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Abstract

Relative stabilities of two or more crystalline phases, such as allotropes or polymorphs,

can be predicted theoretically using density-functional theory (DFT). Understanding the

stability landscape of a given system has far-reaching applications in the pharmaceutical

industry and materials modelling. For example, the focus could be to screen for compounds

with specific properties, or to complement experiment in determining the isolable crystal

structure.

Crystal structure prediction (CSP) is a rapidly evolving field of computational chemistry.

The over-arching goal of CSP is to predict the crystal structure of a given organic molecule

beginning from its 2D chemical diagram. Being able to routinely conduct CSP studies is

highly desirable, but is complicated by the complexity of the potential-energy surface that

must be explored due to the many possible ways molecules can arrange themselves in the

solid-state. DFT is routinely used to compute the relative energies of polymorphs in CSP

studies, but temperature effects are frequently neglected. While DFT phonon calculations

provide the zero-point and thermal contributions to the relative free energies of polymorphic

systems, they are often intractable for the size of systems commonly encountered in CSP

studies.

The work contained in this thesis aims to study several problems concerning allotropes,

polymorphism, and free-energy corrections. We examine two allotropes of carbon, diamond

and graphite, and apply DFT to compute the relative free-energy difference. By undertaking

this study, we can use high-accuracy theoretical data to determine which allotrope of

carbon is more thermodynamically stable. With regards to polymorphism, we examine

functionalized [6]helicene systems for organic electronic applications and use DFT to

propose several low-energy crystal structures that may be crystallized experimentally.

Finally, we conduct a benchmark study of thermal corrections of polymorphic molecular

crystals and assess the accuracy of selected low-cost methods in hopes of finding a cheaper

alternative to computationally expensive DFT phonon calculations.
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Chapter 1

Introduction

The field of computational chemistry exploits models based on physics and mathematics to

make predictions about systems that are of interest to chemists. There are a large number

of computational models that exist in the literature that are designed specifically for a

given purpose. What sets the different models apart is the underlying theory (quantum

mechanics or classical mechanics, for example) and the approximations or assumptions

invoked, which leads to varying degrees of accuracy and computational time. Researching

and understanding the pitfalls and successes of a given model is paramount to make sure

one is using an appropriate model for the application at hand.

There are many applications of computational chemistry, such as modelling reaction

pathways,1 bond-dissociation energies,2 and binding energies for molecules on surfaces.3

Computational chemistry can be used to calculate thermodynamic quantities of molecules

and materials, such as the Gibbs or Helmholtz free energy, enthalpy, entropy, etc.4 One

particular focus of this work is computing relative (free) energies of different polymorphs

(phases) of a solid-state material to determine which may be the likely structure(s) to be

observed experimentally.5 The work contained in this thesis aims to apply a specific compu-

tational model, known as density-functional theory (DFT), to allotropes and polymorphs.

We will show results for three projects in total, consisting of two short, collaborative

projects (Chs. 3 and 4) and one more in-depth project (Ch. 5). In Ch. 3, we study the

relative thermodynamic stability of two allotropes of carbon: diamond and graphite. We

use very accurate DFT models to compute the relative energy and subsequently perform

phonon calculations to ascertain the temperature contribution to the relative Gibbs free

energy. Next, Ch. 4 focuses on applying a crystal structure prediction protocol to determine

accurate energetic rankings of polymorphs of functionalized [6]helicene systems. These
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[6]helicenes are interesting as they are relevant materials in electronic applications,6–8

such as organic light-emitting diodes.9 Lastly, we undertake an in-depth benchmark study

of thermal corrections in polymorphic organic molecular crystals. We use accurate (and

expensive) DFT models to compute free-energy corrections for a small benchmark set and

subsequently explore the viability of various low-cost models to reproduce the high-level

data.

As stated above, DFT10–12 is the main computational framework that we use in this

work. DFT is a quantum-mechanical model where the central quantity is the electron

density function, ρ(r), where r contains the three spatial coordinates. The electron density

is used to model chemical interactions, such as bonding. DFT is widely used in chemistry

and physics research as a tool to supplement experimental results, as well as to make

predictions that inform experiment.13,14 In our case, we are interested in using DFT to

calculate minimum-energy crystal structures and phonon frequencies, which are then used

to calculate finite-temperature thermodynamic quantities.

