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ABSTRACT 

In this thesis, a novel method to boost the performance of CNN inference 

accelerators by utilizing subtractors has been proposed. After analyzing the distribution of 

the weight, the distribution characteristic was exploited to develop this method. The 

proposed CNN preprocessing accelerator relies on sorting, grouping, and rounding the 

weights in order to create combinations that allow for the replacement of one multiplication 

operation and addition operation by a single subtraction operation. Given the high cost of 

multiplication in terms of power and area, replacing it with subtraction allows for a 

performance boost by reducing the power and area. The proposed method allows for 

controlling the trade-off between the performance gains and the accuracy loss through 

increasing or decreasing the usage of subtractors. Using a rounding size of 0.05 on LeNet-

5 with the MNIST dataset, the proposed design can achieve 32.03% power savings and a 

24.59% reduction in the area at the cost of only 0.1% in terms of accuracy loss. 
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Chapter 1 INTRODUCTION 

1.1 Motivation 

Deep learning techniques using convolutional neural networks are prevalent 

artificial neural networks, which are widely used and demonstrate effectiveness for various 

application scenarios. The Convolutional Neural Network (CNN) has existed for over two 

decades. When CNN is compared with other neural networks, for example, multiple layer 

perceptron (MLP), it uses kernel as a character extractor to process the images. In some of 

these domains, CNNs achieve better accuracy than humans [1-3]. CNNs are used in various 

applications, including real-time image reconstruction [4], human action recognition [5], 

brain tumor detection [6], and building structural damage recognition [7]. When applied in 

specific applications such as mobile devices and self-driving cars, they usually require 

repaid response while maintaining acceptable accuracy. The computational burden 

increases dramatically with the use of deeper and/or wider architectures to achieve a more 

outstanding prediction performance and accomplish a more difficult target. On the other 

hand, it also requires low or limited power consumption to maintain the target standby time. 

The popular implementation platforms of CNNs are Graphical Processing Units (GPU) and 

Tensor Processing Units (TPU). Those two hardware solutions can perform both training 

and inference with low latency and high throughput at the cost of elevated power 

consumption. However, with diverse application scenarios, especially in the extensive 

Internet of Things (IoT) market, the execution time and power consumption become critical 

issues. As a solution, the training process will be done on the cloud, and the inference part 

will be done on the embedded device, as shown in Fig.1.1[8]; meanwhile, various 



 

2 

 

accelerator and approximate methods also been applied to further improve the performance 

and reduce resource consumption. 

As shown in Fig.1.1 [8], solution (a) transmits all data (image or video) to the cloud 

to do the training and inference, whereas method (b) is only training in the cloud, and 

inference is at the local. Thus, in this thesis, we are focusing on providing a CNN 

Figure 1.1 Concerns about power consumption and recognition latency where (a) all to 

cloud and (b) do inference at local [8] 
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accelerator by preprocessing the network parameters in Fig.1.1[8] at the cloud and creating 

a corresponding modified version of convolutional operation at inference (local) to 

improve the performance of power and area savings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 

 

1.2 Contributions 

In this thesis, a Subtractor-Based CNN Inference Accelerator is presented. The 

accelerator is divided into two parts, the weights preprocessor and the modified 

convolution unit; additionally, performance analysis has also been provided. In Summary:  

1. A weights preprocessor is presented in this thesis. The preprocessing works before 

the inference. When receiving a trained model, it reads the values of the weights, 

exploits the characteristic of weights distribution to sort, approximate and generates 

new approximate weights to replace the original weights in the trained model. 

2. A modified convolution unit is implemented; it works at the inference level, reads, 

and processes the special weights combinations by adding a feature to the original 

convolution operation. 

3. Synopsys Design Compiler made the power consumption test with TSMC 65 nm 

technology. The software implementation was tested on the Google Colab platform 

with Pytorch. 
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1.3 Thesis Organization 

The thesis is organized as follows: 

1. Chapter 2 provides a background of CNN and literature reviews of the peers' works 

in related approximate computing accelerator design.  

2. Chapter 3 presents the design of our approximate accelerator 

3. Chapter 4 presents the details of the implementation, including the codes. 

4. Chapter 5 conclude the thesis and discusses future works. 
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Chapter 2 LITERATURE REVIEW 

2.1 LeNet-5 and MNIST database 

In this thesis, the LeNet-5 [9], an image recognition application that categorizes 

handwritten digits, was chosen to test, modify and perform the simulations. The simple 

structure of this model is as shown in Fig.2.1, the corresponding dataset is the MNIST 

database [10], and the samples are shown in Fig.2.2.  

The network is termed LeNet-5 since it contains five layers with learnable 

parameters. It has three sets of convolution layers with an average pooling combination. 

We have two fully connected layers after the convolution and average pooling layers. 

