

Subtractor-Based CNN Inference

Accelerator

by

Xiaohang Gao

Submitted in partial fulfillment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

October 2022

© Copyright by Xiaohang Gao, 2022

ii

DEDICATION PAGE

To my mother, Guangfang Suo, for her unconditional love and support.

iii

TABLE OF CONTENTS

LIST OF TABLES .. v

LIST OF FIGURES ... vi

ABSTRACT ... viii

LIST OF ABBREVIATIONS USED .. ix

ACKNOWLEDGEMENTS ... xi

Chapter 1 INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Contributions... 4

1.3 Thesis Organization .. 5

Chapter 2 LITERATURE REVIEW ... 6

2.1 LeNet-5 and MNIST database .. 6

2.2 Approximate Multipliers ... 9

2.3 Binary Convolutional Neural Network ... 13

2.4 Sparse Analysis in CNNs .. 15

2.5 Conclusion .. 20

Chapter 3 PROPOSED ACCELERATOR ... 21

3.1 Weight distribution analysis ... 21

iv

3.2 Overview of the proposed accelerator .. 25

3.3 Preprocessing of the Weights by Sorting and Approximation.................... 26

3.4 Combined weights input Convolution .. 29

3.5 Simulation and Results ... 30

Chapter 4 CONCLUSION AND FUTURE WORK ... 33

4.1 Conclusion .. 33

4.2 Future works ... 34

BIBLIOGRAPHY ... 35

APPENDIX ... 39

v

LIST OF TABLES

Table 2.1 CNNs training with 8-Bit length weights of DBB [21] 19

Table 2.2 Throughput-Normalized area and power efficiency with 50 percent DBB at

1GHz [21] ... 19

Table 3.1 Number of addition, subtraction, and multiplication with different rounding sizes

for LeNet-5.. 31

file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118144339
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118144340
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118144340

vi

LIST OF FIGURES

Figure 1.1 Concerns about power consumption and recognition latency where (a) all to

cloud and (b) do inference at local [8] .. 2

Figure 2.1 Convolutions and subsamplings of LeNet-5 ... 7

Figure 2.2 Samples in MNIST datasets .. 7

Figure 2.3 AlexNet inference computational time percentage for each layer using GPU and

CPU ... 8

Figure 2.4 SSM for K=4 with m=4 and m=8.[23] .. 10

Figure 2.5 DSM for K=4 with m=4 and m=8. [23] .. 11

Figure 2.6 Preprocess the images with precision controller CNN [23] 12

Figure 2.7 Module comparison between CNN and LBCNN [17] 13

Figure 2.8 Platform overview [16].. 14

Figure 2.9 An example of weight preprocessing [16] ... 14

Figure 2.10 Hardware design of the layer accelerator [16] .. 15

Figure 2.11 Basic principle of a systolic architecture [30] ... 16

Figure 2.12 Conventional systolic array ABCMN=1,1,1,1,4,4 [21] 16

Figure 2.13 Systolic tensor array ABCMN=2,4,2,2,2 [21] ... 17

file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173556
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173556
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173557
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173558
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173559
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173559
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173560
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173561
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173562
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173563
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173564
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173565
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173566
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173567
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173568
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173569

vii

Figure 2.14 Sparse matrices: (a) random sparse; (b) 4x2 block sparse; (c) proposed 8x1

density bound block (DBB). Blue square represents number of None-Zero (NNZ)

[21] .. 18

Figure 3.1 Weight distribution of layer 3 in LeNet-5 ... 22

Figure 3.2 Histogram of weight distribution of layer 3 in LeNet-5 22

Figure 3.3 First convolutional layer of AlexNet ... 23

Figure 3.4 Histogram of AlexNet first convolutional layer .. 23

Figure 3.5 First convolutional layer of VGG-16 .. 24

Figure 3.6 Histogram of VGG-16 First convolutional layer... 24

Figure 3.7 Structure of the proposed accelerator (Green)... 26

Figure 3.8 Details of weight sorting and grouping ... 27

Figure 3.9 Algorithm of finding combinations ... 28

Figure 3.10 Operation portion for different rounding sizes .. 32

Figure 3.11 Relationship between rounding size, power, area, and accuracy performance

... 32

file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173570
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173570
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173570
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173571
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173572
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173573
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173574
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173575
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173576
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173577
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173578
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173579
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173580
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173581
file:///C:/Users/Victor/Downloads/Xiaohang(Victor)%20Gao%20Thesis%202022OCT_Dal%20-%20IH.docx%23_Toc118173581

viii

ABSTRACT

In this thesis, a novel method to boost the performance of CNN inference

accelerators by utilizing subtractors has been proposed. After analyzing the distribution of

the weight, the distribution characteristic was exploited to develop this method. The

proposed CNN preprocessing accelerator relies on sorting, grouping, and rounding the

weights in order to create combinations that allow for the replacement of one multiplication

operation and addition operation by a single subtraction operation. Given the high cost of

multiplication in terms of power and area, replacing it with subtraction allows for a

performance boost by reducing the power and area. The proposed method allows for

controlling the trade-off between the performance gains and the accuracy loss through

increasing or decreasing the usage of subtractors. Using a rounding size of 0.05 on LeNet-

5 with the MNIST dataset, the proposed design can achieve 32.03% power savings and a

24.59% reduction in the area at the cost of only 0.1% in terms of accuracy loss.

ix

LIST OF ABBREVIATIONS USED

ALU Arithmetic Logic Units

AU Activation Unit

CNN Convolutional Neural Network

CPU Central Processing Unit

DBB Density-Bound Block

DSM Dynamic Segment Method

GeMM General Matrix Multiply

GPU Graphics Processing Unit

HBM High-bandwidth Memory

IoT Internet of Things

LBCNN Local Binary Convolutional Neural Network

MAC Multiply-accumulator

MLP Multilayer Perceptron

MXU Matrix Multiplier Unit

NNZ Number of None-Zero

PE Processing Element

SA Systolic Array

x

SSM Static Segment Method

STA Systolic Tensor Array

TPU Tensor Processing Unit

xi

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor and mentor,

Dr. Kamal El-Sankary, for the continuous support of my master's research, and for his

patience, enthusiasm, and immense knowledge. He always had ideas and valuable

suggestions that helped me overcome my research difficulties; without his help, I could not

have come up with this idea and finished this research. I could not have imagined having a

better mentor for my master's study.