Phonons can be thought of as the vibrations of atoms that occur in a crystalline lattice.

Solids exhibit two types of phonon modes: acoustical and optical phonons. To illustrate

the difference between the two phonon modes, consider a one-dimensional chain of atoms

as shown in Fig. 1.1. Acoustic phonons are vibrations that involve coherent movements

of atoms, while optical phonons are those that involve incoherent movements of atoms.

Intramolecular vibrations can be influenced by the surrounding molecules in the crystal

lattice due to intermolecular interactions, such as hydrogen bonding and π stacking. Finally,

we can treat the individual vibrations as harmonic oscillators, allowing for straightforward

formulae to evaluate the entropy, heat capacity, enthalpy corrections, and free-energy

corrections, based on only the vibrational frequencies.

Most DFT calculations are performed assuming no energetic or structural effects arising

from finite temperature. Under these circumstances, we are only calculating the energy of

the static electrons, while ignoring thermal motion. While neglecting thermal effects can

be a valid approximation in many cases, in order to obtain a more accurate description of

the system of interest, we can account for temperature effects. Moreover, many properties

in crystals are affected by temperature, such as lattice expansion/molar volumes,16 ther-

mochemical properties,16,17 mechanical properties,17,18 vibrational spectra,19 and nuclear

2



Figure 1.1: Simplified 1D illustration of the difference between optical and acoustical
phonon modes for a linear diatomic chain, with atoms of mass m1 and m2 and lattice
parameter a. Optical modes are those where the atoms are moving incoherently,
whereas acoustical modes are those where the atoms are moving coherently. Image
taken from Ref. 15.

magnetic resonance (NMR) chemical shifts.20

Crystal structure prediction (CSP) is one field of computational chemistry that can

benefit from the computation of thermal effects. CSP aims to predict the most stable

solid-state polymorph of a given molecular crystal, beginning from the 2D chemical diagram.

The CSP problem is extremely challenging from a computational perspective due to the

many possible ways that molecules can arrange themselves in the solid-state, known as

polymorphism.21,22 Large-scale statistical studies on hundreds of polymorphic organic

crystals showed that thermal effects have the ability to rearrange relative ordering of about

10-20% of structures.23,24 These results suggest that thermal effects have a small, but

sizeable, impact on the relative stability ordering of polymorphs. Therefore, it is important

that we consider the energetic contributions arising from temperature so we are correctly

ranking structures, especially at the final stages of a CSP protocol.

It is commonplace for CSP to be broken down into a series of steps (we refer to the

collection of these steps as a protocol) involving several different theoretical models and com-

putational software packages. The reason for this is that molecular crystals, especially those

of practical relevance, tend to adopt very large unit-cell geometries and very inexpensive

(albeit inaccurate) models are frequently used for initial structure generation. Due to their

high cost and relatively low contribution (compared to relative electronic energies), calcu-

lating phonon frequencies and thermal effects is usually the very last step of a CSP protocol.

3



Another application of computing phonon frequencies and thermodynamic functions is

in modeling phase diagrams. A phase diagram is a plot of temperature versus pressure and

displays the most stable phase of a compound at the given conditions. Phase diagrams are

particularly relevant for both allotropes and polymorphs because different phases can be

stable under different temperature or pressure conditions. For example, one polymorph

may be stable at room temperature and ambient pressure; however, upon applying pressure,

another polymorph may become more stable. DFT electronic energies are insufficent to

give us enough information to be able to conclude the presence of different phases under

these different conditions. As a result, adding free-energy and pressure-volume corrections

allows us to study the temperature and pressure dependance of allotropes and polymorphs.