Finally, a Softmax classifier classifies the objects into their corresponding category. The 

input to this system is a one-channel 32x32 grayscale image. Convolution, to extract the 

characteristic of the target image, for example, the first convolution operation, applies the 

first convolution operation with a six-channel 5x5 filter to the input; it will create a six-

channel 28x28 feature map. Subsampling, also called the pooling layer, is a technique to 

reduce the reliance on precise positioning within feature maps that takes results from a 

convolutional layer, a 6-channel 28x28 feature map, through a 2x2 pooling layer. After two 

more convolutional layers and one more subsampling, it goes to a fully connected layer. 

Notice that the MNIST database images are 784 pixels or 28x28, which is different from 

the input of LeNet-5; thus, to get the MNIST images dimension meets the requirements of 
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the input layer, the images from MNIST will be padded to 32x32, where the padding is to 

add zeros to extend the original image size.   

The focus of this work is investigating the convolutional layers. Each convolutional 

layer keeps multiplying and adding, called the multiply-accumulate (MAC) operation. The 

input and output for the first convolutional layer are 32x32x1 (size of kernel x size of kernel 

Figure 2.1 Convolutions and subsamplings of LeNet-5 

Figure 2.2 Samples in MNIST datasets 
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x number of the channel) and 28x28x6, respectively, which will perform 117,600 

(28x28x5x5x5) multiplications and additions. In second and third convolutional layers are 

240,000 and 48,000, respectively. In three convolutional layers, it takes 405,600 

multiplications and additions in total. The research in [11] shows that the convolutional 

Flayer consumes the 90%-time execution time, as shown in Fig.2.3. 

The fully connected layer has three sets, from 120 to 84 to 10. The reason for ten 

nodes at the end is LeNet-5 is to recognize handwriting digits, where the numbers are from 

0 to 9; thus, the ten nodes at the end with the highest value will be the answer generated by 

the neural network. 

Achieving a more accurate prediction in CNN requires higher computational 

energy as deeper and wider architectures are utilized. Computation accuracy can be 

adequately tuned to the specific application requirements to reduce power consumption. 

0% 20% 40% 60% 80% 100%

CPU

GPU

AlexNet Inference Computational Time 

Percentage for Each Layer using GPU and CPU

conv1 relu1 pool1 norm1 conv2 relu2 pool2

norm2 conv3 relu3 conv4 conv5 fc6 fc7

Figure 2.3 AlexNet inference computational time percentage for each layer using GPU 

and CPU 
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Hence, introducing methods that can reduce the CNN computation complexity and 

therefore reduce the overall required energy is needed. Previously, several methods have 

been published which aim to reduce the CNN computation complexity; this includes 

parameters pruning [12-14], binary neural network [15-20], sparsity [21], and approximate 

multipliers [22-28]. Neural network pruning is a simple yet effective strategy for deleting 

unnecessary synapses and neurons to lower the model's size, in other words, to generate 

sparse neural networks. Binary neural networks, as a quantization method, BC [15] as the 

simplified version, simplifies the original complex convolutional operations where the 

weights only contain -1 and 1, while others may have more values. Approximate computing 

is used for such media-related systems due to their ability to tolerate error; one of the 

representative approximate computing is the approximate multiplier, such as stochastic 

computing [28], which reduces power, area, and delay where the cost is the inaccuracy. In 

the next section, we will pick several classic related methods to analyze in depth. 

2.2 Approximate Multipliers 

In [23], a flexible use of the approximate multiplier method was proposed. It first 

reviewed two popular approximate multipliers, the static segment method (SSM) and the 

dynamic segment method (DSM); those two methods accelerate CNN by manipulating the 

data structure. Later it came up with a preprocessing precision controller on inference to 

detect and predict the adequate approximate precision to choose the best segment sizes for 

the approximate multipliers. 

SSM, as its name, chooses a fixed length for segmentation. An n-bit integer number 

will be divided into static m-bits segments with k offset between the initial bits of two 
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consecutive segments. An example of SSM for a 16-bit integer number with k=4 and two 

different segment sizes where m=4 and m=8 can be found in Fig. 2.4. Notice that when 

using SSM, the start point of each 16-bit integer number is fixed, it depends on the value 

of k, and the length is determined by the value of m. The sign bit in two numbers will be 

extracted to calculate the final sign, and the original position of the sign bit will be replaced 

as zero when performing segmentation.  

Compared with SSM, the DSM has different logic in segmentation which is more 

complicated and costly. The DSM method will try to find the first non-zero bit except the 

sign bit, and then it extracts the following m-1 bits to perform multiplication. A close 

version of DSM is DRUM, which will set the last extracted bit to one, as shown in Fig.2.5. 

Figure 2.4 SSM for K=4 with m=4 and m=8.[23] 
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 Based on their studies, they found that after applying the approximate multipliers, 

the CNN's inference accuracy varies widely between image classes; certain image classes 

may achieve even higher accuracy using low-precision approximate multipliers compared 

with high-precision approximate multipliers, and for some other image classes, there is no 

difference in CNN's inference accuracy between low and high precision approximate 

multipliers. Thus, they create a small neural network that contains three 2D convolution 

layers to study this phenomenon. In the end, whenever a set of image batches tries 

classification, they will first go through this small CNN to predict the best proper choice 

of K and M to get the best precision; this process is shown in Fig 2.6. 

