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Dispersion corrections are essential in the description of intermolecular interactions; however, dispersion-
corrected functionals must also be transferrable to hard solids. The exchange-hole dipole moment (XDM)
model has demonstrated excellent performance for non-covalent interactions. In this article, we examine its
ability to describe the relative stability, geometry, and compressibility of simple ionic solids. For the specific
cases of the cesium halides, XDM-corrected functionals correctly predict the energy ranking of the B1 and
B2 forms, and a dispersion contribution is required to obtain this result. Further, for the lattice constants of
20 alkali halides, the performance of XDM-corrected functionals is excellent, provided the base functional’s
exchange enhancement factor properly captures non-bonded repulsion. The mean absolute errors in lattice
constants obtained with B86bPBE-XDM and B86bPBE-25X-XDM are 0.060 Å and 0.039Å, respectively,
suggesting that delocalization error also plays a minor role in these systems. Finally, we considered the
calculation of bulk moduli for alkali halides and alkaline-earth oxides. Previous claims in the literature that
simple GGAs, such as PBE, can reliably predict experimental bulk moduli have benefited from large error
cancellations between neglecting both dispersion and vibrational effects. If vibrational effects are taken into
account, dispersion-corrected functionals are quite accurate (4–5 GPa average error), again if non-bonded
repulsion is correctly represented. Careful comparisons of calculated bulk moduli with experimental data are
needed to avoid systematic biases and misleading conclusions.

I. INTRODUCTION

London dispersion plays a critical role in determin-
ing the structure and energetics of molecular aggregates,
molecular crystals, and layered materials1,2. However, it
has been shown that dispersion can also affect the de-
scription of solids where van der Waals interactions are
not usually thought to be important. For instance, al-
though electrostatics is the main contribution to binding
in ionic solids, inclusion of dispersion has been shown
to improve the quality of the computed lattice constants
and atomization energies significantly3,4. As another ex-
ample, density-functional calculations without dispersion
incorrectly predict the rocksalt (B1) structure to be lower
in energy than the cesium-chloride (B2) form of CsCl,
CsBr, and CsI under ambient conditions5,6.

Over the last 15 years, a number of dispersion
corrections and dispersion-including functionals
have been developed in the context of density-
functional theory (DFT)1,2,7,8. These include asymp-
totic dispersion corrections9–20, non-local density
functionals21–27, dispersion-correcting potentials28–33,
and parametrized exchange-correlation functionals34–38,
among others39–43. Beyond-DFT methods, such as
the random-phase approximation (RPA), also capture
dispersion interactions5,44. The class of asymptotic
dispersion corrections includes several generations of
Grimme’s models (D29, D310,11, and D412,13), the
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Tkatchenko-Scheffler (TS)14 and subsequent many-body
dispersion (MBD)15 methods, and the exchange-hole
dipole moment (XDM) dispersion correction16,45. Ad-
ditional improvements on the MBD model have been
proposed to account for polarizability variations due to
fractional atomic charges, as in MBD-FI46 and uMBD47.

In an asymptotic pairwise dispersion correction, the
dispersion energy is written as a sum over atomic pairs
using a damped asymptotic energy expression, as mo-
tivated by second-order perturbation theory48,49. The
leading-order dispersion term in these corrections is

E
(6)
disp = −

∑
i<j

C6,ijf6,ij(Rij)

R6
ij

, (1)

where the sum runs over all atom pairs, the C6,ij ’s are the
dispersion coefficients, and f6,ij(Rij) is a damping func-
tion introduced to avoid divergence at short internuclear
separations, Rij . The development and benchmarking of
asymptotic pairwise dispersion corrections is important
because they attain good accuracy and can be applied
in combination with common, thoroughly tested density-
functional approximations. Furthermore, these methods
are computationally very simple, with a much lower cost
than non-local dispersion functionals or the more com-
plicated MBD-based methods, extending their range of
applicability to larger chemical systems.

The various asymptotic dispersion corrections primar-
ily differ in how the dispersion coefficients are computed,
although there are also differences in whether higher-
order dispersion-energy terms (i.e. C8 or C10) are in-
cluded, and in the choice of damping function. How-
ever, all of these dispersion corrections are in some way
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dependent on reference data for neutral atoms or com-
pounds, and only the D4 method12 (very recently im-
plemented for periodic solids13) was specifically designed
with ionic systems in mind. It is therefore uncertain
how such asymptotic dispersion models perform for ionic
solids. Previous assessments for alkali halides demon-
strated very poor performance of the TS method and
convergence failures of MBD3. While addition of the D2
or D3 corrections results in significant improvements over
uncorrected base functionals5,6, they are still consider-
ably less accurate than dispersion corrections tailor-made
for ionic crystals3.

All dispersion corrections have been designed with the
purpose of accurately describing non-covalent interac-
tions, either in molecules or in solids. However, if these
methods are to be applied to complex systems that in-
volve not only van der Waals interactions, but also other
bonding types (covalent, ionic, metallic), then it is crucial
that those other interactions are correctly represented
as well. In addition, given that systems where non-
covalent interactions are important are typically large, it
would be preferable to have a dispersion-corrected func-
tional that is as simple as possible. This would ideally
be an asymptotic pairwise dispersion correction paired
with a GGA (generalized gradient approximation) func-
tional, due to favourable scaling and the simplicity of
their computational implementation. In this work, we
focus on the XDM dispersion method, which has been
shown to provide simultaneously excellent performance
for gas-phase molecules50,51, molecular crystals52–56, sur-
face adsorption57–60, and layered materials61,62 in combi-
nation with GGA base functionals, without any modifi-
cation or reparameterization. Indeed, XDM is at present
the only pairwise asymptotic dispersion model able to
provide accurate description of both the cell parame-
ters and exfoliation energies of layered transition-metal
dichalcogenides62,63. (Some variants of van der Waals-
including non-local functionals and MBD-FI46 also de-
scribe these systems accurately62.)

