Other than these two cancers a number of other distal diseases have been 
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associated with oral microbiome composition including, prostate cancer (Porter, Shrestha, 

Peiffer, & Sfanos, 2018) and inflammatory bowel disease (Said et al., 2013). 

 Due to the associations between these diseases and the oral microbiome, its 

composition has been proposed as a useful biomarker for human health and disease. With 

this in mind, various studies have attempted to identify core members of the “healthy” 

oral microbiome (De Filippis et al., 2014; Huttenhower et al., 2012; Nasidze, Li, 

Quinque, Tang, & Stoneking, 2009; Takeshita et al., 2016; Zaura, Keijser, Huse, & 

Crielaard, 2009) to help aid in disease detection. These studies have uncovered that, at 

the genus level, the oral microbiome remains relatively stable between individuals 

(Huttenhower et al., 2012; Zaura et al., 2009) and across multiple geographic locations (J. 

Li et al., 2014; Nasidze et al., 2009), but at deeper taxonomic resolutions, it can be 

variable. This may indicate that other factors such as dietary, anthropometric, or 

sociodemographic factors could play a role in shaping the oral microbiome (Belstrøm et 

al., 2014; De Filippis et al., 2014; Mason et al., 2013; Peters et al., 2018; Renson et al., 

2019; Takeshita et al., 2016). Various studies have focused on individual factors that may 

cause shifts in the oral microbiome such as ethnicity (Huttenhower et al., 2012; Mason et 

al., 2013), alcohol consumption (X. Fan, Peters, et al., 2018), smoking (J. Wu et al., 

2016), obesity (Yujia Wu, Chi, Zhang, Chen, & Deng, 2018; Y. Yang, Cai, Zheng, et al., 

2019), and dietary patterns (Hansen et al., 2018). However, to date only a small number 

of studies have looked at the relative contributions of each of these factors to oral 

microbiome variability in a single cohort. Takeshita et al., examined the oral microbiome 

of 2,343 adults living in Japan using 16S rRNA gene sequencing and identified that 

higher abundances of Prevotella, and Veillonella species were associated with old age, 
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higher body mass index (BMI), and poor overall oral health (Takeshita et al., 2016). 

Another study by Renson et al., in adults living in New York City also found that 

variation in taxonomic abundances could be linked to marital status, ethnicity, education, 

and age (Renson et al., 2019). Further, work by Belstrøm et al., examined the oral 

microbiome of 292 Danish individuals with low levels of dental caries and periodontitis 

using microarrays and found that while socioeconomic status impacted oral microbiome 

profiles, diet, BMI, age, and sex had no statistical impact on microbial abundances 

(Belstrøm et al., 2014). This study, however, was only able to identify the abundances of 

taxa that had a corresponding probe which, could explain its disagreement with other 

work. Overall, these studies have indicated that both biological differences such as sex 

and BMI as well as lifestyle and sociodemographic differences can impact oral 

microbiome composition.   

While these studies have shed light on the variation of the oral microbiome, it is currently 

unclear to what extent these factors play a role in shaping the oral microbiome of an 

individual. Without identifying the effect size of each of these factors relative to one 

another, it is difficult to identify the correct variables that should be controlled for in 

case-control studies of the oral microbiome. Furthermore, each of these studies have 

identified different taxa that are impacted by various factors such as sex, BMI, and age. 

This could be due to many factors, including systemic bias introduced via the use of 

different sequencing or bioinformatic protocols/tools (Pollock et al., 2018) or differences 

in the studied cohorts. Therefore, the identification of microbes that are impacted by 

factors such as sex, BMI, or diet could help identify potential interactions between the 

oral microbiome, health, and disease.   
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 Herein, we report the variation within the healthy oral microbiome by examining 

741 samples from non-smoking healthy individuals living within the Atlantic Provinces 

of Canada. We then validated our results on a smaller subset of individuals (n=308) from 

the same cohort (Figure 4.1). The bacterial oral microbiome composition of these 

individuals was investigated through 16S rRNA gene sequencing from saliva samples 

provided by each participant. Compositions were then compared with 41 different 

variables including anthropometric, dietary, and sociodemographic factors (Table 4.1). In 

this investigation, we determined which of these factors play a role in shaping the oral 

microbiome and to what extent these factors can explain the overall oral microbiome 

composition. 

 

 

Figure 4.1: Flowchart of sample selection from the Atlantic Partnership for 

Tomorrow’s Health cohort. A total of 35,577 individuals participated in the Atlantic 

Partnership for Tomorrow’s Health cohort, and ∼9,000 individuals provided saliva 

samples. Of those, a subset of 1,214 saliva samples from healthy individuals underwent 



146 

 

16S rRNA gene sequencing. Samples below 5,000 reads were filtered out, and two data 

sets were created for discovery and validation analysis. 

Table 4.1: Cohort characteristic and variables analyzed for oral microbiome 

composition 

 Overall 

  

Number of participants 1214 

Rural/Urban (%)   

    Urban 1050 (86.5) 

    Rural 126 (10.4) 

   NA 38 (3.1) 

Province (%)   

   New Brunswick 124 (10.2) 

   Nova Scotia 1070 (88.1) 

   Prince Edward Island 16 (1.3) 

   NA Data repressed 

Economic Region  

Annapolis Valley 52 

Cape Breton 142 

Edmundston – Woodstock Data repressed 

Fredericton – Oromocto 44 

Halifax 773 

Moncton – Richibucto 32 

North Shore 41 

Prince Edward Island 16 

Saint John – St., Stephen 45 

Southern Shore 28 

Sex (%)   

   Female 846 (69.7) 

   Male 368 (30.3) 

Body mass index (mean (SD)) 

   Male 

   Female 

27.83 (3.62) 

27.06 (4.89) 

Waist size (cm) (mean (SD)) 

   Male 

   Female 

 

98.10 (10.51) 

87.86 (12.45) 

Hip size (cm) (mean (SD)) 

   Male 

 

103.84 (7.15) 
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   Female 104.50 (10.29) 

Waist-hip ratio (mean (SD)) 

   Male 

   Female 

0.94 (0.06) 

0.84 (0.07) 

Height (cm) (mean (SD)) 

   Male 

   Female 

176.64 (6.72) 

162.90 (6.07)  
Weight (kg) (mean (SD)) 

    Male 

    Female 

86.92 (12.84) 

71.81 (13.48)  
Age (years) (mean (SD)) 55.39 (7.80) 

Fat mass (kg) (mean (SD)) 

    Male 

    Female 

 

21.65 (7.16) 

26.79 (10.01) 

Fat free mass (kg) (mean (SD)) 

    Male 

    Female 

 

65.21 (7.42) 

45.00 (4.77) 

Body fat percentage (mean (SD)) 

    Male 

    Female 

24.46 (5.32) 

36.20 (7.24)  
Vegetable servings (mean (SD)) 2.56 (1.98) 

Fruit servings (mean (SD)) 2.00 (1.45) 

Juice servings (mean (SD)) 0.69 (0.95) 

Whole grain servings (mean (SD)) 2.11 (1.43) 

Refined grain servings (mean (SD)) 0.67 (0.86) 

Milk product servings (mean (SD)) 2.04 (1.29) 

Egg servings per week (mean (SD)) 3.25 (2.68) 

Meat/poultry servings (mean (SD)) 1.53 (1.35) 

Fish servings (mean (SD)) 0.51 (0.67) 

Tofu servings (mean (SD)) 0.04 (0.18) 

Bean servings (mean (SD)) 0.36 (0.55) 

Nut/seed servings (mean (SD)) 0.69 (0.68) 

Dessert Frequency (%)   

   Never 109 (9.0) 

   Less than once a month 153 (12.6) 

   About once a month 228 (18.8) 

   2 to 3 times a month 173 (14.3) 

   Once a week 85 (7.0) 

   2 to 3 times a week 115 (9.5) 

   4 to 5 times a week 58 (4.8) 

   6 to 7 times a week 169 (13.9) 

   NA 124 (10.2) 

Avoidance of particular foods (%)   
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   Never 853 (70.3) 

   Often 11 (0.9) 

   Prefer not to answer 15 (1.2) 

   Rarely 163 (13.4) 

   Sometimes 52 (4.3) 

   NA 120 (9.9) 

Oil on bread (%)   

   Butter 371 (30.6) 

   Low fat margarine 272 (22.4) 

   Full fat margarine 300 (24.7) 

   None 109 (9.0) 

   Olive oil 36 (3.0) 

   NA 126 (10.4) 

Artificial sweeteners (%)   

   Almost never 976 (80.4) 

   About 1/4 of the time 24 (2.0) 

   About 1/2 of the time 16 (1.3) 

   About 3/4 of the time 12 (1.0) 

   Almost always or always 53 (4.4) 

   NA 133 (11.0) 

Non-diet soda frequency (%)   

   Zero days a week 432 (35.6) 

   One to three days per month 459 (37.8) 

   One to five days a week 167 (13.8) 

   Six to seven days a week 27 (2.2) 

   NA 129 (10.6) 

Diet sugar drink frequency (%)   

   Zero days a week 513 (42.3) 

   One to three days per month 356 (29.3) 

   One to five days a week 156 (12.9) 

   Six to seven days a week 57 (4.7) 

   NA 132 (10.9) 

Soy/fish usage (%)   

    Never at the table 424 (34.9) 

    Rarely at the table 441 (36.3) 

    Sometimes at the table 217 (17.9) 

    At most meals of eating occasions 9 (0.7) 

   NA 123 (10.1) 

Salt seasoning (%)   

    Never 368 (30.3) 
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    Rarely 347 (28.6) 

    Sometimes 219 (18.0) 

    Most meals 157 (12.9) 

   NA 123 (10.1) 

Fast food frequency (%)   

    Never 149 (12.3) 

    Less than once per month 384 (31.6) 

    One - three times per month 366 (30.1) 

    One - six per week 191 (15.7) 

    One or more times per day Data Repressed 

    NA 122 (10.0) 

Alcohol Frequency (%)   

   Never 61 (5.0) 

   Less than once a month 192 (15.8) 

   About once a month 70 (5.8) 

   2 to 3 times a month 171 (14.1) 

   Once a week 170 (14.0) 

   2 to 3 times a week 259 (21.3) 

   4 to 5 times a week 127 (10.5) 

   6 to 7 times a week 112 (9.2) 

   NA 52 (4.3) 

Education level (%)   

   Highschool or below 208 (17.1) 

   Non-bachelors post secondary 425 (35.0) 

   Bachelors 334 (27.5) 

   Graduate 242 (19.9) 

   NA Data Repressed 

Income (%)   

    Below $25 000 CAD 41 (3.4) 

    $25 000 - $49 999 CAD 157 (12.9) 

    $50 000 - $74 999 CAD 244 (20.1) 

    $75 000 - $99 999 CAD 244 (20.1) 

    $100 000 - $149 999 CAD 291 (24.0) 

    Greater than $150 000 CAD 179 (14.7) 

   NA 58 (4.8) 

Sleeping trouble frequency (%)   

   None 104 (8.6) 

   A little of the time 411 (33.9) 

   Some of the time 507 (41.8) 

   Most of the time 161 (13.3) 
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   All the time 25 (2.1) 

   NA Data Repressed 

Last dental visit (%)   

   Less than 6 months ago 851 (70.1) 

   6 months to less than 1 year ago 221 (18.2) 

   1 year to less than 2 years ago 56 (4.6) 

   2 years to less than 3 years ago 17 (1.4) 

   3 or more years ago 24 (2.0) 

   NA 45 (3.7) 

Sleeping light exposure (%)   

   Virtually no light 561 (46.2) 

   Some light 613 (50.5) 

    A lot of light 36 (3.0) 

   NA Data Repressed 

DNA extraction batch (%)   

   Extraction.1 85 (7.0) 

   Extraction.10 66 (5.4) 

   Extraction.11 80 (6.6) 

   Extraction.12 78 (6.4) 

   Extraction.13 85 (7.0) 

   Extraction.14 57 (4.7) 

   Extraction.15 79 (6.5) 

   Extraction.16 0 (0.0) 

   Extraction.17 67 (5.5) 

   Extraction.2 85 (7.0) 

   Extraction.3 81 (6.7) 

   Extraction.4 68 (5.6) 

   Extraction.5 85 (7.0) 

   Extraction.6 92 (7.6) 

   Extraction.7 85 (7.0) 

   Extraction.8 60 (4.9) 

   Extraction.9 61 (5.0) 
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4.3 – Materials and Methods 

4.3.1 - Study Design and Population 

The current study includes the analysis of saliva samples from the Atlantic Partnership 

for Tomorrow’s Health (PATH) study. Atlantic PATH is part of the Canadian Partnership 

for Tomorrow’s Health (CanPath) project, a pan-Canadian prospective cohort study 

examining the influence of environmental, genetic, and lifestyle factors on the 

development of chronic disease (Sweeney et al., 2017). The applicable provincial and 

regional ethics boards approved the study protocol and all participants provided written 

informed consent prior to participation. The primary inclusion criteria were that 

participants were aged 30-74 years at time of recruitment and a resident in one of the 

Atlantic Canadian provinces (Nova Scotia, New Brunswick, Prince Edward Island, and 

Newfoundland and Labrador). Recruitment and baseline data for all participating regions 

was collected between 2000 and 2019. Details on participant recruitment and a 

descriptive cohort profile have been published elsewhere (Sweeney et al., 2017). The 

questionnaire included sociodemographic information, health information, behaviours, 

environmental factors, and self-reported anthropometric information. Participants also 

had anthropometric measures (height, weight, waist and hip circumferences, body 

composition, blood pressure, grip strength, and resting heart rate) and biological samples 

(blood, urine, saliva, and toenails) collected. Approximately 9000 participants in the 

Atlantic PATH cohort provided a saliva sample. Participants were instructed to refrain 

from eating, smoking, or chew gum for at least 30 minutes prior to oral specimen 

collection. Oral saliva specimens were collected during normal clinic hours 9:00 am – 

7:00 pm after completion of the approximately one-hour interview and registration 

process. Oral samples (3 ml) were collected in sterile 50 ml conical tubes after rinsing 
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with water. Samples were stored at 4°C and batch shipped on ice to the central processing 

facility at the QEII Health Sciences Centre in Halifax, Nova Scotia. Samples were 

processed within 24 hours of collection, aliquoted into cryovials and stored at -80oC until 

analysis. 

The current analysis includes a total of 1214 saliva samples from healthy Atlantic 

Canadians living within the provinces of Nova Scotia, New Brunswick, and Prince 

Edward Island. Based on self-reported data, participants were defined as healthy if they 

had not been diagnosed with any of the following conditions: hypertension, myocardial 

infarction, stroke, asthma, chronic obstructive pulmonary disease, major depression, 

diabetes, inflammatory bowel disease, irritable bowel syndrome, chronic 

bronchitis, emphysema, liver cirrhosis, chronic hepatitis, dermatologic disease (psoriasis 

and eczema), multiple sclerosis, arthritis, lupus, osteoporosis, and cancer. A total of 165 

of these samples were removed due to insufficient sequencing depth and of the remaining 

1049, an additional 308 were removed due to incomplete answering of the 41 variables 

examined in this study. These 308 samples that were removed were then used in 

validation analysis (details below) to confirm findings within the larger 741 participant 

cohort.  

