
ON THE ALGEBRAIC CONNECTIVITY OF GRAPHS

by

Timothy Salamon

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

April 2022

© Copyright by Timothy Salamon, 2022

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Regular Graphs with Tree Subgraphs 6

2.1 A Generalized Upper Bound . 6

2.2 A Two Term Asymptotic Estimate 19

2.3 A Second Upper Bound . 24

Chapter 3 Algebraic Connectivity of Necklace Graphs 32

3.1 General Necklace Graphs . 33

3.2 Regular Necklace Graphs . 38

Chapter 4 Algebraic Connectivity of Path-Like Graphs 47

4.1 Hourglass Graphs . 47

4.2 Path-Like Graphs With One Middle Block 52

Chapter 5 Algorithms on Empty Graphs 56

5.1 Random Edge Addition . 56

5.2 The Achlioptas Process . 58

5.3 The Edge-Augmentation Algorithm 59

5.3.1 Random Tree Augmentation 61

5.4 Brute Force Search . 62

5.5 Comparison . 63

ii

Chapter 6 Augmentation from Graph Families 66

6.1 Starting from Random Graphs . 66

6.2 Starting from Random Regular Graphs 69

6.3 Starting from Complete Bipartite Graphs 72

Chapter 7 Edge Addition and Deletion 76

7.1 Using the Fiedler Vector . 76

7.2 Using Brute Force . 78

7.3 Combining the Fiedler Vector and Brute Force 80
7.3.1 An Improved Algebraic Connectivity 82

Chapter 8 Conclusion . 84

Bibliography . 89

Appendix A Matlab M Files . 92

A.1 Random Edge Addition . 92

A.2 The Achlioptas Process . 93

A.3 The Edge-Augmentation Algorithm 96

A.4 Brute Force Search . 97

iii

List of Tables

2.1 Upper bound values for the algebraic connectivity of d-regular
graphs containing root-connected perfect trees of height K as
subgraphs. 15

2.2 Comparison between theoretical and computed algebraic con-
nectivity in large random 10-regular graphs. 16

2.3 Minimum and maximum algebraic connectivity of quartic graphs
based on girth and order. 18

2.4 Numerical values and asymptotic estimates for the algebraic con-
nectivity of cubic graphs formed by the TK graph. 23

2.5 Upper bound values for the algebraic connectivity of cubic graphs
having level binary trees with a root of degree 3 as subgraphs. . 29

2.6 Minimum and maximum algebraic connectivity of cubic graphs
based on girth and order. 31

3.1 First term asymptotic estimates valid for the algebraic connec-
tivity of d-regular necklace graphs containing c copies ofKd+1\{u, v},
the complete graph Kd+1 with the edge {u, v} being removed. . 46

3.2 Numerical values for the algebraic connectivity of d-regular neck-
lace graphs containing c copies of Kd+1\{u, v}, the complete
graph Kd+1 with the edge {u, v} being removed, obtained from
the smallest root of equation (3.13) with k = 1. 46

4.1 Numerical values of the algebraic connectivity of odd degree d-
regular hourglass graphs and path-like graphs with one middle
block. 55

5.1 Comparison between average and maximum final algebraic con-
nectivity returned by the four algorithms on empty graphs. . . 64

6.1 Comparison between initial and final algebraic connectivity amongst
random regular graphs. 72

6.2 Comparison between initial and final algebraic connectivity amongst
complete bipartite graphs. 75

iv

8.1 Summary of algorithms increasing algebraic connectivity from
an originally empty graph. 88

v

List of Figures

2.1 The graph T3, consisting of two perfect binary trees of height 3
joined by an edge connecting their roots. 7

2.2 A cubic graph with diameter D = 3 containing the subgraph
T2 with labelled roots r1 and r2. 8

2.3 The graph T3,3 consists of two root-connected tertiary trees of
height 3. 9

2.4 The cubic graph formed by the T3 graph. 19

2.5 Behaviour of the function 1 − 2z − 2J+1z2J+2 + 2J+1z2J+1 for
J = 2, . . . , 5. Note the root at z =

√
2
2

and that the other roots

approach both 1
2
and 1 as J → ∞. 23

2.6 A root-connected binary tree with leaves on levels 2 and 3. . . 24

2.7 A level binary tree with a root of degree 3. 25

3.1 The necklace graph NK2,4 composed of 4 copies of the complete
graph K2 is a cycle of length 8. 32

3.2 The necklace graph ND,5 composed of 5 copies of the diamond
graph D. 39

3.3 Intersection points between the cubic function λ(λ − 5)2 and
the expression −2(5 − 2)(cos(2πk

6
) − 1) with n = 5, c = 6, and

k = 1, 2, 3. The orange line corresponds to k = 1 and the first
intersection point has coordinates (0.1263,3). 45

4.1 The smallest hourglass graph HK3 48

4.2 A 3-regular hourglass graph. 49

4.3 The 5-regular hourglass graph obtained by following the given
steps. 50

4.4 The cubic path-like graph with 3 blocks obtained by following
the steps. 53

5.1 Algebraic connectivity plot and degree histogram for the ran-
dom edge addition algorithm on graphs with 50 vertices and
250 final edges. 57

vi

5.2 Algebraic connectivity plot and degree histogram of the Achliop-
tas process algorithm with 60 potential edges per iteration on
graphs with 50 vertices and 250 final edges. 58

5.3 Algebraic connectivity plot and degree histogram of the stan-
dard edge-augmentation algorithm on graphs with 50 vertices
and 250 final edges. 60

5.4 Algebraic connectivity plot and degree histogram of the brute
force search algorithm with 50 vertices and 250 final edges. . . 63

5.5 Comparison between the algebraic connectivity plots from the
standard edge-augmentation algorithm, the Achlioptas process,
random edge addition, and brute force search. 65

6.1 Algebraic connectivity plot and degree histogram of the stan-
dard edge-augmentation algorithm starting from a random graph. 67

6.2 Algebraic connectivity plot and degree histogram of the stan-
dard edge-augmentation algorithm followed by random edge ad-
dition. 68

6.3 Comparison between the standard edge-augmentation algorithm,
random edge addition followed by augmentation, and augmen-
tation followed by random edge addition for graphs with 50
vertices and 250 total edges. 69

6.4 Algebraic connectivity plot and degree histogram of the stan-
dard edge-augmentation algorithm starting from a random 5-
regular graph. 70

6.5 Algebraic connectivity plots of the edge-augmentation algorithm
starting from a random 3-regular to a random 9-regular graph. 71

6.6 Algebraic connectivity plot and degree histogram of the stan-
dard edge-augmentation algorithm starting from the complete
bipartite graph K2,48. 73

6.7 Algebraic connectivity plots of the edge-augmentation algorithm
starting on the complete bipartite graphs K1,49 to K5,45. . . . 74

7.1 Algebraic connectivity plot and degree histogram of the algo-
rithm adding and deleting edges according to the Fiedler vector. 77

7.2 Algebraic connectivity plot and degree histogram of the brute
force addition and deletion algorithm. 79

vii

7.3 Algebraic connectivity plot and degree histogram of the Fiedler
vector addition and brute force deletion algorithm on graphs
with 50 vertices and 250 edges. 80

7.4 Algebraic connectivity plot and degree histogram of the brute
force addition and Fiedler vector deletion algorithm on graphs
with 50 vertices and 250 edges. 81

7.5 Comparison between the edge-augmentation algorithm, the Fiedler
vector addition and brute force deletion algorithm, and the
brute force addition and Fiedler vector deletion algorithm for
graphs with 50 vertices and 250 total edges. 83

8.1 The graph obtained by the edge-augmentation algorithm with
50 vertices and 250 edges. 87

viii

Abstract

Algebraic connectivity, or the second smallest eigenvalue of the Laplacian matrix, is a

well-studied parameter in spectral graph theory. In this thesis, we present new upper

bounds and asymptotic estimates for the algebraic connectivity of regular graphs.

They include a generalization of an upper bound given by Kolokolnikov as well as an

upper bound valid for specific cubic graphs. Furthermore, we introduce two new graph

families, which we call the necklace graphs and the hourglass graphs. We proceed

to determine the complete spectrum of general necklace graphs in terms of a matrix

involving roots of unity. We then consider a class of regular necklace graphs and

derive a first term asymptotic estimate applicable to their algebraic connectivity. We

also numerically investigate which algorithm returns graphs with the highest algebraic

connectivity amongst those with fixed order and size.

ix

Acknowledgements

I would like to express my gratitude to my co-supervisors Dr. Jeannette Janssen and

Dr. Theodore Kolokolnikov. Your guidance and support made this thesis possible. I

would also like to thank Dr. Jason Brown and Dr. David Iron for reading this thesis.

Finally, I would like to thank my mother Jarmila Kurucova. I would not be who I

am and where I am today without you.

x

Chapter 1

Introduction

Let G be a simple undirected graph with vertices v1, . . . , vn and edge set E(G). Its

adjacency matrix is defined as the n×n symmetric matrix A with entry ai,j given by

⎧⎨
⎩ai,j = 1 if there is an edge between vertex vi and vj

ai,j = 0 otherwise.

The degree matrix of G is defined as the n× n diagonal matrix D with entry di,j

given by ⎧⎨
⎩di,j = deg(vi) if i = j

di,j = 0 otherwise,

where deg(vi) denotes the degree of vertex vi. The diameter of G is the maximum

distance between any pair of vertices. The girth of G is the length of its shortest

cycle and is defined to be infinity if the graph is acyclic.

The Laplacian matrix of G, denoted by L, is defined as

L = D − A.

As A is symmetric and D is diagonal, L is a symmetric matrix. Furthermore, as its

quadratic form, given by xTLx =
∑

(i,j)∈E(G)(xi − xj)
2, is non-negative for all x =

(x1, . . . , xn)
T , L is positive-semidefinite [1]. In fact, if G is connected, its Laplacian

matrix L has an eigenvalue of 0 with corresponding eigenvector (1, . . . , 1)T [2]. Since L

is symmetric, all of its eigenvalues are real and all of its eigenvectors corresponding to

different eigenvalues are orthogonal. Notably, this implies that all other eigenvectors

must be orthogonal to (1, . . . , 1)T . In turn, the sum of their entries must be zero.

The Laplacian matrix arises naturally in relation to the diffusion process in graphs

[3]. That is, for a vector x = (x1, . . . , xn)
T denoting weight xi on vertex vi, the

quantity ai,j(xi − xj) represents the information flow from vertex vi to vertex vj

1

2

across their adjacent edge. The ith entry of Lx is then given by

(Lx)i =
∑

vj∈N(vi)

(xi − xj), (1.1)

where the sum is taken over all neighbours of vertex vi. For an eigenvalue λ of the

Laplacian such that

Lx = λx, (1.2)

we can then construct a system of equations of the form

λxi =
∑

vj∈N(vi)

(xi − xj) (1.3)

for each weight xi. In this case, the weight vector x is also an eigenvector of L.

Eigenvectors can thus be represented by an assignment of weights to the vertices of

the graph.

The algebraic connectivity of G, symbolized by λ2(G), is the second smallest eigen-

value of L. Since its introduction by Miroslav Fiedler in 1973, it has been used as a

tool to analyze the structure of graphs. That is, graphs with high algebraic connec-

tivity also have higher vertex and edge connectivity [4].

The algebraic connectivity of a graph on n vertices can also be defined using

the Rayleigh quotient [5]. That is, for a vector x = (x1, . . . , xn)
T , the algebraic

connectivity of G is given by

λ2(G) = min
x∈Rn,x⊥(1,1,...,1)T

∑
i,j∈E(G)(xi − xj)

2∑n
j=1 x

2
j

.

The Rayleigh quotient normalizes the quadratic form of the Laplacian matrix and

returns the algebraic connectivity when x is its corresponding eigenvector. These

eigenvectors are referred to as Fiedler vectors and can be used to partition graphs

based on the sign of each of their entries [6]. In particular, we note the following

lemma by de Abreu [5].

Lemma 1.0.1 Let G be a connected graph on n vertices weighted by the Fiedler

vector (x1, . . . , xn)
T . If xi �= 0 for 1 ≤ i ≤ n, then the set of all edges (i, j) for which

xi · xj < 0 forms an edge cut of G with exactly two components.

3

As the multiplicity of the zero eigenvalue of the Laplacian matrix is equal to the

number of connected components in a graph, its algebraic connectivity is greater

than zero if and only if it is connected [2]. Hence, the algebraic connectivity of a

disconnected graph is zero and this number serves as a lower bound for this parameter.

Bounds to algebraic connectivity are a subject of continual research, see [7–10].

This parameter has also been related to the matching number [11] and to the domi-

nation number [12]. Among them, vertex connectivity provides a well-known upper

bound. That is, λ2(G) ≤ κ(G), where κ(G) denotes the minimum number of vertices

needing to be removed in order to disconnect the graph [5].

Algebraic connectivity is also related to the Cheeger constant. This constant is

defined as h(G) = min |E(X,Y)|
min{|X|,|Y |} where the minimum is taken over all partitions

of the vertex set of G into non-empty sets X and Y and where E(X, Y) are the

edges between X and Y [13]. The relationship between algebraic connectivity and

the Cheeger constant is then defined through the Cheeger Inequalities [14]. Namely,

h2(G)

2Δ(G)
≤ λ2(G) ≤ 2h(G)

where Δ(G) denotes the maximum degree of G.

The Cheeger constant is studied in the context of expander graphs. These are

sparse graphs with high edge, vertex, or spectral expansion properties and with several

applications in network design, complexity theory, and theoretical computer science

[15]. Ramanujan graphs, as well as many other regular graphs, are known to make

excellent expanders [16]. For this reason, their algebraic connectivity is often of

interest.

In regular graphs, a clear relationship exists between the eigenvalues of the Lapla-

cian and the eigenvalues of the adjacency matrix. For a d-regular graph G, it is

given by λ2(G) = d − θ2(G), where θ2(G) denotes the second highest eigenvalue of

its adjacency matrix [17]. The difference between the two highest eigenvalues of the

adjacency matrix of a graph is called its spectral gap [18]. As the highest eigenvalue

of a d-regular graph is d, its algebraic connectivity is equal to its spectral gap.

Still, the value of θ2(G) for large regular graphs might not be easily obtainable.

In turn, determining their algebraic connectivity becomes difficult. Hence, most of

the research has focused on finding upper bounds for this parameter [19, 20]. In

4

particular, Kolokolnikov found an upper bound for the algebraic connectivity of a

cubic graph containing two perfect binary trees joined by an edge connecting their

roots as a subgraph [21]. In Chapter 2, we refer to these two binary trees as being

root-connected.

This thesis is divided into two parts. In the first part, we establish new upper

bounds and asymptotic estimates for the algebraic connectivity of regular graphs.

We begin by generalizing Kolokolnikov’s work on cubic graphs to hold for d-regular

graphs with specific tree subgraphs. We show that this bound is tight for some n

by providing an example of a 4-regular graph that attains it. We also explore the

relationship between algebraic connectivity and girth, showing that d-regular graphs

with the same order and higher girth also have higher algebraic connectivity.

We then proceed to derive a two term asymptotic estimate for an eigenvalue of

the Laplacian matrix of specific cubic graphs. These graphs are obtained by a specific

configuration of the leaves of their root-connected binary tree subgraph. Numerically,

we show that this asymptotic estimate applies to the graph’s algebraic connectivity.

We then consider cubic graphs with root-connected binary trees with leaves dif-

fering by one level as subgraphs. An upper bound for their algebraic connectivity,

involving the smallest root of a function on a given interval, is obtained. This bound

is also shown to be achievable for some n.

In Chapter 3, we introduce a new graph family which we call the necklace graphs.

We derive the complete spectrum of their Laplacian matrices based on the union with

multiplicity of the eigenvalues of matrices involving roots of unity. We also show that

their Fiedler vectors, and thus their algebraic connectivity, are related to the first

root of unity. We then focus our attention to a particular family of regular necklace

graphs. Their spectrum is established, as well as a first term asymptotic estimate for

one of their eigenvalues. Once again, we numerically show that the estimate applies

to their algebraic connectivity.

In Chapter 4, we build upon the work on cubic graphs done by Guiduli [22, 23]

and improved by Abdi, Ghorbani, and Imrich [24,25] following a conjecture by Babai.

Their work showed that these graphs have minimal algebraic connectivity amongst

all cubic graphs of the same order. In this chapter, we generalize the structure of the

cubic graphs to d-regular graphs with odd degree. To do so, we first define a second

5

graph family which we call the hourglass graphs. Supported by Guiduli’s work, we

conjecture that these graphs also have minimal algebraic connectivity amongst regular

graphs of the same order and degree.

The second part of this thesis begins in Chapter 5. The goal of this half of the

thesis is to determine which algorithm constructs graphs with the highest algebraic

connectivity amongst all graphs with fixed order and size. Each algorithm’s perfor-

mance is compared by the resulting graph’s algebraic connectivity as well as by its

computational complexity. The final graph’s structure in terms of degree distribution

is also of interest. All algorithms were written in MATLAB.

We begin by exploring four algorithms on initially empty graphs of order 50. One

edge is added at each iteration until a total of 250 edges is reached. Two algorithms

involve randomness, one involves the Fiedler vector, and the last one involves brute

force. The computer code for these algorithms is included in Appendix A. The fol-

lowing lemma by Fiedler [4] also guarantees that adding edges to a graph with a fixed

number of vertices can only increase its algebraic connectivity.

Lemma 1.0.2 Let G1 be a subgraph of G2 with the same set of vertices. Then

λ2(G1) ≤ λ2(G2).

In Chapter 6, we explore how the best performing algorithm of the previous chap-

ter behaves when starting on different graph families. These include random graphs,

random regular graphs, and complete bipartite graphs. The last two are known to

be algebraic connectivity maximizers under some conditions [21]. General trends as

well as specific examples are addressed.

The notion of edge deletion in the algorithms is investigated in Chapter 7. In the

two outlined methods, particular factors are chosen in order to determine both the

edges which increase algebraic connectivity the most as well as those that do so the

least. Naturally, the ones that increase it the most are added while the ones that do

so the least are deleted. The combination of these methods is also considered. The

algebraic connectivity of the graph obtained by each algorithm on originally empty

graphs is included in the form of an ordered table at the end of this thesis.

Chapter 2

Regular Graphs with Tree Subgraphs

2.1 A Generalized Upper Bound

As every connected 2-regular graph is a cycle, finding an expression for the algebraic

connectivity of this graph family would be enough to conclude this case. In fact, such

an expression is known. For a cycle Cn on n vertices, its algebraic connectivity is

given by λ2(Cn) = 2(1 − cos(2π
n
)) [5]. However, regular graphs with higher degree

cannot be represented by a single graph family. For example, both the complete

graph Kd+1 and the complete bipartite graph Kd,d are d-regular graphs. Yet, many

of their other properties, such as their order, size, and girth are different. For this

reason, we begin by considering upper bounds for the algebraic connectivity of cubic,

or 3-regular, graphs. The following bound, based on a cubic graph’s diameter, was

given by Nilli in 2004 [26]:

Lemma 2.1.1 Let G be a cubic graph with diameter D. Then an upper bound for

its algebraic connectivity is λ2(G) ≤ 3− 2
√
2 cos(2π/D).

Now, consider a graph in which two perfect binary trees of height K are joined

by an edge connecting their roots. For clarity, we define the roots r1 and r2 to be at

level 1 and the height K as one more than the distance from any leaf to its root. One

such graph, with K = 3, is shown in Figure 2.1. We denote this graph family by TK

and label its two roots by r1 and r2. Based on this structure, the following bound

was obtained by Kolokolnikov in 2014 [21]:

Lemma 2.1.2 Suppose that a cubic graph G has TK as a subgraph. Then an upper

bound for its algebraic connectivity is λ2(G) ≤ 3− 2
√
2 cos(π/K).

6

7

Figure 2.1: The graph T3, consisting of two perfect binary trees of height 3 joined by
an edge connecting their roots.

The next proposition relates the structure of TK with a cubic graph’s diameter.

Proposition 2.1.3 Let G be a cubic graph containing a TK subgraph. Then the

diameter of G is at least K.