In order to complete the exploration of XDM-corrected
functionals, we address herein their ability to correctly
predict the stable polymorphs of the cesium halides, as
well as the lattice parameters and bulk moduli of 20 al-
kali halides and 4 alkaline-earth oxides. The accurate
calculation of relative stabilities, geometries, and bulk
moduli has been shown to be essential for the predic-
tion of many other thermodynamic properties in simple
solids64,65. These ionic systems have been studied in the
literature using dispersion methods other than XDM3–6,
and we also address some of the difficulties with these pre-
vious works regarding the comparison with experimental
data for bulk moduli.

II. COMPUTATIONAL METHODS

Calculations were performed for the alkali halides com-
posed of all combinations of the Li, Na, K, Rb, and Cs

FIG. 1. Conventional units cells of sodium chloride (B1, left)
and cesium chloride (B2, right). The alkali cations are shown
in purple and the halide anions in green.

cations and the F, Cl, Br, and I anions, as well as MgO,
CaO, SrO, and BaO. At ambient pressure and temper-
ature, all of these compounds present the rocksalt (B1)
structure, as shown in Figure 1, except for CsCl, CsBr,
and CsI, which have the CsCl (B2) structure. For each
compound, energy vs. volume curves were constructed by
varying the lattice constants from 70–120% of their equi-
librium values and phonon frequencies were computed
at each geometry. As all atoms occupy symmetry-fixed
sites, all calculations were single-point energy evaluations
and no further relaxation was required.

Our calculations used the exchange-hole dipole mo-
ment (XDM) dispersion method. XDM is a pairwise
asymptotic dispersion correction, in which the dispersion
energy is

Edisp = −
∑

n=6,8,10

∑
i<j

Cn,ijfn(Rij)

Rn
ij

, (2)

where Cn,ij are the pairwise dispersion coefficients, fn
is the damping function for the order-n dispersion term,
and Rij is the distance between atoms i and j. The
XDM dispersion energy contains only two adjustable pa-
rameters (a1 and a2) used in all Becke-Johnson damping
functions66:

fn(R) =
Rn

Rn + (a1Rc + a2)n
, (3)

where Rc is the critical radius, computed from ratios
of the dispersion coefficients of the interacting atoms.
The purpose of the damping function parameters is to
match the XDM energy with the long-range exchange-
correlation from the base functional, and they are deter-
mined by fitting to a benchmark set of molecular dimer
binding energies50,61. After this initial fitting, the a1 and
a2 values are never reparametrized for specific systems.
In XDM, the dispersion coefficients (Cn,ij) are computed
from the self-consistent Kohn-Sham states based on the
assumption that dispersion originates from the interac-
tion between dipoles formed by the electrons plus their
exchange(-correlation) holes. In this way, XDM captures
the physically correct evolution of Cn coefficients with
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the atomic chemical environment62 while, at the same
time, retaining the simplicity and cost-efficiency of an
asymptotic dispersion correction. The three-body and
higher-order coefficients can be calculated as well67,68,
but are not included in the standard XDM implemen-
tation. A more in-depth description of XDM has been
given elsewhere16,45,68,69.

In this work, the XDM dispersion correction is paired
with either the PBE70 or B86bPBE70,71 GGA function-
als. PBE is the more popular functional in the materi-
als community, but B86bPBE is the recommended func-
tional to be paired with XDM for solid-state calculations,
due to its desirable behaviour in the limit of large re-
duced density gradients16,72–75. Additional calculations
were also performed for a hybrid functional76 based on
B86bPBE with 25% exact exchange77, termed B86bPBE-
25X78.

All calculations used version 6.1 of the Quantum
ESPRESSO program79, with a 8× 8× 8 uniform k-point
mesh and planewave cutoffs of 80 and 800 Ry for the
kinetic energy and electron density, respectively. We em-
ployed the projector augmented wave (PAW) method80.
Phonon frequencies were calculated at each volume using
density-functional perturbation theory (DFPT)81 with a
4 × 4 × 4 q-point mesh. The XDM damping function
parameters were set to their established literature values
of 0.3275 and 2.7673 Å for PBE16, 0.6512 and 1.4633 Å
for B86bPBE16, and 0.6754 and 1.4651 Å for B86bPBE-
25X78. We use the canonical version of XDM with pair-
wise C6, C8, and C10 terms, but no atomic three-body
dispersion, which has been shown to give a negligible
contribution in alkali halides3, and in general68. We note
that the XDM pairwise dispersion coefficients do include
electronic many-body effects68.

The E(V ) curves, combined with the phonon frequen-
cies at each volume, were used to calculate the ther-
modynamic properties of each crystal using the Gibbs2
program82,83. At zero pressure and temperature, T , the
Gibbs energy can be computed from the DFT electronic
energy (Eel) and the vibrational Helmholtz free energy
(Fvib):

G(V, T ) = F (V, T ) = Eel(V ) + Fvib(V, T ). (4)

Fvib can be calculated as:

Fvib(V, T ) =

∫ [ω
2

+ kBT ln
(

1 − e
− ω

kBT

)]
g(ω)dω,

(5)
where ω is the vibration frequency, g(ω) is the phonon
density of states obtained from DFPT, and kB is Boltz-
mann’s constant. In the quasi-harmonic approximation
(QHA), we introduce anharmonicity by making g(ω) de-
pendent on the volume. At a given temperature and
zero pressure, the equilibrium volume, V (T ), as well as
the lattice parameters and bulk modulus, are found by
minimizing G(V, T ).