Besides my mentor, I would like to thank my co-supervisor, Dr. Issam Hammad,

who gave me my first machine learning course and provided selfless help on my paper. His

insightful feedback pushed me to sharpen my thinking and brought my work to a higher

level. I would like to thank the rest of my supervisory committee members, Dr. Jason Gu

and Dr. Guy Kember. I would also like to thank department administrator Tamara Cantrill

and Secretary Nicole Smith for their help.

Last but not least, I would like to thank my parents, Guangfang Suo and Wenlong

Gao, for supporting me throughout my life, my fiancée Yang Wang for her trust and care,

and my other family members' care and understanding.

1

Chapter 1 INTRODUCTION

1.1 Motivation

Deep learning techniques using convolutional neural networks are prevalent

artificial neural networks, which are widely used and demonstrate effectiveness for various

application scenarios. The Convolutional Neural Network (CNN) has existed for over two

decades. When CNN is compared with other neural networks, for example, multiple layer

perceptron (MLP), it uses kernel as a character extractor to process the images. In some of

these domains, CNNs achieve better accuracy than humans [1-3]. CNNs are used in various

applications, including real-time image reconstruction [4], human action recognition [5],

brain tumor detection [6], and building structural damage recognition [7]. When applied in

specific applications such as mobile devices and self-driving cars, they usually require

repaid response while maintaining acceptable accuracy. The computational burden

increases dramatically with the use of deeper and/or wider architectures to achieve a more

outstanding prediction performance and accomplish a more difficult target. On the other

hand, it also requires low or limited power consumption to maintain the target standby time.

The popular implementation platforms of CNNs are Graphical Processing Units (GPU) and

Tensor Processing Units (TPU). Those two hardware solutions can perform both training

and inference with low latency and high throughput at the cost of elevated power

consumption. However, with diverse application scenarios, especially in the extensive

Internet of Things (IoT) market, the execution time and power consumption become critical

issues. As a solution, the training process will be done on the cloud, and the inference part

will be done on the embedded device, as shown in Fig.1.1[8]; meanwhile, various

2

accelerator and approximate methods also been applied to further improve the performance

and reduce resource consumption.

As shown in Fig.1.1 [8], solution (a) transmits all data (image or video) to the cloud

to do the training and inference, whereas method (b) is only training in the cloud, and

inference is at the local. Thus, in this thesis, we are focusing on providing a CNN

Figure 1.1 Concerns about power consumption and recognition latency where (a) all to

cloud and (b) do inference at local [8]

3

accelerator by preprocessing the network parameters in Fig.1.1[8] at the cloud and creating

a corresponding modified version of convolutional operation at inference (local) to

improve the performance of power and area savings.

4

1.2 Contributions

In this thesis, a Subtractor-Based CNN Inference Accelerator is presented. The

accelerator is divided into two parts, the weights preprocessor and the modified

convolution unit; additionally, performance analysis has also been provided. In Summary:

1. A weights preprocessor is presented in this thesis. The preprocessing works before

the inference. When receiving a trained model, it reads the values of the weights,

exploits the characteristic of weights distribution to sort, approximate and generates

new approximate weights to replace the original weights in the trained model.

2. A modified convolution unit is implemented; it works at the inference level, reads,

and processes the special weights combinations by adding a feature to the original

convolution operation.

3. Synopsys Design Compiler made the power consumption test with TSMC 65 nm

technology. The software implementation was tested on the Google Colab platform

with Pytorch.

5

1.3 Thesis Organization

The thesis is organized as follows:

1. Chapter 2 provides a background of CNN and literature reviews of the peers' works

in related approximate computing accelerator design.

2. Chapter 3 presents the design of our approximate accelerator

3. Chapter 4 presents the details of the implementation, including the codes.

4. Chapter 5 conclude the thesis and discusses future works.

6

Chapter 2 LITERATURE REVIEW

2.1 LeNet-5 and MNIST database

In this thesis, the LeNet-5 [9], an image recognition application that categorizes

handwritten digits, was chosen to test, modify and perform the simulations. The simple

structure of this model is as shown in Fig.2.1, the corresponding dataset is the MNIST

database [10], and the samples are shown in Fig.2.2.

The network is termed LeNet-5 since it contains five layers with learnable

parameters. It has three sets of convolution layers with an average pooling combination.

We have two fully connected layers after the convolution and average pooling layers.

Finally, a Softmax classifier classifies the objects into their corresponding category. The

input to this system is a one-channel 32x32 grayscale image. Convolution, to extract the

characteristic of the target image, for example, the first convolution operation, applies the

first convolution operation with a six-channel 5x5 filter to the input; it will create a six-

channel 28x28 feature map. Subsampling, also called the pooling layer, is a technique to

reduce the reliance on precise positioning within feature maps that takes results from a

convolutional layer, a 6-channel 28x28 feature map, through a 2x2 pooling layer. After two

more convolutional layers and one more subsampling, it goes to a fully connected layer.

Notice that the MNIST database images are 784 pixels or 28x28, which is different from

the input of LeNet-5; thus, to get the MNIST images dimension meets the requirements of

7

the input layer, the images from MNIST will be padded to 32x32, where the padding is to

add zeros to extend the original image size.

The focus of this work is investigating the convolutional layers. Each convolutional

layer keeps multiplying and adding, called the multiply-accumulate (MAC) operation. The

input and output for the first convolutional layer are 32x32x1 (size of kernel x size of kernel

Figure 2.1 Convolutions and subsamplings of LeNet-5

Figure 2.2 Samples in MNIST datasets

8

x number of the channel) and 28x28x6, respectively, which will perform 117,600

(28x28x5x5x5) multiplications and additions. In second and third convolutional layers are

240,000 and 48,000, respectively. In three convolutional layers, it takes 405,600

multiplications and additions in total. The research in [11] shows that the convolutional

Flayer consumes the 90%-time execution time, as shown in Fig.2.3.

The fully connected layer has three sets, from 120 to 84 to 10. The reason for ten

nodes at the end is LeNet-5 is to recognize handwriting digits, where the numbers are from

0 to 9; thus, the ten nodes at the end with the highest value will be the answer generated by

the neural network.

Achieving a more accurate prediction in CNN requires higher computational

energy as deeper and wider architectures are utilized. Computation accuracy can be

adequately tuned to the specific application requirements to reduce power consumption.