 

Figure 2.5 DSM for K=4 with m=4 and m=8. [23] 
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Figure 2.6 Preprocess the images with precision controller CNN [23] 
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2.3 Binary Convolutional Neural Network 

LBCNN [17] is CNNs with LBC layers. The LBC layers will approximate the non-

linearly activated response of standard convolutional layers. The module of LBCNN, as 

shown in Fig.2.7, replaces the original weight matrixes with binary matrixes. As we can 

see that the original response map was replaced by a difference map, and a bit map was 

inserted between the difference map and the feature map. The difference map is generated 

by the input image with LBC filters, where the LBC filters are predefined fixed 

convolutional filters. Then, the difference map goes through a non-linear activation 

function to produce the bit maps. Finally, the LBC layer response is generated by the bit 

maps with learnable weights. 

In [16], an accelerated platform was proposed to reduce MAC operations and 

improve overall performance. As mentioned in LBCNN, the weights are changed to binary 

numbers; thus, many zeros will exist in weights. This method exploits this particular 

structure to take advantage of sparsity to reduce memory access and total MAC operations. 

To achieve that, [16] consists of two modules, as shown in Fig.2.8 it has a weight 

preprocessor and a layer accelerator. 

Figure 2.7 Module comparison between CNN and LBCNN [17] 
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The first part of this method is a weights preprocessor or a weight encoder. As 

shown in Fig. 2.9, the matrixes first unrolling to an array, based on the position of +1 and 

-1, it extracts the distance information and starting position. In that array, the distance 

between the first non-zero bit is 4, and that bit has a value of +1, which turns into (4, +1). 

Following this logic, the original array turns into (4, +1), (3, -1), (6, -1), (5, +1), (0, 0). The 

original matrix has 3 x 9 = 27 values, after the weight preprocessor, it only has 2 x 5 = 10 

Figure 2.8 Platform overview [16] 

Figure 2.9 An example of weight preprocessing [16] 
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values, it saves 27 – 10 = 17 values.  

Since the Data structure was changed in weight preprocessing, it came up with a 

layer accelerator was used to extract the corresponding values in the input feature map, as 

shown in Fig.10.  

2.4 Sparse Analysis in CNNs 

In [21], two improvements to the traditional Systolic Array (SA) were proposed. 

The first improvement is to bring Tensor into SA to create a new microarchitecture called 

Systolic Tensor Array (STA). The STA increases intro-PE operand reuse and data path 

efficiency. Second, they used a new data format called Density-Bound Block (DBB) to 

reduce the total number of operations. 

The neural networks highly rely on large-scale matrix processors. The conventional 

CPUs are good at quick prototyping and require maximum flexibility, and miniature 

models have small batch sizes and do not need a long time to train; GPUs are good at 

medium size models; TPUs is targeting the extremely large models that need to train for 

Figure 2.10 Hardware design of the layer accelerator [16] 
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weeks or months, and the heart of the TPUs are SAs [29]. 

 

 

The basic principle of a systolic array is shown in Fig. 2.11 [30]. The advantage of 

this architecture is the Processing Elements (PEs), which are Multiply-Accumulators 

(MAC), are connected directly to each other to form a large physical matrix, as shown in 

Fig. 2.12 [21].  

Figure 2.12 Conventional systolic array ABCMN=1,1,1,1,4,4 [21] 

Figure 2.11 Basic principle of a systolic architecture [30] 
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In the SA structure, as each multiplication is executed, the result will pass to the 

next directly connected MAC as the green line, and the output results are the accumulation 

between each multiplication. 

In [21], they fuse blocks of scalar PEs into a single tensor PE, called Systolic Tensor 

Array (STA), as shown in Fig. 2.13. The STA in this example contains M x N tensor PEs, 

for each PE includes A x C MACs performing the dot-product operation on B operand 

pairs. Compared with conventional SA, the STA reduces the number of operand buffers 

per MAC by 2x and the number of accumulator buffers per MAC by 4x. 

The second contribution in [21] is to create a new sparse matrix, as shown in Fig. 

2.14 (c). CNNs' layers have sparsity in the weight data and activation data; zero in data can 

be exploited to skip the corresponding MAC operation, which can improve the 

performance of throughput and power consumption. In Fig. 2.14, (a) represents random 

Figure 2.13 Systolic tensor array ABCMN=2,4,2,2,2 [21] 
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sparse which is very difficult to exploit; (b) is block sparse, it groups zero weights into 

coarse-grained blocks, which results in low accuracy; (c) the proposed DBB, it sets an 

upper limit to the NNZ for each block, comparing with (a) and (b), the proposed method is 

a middle-ground sparse format. DBB can achieve better accuracy performance compared 

to block sparse because the distribution of NNZ is less constrained.  

They made tests on DBB and STA separately to evaluate the feasibility of each 

model. The first demonstration is for DBB with 8-Bit data under various popular CNN 

models, including VGG-16, MobileNetV1, ResNet-50V1, ConvNet, and LeNet-5 on 

ImageNet, CIFAAR10, and MNIST datasets, as shown in Table. 2.1 [21]. 