Proof. Let TK be a subgraph of G. Then, there is a path from each leaf vertex of

the binary tree with root r1 to r2, the root of the second tree. Note that the distance

between these two vertices is K and that no shorter path is possible. If such a path

existed, then TK would contain a vertex with degree 4 which is impossible since G

is a cubic graph. Thus, if TK is a spanning subgraph of G, then D, the diameter of

G, is K. Yet, if TK is not a spanning subgraph, then G contains additional vertices

not in the vertex set of TK that may increase its diameter. Hence, the diameter of G

must be at least K.

Provided that a cubic graph has TK as a subgraph, this lemma shows that Kolokol-

nikov’s bound from Lemma 2.1.2 is an improvement on the one given by Nilli in

Lemma 2.1.1 when K ≤ D ≤ 2K. The case D = K comes directly from the fact that

cos(2π
K
) < cos(π

K
) for any K ≥ 2. We illustrate the case D > K with an example.

Consider the cubic graph in Figure 2.2, with diameter D = 3 and a clear T2 subgraph.

Using MATLAB, we found that its algebraic connectivity is equal to 0.7639. With

D = 3, Nilli’s bound results in 4.4142 while Kolokolnikov’s results in 3. Yet, note that

8

Figure 2.2: A cubic graph with diameter D = 3 containing the subgraph T2 with
labelled roots r1 and r2.

Nilli’s bound is better for cubic graphs when D > 2K. For example, the cubic graph

in Figure 3.2 has an algebraic connectivity of 0.1904, a diameter of 7, and contains a

T2 subgraph. Nilli’s bound results in 1.2365 while Kolokolnikov’s results in 3. Note

that the bounds are equal if D = 2K. Thus, Kolokolnikov’s bound is only better

when K ≤ D ≤ 2K. We now provide a necessary condition for a graph to contain

TK as a subgraph.

Lemma 2.1.4 Let G be a cubic graph. If its girth is at least 2K, then G contains

TK as a subgraph.

Proof. Let G be a cubic graph with a girth of at least 2K for some K ≥ 2. Choose

any edge and label its endpoints by r1 and r2. As G is cubic, these two vertices

are each adjacent to two other vertices. Note that r1 and r2 must be adjacent to

different vertices since the graph would otherwise have a girth of 3, which is less than

2K. If K = 2, we are done since the graph contains T2. If K > 2, then, by the

same argument, these four new vertices must each be adjacent to two other vertices.

This results in a graph with a T3 subgraph. The process terminates with a graph

containing a TK subgraph once the value of K is reached.

We now generalize Kolokolnikov’s bound to hold for any d-regular graph. To do

so, we first define Ts,K as a graph in which two perfect s-ary trees of height K are

joined by an edge connecting their roots. In the previously considered case of cubic

9

Figure 2.3: The graph T3,3 consists of two root-connected tertiary trees of height 3.

graphs, this corresponds to T2,K . Thus, we have s = d − 1 for d ≥ 3. Also note

that Ts,K has order 2(sK−1)
s−1

as it is composed of two perfect s-ary trees, each with

sK−1
s−1

vertices. The T3,3 graph, composed of two tertiary trees of height 3, is shown in

Figure 2.3. We now proceed to state and prove the main theorem of this section.

Theorem 2.1.5 Suppose that a d-regular graph G contains Ts,K as a subgraph. Then

λ2(G) ≤ d− 2
√
d− 1 cos(π/K).

Proof. Recall that an eigenvector can be represented as an assignment of weights to

the vertices of G. Furthermore, recall that all other eigenvectors must be orthogonal

to the all-ones vector (1, . . . , 1)T . We then assign weights, chosen later, to the vertices

as follows: for vertices at level k on the left tree, assign weight xk; for those at level

k on the right tree, assign weight −xk; for all other vertices, assign a weight of zero.

This is a valid choice for the eigenvector x = (x1, . . . , xn)
T since the sum of its entries

is zero and so this vector is orthogonal to the all-ones vector.

We now derive the equations needed for λxi based on equation (1.3) and the

structure of its Ts,K subgraph. We begin with r1, the left root vertex of Ts,K . Note

that this vertex is adjacent to the right root vertex r2 and to d − 1 vertices at level

2 of the left tree. By our choice of weights, the vertex r1 has weight x1, the vertex

r2 has weight −x1, and the vertices at level 2 of the left tree have weight x2. Using

these values, the equation for the root vertex r1 is then

λx1 = (x1 − (−x1)) + (d− 1)(x1 − x2). (2.1)

10

Note that r2, the right root vertex of Ts,K , is adjacent to r1 and to (d−1) vertices

at level 2 of the right tree, each with a weight of −x2. The equation for this vertex

is then

λ(−x1) = (−x1 − x1) + (d− 1)(−x1 − (−x2)).

As this equation is proportional to the one in (2.1), it may be omitted. In fact, it can

be easily checked that the equations for all vertices of the right tree are proportional

to those for the left tree by a factor of -1. We thus only derive the remaining equations

for the vertices of the left tree.

We now consider the vertices at level 2 of the left tree, each with weight x2. For

such a vertex, note that it is adjacent to its parent root vertex at level 1 with weight

x1 and to d−1 vertices at level 3 with weight x3. The equation for this vertex is then

λx2 = (x2 − x1) + (d− 1)(x2 − x3). (2.2)

Note that equation (2.2) holds for all vertices at level 2 of the left tree of Ts,K .

Furthermore, for 2 ≤ k ≤ K − 1, it can be easily checked that each vertex at level k

is adjacent to one vertex at level k − 1 and to d− 1 vertices at level k + 1. Equation

(2.2) thus generalizes to

λxk = (xk − xk−1) + (d− 1)(xk − xk+1), k = 2, . . . , K − 1. (2.3)

The remaining equation is obtained by considering the leaf vertices at level K.

This time, however, the vertices to which the leaf vertex is adjacent to are unde-

termined. Still, each leaf vertex of Ts,K must have d edges, one connecting it to its

parent with weight xK−1 while the other d− 1 connect it to either another leaf with

weight ±xK or to a vertex outside Ts,K whose weight is zero. These options give rise

to three distinct cases, which we consider separately.

Case 1 (The leaf is joined to a leaf of the same tree): Without loss of generality,

assume that both leaves have weight xK . Then, as both leaves have the same weight,

we obtain that xK − xK = 0.

Case 2 (The leaf is joined to a leaf of the other tree): In this case, we may assume

that the first leaf has weight xK and the other has weight −xK . Then, similarly to

the first case, we obtain that xK − (−xK) = 2xK .

Case 3 (The leaf is joined to a vertex outside Ts,K): Assume that the leaf has weight

11

xK . Then, as the second vertex lies outside Ts,K , it has a weight of zero. Thus, as in

the other two cases, we obtain that xK − 0 = xK .

As all three cases are possible, we note that the entries in (Lx) corresponding to

the leaf vertices are maximized when each leaf is only made adjacent to its parent

and to leaf vertices of the other tree. We refer to the graph obtained by this leaf

configuration of Ts,K by H, with corresponding matrix M and eigenvalue μ. Thus,

the leaf configuration considered in case 2 results in the equation

μxK = (xK − xK−1) + (d− 1)(xK − (−xK)). (2.4)

Note that as G and H both contain Ts,K as a subgraph, the right-hand side of

equations (2.1) and (2.3) will also apply for μx1 and μxk, respectively. We can thus

substitute μ for λ in those equations. Together with (2.4), these equations can then

be combined to create an eigenvalue problem for the algebraic connectivity of the

cubic graph G. That is, since G has higher order than H and all of its vertices not in

Ts,K have a weight of zero, λ2(G) will be bounded above by any eigenvalue μ of the

eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩
μx1 = (x1 − (−x1)) + (d− 1)(x1 − x2); (2.5)

μxk = (xk − xk−1) + (d− 1)(xk − xk+1), k = 2, . . . , K − 1; (2.6)

μxK = (xK − xK−1) + (d− 1)(xK − (−xK)) (2.7)

corresponding to the K by K tridiagonal matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d+ 1 −(d− 1)

−1 d −(d− 1)

−1
.

. . . d −(d− 1)

−1 d −(d− 1)

−1 2d− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.8)

The matrix in (2.8) was obtained by considering equations (2.5), (2.6), and (2.7)

as a system of equations. Namely, the entries in the kth row of M correspond to

the coefficients of the weights in the kth equation of the system. Now, let z be a

variable to be determined and consider the test vector z = (1, z, z2, . . . , zK−1)T . By

12

considering the equation Mz = μz, we obtain that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d+ 1 −(d− 1)

−1 d −(d− 1)

−1
.

. . . d −(d− 1)

−1 d −(d− 1)

−1 2d− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

z

z2

...

zK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= μ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

z

z2

...

zK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

which, after matrix multiplication, results in⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(d+ 1)− (d− 1)z

−1 + dz − (d− 1)z2

−z + dz2 − (d− 1)z3

...

−zK−3 + dzK−2 − (d− 1)zK−1

−zK−2 + (2d− 1)zK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ

μz

μz2

...

μzK−2

μzK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.9)

Note that equation (2.9) can also be written as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(d+ 1)− (d− 1)z

(d− (d− 1)z − 1
z
)z

(d− (d− 1)z − 1
z
)z2

...

(d− (d− 1)z − 1
z
)zK−2

−zK−2 + (2d− 1)zK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ

μz

μz2

...

μzK−2

μzK−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.10)

by factoring out z from the second to the second-to-last entry of the vector on the

left-hand side of the equation. As these entries were originally obtained from equation

(2.6), that equation is satisfied for any k = 2, . . . , K − 1 whenever

μ = d− (d− 1)z − 1

z
. (2.11)

We now derive our ansatz for the eigenvector of M . To do so, we first let μ∗ =

d− (d− 1)w − 1
w
for some w. Then, setting μ = μ∗ in (2.11), we obtain

d− (d− 1)z − 1

z
= d− (d− 1)w − 1

w
. (2.12)

13

By cancelling out d on both sides and multiplying both sides by -1, equation (2.12)

simplifies to

(d− 1)z +
1

z
= (d− 1)w +

1

w
. (2.13)

Multiplying both sides by wz and simplifying, equation (2.13) results in

(dz − z)w2 − (dz2 − z2 + 1)w + z = 0 (2.14)

whose solutions are

w+ = z and w− =
1

(d− 1)z
. (2.15)

Our ansatz for the eigenvector is then

xk = Azk +B

(
1

(d− 1)z

)k

(2.16)

for k = 1, . . . , K and non-zero A and B. Note that, for each k, this ansatz is a

combination of the solutions for w found in (2.15). Furthermore, note that equation

(2.6) may be simplified to the equation

μxk = dxk − (d− 1)xk+1 − xk−1, k = 2, . . . , K − 1. (2.17)

To find the value of z, we begin by rewriting equations (2.5) and (2.7) in terms of

equation (2.6). That is, we write equation (2.5) as

μx1 = (dx1 − (d− 1)x2 − x0) + x0 + x1

and equation (2.7) as

μxK = (dxK − (d− 1)xK+1 − xK−1)− (d− 1)xK − (d− 1)xK+1

By applying equation (2.17), these two equations reduce to

x0 + x1 = 0 and xK + xK+1 = 0 (2.18)

By (2.16), we obtain the following four equations:

x0 = A+B,

x1 = Az +B

(
1

(d− 1)z

)
,

14

xK = AzK +B

(
1

(d− 1)z

)K

,

and

xK+1 = AzK+1 +B

(
1

(d− 1)z

)K+1

.

The equations in (2.18) now become

A+B + Az +B

(
1

(d− 1)z

)
= 0

and

AzK +B

(
1

(d− 1)z

)K

+ AzK+1 +B

(
1

(d− 1)z

)K+1

= 0.

These can be rewritten as the following matrix equation

⎡
⎣ 1 + z 1 + 1

(d−1)z

zK + zK+1
(

1
(d−1)z

)K

+
(

1
(d−1)z

)K+1

⎤
⎦(

A

B

)
= 0 (2.19)

where

(
A

B

)
belongs to the kernel of the matrix. As a non-zero vector exists for which

equation (2.19) equals zero, the 2× 2 matrix must be singular with a determinant of

zero. After taking its determinant and simplifying, we obtain the polynomial

z−2K = (d− 1)K

so that z =
√

1
d−1

e
2πik
2K . The choice k = 0 corresponds to z =

√
1

d−1
and, substituting

this value of z into (2.16), results in xk = 0 for all k. To see this, note that as none

of the vertices in Tv,K were assigned a weight of x0, this weight must be zero by our

choice of weights. The equation x0 = A+B then yields A = −B, which, when applied

to equation (2.16), results in xk = 0 for all k. Although its weights sum to zero, this

vector is not allowed since the zero vector is by convention not an eigenvector. The

remaining choices are obtained by plugging in the value of z into equation (2.11).

After some simplification, this yields

μ = d−√
d− 1e

2πik
2K −√

d− 1e
−2πik
2K , k = 1, . . . , K (2.20)

or equivalently, by using the complex definition of cosine cos(θ) = eiθ+e−iθ

2
for any θ,

μ = d− 2
√
d− 1 cos

(
πk

K

)
, k = 1, . . . , K. (2.21)

15

The smallest eigenvalue amongst those in (2.21) corresponds to the choice k = 1 and

to the bound of the theorem.

Table 2.1 presents the upper bound values for d = 3, . . . , 9 and K = 2, . . . , 20. As

can be seen from the table, the value of the upper bound decreases as K increases

and d is held fixed. This is to be expected as, for large values of K, cos(π/K) tends

to 1 and the values of the bound converge to d − 2
√
d− 1. For fixed K, higher d

values have higher upper bounds since those graphs are better connected.

Numerical Values of the Generalized Bound

K
d

3 4 5 6 7 8 9

2 3 4 5 6 7 8 9
3 1.5858 2.2679 3 3.7639 4.5505 5.3543 6.1716
4 1 1.5505 2.1716 2.8377 3.5359 4.2583 5
5 0.7118 1.1975 1.7639 2.3820 3.0366 3.7191 4.4235
6 0.5505 1 1.5359 2.1270 2.7574 3.4174 4.1010
7 0.4517 0.8790 1.3961 1.9707 2.5862 3.2325 3.9034
8 0.3869 0.7996 1.3045 1.8683 2.4739 3.1113 3.7738
9 0.3422 0.7448 1.2412 1.7976 2.3965 3.0276 3.6843
10 0.3100 0.7054 1.1958 1.7468 2.3408 2.9675 3.6200
15 0.2334 0.6116 1.0874 1.6256 2.2081 2.8241 3.4668
20 0.2064 0.5786 1.0493 1.5829 2.1613 2.7736 3.4128

d− 2
√
d− 1 0.1716 0.5359 1 1.5279 2.1010 2.7085 3.3432

Table 2.1: Upper bound values for the algebraic connectivity of d-regular graphs
containing root-connected perfect trees of height K as subgraphs.

The general bound of Theorem 2.1.5, as well as Nilli’s and Kolokolnikov’s bounds

on cubic graphs, are supported by McKay’s research on the eigenvalues of the adja-

cency matrix [27]. In 1981, he found that for a fixed degree d, the second largest eigen-

value of the adjacency matrix of a d-regular graph tends to 2
√
d− 1 as the number

of vertices approaches infinity. Recall that, for a d-regular graph, λ2(G) = d− θ2(G)

where θ2(G) is the second largest eigenvalue of the adjacency matrix. Then, as ex-

pected, we obtain λ2(G) = d− 2
√
d− 1.

Using MATLAB, we can test McKay’s result on random 10-regular graphs with a

varying number of vertices in terms of percent error. The results are shown in Table

2.2, where algebraic connectivity is abbreviated as AC.

16

Based on Table 2.2, it is clear that this result is accurate for large regular graphs.

As seen in the last row, the error between the theoretical and computed algebraic

connectivity is less than one percent. However, judging from the first two rows, it is

not optimal for smaller graphs. The percent error there is greater than ten percent.

Still, this is to be expected as this bound is asymptotic. A jump in percent error

between graphs containing 100 and 500 vertices is also noteworthy.

Algebraic Connectivity of Random 10-Regular Graphs
Number of Vertices Computed AC Theoretical AC Percent Error

50 4.6495 4 16.2375
100 4.4836 4 12.09
500 4.1004 4 2.51
1000 4.0862 4 2.155
5000 4.0212 4 0.53

Table 2.2: Comparison between theoretical and computed algebraic connectivity in
large random 10-regular graphs.

Graphs whose algebraic connectivity manages to attain the bound in Theorem

2.1.5 are also of interest. In 2014, Kolokolnikov found that it is reached by four cubic

graphs, each containing a TK subgraph for some value ofK [21]. Namely, the complete

bipartite graph K3,3 attains the bound when K = 2, the Heawood graph attains it for

K = 3, the Tutte 8-cage when K = 4, and the Tutte 12-cage for K = 6. Note that no

graph was found to attain this bound when K = 5. All four graphs are (3, g)-cages,

or 3-regular graphs with girth g and minimum possible order. Cages for cubic graphs

have received considerable attention and are known for girth g = 3, . . . , 12 [28]. Yet,

for degree d > 3, several cages remain undetermined.

The algebraic connectivity of complete bipartite graphs is known to equal the

cardinality of the smallest set [5]. That is, λ2(Kb,d) = min{b, d}. In the case that

both sets have the same cardinality, λ2(Kd,d) = d and these graphs form (d, 4)-cages.

That is, d-regular graphs with girth 4 and minimum possible order. Considering that

λ2(G) ≤ d when K = 2, the bound is attained by all complete bipartite graphs of the

form Kd,d for d ≥ 3.

For larger values of K, cages are also likely to have an algebraic connectivity

which attains the value of the general bound. Indeed, they exist for any combination

of girth and degree and their high girth implies that these graphs are likely to have

17

high algebraic connectivity [29]. Yet, their order is exponential in girth regardless of

degree [30]. For a graph, this means that a small increase in the length of its smallest

cycle will result in a great increase in the number of its vertices.

In order to determine whether the bound of Theorem 2.1.5 is reached in regular

graphs with a degree higher than 3, we performed a computational search on quartic

graphs based on their girth and order. These graphs were taken from the House of

Graphs and a short program to find their algebraic connectivity was written in Maple.

The results can be found in Table 2.3, where algebraic connectivity is denoted by AC.

Note that, for d = 4, s = d − 1 = 3, and K = 3, the upper bound provides a

value of 2.2679. Our search revealed that this bound is reached by a graph of order

20 with girth 5 and by a graph of order 26 with girth 6. The first graph does not

have enough vertices to contain T3,3, but the second is indeed the (4,6)-cage. This

latter graph does contain T3,3 as a subgraph.

This table leads to some further observations. First, note that, for fixed girth,

both the minimum and maximum algebraic connectivity decrease as the number of

vertices increases. For example, on girth 3, the minimum algebraic connectivity for a

quartic graph on 7 vertices is 3 while it is 0.3081 for one on 12 vertices. On the other

hand, for a fixed number of vertices, graphs with larger girth have higher algebraic

connectivity. For example, consider all quartic graphs on 13 vertices. For those with

girth 3, their minimum algebraic connectivity is 0.2679 while for those with girth 4, it

is 1.6038. Hence, this implies a relationship between girth and algebraic connectivity.

It is also worth mentioning that some graphs in the table have equal minimum

and maximum algebraic connectivity. This is only the case when there is a unique

graph being considered. As the number of graphs grows exponentially, the table only

summarizes graphs of order 5 to 35 and of girth 3 to 6.

In the next section, we provide a two term asymptotic estimate for an eigenvalue

of the Laplacian matrix of specific cubic graphs. We then numerically show that this

estimate applies to their algebraic connectivity.

18

Algebraic Connectivity of Quartic Graphs Based on Girth and Order
Girth Order Minimum AC Maximum AC

3

5 5 5
6 4 4
7 3 3.1981
8 2 2.7639
9 1.4384 3
10 0.6278 2.5859
11 0.3542 2.4679
12 0.3081 2.4384
13 0.2679 2.3285

4

8 4 4
10 2.7639 3
11 2.6021 2.3542
12 2 3
13 1.6038 2.6228
14 1 2.5858
15 0.7458 2.3820
16 0.3542 2.4384

5

19 2.2087 2.2087
20 2 2.2679
21 1.9733 2.0743
22 1.7625 2
23 1.6232 2

6

26 2.2679 2.2679
28 2 2
30 1.7639 2
32 1.5742 2
34 1.4116 1.6972
35 1.4011 2

Table 2.3: Minimum and maximum algebraic connectivity of quartic graphs based on
girth and order.