0% 20% 40% 60% 80% 100%

CPU

GPU

AlexNet Inference Computational Time

Percentage for Each Layer using GPU and CPU

conv1 relu1 pool1 norm1 conv2 relu2 pool2

norm2 conv3 relu3 conv4 conv5 fc6 fc7

Figure 2.3 AlexNet inference computational time percentage for each layer using GPU

and CPU

9

Hence, introducing methods that can reduce the CNN computation complexity and

therefore reduce the overall required energy is needed. Previously, several methods have

been published which aim to reduce the CNN computation complexity; this includes

parameters pruning [12-14], binary neural network [15-20], sparsity [21], and approximate

multipliers [22-28]. Neural network pruning is a simple yet effective strategy for deleting

unnecessary synapses and neurons to lower the model's size, in other words, to generate

sparse neural networks. Binary neural networks, as a quantization method, BC [15] as the

simplified version, simplifies the original complex convolutional operations where the

weights only contain -1 and 1, while others may have more values. Approximate computing

is used for such media-related systems due to their ability to tolerate error; one of the

representative approximate computing is the approximate multiplier, such as stochastic

computing [28], which reduces power, area, and delay where the cost is the inaccuracy. In

the next section, we will pick several classic related methods to analyze in depth.

2.2 Approximate Multipliers

In [23], a flexible use of the approximate multiplier method was proposed. It first

reviewed two popular approximate multipliers, the static segment method (SSM) and the

dynamic segment method (DSM); those two methods accelerate CNN by manipulating the

data structure. Later it came up with a preprocessing precision controller on inference to

detect and predict the adequate approximate precision to choose the best segment sizes for

the approximate multipliers.

SSM, as its name, chooses a fixed length for segmentation. An n-bit integer number

will be divided into static m-bits segments with k offset between the initial bits of two

10

consecutive segments. An example of SSM for a 16-bit integer number with k=4 and two

different segment sizes where m=4 and m=8 can be found in Fig. 2.4. Notice that when

using SSM, the start point of each 16-bit integer number is fixed, it depends on the value

of k, and the length is determined by the value of m. The sign bit in two numbers will be

extracted to calculate the final sign, and the original position of the sign bit will be replaced

as zero when performing segmentation.

Compared with SSM, the DSM has different logic in segmentation which is more

complicated and costly. The DSM method will try to find the first non-zero bit except the

sign bit, and then it extracts the following m-1 bits to perform multiplication. A close

version of DSM is DRUM, which will set the last extracted bit to one, as shown in Fig.2.5.

Figure 2.4 SSM for K=4 with m=4 and m=8.[23]

11

 Based on their studies, they found that after applying the approximate multipliers,

the CNN's inference accuracy varies widely between image classes; certain image classes

may achieve even higher accuracy using low-precision approximate multipliers compared

with high-precision approximate multipliers, and for some other image classes, there is no

difference in CNN's inference accuracy between low and high precision approximate

multipliers. Thus, they create a small neural network that contains three 2D convolution

layers to study this phenomenon. In the end, whenever a set of image batches tries

classification, they will first go through this small CNN to predict the best proper choice

of K and M to get the best precision; this process is shown in Fig 2.6.

Figure 2.5 DSM for K=4 with m=4 and m=8. [23]

12

Figure 2.6 Preprocess the images with precision controller CNN [23]

13

2.3 Binary Convolutional Neural Network

LBCNN [17] is CNNs with LBC layers. The LBC layers will approximate the non-

linearly activated response of standard convolutional layers. The module of LBCNN, as

shown in Fig.2.7, replaces the original weight matrixes with binary matrixes. As we can

see that the original response map was replaced by a difference map, and a bit map was

inserted between the difference map and the feature map. The difference map is generated

by the input image with LBC filters, where the LBC filters are predefined fixed

convolutional filters. Then, the difference map goes through a non-linear activation

function to produce the bit maps. Finally, the LBC layer response is generated by the bit

maps with learnable weights.

In [16], an accelerated platform was proposed to reduce MAC operations and

improve overall performance. As mentioned in LBCNN, the weights are changed to binary

numbers; thus, many zeros will exist in weights. This method exploits this particular

structure to take advantage of sparsity to reduce memory access and total MAC operations.

To achieve that, [16] consists of two modules, as shown in Fig.2.8 it has a weight

preprocessor and a layer accelerator.

Figure 2.7 Module comparison between CNN and LBCNN [17]

14

The first part of this method is a weights preprocessor or a weight encoder. As

shown in Fig. 2.9, the matrixes first unrolling to an array, based on the position of +1 and

-1, it extracts the distance information and starting position. In that array, the distance

between the first non-zero bit is 4, and that bit has a value of +1, which turns into (4, +1).

Following this logic, the original array turns into (4, +1), (3, -1), (6, -1), (5, +1), (0, 0). The

original matrix has 3 x 9 = 27 values, after the weight preprocessor, it only has 2 x 5 = 10

Figure 2.8 Platform overview [16]

Figure 2.9 An example of weight preprocessing [16]

15

values, it saves 27 – 10 = 17 values.

Since the Data structure was changed in weight preprocessing, it came up with a

layer accelerator was used to extract the corresponding values in the input feature map, as

shown in Fig.10.

2.4 Sparse Analysis in CNNs

In [21], two improvements to the traditional Systolic Array (SA) were proposed.

The first improvement is to bring Tensor into SA to create a new microarchitecture called

Systolic Tensor Array (STA). The STA increases intro-PE operand reuse and data path

efficiency. Second, they used a new data format called Density-Bound Block (DBB) to

reduce the total number of operations.

The neural networks highly rely on large-scale matrix processors. The conventional

CPUs are good at quick prototyping and require maximum flexibility, and miniature

models have small batch sizes and do not need a long time to train; GPUs are good at

medium size models; TPUs is targeting the extremely large models that need to train for

Figure 2.10 Hardware design of the layer accelerator [16]

16

weeks or months, and the heart of the TPUs are SAs [29].

The basic principle of a systolic array is shown in Fig. 2.11 [30]. The advantage of

this architecture is the Processing Elements (PEs), which are Multiply-Accumulators

(MAC), are connected directly to each other to form a large physical matrix, as shown in

Fig. 2.12 [21].

Figure 2.12 Conventional systolic array ABCMN=1,1,1,1,4,4 [21]

Figure 2.11 Basic principle of a systolic architecture [30]

17

In the SA structure, as each multiplication is executed, the result will pass to the

next directly connected MAC as the green line, and the output results are the accumulation

between each multiplication.

In [21], they fuse blocks of scalar PEs into a single tensor PE, called Systolic Tensor

Array (STA), as shown in Fig. 2.13. The STA in this example contains M x N tensor PEs,

for each PE includes A x C MACs performing the dot-product operation on B operand

pairs. Compared with conventional SA, the STA reduces the number of operand buffers

per MAC by 2x and the number of accumulator buffers per MAC by 4x.