After adding support to STA for DBB, under the situation of NNZ smaller or equal 

to 4, the STA-DBB can reduce 50 percent MAC operations, where each 8-input PE only 

requires 4 MACs rather than 8. It can not only save the clock cycles but also save the area 

and power. After testing different array sizes and comparing the best performance of 

Figure 2.14 Sparse matrices: (a) random sparse; (b) 4x2 block sparse; (c) proposed 8x1 

density bound block (DBB). Blue square represents number of None-Zero (NNZ) [21] 
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different designs, the power and area efficiency results for comparison between STA-DBB 

and other techniques are shown in Table. 2.2. 

 

 

 

  

 

 

Model Dataset Baseline 

Acc. (%) 

Pruned 

Acc. (%) 

Model Result 

NNZ (%) 

LeNet-5 (DBB) MNIST 99.1 98.7 1.05K (25) 

ConvNet (DBB) CIFAR10 86.0 85.3 26.8K (25 

MobileNetV1(DBB) ImageNet 70.9 69.8 1.6M (50) 

ResNet-50V1(DBB) ImageNet 75.2 74.2 8.79M (37.5) 

VGG-16 (DBB) ImageNet  71.5 71.4 5.39M (37.5) 

AlexNet  ImageNet 57.4 57.5 2.81M (75) 

VGG-19 ImageNet - 71.8 4.1M (12.6) 

Design Model Sparsity Array Area Eff Power Eff 

SA-NGG Dense  1x1x1 0.95 0.65 

SA Dense  1x1x1 1.00 1.00 

STA Dense 4x8x4 2.08 1.36 

SMT-SA Random (62.5%) T2Q4 1.21 0.80 

STA-DBB DBB (50%) 4x8x4 3.14 1.97 

Table 2.1 CNNs training with 8-Bit length weights of DBB [21] 

Table 2.2 Throughput-Normalized area and power efficiency with 50 percent DBB at 

1GHz [21] 
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2.5 Conclusion  

At the beginning of the chapter, we first introduced the background of LetNet-5 

and its training database, MNIST. The time distribution of the CNN has also been reported, 

it shows the convolutional layer consumed over 90% of the total execution time, and the 

Convolutional layer mainly consists of MAC operation. Thus, the convolutional layer is a 

great point to start with to accelerate neural networks. 

The rest sections covered related works in a different approach. The common factor 

among those methods is manipulating the weights data structure.  

In 2.2, it uses the proposed approximate multiplier to reduce the total operations by 

discarding certain values to achieve approximate computing. Later, it came up with a 

precision preprocessor to predict precision. This section provides ideas for the 

manipulation of weights and preprocessing. 

In 2.3, it has a similar architecture to 2.2, which also contains a preprocessor. The 

difference is the preprocessor in 2.3 is targeting weights and has a corresponding MAC 

unit proposed to support the preprocessed weights' structure. By exploiting the 

characteristic of weights in BCNN, the preprocessor converts the original weights to a 

special data structure: distance + value. 

In 2.4, it reduces the operations by exploiting sparse in weights and introduces a 

new sparse block called DBB to improve further the performance of reducing MAC 

operations requirements and the efficiency of power and area.  
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Chapter 3                                 

PROPOSED ACCELERATOR 

This chapter describes the proposed accelerator. Firstly, the chapter analyzes 

weights distribution for various convolutional neural networks. The analysis shows that the 

distribution behavior can be exploited to accelerate the CNN at the inference stage. 

Secondly, the chapter provides the new accelerator design details, which include two parts: 

the weight preprocessor to preprocess the weight from a trained model; the corresponding 

modified convolutional unit that handles the manipulated weights. Thirdly, the efficiencies 

of the proposed accelerator design were evaluated in both software and hardware.  

3.1 Weight distribution analysis 

Recall the LBCNN we reviewed in section 2.3; the author described a preprocessor 

based on the characteristic of LBCNN, which is that only one NNZ exists in one weight 

matrix. When observing the weights distributions in normal CNNs such as LeNet-5, 

AlexNet, and VGG-16, as shown in Fig. 3.1-3.6, the weights are spread symmetry around 

zero, which is a normal distribution. This symmetrical distribution allows for finding 

opposite pairs of weights that can be combined. Hence, the modern FPGA design for adder 

and subtractor are commonly integrated as one module [31]; the proposed method may 

exploit this property by utilizing subtractions to replace part of additions and 

multiplications to improve the performance in terms of area and power efficiency. 