A computationally simpler alternative to the full QHA,
which requires the DFPT phonon density of states at

each volume, is the Debye model84–86. In this model, the
phonon density of states is taken to be a parabola, whose
curvature is determined by the Debye frequency, ωD:

gDebye(ω) =

{
9nω2

ω3
D

ω < ωD

0 ω ≥ ωD,
(6)

where n is the number of atoms in the unit cell and
ωD = kBΘD. ΘD is the Debye temperature, which can
be computed from the static lattice parameter (a0) and
bulk modulus (B0 = V (∂

2Eel/∂V 2)) as

ΘD =
f(σ)

kB

(
6π2n

)1/3√a0B0

M
, (7)

where M is the molecular mass and f(σ) is a function
of the Poission ratio, usually taken to be σ = 1

4 for

simplicity83,86. The advantage of the Debye model in
this formulation is that it only requires the E(V ) curve
as input data, greatly simplifying the calculation. The
Debye model has been shown to be appropriate in the
description of alkali halides87.

Two important properties that determine the com-
pressibility of a solid are the isothermal (BT ) and adi-
abatic (BS) bulk moduli. The isothermal bulk modulus
is

BT = V

(
∂2F

∂V 2

)
T

, (8)

and the adiabatic bulk modulus is

BS = V

(
∂2U

∂V 2

)
S

= BT (1 + αγT ) , (9)

where U is the internal energy, α is the coefficient of
thermal expansion, and γ is the Grüneisen parameter83.

III. RESULTS

A. Cesium-Halide Polymorphism

Following previous studies in the literature5,6, we first
consider the relative stabilities of the B1 and B2 cesium-
halide polymorphs predicted by XDM-corrected func-
tionals. Experimentally, CsF adopts the B1 structure
at room temperature and pressure, while the remaining
cesium halides (CsCl, CsBr, and CsI) all favour the B2
phase. The calculated energy differences between the B1
and B2 phases of the cesium halides are shown in Fig-
ure 2 using the B86bPBE and B86bPBE-25X functionals,
with (∆EXDM) and without (∆Ebase) the XDM disper-
sion correction. Without dispersion, both base function-
als incorrectly predict the B1 form to be stable for all
four cesium halides. Addition of the XDM dispersion
term recovers agreement with experiment and the inclu-
sion of exact exchange has only a minimal effect on the
results. This is in agreement with similar observations in
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FIG. 2. Relative static energies (∆E) and Gibbs free ener-
gies (∆G) of the B1 and B2 phases of the Cs halides. A
negative value indicates that the B2 phase is more stable.
The curves are the Debye (∆GDebye) and full QHA (∆GQHA)
Gibbs free-energy differences, and the static energy differences
with (∆EXDM) and without (∆Ebase) dispersion.

the literature using other dispersion corrections5,6. The
addition of the D2 dispersion correction to PBE, the ad-
dition of the D3 or rVV1088 dispersion corrections to the
SCAN functional89, and the use of several methods based
on the random-phase approximation, were also found to
favour the B2 phase for CsCl, CsBr, and CsI5. Thus,
while inclusion of dispersion is clearly needed to iden-
tify the correct stable polymorph in cesium halides, the
energy ranking is largely insensitive to the choice of dis-
persion correction.

The calculated energy differences per formula unit
are 0.84 (CsF), −2.77 (CsCl), −3.56 (CsBr), and
−5.39 kcal/mol (CsI) using B86bPBE-XDM, and 0.63
(CsF), −3.30 (CsCl), −3.74 (CsBr), and −4.99 (CsI) us-
ing B86bPBE-25X-XDM. These values are comparable to
those reported using other dispersion-corrected function-
als for CsCl6: −4.46 (PBEsol-D2), −5.19 (HSE06-D2),
and −5.33 kcal/mol (PBE0-D2), although they signifi-
cantly favor the B2 phase compared to RPA5 data: 3.26
(CsF), −0.28 (CsCl), −0.55 (CsBr), and −0.57 kcal/mol
(CsI). Given that this over-stabilization of the B2 phase
is common to most functionals and dispersion corrections
(see also Ref. 5), it is possible that its origin lies in some
underlying deficiency of the density-functional approxi-
mations for ionic interactions90, or with the RPA itself44.

Figure 2 also shows the relative free energies of the
B1 and B2 phases obtained with B86bPBE-XDM or
B86bPBE-25X-XDM at room temperature, from either
the Debye model (∆GDebye) or full QHA (∆GQHA). For
CsCl, CsBr, and CsI, the vibrational contribution to rel-
ative phase stability is negligible, and ∆E ≈ ∆G in all
cases. We note that QHA calculations could not be per-
formed for the B2 phase of CsF, as this phase becomes
dynamically unstable at the room temperature equilib-
rium volume, a problem that cannot happen with the
simpler Debye model. For the other three Cs halides,
results with the Debye model are in excellent agreement
with those from full QHA. All results shown for CsCl,

CsBr, and CsI will correspond to the B2 phase in the
rest of the article.

B. Static Lattice Constants

Tao et al. recently benchmarked several dispersion-
corrected DFT methods for the lattice constants of the
alkali halides, as well as bulk metals3. Their reference
data was obtained by back-correcting experimental lat-
tice constants to eliminate vibrational effects, allowing
a direct comparison with the static results from DFT
optimizations. Table I displays the equilibrium alkali-
halide lattice constants obtained using selected function-
als, with the results from Tao et al. provided for com-
parison.