The second contribution in [21] is to create a new sparse matrix, as shown in Fig.

2.14 (c). CNNs' layers have sparsity in the weight data and activation data; zero in data can

be exploited to skip the corresponding MAC operation, which can improve the

performance of throughput and power consumption. In Fig. 2.14, (a) represents random

Figure 2.13 Systolic tensor array ABCMN=2,4,2,2,2 [21]

18

sparse which is very difficult to exploit; (b) is block sparse, it groups zero weights into

coarse-grained blocks, which results in low accuracy; (c) the proposed DBB, it sets an

upper limit to the NNZ for each block, comparing with (a) and (b), the proposed method is

a middle-ground sparse format. DBB can achieve better accuracy performance compared

to block sparse because the distribution of NNZ is less constrained.

They made tests on DBB and STA separately to evaluate the feasibility of each

model. The first demonstration is for DBB with 8-Bit data under various popular CNN

models, including VGG-16, MobileNetV1, ResNet-50V1, ConvNet, and LeNet-5 on

ImageNet, CIFAAR10, and MNIST datasets, as shown in Table. 2.1 [21].

After adding support to STA for DBB, under the situation of NNZ smaller or equal

to 4, the STA-DBB can reduce 50 percent MAC operations, where each 8-input PE only

requires 4 MACs rather than 8. It can not only save the clock cycles but also save the area

and power. After testing different array sizes and comparing the best performance of

Figure 2.14 Sparse matrices: (a) random sparse; (b) 4x2 block sparse; (c) proposed 8x1

density bound block (DBB). Blue square represents number of None-Zero (NNZ) [21]

19

different designs, the power and area efficiency results for comparison between STA-DBB

and other techniques are shown in Table. 2.2.

Model Dataset Baseline

Acc. (%)

Pruned

Acc. (%)

Model Result

NNZ (%)

LeNet-5 (DBB) MNIST 99.1 98.7 1.05K (25)

ConvNet (DBB) CIFAR10 86.0 85.3 26.8K (25

MobileNetV1(DBB) ImageNet 70.9 69.8 1.6M (50)

ResNet-50V1(DBB) ImageNet 75.2 74.2 8.79M (37.5)

VGG-16 (DBB) ImageNet 71.5 71.4 5.39M (37.5)

AlexNet ImageNet 57.4 57.5 2.81M (75)

VGG-19 ImageNet - 71.8 4.1M (12.6)

Design Model Sparsity Array Area Eff Power Eff

SA-NGG Dense 1x1x1 0.95 0.65

SA Dense 1x1x1 1.00 1.00

STA Dense 4x8x4 2.08 1.36

SMT-SA Random (62.5%) T2Q4 1.21 0.80

STA-DBB DBB (50%) 4x8x4 3.14 1.97

Table 2.1 CNNs training with 8-Bit length weights of DBB [21]

Table 2.2 Throughput-Normalized area and power efficiency with 50 percent DBB at

1GHz [21]

20

2.5 Conclusion

At the beginning of the chapter, we first introduced the background of LetNet-5

and its training database, MNIST. The time distribution of the CNN has also been reported,

it shows the convolutional layer consumed over 90% of the total execution time, and the

Convolutional layer mainly consists of MAC operation. Thus, the convolutional layer is a

great point to start with to accelerate neural networks.

The rest sections covered related works in a different approach. The common factor

among those methods is manipulating the weights data structure.

In 2.2, it uses the proposed approximate multiplier to reduce the total operations by

discarding certain values to achieve approximate computing. Later, it came up with a

precision preprocessor to predict precision. This section provides ideas for the

manipulation of weights and preprocessing.

In 2.3, it has a similar architecture to 2.2, which also contains a preprocessor. The

difference is the preprocessor in 2.3 is targeting weights and has a corresponding MAC

unit proposed to support the preprocessed weights' structure. By exploiting the

characteristic of weights in BCNN, the preprocessor converts the original weights to a

special data structure: distance + value.

In 2.4, it reduces the operations by exploiting sparse in weights and introduces a

new sparse block called DBB to improve further the performance of reducing MAC

operations requirements and the efficiency of power and area.

21

Chapter 3

PROPOSED ACCELERATOR

This chapter describes the proposed accelerator. Firstly, the chapter analyzes

weights distribution for various convolutional neural networks. The analysis shows that the

distribution behavior can be exploited to accelerate the CNN at the inference stage.

Secondly, the chapter provides the new accelerator design details, which include two parts:

the weight preprocessor to preprocess the weight from a trained model; the corresponding

modified convolutional unit that handles the manipulated weights. Thirdly, the efficiencies

of the proposed accelerator design were evaluated in both software and hardware.

3.1 Weight distribution analysis

Recall the LBCNN we reviewed in section 2.3; the author described a preprocessor

based on the characteristic of LBCNN, which is that only one NNZ exists in one weight

matrix. When observing the weights distributions in normal CNNs such as LeNet-5,

AlexNet, and VGG-16, as shown in Fig. 3.1-3.6, the weights are spread symmetry around

zero, which is a normal distribution. This symmetrical distribution allows for finding

opposite pairs of weights that can be combined. Hence, the modern FPGA design for adder

and subtractor are commonly integrated as one module [31]; the proposed method may

exploit this property by utilizing subtractions to replace part of additions and

multiplications to improve the performance in terms of area and power efficiency.

22

Figure 3.1 Weight distribution of layer 3 in LeNet-5

Figure 3.2 Histogram of weight distribution of layer 3 in LeNet-5

23

Figure 3.3 First convolutional layer of AlexNet

Figure 3.4 Histogram of AlexNet first convolutional layer

24

Figure 3.5 First convolutional layer of VGG-16

Figure 3.6 Histogram of VGG-16 First convolutional layer

25

3.2 Overview of the proposed accelerator

This section provides an overview of the proposed method, which is summarized

in Fig. 3.7. The top three modules are conventional CNN's architecture at the inference

level, and the bottom two modules are the proposed accelerator. The proposed method

contains two blocks: a weight preprocessor and a modified convolution unit. Weights

preprocessing occurs prior to the inference stage to provide the required data structure,

which is used in a modified convolution unit. Recall the introduction in chapter 1; Fig.1.1

shows that modern CNNs put training at the cloud, and the user end only make inference

that can save energy, reduce latency and protect user privacy. The preprocessor will be put

in the cloud for further improvement in our design.

The preprocessing process relies first on sorting the weight to split original weights

into positive and negative lists. Secondly, the preprocessor finds all possible combinations

based on the selected rounding step and creates a list of combined weights. Finally, it

splices all three lists and replaces the original weight in the CNN model.