 

4.3.2 - Socio-Demographic, Lifestyle and Anthropometric Variables 

Questionnaires were used to collect socio-demographic and lifestyle variables. Self-

reported variables included age, sex, education level, household income, rural/urban, 

province, dental visits, sleep patterns, alcohol consumption, smoking status, and dietary 

variables such as food avoidance, the use of specific types of fat/oil, artificial sweetener 

https://www-sciencedirect-com.ezproxy.library.dal.ca/topics/medicine-and-dentistry/dermatological-agent
https://www-sciencedirect-com.ezproxy.library.dal.ca/topics/medicine-and-dentistry/multiple-sclerosis
https://www-sciencedirect-com.ezproxy.library.dal.ca/topics/medicine-and-dentistry/osteoporosis
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usage, the frequency of dessert, soda drinks, soy/fish sauce, salt seasoning, and, fast food, 

as well as servings of vegetables, fruit, juice, whole grains, refined grains, dairy products, 

eggs, fish, tofu, beans, and nuts/seeds. Anthropometric measures were collected by 

trained personnel in assessment centres. Waist and hip circumferences were measured 

using Lufin steel tape. Height was measured by a Seca stadiometer. Height and weight 

measures were used to calculate body mass index (BMI; weight in kilograms divided by 

height in meters squared; kg/m2).  Body weight, fat mass, and fat-free mass were 

measured using the Tanita bioelectrical impedance device (Tanita BC-418, Tanita 

Corporation of America Inc., Arlington Heights, Illinois). Table 4.1 lists all variables that 

were used for analysis. 

4.3.3 - Oral Microbiome 16S rRNA Sequencing 

Frozen saliva samples were thawed at room temperature and aliquoted into 96 well 

plates. DNA from samples were then extracted using a QIAamp 96 PowerFecal QIAcube 

HT Kit following the manufacturer's instructions using a TissueLyser II and the addition 

of Proteinase K. Sequencing of the 16S rRNA gene was performed by the Integrated 

Microbiome Resource at Dalhousie University. The V4-V5 region was amplified from 

extracted DNA in a PCR using 16S rRNA gene V4-V5 fusion primers (515FB – 926R) 

(Comeau et al., 2017) and high-fidelity Phusion polymerase. Amplified DNA 

concentrations were then normalised and pooled together to be sequenced on an Illumina 

MiSeq. Sequencing of samples was conducted over 6 Illumina MiSeq runs producing 300 

base pair paired-end reads.  
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4.3.4 - 16S rRNA Gene Sequence Processing 

Primers were removed from paired-end 300 base pair sequences using cut adapt (M. 

Martin, 2011). Primer free reads were then stitched together using the QIIME2 (v. 

QIIME2-2018.8) (Bolyen et al., 2019) VSEARCH (Rognes et al., 2016) join-pairs plugin. 

Stitched reads were then filtered using the QIIME2 plugin q-score-joined using the 

default parameters. Quality filtered reads were then input into the QIIME2 plugin Deblur 

(Amir et al., 2017) to produce amplicon sequence variants (ASV). A trim length of 360 

base pairs and a minimum number of reads required to pass filtering was set to 1. 

Amplicon sequence variants that were found in an abundance of less than 0.1% of the 

mean sample depth (18) were then removed from analysis. This is to keep inline with the 

approximate bleed-through rate on an Illumina MiSeq sequencer. After filtering a total of 

13248 ASVs were recovered. Representative sequences were then placed into the 

Greengenes 13_8 99%(Andersen, DeSantis, Liu, & Knight, 2008) reference 16S rRNA 

tree using the QIIME2 (2019.7) fragment-insertion SEPP (Janssen et al., 2018; 

MIRARAB et al., 2011) plugin. Rarefaction curves were then generated using the 

QIIME2 alpha-rarefaction plugin and a suitable rarefaction depth of 5000 was chosen for 

diversity analysis based on when the number of newly discovered ASVs came to a 

plateau (Supplemental Figure 1). Representative sequences were then assigned taxonomy 

using a custom trained V4-V5 16S rRNA naive Bayesian QIIME2 classifier (Bokulich et 

al., 2018) trained on the 99% Silva V132 database (Pruesse et al., 2007). 

4.3.5 - Oral Microbiome Composition Analysis 

Taxonomic composition tables were generated using the QIIME2 taxa plugin and 

collapsed at the genus level. All samples over 5000 reads in depth (1049) were 
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subsampled to a depth of 5000 reads each and taxa that contributed less than a mean 

relative abundance of 1% were grouped together under an “Other” category. The 

composition stacked bar chart was then generated in R using ggplot2 (Wickham, 2009) 

and the x-axis was ordered based on the PC1 weighted UniFrac coordinates of each 

sample.  

4.3.6 - Core Oral Microbiome Analysis 

Taxonomic tables subsampled previously at 5000 reads were collapsed at the genus and 

ASV level using QIIME2. To examine the mean relative abundance explained by 

genera/ASVs at different prevalence levels we remove genera/ASVs that were not 

present in a varying number of samples (5-99%). After removal of these genera/ASVs the 

remaining total mean relative abundance of all genera/ASVs that passed the filtering 

parameter was calculated.  

4.3.7 - Oral Microbiome Alpha Diversity Analysis 

Alpha diversity metrics were generated using QIIME2 (v2019.7) and the previously 

generated tree containing both representative sequences and reference sequences. All 

samples were subsampled to a depth of 5000 reads. Association between four different 

alpha diversity metrics (Faith’s Phylogenetic Diversity, Shannon, Evenness, Number of 

ASVs) were then tested using general linear models while controlling for DNA 

extraction. A base model containing only DNA extraction as a covariate and a testing 

modelling containing DNA extraction and the covariate of interest were then compared 

using an ANOVA and p-values were recorded. Recorded p-values were then corrected 

for false discovery (Benjamini and Hochberg (Benjamini & Hochberg, 1995) with a 

chosen alpha of q < 0.1.  
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4.3.8 - Oral Microbiome Beta Diversity Analysis 

Beta diversity metrics were generated using QIIME2 and the previously generated 

phylogeny. All sequences were subsampled to a depth of 5000 reads based on the 

plateauing stage of rarefaction plots (Supplemental Figure 1). Association between two 

different beta diversity metrics (weighted UniFrac distance, Bray Curtis dissimilarity) 

were then tested using a PERMANOVA (adonis2 function in Vegan (Dixon, 2003)) 

while controlling for DNA extraction. Marginal p values were then corrected for false 

discovery (Benjamini and Hochberg) and an alpha value of q < 0.1 was chosen. 

Significant features from univariate analysis were then included in a single multivariate 

model that underwent backwards covariate selection, where each co-variation with the 

highest p-value was removed from the model until all features were found to be 

significant. Additional testing using adonis2 on fat free mass and height were done while 

controlling for both sex and DNA extraction. Finally, overall relationships between taxa, 

metadata, and samples were visualized with a redundancy analysis triplot. This plot was 

constructed using the rda function within the vegan R package. Within this function non-

rarified center-log-ratio genera count tables were filtered for features with at least 10% 

prevalence and then used as the response variable within the RDA model. Each feature 

previously associated with either weighted UniFrac or Bray-Curtis dissimilarity profiles 

were input as explanatory variables within the RDA model. The significance of the RDA 

model was checked using the function anova.cca within the vegan R package. Finally, 

visualization of the resulting RDA model was done with the R package ggord (Beck, 

2017) using symmetrical species and site scaling.   



157 

 

4.3.9 - Differential Abundance Analysis 

Differential abundance analysis was conducted using the Corncob (B. D. Martin et al., 

2020) (v 0.1.0) and Phyloseq (McMurdie & Holmes, 2013) R packages. A genus level 

taxonomic table was generated using QIIME2 (2019.7) and genera that were not found in 

at least 10% of samples were removed. The fifteen covariates that were found to be 

significantly associated to either weighted UniFrac or Bray Curtis dissimilarities were 

chosen for testing. Testing of each covariate was done using the “differentialtest” 

function in the Corncob package while controlling for differences in DNA extraction and 

differential variability across DNA extraction and the covariate of interest. Heatmaps 

were then constructed containing any genera/ASV that were significantly associated to at 

least one of the covariates that were tested. 

4.3.10 - Prediction of Microbial Pathway Abundances Using Picrust2 

 Amplicon sequence variant abundance tables were rarified at a depth of 5000 

reads and input into the picrust2_pipeline.py script to generate predicted microbial 

pathway abundances. MetaCyc pathway identifiers were then mapped to their respective 

pathway names using the picrust2 add_descripition.py script. Differential abundance 

analysis of predicted pathway abundances using the R package Corncob was done in the 

same manner as previously explained for taxonomic data. Only features that were found 

to be significantly associated with weighted UniFrac or Bray-Curtis dissimilarities were 

tested. DNA extraction round and differential variability within the tested feature were 

controlled for as previously described and p-values were corrected using Benjamini 

Hochberg false discovery correction (Benjamini & Hochberg, 1995). An alpha value of 
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0.05 was chosen for corrected p values and pathways with an effect size lower than |0.05| 

log odds were filtered out. 

4.3.11 - Validation Analysis 

 A total of 308 samples had not completely answered all 41 metadata variables of interest 

and therefore were removed from the original analysis. This smaller cohort was used to 

test our previous results by removing samples during testing of each covariate that had 

not answered that question on the questionnaire. Both beta diversity analysis and 

differential abundance analysis on taxa and pathways were carried out in the same 

manner as previously explained. Both beta diversity metrics using PERMANOVA tests 

and differential abundance analysis using corncob were done in a univariate fashion 

while also controlling for DNA extraction batch. Furthermore, only features/taxa that 

were originally identified as being significantly associated to oral microbiome 

composition in our initial cohort were tested.  As there was previous evidence that these 

features were associated with that covariate/metric, p-values were not corrected for false 

discovery but an alpha value of 0.05 was chosen. Furthermore, to keep with the original 

pathway analysis only pathways that had an effect size of |0.05| log odds in the discovery 

cohort were tested for differential abundance in the validation cohort.  

4.3.12 - Random Forest Model Training and Validation 

 Non-rarified ASV abundances were converted in relative abundances and used to 

train random forest classification and regression models for each feature that was 

significantly associated with either weighted UniFrac or Bray-Curtis dissimilarities. An 

optimal mtry parameter was chosen using three fold repeated cross validation within the 

caret R package (Kuhn, 2008). Trained models for each feature were then validated on 
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the hold-out validation cohort to determine model performance. Model performance for 

classification was visualized using the PRROC R package (Grau, Grosse, & Keilwagen, 

2015) and r2 performance of regression models was determined using the postResample 

function within the caret R package.  
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4.4 – Results 

4.4.1 - The Healthy Oral Microbiome is Stable at the Genus Level but Variable at Higher 

Resolutions 

 We examined the oral microbiome composition of the overall cohort containing 

1049 healthy individuals (Figure 4.1) from Atlantic Canada to understand how 

anthropometric, socio-demographic, and dietary choices could alter oral microbiome 

composition. We found that 16 genera were found to have a mean relative abundance 

greater than 1% (Fig 4.2A) with Veillonella having the largest mean contribution 

(21.49% +- 0.38%) followed by Neisseria (13.04% +- 0.40%), Streptococcus (11.86% +- 

0.26%), and Prevotella 7 (11.55% +- 0.24%).  
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Figure 4.2: Atlantic Canadian oral microbiome composition is dominated by the genus 

Veillonella and is relatively similar at the genus level but highly variable at the ASV 

level. Samples were from the Atlantic Partnership for Tomorrow’s Health project 

(n = 1,049). Samples were subsampled to a depth of 5,000 reads. (A) Genera that had a 

mean relative abundance of less than 1% were grouped into “Other.” (B) Genera were 

removed at different sample presence cutoffs, and the remaining total mean relative 

abundance of nonfiltered genera was then calculated. (C) ASVs were removed at 

different sample presence cutoffs, and the remaining total mean relative abundance of 

nonfiltered ASVs was then calculated.  

To characterise the core relative abundance of core genera and ASVs within the 

oral microbiome of these samples the mean relative abundance of genera/ASVs that were 

present in greater than a specific percentage of samples was analysed. Interestingly, we 

found that at the genus level the oral microbiome is relatively stable with 11 genera 

(Supplemental Figure 2A, Supplemental Table 1) present in greater than 99% of all 

individuals making up on average a total relative abundance of 77.82% (Figure 4.2B). 

However, this was not the case when we examined composition at a higher taxonomic 

resolution. We then found that only 5.17% on average of the total relative abundance of 

the oral microbiome was made up of 3 ASVs (Supplemental Figure 2B) shared between 

99% of all participants in the study (Figure 4.2C). These ASVs were classified as being 

in the Granulicatella, Streptococcus, and Gemelli genera but could not confidently be 

assigned to a specific species.  
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4.4.2 - Demographic, Anthropometric, and Lifestyle Choices Have Small but Significant 

Impacts on Oral Microbiome Composition 

We examined the relationship of both alpha and beta diversity of the oral 

microbiome between 41 different variables that described various demographic, lifestyle, 

and anthropometric measures (Table 4.1). Samples were split into two different cohorts 

based on whether they had answered all 41 variables of interest. A total of 741 

individuals answered all 41 variables and were included in the exploratory cohort. From 

this cohort we did not find any significant associations between any of the 41 variables 

tested and four different alpha diversity metrics (Faith’s PD, number of ASVs, Shannon, 

Evenness) after correction for multiple testing using linear models that were adjusted for 

DNA extraction batch (Supplemental Data 1). We did, however, find ten variables that 

were associated with differences in beta diversity as measured by both weighted UniFrac 

(Figure 4.3A) and Bray Curtis dissimilarity (Figure 4.3B) (PERMANOVA, q < 0.1) 

(Supplemental Data 1). We found two additional variables that were only associated with 

weighted UniFrac distances, and three additional variables only associated with Bray 

Curtis dissimilarity (PERMANOVA, q < 0.1). Redundancy analysis (ANOVA, p=0.001) 

revealed that multiple anthropometric measures such as height, fat free mass, refined 

grain servings, sleeping light exposure, and waist to hip ratio were associated in similar 

manners. Furthermore, as expected increases in all these features were associated in an 

opposite direction to being female (Figure 4.3C). As sex plays an important role in 

determining the height, fat free mass, and waist-hip ratio of an individual, we attempted 

to determine whether sex was confounding our results from these variables. A separate 

analysis on weighted UniFrac distances controlling for sex indicated that fat free mass 
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(p=0.02, r2=0.0039) and waist-hip ratio (p=0.03, r2=0.0039), but not height (p=0.44, 

r2=0.0012) was significantly associated to microbial composition despite differences in 

sex.   
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Figure 4.3: Various anthropometric, dietary, and lifestyle features are 

significantly associated with oral microbiome composition. Saliva samples were from 

the Atlantic Partnership for Tomorrow’s Health cohort (n = 741). Samples were 

subsampled to a depth of 5,000 reads. Two different metrics measuring beta diversity 

were tested, weighted Unifrac distances (A) and Bray-Curtis dissimilarity (B), using a 

PERMANOVA test while controlling for differences in DNA extraction and correction for 

false discovery (q < 0.1). Relationships between significant features, samples, and genera 

that were present in at least 10% of samples were then visualized by redundancy analysis 

(RDA) on center-log-ratio genus count tables. (C) Genera are colored by phylum and 

labeled numerically.  

Examining the amount of variation explained by each metadata feature by itself 

after controlling for DNA extraction showed small effect sizes for both weighted UniFrac 

distances and Bray Curtis dissimilarities (r2 0.0030 - 0.009) (Figure 4.3A-B). Of the 

features that were significant, sleeping light exposure explained the least amount of 

variation in both weighted UniFrac distances (r2 = 0.0036) and Bray-Curtis dissimilarity 

(r2=0.0030). We also found that fat free mass explained the largest amount of variation in 

both weighted UniFrac (r2=0.009) and Bray Curtis dissimilarity (r2=0.006). In general, 

we found that the rankings of effect sizes between these two different metrics agreed 

(Figure 4.3A-B).  