 



 

22 

 

 

 

 

Figure 3.1 Weight distribution of layer 3 in LeNet-5 

Figure 3.2 Histogram of weight distribution of layer 3 in LeNet-5 
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Figure 3.3 First convolutional layer of AlexNet 

Figure 3.4 Histogram of AlexNet first convolutional layer 
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Figure 3.5 First convolutional layer of VGG-16 

Figure 3.6 Histogram of VGG-16 First convolutional layer 
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3.2 Overview of the proposed accelerator 

This section provides an overview of the proposed method, which is summarized 

in Fig. 3.7. The top three modules are conventional CNN's architecture at the inference 

level, and the bottom two modules are the proposed accelerator. The proposed method 

contains two blocks: a weight preprocessor and a modified convolution unit. Weights 

preprocessing occurs prior to the inference stage to provide the required data structure, 

which is used in a modified convolution unit. Recall the introduction in chapter 1; Fig.1.1 

shows that modern CNNs put training at the cloud, and the user end only make inference 

that can save energy, reduce latency and protect user privacy. The preprocessor will be put 

in the cloud for further improvement in our design.  

The preprocessing process relies first on sorting the weight to split original weights 

into positive and negative lists. Secondly, the preprocessor finds all possible combinations 

based on the selected rounding step and creates a list of combined weights. Finally, it 

splices all three lists and replaces the original weight in the CNN model. 

The combined weights are executed separately at the inference level in a modified 

convolution unit. The combined weights will use a subtraction operation to replace one 

addition and one multiplication; the uncombined weights will use regular addition and 

multiplication. 

More details about the preprocessing step are presented in section 3.3, while section 

3.4 offers more information about the modified convolution unit. 
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3.3 Preprocessing of the Weights by Sorting and 

Approximation. 

In this process, the original weights will go through several steps, which include 

sortation, finding the combination, and merging, as shown in Fig.3.8. Initially, weights will 

be sorted in ascending order and then split into two lists, positive and negative lists. Since 

the weight will move around, and at the end, weights still need to find their corresponding 

inputs; thus, to save the original position information during the sorting process, the 

argsort() function in numpy[32] is used as it holds the original position information. The 

argsort() function returns the index of the list while sorting. After splitting and sorting, a 

new flag will be inserted to indicate the current weight status. In Fig. 3.8, before finding 

the combination, the flag initializes to 'U', which represents Unknown status; later, based 

on the results of finding the combination, it will change to 'N' or 'C', which means combined 

or not combined.  

Figure 3.7 Structure of the proposed accelerator (Green) 
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After sorting, the next step is to find combinations of weights. As seen from the 

Algorithms in Fig. 3.9, weights will be combined based on a selective rounding size. A 

new list will be generated that contains all the combined weights which are extracted from 

the positive and negative weight lists, plus the rest weights in the old Positive and Negative 

lists; there will be three lists after finding the combination. All three lists will be merged 

and spliced to have all the new combined weights at the top while the rest of the weights 

at the bottom, as shown in Fig. 3.8. 

 

 

 

 

Figure 3.8 Details of weight sorting and grouping 
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Figure 3.9 Algorithm of finding combinations 
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3.4 Combined weights input Convolution 

As shown in Fig. 3.7, the convention was replaced by the modified convolution, 

and the input to the modified convolution was also changed to modified weights. The 

Modified Convolution contains two types of convolution operations; one is doing 

multiplication, then addition, and one is subtraction, then multiplication. There are two 

mechanisms in the proposed convolution unit. Firstly, determine the combined and 

uncombined weights. The combination of the weights which was presented in section 3.3, 

even though the combined and uncombined weights are merged in the same weight matrix, 

the data structure contains the flag U, N, C, as Unknow Non-Combined and Combined; 

thus, the modified convolution will include a particular convolution operation to handle the 

combined weights and conventional operation to execute the Unknow and Non-Combined 

weights. Secondly, the preprocessed weights contain another flag called Location noted as 

'Loc', which is the extracted original position value generated during preprocessing to find 

the corresponding input. The proposed convolution operation allows for the utilization of 

using one subtraction as a replacement for one multiplication and one addition operation, 

as illustrated in equation (1) 

𝐼1 × 𝐾𝑎 + 𝐼2 × 𝐾𝑏  = 𝐾𝑎 × (𝐼1 − 𝐼2)      𝑖𝑓 𝐾𝑎 = −𝐾𝑏(1) 
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3.5 Simulation and Results 

The implementation in software is based on the library provided by Pytorch [33]. 

In Pytorch, it has a built-in function 'conv2d' to execute the input and weight. To simulate 

our design, we first modify the LeNet-5 model interface, as shown in Appendix 1. code of 

LeNet-5 Model line 17, 20, and 23. In these three lines, we replace the original 'nn.Conv2d' 

with 'MYconv2d'.  

Next, in function MYconv2d, we add features to execute the preprocessed weights, 

as shown in Appendix 2, MYconv2d. line 144-170. Line 28-79 in Appendix 2 is the 

sortation and find combination part; it returns the preprocessed weight data structure as the 

output shown in Fig. 3.8. Line 83-142 is the function viscum_V3. This function is modified 

based on the Einstein Summation, which is also the core function of nn.Conv2d, which 

performs GeMM  (General Matrix Multiplication). The viscum_V3 contains both 

conventional and combination convolution operations and the control logic. 