The combined weights are executed separately at the inference level in a modified

convolution unit. The combined weights will use a subtraction operation to replace one

addition and one multiplication; the uncombined weights will use regular addition and

multiplication.

More details about the preprocessing step are presented in section 3.3, while section

3.4 offers more information about the modified convolution unit.

26

3.3 Preprocessing of the Weights by Sorting and

Approximation.

In this process, the original weights will go through several steps, which include

sortation, finding the combination, and merging, as shown in Fig.3.8. Initially, weights will

be sorted in ascending order and then split into two lists, positive and negative lists. Since

the weight will move around, and at the end, weights still need to find their corresponding

inputs; thus, to save the original position information during the sorting process, the

argsort() function in numpy[32] is used as it holds the original position information. The

argsort() function returns the index of the list while sorting. After splitting and sorting, a

new flag will be inserted to indicate the current weight status. In Fig. 3.8, before finding

the combination, the flag initializes to 'U', which represents Unknown status; later, based

on the results of finding the combination, it will change to 'N' or 'C', which means combined

or not combined.

Figure 3.7 Structure of the proposed accelerator (Green)

27

After sorting, the next step is to find combinations of weights. As seen from the

Algorithms in Fig. 3.9, weights will be combined based on a selective rounding size. A

new list will be generated that contains all the combined weights which are extracted from

the positive and negative weight lists, plus the rest weights in the old Positive and Negative

lists; there will be three lists after finding the combination. All three lists will be merged

and spliced to have all the new combined weights at the top while the rest of the weights

at the bottom, as shown in Fig. 3.8.

Figure 3.8 Details of weight sorting and grouping

28

Figure 3.9 Algorithm of finding combinations

29

3.4 Combined weights input Convolution

As shown in Fig. 3.7, the convention was replaced by the modified convolution,

and the input to the modified convolution was also changed to modified weights. The

Modified Convolution contains two types of convolution operations; one is doing

multiplication, then addition, and one is subtraction, then multiplication. There are two

mechanisms in the proposed convolution unit. Firstly, determine the combined and

uncombined weights. The combination of the weights which was presented in section 3.3,

even though the combined and uncombined weights are merged in the same weight matrix,

the data structure contains the flag U, N, C, as Unknow Non-Combined and Combined;

thus, the modified convolution will include a particular convolution operation to handle the

combined weights and conventional operation to execute the Unknow and Non-Combined

weights. Secondly, the preprocessed weights contain another flag called Location noted as

'Loc', which is the extracted original position value generated during preprocessing to find

the corresponding input. The proposed convolution operation allows for the utilization of

using one subtraction as a replacement for one multiplication and one addition operation,

as illustrated in equation (1)

𝐼1 × 𝐾𝑎 + 𝐼2 × 𝐾𝑏 = 𝐾𝑎 × (𝐼1 − 𝐼2) 𝑖𝑓 𝐾𝑎 = −𝐾𝑏(1)

30

3.5 Simulation and Results

The implementation in software is based on the library provided by Pytorch [33].

In Pytorch, it has a built-in function 'conv2d' to execute the input and weight. To simulate

our design, we first modify the LeNet-5 model interface, as shown in Appendix 1. code of

LeNet-5 Model line 17, 20, and 23. In these three lines, we replace the original 'nn.Conv2d'

with 'MYconv2d'.

Next, in function MYconv2d, we add features to execute the preprocessed weights,

as shown in Appendix 2, MYconv2d. line 144-170. Line 28-79 in Appendix 2 is the

sortation and find combination part; it returns the preprocessed weight data structure as the

output shown in Fig. 3.8. Line 83-142 is the function viscum_V3. This function is modified

based on the Einstein Summation, which is also the core function of nn.Conv2d, which

performs GeMM (General Matrix Multiplication). The viscum_V3 contains both

conventional and combination convolution operations and the control logic.

The hardware performance enhancements in terms of power and area were tested

using a frequency of 1GHz using the Design Compiler from Synopsys with TSMC 65nm

technology. All tested operations for multiplication, subtraction, and addition are followed

the IEEE 758 design standard.

Fig. 3.10 and Table 3.1 illustrates the number of additions, subtractions, and

multiplications using different rounding size. The table shows that by increasing the

rounding size, we can increase the total number of subtractions while reducing both

additions and multiplications. The total number of operations is reduced with a larger step

size.

31

Fig.3.11 shows the relationship between rounding size, power, area, and accuracy.

The left percentage is for power and area saving, and the right is for accuracy. In Fig. 3.11,

the accuracy drops dramatically after step size 0.05. Thus, there is a trade-off between

power, area saving, and accuracy. Using a step size of 0.05, the power can be reduced by

32.03%, while the area can be reduced by 24.59%, with an accuracy loss of only 0.1%.

Rounding Size No. Add No. Sub No. Mul Total operations

0 405600 0 405600 811200

0.0001 399372 6228 399372 804972

0.005 313545 92055 313545 719145

0.01 288887 116713 288887 694487

0.015 276692 128908 276692 682292

0.02 265480 140120 265480 671080

0.025 259789 145811 259789 665389

0.05 242153 163447 242153 647753

0.1 233698 171902 233698 639298

0.15 228752 176848 228752 634352

0.2 225988 179612 225988 631588

0.25 223630 181970 223630 629230

0.3 222742 182858 222742 628342

Table 3.1 Number of additions, subtractions, and multiplications with different rounding

sizes for LeNet-5

32

-100000

100000

300000

500000

700000

900000

Number of Operations for different Rounding size

No. Adder No. Subtractor No. Multiplier

94.00%

94.50%

95.00%

95.50%

96.00%

96.50%

97.00%

97.50%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

A
cc

u
ra

cy

R
es

o
u

rc
es

 s
av

in
g

 p
er

ce
n

t

Rounding size vs Enhencement and Accuracy

Area Power Accuracy

Figure 3.11 Relationship between rounding size, power, area, and accuracy performance

Figure 3.10 Operation portion for different rounding sizes

33

Chapter 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this thesis, we first performed an energy consumption analysis and found that

the convolution operations take the most; it consumed over 90% of execution time in both

CPU and GPU conditions. Secondly, by analyzing the weights distribution characteristic,

we notice that the weights are normal distribution. Then, we presented a novel method for

accelerating CNN that exploits our findings in weights distribution by replacing one

multiplication and one addition operation with one subtraction operation. Next, we

described how this could be achieved through weight sorting, approximation, and

reconstruction, which allows significant performance in terms of power and area saving

with minimal accuracy lost. The thesis also presented the trade-off that can be achieved

between the performance enhancement and the accuracy loss based on the selected

rounding size. In the end, we made tests based on CNN LeNet-5 and MNIST database. By

applying our accelerator, in the case of rounding size 0.05, a power reduction of 32.03%

and an area reduction of 24.59% can be achieved with only 0.1 % accuracy loss. The design

allows for adjusting the trade-off between gained performance enhancements and the cost

in terms of accuracy loss. Such improvements in reducing the power and area requirements

are highly needed in various applications that utilizes Edge AI designs including robotic

control, healthcare, and other industry applications [35-42].