We also examined Random Forest machine learning classification and regression 

performance for each of these significant features.  We found that overall Random Forest 

models preformed poorly but did show slight associations between some variables 

(Supplemental Figure 3).  For example, the AUROC for sex classification was 0.638 
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indicating slightly better than random performance. Regression models for features such 

as height and age showed an r2 of 0.10 and 0.075 with a RMSE of 8.629 cm and 7.635 

years, respectively (Supplemental Figure 3). Interestingly some features, previously 

identified as being significant, performed extremely poorly such as the number of refined 

grain servings (r2=8.22E-6) or vegetable servings (r2=0.004) (Supplemental Figure 3).  

 Examining each significant factor in our weighted UniFrac analysis using a 

backward selected multivariate PERMANOVA, we found that 7.0% of total oral 

microbiome variation could be explained by a total of 6 significant factors including 

DNA extraction batch despite using the same protocol, equipment, and personnel for each 

round (Supplemental Table 2). Interestingly, of these 6 factors DNA extraction number 

explained a considerable amount of the variation alone (4.18%) (Supplemental Table 

2). We found similar results examining beta diversity variation using Bray Curtis 

dissimilarity with a slightly higher number of significant features and lower total 

variation explained (5.87%) (Supplemental Table 3). It should be noted that many 

features were highly correlated with one another (R > 0.7) and as such model selection 

for these multivariate PERMANOVAs could have suffered due to collinearity of these 

features. However, a model containing all features that were significantly associated with 

either weighted UniFrac or Bray-Curtis dissimilarity during univariate testing explained a 

similar level of variation for both weighted UniFrac and Bray-Curtis dissimilarity profiles 

(8.09%, 6.81%).   

Redundancy analysis revealed several potential taxonomic associations with 

various features (ANOVA, p=0.001). For example, the genus Megasphaera [58] is in the 

same direction as increasing fat free mass, height, waist-hip ratio, and daily refined grain 
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servings while also opposite to being female (Figure 4.3C). Another uncultured genus in 

Veillonellaceae family [63] was similarly grouped. The genus Parvimonas [38] is in a 

similar direction as increasing age and being female. Both Lautropia [71] and Prevotella 

2 are associated with increasing vegetable intake and Neisseria [76] is associated with 

increasing nut/seed servings and decreasing refined grain servings (Fig 3C). The only 

genus in the phylum Synergistetes that passed the 10% prevalence filtering was found to 

be associated with increasing juice servings, BMI, and time since last dental appointment. 

Overall, we found that phyla tended to cluster together, with Firmicutes and 

Proteobacteria clustering in opposite directions (Figure 4.3C).  

To help validate the associations we found between features and weighted 

UniFrac and Bray-Curtis dissimilarities we analyzed an additional 308 samples from a 

smaller subset of the Atlantic PATH cohort that had not completely answered all 41 

variables of interest. We found that associations between both beta diversity metrics 

(weighted UniFrac, Bray-Curtis dissimilarity) and anthropometric features such as height, 

weight, waist-hip ratio, and fat free mass were recoverable within our smaller cohort 

(Table 4.2, Supplemental Figure 4). We were unable to recover any significant taxonomic 

dietary associations within this smaller validation cohort. We also were unable to recover 

taxonomic associations between lifestyle variables such as sleeping light exposure or the 

time since an individual’s last dental visit. The inability to recover these differences could 

have been due to the highly reduced sample size within this validation cohort. 
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Table 4.2: Validation of beta diversity results 

Metric Feature P-value r2 

Weighted UniFrac Waist-hip Ratio 0.0190 0.0116 

Height 0.001 0.0117 

Weight 0.010 0.0102 

Fat Free Mass 0.002 0.0172 

Sex 0.0390 0.0080 

Age 0.0120 0.0105 

Bray-Curtis Waist-hip Ratio 0.0140 0.0072 

Height 0.0030 0.0118 

Weight 0.0020 0.0096 

Fat Free Mass 0.0040 0.0110 

Waist Size 0.0210 0.0065 

 Age 0.0020 0.0106 

 Sex 0.0380 0.0059 
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4.4.3 - The Abundance of Various Oral Bacterial Genera and ASVs are Associated With 

Anthropometric Measurements, and Dietary Choices in Healthy Individuals 

We next decided to identify genera that were associated with the fifteen features 

previously identified as being associated with beta diversity in either the weighted 

UniFrac or Bray Curtis dissimilarity analysis.  We found 42 genera (Figure 4.4A) and 42 

ASVs (Figure 4.4B) that had abundance profiles that were significantly associated with at 

least one of these features after controlling for DNA extraction. We found that sex, 

height, and fat free mass shared similar genera and ASV associations. To control for the 

possibility of sex confounding our height and fat free mass associations we reanalysed 

the data controlling for sex. We found that no ASVs or genera were significantly 

associated to fat free mass after controlling for sex and only 3 genera Chloroplast, 

Burkholderiaceae unclassified, and Treponema 2 were significantly associated to height. 

Interestingly two of these three genera were not previously associated to height in our 

initial analysis. These results suggest that many of these features associated to height or 

fat free mass may be driven by differences in sex. To test this, we also tested for 

differences in sex while controlling for both fat free mass and height. Interestingly, we 

did not find any significantly associated ASVs and only three significantly associated 

genera Defluvittaleaceae UCG-011, Leptotrichia, and Treponema 2. 
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Figure 4.4: Differentially abundant genera and ASVs whose abundance profiles are 

associated with features found to influence oral microbiome composition. Genera (A) 

and ASVs (B) meeting a false discovery rate of q < 0.1 using the Corncob R package, 

which uses beta-binomial regressions. Each feature’s false discovery rate was corrected 

separately, and each was tested to control for differences in DNA extraction and 

differential variability within that feature. Ordinal variables were converted into a 

ranked scale for testing, and all features except for sex were scaled. The asterisk 

indicates that sex was treated as a categorical value; therefore, the magnitude is not 

directly comparable to other log odd ratios. 

We did not find any other features that shared similar patterns of taxonomic 

associations but there were multiple genera with multiple feature associations. The genus 

Prevotella 7 had the highest number of features (5) associated with its relative abundance 

including four anthropometric measurements (height, fat free mass, waist size, waist-hip 

ratio, and weight) and sex. Interestingly, BMI did not have any genera or ASVs 

significantly associated despite many other anthropometric measures showing strong 

taxonomic signals. We were unable to identify any single ASVs associated to waist size 

and weight but were able to identify a small number of genera including Prevotella 7, 

which was related to both and Mogibacterium with waist size. We also found that for 

some phyla, all taxa with significant associations had the same effect size direction. For 

example, genera in the Actinobacteria or Proteobacteria phyla tended to be negatively 

associated with fat free mass, height, and being male. We also found several genera in the 

Proteobacteria phylum that were significantly associated with the amount of time since an 

individuals last dental appointment.  
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 In contrast, examining the ASVs associated with each feature we found that in a 

small number of cases ASVs in the same genera had opposite directions of association to 

the same features. For example, two ASVs classified as Rothia uncultured were both 

significantly associated to age but in opposite directions suggesting that lower taxonomic 

resolution is required to identify some associations. Furthermore, we also identified cases 

were ASVs that were associated to a feature were classified in a genus that was found not 

to be related to that feature. For example, ASV-4ca02 Selenomonas uncultured was 

strongly associated with being male even though this entire collective genus was not 

(Figure 4.4). Further examples include ASV-e2cc4 which was classified in the genus 

Alysiella, and significantly associated with reduced refined grain servings. Examples of 

the opposite occurrence are also present with genera such as Mycoplasma being 

associated with age but no single ASV for this associated could be identified.  

 We further validated our differential abundance analysis using this cohort and 

found 8/17 genera associated with sex, 8/16 genera associated with fat free mass, 5/15 

genera associated with height, and 3/11 genera associated with age were recoverable 

within this smaller cohort (Supplemental Figure 5A). Additionally, the negative 

association between Prevotella 2 and waist-hip ratio was also verified within this cohort. 

Furthermore, several associations between ASVs and features such as sex (5/14), height 

(4/12), fat free mass (2/3), and sleeping light exposure (1/2) were also found within this 

smaller validation cohort (Supplemental Figure 5B). All significant effect sizes that were 

recovered in the validation cohort except for one, between sleeping light exposure and 

ASV-d4746 Streptococcus, remained in the same direction as the original cohort 

indicating relationships that were robust to sample choice.  
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4.4.4 - Predicted Microbial Pathway Abundances Reveal Multiple Pathways Associated 

With Anthropometric, Dietary and Age and Sex Features 

 Microbial pathway abundances were predicted using PICRUSt2 (Douglas et al., 

2020) to determine potential associations between pathway abundances and features 

previously identified to be significantly associated with differences in beta diversity. 

Differential analysis between features and predicted pathway abundances were done 

using Corncob with Benjamini-Hochberg corrected p-values at an alpha of 0.05 and 

associations with effect sizes under |0.05| log odds filtered out. We found 9/15 features 

originally associated with beta diversity metrics to have at least one predicted pathway 

association (Figure 4.5). Of these features we found that refined grain servings had the 

largest number (N=33) of predicted pathway associations. Of these associations many 

were negatively associated with increasing refined grain intake including various TCA 

cycle derivatives, glucose, and xylose degradation, 2-methylcitrate cycle, and heme 

biosynthesis. Furthermore, only a smaller number of pathways were associated with 

increasing refined grain intake such as phylloquinol biosynthesis, and CMP-

legionanimate biosynthesis (Figure 4.5). 
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Figure 4.5: Various predicted pathway abundances are associated with features 

significantly associated with overall microbiome composition. Pathway abundances 

were predicted from 16S rRNA gene sequencing data using PICRUSt2. Predicted 

pathway abundances meeting an FDR of <0.05 and an effect size of |0.05| log odds were 

considered significant associations using the Corncob R package. Each feature’s false 

discovery rate was corrected separately, and each was tested to control for differences in 

DNA extraction and differential variability within that feature. Ordinal variables were 

converted into a ranked scale for testing, and all features except for sex were scaled. The 

asterisk indicates that sex was treated as a categorical value; therefore, the magnitude is 

not directly comparable to other log odd ratios. 
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Only one pathway, aerobic respiration I (cytochrome c) was predicted to be 

associated with increasing vegetable serving while six pathways were associated in the 

opposite direction. These pathways included fermentation of carbohydrates into lactate, 

lactic acid, ethanol, acetate, and formate as well as the biosynthesis of peptidoglycan. We 

found only one association with salt usage (L-tryosine degradation) and did not find any 

predicted associations with juice serving intake.  

A number of predicted pathway abundances were also associated with various 

anthropometric features with waist-hip ratio having the highest number of predicted 

associations (N=15) and fat free mass having only one predicted association (GDP-D-

glycero-α-D-mannose -heptose biosynthesis). We also found a small number of predicted 

pathway abundances associated with Age (N=7) and Sex (N=2). 

Validation analysis on the second smaller dataset was only able to validate a 

minority of predicted pathway associations many of which were associated with an 

individual’s waist to hip ratio (8/15) (Supplemental Figure 6). Only four out of the 

original 33 predicted pathway associations with refined grain intake were verified within 

this cohort. These pathways included L-tyrosine degradation, ADP-L-glycero-α-D-

manno-heptose biosynthesis, phylloquinol biosynthesis, and 1,4-dihydroxy-2-naphthoate 

biosynthesis. Three out of six pathways associated with height and four out of seven 

pathways associated with age were also found to significant within the smaller validation 

dataset (Supplemental Figure 6).  
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4.5 – Discussion 

 

Our analysis of 1049 healthy (Figure 4.1) individuals from Atlantic Canada revealed that 

much of the oral microbiome of Atlantic Canadians was made up of eleven “core” genera 

that belong to six different phyla (Actinobacteria, Fusobacteria, Proteobacteria, 

Firmicutes, Bacteroidetes, and Fusobacteria). Interestingly some of these core genera 

found in 99% of all samples were found in relatively low abundance (<2% mean 

abundance) indicating that bacteria within the oral microbiome can be consistently 

observed with minor contributions (Supplemental Table 1). In contrast, the composition 

at the ASV level had only 3 ASVs being present in 99% of samples and only contributing 

5.17% of the total oral microbiome composition on average. Overall, these results 

indicate that individuals tend to share similar genera within the oral cavity, but the 

species/strains shared between individuals can be highly variable. These findings are 

inline with previous work from the Human Microbiome project that found the oral 

microbiome to be relatively similar between individuals at the genus level (Huttenhower 

et al., 2012).  

 We found that various anthropometric and lifestyle features were significantly 

associated with overall oral microbiome composition, however, they explained only a 

small amount of total oral microbiome variance while controlling for DNA extraction 

batch (5.87-7.00%) (Supplemental Table 2-3). We found that fat free mass explained the 

highest amount of variance (0.6-0.9%) (Figure 4.3A-B) of all biological features. While 

this feature had many differential abundant genera and ASVs associated with it, we were 

unable to recover any of them after controlling for differences in sex. This could indicate 

that these associations could be driven by sex and not underlying fat mass, however, we 
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were also unable to recover many relationships between sex and taxonomic abundance 

while controlling for fat free mass indicating that both of these factors significantly 

confound the other. However, despite this issue there is previous evidence to suggest that 

some bacteria are related to differences in body size. A study in children found reduced 

abundance of Veillonella, Prevotella, Selenomonas, and Streptococcus in obese children 

(Raju et al., 2019). Interestingly, in our adult population we found similar trends with 

members of the Veillonella family being positively associated with increasing fat free 

mass, and members of the Provetella genus also being linked with higher fat free mass. 

Another publication on the Southern Community Cohort Study found that both 

Granulicatella and Gemella were associated with obesity (Y. Yang, Cai, Zheng, et al., 

2019) which we also found within our cohort at both the genus and ASV level. One 

interesting result from our study was our inability to identify any genera or ASVs linked 

to BMI, despite numerous relationships between anthropometric measurements being 

identified. These results indicate that future studies should be advised to include sex and 

other measurements of body composition, such as lean body mass, when looking at 

relationships between the microbiome and obesity. 

We found two genera Defluviitaleaceae UCG-011 and an uncultured genus from 

Veillonellaceae which were strongly associated with being male (Figure 4.4A). However, 

neither of these associations were recovered in our validation cohort indicating that they 

could either be false positives or require a larger sample size to recover due to their low 

mean relative abundance 0.0042% and 0.063%, respectively. Despite this we were still 

able to recover eight genus level associations in our validation cohort (Supplemental 

Figure 5A), however, only a few of these associations match those that were previously 
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reported. Renson et al. found two genera Lactobacillus and Actinobacillus to be higher in 

males, which we did not find within our study (Renson et al., 2019). This could have 

been due to multiple differences including sampling procedures, systemic protocol bias or 

the compositional nature of microbiome data (Morton et al., 2019). Raju et al. found that 

there was a high relative abundance of Haemophilus in females which we also found in 

our study, however they also found Oribacterium to be increased in females which was 

opposite from what was found in this study (Raju et al., 2019). Differences between these 

studies and ours can in part be attributed to differences in sample collection procedure 

and sequencing primers used highlighting the technical biases within the field (Sinha et 

al., 2017).  