Table I shows the results for three density function-
als without dispersion corrections: the LDA (local den-
sity approximation) and two GGA functionals, PBE and
B86bPBE. The LDA systematically underestimates lat-
tice constants, while they are consistently overestimated
with both GGAs. The general trend in predicted lattice
constants of LDA<PBE<B86bPBE follows the known
behaviour of the exchange enhancement factors of these
functionals. The B86bPBE enhancement factor has the
highest limit for large density gradients and provides
the best agreement with exact exchange72–74. Indeed,
PBEsol91, which has an enhancement factor intermedi-
ate between the LDA and PBE provides improved lat-
tice constants92,93 but, as we show below, this is likely
the result of error cancellation between an overbinding
exchange functional and neglect of dispersion effects.

Table I also shows that adding a dispersion correction
to either GGA results in a contraction of the unit cell and
a reduction in the lattice constant, often leading to im-
proved agreement with experiment. However, the quality
of the computed lattice constants is highly dependent on
the choice of dispersion correction. These differences can
be attributed to the assumptions made in computation
of the leading-order C6 dispersion coefficients and to the
choice of damping function.

As noted by Tao et al.3, the TS method gives very poor
results, overestimating the effect of dispersion and giving
errors 3-4 times higher than obtained with the LDA. This
could be because the TS dispersion coefficients are com-
puted from neutral free-atom reference values, which are
then scaled by a ratio of atom-in-solid to free-atom vol-
umes. The Hirshfeld volumes used in the scaling have
only a weak dependence on chemical environment and
charge state, resulting in little change from the atomic
reference values57,94. Improved values may be obtained
if the TS method is modified to use iterative Hirshfeld
partitioning95. The TS method has also been shown
to display poor performance for alkali and alkaline-earth
metals96.

In the D3 method, the dispersion coefficients are ob-
tained from interpolation of values for neutral hydrides,
based on coordination number10. Contrary to TS, addi-
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TABLE I. Lattice constants (a0 in Å) for 20 alkali halides computed with selected density functionals, compared to experimental
data, back-corrected to eliminate vibrational effects3. The B86bPBE, PBE-XDM, B86bPBE-XDM, and B86bPBE-25X-XDM
results are original to this work. Literature data obtained with other functionals is also shown. ME: mean error; MAE: mean
absolute error.

No Dispersion Literature Dispersion Methods XDM-Corrected Methods
Name LDA3 PBE3 B86bPBE PBE-vdW3 PBE-TS3 PBE-D33 PBE B86bPBE B86bPBE-25X Expt.3

LiF 3.911 4.067 4.075 4.002 3.656 4.001 3.961 4.004 3.960 3.948
LiCl 4.966 5.151 5.167 5.086 4.949 5.085 5.062 5.084 5.077 5.045
LiBr 5.311 5.511 5.534 5.440 5.531 5.436 5.419 5.451 5.459 5.403
LiI 5.807 6.020 6.044 5.942 5.894 5.934 5.892 5.956 5.987 5.883
NaF 4.505 4.699 4.710 4.653 4.866 4.638 4.588 4.570 4.527 4.556
NaCl 5.466 5.697 5.708 5.631 5.377 5.655 5.526 5.522 5.532 5.547
NaBr 5.786 6.036 6.051 5.962 5.586 5.960 5.838 5.841 5.869 5.884
NaI 6.262 6.530 6.551 6.441 6.001 6.410 6.289 6.305 6.351 6.368
KF 5.161 5.419 5.434 5.231 5.151 5.383 5.138 5.215 5.199 5.267
KCl 6.077 6.382 6.400 6.103 5.548 6.383 5.986 6.142 6.167 6.205
KBr 6.372 6.706 6.727 6.421 5.757 6.689 6.257 6.433 6.478 6.503
KI 6.818 7.183 7.196 6.929 6.239 7.094 6.666 6.849 6.912 6.961
RbF 5.462 5.738 5.755 5.558 5.272 5.700 5.408 5.522 5.518 5.559
RbCl 6.378 6.699 6.712 6.436 5.718 6.723 6.221 6.411 6.452 6.498
RbBr 6.667 7.016 7.041 6.716 5.997 7.038 6.489 6.693 6.750 6.803
RbI 7.104 7.486 7.501 7.156 6.646 7.443 6.898 7.100 7.174 7.241
CsF 5.807 6.111 6.149 5.920 5.465 6.075 5.731 5.898 5.900 5.984
CsCl 3.968 4.202 4.226 4.014 3.869 4.198 3.934 4.027 4.041 4.057
CsBr 4.139 4.389 4.413 4.201 3.956 4.388 4.104 4.208 4.228 4.224
CsI 4.402 4.667 4.689 4.466 4.137 4.666 4.340 4.446 4.500 4.491
ME -0.103 0.164 0.183 -0.006 -0.341 0.124 -0.134 -0.038 -0.017
MAE 0.103 0.164 0.183 0.058 0.386 0.124 0.143 0.060 0.039

tion of the D3 dispersion correction to PBE causes only
a slight contraction of the lattice constants and still re-
sults is systematic overestimation. This error may be due
to the zero-damping function used in D310 reducing the
dispersion energy overmuch at the relatively short inter-
nuclear separations seen in ionic solids.11

Table I also shows the performance of several XDM-
corrected methods. PBE-XDM gives relatively poor per-
formance, with errors comparable in magnitude to PBE-
D3, but opposite in sign. This may be attributed to
the balance between the XDM dispersion energy and
the PBE base functional. PBE tends to underestimate
non-bonded repulsion due to its exchange enhancement
factor16,72–75. As a result, PBE-XDM typically over-
estimates the strength of more polar interactions, such
as H-bonding, while underestimating purely dispersive
interactions50. It therefore follows that PBE-XDM would
provide excessive binding in ionic crystals. Conversely,
B86bPBE, which is typically the functional of choice to
pair with XDM16,52,61, gives a more accurate treatment
of non-bonded repulsion, providing stiffer potentials than
PBE, closer to exact exchange72–74. As seen from Ta-
ble I, B86bPBE-XDM provides lattice constants in good
agreement with experiment, with a mean absolute er-
ror (MAE) similar to the PBE-vdW method developed
specifically for simple bulk solids3. We also note that,
of the methods considered here, only XDM and the vdW
method of Tao et al. involve non-empirical dispersion co-
efficients, which likely explains their improved accuracy

for ionic systems by being the only methods that capture
electronic many-body effects correctly68.