19

2.2 A Two Term Asymptotic Estimate

As in the previous section, we consider the root-connected perfect binary tree family

TK , where K is the height of each tree. This time, however, we insist on a particular

leaf configuration. To do so, we first label the root vertex of the right subtree of the

binary tree with root r1 by u1 and the root vertex of its left subtree by v1. Similarly,

we label the root vertex of the left subtree of the binary tree with root r2 by u2 and

the root vertex of its right subtree by v2. In the configuration of interest, we only

connect the leaf vertices of the subtree with root u1 to the leaf vertices of the subtree

with root u2. Likewise, we only connect the leaf vertices of the subtree with root v1

to the leaf vertices of the subtree with root v2. We say that a cubic graph with this

configuration of the leaf vertices is formed by the TK graph. Figure 2.4 provides an

example of such a cubic graph, in this case formed by the T3 graph.

Figure 2.4: The cubic graph formed by the T3 graph.

The next theorem provides an asymptotic estimate for an eigenvalue of their

Laplacian matrix. Table 2.4 suggests that this eigenvalue is the algebraic connectivity.

Theorem 2.2.1 Let G be a cubic graph formed by the TK graph. Then its Laplacian

matrix has an eigenvalue λ such that λ ∼ 2−K(1 − 21−K) as K → ∞. That is, the

value of λ approaches 2−K(1− 21−K) for large enough K.

Proof. As an eigenvector can be represented as an assignment of weights to the

vertices of G, we assign them as follows: for the root vertices, assign weight x1 = 0;

for the root vertices of the subtrees labelled u1 and u2, assign weight x2; for the

20

vertices at level k of the binary tree consisting of these subtrees, assign weight xk; for

the root vertices of the subtrees labelled v1 and v2, assign weight −x2; for the vertices

at level k of the binary tree consisting of these subtrees, assign weight −xk. This is

a valid choice for x = (x1, . . . , xn)
T since the sum of its entries is zero and so this

vector is orthogonal to the all-ones vector.

We now derive the equations for λxi. Note that the root vertex r1 with weight x1

is adjacent to r2 also with weight x1, to the vertex u1 with weight x2, and to vertex

u2 with weight −x2. For the root vertices, we then have that

λx1 = (x1 − x1) + (x1 − x2) + (x1 − (−x2)). (2.22)

Since the root vertices have weight x1 = 0, equation (2.22) simplifies to

λ0 = (0− x2) + (0− (−x2)) (2.23)

which simply yields 0 = 0. Equation (2.22) can thus be omitted in the eigenvalue

problem in (2.27).

Next, note that the vertex labelled u1 has weight x2 and is adjacent to the root

r1 with weight 0 and to two vertices at level 3 with weight x3. Up to a factor of -1,

we can then write

λx2 = (x2 − 0) + 2(x2 − x3) (2.24)

For k = 3, . . . , K − 1, any vertex at level k with weight xk is adjacent to a parent

vertex with weight xk−1 and to two child vertices with weights xk+1. We can then

write that

λxk = (xk − xk−1) + 2(xk − xk+1), k = 3, . . . , K − 1 (2.25)

The leaf vertices with weight xK are adjacent to a parent vertex with weight xK−1

and to two other leaf vertices with weight xK . We then have that

λxK = (xK − xK−1) + 2(xK − xK) (2.26)

Equations (2.24), (2.25), and (2.26) can be combined to create the eigenvalue

problem ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λx2 = (x2 − 0) + 2(x2 − x3)

λxk = (xk − xk−1) + 2(xk − xk+1), k = 3, . . . , K − 1;

λxK = (xK − xK−1) + 2(xK − xK).

(2.27)

21

These coefficients can then be used to write the J x J matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2

−1 3 −2

−1
.

. . . 3 −2

−1 3 −2

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.28)

where J = K − 1. As before, this matrix was obtained by considering the coefficients

of the weights in the eigenvalue problem. By letting d = 3, we can note that the

second to the second-to-last rows of M are the same as those of the tridiagonal

matrix considered in (2.8) of Theorem 2.1.5. As equation (2.6) was satisfied by

μ = d− (d− 1)z − 1
z
, equation (2.25) will be satisfied by

λ = 3− 2z − 1

z
(2.29)

for some z to be determined. Our ansatz for the eigenvector will then also remain

the same. Namely, our ansatz is that

xk = Azk +B

(
1

2z

)k

(2.30)

for k = 1, . . . , K and non-zero A and B.

Letting j = k − 1, equation (2.25) may also be rewritten as

λxj = 3xj − 2xj+1 − xj−1, j = 2, . . . , J − 1. (2.31)

Then, rewriting (2.24) in terms of (2.31) yields

λx1 = (3x1 − 2x2 − x0) + x0

and rewriting (2.26) in terms of (2.31) results in

λxJ = (3xJ − 2xJ+1 − xJ−1)− 2xJ + 2xJ+1.

From (2.31), we then obtain that

x0 = 0 and xJ+1 − xJ = 0

22

Now, by (2.30), these become

A+B = 0 and AzJ+1 +B

(
1

2z

)J+1

− AzJ − B

(
1

2z

)J

= 0

As a matrix equation, these correspond to

[
1 1

zJ+1 − zJ (1
2z
)J+1 − (1

2z
)J

](
A

B

)
= 0

where

(
A

B

)
belongs to the kernel of the matrix. As a non-zero vector is in its kernel,

the 2×2 matrix must be singular with a determinant of zero. Taking its determinant,

we obtain the polynomial equation

1− 2z − 2J+1z2J+2 + 2J+1z2J+1 = 0

or, factoring out 2J+1z2J+1 from the last two terms,

1− 2z − 2J+1z2J+1(z − 1) = 0. (2.32)

As this polynomial is not further factorable, z cannot be isolated and so we use

asymptotics to further simplify it. On graphs with many levels, with large values of

J and K, Figure 2.5 shows that z approaches both 1
2
and 1. Furthermore, note that

each polynomial has a root at z =
√
2
2

corresponding to the previously mentioned

zero eigenvector obtained from letting A = −B. Also note that with K = 2, all

other values of z are complex while some of them are real for K ≥ 3. In turn, we

will see that the eigenvalue tends exponentially toward zero. We use asymptotics to

determine this decay rate.

We consider the case of z = 1− ε for some small ε > 0. Note that by substituting

z = 1− ε into equation (2.29), we obtain that

λ = ε− 2ε2 (2.33)

For z near 1, we can approximate equation (2.32) by

1− 2z − 2J+1(z − 1) ∼ 0. (2.34)

Now, substituting 1− ε in for z, equation (2.34) becomes

23

1− 2(1− ε)− 2J+1((1− ε)− 1) ∼ 0.

Once simplified, this provides

ε =
1

2J+1 + 2

and so ε ∼ 2−(J+1). As we let J = K − 1, K = J +1, and so we obtain that ε ∼ 2−K .

Using this value for ε in equation (2.33) results in λ ∼ 2−K(1− 21−K).

Figure 2.5: Behaviour of the function 1−2z−2J+1z2J+2+2J+1z2J+1 for J = 2, . . . , 5.
Note the root at z =

√
2
2

and that the other roots approach both 1
2
and 1 as J → ∞.

Numerical Values and Asymptotic Estimates for Cubic Graphs

Height (K Value) 3 4 5 6 7 8 9
Algebraic Connectivity 0.2679 0.0968 0.0403 0.0181 0.0085 0.0041 0.0020

2−K(1− 21−K) 0.0938 0.0547 0.0293 0.0151 0.0077 0.0039 0.0019

Table 2.4: Numerical values and asymptotic estimates for the algebraic connectivity
of cubic graphs formed by the TK graph.

24

The algebraic connectivity of these graphs and the two term asymptotic estimate

for different values of K are shown in Table 2.4. As can be seen in the table, the

asymptotics provide a good estimate of the algebraic connectivity for K ≥ 6. Note

that both values tend to 0.

So far, we were interested in the algebraic connectivity of regular graphs having

root-connected binary trees with the same number of levels as their subgraphs. In

the next section, we provide an upper bound for the algebraic connectivity of cubic

graphs having root-connected binary trees with trees differing by one level as their

subgraphs.

2.3 A Second Upper Bound

Root-connected binary trees may have leaves at different levels. In this section, we

focus on trees with leaves differing by one level. For example, the root-connected

binary trees in Figure 2.6 consists of a tree rooted at r1 with leaves on level 2 and a

tree rooted at r2 with leaves on level 3. Here, the roots are taken to be on level 0.

Figure 2.6: A root-connected binary tree with leaves on levels 2 and 3.

Alternatively, and as can be seen in Figure 2.7, we can describe these graphs as

level binary trees having a root of degree 3. This form can be obtained by considering

root r1 as a child of root r2. We refer to the single root by r and the roots of the three

binary subtrees by u1, u2, and u3. The height of each perfect binary tree is denoted

by K. Based on this structure, we now provide the main theorem of this section.

25

Figure 2.7: A level binary tree with a root of degree 3.

Theorem 2.3.1 Let G be a cubic graph having a level binary tree with a root of

degree 3 as a subgraph. Then λ2(G) ≤ 3 − 2
√
2 cos(t/K), where K is the height of

each tree and t is the smallest root of sin(t) +
√
2 sin

(
t+ t

K

)
in the interval

(
π
2
, π

)
.

Proof. We begin by assigning weights to each vertex of G as follows: for the root

vertex r, assign a weight of 0; for the vertices on level k, assign weight xk; for all

other vertices, assign a weight of 0. Multiply the weight of each vertex of the binary

tree with root u1 by ω̄ = e
−2πi

3 and the vertices of the binary tree with root u3 by

ω = e
2πi
3 .

We now derive the equations for λxi based on the structure of this graph. First

note that the root vertex r with weight 0 is adjacent to the vertex labelled u1 with

weight ω̄x1, the vertex labelled u2 with weight x1, and the vertex u3 with weight ωx1.

We then have that

λ0 = (0− ω̄x1) + (0− x1) + (0− ωx1). (2.35)

Equation (2.35) can be simplified to

x1 + ωx1 + ω̄x1 = 0. (2.36)

Factoring out x1 in equation (2.36), we obtain that

x1(1 + ω + ω̄) = 0 (2.37)

26

and so that either x1 = 0 or ω+ ω̄ = −1. Indeed, since we let ω = e
2πi
3 , we have that

ω + ω̄ = 2 cos(2π
3
) = −1 from the complex definition of cosine. As equation (2.35)

does not provide an equation for λ, it can be omitted from the eigenvalue problem.

Now consider any vertex at level 1 with weight x1. This vertex is adjacent to the

root vertex with weight 0 and to two vertices at level 2 with weight x2. Its equation

is then

λx1 = (x1 − 0) + 2(x1 − x2). (2.38)

The vertices at level 1 with weight ω̄x1 will have the same equation up to a factor of

ω̄. Similarly, those with weight ωx1 will also satisfy equation (2.38) up to a factor of

ω. We can thus represent all of the vertices at level 1 by equation (2.38).

Next, note that equations (2.3) and (2.25) still apply for the vertices at level

k = 2, . . . , K − 1. That is, as the vertices at these levels of the binary tree are not

adjacent to the root or to any leaves, we may write

λxk = (xk − xk−1) + 2(xk − xk+1), k = 2, . . . , K − 1 (2.39)

where the parent vertex of the one with weight xk has weight xk−1 and the two

children of the vertex with weight xk have weight xk+1.

We now consider the leaf vertices of the binary trees. By connecting each leaf

vertex to two other leaf vertices, one from each distinct tree, equation (2.40) can be

simplified to contain only real coefficients. We refer to the graph obtained by this

configuration of the leaf vertices by H, with corresponding K × K matrix M and

eigenvalue μ. The equation for this configuration of the leaf vertices is then

μxK = (xK − xK−1) + (xK − ωxK) + (xK − ω̄xK) (2.40)

as each leaf with weight xK is adjacent to a parent vertex with weight xK−1, a leaf

vertex of the subtree rooted at u3 with weight ωxK , and a leaf vertex of the subtree

rooted at u1 with weight ω̄xK . Equation (2.40) can be reduced to

μxK = (xK − xK−1) + xK(1− ω + 1− ω̄) (2.41)

by factoring out xK from the last two terms of the equation. As ω+ ω̄ = −1, equation

(2.41) can be simplified to

μxK = (xK − xK−1) + 3xK . (2.42)

27

Note that as G and H both contain the level binary trees with a root of degree

3 as a subgraph, we can substitute μ for λ in equations (2.38) and (2.39). Together

with (2.42), these three equations can be combined to create the eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩
μx1 = (x1 − 0) + 2(x1 − x2) (2.43)

μxk = (xj − xj−1) + 2(xj − xj+1), k = 2...K − 1 (2.44)

μxK = (xK − xK−1) + 3xK . (2.45)

As in the previous two proofs, we can consider equations (2.43), (2.44), and (2.45)

as a system of equations with corresponding K x K matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2

−1 3 −2

−1
.

. . . 3 −2

−1 3 −2

−1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

As the first to second-to-last rows have the same entries as the ones for the tridi-

agonal matrix in (2.28), equation (2.44) will also be satisfied by

μ = 3− 2z − 1

z
(2.46)

for some z to be determined. Furthermore, our ansatz for the eigenvector will also

remain the same. That is, we have

xk = Azk +B

(
1

2z

)k

(2.47)

for k = 1, . . . , K and non-zero A and B.

Similarly as in (2.31), equation (2.44) can be written as

μxk = 3xk − 2xk+1 − xk−1, k = 2, . . . , K − 1. (2.48)

Then, writing equation (2.43) in terms of equation (2.48), we obtain

μx1 = (3x1 − 2x2 − x0) + x0. (2.49)

Similarly, equation (2.45) can be rewritten in terms of (2.48) as

μxK = (3xK − 2xK+1 − xK−1) + xK + 2xK+1. (2.50)

28

From (2.48), we then obtain that

x0 = 0 and xK + 2xK+1 = 0. (2.51)

Now, using equation (2.47), the two equations in (2.51) can be written as

A+B = 0 and AzK +B

(
1

2z

)K

+ 2AzK+1 + 2B

(
1

2z

)K+1

= 0. (2.52)

Putting the equations in (2.52) in matrix form results in[
1 1

zK + 2zK+1 (1
2z
)K + 2(1

2z
)K+1

](
A

B

)
= 0 (2.53)

where

(
A

B

)
belongs to the kernel of the matrix. As a non-zero vector belongs in

its kernel, the 2 × 2 matrix must be singular with a determinant of zero. Taking its

determinant, we obtain the polynomial equation

1 + z − 2Kz2K+1 − 2K+1z2K+2 = 0. (2.54)

Making the substitution z =
√
2
2
eiθ and simplifying equation (2.54) yields the polyno-

mial

eKiθ − e−Kiθ −
√
2e−iθ(K+1) +

√
2eiθ(K+1) = 0 (2.55)

Letting t = Kθ in equation (2.55) results in

eti − e−ti −
√
2e−i(t+ t

K
) +

√
2ei(t+

t
K
) = 0. (2.56)

Recall that the complex definition of the sine function is given by sin(t) = eit−e−it

2i
for

any t. Equation (2.56) can then be rewritten as

sin(t) +
√
2 sin

(
t+

t

K

)
= 0. (2.57)

Note that the function in (2.57) is continuous for K > 0. For K > 1, it is also

positive for t = π
2
and negative for t = π. To see this, first recall that sin

(
t+ t

K

)
=

sin(t) cos
(

t
K

)
+cos(t) sin

(
t
K

)
by a trigonometric identity. Then, we can write equation

(2.57) as

sin(t) +
√
2

(
sin(t) cos

(
t

K

)
+ cos(t) sin

(
t

K

))
= 0. (2.58)

29

For t = π
2
, the function in (2.58) simplifies to 1 +

√
2 cos

(
π
2K

)
. This value is positive

for K ≥ 1, with 1 +
√
2 cos

(
π
2K

) ∼ 1 +
√
2 as K → ∞ and a minimum of 1 when

K = 1. For t = π, the function in (2.58) simplifies to −√
2 sin

(
π
K

)
. This value is

negative for K ≥ 1, with −√
2 sin

(
π
K

) ∼ 0 as K → ∞ and a minimum of −√
2 when

K = 2. Also note that t = π is a root when K = 1. Hence, by the Intermediate Value

Theorem, the function in (2.57) has a root in the interval (π
2
, π).

The bound is obtained after simplification by plugging in z =
√
2
2
eiθ with θ = t

K

into equation (2.46).

We have now provided an upper bound for the algebraic connectivity of cubic

graphs having level binary trees of height K with a root of degree 3 as subgraphs.

Some of the upper bound’s values are listed in Table 2.5.

Second Upper Bound Values for the Algebraic Connectivity of Cubic Graphs
Height (K Value) 2 3 4 5 6 7 8 9
Smallest Root t 2.4189 2.6242 2.7383 2.8110 2.8615 2.8985 2.9269 2.9494

Upper Bound Value 2 1.1864 0.8088 0.6069 0.4872 0.4106 0.3588 0.3221

Table 2.5: Upper bound values for the algebraic connectivity of cubic graphs having
level binary trees with a root of degree 3 as subgraphs.

When compared to the upper bound values in Table 2.1 with d = 3, we can see

that these values are only slightly lower. However, this is to be expected since these

trees can be thought of as differing by only one level.

We also note that the bound is attained by the Petersen graph when K = 2.

This graph is a (3,5)-cage and contains a level binary tree with a root of degree 3 as

a subgraph. To find that the algebraic connectivity of the Petersen graph achieves

the bound of Theorem 2.3.1, a similar computational search as was done for quartic

graphs in the first section was performed. This time, it was accomplished on cubic

graphs of order 4 to 62 and with girth 3 to 9. Its results can be found in Table 2.6.

After some examination, we conclude that the bound is not attained when K = 3.

In fact, the largest possible algebraic connectivity amongst all graphs of order 22 or

greater was 1. As the level binary tree with height 3 has order 22, any graph with

this subgraph must either have the same order or contain more vertices. This bound

is thus also unlikely to be achieved for higher values of K.

This table also confirms our observations on quartic graphs. Namely, for fixed

30

girth, both the minimum and maximum algebraic connectivity quickly decrease as

the number of vertices increases. Furthermore, as previously noted for graphs with

fixed order, those with larger girth have higher algebraic connectivity.

31

Algebraic Connectivity of Cubic Graphs Based on Girth and Order

Girth Order Minimum AC Maximum AC

3

4 4 4
6 2 2
8 0.763932 1.438447
10 0.221542 1.120614
12 0.167742 1
14 0.104893 0.885092
16 0.084042 0.822590
18 0.062022 0.763932

4

6 3 3
8 2 2
10 1 1.438447
12 0.438447 1.267949
14 0.144227 1.068732
16 0.121938 1
18 0.100085 0.903097
20 0.067316 0.845793

5

10 2 2
12 1.438447 1.467911
14 1.133802 1.289171
16 0.763932 1.172909
18 0.438447 1.043705
20 0.221543 1
22 0.082714 0.913969

6

14 1.585786 1.585786
16 1.267949 1.267949
18 1 1.267949
20 0.829914 1.064568
22 0.653484 1
24 0.438447 0.999999

7

24 0.999999 0.999999
26 0.913870 0.947370
28 0.753020 0.999999
30 0.664749 0.844084
32 0.585786 0.864221

8

30 0.999999 0.999999
34 0.785680 0.785680
36 0.737450 0.763932
38 0.646100 0.763932
40 0.585786 0.763932

9
58 0.540470 0.637660
60 0.485863 0.697224
62 0.481866 0.603671

Table 2.6: Minimum and maximum algebraic connectivity of cubic graphs based on
girth and order.

Chapter 3

Algebraic Connectivity of Necklace Graphs

We begin this chapter with the definition of a necklace graph.

Definition 3.0.1 Let G be a connected graph with two labelled vertices, say u and v.

Then the necklace graph NG,c is the graph composed of c copies of G, say G1, . . . , Gc,

with labelled vertices u1, . . . , uc and v1, . . . , vc, and where, for i = 1, . . . , c− 1, vertex

ui is made adjacent to vertex vi+1. To close the necklace, create an edge between

vertex uc and vertex v1.

As illustrated in Figure 3.1, the necklace graphs with fewest vertices are cycles of

even order. These are 2-regular graphs that contain copies of the complete graph K2.