We were unable to recover any taxonomic relationships between dietary features 

within our validation cohort, however, refined grain servings per day had the largest 

impact on overall oral microbiome composition and microbial pathway potential in our 

initial analysis. During this initial analysis, we found that bacteria from four genera 

Bergeyella, Parvimonas, Veillonella, and Neisseria decreased in relative abundance with 

increasing refined grain intake (Figure 4.4). Interestingly, refined grain intake had a very 

strong association with inflammatory bowel disease in a previous analysis of this cohort 

(DeClercq, Langille, & Van Limbergen, 2018), and alterations in the oral microbiome 

have been linked to inflammatory bowel disease in the past (Xun, Zhang, Xu, Chen, & 

Chen, 2018). Work by Said et al., found multiple genera in differential abundance 

between individuals with and without IBD including the increased presence of 

Veillonella in IBD patients (Said et al., 2013), which we found to be linked positively 

with refined grain intake.  
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We found that of all features significantly associated with overall oral 

microbiome composition refined grain intake had the largest number of predicted 

pathway associations (Figure 4.5). Many of these pathways were related to metabolic 

functions and the biosynthesis of various cofactors and metabolic building blocks 

indicating a shift in metabolic potential within the microbial community. This shift is not 

surprising given that differing levels of refined grain intake could impact the availability 

of various carbohydrates to oral microbiota. However, it should be noted that only a small 

number of these pathway associations were verified within our small validation dataset.  

Other dietary factors we found linked to overall oral microbiome composition in 

our original analysis include both juice servings and vegetable servings. However, we 

were only able to find a small number of genera, ASVs, and predicted pathway 

abundances linked to vegetable serving intake. We found a number of fermentation 

pathways were predicted to be associated with reduced vegetable intake indicating a 

possible shift in anaerobic activity. While we found a small number of taxonomic 

associations with juice serving intake we found no predicted pathway associations. 

Furthermore, we were unable to recover any taxonomic or pathway associations for both 

vegetable intake or juice serving intake in our validation cohort indicating the possibility 

for a false positive or the requirement of a large sample size to see these effects. Previous 

work within the field has found conflicting evidence on the role of diet impacting oral 

microbiome composition and may be reflective of different dietary assessment methods. 

observed results from a study. 

Looking at all features that were significantly associated with oral microbiome 

composition together in a single model we were only able to explain a small portion of 
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the total variance between samples (5.87-7.00%). This indicates that while many of these 

features are significantly related to microbial composition each one by themselves tends 

to only cause small shifts in overall microbial composition. Furthermore, a majority of 

the variance accounted for was due to differences in DNA extraction date. This shows 

that while slight technical variations such as the time when DNA extraction was done can 

have larger impacts on sample composition emphasizing the need to control for these 

technical variations during large population-based studies.  

One large limitation to our study was our lack of detailed dental history 

information from participants. While we did record how recently each individual last 

visited the dentist, we were unable to retrieve detailed information on dental health, 

which has been found to have dramatic impacts on oral microbiome composition 

(Takeshita et al., 2016). Furthermore, our study was also unable to capture potential 

variance that could have been attributed to the time of sampling. Various studies have 

shown that oral microbiome composition can vary with regard to collection time due to 

events such as teeth brushing and eating throughout the day (Tomás, Diz, Tobías, Scully, 

& Donos, 2012).  These could explain some of the missing variation that was not 

accounted for in our study, however, it is unlikely to explain all 93.00% indicating we are 

still missing a suitable amount of information on what determines an individual’s oral 

microbiome composition. In addition to this we would also like to note that we were 

unable to account for the length of time samples were on ice during shipping which could 

have resulted in altered microbial compositions. 

 In conclusion, our study indicates that the healthy oral microbiome is relatively 

similar between individuals at the genus level and is impacted very little by any one 
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factor. Future studies that attempt to identify oral microbial biomarkers associated with 

disease may be encouraged by the lack of major confounding variables and may be 

justified in controlling only for sex, body composition, oral health, and basic dietary 

information.  
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Chapter 5 – Investigating the Oral Microbiome as a Biomarker for 

Retrospective and Prospective Cases of Prostate, Colon, and Breast Cancer 

 

This chapter is a near reproduction of the same paper currently submitted for publication 

and reported as a pre-print on bioRxiv. I was the first author on this work and was the 

primary contributor toward data processing, analysis, figure creation and manuscript 

writing. I also participated in study design along with my co-authors Vanessa DeClercq 

and Morgan G.I. Langille.  

 The pre-print of this publication was produced under a CC-BY 4.0 international 

license which allows the sharing and adaption of the work if appropriate attribution is 

given. A copy of this license can be found here: 

https://creativecommons.org/licenses/by/4.0/. All additional files and supplemental 

information referred to in this chapter are freely available as part of the original pre-print 

on the bioRxiv website and can be found at the following link: 

https://doi.org/10.1101/2022.10.11.511800. 

 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1101/2022.10.11.511800
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5.1 – Abstract 

The human microbiome has been proposed as a useful biomarker for several different 

human diseases including various cancers. To answer this question, we examined salivary 

samples from two Canadian population cohorts, the Atlantic Partnership for Tomorrow’s 

Health project (PATH) and Alberta’s Tomorrow Project (ATP). Sample selection was 

then divided into both a retrospective and prospective case control design examining 

individuals with prostate, breast, or colon cancer. In total 89 retrospective and 260 

prospective cancer cases were matched to non-cancer controls and saliva samples were 

sequenced using 16S rRNA gene sequencing to compare bacterial diversity, and 

taxonomic composition. We found no significant differences in alpha or beta diversity 

across any of the three cancer types and two study designs. Although retrospective colon 

cancer samples did show evidence on visual clustering in weighted beta diversity metrics. 

Differential abundance analysis of individual taxon showed several taxa that were 

associated with previous cancer diagnosis in all three groupings within the retrospective 

study design. However, only one genus (Ruminococcaceae UCG-014) in breast cancer 

and one ASV (Fusobacterium periodonticum) in colon cancer was identified by more 

than one differential abundance (DA) tool. In prospective cases of disease three ASVs 

were associated with colon cancer, one ASV with breast cancer, and one ASV with 

prostate cancer. None overlapped between the two different study cohorts. Attempting to 

identify microbial signals using Random Forest classification showed relatively low 

levels of signal in both prospective and retrospective cases of breast and prostate cancer 

(AUC range: 0.394-0.665). Contrastingly, colon cancer did show signal in our 

retrospective analysis (AUC: 0.745) and in one of two prospective cohorts (AUC: 0.717). 

Overall, our results indicate that it is unlikely that reliable oral microbial biomarkers of 
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disease exist in the context of both breast and prostate cancer. However, they do suggest 

that further research into the relationship between the oral microbiome and colon cancer 

could be fruitful. Particularly in the context of early disease progression and risk of 

cancer development.   
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5.2 – Introduction 

The oral microbiome is a highly diverse microbial community that is shaped by several 

different dietary, anthropometric and lifestyle choices (Belstrøm et al., 2014; Nearing et 

al., 2020). Recent works have shown that this community of microbes plays important 

roles in both oral and systemic health (Wade, 2013). For example, the composition of the 

oral microbiome has been associated with oral diseases such as periodontitis (Lundmark 

et al., 2019) or more distal diseases such as colorectal cancer (CRC) (Flemer et al., 2017).  

Recent work has proposed that the oral microbiome may possess biomarkers for the 

identification of various diseases. However, research on some of the most common 

cancers such as prostate, colon, and breast cancer are limited. In the year 2022, it is 

estimated that 28,900 cases of breast cancer, 24,600 cases of prostate and 24,300 cases of 

colon cancer will be diagnosed in the Canadian population (Brenner et al., 2022). 

Numerous works have previously examined the associations of these three cancers and 

the human microbiome; however, most studies have focused on their relationship with 

the gut microbiota or microbiota associated with the organ of interest.  

 Of the cancers outlined above, prostate cancer has arguable received the least 

amount of attention within the microbiome field. Studies on the human microbiome and 

this disease have been mostly focused on prostate tissue, and the gastrointestinal tract 

(Javier-DesLoges et al., 2022). Investigation into the microbial inhabitants of prostate 

tissue have given mixed results due to the low biomass of these samples and 

contamination issues. Indeed, studies on healthy prostate tissue have given conflicting 

results, with some indicating the presence of bacteria and others finding no evidence of 

bacterial inhabitants (Porter et al., 2018). However, in prostate cancer multiple works 

have demonstrated evidence for bacterial communities in tumors and benign tissue 
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(Cavarretta et al., 2017; Feng et al., 2019; Yow et al., 2017). This led to interest in 

determining whether specific microbes might be associated with tumor and non-tumor 

tissue. To date these studies have given inconsistent results about specific bacteria but 

ultimately point to similar overall microbial community structures between tumor and 

benign prostate  tissue (Cavarretta et al., 2017; Feng et al., 2019; Yow et al., 2017). 

 In contrast to the prostate microbiome, it is well known that the gastrointestinal 

tract contains a rich population of microbes including bacteria, archaea, and fungi 

(Huttenhower et al., 2012; Wilson & Blitchington, 1996). Work on these communities 

have shown a myriad of associations with various diseases, metabolites, and 

immunological states (Petrosino, 2018). Several smaller studies have examined the 

relationship between the gut microbiome and prostate cancer with mixed results. Two 

studies by Liss et al., and Golombos et al., found higher levels of Bacteroidetes in 

patients with prostate cancer indicating potential linkages between the disease and this 

broad taxonomic group (Golombos et al., 2018; Liss et al., 2018). Furthermore, work by 

Matsushita et al., in Japanese men with high-Gleason prostate cancer linked an 

enrichment of short chain fatty acid producing bacteria in the gut and cancer status 

(Matsushita et al., 2021). However, other works by Alanee et al. and Katz et al., have 

found no significant differences between individual’s with and without prostate cancer 

(Alanee et al., 2019; Katz et al., 2022). Leading to mixed results on whether the microbial 

composition on the gut is truly linked to the development of prostate cancer.  

 Considering these investigations, work on the oral microbiome and prostate 

cancer is rather lacking. To the best of our knowledge only one study has examined this 

potential linkage despite previous works linking periodontitis with the likelihood of 
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prostate cancer development (Lee et al., 2017; Wei, Zhong, Wang, & Huang, 2021).  In 

2017, work by Estemalik et al., found in a group of 24 patients with chronic prostatitis or 

benign prostatic hyperplasia that 70.8% had one or more bacteria found within their oral 

cavity to also be residing within prostatic secretions (Estemalik et al., 2017). These 

results may indicate a linkage between prostate inflammation and the oral cavity 

warranting further investigation into the linkage between the oral microbiome and 

prostate health.  

 Breast cancer is one of the most commonly diagnosed cancers in females and is 

one of three cancers examined within this report (Brenner et al., 2022). Studies on breast 

cancer and the human microbiome have shown variable results with some studies 

suggesting associations between disease status and microbial community composition 

within the gut, breast tissue, and urine (Fernández et al., 2018). Indeed, early work on the 

gut microbiota and breast cancer suggested that microbes within these environments had 

the capacity to metabolize estrogen and estrogen related products. (Järvenpää, Kosunen, 

Fotsis, & Adlercreutz, 1980; Plottel & Blaser, 2011). Evidence for these microbial 

functions termed broadly as the “estrobolome” was first uncovered during the 20th 

century by several studies that identified fluctuations in estrogen and estrogen related 

metabolites within the plasma, urine, and feces of pregnant women using antibiotics 

(Järvenpää et al., 1980; F. Martin, Peltonen, Laatikainen, Pulkkinen, & Adlercreutz, 

1975; Tikkanen, Adlercreutz, & Pulkkinen, 1973; Tikkanen, Pulkkinen, & Adlercreutz, 

1973; Willman & Pulkkinen, 1971). Since these initial discoveries further work has 

characterized bacterial enzymes within the gut such as β-glucuronidase that can process 

conjugated estrogen metabolites (Ervin et al., 2019; Järvenpää et al., 1980). From these 
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findings it has been suggested that the estrobolome may play a role in the risk of breast 

cancer development through the control of recirculating estrogen levels (Adams, 2016; K. 

L. Chen & Madak-Erdogan, 2016; Plottel & Blaser, 2011).  

 Investigation into this hypothesis through examining the relationship between the 

gut microbiome and breast cancer status has shown varying results. For example, work 

by Goedert et al, found reduced microbial diversity within the gut of post-menopausal 

breast cancer patients, however, work in 2018 by Zhu et al., reported significant findings 

in the opposite direction (Goedert et al., 2015; J. Zhu et al., 2018). Similarly, several gut 

microbes including those that possess β-glucuronidases have been associated with breast 

cancer status depending on study and menopausal status (Byrd et al., 2021; Goedert et al., 

2018, 2015; Hou et al., 2021; J. Zhu et al., 2018).  However, due to the high variability of 

results between studies and the lack of non-sequenced based validation, no strong 

conclusions have been made on the role of any specific gut taxon and breast cancer risk.  

In addition to the gut, several studies have examined breast cancer status and 

microbial communities within and on breast tissue and urine. Although, these studies just 

like the gut, have also shown variable results indicating the need for further work within 

the field (Fernández et al., 2018). Interestingly, in the case of the oral microbiome, 

despite work showing that breast cancer is associated with periodontal disease to the best 

of our knowledge only two published studies have examined its relation with cancer 

status (Chung, Tsai, Huang, Kao, & Chen, 2016).  Early work by Wang et al., examining 

oral rinses from individuals in the United States found no differences in community 

composition or specific taxa (H. Wang et al., 2017). However, recent work by Wu et al., 

did show differences in both microbial diversity and specific taxon within salivary 



190 

 

samples from the Ghana Breast Health Study (Z. Wu et al., 2022). These inconsistent 

results highlight the need for further investigation into the potential relationship of the 

oral microbiome and breast cancer in different populations.  

 Finally, one of the most well studied cancers in the context of the human 

microbiome is CRC. Numerous studies have been conducted on the relationship between 

CRC and the gut microbiome showing significant differences in community composition 

between cancer and non-cancer individuals (Zhao, Cho, & Nicolls, 2021).  Highlighted 

within these studies have been the relationships between various bacteria and CRC 

development or progression; including Fusobacterium nucleatum, enterotoxigenic 

Bacteroides fragilis, and (pks+) Escherichia coli (Garrett, 2019). However, to date it is 

still not entirely clear how influential these species are on the development or progression 

of the disease. For example, work by Dziubańska-Kusibab et al., has shown that 

colibactin produced by pks+ E. coli can cause DNA damage within the colon and is 

associated with mutational signatures often found in colon cancer patients (Dziubańska-

Kusibab et al., 2020). However, (pks+) E. coli has yet to be formally recognized as a 

causative agent of CRC by the World Health Organization.  

Barring from these investigations has been research on the relationship between 

the oral microbiome and CRC. Work in this area has shown that shifts in community 

composition within the oral microbiome has been associated with disease and in some 

cases may be predictable. Work in 2018 by Flemer et al., found that at diagnosis the oral 

microbiome could classify individuals with or without colon cancer with an area under 

the receiver operator curve (AUROC) of 0.91 (Flemer et al., 2017). Furthermore, their 

work along with others has also shown that many taxa commonly attributed to the oral 
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cavity are enriched in the gut microbiome of CRC patients (Flemer et al., 2017; Thomas 

et al., 2019). Additionally, three further studies on the oral microbiome and colorectal 

cancer within various group settings reported distinct bacterial signatures associated with 

disease diagnosis (Komiya et al., 2019; Yao Wang et al., 2021; Y. Yang, Cai, Shu, et al., 

2019). These results suggests that the oral microbiome may be a useful tool in CRC risk 

assessment.   