34

4.2 Future works

1. Compatibility analysis. Our method only modified part of weights in convolutional

layers based on the selection of rounding size, which means all other values remain

the same; it has the potential to be applied after or before other methods such as

parameters pruning and sparsity (DBB), BC and much more. Thus, it is worthful to

find out the compatibility of our method.

2. Feasibility analysis of acceleration methods that imitate others. There are many

brilliant ideas to accelerate CNNs. For example, in [21], they fused blocks of scalar

PEs into a single tensor PE which turned SA to STA to achieve performance

improvement. In the future, we want to find out if those methods can apply to our

accelerator to improve performance further.

35

BIBLIOGRAPHY

[1] Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep

convolutional Neural Networks," Communications of the ACM, vol. 60, no. 6, pp.

84–90, 2017.

[2] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level

image representations using convolutional neural networks," 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1717–1724, 2014.

[3] Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet Large

Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol.

115, no. 3, pp. 211–252, 2015.

[4] K. Kapse, "An overview of current deep learned rendering technologies," 2021 7th

International Conference on Advanced Computing and Communication Systems

(ICACCS), 2021.

[5] S. N. Chua, K. Y. Chin, S. F. Lim, and P. Jain, "Hand gesture control for human–

computer interaction with Deep Learning," Journal of Electrical Engineering &

Technology, vol. 17, no. 3, pp. 1961–1970, 2022.

[6] N. M. Dipu, S. A. Shohan, and K. M. Salam, "Deep learning based brain tumor

detection and classification," 2021 International Conference on Intelligent

Technologies (CONIT), 2021.

[7] Y. Gao and K. M. Mosalam, "Deep Transfer Learning for Image-based structural

damage recognition," Computer-Aided Civil and Infrastructure Engineering, vol. 33,

no. 9, pp. 748–768, 2018.

[8] M. Verhelst and B. Moons, "Embedded Deep Neural Network Processing:

Algorithmic and processor techniques bring deep learning to IOT and Edge Devices,"

IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65, Nov. 2017.

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied

to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998.

[10] L. Deng, "The MNIST database of handwritten digit images for machine learning

research [best of the web]," IEEE Signal Processing Magazine, vol. 29, no. 6, pp.

141–142, Oct. 2012.

[11] J. Yangping, "Learning Semantic Image Representations at a Large Scale", EECS

Department University of California, Berkeley, UCB/EECS-2014-93, 16 May 2014.

36

[12] T. Wu, X. Li, D. Zhou, N. Li, and J. Shi, "Differential evolution based layer-wise

weight pruning for compressing deep neural networks," Sensors, vol. 21, no. 3, p.

880, 2021.

[13] B. O. Ayinde, T. Inanc, and J. M. Zurada, "Redundant feature pruning for

accelerated inference in deep neural networks," Neural Networks, vol. 118, pp. 148–

158, 2019.

[14] Ma, X., Yuan, G., Lin, S., Li, Z., Sun, H., & Wang, Y. (2019). ResNet can be

pruned 60×: Introducing network purification and unused path removal (P-RM) after

weight pruning. 2019 IEEE/ACM International Symposium on Nanoscale

Architectures (NANOARCH). https://doi.org/10.1109/nanoarch47378.2019.181304

[15] M. Courbariaux, Y. Bengio, and J.-P. David, "Binaryconnect: Training deep

neural networks with binary weights during propagations," in Proc. Adv. Neural Inf.

Process. Syst., 2015, pp. 3123–3131.

[16] I.-C. Lin, C.-H. Tang, C.-T. Ni, X. Hu, Y.-T. Shen, P.-Y. Chen, and Y. Xie, "A

novel, efficient implementation of a local binary convolutional neural network," IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1413–

1417, Apr. 2021.

[17] F. Juefei-Xu, V. N. Boddeti, and M. Savvides, "Local binary convolutional neural

networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 19–28, 2017.

[18] K. Ando et al., "BRein memory: A single-chip binary/ternary reconfigurable in-

memory deep neural network accelerator achieving 1.4 tops at 0.6 W," IEEE J.

Solid-State Circuits, vol. 53, no. 4, pp. 983–994, Apr. 2018.

[19] H. Yonekawa and H. Nakahara, "On-chip memory based binarized convolutional

deep neural network applying batch normalization free technique on an FPGA," in

Proc. IEEE IPDPSW, 2017, pp. 98–105.

[20] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao, X. Li, and H. Yang,

"Sticker: An energy-efficient multi-sparsity compatible accelerator for convolutional

neural networks in 65-NM CMOS," IEEE Journal of Solid-State Circuits, vol. 55, no.

2, pp. 465–477, Nov. 2019.

[21] Z.-G. Liu, P. N. Whatmough, and M. Mattina, "Systolic tensor array: An efficient

structured-sparse GEMM accelerator for mobile CNN inference," IEEE Computer

Architecture Letters, vol. 19, no. 1, pp. 34–37, Mar. 2020.

[22] I. Hammad and K. El-Sankary, "Impact of approximate multipliers on VGG Deep

Learning Network," IEEE Access, vol. 6, pp. 60438–60444, Oct. 2018.

37

[23] I. Hammad, L. Li, K. El-Sankary, and W. M. Snelgrove, "CNN inference using a

preprocessing Precision Controller and approximate multipliers with various

precisions," IEEE Access, vol. 9, pp. 7220–7232, 2021.

[24] L. Li, I. Hammad, and K. El‐Sankary, "Dual segmentation approximate

multiplier," Electronics Letters, vol. 57, no. 19, pp. 718–720, 2021.

[25] I. Hammad, K. El-Sankary and J. Gu, "Deep Learning Training with Simulated

Approximate Multipliers," 2019 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2019, pp. 47-51, doi: 10.1109/ROBIO49542.2019.8961780.

[26] M. Osta, A. Ibrahim, L. Seminara, H. Chible, and M. Valle, "Low power

approximate multipliers for energy efficient data processing," Journal of Low Power

Electronics, vol. 14, no. 1, pp. 110–117, Mar. 2018.