The number of vertices in these cycles can be determined by the number of copies.

In fact, as each copy provides two vertices, the cycle’s order will be twice the number

of copies. That is, a cycle containing c copies will have order 2c. As mentioned

in Chapter 2, their algebraic connectivity is given by λ2(Cn) = 2(1 − cos(2π
n
)). In

this chapter, the first section establishes results for general necklace graphs while the

second introduces regular necklace graphs.

Figure 3.1: The necklace graph NK2,4 composed of 4 copies of the complete graph K2

is a cycle of length 8.

32

33

3.1 General Necklace Graphs

A clear relationship exists between the starting graph G and the resulting necklace

graph NG,c. In fact, the choice of G and the number of its copies determines a unique

necklace graph. That is, different starting graphs, or a different number of copies

of the same graph, create different necklace graphs. Furthermore, if G is a graph

on n vertices and with c copies, then its necklace graph will have order nc. For

example, 3 copies of a graph of order 4 will result in a necklace graph of order 12. A

relationship between their Laplacian matrices should then also exist. The following

theorem provides this correspondence.

Theorem 3.1.1 Let G be a graph with n vertices and LG be its n × n Laplacian

matrix. Let LN be the nc × nc Laplacian matrix of the necklace graph NG,c and let

ω = e
2πki
c , k = 1, . . . , c. For each k, let the n× n matrix Lω be given by

Lω = LG +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ω 0 . . . 0

−ω̄ 1 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the last matrix also has dimensions n× n. Then, λ is an eigenvalue of Lω for

some k if and only if it is an eigenvalue of LN . That is, the spectrum of LN is given

by the union with multiplicity of the spectra of Lω over all k.

Proof. For i = 1, . . . , n and j = 1, . . . , c, assign weight xi,j to the ith vertex of the

jth copy of G in the necklace graph. The vertices can be chosen in any order, provided

that each vertex labelled u is given weight x1,j, each vertex labelled v is given weight

x2,j, and the labelling of the copies is consistent. Let
(
x1, . . . , xn

)T

be an eigenvector

of Lω for some k and let λ be its corresponding eigenvalue. Then, by definition, we

have that

λ

⎛
⎜⎜⎝
x1

...

xn

⎞
⎟⎟⎠ = Lω

⎛
⎜⎜⎝
x1

...

xn

⎞
⎟⎟⎠ . (3.1)

34

Using the structure of Lω, note that equation (3.1) can be rewritten as the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λx1 =

∑
(1,e)∈E(G)(x1 − xe) + (x1 − ωx2)

λx2 =
∑

(2,f)∈E(G)(x2 − xf) + (x2 − ω̄x1)

λxi =
∑

(i,g)∈E(G)(xi − xg) for i = 3, . . . , n.

(3.2)

Our ansatz, or educated guess for the structure of the eigenvector of the Laplacian

matrix of the necklace graph, is that

xi,j = ωj−1xi (3.3)

for j = 1, . . . , c. Multiplying each equation in system (3.2) by ωj−1 yields the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ωj−1λx1 = ωj−1(

∑
(1,e)∈E(G)(x1 − xe) + (x1 − ωx2))

ωj−1λx2 = ωj−1(
∑

(2,f)∈E(G)(x2 − xf) + (x2 − ω̄x1))

ωj−1λxi = ωj−1
∑

(i,g)∈E(G)(xi,j − xg,j) for i = 3, . . . , n,

(3.4)

which, by our ansatz, is equivalent to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λx1,j =

∑
(1,e)∈E(Gj)

(x1,j − xe,j) + (x1,j − x2,j+1)

λx2,j =
∑

(2,f)∈E(Gj)
(x2,j − xf,j) + (x2,j − x1,j−1)

λxi,j =
∑

(i,g)∈E(Gj)
(xi,j − xg,j) for i = 3, . . . , n.

(3.5)

Note that, for each copy Gj in the necklace graph, vertex uj has weight x1,j

and is adjacent to vertex vj+1 with weight x2,j+1 in copy Gj+1. Furthermore, vertex

vj has weight x2,j and is adjacent to vertex uj−1 with weight x1,j−1 in copy Gj−1.

Finally, note that the vertices with weights x3,j, . . . , xn,j are only adjacent to vertices

in their own copy. Thus, for 1 ≤ j ≤ c, the system of equations in (3.5) represents

the structure of copy Gj in the necklace graph. By definition, the vertex set of the

necklace graph is the union of the vertex sets of its copies G1, . . . , Gc. Hence, the

Laplacian matrix LN can be obtained by considering the union of the equations in

system (3.5) over all values of j. It may then also be rewritten by the equation

λ

⎛
⎜⎜⎝
x1,1

...

xn,c

⎞
⎟⎟⎠ = LN

⎛
⎜⎜⎝
x1,1

...

xn,c

⎞
⎟⎟⎠ ,

35

and so λmust be an eigenvalue of LN . Furthermore, the weight vector (x1,1, . . . , xn,c)
T

consisting of the weights of all vertices in the necklace graph must be an eigenvector.

We now prove the converse. That is, suppose that λ is an eigenvalue of LN . From

the first part, we know that the eigenvalues of Lω for some k are also eigenvalues of

LN . As each Lω matrix has dimensions n×n and there are c distinct Lω matrices, one

for each value of k, there are precisely nc eigenvalues in the union with multiplicity of

the spectra of Lω over all k. As the spectrum of LN also has nc eigenvalues, λ must

be an eigenvalue of Lω for some k.

This concept is particularly useful when considering necklaces with many copies.

As each copy contributes n eigenvalues, the necklace graph will contain nc eigenvalues

in total while Lω will only contain n for each k. Thus, considering those of Lω itself

may be more efficient when determining the eigenvalues of necklace graphs. Under

certain conditions, we now show that the eigenvector formed by ansatz (3.3) is indeed

a Fiedler vector. To do so, we refer back to Lemma 1.0.1.

By this lemma, an eigenvector which partitions a graph into two blocks and which

contains only non-zero components might be a Fiedler vector. Furthermore, we can

use its contrapositive to prove that all other eigenvectors are not Fiedler vectors.

That is, if an eigenvector contains only non-zero entries and separates the graph into

more than two blocks, then it is not a Fiedler vector. Thus, as the second smallest

eigenvalue of the Laplacian matrix is unique up to multiplicity, the first eigenvector

must indeed be a Fiedler vector. We now introduce the second theorem of this section.

Theorem 3.1.2 Let G be a connected graph of order n and let NG,c be its necklace

graph with c copies. Let xi,j denote the weight of the ith vertex, 1 ≤ i ≤ n, of the

jth copy, 1 ≤ j ≤ c, of G. Furthermore, let ω = e
2πki
c , k = 1, . . . , c, denote a cth

root of unity. Finally, let (x1, . . . , xn)
T be an eigenvector of the previously defined Lω

matrix such that xi > 0 for all i. If xi,j = ωj−1xi and k = 1, then the eigenvector Φω

composed of these entries is a Fiedler vector.

Proof. As the vertices of each copy are multiplied by the same power of ω, we may

write the eigenvector of the necklace graph as

Φω =
(
x1 . . . xn ωx1 . . . ωxn . . . ωc−1x1 . . . ωc−1xn

)T

.

36

Note that this eigenvector is complex as it contains a root of unity. As complex

eigenvectors come in conjugate pairs, the eigenvector associated with ω̄, which we

denote by Φω̄, is also an eigenvector. Now, recall that all of the eigenvalues of the

Laplacian matrix are real. This implies that Φω and Φω̄ are eigenvectors for the

same real eigenvalue. Then, their sum, Φ = Φω + Φω̄, is a linear combination of two

eigenvectors in the same eigenspace and thus also an eigenvector. For this eigenvector,

observe that

Φ =
(
2x1 . . . 2xn . . . 2 cos(2πk(c−1)

c
)x1 . . . 2 cos(2πk(c−1)

c
)xn

)T

and that each repetition of x1, . . . , xn in the vector represents a distinct copy in the

necklace graph. We may thus represent each copy by

Φj = 2
(
x1 cos(

2πk(j−1)
c

) . . . xn cos(
2πk(j−1)

c
)
)

for j = 1, . . . , c.

The component of Φ corresponding to vertex i in copy j can then also be represented

by

Φi,j = 2xi cos

(
2πk(j − 1)

c

)
.

As all of the xi’s are positive, the sequence of Φi,j’s in Φ changes sign if and only

if cos(2πk(j−1)
c

) does. Furthermore, as all of the xi’s are non-zero, Φi,j equals zero if

and only if cos(2πk(j−1)
c

) = 0. This occurs when

j =
c+ 4k

4k
+

ct

2k
(3.6)

for some t = 0, . . . , 2k − 1 and can be obtained by setting 2πk(j−1)
c

= π
2
+ πt.

Now, recall that j must be a natural number since it represents the index of a copy

in the necklace graph. For k = 1, the sequence of Φi,j’s changes sign twice. Namely, for

t = 0 and t = 1, it changes from being positive when j = 1, . . . , 	 c+4
4

 to being negative

when j = � c+4
4
�, . . . , 	 c+4

4
+ c

2

 to being positive again when j = � c+4

4
+ c

2
�, . . . , c.

Together, these values of j partition the necklace graph into exactly two blocks. The

first block consists of the positive values of cosine while the second consists of its

negative values. For k ≥ 2, cos(2πk(j−1)
c

) changes sign more than twice and thus Φ

partitions the necklace graph into more than 2 blocks.

Note that if k = 1 and c is a multiple of 4, equation (3.6) results in integer values

for j for which Φi,j = 0. Namely, if c = 4p for some natural number p, then equation

37

(3.6) reduces to the cases j = (p+ 1) for t = 0 and j = 3p+ 1 for t = 1. In this case,

Φ would contain some zero entries and by Lemma 1.0.1 may not separate the graph

into two blocks. Thus, it may not be the Fiedler vector. In all other cases, Φ contains

only non-zero entries and thus the choice k = 1 corresponds to the Fiedler vector.

In the case that c is a multiple of 4, we begin by considering the linear combination

Φ̂ = Φω − Φω̄. In this case, we obtain the vector

Φ̂ =
(
2x1 . . . 2xn . . . 2 sin(2πk(c−1)

c
)x1 . . . 2 sin(2πk(c−1)

c
)xn

)T

and so that

Φ̂i,j = 2xi sin

(
2πk(j − 1)

c

)
for i = 1, . . . , n and j = 1, . . . , c.

Like before, the structure of Φ̂ only depends on the expression sin(2πk(j−1)
c

). This

time, we obtain that sin(2πk(j−1)
c

) = 0 if and only if

j =
ct+ 2k

2k

for t = 0, . . . , 2k − 1 by setting 2πk(j−1)
c

= πt.

By a similar argument, the choice k = 1 for Φ̂ results in a Fiedler vector if and

only if c is not a multiple of 2. Yet, Φi,j and Φ̂i,j are never equal to zero for the same

value of j. To see this, note that

c+ 4k

4k
+

ct

2k
=

ct+ 2k

2k

if and only if c = 0, which is impossible since c denotes the number of copies in the

necklace graph. Thus, we may shift each entry in Φ by some small ε > 0 to get the

linear combination Φ∗ = Φ+ εΦ̂.

As ε is small, the signs in the sequence of Φ∗
i,j’s in Φ∗ will mostly depend on

the value of cos(2πk(j−1)
c

). Furthermore, no previously non-zero entry will become

zero for small enough ε. This adjustment thus results in an eigenvector with all

non-zero entries partitioning the necklace graph into exactly two blocks when k = 1

regardless of the number of copies. Thus, as it was obtained by a linear combination

of eigenvectors in the same eigenspace, this vector is also a Fiedler vector for k = 1.

38

Note that it may be written as Φ∗ = (1 + ε)Φω + (1− ε)Φω̄ and thus Φω and Φω̄ are

Fiedler vectors for k = 1 as well.

Combined with Theorem 3.1.1, this theorem allows us to quickly determine the

algebraic connectivity of any necklace graph. That is, since its Fiedler vector corre-

sponds to the choice k = 1, its algebraic connectivity will be equal to the smallest

eigenvalue of the n× n matrix Lω with k = 1. Furthermore, the zero eigenvalue can

be obtained by the smallest eigenvalue of Lω with k = c. This comes directly from

the fact that ω = 1 when k = c and so that Lω is the Laplacian matrix of the graph

G+ e. Regular necklace graphs are introduced in the next section.

3.2 Regular Necklace Graphs

We define a d-regular necklace graph as being a necklace graph in which every vertex

has degree d. These graphs can be constructed from c copies of d-regular graphs with

one edge fewer, namely the edge {ui, vi} for i = 1, . . . , c. By omitting this edge, every

other vertex has degree d while the vertices u and v have degree d− 1. Nevertheless,

as these vertices are made adjacent to vertices in other copies to form the necklace

graph, the resulting necklace graph is d-regular. We now propose a family of regular

necklace graphs, which can be obtained by following these steps:

1. Begin with c copies of the complete graph Kd−1.

2. For each copy, create two new vertices labelled u and v.

3. Join the newly created vertices to each vertex of Kd−1.

4. Create the necklace graph by following the definition.

In this family, necklaces are composed of copies of Kd+1\{u, v}. That is, of com-

plete graphs on d + 1 vertices with the edge {u, v} being removed. For example,

consider the diamond graph D obtained from the complete graph K4 by removing

an edge. Figure 3.2 illustrates the diamond necklace graph ND,5 with 5 copies. Note

that this graph is indeed 3-regular. Furthermore, cycles of order 3c can be obtained

by considering copies of K3\{u, v}.

39

Figure 3.2: The necklace graph ND,5 composed of 5 copies of the diamond graph D.

The next theorem provides the complete spectrum of their Laplacian matrix.

Theorem 3.2.1 Let G = Kd+1\{u, v} be a graph of order n = d+1 and let NG,c be its

d-regular necklace graph with c copies. Also, let ω = e
2πki
c for k = 1, . . . , c. Then, the

spectrum of the Laplacian matrix LN consists of an eigenvalue of n with multiplicity

(n−3)c and of the 3c roots of the family of polynomials λ(λ−n)2+2(n−2)(cos(2πk
c
)−1),

with 3 roots for each value of k.

Proof. From Theorem 3.1.1, the spectrum of LN is the same as the union with

multiplicity of the eigenvalues of Lω, ω = e
2πki
c , over all k = 1, . . . , c. Thus, we

begin by determining the eigenvalues of Lω for some k. In this case, this matrix has

dimensions n× n and can be written as follows:

Lω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d −ω −1 −1 . . . −1

−ω̄ d −1 −1 . . . −1

−1 −1 d −1 . . . −1

−1 −1 −1
.

...
...

...
...

...
. . . −1

−1 −1 −1 . . . −1 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We first show that this matrix contains an eigenvalue of n with multiplicity (n− 3).

Our ansatz for the eigenvector is as follows: for the vertices labelled u and v, assign

a weight of zero; for all other vertices, assign different weights, say x3, . . . , xn, such

40

that x3 + · · · + xn = 0. Note that this is an equation in (n − 2) variables which has

(n− 3) independent solutions of the form x3 = −1, xi = 1 for some i, 4 ≤ i ≤ n, and

0 otherwise. We refer to these vectors by νi and show that they all correspond to an

eigenvalue of n. Recall that to be an eigenvalue of Lω, λ must satisfy the equation

Lωνi = λνi. (3.7)

In other words, we have that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d −ω −1 −1 . . . −1

−ω̄ d −1 −1 . . . −1

−1 −1 d −1 . . . −1

−1 −1 −1
.

...
...

...
...

...
. . . −1

−1 −1 −1 . . . −1 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−1

0
...

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−1

0
...

0

1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.8)

where νi has a value of 1 in entry i. Then, equation (3.9) reduces to⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−(d+ 1)

0
...

0

d+ 1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−λ

0
...

0

λ

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

so that λ = d + 1. Hence, as d + 1 = n, λ = n regardless of the choice of i. As

(n − 3) independent eigenvectors have this structure, Lω contains an eigenvalue of

41

n with multiplicity (n − 3). Hence, as LN consists of c copies of G, it contains an

eigenvalue of n with multiplicity (n− 3)c.

We now show that the spectrum of LN also contains the 3c roots of the family of

polynomials λ(λ − n)2 + 2(n − 2)(cos(2πk
c
) − 1) over all k. Our second ansatz is as

follows: for the vertex labelled u, assign weight x1; for the vertex labelled v, assign

weight x2; for all other vertices in G, assign the same weight, say x3. Since any

eigenvalue must satisfy equation (3.8), we have that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d −ω −1 −1 . . . −1

−ω̄ d −1 −1 . . . −1

−1 −1 d −1 . . . −1

−1 −1 −1
.

...
...

...
...

...
. . . −1

−1 −1 −1 . . . −1 d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.9)

Equation (3.10) can then be represented by the system of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λx1 = dx1 − ωx2 − (d− 1)x3

λx2 = −ω̄x1 + dx2 − (d− 1)x3

λx3 = −x1 − x2 + (d− (n− 3))x3

(3.10)

where, using the fact that n = d + 1, the equation for λx3 can be simplified to

λx3 = −x1−x2+2x3. Thus, λ is an eigenvalue of Lω if and only if it is an eigenvalue

of the 3× 3 reduced matrix

LR =

⎡
⎢⎢⎣

d −ω −(d− 1)

−ω̄ d −(d− 1)

−1 −1 2

⎤
⎥⎥⎦ .

The exact values of x1, x2, and x3 can also be determined from the system of

equations ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(d− λ)x1 − ωx2 − (d− 1)x3 = 0

−ω̄x1 + (d− λ)x2 − (d− 1)x3 = 0

−x1 + x2 + (2− λ)x3 = 0.

(3.11)

42

Through some algebra, it can be checked that this system yields⎛
⎜⎜⎝
x1

x2

x3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
(2− λ)− d−1+2ω̄−ω̄λ

ω̄+d−λ

d−1+2ω̄−ω̄λ
ω̄+d−λ

1

⎞
⎟⎟⎠ .

To find an expression for λ, we now treat this problem as a standard eigenvalue

problem. The characteristic polynomial of LR is given by

λ3 − 2(d+ 1)λ2 + (d2 + 2d+ 1)λ+ (d− 1)ω + (d− 1)ω̄ − 2(d− 1)

and, by factoring and using the complex cosine definition, can be rewritten as

λ(λ− (d+ 1))2 + 2(d− 1)(cos

(
2πk

c

)
− 1). (3.12)

This corresponds to a family of polynomials having a total of 3c roots, with 3 roots

for each value of k. As n = d+ 1, we can rewrite it as

λ(λ− n)2 + 2(n− 2)(cos

(
2πk

c

)
− 1). (3.13)

From our results on general necklace graphs, we now show that the algebraic

connectivity of this family of regular necklace graphs corresponds to the smallest

root of equation (3.14) with k = 1. Furthermore, we provide a first term asymptotic

estimate for an eigenvalue of these necklace graphs based on the number of copies. We

then numerically show that this estimate is applicable to their algebraic connectivity.

Corollary 3.2.2 Let G = Kd+1\{u, v} be a graph of order n and let NG,c be its d-

regular necklace graph with c copies. Then its algebraic connectivity corresponds to

the smallest root of λ(λ − n)2 + 2(n − 2)(cos
(
2π
c

) − 1). Furthermore, the Laplacian

matrix of NG,c has an eigenvalue λ such that λ = 4(d−1)π2

(d+1)2c2
+O(1

c4
).

Proof. We first show that the algebraic connectivity is given by the smallest root

of the polynomial

λ(λ− n)2 + 2(n− 2)(cos

(
2π

c

)
− 1), (3.14)

43

corresponding to the expression in (3.14) with k = 1. Note that finding the roots of

this expression is equivalent to finding the intersection points of the equation

λ(λ− n)2 = −2(n− 2)(cos

(
2πk

c

)
− 1). (3.15)

We first note the properties of λ(λ − n)2 by considering it as a function of λ.

This function is a cubic polynomial with three roots, a single root at λ = 0 and a

double root at λ = n. Its derivative is given by (λ− n)2 +2λ(λ− n), whose roots are

λ = n
3
and λ = n. For λ > 0, this cubic is increasing for 0 < λ < n

3
, decreasing for

n
3
< λ < n, and increasing again for λ > n. It thus has a local maximum of 4n3

27
at

λ = n
3
and a local minimum of 0 at λ = n.