Overall, despite the work presented above in prostate, breast, and colon cancer 

there remains large knowledge gaps in our understanding of the oral microbiome's 

applicability to population screening for these diseases. For this reason, we were 

interested in investigating these three cancers at a population level in both a case-control 

retrospective and prospective study design. To do this we leverage two different 

population cohorts within the Canadian Partnership Tomorrow’s Health project, the 

Atlantic Partnership for Tomorrow’s Health (PATH), and Alberta’s Tomorrow Project 

(ATP). From these two cohorts we selected saliva samples from both retrospective cases 

and prospective cases of prostate, breast, and colon cancer. This unique study design 

allowed us to investigate the relationship of these cancers with the oral microbiome both 

before and after diagnosis. Critically, this has allowed us to assess whether compositional 

changes within the oral cavity of breast, prostate, and colon cancer individuals exist both 

before and after diagnosis. The former being crucial for our understanding of whether the 

oral microbiome may be useful for the detection of individuals at risk for disease 

development. 
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5.3 - Materials and Methods 

5.3.1 - Study Design 

This report includes the analysis of saliva samples from individuals who had previously 

been enrolled in two regional cohorts within the Canadian Partnership for Tomorrow’s 

Health project, a pan-Canadian prospective cohort study focused on examining the 

influence of genetics, the environment, and lifestyle factors on Canadian’s health. The 

regional cohorts of interest for this study include Atlantic PATH (which includes 

participants from the 4 Atlantic provinces: (Nova Scotia, New Brunswick, Prince Edward 

Island, and Newfoundland and Labrador) and ATP (participants from the western 

province of Alberta). For this study, both retrospective (cases diagnosed prior to baseline 

data and sample collection) and prospective (cases diagnosed after baseline data and 

sample collection) nested case-control designs were employed. This study was granted 

ethics approval from Dalhousie University Health Sciences Research Ethics Board (REB 

#2018-4420). 

5.3.2 - Atlantic Partnership for Tomorrow’s Health Cohort Characteristics 

At baseline, demographics, lifestyle, personal and family medical history were self-

reported on questionnaires, and a subset attended assessment centers where physical 

measurements and biospecimens such as saliva were collected. For more details on 

baseline characteristics of the Atlantic PATH cohort, an in depth descriptive cohort 

profile has been previously published (Sweeney et al., 2017). Follow-up questionnaire 

data was collected between 2016-2019. 

For the purposes of this study sample selection within the Atlantic cohort was 

divided into either a retrospective or prospective nested case-control design as previously 
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described. Prior cancer diagnosis was determined through baseline questionnaires filled 

out by each participant. All available breast, prostate, and colon cancer case saliva 

samples were included in this study, and control samples (non-cancer) were selected to 

match cases (1:5) by sex, age (+/-3 years), BMI (+/-3), and smoking status (current vs 

never/former). The retrospective design included 588 saliva samples from the Atlantic 

PATH biospecimen repository based on case and non-cancer control matches to 

individuals that had been diagnosed with breast (n=61), prostate (n= 23), or colon cancer 

(n= 14) prior to baseline saliva collection.  

For the prospective design, new incident cases of cancer were determined through  

follow up questionnaire surveys filled out by each participant. A one-to-one case control 

design was used with non-cancer control samples being matched to case samples based 

on age (+/- 3 years), sex, and BMI (+/- 3). A minor number of current smokers ranging 

from 0% - 3.70% depending on cancer status were included in this analysis (Table 2). 

The prospective design included 230 samples from the Atlantic PATH cohort who had 

breast (n=67), prostate (n=35), or colon cancer (n=13). 

The median length of time between sample collection and cancer diagnosis for 

each cancer can be found in Table 5.1 (retrospective) and Table 5.2 (prospective) along 

with other sample characteristics broken down by cancer type, study design, and case 

control status. 
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5.3.3 - Alberta’s Tomorrow Project Cohort Characteristics 

Recruitment and baseline data collection took place between 2000 and 2015 with 

biospecimen collection beginning in 2009. Details on cohort characteristics, recruitment, 

and design have been previously published (Ye et al., 2017).  

ATP collected self-reported baseline and follow-up questionnaire data on 

demographics and health risks. New incident cases of cancer were confirmed through 

linkage to Alberta Cancer Register (ACR). Case and control samples were matched in 1:1 

design based on age (+/- 2 years), sex, and smoking status (current, former, never). In 

total 414 saliva samples were identified from ATP’s biospecimen repository based on 

non-cancer controls and cases of breast (n=102), prostate (n=76), or colon cancer (n=29) 

that were diagnosed after saliva sample collection. The median length of time between 

saliva collection and cancer diagnosis along with other relative metadata can be found in 

Table 3.   

5.3.4 - Oral Microbiome 16S rRNA Gene Sequencing 

Samples from the Atlantic PATH cohort were processed as previously described 

(Nearing et al., 2020). Frozen saliva samples were stored at -80C and then thawed at 

room temperature and aliquoted into 96 well plates. In a biosafety cabinet using standard 

sterile techniques DNA was extracted using a QIAamp 96 PowerFecal QIAcube HT kit 

following the manufacturer’s instructions using a TissueLyser II and the addition of 

Proteinase K at the indicated optional step. Sequencing was done at the Integrated 

Microbiome Resource at Dalhousie University. PCR amplification of the V4-V5 16S 

rRNA gene region was done using V4-V5 fusion primers (515FB - 926R) and a high-

fidelity Phusion polymerase. A total of 25 cycles of PCR were done: denaturing at 98℃, 
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annealing at 55℃, and elongating at 72℃. Sequencing was then conducted using an 

Illumina MiSeq to produce 300-bp demultiplexed paired-end reads.  

Samples from the Alberta’s Tomorrow Project cohort were collected using an 

Oragene® DNA OG-250 kit manufactured by DNA Genotek. Samples were collected 

either in person at local study centers or saliva sample kits were sent to participants by 

regular postal mail with a return envelope included. Participants were instructed not to 

eat, chew gum, or smoke 30 minutes prior to providing a saliva sample. They were asked 

to spit into the container until the saliva reached the indicated level, screw the cap on, 

shake for 10 seconds and send the sample back through the mail. DNA from samples 

were then extracted using a DNA Genotek PrepIT PT-LP2 kit. After extraction samples 

were sequenced at the Integrated Microbiome Resource in the same manner as samples 

from the Atlantic PATH cohort.  

5.3.5 - 16S rRNA Gene Sequence Processing 

Processing of 16S sequencing data was conducted as previously described (Nearing et al., 

2020). Primers were removed using cutadapt with default settings (M. Martin, 2011). 

Primer-free reads were stitched using the QIIME2 VSEARCH join-pairs plugin (Bolyen 

et al., 2019; Rognes et al., 2016). Stitched reads were then filtered with default settings 

using the QIIME2 plugin q-score-joined. Reads were then corrected into amplicon 

sequence variants using the QIIME2 plugin Deblur with a trim length of 360 bp, and one 

read set as the minimum number required to pass filtering (Amir et al., 2017). For each 

dataset examined, 0.1% of the mean sample depth was calculated and ASVs below this 

abundance across all samples within that dataset were removed. This is to keep in line 

with the previously described Illumina MiSeq bleed-through rate. ASVs were placed into 
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the Greengenes 13_8 99% reference 16S rRNA tree using the QIIME2 fragment-insertion 

SEPP plugin (DeSantis et al., 2006; Janssen et al., 2018; MIRARAB et al., 2011). 

Rarefaction curves were generated for each dataset separately and a suitable rarefaction 

depth of 5,000 was chosen for the Atlantic PATH retrospective cohort and 3,000 for the 

Atlantic PATH prospective and ATP prospective cohorts. Rarefied data was used to 

generate both alpha and beta diversity metrics. Samples below these sequencing depths 

along with those that had no remaining case or control samples were removed from 

further analysis. Additionally, a single sample in the ATP prospective dataset was 

removed due to significant contamination during sample preparation. Final case-control 

sample numbers for each dataset that pass all quality filtering are presented in Tables 1-3. 

ASVs were then assigned taxonomy using a naive Bayesian QIIME2 classifier trained on 

the 99% Silva V138 16S rRNA database (Bokulich et al., 2018; Quast et al., 2013).  

5.3.6 - Microbial Diversity Analysis 

Alpha and beta diversity metrics were generated using the QIIME2 command “core-

metrics-phylogenetic” with the previously described rarefaction values and phylogenetic 

tree. Diversity matrices were then exported into R and analyzed between case and control 

samples for each separate cohort and study design. Alpha diversity between case/control 

samples were examined using linear models with the inclusion of an “extraction_run” 

covariate for the Atlantic PATH retrospective samples due to the large number of batch 

extractions and amount of time passed between sample extractions. In total four different 

alpha diversity metrics were investigated: Faith’s phylogenetic diversity, Shannon 

diversity, evenness, and richness. An alpha value of 0.05 was chosen as our significance 

threshold before conducting any statistical analysis. Violin boxplots were generated using 
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ggplot2 while jitter points were added using the R package ggbeeswarm (Wickham, 

2009).  

Beta diversity metrics were compared using a PERMANOVA test between case 

samples and case matched control samples for each cancer type within each cohort and 

study design using the ‘adonis2’ function within the vegan R package (Dixon, 2003). In 

the case of the Atlantic PATH retrospective data we included the covariate extraction 

number due to the large number of different extraction runs and time taken between 

sample extractions for this dataset. An alpha value of 0.05 was chosen before any 

statistical testing was conducted. A secondary PERMANOVA analysis was also 

conducted between all cancer types within each cohort and study design followed by 

pairwise tests between cancer type and all controls within that cohort and study design. In 

total three different beta diversity metrics were examined: weighted UniFrac, unweighted 

UniFrac and Bray-Curtis dissimilarity. These three beta diversity metrics were visualized 

using principal coordinate analysis using the function cmdscale within an R programming 

environment and ggplot2. Ellipses were added to each sample type using the function 

‘stat_ellipse()’.  

5.3.7 - Microbial Differential Abundance Analysis 

Differential abundance analysis was conducted using four different tools developed to 

analyze microbiome data: ALDEx2 (Fernandes et al., 2014a), ANCOM-II (Kaul et al., 

2017; Mandal et al., 2015), corncob (B. D. Martin et al., 2020), and MaAsLin2 (Mallick 

et al., 2021). These tools range in their consistency and power to detect differences 

between groupings and should give a broad range on the ability to detect differentially 

abundant taxa (Nearing et al., 2022). Each tool was run at both the ASV and genus 
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taxonomic levels. All tools were run comparing taxonomic abundance against case versus 

control status. Each tool was run separately for each cancer type, cohort, and study 

design. During the examination of the Atlantic PATH retrospective dataset we also 

included DNA extraction as a covariate due to not all samples being extracted at the same 

time. For all tools, taxa that were not found in at least 5% of samples were removed from 

consideration. Filtered p-values were then corrected for false discovery using Benjamini–

Hochberg correction (Benjamini & Hochberg, 1995).  

ALDeX2 analysis was run using default settings and general linear models. This 

includes using a center-log-ratio transformation, and 128 Monte Carlo samplings to 

generate probability distributions from the observed count data. 

ANCOM-II was run using scripts available at: 

https://github.com/FrederickHuangLin/ANCOM-Code-Archive . Genus and ASV 

abundance tables were first processed using the function “feature_table_pre_process”. 

The main grouping variable of interest during pre-processing and the determination of 

structural zeros was case versus controls. A value of 0.05 was used to determine outlier 

zeros and outlier values. Pre-processed tables were then passed into the main ANCOM 

function with the inclusion of DNA extraction batch as a covariate when examining 

retrospective PATH data. Significance was determined using a percentage cutoff of 70% 

for the w statistic.  

Corncob was run by first importing taxonomic abundance tables and their 

corresponding metadata into phyloseq objects (McMurdie & Holmes, 2013). The 

function differentialTest was then run using the above phyloseq object with the “wald” 
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test option. The phi formula was set to match the phi-null formula to control for 

differences in variability across sample groupings.  

MaAsLin2 was run using default settings and an arcsine transformation. Case 

versus control was used as a fixed effect. In the case of the PATH retrospective dataset an 

additional fixed effect of the DNA extraction batch was included.  

5.3.8 - Random Forest Model Training  

Random Forest models were trained and used to classify case and control samples from 

each dataset and study design. Training and classification were done using 100-repeat-5-

fold cross validation. In the retrospective dataset control samples were randomly 

downsampled within each fold training session to avoid unbalanced model training and 

biasing data within the hold-out fold. In all datasets taxon found in less than 5% 

prevalence were filtered out prior to model training. After training and cross validation, 

the mean number of votes on each hold-out set across all repeats was then calculated. 

Receiver operator curves were constructed using pROC and confidence intervals were 

estimated using 2000 bootstrap replicates (Robin et al., 2011). Variable importance was 

calculated from models trained on the entire dataset by determining the difference in the 

out-of-bag prediction error rate after the variable of interest was permuted.  
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5.4 – Results 

5.4.1 - Investigation of the Oral Microbiome in Retrospective Cases of Breast, Prostate, 

and Colon Cancer 

First, oral microbiome diversity trends between case and control samples were examined 

within retrospective cases of breast, prostate, and colon cancer within the Atlantic PATH 

cohort (Table 5.1). In total we examined four different alpha diversity metrics: richness, 

Shannon diversity, Evenness, and Faith’s Phylogenetic Diversity while controlling for 

DNA extraction batch. Investigation into these four metrics did not show any differences 

in alpha diversity between case and non-cancer controls in breast, prostate, or colon 

cancer (p > 0.05) (Figure 5.1, Supplemental Figure 1). Subsequently, we also compared 

three different beta diversity metrics, two that consider weighted abundances; weighted 

UniFrac and Bray-Curtis dissimilarity and one that considers presence/absence; 

unweighted UniFrac. When comparing cases of each cancer type to matched non-cancer 

controls, we found no significant differences in any weighted beta diversity metrics 

(PERMANOVA, p > 0.05) (Figure 5.1, Supplemental Figure 2). However, we did see 

evidence of visual clustering in PCoA’s generated from weighted UniFrac and Bray-

Curtis dissimilarity when comparing colon cancer cases to non-cancer controls (Figure 

5.1, Supplemental Figure 2C) (PERMANOVA: p=0.107, p=0.124; respectively). While 

comparing unweighted Unifrac distances we did find a significant difference between 

breast cancer cases and controls (r2=0.007, p=0.008), (Supplemental Figure 2A).  
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Table 5.1: Atlantic PATH cohort characteristics for retrospective cases of breast, 

prostate, and colon cancer. 

Cancer Type Breast Cancer Prostate Cancer Colon Cancer 

Case vs. Control Case Control Case Control Case Control 

Number of samples 54 218 24 92 11 47 

Sex (% female) 100% 100% 0% 0% 53% 53% 

Mean Age 57.5  

(8.15) 

55.6 

(8.16) 

60.6 

(5.92) 

57.7 

(6.36) 

59.5 

(10.2) 

56.9 

(9.21) 

Mean BMI 29.0 

(5.01) 

28.3 

(4.72) 

29.6 

(3.27) 

28.8 

(3.49) 

28.9 

(4.16) 

28.5 

(4.13) 

% Current Smoker 0 0 0 0 0 0 

Median Time Since 

Diagnosis 

6 N/A 4 N/A 5 N/A 

 

To investigate whether we were missing an effect of cancer status due to the 

passage of time since diagnosis, we correlated each alpha diversity metric to this variable 

(Supplemental Figure 3). We found no significant relationships except for CRC which 

showed a positive association between time passed since diagnosis and alpha diversity 
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(rho=0.62, p=0.04). We also re-examined samples that were within six years of diagnosis 

to see whether more significant microbiome effects were present closer to cancer 

diagnosis. Examining these samples showed no major differences to our original analysis 

apart from a significant decrease in richness in CRC samples compared to matched 

controls (p=0.011) (Supplemental Figure 4). 