The hardware performance enhancements in terms of power and area were tested 

using a frequency of 1GHz using the Design Compiler from Synopsys with TSMC 65nm 

technology. All tested operations for multiplication, subtraction, and addition are followed 

the IEEE 758 design standard. 

Fig. 3.10 and Table 3.1 illustrates the number of additions, subtractions, and 

multiplications using different rounding size. The table shows that by increasing the 

rounding size, we can increase the total number of subtractions while reducing both 

additions and multiplications. The total number of operations is reduced with a larger step 

size. 
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Fig.3.11 shows the relationship between rounding size, power, area, and accuracy. 

The left percentage is for power and area saving, and the right is for accuracy. In Fig. 3.11, 

the accuracy drops dramatically after step size 0.05. Thus, there is a trade-off between 

power, area saving, and accuracy. Using a step size of 0.05, the power can be reduced by 

32.03%, while the area can be reduced by 24.59%, with an accuracy loss of only 0.1%. 

 

Rounding Size No. Add No. Sub No. Mul Total operations 

0 405600 0 405600 811200 

0.0001 399372 6228 399372 804972 

0.005 313545 92055 313545 719145 

0.01 288887 116713 288887 694487 

0.015 276692 128908 276692 682292 

0.02 265480 140120 265480 671080 

0.025 259789 145811 259789 665389 

0.05 242153 163447 242153 647753 

0.1 233698 171902 233698 639298 

0.15 228752 176848 228752 634352 

0.2 225988 179612 225988 631588 

0.25 223630 181970 223630 629230 

0.3 222742 182858 222742 628342 

Table 3.1 Number of additions, subtractions, and multiplications with different rounding 

sizes for LeNet-5 
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Figure 3.11 Relationship between rounding size, power, area, and accuracy performance 

Figure 3.10 Operation portion for different rounding sizes 
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Chapter 4                            

CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

In this thesis, we first performed an energy consumption analysis and found that 

the convolution operations take the most; it consumed over 90% of execution time in both 

CPU and GPU conditions. Secondly, by analyzing the weights distribution characteristic, 

we notice that the weights are normal distribution. Then, we presented a novel method for 

accelerating CNN that exploits our findings in weights distribution by replacing one 

multiplication and one addition operation with one subtraction operation. Next, we 

described how this could be achieved through weight sorting, approximation, and 

reconstruction, which allows significant performance in terms of power and area saving 

with minimal accuracy lost. The thesis also presented the trade-off that can be achieved 

between the performance enhancement and the accuracy loss based on the selected 

rounding size. In the end, we made tests based on CNN LeNet-5 and MNIST database. By 

applying our accelerator, in the case of rounding size 0.05, a power reduction of 32.03% 

and an area reduction of 24.59% can be achieved with only 0.1 % accuracy loss. The design 

allows for adjusting the trade-off between gained performance enhancements and the cost 

in terms of accuracy loss. Such improvements in reducing the power and area requirements 

are highly needed in various applications that utilizes Edge AI designs including robotic 

control, healthcare, and other industry applications [35-42]. 
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4.2 Future works 

1. Compatibility analysis. Our method only modified part of weights in convolutional 

layers based on the selection of rounding size, which means all other values remain 

the same; it has the potential to be applied after or before other methods such as 

parameters pruning and sparsity (DBB), BC and much more. Thus, it is worthful to 

find out the compatibility of our method. 

2. Feasibility analysis of acceleration methods that imitate others. There are many 

brilliant ideas to accelerate CNNs. For example, in [21], they fused blocks of scalar 

PEs into a single tensor PE which turned SA to STA to achieve performance 

improvement. In the future, we want to find out if those methods can apply to our 

accelerator to improve performance further. 
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APPENDIX 

1. Code of LeNet-5 Model 

1. #Victor Gao  
2. #LeNet-5 model implementation 
3. #version 3 
4. #Modified Mar-2022 
5. #Electrical and Computer Enginnering-Dalhousie University 
6. from NN_lib import * 
7. from NN_lib import _pair 
8. from config import DEVICE,LEARNING_RATE 
9. from myconv2d import MYconv2d 
10.  
11. class Lenet5(nn.Module): 
12.     def __init__(self): 
13.         super(Lenet5,self).__init__() 
14.         #TODO: make test on our Conv2d, thus we make copy of all the conv 

provide 2 method 
15.         #to able to choose which method is gonna using. 
16.       

self.conv1=nn.Conv2d(in_channels=1,out_channels=6,kernel_size=5,stride=1) 
17.         

self.my_conv1=MYconv2d(in_channels=1,out_channels=6,kernel_size=5,stride=1) 
18.         self.pool=nn.AvgPool2d(kernel_size=2) 
19.         

self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1) 
20.         

self.my_conv2=MYconv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1
) 

21.         self.pool2=nn.AvgPool2d(2) 
22.         

self.conv3=nn.Conv2d(in_channels=16,out_channels=120,kernel_size=5,stride=1
) 

23.         
self.my_conv3=MYconv2d(in_channels=16,out_channels=120,kernel_size=5,stride
=1) 