As it does not depend on λ and the values of n and c are fixed by the necklace

graph, we consider the expression −2(n− 2)(cos(2πk
c
)− 1) as a sequence of constants

depending only on the value of k. As sequences are restrictions of differentiable func-

tions to the natural numbers, we consider the function f(λ) = −2(n−2)(cos(2πλ
c
)−1).

Its derivative is given by 4π(n−2)
c

sin(2πλ
c
) and has roots at every multiple of λ = c

2

and λ = c. On the interval [0, c], f(λ) is increasing for 0 < λ < c
2
and decreasing

for c
2
< λ < c. It hence has a maximum of 4n − 8 at λ = c

2
and a minimum of 0

at λ = c. The sequence, in k, then has the same maximum and minimum values.

It is also increasing for k = 1, . . . , c
2
and decreasing for k = c

2
, . . . , c. However, note

that c must be even for k to be a natural number. If c is odd, then the sequence is

increasing for k = 1, . . . , 	 c
2

, constant for k = 	 c

2

 and k = � c

2
�, and decreasing for

k = � c
2
�, . . . , c. In either case, the sequence is increasing for k = 1, . . . , 	 c

2

.

Note that the cubic polynomial is increasing from 0 to 4n3

27
on the interval [0, n

3
]

as well. As the sequence of constants is bounded below by 0 and above by 4n− 8, we

have that 0 ≤ −2(n−2)(cos(2πk
c
)−1) ≤ 4n−8 for any k = 1, . . . , c. Furthermore, for

all n, we have that 4n3

27
≥ 4n−8 where equality is reached for n = 3. The existence of

an intersection point is then guaranteed by the Intermediate Value Theorem. That

is, since λ(λ− n)2 is continuous on [0, n] and 0 ≤ −2(n− 2)(cos(2πk
c
)− 1) ≤ 4n3

27
for

all k, there is a λk ∈ [0, n] such that λk = −2(n− 2)(cos(2πk
c
)− 1).

As the sequence is increasing for k = 1, . . . , 	 c
2

, the smallest non-zero intersection

point corresponds to the choice k = 1. Thus, the algebraic connectivity corresponds

to the smallest root of equation (3.15).

44

We now derive the first-term asymptotic expansion for λ, an eigenvalue of the

Laplacian matrix of the necklace graph corresponding to k = 1. Recall that the

Taylor series for cosine is given by cos(x) = 1 − 1
2
x2 + O(x4). Then, cos(2π

c
) − 1 =

(1 − 1
2
(2π

c
)2 + O(1

c4
)) − 1 = −2π2

c2
+ O(1

c4
). Using this together with equation (3.13)

yields

λ(λ− (d+ 1))2 =
4(d− 1)π2

c2
+O

(
1

c4

)

Temporarily dropping the O(1
c4
) term and letting λ = λ0

c2
results in the first term

asymptotic expansion

λ0

c2
(
λ0

c2
− (d+ 1))2 =

4(d− 1)π2

c2

so that
(d+ 1)2

c2
λ0 =

4(d− 1)π2

c2

and

λ0 =
4(d− 1)π2

(d+ 1)2
.

Hence, after reinserting the O(1
c4
) term,

λ =
4(d− 1)π2

(d+ 1)2c2
+O

(
1

c4

)

and the equality is obtained.

Figure 3.3 provides an example illustrating that the algebraic connectivity cor-

responds to the smallest root of equation (3.15) with k = 1. Note that this choice

is represented by the orange line and that this line is the first to intersect the cubic

function. Furthermore, for even c, there are 3c
2
intersection points, each corresponding

to a distinct eigenvalue of the necklace graph. The choice k = c
2
corresponds to three

unique eigenvalues while the remaining eigenvalues are repeated when the sequence

of constants is decreasing. The roots of the polynomial are also eigenvalues corre-

sponding to the choice k = c. For odd c, there are 3(c−1)
2

such points. The remaining

3 intersections points are repeats of the case k = 	 c
2

. Thus, all non-zero eigenvalues

corresponding to the x values of the intersection points have a multiplicity of 2.

45

Figure 3.3: Intersection points between the cubic function λ(λ−5)2 and the expression
−2(5−2)(cos(2πk

6
)−1) with n = 5, c = 6, and k = 1, 2, 3. The orange line corresponds

to k = 1 and the first intersection point has coordinates (0.1263,3).

Table 3.1 lists the first term asymptotic estimates for an eigenvalue of the Lapla-

cian matrix of d-regular necklace graphs formed by c copies of the graph Kd+1\{u, v}.
Note that, when compared to the actual algebraic connectivity values in Table 3.2,

these asymptotic estimates are overapproximations. Furthermore, necklace graphs

with few copies will have significantly lower algebraic connectivity than given by these

first term estimates. Also note that their algebraic connectivity decreases regardless

of whether the number of copies or the regularity of the graph is increased.

As a final observation, note that necklace graphs contain cycle subgraphs. In

particular, the d-regular necklace graphs studied in this section contain spanning cycle

subgraphs of order (d + 1)c, where c denotes the number of copies of Kd+1\{u, v}.
By Lemma 1.0.2, their algebraic connectivity will be bounded below by the algebraic

connectivity of their cycle subgraphs, given by λ2(C(d+1)c) = 2(1− cos(2π
(d+1)c

)).

46

First Term Asymptotic Estimates for Regular Necklace Graphs

c
d

3 4 5 6 7 8 9 10

2 1.2337 1.1844 1.0966 1.0071 0.9253 0.8529 0.7896 0.7341
3 0.5483 0.5264 0.4874 0.4476 0.4112 0.3791 0.3509 0.3263
4 0.3084 0.2961 0.2742 0.2518 0.2313 0.2132 0.1974 0.1835
5 0.1974 0.1895 0.1755 0.1611 0.1480 0.1365 0.1263 0.1175
6 0.1371 0.1316 0.1218 0.1119 0.1028 0.0948 0.0877 0.0816
7 0.1007 0.0967 0.0895 0.0822 0.0755 0.0696 0.0645 0.0599
8 0.0771 0.0740 0.0685 0.0629 0.0578 0.0533 0.0493 0.0459
9 0.0609 0.0585 0.0542 0.0497 0.0457 0.0421 0.0390 0.0363
10 0.0493 0.0474 0.0439 0.0403 0.0370 0.0341 0.0316 0.0294

Table 3.1: First term asymptotic estimates valid for the algebraic connectivity of d-
regular necklace graphs containing c copies of Kd+1\{u, v}, the complete graph Kd+1

with the edge {u, v} being removed.

Numerical Values for Regular Necklace Graphs

c
d

3 4 5 6 7 8 9 10

2 0.7639 0.6277 0.5359 0.4689 0.4174 0.3765 0.3431 0.3153
3 0.4859 0.4312 0.3799 0.3380 0.3039 0.2759 0.2526 0.2329
4 0.2907 0.2679 0.2412 0.2174 0.1971 0.1800 0.1654 0.1530
5 0.1904 0.1783 0.1622 0.1471 0.1340 0.1228 0.1131 0.1048
6 0.1338 0.1263 0.1155 0.1052 0.0960 0.0881 0.0813 0.0754
7 0.0990 0.0939 0.0861 0.0786 0.0719 0.0660 0.0610 0.0566
8 0.0761 0.0724 0.0666 0.0608 0.0557 0.0512 0.0473 0.0439
9 0.0603 0.0575 0.0529 0.0484 0.0444 0.0408 0.0377 0.0350
10 0.0489 0.0467 0.0431 0.0394 0.0361 0.0333 0.0307 0.0286

Table 3.2: Numerical values for the algebraic connectivity of d-regular necklace graphs
containing c copies of Kd+1\{u, v}, the complete graph Kd+1 with the edge {u, v}
being removed, obtained from the smallest root of equation (3.13) with k = 1.

Chapter 4

Algebraic Connectivity of Path-Like Graphs

In [22], Guiduli defines a graph as being path-like if it can be built from blocks with

bridges in between. He refers to the first and last blocks as end blocks and the

remaining ones as middle blocks. His work showed that cubic graphs possessing this

structure have minimal algebraic connectivity amongst all connected cubic graphs of

the same order. In this chapter, we extend these results to regular graphs with odd

degree and conjecture that these also have minimal algebraic connectivity. We first

introduce hourglass graphs, a new graph family derived from path-like graphs.

4.1 Hourglass Graphs

We begin with the definition of an hourglass graph.

Definition 4.1.1 Let G be a 2-vertex-connected graph with a labelled vertex, say u.

The hourglass graph HG is the graph composed of two copies of G, say G1 and G2,

with adjacent labelled vertices u1 and u2.

Hourglass graphs are path-like graphs consisting of two copies of an end block.

This is a restriction on Guiduli’s definition, which did not insist on the two end blocks

being the same. Yet, we cannot conclude that these graphs have minimal algebraic

connectivity amongst all graphs of the same order since Guiduli’s work only applies

to 3-regular graphs.

As the complete graphK3 is the smallest 2-connected graph, the smallest hourglass

graph is the graph HK3 = 2K3 + {u1, u2}. This graph is shown in Figure 4.1. Using

MATLAB, we found that this graph has an algebraic connectivity of 0.4384. As

expected, this value is not minimal amongst connected graphs of order 6 since the

path graph on 6 vertices, P6, has an algebraic connectivity of 0.2679. In fact, amongst

all connected graphs of order n, it is known that path graphs minimize algebraic

connectivity [31]. Their algebraic connectivity is given by λ2(Pn) = 2(1− cos(π
n
)).

47

48

Figure 4.1: The smallest hourglass graph HK3 .

A d-regular hourglass graph is an hourglass graph in which every vertex has degree

d. As proved in the following proposition, these graphs must have odd degree and

each copy of G must have an odd number of vertices. In turn, a d-regular hourglass

graph must have even order.

Proposition 4.1.2 Let G be a 2-vertex-connected graph of order n and let HG be its

hourglass graph. If HG is d-regular, then both n and d are odd.

Proof. In order for HG to be d-regular, every vertex not labelled u in G must have

degree d. Note that the edge {u1, u2} is a bridge in HG and that this edge is contained

in neither copies. To account for the bridge edge, vertex u must have degree d − 1.

By the Handshaking Lemma, the sum of the degrees of all vertices must equal twice

the number of edges. In other words,

2e =
∑

v∈V (G)

deg(v) (4.1)

where e denotes the total number of edges and deg(v) the degree of vertex v in G.

Now, by our previous argument, we have that
∑

v∈V (G) deg(v) = (n − 1)d + (d − 1)

which simplifies to
∑

v∈V (G) deg(v) = dn− 1.

Now, by solving for the total number of edges in equation (4.1), we obtain that

e =
dn− 1

2
.

As e represents the number of edges, it must be a natural number. Hence, dn − 1

must be divisible by 2. If both d and n are even, or either d or n is even and the

49

other odd, then their product dn is even and so dn− 1 is not divisible by 2. Thus, if

HG is a d-regular graph, then both d and n must be odd.

For any d ≥ 3, a d-regular hourglass graph of order n = 4d− 2 can be created by

following the steps below. Note that, by the first step of our construction, both of its

copies will contain the complete bipartite graph Kd−1,d−1 as a subgraph. We refer to

the bipartition within G1 by X1 and Y1 and to the bipartition within G2 by X2 and

Y2. Also note that the resulting hourglass graph is not bipartite and that the last

step requires the degree to be odd. The cubic case with d = 3 is shown in Figure 4.2.

Figure 4.2: A 3-regular hourglass graph.

1. Start with two copies of the complete bipartite graph Kd−1,d−1, say G1 and G2.

2. Create two new vertices, u1 and u2, and the edge between them, {u1, u2}.

3. Join vertex u1 to all vertices in the X1 part of the bipartition within G1.

4. Join vertex u2 to all vertices in the X2 part of the bipartition within G2.

5. Connect the vertices in Y1 and Y2 as consecutive disjoint pairs.

As the graph in Figure 4.2 is cubic, Guiduli’s work showed that it is an algebraic

connectivity minimizer for cubic graphs on 10 vertices. The 5-regular hourglass graph

obtained by following the previous steps is shown in Figure 4.3. As Guiduli’s work only

applied to cubic graphs, whether this graph is an algebraic connectivity minimizer

50

Figure 4.3: The 5-regular hourglass graph obtained by following the given steps.

amongst 5-regular graphs remains to be determined. For this reason, we state the

following conjecture for regular hourglass graphs before providing an upper bound for

their algebraic connectivity.

Conjecture 4.1.3 Amongst all odd degree d-regular graphs on n = 4d − 2 vertices,

the ones that minimize algebraic connectivity are the given regular hourglass graphs.

We now provide an upper bound for the algebraic connectivity of regular hourglass

graphs formed by following the previous steps.

Theorem 4.1.4 Let HG be a d-regular hourglass graph obtained by following the given

steps. Then an upper bound for its algebraic connectivity is given by

λ2(HG) ≤ 2

√
d2 − d+ 1

3
cos

(
1

3
arccos

(
−3(d2 − 3d+ 2)

2(d2 − d+ 1)

√
3

d2 − d+ 1

)
− 4π

3

)
+ d.

Proof. Recall that an eigenvector can be thought of as an assignment of weights

to the vertices of HG. We thus assign them to G1 as follows: for the vertices in the

Y1 part of the bipartition, assign weight x1; for vertices in the X1 part, assign weight

x2; for the vertex labelled u1, assign weight x3. For the vertices in G2, assign weight

−x3 to the vertex labelled u2, weight −x2 to the vertices in X2, and weight −x1 to

the vertices in Y2. This assignment is valid since the sum of the weights is zero and

so this vector is orthogonal to the all-ones vector.

51

This choice of weights leads to the eigenvalue problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
λx1 = (x1 − x1) + (d− 1)(x1 − x2)

λx2 = (x2 − x3) + (d− 1)(x2 − x1)

λx3 = (x3 − (−x3)) + (d− 1)(x3 − x2)

(4.2)

with corresponding 3× 3 matrix

M =

⎡
⎢⎢⎣

d− 1 −(d− 1) 0

−(d− 1) d −1

0 −(d− 1) d+ 1

⎤
⎥⎥⎦ .

As was done with regular necklace graphs, we can find that its characteristic

polynomial is given by

λ3 − 3dλ2 + (2d2 + d− 1)λ− 2d+ 2.

Making the substitution λ = t+ d yields the depressed cubic [32] with no t2 term

f(t) = t3 − (d2 − d+ 1)t+ d2 − 3d+ 2. (4.3)

Recall that the eigenvalues of the Laplacian matrix are all real. We now show

that the three eigenvalues of M are also real by first considering the function in (4.3).

First, note that its derivative is given by f ′(t) = 3t2−d2+d−1 and that f ′(t) has

roots at t =
√

d2−d+1
3

and t = −
√

d2−d+1
3

. As f ′(t) is a quadratic with positive leading

term, f ′(t) → ∞ as t → ∞ and f ′(t) → ∞ as t → −∞. Furthermore, f ′(t) < 0 for

t = 0 as −d2 + d− 1 < 0 for all d. Thus, f(t) has a local maximum at t = −
√

d2−d+1
3

and a local minimum at t =
√

d2−d+1
3

.

Since f(t) is a cubic with positive leading term, f(t) → −∞ as t → −∞ and

f(t) → ∞ as t → ∞. For t = −
√

d2−d+1
3

, we have f(t) ≈ d2 − d
√
d2 − d so that

f(t) > 0 for all d ≥ 1. Also, for t =
√

d2−d+1
3

, we have f(t) ≈ −2d2
√
3d4 − 3d2 + 3

and so that f(t) < 0 for all d ≥ 1. Hence, as f(t) is continuous and changes sign in

the intervals

(
−∞,−

√
d2−d+1

3

)
,

(
−
√

d2−d+1
3

,
√

d2−d+1
3

)
, and

(√
d2−d+1

3
,∞

)
, f(t)

must have three real roots by the Intermediate Value Theorem.

For any depressed cubic of the form t3 + pt+ q = 0, these may be expressed as

tk = 2

√−p

3
cos

(
1

3
arccos

(
3q

2p

√−3

p

)
− 2πk

3

)
for k = 0,1,2

52

by Viète [33]. Here, p = −(d2 − d+ 1) and q = d2 − 3d+ 2 yield

tk = 2

√
d2 − d+ 1

3
cos

(
1

3
arccos

(
−3(d2 − 3d+ 2)

2(d2 − d+ 1)

√
3

d2 − d+ 1

)
− 2πk

3

)

for k = 0, 1, 2. Letting k = 2 yields the smallest value of tk and reusing the substitu-

tion λ = t+ d results in

λ = 2

√
d2 − d+ 1

3
cos

(
1

3
arccos

(
−3(d2 − 3d+ 2)

2(d2 − d+ 1)

√
3

d2 − d+ 1

)
− 4π

3

)
+ d.

As the algebraic connectivity is the second smallest eigenvalue of the Laplacian

matrix, we have that λ2(HG) ≤ λ.

Table 4.1 provides the values and asymptotic behaviour of the algebraic connec-

tivity of these regular hourglass graphs. We extend these results to path-like graphs

with one middle block in the next section.

4.2 Path-Like Graphs With One Middle Block

Path-like graphs with higher order can be obtained from hourglass graphs by adding

middle blocks. In particular, for odd d-regular path-like graphs with b total blocks

and order n = (4d − 2) + (b − 2)(d + 1), these blocks consist of Kd+1\{v1, v2}, the
complete graph on d + 1 vertices with the edge {v1, v2} removed. The total number

of vertices consists of the number of vertices in the two end blocks, 4d− 2, and b− 2

middle blocks of order d + 1. Note that the choice b = 2 corresponds to the regular

hourglass graphs and that any two vertices in the complete graphs can be labelled v1

and v2. Figure 4.4 shows a cubic path-like graph of order 14 with one middle block.

In this case, the middle block is composed of the graph K4\{v1, v2}.
The procedure below can be followed to create any odd degree d-regular path-like

graph with b blocks in total. We refer to the first end block by G1, to the middle

blocks by Gi for i = 2, . . . , b− 1, and to the last end block by Gb.

1. Follow the previous steps to create the end blocks G1 and Gb.

2. Create b− 2 copies of the graph Kd+1\{v1, v2}, say Gi for i = 2, . . . , b− 1.

3. Draw an edge between vertex u1 in G1 to vertex v1 in G2.

53

4. For i = 2, . . . , b− 2, draw an edge between vertex v2 in Gi to vertex v1 in Gi+1.

5. Draw an edge between vertex v2 in Gb−1 to vertex u2 in Gb.

Figure 4.4: The cubic path-like graph with 3 blocks obtained by following the steps.

We now provide an upper bound for the algebraic connectivity of d-regular path-

like graphs with one middle block. Its values are listed in Table 4.1 for d = 3, . . . , 15.

Theorem 4.2.1 Let G be a d-regular path-like graph with one middle block obtained

by following the given steps. Then an upper bound for its algebraic connectivity is

given by

λ2(G) ≤ 2

√
d2 − d+ 1

3
cos

(
1

3
arccos

(
−3(d2 − 2d+ 1)

2(d2 − d+ 1)

√
3

d2 − d+ 1

)
− 4π

3

)
+ d.

Proof. We assign weights to the vertices of the end blocks as in Theorem 4.1.4. For

the middle block, assign a weight of x4 to vertex v1, a weight of −x4 to vertex v2, and

a weight of 0 to all vertices not labelled v1 or v2. This assignment provides a valid

weight vector since the sum of the weights is zero and thus this vector is orthogonal

to the all-ones vector. This choice of weights then leads to the eigenvalue problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λx1 = (x1 − x1) + (d− 1)(x1 − x2)

λx2 = (x2 − x3) + (d− 1)(x2 − x1)

λx3 = (x3 − x4) + (d− 1)(x3 − x2)

λx4 = (x4 − x3) + (d− 1)(x4 − 0)

(4.4)

54

with corresponding 4× 4 matrix

M =

⎡
⎢⎢⎢⎢⎢⎣

d− 1 −(d− 1) 0 0

−(d− 1) d −1 0

0 −(d− 1) d −1

0 0 −1 d

⎤
⎥⎥⎥⎥⎥⎦ .

The characteristic polynomial of M is given by

λ4 − (4d− 1)λ3 + (5d2 − 2d− 1)λ2 − (2d3 − d2 − d)λ+ d2 − 2d+ 1.