Despite the good performance of B86bPBE-XDM in
Table I, the lattice constants remain systematically un-
derestimated with respect to experiment. A possible ex-
planation for this may be delocalization error from the
underlying GGA functional97–100, which is expected to
result in overbinding of ionic materials, and could poten-
tially be reduced with hybrid functionals. This prompted
us to consider the performance of the B86bPBE-25X hy-
brid, paired with XDM. The results in Table I show that
B86bPBE-25X-XDM further reduces the errors and the
MAE of 0.039 Å is the lowest obtained with any of the
methods considered.

The average errors in the calculation of static equilib-
rium volumes of alkali halides using B86bPBE-XDM and
B86bPBE-25X-XDM are 3.0% and 2.0%, respectively.
If only cesium halides are considered, these figures de-
crease to 2.6% and 1.6%. For comparison, Nepal et al.
report average errors of 2.4% and 1.8% using the random
phase approximation (RPA) and beyond-RPA methods
for the cesium halides, respectively5. The performance
of B86bPBE-XDM and B86bPBE-25X-XDM is also com-
parable to the best-performing non-local functionals re-
ported by Klimeš et al.4.
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FIG. 3. Thermal expansivity (α) as a function of tempera-
ture in LiCl, predicted by B86bPBE-XDM with the full QHA
(black) and Debye (red) models.

C. Room-Temperature Lattice Constants

The static lattice constants proposed by Tao et al.3

rely on a back-correction to compare experimental data
to static results. However, the vibrational free energy
also changes according to the functional, so it is interest-
ing to consider whether lattice constants at a finite tem-
perature predicted with the Debye and full QHA models
are equally accurate. In particular, the B86bPBE-XDM
and B86bPBE-25X-XDM functionals have been shown
to predict accurate static lattice constants, so we now
consider their performance in the calculation of room-
temperature lattice constants.

Table II shows our results for the room-temperature
(298 K) lattice constants, accounting for thermal expan-
sion via either the Debye or full QHA models. The four
alkaline-earth oxides (MgO, CaO, SrO, BaO) are added
to our data set, as they share the same rocksalt struc-
ture with the majority of the alkali halides. Since phonon
frequencies cannot be calculated with hybrid functionals
in Quantum ESPRESSO, the B86bPBE-XDM phonon
densities of states were used in combination with the
B86bPBE-25X-XDM electronic energies in the full QHA
case.

Before proceeding to the results, we note that the full
QHA does not give reliable results for LiCl, LiBr, and
LiI. In LiCl, the room-temperature volume was grossly
overestimated, whereas in LiBr and LiI, the B1 phases
were found to have phonon instabilities at the room-
temperature volumes. In all three cases, the root of the
problem is the breakdown of the quasiharmonic approx-
imation in the particular case of full QHA beyond ca.
150-200 K. The thermal expansivity, α, is known exper-
imentally to be linear with temperature at high temper-
ature. Thus, Wentzcovitch et al. proposed the inflection
point in the calculated thermal expansivity vs. tempera-
ture curve as the temperature threshold above which the
quasiharmonic approximation is not valid101. Figure 3
shows the α(T ) curves obtained using B86bPBE-XDM
and the full QHA or Debye models. The threshold tem-

perature in full QHA is reached at 200 K and, conse-
quently, the equilibrium volume at higher temperatures
is overestimated. The same problem is not present when
the Debye model is used.

TABLE II. Computed lattice constants (in Å) obtained with
the B86bPBE-XDM and B86bPBE-25X-XDM methods, us-
ing thermal corrections obtained with either the Debye model
(aDebye) or the full quasi-harmonic approximation (aQHA).
Experimental data at 298 K102,103 is included for compari-
son. ME: mean error; MAE: mean absolute error.

Name B86bPBE-XDM B86bPBE-25X-XDM Experiment
aDebye aQHA aDebye aQHA aexp

LiF 4.071 4.060 4.025 4.010 4.017
LiCl 5.168 - 5.158 - 5.130
LiBr 5.537 - 5.543 - 5.501
LiI 6.041 - 6.070 - 6.000
NaF 4.639 4.616 4.594 4.571 4.620
NaCl 5.600 5.576 5.611 5.586 5.641
NaBr 5.926 5.900 5.953 5.929 5.973
NaI 6.402 6.370 6.445 6.418 6.473
KF 5.292 5.260 5.275 5.242 5.347
KCl 6.220 6.192 6.250 6.219 6.293
KBr 6.516 6.487 6.564 6.535 6.600
KI 6.943 6.902 7.008 6.969 7.066
RbF 5.592 5.565 5.589 5.560 5.640
RbCl 6.489 6.454 6.534 6.498 6.581
RbBr 6.777 6.737 6.841 6.797 6.854
RbI 7.198 7.141 7.272 7.220 7.342
CsF 5.961 5.941 5.966 5.944 6.008
CsCl 4.071 4.071 4.093 4.085 4.123
CsBr 4.252 4.252 4.284 4.273 4.286
CsI 4.511 4.511 4.573 4.546 4.567
MgO 4.266 4.259 4.223 4.216 4.211
CaO 4.818 4.810 4.805 4.796 4.810
SrO 5.188 5.182 5.174 5.167 5.160
BaO 5.585 5.585 5.577 5.576 5.523
ME -0.029 -0.060 -0.014 -0.042
MAE 0.058 0.077 0.033 0.053