24.         self.fc1=nn.Linear(in_features=120,out_features=84) 
25.         self.fc2=nn.Linear(in_features=84,out_features=10) 
26.         self.index=0 
27.         self.counter_trigger=0 
28.     def forward(self,x,TRIGGERed,count): 
29.         #if triggered run my conv2d else run nn.conv2d 
30.         #the nn.conv2d is to train the model and save the model 
31.         #the my conv2d is to test the method after we got a trained model 
32.         if TRIGGERed: 
33.             if self.counter_trigger==0: 
34.                 print('triggered') 
35.             self.counter_trigger+=1 
36.             s1=time.time() 
37.             x=self.pool(F.sigmoid(self.my_conv1(x))) 
38.             e1=time.time() 
39.             s2=time.time() 
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40.             x=self.pool2(F.sigmoid(self.my_conv2(x))) 
41.             e2=time.time() 
42.             print('time for conv1+pool is:',e1-s1) 
43.             print('time for conv2+pool is:',e2-s2) 
44.             x=F.sigmoid(self.my_conv3(x)) 
45.         else: 
46.             if count: 
47.                 self.index+=1 
48.             x=self.pool(F.sigmoid(self.conv1(x))) 
49.             x=self.pool2(F.sigmoid(self.conv2(x))) 
50.             x=F.sigmoid(self.conv3(x)) 
51.         x = torch.flatten(x, 1) 
52.         x=F.sigmoid(self.fc1(x)) 
53.         x=self.fc2(x) 
54.          
55.         return x 
56.          
57. def run_Lenet5(): 
58.     model=Lenet5().to(DEVICE)# move model to GPU 
59.     criterion=nn.CrossEntropyLoss() 
60.     optimizer=torch.optim.Adam(model.parameters(),lr=LEARNING_RATE) 
61.     return model,criterion,optimizer 

 

2. Code of MYconv2d function 

1. #Victor Gao  
2. #LeNet-5 model implementation 
3. #version 4 
4. #Modified Apr-2022 
5. #Electrical and Computer Enginnering-Dalhousie University 
6. from NN_lib import * 
7. from NN_lib import _pair 
8. import glo 
9. from torch.nn.common_types import _size_2_t 
10. from typing import Union 
11.  
12. def ocupied(comb_list,d,num): 
13.     #find out if the num exist in comb[d] 
14.   if comb_list[d]: 
15.     for i in comb_list[d]: 
16.       if i ==num: 
17.         return True 
18.     return False 
19.   return False 
20. def extract(comb,d): 
21.     #extract first two number as a and b, and delete them in comb list 
22.   a= comb[d][0] 
23.   del comb[d][0] 
24.   b=comb [d][0] 
25.   del comb[d][0] 
26.   return a,b 
27. #Sort the orignal weight matrix, return Combinations 
28. def sort_v2(weight,unit):#weight is a tensor 
29.     d,c,k,j=weight.shape 
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30.     comb=[] 
31.     old_diff=0 
32.     for dd in range(d): 
33.         temp_weight=weight[dd] 
34.         temp_weight=temp_weight.reshape(c*k*j) 
35.         sorted_,indices=torch.sort(temp_weight,stable=True) 
36.         #next we are going to make sorted and indices as tuple 
37.         #before that its need to convert to numpy array 
38.         sorted_=sorted_.numpy() 
39.         indices=indices.numpy() 
40.         zipped=list(zip(sorted_,indices)) 
41.         temp=0 
42.         for i in range(len(sorted_)): 
43.             if sorted_[i]>=0: 
44.                 temp=i 
45.                 break 
46.         neg_s=zipped[:temp] 
47.         pos_s=zipped[temp:] 
48.         #next step resort the negs part as descending 
49.         neg_s=sorted(neg_s,key=lambda x:x[0],reverse=True) 
50.         #so far we got a descending neg seq and a ascending pos seq 
51.         n_ptr,p_ptr,p_ptr_bound=0,0,0 
52.         cb1=[] 
53.         cb2=[] 
54.         while n_ptr<len(neg_s) and p_ptr<len(pos_s):#stop when n_ptr reach 

the maximum 
55.             n_val,n_loc=neg_s[n_ptr] 
56.             p_val,p_loc=pos_s[p_ptr] 
57.             while (n_val+p_val)<=unit and p_ptr<len(pos_s):#stop when p_val 

is too big or p_ptr reach the maximum 
58.                 p_val,p_loc=pos_s[p_ptr] 
59.                 diff = abs(n_val+p_val) 
60.                 if diff<=unit: 
61.                     if n_loc<p_loc: 
62.                         cb1.append(n_loc) 
63.                         cb2.append(p_loc) 
64.                     else: 
65.                         cb1.append(p_loc) 
66.                         cb2.append(n_loc) 
67.                     if diff>old_diff: 
68.                         old_diff=diff 
69.                     p_ptr_bound=p_ptr+1#set the new boundary 
70.                     break #stop the current while loop, go find the next 

combination 
71.                 p_ptr+=1 
72.             n_ptr+=1 
73.             p_ptr=p_ptr_bound 
74.         #at this point the location for combinations are stored at n_comb 