Note that this polynomial can be factored as

(λ− d+ 1)(−λ3 + 3dλ2 − (2d2 + d− 1)λ− d+ 1),

indicating an integer eigenvalue of d−1. We now determine the remaining eigenvalues

from the cubic polynomial.

Making the substitution λ = t+ d yields the depressed cubic

t3 − (d2 − d+ 1)t+ d2 − 2d+ 1,

with p = −(d2 − d+ 1) and q = d2 − 2d+ 1. Its roots are given by

tk = 2

√
d2 − d+ 1

3
cos

(
1

3
arccos

(
−3(d2 − 2d+ 1)

2(d2 − d+ 1)

√
3

d2 − d+ 1

)
− 2πk

3

)

for k = 0, 1, 2. Letting k = 2 yields the smallest value of tk and reusing the substitution

λ = t+ d results in

λ = 2

√
d2 − d+ 1

3
cos

(
1

3
arccos

(
−3(d2 − 2d+ 1)

2(d2 − d+ 1)

√
3

d2 − d+ 1

)
− 4π

3

)
+ d.

As the algebraic connectivity is the second smallest eigenvalue of the Laplacian

matrix, we have that λ2(G) ≤ λ.

Table 4.1 includes the values for the algebraic connectivity of odd degree d-regular

path-like graphs with one middle block. These values were obtained for hourglass

graphs by using the equation in Theorem 4.1.4 and for path-like graphs with one

middle block by using the equation in Theorem 4.2.1. They were also independently

55

Numerical Values of Odd Degree d-Regular Path-like Graphs

Degree 3 5 7 9 11 13 15
Hourglass 0.2215 0.1547 0.1182 0.0956 0.0802 0.0691 0.0607

Middle Block Path-like 0.1049 0.0757 0.0584 0.0474 0.0399 0.0344 0.0303

Table 4.1: Numerical values of the algebraic connectivity of odd degree d-regular
hourglass graphs and path-like graphs with one middle block.

obtained by MATLAB and agree with the values found in Table 2.6 in the case of

cubic graphs.

As can be observed, the algebraic connectivity of both graph families approaches

zero as the degree, and hence the number of vertices, is increased. The algebraic

connectivity of the hourglass graphs is also greater than the one for the path-like

graphs with one middle block for all odd d. Hence, the algebraic connectivity of the

hourglass graphs may serve as an upper bound for odd degree d-regular path-like

graphs. The minimal algebraic connectivity of cubic graphs is also known to equal

(1 + o(1))2π
2

n2 , where n is the number of vertices [24].

Supported by Guiduli’s research on cubic graphs, we state the following conjecture.

Conjecture 4.2.2 Amongst all odd d-regular graphs on n = (4d− 2)+ (b− 2)(d+1)

vertices, the ones which minimize algebraic connectivity are the given path-like graphs

with b blocks.

Research on quartic, or four-regular graphs, with minimal algebraic connectivity

reveals to be more challenging. In 2020, Abdi, Ghorbani, and Imrich [24] found that

these graphs must also possess a path-like structure. However, this structure now has

four end block and five middle block possibilities. Long blocks, or blocks composed of

shorter blocks, are also likely. Abdi and Ghorbani later specified that there is only one

middle block option for a quartic graph to have minimal algebraic connectivity [25],

but generalizations for even degree d-regular path-like graphs remain unlikely.

In the upcoming chapters, we shift our attention to a variety of computational

algorithms used to construct graphs with fixed order and size. Our interest lies in

determining which algorithm returns graphs with the highest algebraic connectivity

as well as the resulting graph’s structure in terms of degree sequence.

Chapter 5

Algorithms on Empty Graphs

We now shift our focus to heuristic algorithms that can be used to create simple graphs

of fixed order and size. As opposed to most of our results in the previous chapters,

these graphs are not required to be regular. Hence, the goal of these algorithms is

to maximize a graph’s algebraic connectivity subject to a fixed number of vertices

and edges. Each algorithm’s performance is based on its run time as well as on the

algebraic connectivity of the resulting graph. Thus, algorithms which return graphs

with high algebraic connectivity in less time are considered more efficient.

In this chapter, we introduce four algorithms on originally empty graphs of order

50. One edge, chosen by varying criteria, is added to the graph until it has a final size

of 250. Each method’s performance will be analyzed through an algebraic connectivity

plot and a degree histogram of the resulting graph. The first algorithm we present

relies entirely on a random assignment of edges.

5.1 Random Edge Addition

Adding edges at random is likely the easiest way of adding edges to a graph. In

this method, two integers ranging from 1 to the number of vertices in the graph are

arbitrarily chosen at each iteration. These two integers become the edge endpoints.

Before the edge can be added, two conditions must be checked. First, the two numbers

cannot be equal to each other. Otherwise, they would form a loop in the graph. The

second condition is that the same pair of integers cannot be chosen more than once.

If it were, multiple edges between their corresponding endpoints would be formed. In

either case, a simple graph would not be generated. All other options are viable.

Figure 5.1a illustrates the algebraic connectivity plot of this method. Notice that

the algebraic connectivity remains at 0 until 120 edges are added. This result is far

from desirable as the algebraic connectivity of a spanning tree containing 49 edges

is already greater than zero. Thus, this method is not optimal in creating graphs

56

57

with high algebraic connectivity. This leads us to consider algorithms which form

spanning trees and hence increase algebraic connectivity earlier on in the process as

more efficient. A jump in algebraic connectivity is also noticeable after the addition

of the next edge. Namely, the algebraic connectivity increases from 0 to 0.6223 before

another short plateau is reached. This pattern frequently reappears up until all 250

edges are in the graph.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 5.1: Algebraic connectivity plot and degree histogram for the random edge
addition algorithm on graphs with 50 vertices and 250 final edges.

As this algorithm relies on randomness, each plot and resulting algebraic connec-

tivity differs. For this reason, 1000 trials were performed and an average algebraic

connectivity of 3.3280 was found. The minimum observed algebraic connectivity was

0.9024 and the maximum was 4.4999. This experiment resulted in an overall broad

range of 3.5975 for the possible algebraic connectivity of all graphs formed by random

edge addition. This range indicates that graph structure has a wide effect on alge-

braic connectivity. Still, a pattern emerges for graphs of larger order. For very large

and sparse random Erdős–Rényi graphs, it is known that the algebraic connectivity

tends to zero as the number of vertices is increased [34]. We now turn our attention

to the degree distribution of the resulting graph.

As depicted in the histogram in Figure 5.1b, the sampled graph has a broad range

of degrees. It has 3 vertices of minimum degree 5 and 4 vertices with a maximum

58

degree of 15, which creates a range of 11 possible degrees. The majority of vertices

appear to have around 8 to 11 neighbours. A close symmetry is also noteworthy. The

second algorithm we present preserves random edge selection alongside a careful filter

before edge addition.

5.2 The Achlioptas Process

First described by Dimitris Achlioptas at a Fields Institute workshop in 2000 [35],

adding a strategy to determine which edges get added is an improvement on random

edge addition. His proposed algorithm starts on an empty graph and selects a random

subset of all possible edges at each iteration. Initially, Achlioptas only considered

subsets consisting of two edges. However, the size of this subset can range anywhere

from one edge to all possible edges. In the case that only one edge is chosen each time,

the algorithm is identical to random edge addition. Otherwise, each edge must be

tested by some rule. For our purpose, the edge which increases algebraic connectivity

the most will be added to the graph. Nowadays, any algorithm that adds a strategy

to a random graph is known as an Achlioptas process [36].

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 5.2: Algebraic connectivity plot and degree histogram of the Achlioptas process
algorithm with 60 potential edges per iteration on graphs with 50 vertices and 250
final edges.

59

We first allowed this algorithm to choose 60 edges per iteration. Since a complete

graph on 50 vertices has 1225 edges, this corresponds to nearly 5 percent of the total

edges being considered in each run through the algorithm. The results are shown in

Figure 5.2a. At first glance, we can observe that the algebraic connectivity increases

away from zero once 50 edges are in the graph. Furthermore, the ’staircase’ pattern

characteristic of random edge addition gets replaced by a smoother curve. These are

both improvements when compared to the previous plot. Out of 100 trials, an average

algebraic connectivity of 5.2732 was observed. A maximum of 5.6740 and minimum

of 5.2151 were also reached by the algorithm.

The histogram in Figure 5.2b showcases the degree distribution of a resulting

graph. Its symmetry, likely appearing from the underlying random edge selection, is

to be noted. The minimum degree is 6 and the maximum degree is 14, resulting in a

range of 8.

This algorithm was also tested by varying the number of chosen edges per iteration.

Namely, edge selection was increased to 120 edges and then to 250 edges. These

numbers corresponds to nearly 10 percent and 20 percent of all edges, respectively.

In the case of 120 edges being chosen, an average algebraic connectivity of 5.2599 was

reached. In the other case, an average algebraic connectivity of 5.2553 was obtained.

The maximum algebraic connectivity did not vary, with a value of 5.5737 in the first

case and a value of 5.5204 in the other. The same was true for the minimum, with

respective values of 5.1932 and 4.9529. Hence, increasing the number selected edges

per iteration does not result in graphs with higher algebraic connectivity. We now

present an algorithm that does not rely on randomness.

5.3 The Edge-Augmentation Algorithm

The edge-augmentation algorithm, first implemented by Ghosh and Boyd in 2006

[37], takes the Fiedler vector into account. This algorithm begins by computing the

eigenvector corresponding to the second smallest eigenvalue and sorting its entries

in ascending order. By sorting the Fiedler vector, we guarantee that the absolute

difference between the first and the last entry will be a maximum. Its indices are

then sorted with respect to their newly ordered entries. It is important to note that

each index represents a vertex in the graph. The first and last indices are then located

60

and an edge is added between their vertices in the graph. These steps are repeated

until the desired number of edges is reached.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 5.3: Algebraic connectivity plot and degree histogram of the standard edge-
augmentation algorithm on graphs with 50 vertices and 250 final edges.

Figure 5.3a illustrates the output of this algorithm. As the graph is originally

disconnected, it has an algebraic connectivity of zero. For the algebraic connectivity

to increase, the graph must become connected. As there are 50 vertices, a minimum

of 49 edges must be added to form a spanning tree. This explains why the algebraic

connectivity stays at zero for the first 50 iterations. As more edges are added, its

shape begins to resemble a smooth line. A final algebraic connectivity of 6.4878 is

obtained when using this algorithm. As the Fiedler vector is sorted at each iteration,

this method does not rely on randomness and thus always returns the same value.

As shown in the histogram in Figure 5.3b, the final graph has a fairly symmetric

degree distribution. Most vertices have degree 10, while a near equal amount are

adjacent to either 9 or 11 neighbours. A single vertex has degree 12. This degree

distribution also has a smaller range than the two algorithms we previously discussed,

which may be partially due to the absence of randomness. The histogram above also

illustrates an underlying feature necessary for large algebraic connectivity. Graphs

with higher minimum degree have higher algebraic connectivity. That is, a graph’s

algebraic connectivity is bounded above by its minimum degree [38].

61

Although this algorithm produces graphs with high algebraic connectivity, it is

also quite restrictive. That is, instead of considering all possible vertices, it only looks

at the first and last entries of the sorted Fiedler vector. This limitation leaves little

to no room for randomness and may impact the graph’s initial construction. This

raises a question. What happens if the Fiedler vector contains more than one equal

maximum or minimum entry? The following modification to the edge-augmentation

algorithm provides an answer.

5.3.1 Random Tree Augmentation

Recall that the original edge-augmentation algorithm starts on an empty graph. As it

originally contains no edges, there is no clear distinction between any of the vertices.

Thus, by assigning the first few edges at random, different trees may be formed. Also

recall that the standard edge-augmentation algorithm only considers the first and last

entry of the Fiedler vector. This algorithm thus varies from the one implemented by

Ghosh and Boyd as it originally considers more entries in the Fiedler vector to create

the underlying tree. Thankfully, only a minor change is required to account for this

randomness factor.

This modification happens once the Fiedler vector is computed. Instead of sort-

ing it to create a single maximum and minimum, all of its entries are considered.

Whenever more than one maximum is found, its corresponding indices are found and

one of them is chosen at random. A similar search and selection is done for the

minimum. Finally, an edge between the vertices corresponding to the two randomly

chosen indices is added to the graph.

A single maximum and multiple minima is a further possibility. In this case,

the index of the maximum is kept and the minimum index is chosen at random.

Likewise, a maximum index is randomly picked if it has multiple candidates and a

single minimum exists. If there is a single maximum and minimum, then this method

is identical to the original edge-augmentation algorithm.

Ultimately, this modification does not result in graphs with higher average alge-

braic connectivity. Out of 1000 trials, the resulting average algebraic connectivity

was 6.3858. This is 1.57 percent worse than having performed the edge-augmentation

62

algorithm by itself. A minimum of 3.6816 and a maximum of 6.5843 were also ob-

served. Interestingly, one graph had a slightly higher algebraic connectivity than the

one found by the edge-augmentation algorithm. The structure of the underlying tree

may thus have a small positive impact on the final algebraic connectivity. However,

the creation of a random tree does not increase algebraic connectivity overall. There

was no notable difference in degree distribution.

5.4 Brute Force Search

Brute force search is quite different from the three algorithms we have examined so

far. As opposed to only considering a handful of edges, this algorithm tests every

possible edge absent from the graph. For an initially empty graph on 50 vertices,

this corresponds to 1225 candidates. Although the first several edges do not have an

impact on algebraic connectivity, the impact of a brute force search is made evident

once the graph becomes connected. At this point, the graph will have a non-zero

algebraic connectivity. This positive value is then treated as a baseline for the addition

of the next edge. For our purposes, we use the edge-augmentation algorithm to select

the first 49 edges. This allows the brute force search algorithm to start with a non-zero

algebraic connectivity.

Edge addition is done by treating each potential edge separately. At the beginning,

one such edge is added to the pre-existing graph with known algebraic connectivity.

Then, this parameter is computed for the new graph. The difference in algebraic

connectivity is then stored in a list. The prospective edge is then deleted in order

to return to the original graph. This process is repeated until each absent edge has

been tested. Ultimately, the list is sorted and the edge which increases algebraic

connectivity the most is added to the graph. This algorithm continues until the

desired number of edges are present.

Figure 5.4a highlights the algebraic connectivity plot of the brute force search al-

gorithm. First, note that this parameter begins increasing once 49 edges are present in

the graph. This is to be expected since it initially depends on the edge-augmentation

algorithm. As seen for the Achlioptas process, the plot is also smoother than the one

provided by random edge addition. In the end, this algorithm achieves a constant

algebraic connectivity of 4.9138.

63

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 5.4: Algebraic connectivity plot and degree histogram of the brute force search
algorithm with 50 vertices and 250 final edges.

The final graph’s degree distribution can be seen in the form of a histogram in

Figure 5.4b. Notice that the resulting graph has the same range of degrees as in the

random edge addition algorithm. In it, there are three vertices of minimum degree

6 and a unique one of maximum degree 16. This generates a range of 11 possible

degrees. Still, an abundant number of vertices have degree 9.

We now proceed to compare the four algorithms in terms of resulting algebraic

connectivity and computational complexity.

5.5 Comparison

All four algorithms originally begin on an empty graph of order 50. Then, at each

iteration, a single edge is added until 250 of them are present. In the first two methods,

randomness plays a role in which edges are added. In the other two, randomness is

mostly excluded. Still, several significant differences emerge from deeper analysis.

The average and maximum algebraic connectivity returned by each algorithm dis-

cussed in this chapter are found in Table 5.1. For the random edge addition algorithm,

the average was taken over 1000 iterations while it was taken over 100 iterations for

the Achlioptas process. Note that the table denotes algebraic connectivity by AC

64

and that the edge-augmentation algorithm returns graphs with the highest algebraic

connectivity overall. Still, the problem of finding optimal graphs on a given number

of vertices and edges is known to be NP-complete [39].

Algorithm Comparison in Terms of Algebraic Connectivity
Algorithm Average AC Maximum AC

Random Edge Addition 3.3280 4.4999
Achlioptas Process 4.3813 5.6740

Brute Force 4.9138 4.9138
Edge-Augmentation 6.4878 6.4878

Table 5.1: Comparison between average and maximum final algebraic connectivity
returned by the four algorithms on empty graphs.

Figure 5.5 showcases the four plots on the same set of axes. From it, it is made

clear that the edge-augmentation algorithm not only produces graphs with a higher

final algebraic connectivity overall, but ones with a higher algebraic connectivity for

any number of edges once the graph is connected.

In terms of computational complexity, both the edge-augmentation algorithm and

random edge addition are O(n2log(n)). The first n comes from iteration, while the

nlog(n) comes from sorting. Random edge addition only sorts the eigenvalues, while

the edge-augmentation algorithm sorts both the eigenvalues and the Fiedler vector.

The Achlioptas process, on the other hand, runs in O(n3log(n)). It includes nested

iterations, once for all edges and once for the chosen edges, as well as sorting eigenval-

ues. For this reason, the Achlioptas process is more computationally expensive and

inefficient for larger graphs. Brute force search, as should be expected, is even worse

as it runs in O(n4log(n)). This algorithm involves three nested iterations as well as

eigenvalue sorting. The first iteration is for all edges, while the other two involve

looking through all the entries of the adjacency matrix. Altogether, we conclude that

the edge-augmentation algorithm is most efficient since it provides graphs with larger

algebraic connectivity in less time.

The minimum degree and maximum distance (MDMD) algorithm presented by

Li, Hao, Wang, and Wei in 2018 [40] also deserves a mention. Similarly to the

edge-augmentation algorithm, this algorithm returns graphs with high algebraic con-

nectivity based on the Fiedler vector itself. Furthermore, as it considers the minimum

degree and maximum distance instead of the Laplacian matrix and its eigenvalues, it

65

has a lower time complexity (O(n + m)) than the edge-augmentation algorithm for

very large and sparse graphs. Yet, edge addition by the edge-augmentation algorithm

still outperforms it in most simulations [40].

So far, our interest resided in starting algorithms from empty graphs. Now that

we know that the edge-augmentation algorithm performs well, we will test it on

other graph families. To do so, we will first create the underlying graph by using

its adjacency matrix or a different algorithm. Once created, the edge-augmentation

algorithm will add the remaining edges to reach the size of the graph of interest. In

particular, we will focus on how this algorithm performs starting from random graphs,

random regular graphs, and complete bipartite graphs. The last two are known to be

algebraic connectivity optimizers under different conditions [21]. Long-term patterns

will also be of interest.

Figure 5.5: Comparison between the algebraic connectivity plots from the standard
edge-augmentation algorithm, the Achlioptas process, random edge addition, and
brute force search.

Chapter 6

Augmentation from Graph Families

6.1 Starting from Random Graphs

We begin this chapter by examining what happens to algebraic connectivity when the

random edge addition and edge-augmentation algorithms are combined. By that, we

mean that half of the total edges are added randomly either at the beginning or the

end while the remaining ones are chosen by the edge-augmentation algorithm. This

method is different from random tree augmentation as random edge addition does

not take the entries of the Fiedler vector into account and a larger number of edges

are randomly chosen.

Figure 6.1 illustrates this process with the addition of 125 random edges at the

beginning. The remaining edges are then added by the edge-augmentation algorithm.

Unsurprisingly, when compared to our previous results, the plot visible in Figure 6.1a

looks like a combination of the two algorithms. The increasing plateaus characteristic

of random edge addition are present in the first half, while the edge-augmentation

curve is noticeable in the second half. On average, out of 1000 trials, this algorithm’s

resulting final algebraic connectivity is 6.3084. This result is worse than the edge-

augmentation algorithm by nearly 2.7 percent, but a vast improvement on simple

random edge addition. A minimum of 4.3158 and a maximum of 6.5029 were also

observed. Thus, this new method does not provide a general improvement on previous

findings.

Figure 6.1b showcases a histogram of the final graph’s degree distribution. As

opposed to the plot, features of both algorithms are not apparent. In fact, the de-

grees seem to behave similarly to the ones solely obtained by the edge-augmentation

algorithm. Thus, the effect of this added randomness factor is not noticeable amongst

the vertices.