Table II shows that, in agreement with the static re-
sults from Table I, B86bPBE-XDM and B86bPBE-25X-
XDM both provide good agreement with the experimen-
tal geometries at room temperature. For B86bPBE-
XDM, the MAEs are 0.058 and 0.077 Å with the De-
bye and full QHA models, respectively. These values
are comparable to the MAE of 0.060 Å obtained for the
static lattice constants. Similar to the static case, ad-
dition of some exact-exchange mixing further lowers the
errors, with B86bPBE-25X-XDM giving MAEs of 0.033
and 0.053 Å, again bracketing the value of 0.039 Å ob-
tained for the static lattice constants. Table II confirms
that the Debye model is an excellent approximation for
these compounds. The Debye approximation actually
outperforms the more complex full QHA method, pos-
sibly due to error cancellation and a lower sensitivity to
unphysical effects at high temperature, as seen in the
case of the lithium halides. Notably, the MAE between
the calculated Debye and QHA cell parameters is only
0.022 Å, which is remarkable given the fact that the De-
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bye model requires only the E(V ) curve as input. The
good performance of the Debye model for alkali halides
has been noted before in the literature87.

D. Bulk Moduli

Finally, we consider the performance of the XDM dis-
persion correction for prediction of bulk moduli. Given
the good performance of the Debye model for ionic solids,
and the unphysical results of the full QHA in some cases,
we consider vibrational effects calculated with the Debye
model only in the following discussion.

There are two different kinds of experimental bulk
moduli: isothermal (BT , Eq. 8), measured using static
methods (e.g. X-ray diffraction), and adiabatic (BS ,
Eq. 9), measured using dynamic methods (e.g. from ul-
trasonic elastic constants). They are related by Equa-
tion 9 and, in the particular case of the alkali halides,
can differ by several GPa. For instance, using B86bPBE-
XDM and the Debye model, BT = 66.9 GPa and BS =
71.8 GPa for LiF. Since this difference is comparable to
the errors from different density-functional approxima-
tions, clearly one must make sure to compare to the cor-
rect bulk modulus. This distinction is often disregarded
in the literature.

Similar to the lattice constants, in order to com-
pare calculated and experimental bulk moduli, one must
account for vibrational effects. In the literature, vi-
brational corrections are typically limited to zero-point
effects93 (i.e. without the thermal contribution) or simply
neglected3–5. The neglect of vibrational zero-point and
thermal effects is sometimes appropriate, as in the calcu-
lation of relative stabilities seen in Section III A and as
noted by Nepal et al.5 for cesium halides. However, doing
the same for the bulk moduli is incorrect in general, be-
cause the bulk modulus decreases significantly with tem-
perature.

The temperature dependence of the bulk modulus
can be quantified using experimental data for the
temperature-derivative of the bulk modulus logarithm
(d lnB/dT ) for various solids. For instance, Park
and Sivertsen measured an adiabatic bulk modulus
of 71.6 GPa at room temperature and approximately
75.5 GPa in the zero-temperature limit for BaO104. A
simple fit to the linear, high-temperature portion of the
experimental BS(T ) curve yields d lnB/dT = −2.5 ×
10−4 K−1, which results in the above 4 GPa difference be-
tween the 0 K and room-temperature BS values for BaO.
This difference will increase even further once vibrational
zero-point effects are considered. For the alkali halides,
d lnB/dT ranges from −2 × 10−4 to −10 × 10−4 K−1,
depending on the solid105. Therefore, there will be a
very significant systematic error if static and experimen-
tal adiabatic bulk moduli are compared directly. This
reasoning can be extended to other simple solids, making
most density-functional benchmarks based on bulk mod-
uli presented in the literature flawed3–5,93. More recent

benchmark studies on bulk moduli do include both ther-
mal and zero-point corrections106,107, but a consistent
way of experimentally back-correcting room-temperature
adiabatic and isothermal bulk moduli is still required.

Given that systematic bias has been introduced in
previous density-functional benchmarks for bulk moduli,
one must question how the conclusions were affected by
this bias. It has been noted that application of disper-
sion corrections decrease agreement with experimental
bulk moduli. For instance, Tao et al. avoid using PBE-
vdW bulk moduli since they “slightly worsen the PBE
bulk modulus”3. Likewise, Klimeš et al.4 observed that
the MAEs of non-local functionals are generally worse
than those obtained using much simpler GGA function-
als. This is at odds with the observations for the lattice
constants.

Table III provides a clue to resolve this contradic-
tion. The table shows the static bulk moduli and room-
temperature adiabatic bulk moduli, calculated with three
different functionals, with and without dispersion, and
compared to reference room-temperature BS values. The
experimental adiabatic bulk moduli reported were ob-
tained from various sources in the literature104,105,108–110,
and they are equal to the reference data used by Tao et
al. in the case of the alkali halides3.

Consistent with the observations of Tao et al.3 and
others, the agreement between static bulk moduli using
uncorrected GGA functionals and the experimental bulk
moduli is excellent. However, by our previous argument,
this comparison is not appropriate because of the quite
substantial vibrational contributions to the bulk moduli,
which is evidenced in the difference between the static
and BS results in the table. The static bulk moduli
calculated with dispersion-corrected functionals are sub-
stantially higher, resulting in a much worse agreement
with experimental BS data. However, the inclusion of
vibrational effects brings the adiabatic bulk moduli back
into reasonable agreement with experiment, at least in
the cases of B86bPBE-XDM and B86bPBE-25X-XDM.
Therefore, the apparent good performance of GGA func-
tionals can be attributed to a (easily preventable) sys-
tematic bias introduced by neglect of vibrational effects,
which at room temperature have about the same magni-
tude as the dispersion contributions to the bulk moduli.