and p_comb 
75.         cb_comb=list(zip(cb1,cb2)) 
76.         cb_comb=sorted(cb_comb,key=lambda x:x[0],reverse=False) #sort the 

combinations along first element 
77.         cb_comb=[item for sublist in cb_comb for item in sublist] 
78.         comb.append(cb_comb) 
79.     return comb 
80.  
81.  
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82. #Modified from Einstein Summation 
83. def vicsum_v3(inseq_after_pad,weight):#a faster version 
84.   n,c,h,w,k,j=inseq_after_pad.shape 
85.   d,_,_,_=weight.shape 
86.   out=torch.zeros(n,d,h,w) 
87.   comb=sort_v2(weight,0.5) 
88.   count=0 
89.    
90.   for nn in range(n): 
91.     for dd in range(d): 
92.       for hh in range(h): 
93.         for ww in range(w): 
94.            
95.           temp_inseq_list=inseq_after_pad[nn,:,hh,ww].numpy().tolist() 
96.           temp_inseq_list=list(chain.from_iterable(temp_inseq_list))#from 

3d->2d 
97.           temp_inseq_list=list(chain.from_iterable(temp_inseq_list))#from 

2d->1d 
98.           temp_weight_list=weight[dd].numpy().tolist() 
99.           temp_weight_list=list(chain.from_iterable(temp_weight_list))#from 

3d->2d 
100.           

temp_weight_list=list(chain.from_iterable(temp_weight_list))#from 2d->1d 
101.           templist=[] 
102.       
103.           for i in range (0,len(comb[dd]),2): 
104.             pos1=comb[dd][i] 
105.             pos2=comb[dd][i+1] 
106.             out[nn,dd,hh,ww]+=(temp_inseq_list[pos1]-

temp_inseq_list[pos2])*temp_weight_list[pos1] 
107.             glo.set_value(0,glo.get_value(0)+1) 
108.             glo.set_value(1,glo.get_value(1)+1) 
109.             glo.set_value(2,glo.get_value(2)+1) 
110.             templist.append(pos1) 
111.             templist.append(pos2) 
112.           counter=0  
113.           templist.sort() 
114.           for ele in templist: 
115.             ele=ele-counter 
116.             del temp_inseq_list[ele] 
117.             del temp_weight_list[ele] 
118.             counter+=1 
119.           ptr=0 
120.           while ptr<len(temp_inseq_list): 
121.             

out[nn,dd,hh,ww]+=temp_inseq_list[ptr]*temp_weight_list[ptr] 
122.             ptr+=1 
123.             glo.set_value(0,glo.get_value(0)+1) 
124.             glo.set_value(2,glo.get_value(2)+1)   
125.   return out 
126.  
127. def myconv2dv2(x,weight,bias,stride,pad): 
128.    
129.   n,c_in,h_in,w_in=x.shape 
130.   d,c_w,k,j=weight.shape 
131.   x_pad=torch.zeros(n,c_in,h_in+2*pad[0],w_in+2*pad[0]) 
132.   if pad[0]>0: 
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133.     x_pad[:,:,pad[0]:-pad[0],pad[0]:-pad[0]]=x 
134.   else: 
135.     x_pad=x 
136.   #double unfold-->window sliding based on kernel size 
137.   x_pad=x_pad.unfold(2,k,stride[0]) 
138.   x_pad=x_pad.unfold(3,j,stride[0]) 
139.   n,c_in,h_in,w_in,k,j=x_pad.shape 
140.   out=vicsum_v3(x_pad,weight) 
141.   out=out+bias.view(1,-1,1,1) 
142.   return out 
143.  
144. class MYconv2d(nn.modules.conv._ConvNd): 
145.     def __init__( 
146.         self, 
147.         in_channels: int, 
148.         out_channels: int, 
149.         kernel_size: _size_2_t, 
150.         stride: _size_2_t = 1, 
151.         padding: Union[str, _size_2_t] = 0, 
152.         dilation: _size_2_t = 1, 
153.         groups: int = 1, 
154.         bias: bool = True, 
155.         padding_mode: str = 'zeros',  # TODO: refine this type 
156.         device=None, 
157.         dtype=None 
158.     ) -> None: 
159.         factory_kwargs = {'device': device, 'dtype': dtype} 
160.         kernel_size_ = _pair(kernel_size) 
161.         stride_ = _pair(stride) 
162.         padding_ = padding if isinstance(padding, str) else 

_pair(padding) 
163.         dilation_ = _pair(dilation) 
164.         super(MYconv2d, self).__init__( 
165.             in_channels, out_channels, kernel_size_, stride_, 

padding_, dilation_, 
166.             False, _pair(0), groups, bias, padding_mode, 

**factory_kwargs) 
167.     def _conv_forward(self, input, weight, bias): 
168.         return 

myconv2dv2(input,weight,bias,self.stride,self.padding) 
169.     def forward(self, input): 
170.         return self._conv_forward(input,self.weight,self.bias) 

 