This algorithm could also have been performed in the opposite order. That is,

edge-augmentation could be performed first followed by the remaining edges being

66

67

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 6.1: Algebraic connectivity plot and degree histogram of the standard edge-
augmentation algorithm starting from a random graph.

randomly assigned. Here, the condition that those edges were not already added

by the edge-augmentation algorithm must be ensured. Otherwise, multiple edges

between some vertices might be created. Since most of the edges added by the edge-

augmentation algorithm will be used to connect the graph, this combination is likely

worse than using the algorithm by itself. Once the graph is connected, the remaining

edges, mostly chosen at random, will have a bigger impact on algebraic connectivity.

The results are displayed in Figure 6.2. As expected, it can be seen on the left

that the edge-augmentation algorithm started increasing algebraic connectivity once

50 edges were contained in the graph. The algorithm reached an algebraic connectivity

of 2.0244 before random edge addition began. However, as the remaining edges were

added randomly and thus likely not optimally, a low average algebraic connectivity of

4.2445 was obtained after 1000 trials. This result is still better than using random edge

addition alone by 27.5 percent. However, when compared to the edge-augmentation

algorithm, it is 34.5 percent worse. A minimum of 3.0929 and a maximum of 4.9547

were also recorded. The random edge addition plateaus are still present, and the

transition between the two algorithms is abrupt.

As can be seen in Figure 6.2b, the final graph’s degree distribution is closely

related to the one found by the random edge addition algorithm. Although it seems

68

to retain its symmetry, the degrees range from a minimum of 6 to a maximum of 15.

This range is much wider than the one provided by the edge-augmentation algorithm.

Nonetheless, this result should not be surprising since randomness plays a larger role

in this algorithm than in the previous one. Thus, the edges chosen once the graph

is connected are likely more important than the initial ones in determining the final

graph’s algebraic connectivity.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 6.2: Algebraic connectivity plot and degree histogram of the standard edge-
augmentation algorithm followed by random edge addition.

This notion can be clearly seen when the three algorithms are plotted on the

same axes, as in Figure 6.3. The plot of the edge-augmentation algorithm followed by

random edge addition is coloured yellow. In the beginning, this plot is identical to the

standard edge-augmentation algorithm, in blue. However, they start to differ as soon

as we begin adding random edges. In the end, a large gap in algebraic connectivity is

noticeable between the two plots. The addition of random edges at the start has less

of an impact on the final algebraic connectivity, as can be seen in orange. While this

method and the edge-augmentation algorithm initially increase algebraic connectivity

differently, both will produce a similar algebraic connectivity asymptotically. Thus,

we conclude that randomness has a bigger impact in the later phase of graph creation.

Now that we have a better understanding of the impact of randomness on algebraic

connectivity, we turn our attention to random regular graphs.

69

Figure 6.3: Comparison between the standard edge-augmentation algorithm, random
edge addition followed by augmentation, and augmentation followed by random edge
addition for graphs with 50 vertices and 250 total edges.

6.2 Starting from Random Regular Graphs

In this section, we implement the edge-augmentation algorithm starting on a random

d-regular graph. These graphs were obtained using a heuristic algorithm [41] and are

of interest since they combine the structure of the edge-augmentation algorithm as

well as the freedom of random edge addition.

In a random d-regular graph, edges are chosen at random amongst all n possible

vertices. Nevertheless, every vertex must ultimately have degree d. Thus, vertices

become saturated once they have d neighbours and no new edges can be added to

them. As a consequence of the well-known handshaking lemma, these graphs will

have dn/2 edges.

The observation that an empty graph can be thought of as being zero-regular

since every vertex has degree 0 motivates us to investigate how the edge-augmentation

70

algorithm behaves if it starts on different random regular graphs. We consider the

5-regular graph as a good template for this family. It is important to keep in mind

that these graphs already fix some edges. That is, the edges that were used to create

the regular graphs contribute to the total size of the graph of interest and cannot be

reused by the edge-augmentation algorithm. In the case of the 5-regular graph on 50

vertices, 125 edges are fixed. Thus, exactly half of the edges remain to be added by

the edge-augmentation algorithm. As the graphs grow in regularity, they also grow

in size. Hence, as fewer edges get added by the edge-augmentation algorithm, it is

reasonable to expect that the final graph’s algebraic connectivity will not be higher

in regular graphs of higher degree.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 6.4: Algebraic connectivity plot and degree histogram of the standard edge-
augmentation algorithm starting from a random 5-regular graph.

Figure 6.4 showcases the results of the edge-augmentation algorithm as applied

to a random 5-regular graph. On the left, it can be observed that the algebraic

connectivity is zero until the graph’s creation. Then, it jumps up to 1.3663. This

is slightly higher than the expected algebraic connectivity of 1. In the end, out of

1000 trials, a final average algebraic connectivity of 6.3380 was obtained. A minimum

of 3.7610 and a maximum of 6.5297 were also observed. Ultimately, performing the

edge-augmentation algorithm on the empty graph still results in a higher algebraic

connectivity overall. Next, we examine this resulting graph’s degree distribution.

71

From the histogram in Figure 6.4b, it is noticeable that the degree distribution

is almost identical to the one obtained when performing the edge-augmentation al-

gorithm on an empty graph. The range of degrees, from 9 to 11, is the same as well

as their frequency. Most vertices have degree 10 while an equal amount have either

degree 9 or 11. The only notable difference is the absence of the degree 12 vertex.

This result indicates that no real differences in terms of degree exist between starting

from an empty graph or from another regular graph. Thus, it is likely that the edge-

augmentation algorithm builds close to regular graphs. We will now examine these

traits in graphs of different regularities.

Figure 6.5: Algebraic connectivity plots of the edge-augmentation algorithm starting
from a random 3-regular to a random 9-regular graph.

72

Figure 6.5 illustrates the general behaviour of starting the edge-augmentation

algorithm on a random regular graph. In it, a randomly chosen 3-regular to 9-regular

graph is used as a base for augmentation. The standard edge-augmentation algorithm,

in black, is also present to facilitate comparison.

It is noteworthy that the initial algebraic connectivity increases in each case in

an almost linear fashion. Also, starting augmentation from the 3-regular up to the

8-regular graphs results in graphs with almost equal final algebraic connectivity. The

case of the 9-regular graph is slightly different since 225 edges are fixed by the under-

lying structure and the edge-augmentation algorithm is left with very few iterations.

These values are shown in Table 6.1, where both the initial and final algebraic con-

nectivity were computed by MATLAB. As before, algebraic connectivity is denoted

by AC.

Algebraic Connectivity of Random Regular Graphs
Regularity Initial AC Final AC Difference

3 0.2983 6.3965 6.0982
4 0.6178 6.3798 5.7620
5 1.3663 6.3380 4.9717
6 1.9709 6.3121 4.3412
7 2.5647 6.2270 3.6623
8 3.4783 6.1004 2.6221
9 4.3305 5.8617 1.5312

Table 6.1: Comparison between initial and final algebraic connectivity amongst ran-
dom regular graphs.

This table shows that although the initial algebraic connectivity increases, the

final algebraic connectivity decreases since more of the edges were used to create the

regular graphs. In the next section, we look at another graph family known to be

early algebraic connectivity maximizers, the complete bipartite graphs.

6.3 Starting from Complete Bipartite Graphs

Complete bipartite graphs are highly structured graphs known to have high algebraic

connectivity. This is true particularly when these graphs are compared to others with

the same number of vertices and edges, see Ogiwara, Fukami, and Takahashi [42].

From Chapter 2.1, recall that their algebraic connectivity is equal to the cardinality

73

of their smaller part.

Amongst all trees, it is known that the star graph S49 is an algebraic connectivity

maximizer [21]. This graph is also the complete bipartite graph K1,49. Yet, we choose

K2,48 as a good representative of this graph family since its structure more closely

resembles that of larger complete bipartite graphs. For graphs with 50 vertices, K3,47

and K4,46 will likely have too many fixed edges for the edge-augmentation algorithm

to make a noticeable difference.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 6.6: Algebraic connectivity plot and degree histogram of the standard edge-
augmentation algorithm starting from the complete bipartite graph K2,48.

The results of the edge-augmentation algorithm starting on K2,48 are shown in

Figure 6.6. As expected, the algebraic connectivity is initially zero before jumping

to 2 once the bipartite graph is created. As can be seen in the plot, fifty additional

edges need to be added to the graph before algebraic connectivity begins increasing.

As K2,48 fixes 96 edges at the beginning, only 154 edges remain to be added by the

edge-augmentation algorithm. In the end, a final algebraic connectivity of 5.2735 is

obtained. This is around 18.7 percent worse than performing the edge-augmentation

algorithm on an empty graph. Still, the degree distribution should be analyzed.

A first observation from the degree histogram is the presence of two high degree

vertices. Both have degree 48 and correspond to the two central hubs of the complete

bipartite graph. All other vertices have a degree of either 8 or 9. This display

74

indicates that the starting graph keeps its essential features even when the edge-

augmentation algorithm adds many more edges. We now explore the trends for

starting augmentation on any complete bipartite graph.

Figure 6.7: Algebraic connectivity plots of the edge-augmentation algorithm starting
on the complete bipartite graphs K1,49 to K5,45.

Figure 6.7 showcases the general behaviour of starting the edge-augmentation

algorithm on a complete bipartite graph. In it, the star graph K1,49 up to the com-

plete bipartite graph K5,45 are used as a base for augmentation. The standard edge-

augmentation algorithm, in black, is also drawn to facilitate comparison. As expected,

the initial algebraic connectivity of each complete bipartite graph is equal to the car-

dinality of its minimum set. For example, the initial algebraic connectivity of K3,47

is 3. Seen as a whole, the plots of the complete bipartite graphs seem to form what

looks like a staircase.

Interestingly, the star graph has better algebraic connectivity than the edge-

augmentation algorithm when 50 edges are present. This observation should not

75

be surprising since the star graph is an early algebraic connectivity maximizer. Still,

the standard edge-augmentation algorithm overtakes the one on the star graph start-

ing at 92 edges. This pattern can also be seen in the case when K2,48 and K3,47 are

used as a base. These methods are overtaken by the standard edge-augmentation

algorithm starting at 125 and 158 edges, respectively.

These observations indicate that complete bipartite graphs have higher algebraic

connectivity than the graphs created by the edge-augmentation algorithm for graphs

of certain sizes. Nevertheless, this is not true starting at K4,46, where the edge-

augmentation algorithm is best overall. In summary, it seems like the underlying

structure of the complete bipartite graph has advantages in the short-term only.

Table 6.2 summarizes this information.

Algebraic Connectivity of Complete Bipartite Graphs
Bipartition Initial AC Final AC Difference

1,49 1 5.8242 4.8242
2,48 2 5.2735 3.2735
3,47 3 4.7602 1.7602
4,46 4 4.4336 0.4336
5,45 5 5 0.0000

Table 6.2: Comparison between initial and final algebraic connectivity amongst com-
plete bipartite graphs.

We have now seen that starting the edge-augmentation on an empty graph results

in graphs with the highest algebraic connectivity. This is due to the algorithm’s

simplicity and because an empty graph allows it to add all of the strongest edges.

On the other hand, complete bipartite graphs are too structurally rigid while random

regular graphs are computationally complex to build. We have also seen that the

addition of some fixed random edges to our graph only hinders the edge-augmentation

algorithm. Still, an algorithm relying exclusively on the Fiedler vector may not be

optimal. The next chapter explores whether the addition of strongest edges and

deletion of weakest edges could improve edge augmentation.

Chapter 7

Edge Addition and Deletion

In this chapter, we propose that some of the edges created by the edge-augmentation

algorithm may not be optimal. That is, that some edges may not significantly increase

algebraic connectivity. With respect to the Fiedler vector, those edges correspond to

the absolute value of their entry difference being a minimum amongst all pairs of

vertices. Thus, deleting them could increase the final graph’s algebraic connectivity.

Similarly, only the strongest edges should be added. These are the edges that increase

the algebraic connectivity the most. For the algorithm using the Fiedler vector, the

absolute value of their entry difference should be maximized as in the standard edge-

augmentation algorithm.

We begin by looking at using the Fiedler vector exclusively. Then, we explore this

concept using all possible edges. We also consider their combination, either by adding

using the Fiedler vector and deleting using brute force or by adding using brute force

and deleting using the Fiedler vector. Finally, we conclude with a comparison of these

new algorithms.

7.1 Using the Fiedler Vector

As seen in Chapter 5, algorithms that take the Fiedler vector into account outperform

those that omit it. This section’s method aims to improve the edge-augmentation

algorithm by adding and deleting edges according to this vector. In fact, both al-

gorithms use the same method to add edges. That is, both look to optimize the

absolute difference amongst all pairs of vector entries. The number of edges added

and deleted can be changed, but we focus on adding two edges and deleting a single

one to ease comparison to the edge-augmentation algorithm. In total, one edge is

added to the graph after each iteration. In this new algorithm, a difference matrix

and a sorted adjacency list need to be considered. The difference matrix indicates

which edges are the weakest or strongest. The adjacency list is then sorted according

76

77

to this matrix. The function of the adjacency list is to classify whether or not an edge

is already present between the different pairs of vertices. Thus, this list ensures that

adding an edge where there is already one or deleting an edge that does not exist

is avoided. Hence, the generation of a simple graph at the end is guaranteed. It is

important to note that the newly created edges may not be the ones with the greatest

absolute difference if those edges already exist in the graph. Instead, they are chosen

amongst those that are not yet present. Similarly, the weakest edge must be in the

graph in order to be deleted. Thus, this algorithm must take this adjacency list into

consideration.

Figure 7.1a shows the resulting plot of this algorithm. Although the overall shape

looks quite similar to the edge-augmentation algorithm, the curve is much less smooth.

Instead, the plot exhibits more of a spiky behaviour where the algebraic connectivity

rises and falls after the addition of nearly each edge. This may result from the

deletion of the weakest edge, although this is unlikely since one edge is still being

added after each iteration. In fact, it appears that edge deletion decreases the final

graph’s algebraic connectivity. In the end, a value of 5.9090, 8.9 percent worse than

using edge addition exclusively, is reached.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 7.1: Algebraic connectivity plot and degree histogram of the algorithm adding
and deleting edges according to the Fiedler vector.

78

A histogram representing the final degree distribution can be seen in Figure 7.1b.

Even after considering edge deletion, this graph’s degree distribution closely resembles

that of the edge-augmentation algorithm. However, the degrees are more spread out

between the three values than in the original method. There are more vertices with

degree 9 or 11 and slightly less vertices with degree 10.

We now know that the inclusion of a deletion step in the edge-augmentation algo-

rithm does not improve it. We are inclined to conclude that the edge-augmentation

algorithm chooses every edge for a reason, which may be associated with regularity.

This algorithm is also more computationally expensive than the standard one. In

fact, it runs in cubic time. In Big O notation, this corresponds to O(n3) instead of

O(n2log(n)). Thus, it also takes much longer to execute as the number of vertices

gets large. Next, we explore whether considering all possible edges for addition and

deletion can improve our results.

7.2 Using Brute Force

Brute force search was first introduced in section 5.4. Although it resulted in graphs

with lower final algebraic connectivity than the ones created by the edge-augmentation

algorithm, brute force search may benefit from edge deletion since it may balance out

the overall edges in the graph. Therefore, we consider edge addition and deletion

separately.

In order to determine which edges to add, each of the absent edges are tested

individually. The algebraic connectivity of the original graph is first found. Then, a

new edge is added and the algebraic connectivity of this new graph is determined. In

theory, it should be greater than the previous one since an edge was added and so

the graph is more connected. Their difference in algebraic connectivity is then stored

in a list. Finally, the same edge is deleted to return the initial graph. This procedure

is repeated for each of the absent edges. The two pairs of entries with the largest

differences in the sorted list are then chosen as the edges to be added to the graph.

A similar process is used to determine which edge is to be deleted. This time,

however, all of the edges currently in the graph are examined. First, the graph’s

original algebraic connectivity is computed. Then, one of its edges is deleted and the

resulting algebraic connectivity is found. The next step is to determine their difference

79

and store it in a list. Finally, the edge is added back into the graph to reinitialize it.

From the sorted deletion list, the pair with the difference that minimizes the change

in algebraic connectivity is chosen as the edge to be deleted from the graph. Note

that, as opposed to Fiedler vector addition and deletion, this new algorithm does not

need an adjacency list to check whether these edges can be added or deleted. Instead,

this is done directly by checking the adjacency matrix one entry at the time.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 7.2: Algebraic connectivity plot and degree histogram of the brute force addi-
tion and deletion algorithm.

Figure 7.2a shows the algebraic connectivity plot of this algorithm. We can see

that the algebraic connectivity begins increasing as soon as 49 edges are in the graph.

Another observation is the absence of plateaus. When including both the addition

and deletion of edges through brute force search, the plot smoothens. In the end, an

algebraic connectivity of 5.7359 is observed, an improvement of 14 percent over the

original brute force search algorithm.

As can be seen in Figure 7.2b, the degree distribution of the final graph is affected

by edge deletion. In Chapter 5, we noted that the resulting degree distributions were

fairly symmetric. However, this is not the case in this new algorithm as the histogram

appears to be skewed to the right. Most vertices are still centralized in the degree 9

or 10 range, but several have higher degree.

80

When compared, both of these new algorithms return a nearly equal algebraic con-

nectivity. This fact motivates the exploration of what occurs when the two algorithms

are combined.

7.3 Combining the Fiedler Vector and Brute Force

Figure 7.3a shows the result of the Fiedler vector addition and brute force deletion

algorithm. The plot indicates that a minimum of 65 edges is still required to connect

the graph. The shape of the curve is consistent with the previous two algorithms,

although the transition is smoother than simply using the Fiedler vector. The spikes

present in that algorithm are also less apparent. In the end, a final algebraic connec-

tivity of 5.3372 is reached.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 7.3: Algebraic connectivity plot and degree histogram of the Fiedler vector
addition and brute force deletion algorithm on graphs with 50 vertices and 250 edges.

The final graph’s degree distribution is shown in Figure 7.3b. The resulting dis-

tribution is symmetric with most of the vertices having degree 10. An equal amount

of vertices have degree 8 or 9 and 11 or 12.

The other option is brute force addition and Fiedler vector deletion. The output

of this algorithm is shown in Figure 7.4. From the plot on the left, it is apparent

that the change in algebraic connectivity is much less smooth. The spikes that were

81

present in the Fiedler vector algorithm resurface here and adding edges through brute

force does not have an impact on this feature. In the end, a graph with an algebraic

connectivity of 5.5679 is obtained. This is 4.1 percent better than Fiedler addition

and brute force deletion. Still, the combination of the two methods results in graphs

with worse algebraic connectivity than using either the Fiedler vector or brute force

exclusively.

(a) Algebraic Connectivity Plot (b) Degree Histogram

Figure 7.4: Algebraic connectivity plot and degree histogram of the brute force addi-
tion and Fiedler vector deletion algorithm on graphs with 50 vertices and 250 edges.

The degree histogram on the right is also worth examining. Note that its shape

is also symmetric and that it has a slightly wider range in degrees. One single vertex

has a minimum degree of 7 and two vertices have a maximum degree of 13. However,

most of the vertices still have degree 10.

Although these algorithms introduce the deletion of edges, it is still pertinent to

compare them to the edge-augmentation algorithm since it can be used as a threshold

to judge efficacy. The three algorithms on the same set of axes can be seen in Fig-

ure 7.5. Note that, as expected, the edge-augmentation algorithm does best overall.

Brute force addition and Fiedler deletion comes in second place, although the final

gap is quite apparent. Numerically, the Fiedler vector addition and brute force dele-

tion algorithm is 17.7 percent worse and the brute force addition and Fiedler vector

deletion is 14.2 percent worse than the standard edge-augmentation algorithm. In

82

terms of algebraic connectivity between the two addition and deletion algorithms, it

appears that there is a wider difference at the beginning than at the end. In fact,

the two algorithms cross several times once only a few edges remain to be added. We

finish by investigating the local effect of deleting an edge by brute force search on the

edge-augmentation algorithm.

7.3.1 An Improved Algebraic Connectivity

In Chapter 5, we determined that the edge-augmentation algorithm returns graphs

with the highest overall algebraic connectivity overall. Furthermore, in this chapter,

we concluded that the combination of this algorithm with the one using brute force

does not result in an improvement. Yet, this is only true on a global level. That is,

the previously considered algorithms added and deleted edges at each iteration. We

propose that a higher algebraic connectivity can be reached by deleting the last edge

added by the edge-augmentation algorithm using brute force before adding the truly

final edge to the graph.