 

 

Figure 5.1: Oral microbiome diversity metrics of retrospective cases of breast, colon, 

and prostate cancer in the retrospective Atlantic PATH cohort. Comparing microbial 

diversity of non-cancer matched controls to case samples of retrospective prostate, colon 
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and breast cancer showed no significant differences in alpha diversity as measured by 

richness (a), and Shannon diversity (b). Further examination into beta diversity metrics 

showed no significant differences in any cancer type (c) although visual clustering was 

identified in colon cancer (PERMANOVA; p=0.107).    

After comprehensively examining samples for differences in diversity we decided 

to conduct DA analysis to identify genera or ASVs that might be associated with having 

previously been diagnosed with cancer. Across all cancers examined we found a total of 

25 genera and 30 ASV’s associated with one or more cancer diagnoses (Figure 5.2, 

Supplemental Figure 5). In breast cancer we found one genus Rumminococcaecae UCG-

014 that was detected as being significantly lower in relative abundance in breast cancer 

samples by two separate DA tools (Figure 5.2). We also identified an additional 4 ASVs 

one of which belonged within the Rumminococcaecae UCG-014 genera (Supplemental 

Figure 5). The other three ASVs, two of which were classified within the 

Capnocytophaga genera and one within Bergeyella were all detected to be enriched in 

breast cancer cases (Supplemental Figure 5).  

In prostate cancer, corncob identified 19 genera and 24 ASVs that are potentially 

differentially abundant between case and control samples (Figure 5.2, Supplemental 

Figure 5). However, no other tools detected these taxa, and the overall effect size of these 

differences were minor ranging from 1.001 - 1.180 in log10 relative abundance mean fold 

changes. Furthermore, we found inconsistencies between corncob’s coefficient 

directionalities and the observed differences between mean relative abundances between 

case and control samples (Figure 5.2, Supplemental Figure 5). 
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Figure 5.2: Several genera are detected as differentially abundant in the oral 

microbiome of retrospective cases of prostate, colon, and breast cancer in the 

Atlantic PATH cohort.  The heatmap is divided by cancer type where the first four 

columns represent the detection of significant associations by one of four tools: 

MaAsLin2, Corncob, ANCOM-II, and ALDEx2. Blue bars in the first four columns of 

each subgroup represent a detected increase in control samples while red bars represent 

a detected increase in case samples. The final two columns within each cancer sub 

grouping represent the log10 mean relative abundance of each genus with red 

representing higher abundance values and blue representing lower abundance values. 

Overall, corncob found the largest number of associated genera with a single genus in 

breast cancer also being detected by ANCOM-II.  
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In colon cancer we identified 10 genera and 6 ASVs as being differentially 

abundant between retrospective case and non-cancer matched control samples. All these 

features were identified by corncob and a single ASV classified as Fusobacterium was 

additionally detected by ANCOM-II to be increased in colon cancer cases (Supplemental 

Figure 6). Inspection into the identity of this ASV at lower taxonomic levels using 

sortmeRNA (Kopylova, Noé, & Touzet, 2012) identified this ASV as potentially coming 

from the species Fusobacterium periodonticum.  

Despite the relatively small taxonomic differences we found between case and 

control samples we were still interested in determining whether Random Forest 

classification models could pick up differences between case and control samples. 

Examining model performance on hold-out sets during cross validation showed that both 

breast cancer and colon cancer models performed best. Contrastingly, prostate cancer 

models performed at or below an AUC of 0.5 (Figure 5.3A-C). Although breast cancer 

models were only modestly better with AUCs ranging from 0.575 - 0.613 (Figure 5.3A). 

Colon cancer models performed the best although large confidence intervals were 

observed due to low sample size. Furthermore, colon cancer models showed highly 

variable performance depending on feature normalization. Models built using center-log-

ratio normalizations performed only slightly better than random expectation with ASVs 

having an AUC of 0.588 (0.370 - 0.806 95% CI), and genera having an AUC of 0.567 

(0.377 - 0.756 95% CI). However, models built using relative abundances showed 

stronger results with models having AUCs ranging from 0.729 - 0.745 (Figure 5.3). 

Examining the top 10 most important features of each of these models showed relatively 

small decreases in accuracy for any single ASV/genera (Supplemental Figure 7-8). 
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Indeed, further inspection also showed that of these ASV/genera only 1 ASV overlapped 

with the previously identified differentially abundant taxon (Supplemental Figures 6-7). 

This ASV was classified into the genera Veillonella and upon further inspection, best 

aligned to Veillonella atypica (100% identity) within the SILVA V138 database.  

 

 

Figure 5.3: Random Forest classification of retrospective cases of breast, prostate, 

and colon cancer based on microbial taxonomic composition in the Atlantic PATH 

cohort.  Receiver operator curves (ROC) showing the specificity and sensitivity of the 

classification of non-cancer matched controls and retrospective cases of breast, prostate 

or colon cancer. Models were constructed using 100-repeat 5-fold cross validation and 

hold-out performance was determined through taking the mean number of votes for each 

hold-out sample across all 100 repeats. Within each plot four different ROCs are 
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represented showing the classification accuracy using ASVs or genera normalized with 

either total-sum-scaling or center-log-ratio abundance. Shaded areas represent 95% 

confidence intervals determined through 2000 bootstrap samplings.  

5.4.2 - Investigation of the Oral Microbiome in Prospective Cases of Breast, Prostate and 

Colon Cancer 

We next decided to investigate if compositional changes within the oral microbiome are 

present before the diagnosis of breast, prostate, and colon cancer. Like our retrospective 

analysis we first examined changes in overall microbial community structure by looking 

for differences in alpha and beta diversity between cancer cases and matched non-cancer 

controls (Tables 5.2-5.3). We found no significant differences in alpha diversity in either 

cohort using linear models comparing case vs. control in any of the four metrics (Figure 

5.4, Supplemental Figures 9-10). Correspondingly we did not find any significant 

differences in beta diversity between breast, colon, or prostate cancer cases and matched 

non-cancer controls in weighted UniFrac, unweighted UniFrac, or Bray-Curtis 

dissimilarity (Figure 5.4. Supplemental Figures 11-12) (PERMANOVA p > 0.05).  

Table 5.2: Atlantic PATH cohort characteristics for the investigation of the oral 

microbiome in prospective cases of breast, colon, and prostate cancer. 

Cancer Type Breast Cancer Prostate Cancer Colon Cancer 

Case vs. Control Case Control Case Control Case Control 

Number of samples 54 54 28 28 10 10 

Sex 100% 0% 70% 
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Cancer Type Breast Cancer Prostate Cancer Colon Cancer 

Case vs. Control Case Control Case Control Case Control 

Mean Age 56.6 

(7.74) 

56.9 

(8.38) 

60.6 

(4.43) 

61.0 

(4.93) 

60.4 

(7.88) 

60.7 

(8.25) 

Mean BMI 26.9 

(5.25) 

26.9 

(5.45) 

28.3 

(4.46) 

28.1 

(4.72) 

27.9 

(6.08) 

28.3 

(5.80) 

% Current Smoker 1.85% 3.70% 0% 3.57% 0% 0% 

Median Time Before 

Diagnosis 

4 N/A 3.5 N/A 3 N/A 

 

Table 5.3: ATP cohort characteristics for investigation of the oral microbiome in 

prospective cases of breast, colon, and prostate cancer. 

Cancer Type Breast Cancer Prostate Cancer Colon Cancer 

Case vs. 

Control 

Case Control Case Control Case Control 

Sex (% 

Female) 

100% 0% 50% 

Number of 

samples 

82 82 64 64 22 22 
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Cancer Type Breast Cancer Prostate Cancer Colon Cancer 

Case vs. 

Control 

Case Control Case Control Case Control 

Mean Age 57.7 

(8.74) 

57.7 

(8.70) 

63.2 

(6.92) 

63.2 

(6.88) 

60.0 (10.0) 60.0 (9.99) 

Mean BMI 28.3 

(6.00) 

11 N/a 

27.1 

(5.70) 

9 N/a 

27.3 

(4.3) 

7 N/a 

28.2 

(4.93) 

5 N/a 

30.6 (6.94) 

1 N/a 

27.1 (4.49) 

3 N/a 

Current 

Smoker 

1.22% 1.22% 15.6% 15.6% 9.09% 9.09% 

Median Time 

Before 

Diagnosis 

4.28 N/A 3.10 N/A 2.98 N/A 

 

Like our previous retrospective analysis, we also examined whether the time 

between sample collection and diagnosis had a major impact on signal within the case 

samples. Spearman correlations showed no significant relationships in any of the alpha 

diversity metrics in both cohorts (Supplemental Figures 13-14) (p > 0.05). Furthermore, 

examining case samples that were collected within four years of diagnosis showed similar 

results except for prostate cancer in the Atlantic PATH cohort which showed a significant 

increase in Faith’s phylogenetic diversity (p=0.025) and richness (p=0.041) in case 

participants (Supplemental Figures 15-16). 
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Figure 5.4: Oral microbiome diversity metrics of prospective cases of breast, 

prostate and colon cancer in Atlantic PATH and ATP cohorts. 

Oral microbiome diversity analysis comparing non-cancer matched controls to 

prospective cases of colon breast and prostate cancer. Alpha diversity analysis as 

measured by richness (A) and Shannon diversity (B) as well as beta diversity measured 

as weighted UniFrac (C) showed no significant differences in the prospective PATH 

cohort. Similarly no significant differences in richness (D), Shannon diversity (E) or 

weighted UniFrac (F) in any cancer type in the ATP dataset.  

 

After examining overall oral microbial community structure through various 

diversity metrics we were interested in determining whether there was any evidence of 
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specific ASVs or genera being associated with disease status. In both prospective cohorts 

(Atlantic PATH, ATP) we found no genera being associated with disease status, 

however, we did find a small number of ASVs associated with disease status in both 

cohorts. In the Atlantic PATH cohort, we found an increase in the relative abundance of 

an ASV classified as Alloprevotella rava in prostate cancer (Supplemental Figures 17-

18). We additionally found a decrease in the relative abundance of an ASV classified as 

Streptococcus in colon cancer (Supplemental Figures 17-18). Interestingly, none of these 

ASVs overlapped with those identified in the ATP dataset. Within the ATP cohort we 

detected two ASVs being decreased in relative abundance in colon cancer, although the 

significance of these taxa was mostly driven by outliers within control samples 

(Supplemental Figures 19-20). Within this cohort ANCOM-II also detected that the 

relative abundance of an ASV classified to an uncultured Stomatobaculum to be 

decreased in prospective breast cancer samples (Supplemental Figures 19-20).   

As with our previous analysis we were interested in applying Random Forest 

models to each prospective cancer type to help identify whether disease signatures exist 

within the oral microbiome. Separate models were generated for each cancer type and 

cohort. Overall, models for breast cancer performed poorly in both cohorts with 

accuracies similar to random classification in both Atlantic PATH and ATP cohorts 

(Supplemental Figures 21-22). Interestingly, in the case of prostate cancer three of four 

models in the Atlantic PATH cohort performed slightly above random classification with 

AUCs ranging from 0.602 - 0.665 (Supplemental Figure 22). However, in the ATP cohort 

all models performed at or below an AUC of 0.5 (Supplemental Figure 23) although it 
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should be noted that 95% confidence intervals on these AUCs were large due to small 

sample sizes (Table 5.2-5.3).  

Finally, models of prospective cases of colon cancer showed variable results 

between the two cohorts of interest. With models in the Atlantic PATH cohort showing 

low performance AUCs ranging from 0.380 - 0.620 (Figure 5.5, Supplemental Figure 

21). Contrastingly, in the ATP dataset stronger classification accuracies were found when 

using center-log-ratio normalizations with the genera level model performing the best 

(AUC 0.717; 95% CI: 0.549 - 0.884) (Figure 5.5, Supplemental Figure 22).   



213 

 

 

Figure 5.5: Random Forest Classification performance of prospective cases of colon 

cancer in the Atlantic PATH and ATP cohorts. Receiver operator curves (ROC) 

showing the specificity and sensitivity of the classification of non-cancer matched 

controls and prospective cases of colon cancer in the PATH and ATP datasets. Models 

were constructed using 100-repeat 5-fold cross validation and hold-out performance was 

determined through taking the mean number of votes for each hold-out sample across all 

100 repeats. Within each plot four different ROCs are represented, showing the 

classification accuracy using ASVs or genus normalized with either total-sum-scaling or 

center-log-ratio abundance. Shaded areas represent 95% confidence intervals 

determined through 2000 bootstrap samplings. 
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Inspecting the top ten most important genera through out-of-bag permutation 

analysis within our CLR normalized colon cancer model showed no single genera as 

being particularly important to classification accuracy (accuracy decrease ranging from: 

0.003 - 0.016). The most important genera within the model only decreased out-of-bag 

accuracy by 0.016 (SD; 0.002) although inspection of its CLR abundance did show a 

notable increase in case samples when compared to non-cancer controls. Inspection of 

other important genera within this model showed interesting CLR abundance patterns 

although as mentioned previously none were identified in our previous differential 

abundance analysis (Figure 5.6).  

 

 

Figure 5.6: Feature importance of genus level center-log-ratio normalized Random 

Forest classification of prospective cases of colon cancer in the ATP dataset. Feature 



215 

 

importance was determined using out-of-bag permutation feature analysis. 

MeanDecreaseAccuracy represents the mean out-of-bag accuracy loss when that feature 

was randomly permuted across samples (A). Feature center-log-ratio abundance patterns 

are shown in panel (B) and show possible examples of interesting genera to further 

investigate in future studies. 
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5.5 – Discussion 

Herein we examined the oral microbiome in the context of both retrospective and 

prospective cases of prostate, colon, and breast cancer in a population setting. Our 

analysis showed no significant changes in oral microbiome diversity in either 

retrospective or prospective cases of these cancers. Although we did find evidence of 

visual clustering of retrospective colon cancer cases when examining weighted beta 

diversity metrics. Investigating the relationships of individual taxon and cancer status 

showed some evidence of potential associations, although the majority were only 

detected by one of four DA tools indicating a low level of evidence. Accordingly, 

Random Forest classification of case samples and non-cancer matched controls showed 

relatively low classification accuracies with colon cancer showing the strongest signal in 

both retrospective and prospective analysis. Overall, our findings suggest that no large 

community changes exist in the oral microbiome of individuals with retrospective or 

prospective cases of prostate and breast cancer. Although a minor amount of evidence in 

our report does suggest there may be potential individual taxon relationships within these 

diseases.  Contrastingly, through Random Forest modeling we did find some signal in 

retrospective cases of colon cancer and in one of our prospective colon cancer cohorts. 

Highlighting that future studies on prospective colon cancer cases are warranted.  

Examining our results in breast cancer more closely showed strong concordance 

with previous work by Wang et al., who also found no changes in overall oral 

microbiome composition in United States individuals with breast cancer (H. Wang et al., 

2017). These results contrast with a recent study by Wu et al., who identified differences 

in microbial diversity and the abundance of Porphyromonas and Fusobacterium (Z. Wu et 

al., 2022). This could be due to several reasons including the fact that these studies were 
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conducting under highly different populations, as geographic differences have been 

shown to impact oral microbiome composition (J. Li et al., 2014). Unlike either of these 

studies, we did find evidence for a modest decrease in the relative abundance of 

Ruminococcaceae UCG-014 an uncultured genus that we previously linked to differences 

in height within healthy individuals of the same cohort (Nearing et al., 2020). Whether 

this taxon plays any role in disease status is unclear, however, due to this association not 

being recovered in either of our prospective cohorts it's likely that its association is 

limited to during or soon after cancer development. Similarly, we also identified an 

increase in two ASVs classified within the genus Capnocytophaga which were not 

detected in our prospective cohorts. Interestingly, within this genus, C. gingivalis has 

previously been associated with oral squamous cell carcinomas (Healy & Moran, 2019). 