Importantly, Table III shows that PBE, which per-
forms very well if the erroneous comparison between
static and experimental bulk moduli is made, is the
worst-performing functional once dispersion interactions
and vibrational effects are taken into account. As in
the case of the lattice constants, we attribute the poorer
performance of PBE-XDM to underestimation of non-
bonded repulsion due the exchange enhancement factor,
resulting in a gross overestimation of the bulk modu-
lus. In sharp contrast, if functionals with a more ap-
propriate exchange enhancement factor are used, such as
B86bPBE-XDM or its 25% hybrid, then the error de-
creases to the 4–5 GPa range, with a slight systematic
overestimation remaining, which could be attributed to
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TABLE III. Adiabatic bulk moduli at room temperature, in GPa, computed with the PBE, B86bPBE, and B86bPBE-25X
functionals, compared to experimental data. Three sets of data are shown: the static bulk moduli without dispersion corrections,
the static bulk moduli with XDM, and the adiabatic bulk moduli calculated using the Debye model and with the XDM dispersion
correction. ME: mean error; MAE: mean absolute error.

Static B0 (no dispersion) Static B0 (XDM) BS (XDM) BS

Name PBE B86bPBE B86bPBE-25X PBE B86bPBE B86bPBE-25X PBE B86bPBE B86bPBE-25X Expt.
LiF 66.92 65.89 73.10 87.69 80.00 86.60 78.36 71.77 77.02 69.6105

LiCl 31.72 31.03 32.71 39.86 37.27 38.78 36.11 32.41 33.84 31.7105

LiBr 25.67 25.04 26.12 33.79 30.18 31.00 30.83 26.70 27.46 25.6105

LiI 19.78 19.22 19.89 28.78 24.29 24.41 25.93 21.83 21.90 19.2105

NaF 44.79 43.93 48.45 58.01 58.83 64.56 52.09 52.22 57.42 48.5105

NaCl 23.65 23.03 24.17 35.00 34.19 34.12 31.32 30.44 30.40 25.1105

NaBr 19.37 18.82 19.54 29.36 28.59 28.37 25.71 25.08 24.94 20.6105

NaI 15.14 14.68 15.08 23.46 22.75 22.45 20.27 19.47 19.52 15.9105

KF 28.92 28.36 30.79 54.18 41.91 43.86 50.58 37.62 39.91 31.6105

KCl 16.24 15.82 16.47 37.65 26.30 25.64 34.13 23.86 23.06 18.2105

KBr 13.45 14.89 15.59 32.32 22.95 22.13 29.07 20.58 19.88 15.4105

KI 11.40 11.60 12.35 25.38 19.20 18.60 22.46 16.64 16.32 12.2105

RbF 24.52 24.01 25.98 54.61 38.01 38.79 51.34 35.55 35.74 27.7105

RbCl 14.17 13.80 14.34 37.34 25.58 24.91 33.82 22.93 21.47 16.2105

RbBr 12.08 12.29 13.06 31.48 22.23 21.53 28.31 19.60 18.17 13.8105

RbI 10.68 10.88 11.74 24.15 18.18 17.61 21.43 15.89 15.28 11.1105

CsF 20.46 20.01 21.57 56.97 35.98 36.06 54.13 32.65 32.44 23.9105

CsCl 16.06 16.52 13.03 36.38 25.67 26.11 34.25 23.10 23.25 18.3105

CsBr 13.51 13.92 12.02 32.63 22.14 22.26 30.80 20.00 17.73 15.9105

CsI 11.31 11.68 10.81 29.44 18.98 19.15 27.66 17.48 12.06 12.9105

MgO 149.00 147.91 165.70 155.54 155.45 173.56 147.24 147.18 164.96 163.9108

CaO 105.92 105.18 114.25 117.32 114.24 123.22 111.22 107.77 116.85 112.0109

SrO 84.53 83.84 91.44 98.32 91.86 99.75 95.87 89.01 95.76 91.0110

BaO 68.23 67.56 73.46 90.30 76.86 81.82 87.49 73.63 78.53 71.6104

ME -2.68 -3.00 -0.42 14.09 6.66 8.89 10.36 2.98 4.67
MAE 2.74 3.00 1.52 14.78 7.36 8.89 11.81 4.89 4.74

our treatment of anharmonicity.

IV. DISCUSSION

B86bPBE-XDM has essentially the same cost as a
semilocal functional calculation and the dispersion cor-
rection has the simplicity of an asymptotic pairwise
formula. The good performance of B86bPBE-XDM
and its 25% hybrid functional (B86bPBE-25X-XDM)
for ionic solids, together with their ability to treat
molecular crystals52–56,111,112, layered materials62, sur-
face adsorption57–59, and gas-phase molecules16,50,113,114,
confirms that these methods are excellent candidates for
the universal modeling of chemical processes in materi-
als science. This adds further support to what we have
stated in the past62: that asymptotic pairwise methods
can be as accurate as their more complicated relatives if
they correctly capture electronic many-body effects.

To support this point, it is interesting to compare the
performance of B86bPBE-XDM with other functionals
that are not based on an asymptotic dispersion energy
expression. Given the abundance of results for non-
local and other dispersion methods in the literature, we
focus on a very recent paper by Kim et al.47, where

the uMBD method, a modification of MBD15, is bench-
marked for metallic, ionic, and van der Waals interac-
tions. The authors state that “uMBD conserves a better
uniform accuracy over other methods across a wide range
of systems”47, so we may take it as a representative sam-
ple of a modern non-asymptotic dispersion method.