[27] H. Sim and J. Lee, "A new stochastic computing multiplier with application to

deep convolutional Neural Networks," Proceedings of the 54th Annual Design

Automation Conference 2017, Jun. 2017.

[28] "Introduction to cloud TPU | google cloud," Google. [Online]. Available:

https://cloud.google.com/tpu/docs/intro-to-tpu. [Accessed: 29-Sep-2022].

[29] H. T. Kung, "Why systolic architectures?," Computer, vol. 15, no. 1, pp. 37–46,

Jan. 1982.

[30] "Adder/Subtracter," Xilinx. [Online]. Available:

https://www.xilinx.com/products/intellectual-property/adder_subtracter.html.

[Accessed: 23-Aug-2022].

[31] Harris, Charles R., et al. "Array programming with NumPy." Nature 585.7825

(2020): 357-362.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.

Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, K. Yang, Z. DeVito, M.

Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,

"PyTorch: An Imperative Style, High-Performance Deep Learning Library,"

Advances in Neural Information Processing Systems 32, 2019.

[33] Paszke, A. et al., 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Advances in Neural Information Processing Systems 32. Curran

Associates, Inc., pp. 8024–8035. Available at: http://papers.neurips.cc/paper/9015-

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[34] Wang, Shihao, et al. "Towards current-mode analog implementation of deep

neural network functions." 2022 20th IEEE Interregional NEWCAS Conference

(NEWCAS). IEEE, 2022.

38

[35] Hammad, Issam, and Kamal El-Sankary. "Practical considerations for accuracy

evaluation in sensor-based machine learning and deep learning." Sensors 19.16

(2019): 3491.

[36] Islam, Mohammad Shamim, et al. "Design of a social robot interact with artificial

intelligence by versatile control systems." IEEE Sensors Journal (2021).

[37] Haidegger, Tamás, et al. "Robot-assisted minimally invasive surgery—Surgical

robotics in the data age." Proceedings of the IEEE 110.7 (2022): 835-846.

[38] Hammad, Issam, Kamal El-Sankary, and Jason Gu. "A comparative study on

machine learning algorithms for the control of a wall following robot." 2019 IEEE

International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019.

[39] Basaklar, Toygun, et al. "Wearable devices and low-power design for smart

health applications: challenges and opportunities." 2021 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED). IEEE, 2021.

[40] Hammad, Issam, and Kamal El-Sankary. "Using machine learning for person

identification through physical activities." 2020 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE, 2020.

[41] Gültekin, Özgür, et al. "Real-time fault detection and condition monitoring for

industrial autonomous transfer vehicles utilizing edge artificial intelligence." Sensors

22.9 (2022): 3208.

[42] Hammad, Issam, et al. "Using Deep Learning to Automate the Detection of Flaws

in Nuclear Fuel Channel UT Scans." IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control 69.1 (2021): 323-329.

39

APPENDIX

1. Code of LeNet-5 Model

1. #Victor Gao
2. #LeNet-5 model implementation
3. #version 3
4. #Modified Mar-2022
5. #Electrical and Computer Enginnering-Dalhousie University
6. from NN_lib import *
7. from NN_lib import _pair
8. from config import DEVICE,LEARNING_RATE
9. from myconv2d import MYconv2d
10.
11. class Lenet5(nn.Module):
12. def __init__(self):
13. super(Lenet5,self).__init__()
14. #TODO: make test on our Conv2d, thus we make copy of all the conv

provide 2 method
15. #to able to choose which method is gonna using.
16.

self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5,stride=1)
17.

self.my_conv1=MYconv2d(in_channels=1,out_channels=6,kernel_size=5,stride=1)
18. self.pool=nn.AvgPool2d(kernel_size=2)
19.

self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1)
20.

self.my_conv2=MYconv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1
)

21. self.pool2=nn.AvgPool2d(2)
22.

self.conv3=nn.Conv2d(in_channels=16,out_channels=120,kernel_size=5,stride=1
)

23.
self.my_conv3=MYconv2d(in_channels=16,out_channels=120,kernel_size=5,stride
=1)

24. self.fc1=nn.Linear(in_features=120,out_features=84)
25. self.fc2=nn.Linear(in_features=84,out_features=10)
26. self.index=0
27. self.counter_trigger=0
28. def forward(self,x,TRIGGERed,count):
29. #if triggered run my conv2d else run nn.conv2d
30. #the nn.conv2d is to train the model and save the model
31. #the my conv2d is to test the method after we got a trained model
32. if TRIGGERed:
33. if self.counter_trigger==0:
34. print('triggered')
35. self.counter_trigger+=1
36. s1=time.time()
37. x=self.pool(F.sigmoid(self.my_conv1(x)))
38. e1=time.time()
39. s2=time.time()

40

40. x=self.pool2(F.sigmoid(self.my_conv2(x)))
41. e2=time.time()
42. print('time for conv1+pool is:',e1-s1)
43. print('time for conv2+pool is:',e2-s2)
44. x=F.sigmoid(self.my_conv3(x))
45. else:
46. if count:
47. self.index+=1
48. x=self.pool(F.sigmoid(self.conv1(x)))
49. x=self.pool2(F.sigmoid(self.conv2(x)))
50. x=F.sigmoid(self.conv3(x))
51. x = torch.flatten(x, 1)
52. x=F.sigmoid(self.fc1(x))
53. x=self.fc2(x)
54.
55. return x
56.
57. def run_Lenet5():
58. model=Lenet5().to(DEVICE)# move model to GPU
59. criterion=nn.CrossEntropyLoss()
60. optimizer=torch.optim.Adam(model.parameters(),lr=LEARNING_RATE)
61. return model,criterion,optimizer

2. Code of MYconv2d function

1. #Victor Gao
2. #LeNet-5 model implementation
3. #version 4
4. #Modified Apr-2022
5. #Electrical and Computer Enginnering-Dalhousie University
6. from NN_lib import *
7. from NN_lib import _pair
8. import glo
9. from torch.nn.common_types import _size_2_t
10. from typing import Union
11.
12. def ocupied(comb_list,d,num):
13. #find out if the num exist in comb[d]
14. if comb_list[d]:
15. for i in comb_list[d]:
16. if i ==num:
17. return True
18. return False
19. return False
20. def extract(comb,d):
21. #extract first two number as a and b, and delete them in comb list
22. a= comb[d][0]
23. del comb[d][0]
24. b=comb [d][0]
25. del comb[d][0]
26. return a,b
27. #Sort the orignal weight matrix, return Combinations
28. def sort_v2(weight,unit):#weight is a tensor
29. d,c,k,j=weight.shape