Moreover, recent work has shown that supernatant from this species has the potential to 

enhance cellular invasion and migration of tumor cells (W. Zhu et al., 2022). 

Highlighting that this species may play a role in disease development or progression.  

Investigating signal within the oral microbiome of breast cancer individuals using 

Random Forest modeling showed relatively little signal with accuracies in retrospective 

cases only slightly better than random assignment. Based on these results, we believe it is 

unlikely that the oral microbiome could be used as a biomarker to detect the risk of breast 

cancer development within a population setting.  

To the best of our knowledge this report is the first to examine the relationship of 

the oral microbiome and prostate cancer diagnosis. Similar, to breast cancer we found no 

large shifts in oral microbiome diversity in prospective or retrospective cases of prostate 

cancer. Although, we did see a possible time dependent effect in the Atlantic PATH 
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cohort which was not found in our second ATP cohort. Whether these differing results 

are due to DNA extraction, regional differences, or simply a false positive discovery 

would require further investigation in future studies.  

Despite not identifying any consistent differences in diversity, multiple ASVs and 

genera were identified by corncob to be associated with retrospective cases of disease. 

Unsurprisingly, comparing these results to those previously identified within the gut 

showed little overlap (Golombos et al., 2018; Liss et al., 2018; Matsushita et al., 2021). 

Additionally, none of these retrospective taxonomic relationships were recovered in our 

prospective datasets. These results suggest that these retrospective associations may be 

related to other broad lifestyle changes that occur after prostate cancer diagnosis. Indeed, 

several of these retrospective taxa associations were previously associated with various 

lifestyle, dietary and anthropometric measurements within healthy PATH participants 

(Nearing et al., 2020). This highlights that many microbes, even those potentially 

associated with disease, are often affected by multiple daily life factors some of which 

could be associated with disease diagnosis.  

Accompanying these results, we saw little to no signal in our Random Forest 

prostate cancer classification models. Some signal was recovered from the best models 

trained on the Atlantic PATH cohort (AUROC 0.665); however, due to small sample sies 

(N=28) confidence intervals remained large. Moreover, this signal was not recovered in 

our additional ATP cohort. These results suggest that the oral microbiome is unlikely to 

be a strong biomarker of prostate cancer risk. 

Colon cancer showed the strongest evidence for differences in oral microbiome 

diversity, though, none of these differences were detected as being significant. Despite 
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this we did see evidence of visual clustering in weighted UniFrac profiles of retrospective 

cases of disease (p=0.102, p=0.124). This matches with previous work by both Flemer et 

al., and Wang et al., who found significant differences in oral microbiome beta diversity 

between healthy controls and individuals diagnosed with colon cancer (Flemer et al., 

2017; Yao Wang et al., 2021). Further investigation of diversity metrics also showed a 

reduction in oral microbiome richness in individuals that were diagnosed within 6 years 

of sample collection. Interestingly, this conflicts with previous reports by Wang et al., 

who found increases in oral microbiome diversity within CRC patients (Yao Wang et al., 

2021). However, it should be noted that this could be due to several different factors 

including those associated with differing treatment regimens, sample timing, or 

environmental exposures. 

In retrospective cases of colon cancer, we found evidence of an increase in an 

ASV classified as Fusobacterium peridonticum by two different microbiome DA 

frameworks (corncob, ANCOM-II). The relative abundance of Fusobacterium 

peridonticum a close relative to Fusobacterium nucleatum has previously been identified 

as being increased in the oral microbiome of oral small cell carcinoma  (C.-Y. Yang et 

al., 2018), head and neck cancer (Mougeot et al., 2021), and pancreatic cancer patients 

(H. Sun et al., 2020). Accordingly, whether the relative abundance of this oral microbe 

represents a specific connection to colon cancer is still in question as it may represent a 

broader connection to other events associated with cancer diagnosis. Finally, of the three 

cancers examined, colon cancer showed the most consistent signal in our Random Forest 

modeling, although substantial differences in classification accuracies were noted 

between our two prospective cohorts. This could have been due to a few factors including 
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sample size differences, collection method, or possibly differences in health risk factors 

between Atlantic Canada and Alberta. Unfortunately, attempts to train Random Forest 

models on combined datasets were not successful due to different collection and DNA 

extraction approaches causing significant bias between studies (Nearing et al., 2021; 

Pollock et al., 2018).  

One puzzling result we noticed from our colon cancer Random Forest models, 

was that the type of normalization used had large impacts on model accuracies and was 

not consistent between retrospective and prospective datasets. We found total-sum-

scaling to perform the best in our retrospective cohort but found center-log-ratio 

transformation to perform better in our prospective ATP cohort. Whether this has 

biological significance is unclear and suggests that future models may be interested in 

testing several different data normalizations during model training.  

Within our analysis we have also identified several limitations that should be 

noted when reviewing our results. The first is that in the case of both prostate and colon 

cancer our sample size numbers are small in all three datasets we examined (Table 1-3).  

These smaller samples most likely interfered with our ability to detect small differences 

in both community composition and individual taxa abundances. A second limitation of 

our study is the different extraction methods used for samples that came from the two 

different population cohorts, Atlantic PATH and ATP. This along with other technical 

variations such as differences in sample collection led to the need to conduct stratified 

analysis reducing our ability to valid signal between cohorts. Finally, we would like to 

acknowledge that our datasets were relatively homogenous, with our dataset being 

predominantly from white Canadians, with income and education levels above average 
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Canadian census data (Sweeney et al., 2017; Ye et al., 2017). As such this significantly 

limits our ability to identify distinct oral microbial signatures in groups that are 

disproportionately affected by cancer development.  

Taken together our results indicate that the oral microbiome is unlikely to be an 

effective population-based risk marker for cases of prostate or breast cancer, although 

changes in specific bacterial abundances within these diseases may still exist. 

Contrastingly, in the case of colon cancer our work indicates that disease status is related 

to changes in the oral microbiome and may be useful as a risk marker for colon cancer 

development.  Future studies should aim to evaluate when oral microbiome changes 

occur in prospective colon cancer cases to determine its suitability for risk stratification.  
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Chapter 6 – Discussion 

 

The above chapters have highlighted and explored two major themes within my thesis. 

The first being the importance of computational tool choice during microbiome 

experiments and how they may impact biological conclusions. The second major theme 

examined the use of marker gene sequencing in large population cohorts to understand 

oral microbiome variation and the potential for microbial biomarkers of cancer. Both 

themes and works within have led to important insights into the identification of robust 

microbial biomarkers in sequencing data. For example, work in Chapters 2 and 3 showed 

that choice of computational methodology, can have large impacts on biological 

conclusions and therefore potential insights into biomarker identification. Highlighting 

the need to understand the consequences of choice when performing microbiome 

experimentation. Furthermore, in Chapters 4 and 5 we used salivary microbiome data to 

identify not only patterns of cancer association but also those associated with daily life 

factors. Emphasizing the importance of examining biomarkers in a multifaceted context 

and not in the isolation of a specific disease. Within this final chapter an overview of 

these topics will be discussed with the goal of identifying future steps and avenues 

toward more reproducible and thus robust conclusions derived from microbiome 

sequencing data. Following this I will also discuss the potential future directions of oral 

microbiome science in the context of understanding compositional variation and 

biomarkers within breast, prostate, and colon cancer.  
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6.1 – Moving Toward Robust Sequenced Based Microbiome Biomarkers 

 

Exemplified throughout Chapters 2 and 3 is the importance of making choices in 

microbiome sequencing experiments. Indeed, often these choices are made arbitrarily or 

with little information on how they might impact the downstream conclusions that are 

drawn. While this may stem from the fact that no gold standard exists within the field, it 

could also be argued that no single choice could possibly cover all potential questions 

that could be answered within a microbiome study (McLaren, Willis, & Callahan, 2019). 

For example, some sampling devices may be well suited for sequence-based analysis but 

perform poorly in metabolomics or culturomics, two equally important techniques for the 

analysis of microbial communities. Decisions such as these, lead to difficult choices 

during study design necessarily leading to various trade offs.  

There is also a question of what the study at hand is aiming to address. Some 

researchers may be interested in building strong supervised classification models where 

the true biological underpinnings are not as important as getting consistent results 

(Marcos-Zambrano et al., 2021). In this case perhaps biases that lead to perturbed 

observations may not be as important if they do not impact model classification and 

consistency. On the other hand, if the goal of the study is to examine the underlying 

biology these biases could be of significant importance to help address the potential of 

being led astray (Pollock et al., 2018). For example, the correct classification of 16S 

rRNA gene sequences is of vital importance to answering biological questions as it tells 

us what potential taxa to further validate. However, if the goal is simply to classify 

samples as cancer versus non-cancer this misclassification may not be as important if its 

consistent between samples. This points us toward the vital need to understand how the 
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choices we make as researchers impact underlying observations. By doing so we can 

begin to understand how suitable they may be toward answering the question at hand. 

Unfortunately, examining how choices in microbiome research impact biological 

conclusions can be difficult, cumbersome, and in some cases impossible due to the 

numerous combinations available. For these reasons, we cannot reasonably expect 

researchers to test every single potential combination of choices within a study, 

especially those that are non-computational, due to limited sample biomass. However, we 

can extrapolate data from other studies to understand how actions such as protocol choice 

can vary between studies. Indeed, study to study bias stemming from computational 

methodology was one of the major focuses of this thesis. For example, in Chapter 2 we 

showed that weighted beta diversity metrics were similar among sequence denoisers 

while unweighted metrics tended to vary. While this result did not lead to novel 

biological information it critically showed the expectations we can make when reviewing 

literature or making decisions about or own studies. Likewise, in Chapter 3 we showed 

that DA method choice, can have profound effects on the number of significant taxa 

uncovered within a study. However, within this chapter we showed that despite tools 

showing variable performance, we were able to generalize certain characteristics such as 

ALDEx2 and ANCOM-II being conservative but consistent among DA choices. This will 

not only be important for assessing previous and future literature using these methods, 

but also in the identification of potential solutions.  

In Chapter 3 we suggested the use of a consensus approach due to our analysis as well 

as previous literature failing to clearly identify a gold standard microbiome DA method 

(Calgaro et al., 2020; Knight et al., 2018; Pollock et al., 2018; S. Weiss et al., 2017). 
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Moreover, due to the computational nature of this problem we can make use of parallel 

computing and the fact that sequencing data can easily be reused (unlike biological 

samples) to run multiple tools at once. The suggested use of ensemble methods in 

differential analysis is not a new concept. In fact, multiple packages designed to analysis 

RNA sequencing data use the consensus between various differential expression pipelines 

to identify potential gene associations (Costa-Silva, Domingues, & Lopes, 2017; H.-S. Li, 

Ou-Yang, Zhu, Yan, & Zhang, 2022; Waardenberg & Field, 2019; Wolf, Epping, 

Andreotti, Reinert, & Semmler, 2021). The benefits of which are three-fold; the first 

being that researchers can easily determine how robust identified features are to 

methodology choice. The second being that genes identified can easily be compared to 

previous literature that may have used a myriad of different protocols. The final benefit is 

that these methods have consistently shown to outperform the usage of a single 

differential expression pipeline.  

Nevertheless, consensus approaches are not without their own faults. The need to run 

multiple analysis on the same data can become cumbersome especially when various 

tools differ in input and output. Furthermore, consensus approaches need to be carefully 

designed and interpreted as the usage of similar models, that given equally wrong results, 

can led to false confidence of importance. Indeed, an example of this would be the testing 

of multiple methods of similar origin, such as the two limma voom methods used in 

Chapter 3. This highlights the need to characterize and identify methods of high quality 

and varying characteristics before apply consensus strategies. Fortunately, in the case of 

microbiome DA analysis this step has already been completed within this thesis. Going 
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forward the development of an easily interpreted consensus pipeline could have profound 

effects on the reproducibility and interpretability of microbiome DA results. 

Another important consideration that needs to be made when using consensus 

approaches is the importance of understanding why tools may potentially vary in the 

results they give. For example, in Chapter 3 we identified tools that examine microbiome 

abundances in fundamentally different ways. For example, tools such as corncob are 

focussed on examining relative abundances in proportions, while others such as ALDEx2 

examine relative abundances in comparison to the sequence geometric mean abundance 

(Fernandes et al., 2014a; B. D. Martin et al., 2020). While on the surface these tools ask 

similar questions, the normalizations and transformations made by them may favor 

specific scenarios or biological questions. Highlighting the fact that associations 

identified be a single DA method may not necessarily represent a false positive result but 

could be due to a slight difference in normalization. Nonetheless consensus approaches 

can help identify these cases and future work will need to be done to identify the 

biological scenarios that these situations represent. 

The use of consensus approaches may not just stop at DA analysis and could also be 

applied to various other computational settings including those presented in Chapter 2. 

Indeed, consensus approaches in dealing with sequencing error may also prove to be a 

fruitful approach. While its clear based on the results of Chapter 2 that highly weighted 

sequences are consistent between major methods, error within sequences of low 

abundance remain difficult to assess. One way to potentially address this issue would be 

the usage of multiple approaches to assess the likelihood of those sequences being of true 

biological origin. Doing so may help address the biases introduced by different tools and 
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improve the observed estimates of unweighted diversity and richness between different 

studies. Moreover, this approach would also give researchers better context before 

attempting to validate these sequences through other experimental procedures such 

quantitative PCR or culturomics. 

Unfortunately, consensus approaches do not easily apply to non-computational steps 

within microbiome sequencing experiments. Indeed, choices such as sampling device, 

sample type, and DNA extraction method are all subject to specific resource requirements 

and the biomass available within a specimen. Due to this, various works have attempted 

to either standardize protocol choice or compare protocols across studies to interpret 

potential differences and extrapolate them to their own studies (Costea et al., 2017; Panek 

et al., 2018; Pollock et al., 2018; W.-K. Wu et al., 2019). For example, work by Costea et 

al., examined 21 different DNA extraction protocols on the same fecal samples to 

identify how they differed from one another. In their work, they not only identified bias 

in the ratio of Gram-positives to Gram-negatives but also in community diversity (Costea 

et al., 2017). Highlighting the potential for study-to-study bias due to differences in DNA 

extraction choice. In fact various studies examining different steps of microbiome 

sequencing experiments have been done to identify the depth of bias they introduce into a 

study (Nearing et al., 2021).  

Overall, it has become clear that a significant amount of study-to-study bias exists 

within microbiome literature that cannot be fixed after DNA sequencing. This bias is 

often referred to as batch effects and hinders the ability to directly compare microbiome 

profiles from one study to another (Yiwen Wang & LêCao, 2020). In fact, batch effects 

can even create issues within the same study as exemplified in Chapter 5 of this thesis. 
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Indeed, the use of two different device collection kits and DNA extraction procedures 

introduced significant cohort bias leading to the inability to train and test Random Forest 

models across the Atlantic PATH and ATP prospective cohorts. This difficulty 

emphasizes the importance of consistency within microbiome studies and the need to deal 

with batch effects when sequencing data is not generated from the same protocols.  