While a full comparison is not possible because of
the limited uMBD data presented47, uMBD underper-
forms in comparison to B86bPBE-XDM for common
benchmark sets. For the S22 set of molecular binding
energies115,116, uMBD has an MAE of 0.54 kcal/mol
compared to 0.37 kcal/mol for B86bPBE-XDM. Simi-
larly, for the X23 set of molecular lattice energies61,117,
B86bPBE-XDM achieves an MAE of 0.85 kcal/mol16,78

while uMBD has an MAE of 1.2 kcal/mol. In addition,
B86bPBE-XDM has been extensively applied to molecu-
lar crystal polymorphism53–56,111,112, demonstrating ex-
cellent performance for the prediction of experimental
polymorph landscapes.

Moving to inorganic solids, the MAE in the alkali-
halide lattice constants is 0.060 Å for B86bPBE-XDM,
as shown above, while it is 0.047 Å for uMBD.47 For
surface adsorption, the sets reported for uMBD47 and
B86bPBE-XDM57 are not equivalent, so we will exam-
ine the individual systems for which adsorption energies
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have been calculated using both methods. For benzene
on Au(111), the adsorption energies are 14.8 (B86bPBE-
XDM) and 12.0 kcal/mol (uMBD), compared to the ref-
erence value of 16.7 kcal/mol. Similarly, for benzene
on Ag(111), the adsorption energies are 15.7 (B86bPBE-
XDM) and 11.5 kcal/mol (uMBD), compared to the ref-
erence value of 14.6 kcal/mol. A more meaningful com-
parison could be obtained with more data but, in these
particular cases, the performance of B86bPBE-XDM far
exceeds uMBD, which appears to systematically under-
stimate the adsorption energies. Lastly, B86bPBE-XDM
shows excellent performance for the calculation of inter-
layer separations (MAE = 0.072 Å) and exfoliation ener-
gies (MAE = 4.0 meV/Å2) of layered materials, compa-
rable to MBD-FI. The latter is similar to uMBD; unfor-
tunately Kim et al.47 do not provide enough data about
layered systems for a meaningful comparison.

Our analysis confirms the good performance and uni-
versality of B86bPBE-XDM for metallic, ionic, and
molecular systems. When it comes to dispersion correc-
tions, a principle of parsimony must apply. Asymptotic
pairwise dispersion corrections are simple, cheap, and,
if they capture electronic many-body effects correctly68,
they are comparable in quality if not better than the most
complicated dispersion-corrected functionals.

V. CONCLUSIONS

In this article, we have studied the performance of
several XDM-corrected functionals in the description of
the relative stability, lattice constants, and bulk moduli
of simple ionic solids. XDM-corrected functionals have
shown excellent performance in the description of non-
covalent interactions in the past, and the purpose of this
work is to establish that these functionals can also be
used in the modeling of hard solids, such as ionic com-
pounds.

The studied systems were simple ionic solids, includ-
ing 20 alkali halides and four alkaline-earth oxides (MgO,
CaO, SrO, and BaO). Three different aspects were con-
sidered: the relative stabilities of cesium-halide phases,
the calculation of lattice constants, and of bulk moduli.
The prediction of polymorphism in the cesium halides
is relatively simple, and we show that XDM, as well as
other dispersion-corrected functionals, correctly identify
the experimental phase of CsF (B1, rocksalt) and of CsCl,
CsBr, and CsI (B2, CsCl). The use of a dispersion cor-
rection is essential in order to obtain the proper energy
ranking, while vibrational effects have only a very minor
role.

The lattice constants benchmark was carried out in
two steps. First, we used the experimental data proposed
by Tao et al.3 that was back-corrected to remove vibra-
tional effects and allow a direct comparison with calcu-
lated static lattice constants. We find that B86bPBE-
XDM and its 25% hybrid (B86bPBE-25X-XDM) per-
form excellently, with average errors of only 0.060 Å and

0.039Å, respectively. The inclusion of dispersion correc-
tions again decreases the error in the calculated lattice
constants and, importantly, PBE-XDM has a consider-
ably higher error (0.143 Å) which we attribute to the un-
derestimation of non-bonded repulsion. We have noted
previously that the effect of the exchange enhancement
factor on non-bonded repulsion can be magnified for ionic
interactions90. The improved performance of the hybrid
functional is attributed to decreased delocalization error,
which may be important in these systems. In the sec-
ond step, we considered the calculated lattice constants
at room temperature using the Debye and full QHA
thermal models. The good performance of B86bPBE-
XDM and B86bPBE-25X-XDM for the lattice constants
is preserved, and we also note the excellent predictions
achieved with the relatively crude Debye model.

Finally, we also considered the calculation of bulk mod-
uli in ionic systems. It has been claimed in the liter-
ature that simple GGAs, such as PBE or PBEsol, are
able to accurately predict experimental bulk moduli. We
show that this is the result of a quite significant and un-
controlled error cancellation between missing dispersion
and missing vibrational effects that arises from compar-
ing static (or zero-point corrected) bulk moduli and ex-
perimental bulk moduli. If the comparison is made in-
cluding vibrational effects, then including dispersion is
essential. As seen for the lattice constants, dispersion-
corrected PBE is the worst-performing functional, which
confirms that properly accounting for non-bonded repul-
sion through the exchange enhancement factor is neces-
sary for ionic solids. Previous claims regarding the accu-
racy of simple semilocal functionals for the prediction of
bulk moduli are marred by a preventable systematic bias
in the comparison with experimental data.
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