41

30. comb=[]
31. old_diff=0
32. for dd in range(d):
33. temp_weight=weight[dd]
34. temp_weight=temp_weight.reshape(c*k*j)
35. sorted_,indices=torch.sort(temp_weight,stable=True)
36. #next we are going to make sorted and indices as tuple
37. #before that its need to convert to numpy array
38. sorted_=sorted_.numpy()
39. indices=indices.numpy()
40. zipped=list(zip(sorted_,indices))
41. temp=0
42. for i in range(len(sorted_)):
43. if sorted_[i]>=0:
44. temp=i
45. break
46. neg_s=zipped[:temp]
47. pos_s=zipped[temp:]
48. #next step resort the negs part as descending
49. neg_s=sorted(neg_s,key=lambda x:x[0],reverse=True)
50. #so far we got a descending neg seq and a ascending pos seq
51. n_ptr,p_ptr,p_ptr_bound=0,0,0
52. cb1=[]
53. cb2=[]
54. while n_ptr<len(neg_s) and p_ptr<len(pos_s):#stop when n_ptr reach

the maximum
55. n_val,n_loc=neg_s[n_ptr]
56. p_val,p_loc=pos_s[p_ptr]
57. while (n_val+p_val)<=unit and p_ptr<len(pos_s):#stop when p_val

is too big or p_ptr reach the maximum
58. p_val,p_loc=pos_s[p_ptr]
59. diff = abs(n_val+p_val)
60. if diff<=unit:
61. if n_loc<p_loc:
62. cb1.append(n_loc)
63. cb2.append(p_loc)
64. else:
65. cb1.append(p_loc)
66. cb2.append(n_loc)
67. if diff>old_diff:
68. old_diff=diff
69. p_ptr_bound=p_ptr+1#set the new boundary
70. break #stop the current while loop, go find the next

combination
71. p_ptr+=1
72. n_ptr+=1
73. p_ptr=p_ptr_bound
74. #at this point the location for combinations are stored at n_comb

and p_comb
75. cb_comb=list(zip(cb1,cb2))
76. cb_comb=sorted(cb_comb,key=lambda x:x[0],reverse=False) #sort the

combinations along first element
77. cb_comb=[item for sublist in cb_comb for item in sublist]
78. comb.append(cb_comb)
79. return comb
80.
81.

42

82. #Modified from Einstein Summation
83. def vicsum_v3(inseq_after_pad,weight):#a faster version
84. n,c,h,w,k,j=inseq_after_pad.shape
85. d,_,_,_=weight.shape
86. out=torch.zeros(n,d,h,w)
87. comb=sort_v2(weight,0.5)
88. count=0
89.
90. for nn in range(n):
91. for dd in range(d):
92. for hh in range(h):
93. for ww in range(w):
94.
95. temp_inseq_list=inseq_after_pad[nn,:,hh,ww].numpy().tolist()
96. temp_inseq_list=list(chain.from_iterable(temp_inseq_list))#from

3d->2d
97. temp_inseq_list=list(chain.from_iterable(temp_inseq_list))#from

2d->1d
98. temp_weight_list=weight[dd].numpy().tolist()
99. temp_weight_list=list(chain.from_iterable(temp_weight_list))#from

3d->2d
100.

temp_weight_list=list(chain.from_iterable(temp_weight_list))#from 2d->1d
101. templist=[]
102.
103. for i in range (0,len(comb[dd]),2):
104. pos1=comb[dd][i]
105. pos2=comb[dd][i+1]
106. out[nn,dd,hh,ww]+=(temp_inseq_list[pos1]-

temp_inseq_list[pos2])*temp_weight_list[pos1]
107. glo.set_value(0,glo.get_value(0)+1)
108. glo.set_value(1,glo.get_value(1)+1)
109. glo.set_value(2,glo.get_value(2)+1)
110. templist.append(pos1)
111. templist.append(pos2)
112. counter=0
113. templist.sort()
114. for ele in templist:
115. ele=ele-counter
116. del temp_inseq_list[ele]
117. del temp_weight_list[ele]
118. counter+=1
119. ptr=0
120. while ptr<len(temp_inseq_list):
121.

out[nn,dd,hh,ww]+=temp_inseq_list[ptr]*temp_weight_list[ptr]
122. ptr+=1
123. glo.set_value(0,glo.get_value(0)+1)
124. glo.set_value(2,glo.get_value(2)+1)
125. return out
126.
127. def myconv2dv2(x,weight,bias,stride,pad):
128.
129. n,c_in,h_in,w_in=x.shape
130. d,c_w,k,j=weight.shape
131. x_pad=torch.zeros(n,c_in,h_in+2*pad[0],w_in+2*pad[0])
132. if pad[0]>0:

43

133. x_pad[:,:,pad[0]:-pad[0],pad[0]:-pad[0]]=x
134. else:
135. x_pad=x
136. #double unfold-->window sliding based on kernel size
137. x_pad=x_pad.unfold(2,k,stride[0])
138. x_pad=x_pad.unfold(3,j,stride[0])
139. n,c_in,h_in,w_in,k,j=x_pad.shape
140. out=vicsum_v3(x_pad,weight)
141. out=out+bias.view(1,-1,1,1)
142. return out
143.
144. class MYconv2d(nn.modules.conv._ConvNd):
145. def __init__(
146. self,
147. in_channels: int,
148. out_channels: int,
149. kernel_size: _size_2_t,
150. stride: _size_2_t = 1,
151. padding: Union[str, _size_2_t] = 0,
152. dilation: _size_2_t = 1,
153. groups: int = 1,
154. bias: bool = True,
155. padding_mode: str = 'zeros', # TODO: refine this type
156. device=None,
157. dtype=None
158.) -> None:
159. factory_kwargs = {'device': device, 'dtype': dtype}
160. kernel_size_ = _pair(kernel_size)
161. stride_ = _pair(stride)
162. padding_ = padding if isinstance(padding, str) else

_pair(padding)
163. dilation_ = _pair(dilation)
164. super(MYconv2d, self).__init__(
165. in_channels, out_channels, kernel_size_, stride_,

padding_, dilation_,
166. False, _pair(0), groups, bias, padding_mode,

**factory_kwargs)
167. def _conv_forward(self, input, weight, bias):
168. return

myconv2dv2(input,weight,bias,self.stride,self.padding)
169. def forward(self, input):
170. return self._conv_forward(input,self.weight,self.bias)