Removal of batch effects has become common practice in many RNAseq applications 

using various tools including ComBat, SVASeq and RUVSeq (Leek, 2014; Risso, Ngai, 

Speed, & Dudoit, 2014; Yuqing Zhang, Parmigiani, & Johnson, 2020). However, 

applying these methods to microbiome data has remained challenging due to its 

multivariate nature, high sparsity, and compositionality (Gloor et al., 2017). Despite this 

several promising methods developed specifically for microbiome data have recently 

been proposed. These methods may serve as important stepping stones toward the 

inclusion of multiple datasets in future studies and classification models (Dai, Wong, Yu, 

& Wei, 2019; Gibbons, Duvallet, & Alm, 2018; Ling et al., 2022). Future work 

examining salivary microbiome biomarkers using data from this study in conjunction 

with other cohorts may be interested in their application.  

Without regard for study to study bias, sequenced based observations are still 

distorted from the ground truth, as microbes within samples can be detected at different 

efficiencies (McLaren et al., 2022, 2019). For example, DNA is preferentially extracted 

from Gram-negative bacteria due to their lack of a thick peptidoglycan layer. This is 

highlighted by the fact that including a mechanical lyses step during DNA extraction 

increases the ratio between Gram-positive and Gram-negative bacteria (Costea et al., 

2017). Another example of differing detection efficiencies between taxa specific to 16S 
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rRNA gene sequencing, is the fact that bacteria often have differing 16S rRNA gene copy 

numbers. This can lead to a biased detection toward those with larger copy numbers if not 

corrected through copy number estimation (Kembel, Wu, Eisen, & Green, 2012).  

While these non-computational biases have not been directly addressed in this thesis, 

I believe they also contribute to high degree of variance in results between microbiome 

studies, as suggested by McLaren et al (McLaren et al., 2019). Unfortunately, none of the 

DA methods that were tested in Chapter 3 address these biases specifically but may 

interact with them in differing ways. Indeed, methods such as ALDEx2 and ANCOM-II 

attempt to address issues of compositionality in microbiome data but fail to address 

potential differences in the detection efficiency of different bacteria. Potentially these 

detection efficiencies are just one piece of the puzzle leading to the large variation in 

results between differing DA tools. Fortunately, since the publication of Chapter 3 

highlighting the variance in microbiome DA methods, I have begun to contribute to work 

that attempts to improve the robustness of DA analysis in the face of differing taxon 

efficiencies (McLaren et al., 2022). Indeed, these methods based on the use of mock 

community calibrations and spike-in controls may potentially lead to more robust 

microbial biomarker findings. 

Finally, I would like to highlight that all biological conclusions generated from 

sequencing data should eventually be validated through other experimental techniques. 

While it may not always be necessary if the end goal of an application is diagnostic, or 

classification based in nature, understanding the true underlying biology requires further 

steps after DNA sequencing. Indeed, validation using quantitative PCR, flow cytometry 

or culturing represents key steps toward understanding how robust results are from the 
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various biases introduced during a typical microbiome sequencing experiment. Moreover, 

validation of key community associations through a reductionist approach in model 

organisms can help identify key mechanistic relations. However, the use of model 

organisms does come with a significant cost in terms of resources and time. Highlighting 

the need to produce robust biological conclusions from sequencing data. A feat that can 

be difficult when the impact of our choices during sequencing experiments, are not 

clearly understood.  
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6.2 – Biomarker Detection in the Context of Microbial Community Variation 

 

The human microbiome is a multifaceted community that is shaped by health status, 

environment, and various other aspects of human life. This multifaceted nature often 

makes it difficult to pin down the exact reason why specific microbial abundances and 

compositions exist. Indeed to this day, what can be defined as a health microbiome is 

often open to interpretation (Hill, 2020). For example, within the gut, it is generally 

assumed that a healthy gut microbiome is linked with higher microbial diversity (K. 

Johnson & Burnet, 2016). Yet, this general thought is not always true with some works 

indicating increased microbial richness in association with various health conditions 

(Castaño-Rodríguez, Goh, Fock, Mitchell, & Kaakoush, 2017; Sanapareddy et al., 2012; 

Wan et al., 2022). Moreover, a range of microbial ecotypes exist within various areas of 

the human microbiome, regardless of health status (Lloyd-Price et al., 2016). These 

findings highlight that while broad patterns of community composition exist there 

remains a significant amount of interpersonal variation, especially at the bacterial species 

and strain level (Huttenhower et al., 2012). A result highlighted and discussed within 

Chapter 4 of this thesis.  

 In fact, within Chapter 4 myself and colleagues identified several anthropometric, 

dietary, and demographic features that are significantly associated with variation within 

the salivary microbiome of Atlantic Canadians. These findings along with others 

discussed within Chapter 4, highlight that microbial community variation is associated 

with countless variables in daily human life. Yet, when examining literature, often 

microbiome cohort analysis is done with the sole goal of identifying changes associated 

with a disease of interest. Indeed, regularly within these studies non-disease related 
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variables are either controlled for in some fashion or completely ignored. Giving us a 

constrained picture that can potentially lead to difficulties in reproducibility and 

interpretation.  

For example, recent work on the gut microbiome and autism has shown several 

convincing studies indicating large shifts in general community structure and a specific 

taxon. This work has led to various proposals that the gut microbiome may play a role in 

autism development or progression (Cryan, O’Riordan, Sandhu, Peterson, & Dinan, 

2020). However, Yap et al., has recently argued that these shifts are due to the dietary 

constraints that many individuals with autism face (Yap et al., 2021), despite work within 

mouse models recapitulating autism like behaviors from fecal microbiota transplant 

studies (X. Lu et al., 2021; Sharon et al., 2019). These results leave us with an unclear 

picture of whether the gut microbiome does truly change or play any type of role in 

autism, a condition that has been under intensive investigation over the past decades 

(Cryan et al., 2020). However, more generally they highlight the difficulty in untwining 

the relationship between the human microbiome and disease in the face of complex daily 

life. Especially when we lack detailed knowledge on how daily life factors such as diet or 

body mass interact with the microbial communities that we harbor.  

For these reasons, its clear that we require a better understanding of how various 

factors interact with microbial communities and to what degree they can cause variation.  

These were the main motivations behind Chapter 4, with the main goal of identifying 

how much salivary microbiome variation could be explained through the measurement of 

dietary, anthropometric, and demographic variables. Yet, when we examined the 41 

different variables captured within our study, we were only able to explain 6-7% of the 
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total variation found within the cohort. In fact, the total amount of variation we could 

explain from all significant biological variables was less than what was attributed to 

technical variation between DNA extraction batches. Again, not only reinforcing the 

importance of technical bias within microbiome studies but also showing that a large 

proportion of community fluctuation between individuals remains to be explained. Future 

work could improve our understanding of these contributing factors by including 

microbiome analysis as a primary outcome rather than a secondary analysis. This would 

allow for measures such as oral health and technical biases such as sample processing 

time to be included and highlighted within the study. 

 As previously mentioned within the discussion of Chapter 4, some of this 

variation can be attributed to multiple variables of daily life that were not captured by the 

Atlantic PATH study. Despite, collecting over 200 data points, the only measurement of 

oral health captured by questionnaire data was the amount of time passed since the 

participant’s last dental visit. Indeed, even though saliva samples were collected, they 

were not initially anticipated to be used for microbial community surveys and thus 

missed potentially important questionnaire data. This was a clear limitation in Chapter 4 

of our study and highlights the difficulty in designing cohorts that can adequately address 

all possible measures that may be related to human microbiome variation. In fact, the 

required sample size and cost of measuring all these potential factors are infeasible for 

most studies. However, as we move forward in microbiome research and continue to 

uncover large factors of variation, we can begin to better incorporate them within studies 

and understand how they interact with various human phenotypes.  
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Finally, I would like to acknowledge that the DA analysis done in Chapter 4 was 

conducted with a single tool corncob. This section of my thesis was completed before the 

in depth DA analysis conducted in Chapter 3. As such while corncob is an appropriate 

tool for identifying taxonomic associations and performed relatively well in our own 

analysis, it was found at times to identify false positives. Future improvements to the DA 

analysis conducted in Chapter 4 could have included the use of a consensus approach as 

suggested in Chapter 3 of this thesis. Doing so would have not only allowed us to better 

identify which taxonomic associations are robust to tool choice. Additionally, the use of a 

consensus approach with the inclusion of CoDa tools could improve our ability to 

identify taxa that are changing in abundance across groups when compared to the average 

microbe or across all potential microbe ratios. By taking this approach we could have 

improved the ability to compare these findings to currently published literature and may 

have found greater overlap with findings that have been reported previously.  
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6.3 – Using the Salivary Microbiome to Detect Breast, Prostate, and Colon Cancer 

 

One of the main goals of this thesis was to identify potential oral microbiome biomarkers 

of prostate, colon, and breast cancer. In Chapter 5 we explored this potential using both a 

retrospective and prospective case control design from two separate regional Canadian 

cohorts. Overall, we found relatively little signal within the oral microbiome from 

individuals with breast and prostate cancer. Contrastingly, we did find evidence to 

support previous work suggesting a potential connection between the oral microbiome 

and colon cancer. However, our sample size was low and future work will need to be to 

confirm this. In this final section of Chapter 6 we will expand the discussion on the 

potential for future work within the salivary microbiome and these three cancers. I will 

highlight the difficulty in uncovering potential relations between microbes and cancer 

and discuss the various difficulties associated with developing microbiome-based 

diagnostics.  

One of the primary motivators behind Chapter 5’s work was to identify oral 

microbiome profiles or individual microbes associated with the risk of cancer 

development. Within this work we failed to identify any significant community shifts in 

both retrospective and prospective cases of breast and prostate cancer. However, we did 

identify several taxonomic associations in retrospective cases of disease and a handful in 

prospective cases. Although most of these significant associations were only identified by 

a single DA tool, they could potentially represent interesting biological phenomena to 

follow up on. Yet, whether they truly represent a hypothesises that is worth the resources 

required to follow up on remains a key question. Especially since retrospective 
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associations could not only present as relations with disease but also with lifestyle 

changes directly caused by disease diagnosis.  

Defining causal relationships or even strong associations between microbes and 

cancer can be extremely difficult. For example, as highlighted within the introduction of 

Chapter 5, despite (pks+) E. coli being strongly associated with colon cancer it has yet to 

make any significant clinical impact in colon cancer treatment or detection. Highlighting 

the significant resource costs required to investigate microbe cancer relations and the cost 

of following an unpromising result. For these reasons it will be important to validate 

findings within Chapter 5 before further attempting more costly experimental designs.  

One potential way of further validating sequenced based results is with 

quantitative PCR. Although, in the face of numerous potential associations from multiple 

tools it can become difficult to determine which to prioritize. One potential solution is by 

choosing taxonomic associations that were either detected using multiple DA tools or 

those associated with large effect sizes. For example, Rumminococcaecae UCG-014 was 

identified by two separate DA tools in breast cancer and could warrant further 

investigation. Additionally, the relation between Alloprevotella rava and prospective 

cases of prostate cancer may represent an interesting case to follow up. One difficulty of 

this approach is the creation of taxa specific primers; however, shotgun metagenomics of 

high abundance samples or analysis of already assembled genomes could aid in species 

specific gene detection.  

Outside of specific study validation a further difficulty in detecting microbial 

associations with cancer development and progression, is the inconsistent relation 

between microbial presence and disease development (Blaser, 2008). Indeed, often 
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microbes associated with cancer can also be found in healthy individuals. For example, 

work by Hooi et al., estimated that Helicobacter pylori a well-known bacterial carcinogen 

colonizes close to 4.4 billion individuals across the world (Hooi et al., 2017). However, 

only 3% of those colonized with H. pylori will develop gastric cancer during their 

lifetime (Uemura et al., 2001). This highlights the potential for highly prevalent microbes 

within the human body to lead to cancer development under some but not all 

circumstances. Indeed, there are numerous reasons as to why detection of microbe-cancer 

associations could fail to be identified through sequencing. These include the high 

prevalence of the microbe but low incidence of the disease, lack of study power due to 

low sample number, or strain heterogeneity. Underlining while the results in Chapter 5 

show that the salivary microbiome is unlikely to possess microbes that are consistently 

associated with cancer, it does not rule out all possibilities of oral microbes and 

breast/prostate cancer association.  

On the other hand, despite low sampling numbers colon cancer showed several 

points of evidence for a potential relation between the salivary microbiome and disease 

development. Our results along with previous literature point toward the possibility of 

future salivary microbiome diagnostic for colon cancer (Flemer et al., 2017; Komiya et 

al., 2019; Thomas et al., 2019; Yao Wang et al., 2021; Y. Yang, Cai, Shu, et al., 2019). 

However, there remains several roadblocks ahead before the true potential of an oral 

microbiome-based colon cancer diagnostic can be recognized.  

 First, its critical that diagnostic models trained on microbiome data are applicable 

across a broad spectrum of individuals and are not overfit toward any specific cohort. 

Indeed, overfitting models to specific cohorts can led to inflated accuracies and give 
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unclear estimates or real-world performance. A common problem that has been identified 

in microbiome research (Quinn, 2021). One way of addressing this is by training 

classification models across multiple datasets. While study-to-study bias can hinder these 

efforts work within the gut microbiome and colon cancer has shown its applicability. For 

example, work by Thomas et al., has shown that machine learning models classifying 

colon cancer that are trained on metagenomic shotgun data can be highly accurate even 

across differing studies and populations (Thomas et al., 2019); underscoring its future 

potential as a diagnostic. Perhaps similar approaches could be applied to salivary 

microbiome data as more datasets are published. However, just as important as cross 

study validation, will be the ability to identify model performance in underrepresented 

populations that are not typically represented in larger cohort studies. For example, 

within my own studies both cohorts that we collected data from were overrepresented by 

high income white Canadians with above average educations. Whether classification 

models from this dataset are transferable to other individuals remains to be seen and 

should be prioritized as we move closer to the use of microbiome data within the clinic.  

A second roadblock that exists for microbiome-based diagnostics is the specificity 

of classification models toward the disease of interest. This may be hindered due to the 

multivariate nature of microbiome data, especially under circumstances where diseases 

show similar community shifts. For example, the reduced relative abundance of 

Akkermansia muciniphilia within the gut has been attributed to several health conditions 

suggesting its general importance to metabolic health (Derrien, Belzer, & de Vos, 2017). 

These general shifts highlight the importance of ensuring robust model performance in 

populations where multiple health conditions are present. To address this, future work 
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may be interesting in specifically testing model performance against various disease 

cohorts. This will not only highlight disease specificity but also highlight the potential for 

similar community shifts across diseases. 

Future work attempting to validate microbiome based diagnostic models should 

focus on identifying the relation between disease progression and microbial changes. 

While work within this thesis along with other prospective results suggest oral microbiota 

shifts before diagnosis, its unclear when and how early these markers may surface with 

respect to disease development (Y. Yang, Cai, Shu, et al., 2019). For example, our work 

varied in timing between sampling and diagnosis ranging between 0 and 8 years. 

Representing a highly variable range, which might differ in oral microbiome signal. 

However, unfortunately, due to the small size of our prospective cohorts we were unable 

to realistically examine whether classification improved when time between sampling 

and diagnoses decreased. Answering this question represents a critical step in the 

development of novel microbiome based diagnostic tools.  

In closing research into the human microbiome has the potential to better human 

health through a multitude of different avenues. Whether it by through the use of 

carefully constructed probiotics, fecal transplants, diagnostics, or dietary 

recommendations. However, its clear that in the infancy of sequence-based microbiome 

research we have faced several challenges regarding reproducibility and the translation of 

findings from one study to another. My hope is that by better understanding and 

considering how the choices we make as researchers impact our biological conclusions, 

we can begin to derive more generalizable knowledge. Whether that be how daily life 
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impacts the human microbiome composition or the relation between disease and specific 

taxa. 
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