Compared to the previous methods, this procedure does not increase the number

of edges in the graph. In fact, the number of edges remains constant as one edge is

deleted and replaced by a second one. Thus, when compared to the other methods in

this chapter, it may increase the algebraic connectivity of an existing graph without

increasing its size. Hence, it cannot be used to create larger graphs.

From Chapter 5, recall that the algebraic connectivity of the graph obtained by

the edge-augmentation algorithm was 6.4878. Interestingly, deleting the last edge

by brute force does not decrease this value. That is, the algebraic connectivity of

the graph on 249 edges is the same as the one for 250 edges. Yet, when the edge-

augmentation algorithm is allowed to add another edge, the final algebraic connectiv-

ity is 6.5055. This is an improvement of 0.27 percent for a graph with the same size.

Also note that this value is the same as the value obtained by the edge-augmentation

itself for a graph with a total of 251 edges. Thus, deleting an edge by brute force

before adding the final one has a small positive impact on the final algebraic con-

nectivity of a graph. We conclude this thesis with a brief summary and possible

directions for future work.

83

Figure 7.5: Comparison between the edge-augmentation algorithm, the Fiedler vector
addition and brute force deletion algorithm, and the brute force addition and Fiedler
vector deletion algorithm for graphs with 50 vertices and 250 total edges.

Chapter 8

Conclusion

This thesis was divided into two parts. In the first part, we began by considering

cubic graphs with perfect root-connected binary trees as subgraphs. Through some

observations, we established a relationship between their diameter and the height of

their subgraphs. A necessary condition for a cubic graph to contain a root-connected

binary tree as a subgraph was also provided. We then proceeded to generalize Kolokol-

nikov’s bound, valid for these cubic graphs, to hold for any d-regular graph containing

perfect root-connected s-ary trees as subgraphs. We also proposed that this upper

bound is most likely to be achieved by cage graphs.

Based on a specific configuration of the leaf vertices of the perfect root-connected

binary trees, we derived a two term asymptotic estimate for an eigenvalue of the

Laplacian matrix of the resulting cubic graph. Through numerical evidence, this

estimate was shown to be applicable to their algebraic connectivity. It was also

shown that this leaf configuration resulted in graphs with an algebraic connectivity

quickly tending to zero as the height of the trees increased.

We then considered cubic graphs with root-connected binary trees having leaves

at two consecutive levels. These graphs could also be thought of as level binary trees

with a root of degree 3. A new upper bound for the algebraic connectivity of these

graphs involving the smallest root of a function containing sine was then established.

The Petersen graph, or (3,5)-cage, was the only graph found to achieve this bound.

As was done for the first bound, generalizing this bound to hold for any d-regular

graph in the future would be insightful.

In Chapter 3, our interest turned to a new graph family, which we named the

necklace graphs. The full spectrum of the Laplacian matrix of general necklace graphs

was found in terms of the union with multiplicity of the eigenvalues of matrices

involving roots of unity. Its Fiedler vectors and thus algebraic connectivity were

proved to be associated to the first root of unity.

84

85

We then focused our attention to a specific family of d-regular necklace graphs.

Namely, necklace graphs formed by c copies of the complete graph Kd+1\{u, v} with

the edge {u, v} removed. The complete spectrum of their Laplacian matrix as well as

an expression for their algebraic connectivity was established. A first term asymptotic

estimate applicable to their algebraic connectivity was also found. Numerical values

for their algebraic connectivity were then provided. The spectrum of the Laplacian

matrix of other necklace graph families could be explored in the future.

In the fourth chapter, we explored Guiduli’s work on path-like cubic graphs. His

work showed that these graphs have minimal algebraic connectivity amongst all cubic

graphs of the same order. In this chapter, we generalized the cubic case to odd degree

d-regular graphs and gave steps for their construction.

To do so, we first defined hourglass graphs, a graph family derived from the

path-like graphs. In a proposition, we showed that d-regular hourglass graphs must

have odd degree and an even number of vertices. An upper bound for their algebraic

connectivity was provided as well as a conjecture that these graphs minimize algebraic

connectivity amongst all regular graphs of order n = 4d− 2.

We then extended these results to path-like graphs with one middle block con-

sisting of the graph Kd+1\{u, v}. As for regular hourglass graphs, we found an upper

bound for their algebraic connectivity. Supported by Guiduli’s work, we conjectured

that these graphs minimize algebraic connectivity amongst all d-regular graphs of

order n = (4d − 2) + (b − 2)(d + 1). These conjectures could be examined in future

research. Furthermore, the algebraic connectivity of these graphs in terms of the

number of blocks could be addressed.

The second part of the thesis began in the fifth chapter. The purpose of this

part of the thesis was to find an algorithm that constructs graphs with high alge-

braic connectivity in a short amount of time. We introduced four algorithms on

empty graphs—namely, random edge addition, the Achlioptas process, the edge-

augmentation algorithm, and brute force search. Two of them, random edge addition

and the Achlioptas process, relied on randomness, while the other two, the edge-

augmentation algorithm and brute force search, were more systematic. In the end,

we found that the edge-augmentation algorithm produced graphs with overall highest

algebraic connectivity.

86

In the sixth chapter, we considered different graph families as the starting point

for the edge-augmentation algorithm. Random graphs, which we examined in the

previous chapter, as well as random regular graphs and complete bipartite graphs were

discussed. We concluded that, when compared to starting the edge-augmentation

algorithm on an empty graph, none of these performed as well.

In the seventh chapter, we explored how the feature of edge deletion impacts

algebraic connectivity. We investigated this notion using two different criteria: the

Fiedler vector and brute force search. We also combined these two algorithms to

observe whether they produced graphs with overall higher algebraic connectivity. In

the end, we found a method that improved the edge-augmentation algorithm by only

0.27 percent. Thus, we concluded that edge deletion does not have a significant

positive impact on the algebraic connectivity of graphs.

We may now conclude that using the edge-augmentation algorithm on an empty

graph with no edges being deleted is likely optimal for creating graphs with high

algebraic connectivity. Still, this thesis only covered a finite number of options to

increase algebraic connectivity in simple graphs and more methods may exist.

Using plots and histograms, we were able to find common features in between all

algorithms involving edge-augmentation. Namely, the final graphs seemed to have a

symmetric degree distribution with most of the vertices being centralized around a

certain degree. In our case, most of the vertices seemed to have degree 10. The graph

on 50 vertices and 250 edges obtained by the edge-augmentation algorithm is shown

in Figure 8.1. In the future, finding a general graph family with these features would

certainly be interesting.

We end this thesis with Table 8.1, which summarizes the data for all algorithms

starting on an empty graph. It applies to graphs with 50 vertices and 250 total edges

exclusively. The average algebraic connectivity out of either 100 or 1000 trials was

taken for the methods involving randomness. For convenience, the table is organized

by highest to lowest final algebraic connectivity.

87

Figure 8.1: The graph obtained by the edge-augmentation algorithm with 50 vertices
and 250 edges.

88

Summary of Algorithms Increasing Algebraic Connectivity
Algorithm Final Algebraic Connectivity

Edge-Augmentation Algorithm 6.4878
Random Tree Augmentation 6.3858

Random Edge Addition & Augmentation 6.3084
Fiedler Vector Addition and Deletion 5.9090
Brute Force Addition and Deletion 5.7359

Brute Force Addition, Fiedler Deletion 5.5679
Fiedler Addition, Brute Force Deletion 5.3372

Achlioptas Process (60 Choice) 5.2732
Achlioptas Process (120 Choice) 5.2599
Achlioptas Process (250 Choice) 5.2553

Brute Force Search 4.9138
Augmentation & Random Edge Addition 4.2445

Random Edge Addition 3.3280

Table 8.1: Summary of algorithms increasing algebraic connectivity from an originally
empty graph.

Bibliography

[1] W. Watkins. The laplacian quadratic form and edge connectivity of a graph.
Electronic Journal of Linear Algebra, 30:437–442, 2015.

[2] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra and its
Applications, 198:143–176, 1994.

[3] D. K. Hammond, Y. Gur, and C. R. Johnson. Graph diffusion distance : A
difference measure for weighted graphs based on the graph laplacian exponential
kernel. IEEE Global Conference on Signal and Information Processing, pages
1–4, 2013.

[4] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-
nal, 23:298–305, 1973.

[5] N. M. M. de Abreu. Old and new results on algebraic connectivity of graphs.
Linear Algebra and its Applications, 423:53–73, 2007.

[6] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory. Czechoslovak Mathematical Journal, 25:619–633,
1975.

[7] X. Li, M. Chen, H. Su, and C. Li. Distributed bounds on the algebraic con-
nectivity of graphs with application to agent networks. IEEE Transactions on
Cybernetics, 47:2121–2131, 2017.

[8] A. Ghosh and S. Boyd. Upper bounds on algebraic connectivity via convex
optimization. Linear Algebra and its Applications, 418:693–707, 2006.

[9] Z. Stanic. Lower bounds for the algebraic connectivity of graphs with specified
subgraphs. Electronic Journal of Graph Theory and Applications, 9:257–263,
2021.

[10] A. A. Rad, M. Jalili, and M. Hasler. A lower bound for algebraic connectivity
based on the connection-graph-stability method. Linear Algebra and its Appli-
cations, 435:186–192, 2011.

[11] X. Jing, Y. Fan, and Y. Tan. Lower bounds for algebraic connectivity of graphs in
terms of matching number or edge covering number. Ars Combinatoria -Waterloo
then Winnipeg, pages 1–8, 2014.

[12] M. Aouchiche, P. Hansen, and D. Stevanović. A sharp upper bound on algebraic
connectivity using domination number. Linear Algebra and its Applications,
432:2879–2893, 2010.

89

90

[13] B. Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial Theory,
47:274–291, 1989.

[14] R. Montenegro and P. Tetali. Mathematical aspects of mixing times in markov
chains. Foundations and Trends in Theoretical Computer Science, 1:237–354,
2006.

[15] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, New Series, 43:439–561, 2006.

[16] M. Ram Murty. Ramanujan graphs. Journal of the Ramanujan Mathematical
Society, 18:1–20, 2003.

[17] J. F. Lutzeyer and A. T. Walden. Comparing graph spectra of adjacency and
laplacian matrices. IEEE, pages 1–14, 2017.

[18] B. Nica. A Brief Introduction to Spectral Graph Theory. European Mathematical
Society, 2010.

[19] S. A. Cakiroglu. An upper bound on the algebraic connectivity of regular graphs.
pages 1–10, 2019.

[20] A. Abiad, B. Brimkov, X. Martinez-Rivera, S. O, and J. Zhang. Spectral bounds
for the connectivity of regular graphs with given order. pages 1–24, 2018.

[21] T. Kolokolnikov. Maximizing algebraic connectivity for certain families of graphs.
Linear Algebra and its Applications, 471:122–140, 2015.

[22] B. Guiduli. The structure of trivalent graphs with minimal eigenvalue gap. Jour-
nal of Algebraic Combinatorics, 6:321–329, 1997.

[23] C. Brand, B. Guiduli, and W. Imrich. Characterization of trivalent graphs with
minimal eigenvalue gap. Croatica Chemica Acta, 80:193–201, 2007.

[24] M. Abdi, E. Ghorbani, and W. Imrich. Regular graphs with minimum spectral
gap. European Journal of Combinatorics, 95:1–18, 2021.

[25] M. Abdi and E. Ghorbani. Quartic graphs with minimum spectral gap, 2020.

[26] A. Nilli. Tight estimates for eigenvalues of regular graphs. The electronic journal
of combinatorics, 11:1–4, 2004.

[27] B. D. McKay. The expected eigenvalue distribution of a large regular graph.
Linear Algebra and its Applications, 40:203–216, 1981.

[28] G. Exoo and R. Jaycay. Dynamic cage survey. The Electronic Journal of Com-
binatorics, 2013.

[29] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8:261–277, 1998.

91

[30] B. Bollobás and E. Szemerédi. Girth of sparse graphs. Journal of Graph Theory,
39:194–200, 2002.

[31] S. Belhaiza, N. M. M. de Abreu, P. Hansen, and C. S. Oliveira. Variable Neigh-
borhood Search for Extremal Graphs. XI. Bounds on Algebraic Connectivity.
Springer, 2005.

[32] A. T. Tiruneh. A simplified expression for the solution of cubic polynomial
equations using function evaluation. pages 1–10, 2020.

[33] R.W.D. Nickalls. Viète, descartes and the cubic equation. The Mathematical
Gazette, 90:203–208, 2006.

[34] P. Erdos and A. Renyi. On the evolution of random graphs. Mathematical
Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.

[35] O. Riordan and L. Warnke. Achlioptas process phase transitions are continuous.
The Annals of Applied Probability, 22:1450–1464, 2012.

[36] M. Kang and K. Panagiotou. On the connectivity threshold of achlioptas pro-
cesses. pages 291–304, 2014.

[37] A. Ghosh and S. Boyd. Growing well-connected graphs. 45th IEEE Conference
on Decision and Control, pages 6605–6611, 2006.

[38] Z. Lin and L. Miao. Upper bounds on the algebraic connectivity of graphs.
Electronic Journal of Linear Algebra, 38:77–84, 2022.

[39] D. Mosk-Aoyama. Maximum algebraic connectivity augmentation is np-hard.
Operations Research Letters, 36:677–679, 2008.

[40] G. Li, Z. F. Hao, H. Huang, and H. Wei. Maximizing algebraic connectivity via
minimum degree and maximum distance. IEEE Access, 6:41249–41255, 2018.

[41] A. Steger and N. C. Wormald. Generating random regular graphs quickly. Com-
binatorics, Probability and Computing, 8:377–396, 1999.

[42] K. Ogiwara, T. Fukami, and N. Takahashi. Maximizing algebraic connectivity in
the space of graphs with fixed number of vertices and edges. IEEE Transactions
on Control of Network Systems, 4:359–368, 2017.

Appendix A

Matlab M Files

This appendix presents the code behind the four algorithms discussed in Chapter 5.

A.1 Random Edge Addition

This algorithm creates a graph by adding valid random edges to an originally empty

graph.

% Initialize variables

count = 1;

alg_conn_plot = [];

% Specify the number of vertices

n = 50;

% Create an n x n empty graph

A = zeros(n);

% Loop while more edges need to be added

while count <= 250

% Choose two integers from 1 to n at random

u = randi(n);

v = randi(n);

% Check whether the edge is allowed

if u ~= v && A(u,v) == 0 && A(v,u) == 0

92

93

% Add the edge to the graph

A(u,v) = 1;

A(v,u) = 1;

% Find the algebraic connectivity

D = diag(sum(A));

L = D - A;

[V, D] = eig(L);

e = diag(D);

[o1,o2] = sort(e);

alg_conn = o1(2);

% Store the algebraic connectivity

alg_conn_plot(end+1,:) = alg_conn;

% Increase the count

count = count + 1;

else

% Repeat with another edge

continue;

end

end

% Return the final algebraic connectivity

final_alg_conn = alg_conn_plot(end);

A.2 The Achlioptas Process

This algorithm begins by choosing several potential edges at random. Then, out of

these candidates, the one which increases the algebraic connectivity the most gets

added to the graph.

94

% Initialize variables

pot_edges = [];

alg_conn_list = [];

alg_conn_plot = [];

% Specify the number of vertices

n = 50;

% Create two n x n empty graphs

A = zeros(n);

B = zeros(n);

% Select the number of candidate edges

count = 1;

max_count = 60;

% Loop until the desired number of edges are in the graph

for i=1:250

% Choose valid candidate edges at random

while count <= max_count

u = randi(n);

v = randi(n);

if u ~= v && A(u,v) == 0 && A(v,u) == 0 ...

&& B(u,v) == 0 && B(v,u) == 0

pot_edges(end+1,:) = [u v];

B(u,v) = 1;

B(v,u) = 1;

count = count + 1;

end

end

95

% Test each potential edge

for i=1:numel(pot_edges(:,1))

A(pot_edges(i,1),pot_edges(i,2)) = 1;

A(pot_edges(i,2),pot_edges(i,1)) = 1;

D = diag(sum(A));

L = D - A;

[V, D] = eig(L);

e = diag(D);

[o1,o2] = sort(e);

alg_conn = o1(2);

alg_conn_list(end+1,:) = [alg_conn,pot_edges(i,1),...

pot_edges(i,2)];

A(pot_edges(i,1),pot_edges(i,2)) = 0;

A(pot_edges(i,2),pot_edges(i,1)) = 0;

end

% Sort rows from smallest to biggest

alg_conn_list = sortrows(alg_conn_list,1);

% Choose the edge which most augments algebraic connectivity

alg_conn_plot(end+1,:) = alg_conn_list(end,1);

% Add that edge to the graph

A(alg_conn_list(end,2),alg_conn_list(end,3)) = 1;

A(alg_conn_list(end,3),alg_conn_list(end,2)) = 1;

% Reset variables

count = 1;

pot_edges = [];

alg_conn_list = [];

B = zeros(n);

96

end

% Return the final algebraic connectivity

final_alg_conn = alg_conn_plot(end);

A.3 The Edge-Augmentation Algorithm

This algorithm adds the edge which maximizes the Fiedler vector at each iteration.

% Initialize variables

alg_conn_plot = [];

% Specify the number of vertices

n = 50;

% Create an n x n empty graph

A = zeros(n);

% Loop until the desired number of edges are in the graph

for i=1:250

% Find the algebraic connectivity

D = diag(sum(A));

L = D - A;

[V, D] = eig(L);

e = diag(D);

[o1, o2] = sort(e);

alg_conn = o1(2);

% Store the algebraic connectivity

alg_conn_plot(end+1,:) = alg_conn;

% Find and sort the Fiedler vector

97

fiedler = V(:, 2);

[o1, o2] = sort(fiedler);

% Find the maximum and minimum values

maximum = o1(end);

minimum = o1(1);

% Find their indices

index_max = o2(end);

index_min = o2(1);

% Add the edge to the graph

A(index_max, index_min) = 1;

A(index_min, index_max) = 1;

end

% Return the final algebraic connectivity

final_alg_conn = alg_conn_plot(end);

A.4 Brute Force Search

This algorithm looks through all of the edges currently not in the graph and adds the

one which increases algebraic connectivity the most at each iteration.

% Initialize variables

alg_conn_plot = [];

% Specify the number of vertices

n = 50;

% Create an n x n empty graph

A = zeros(n);

98

% Loop until the desired number of edges is in the graph

for i=1:49

% Find the algebraic connectivity

D = diag(sum(A));

L = D - A;

[V, D] = eig(L);

e = diag(D);

[o1, o2] = sort(e);

alg_conn = o1(2);

% Store the algebraic connectivity

alg_conn_plot(end+1,:) = alg_conn;

% Find and sort the Fiedler vector

fiedler = V(:, 2);

[o1, o2] = sort(fiedler);

% Find the maximum and minimum values

maximum = o1(end);

minimum = o1(1);

% Find their indices

index_max = o2(end);

index_min = o2(1);

% Add the edge to the graph

A(index_max, index_min) = 1;

A(index_min, index_max) = 1;

end

99

for i=50:250

% Initialize and reset variables

M = [];

% Find the original algebraic connectivity

D = diag(sum(A));

L = D - A;

[V, D] = eig(L);

e = diag(D);

[o1,o2] = sort(e);

og_alg_conn = o1(2);

% Store the original algebraic connectivity

alg_conn_plot(end+1,:) = og_alg_conn;

% Test each edge

for i=1:n

for j=i+1:n

% If the edge is not in the graph, add it

if A(i,j) == 0

A(i,j) = 1;

A(j,i) = 1;

% Find the new algebraic connectivity

D = diag(sum(A));

L = D - A;

[V, D] = eig(L);

e = diag(D);

[o1,o2] = sort(e);

alg_conn = o1(2);

% Find their difference

100

M(end+1,:) = [abs(og_alg_conn - alg_conn), i, j];

% Delete the edge

A(i,j) = 0;

A(j,i) = 0;

end

end

end

M = sortrows(M,1);

% Add strongest edge

for i=size(M,1):-1:2

A(M(i,2), M(i,3)) = 1;

A(M(i,3), M(i,2)) = 1;

break;

end

end

% Return the final algebraic connectivity

final_alg_conn = alg_conn_plot(end)