The most common way to supplement the electronic energy with thermal effects within

the DFT framework is to calculate phonon frequencies and apply formulas derived from

statistical mechanics within either the harmonic or quasi-harmonic approximations. The

harmonic approximation assumes that the phonon frequencies are independant of volume,

which leads to behaviour such as infinite thermal conductivity and zero thermal expansion.25

By extension of zero thermal expansion being predicted, mechanical properties like elastic

constants and bulk moduli are calculated independant of temperature (which is strictly an

approximation). The quasi-harmonic approximation is a more sophisticated approach to

introduce phonon dependence on volume, yielding improved results when temperature and

pressure effects are important.17,26 Both the harmonic and quasi-harmonic approximations

are prescriptions that can be applied to any system and depend on the computed phonon

frequencies. We now discuss the practical aspects of such phonon calculations in more detail.

In general, a phonon frequency calculation is significantly more expensive compared

to one single-point energy calculation (evaluating the energy of the electrons at a given

geometry) or even a complete geometry optimization. Broadly speaking, in the solid state,

there are two main contributors that dictate the cost of a phonon calculation: the number

of atoms in the unit cell and the sampling of the Brillouin zone. The number of phonon

modes in a system is 3N , where N is the number of atoms, and each individual mode

must be solved for iteratively. Moreover, we must calculate 3N phonon modes for each

q-point that is sampled in the Brillioun zone. We must converge a quantity of interest (for

example, the Gibbs free energy) with respect to q-point sampling, which quickly becomes

4



very expensive computationally. Symmetry can be exploited to reduce the computational

time; however, it remains quite impractical to calculate phonons for crystal structures with

large unit cells. As a result, it is desirable to find ways to compute phonon frequencies at

a reduced cost.

In CSP, one way to address the problem of phonon frequencies being expensive to

compute is to limit the number of structures for which we calculate thermal contributions.

That is, we can ensure that we are using very accurate energy-ranking methods to filter

out as many structures as possible, minimizing the number of phonon calculations we

need to perform. Additionally, because full plane-wave DFT can be very expensive, we

can use cheaper computational models, such as semi-empirical approaches like HF-3c,27

which employs a minimal basis set. The orbitals and electron density are represented as

linear combinations of functions, termed a basis set, which typically consists of either plane

waves or Gaussian functions. HF-3c uses a minimal Gaussian basis set to construct the

orbitals, greatly decreasing its computational cost, as well as its accuracy. To compensate

for using a minimal basis set, the HF-3c method uses three distinct energy corrections

to try and recover higher accuracy. Another low-cost computational model is density-

functional based tight binding (DFTB).28 DFTB models are derived by expansion of the

total-energy functional from DFT via a Taylor series up to third order. The terms in

this Taylor expansion are then approximated in several different ways, such as by using

DFT or empirical data, or superposition of atomic densities. Finally, DFTB models are

parametrized for a given reference system, leading to many different parameterizations.

Using a cheaper method, such as HF-3c or DFTB, ultimately brings up the cost/accuracy

dilemmma. Semi-emperical methods may be too inccurate to be viable options, which is

why it is crucial to extensively test and validate these models.

There are several projects contained in this thesis two of which are short, collaborative

projects and one is an in-depth computational benchmark study. The first of the two

collaborative projects involves addressing the question of which allotrope of carbon is

the most thermodynamically stable, graphite or diamond. We achieve this by applying

high-level periodic DFT calculations within the quasi-harmonic approximation to compute

the relative entropies, enthalpies, and Gibbs free energies. Next, we apply DFT within the

SIESTA29 framework to functionalized [6]helicene molecules and examine their potential

as organic-semiconducting (OSC) materials. Helicene systems are an excellent case to

5



apply CSP as the conformational landscape of the crystals can be large and, therefore,

polymorphism is an inherent problem that must be studied. Lastly, we generate a benchmark

set of relative thermal corrections for a list of polymorph pairs obtained from the Nyman-

Day polymorph library.23,24 This benchmark is then used to assess the performance of

lower-cost models, with the hope that one will be sufficiently accurate that we can forego

the expensive full plane-wave DFT phonon calculations and use a more expedient method

to obtain reliable results.
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Chapter 2

Theory

2.1 Density-Functional Theory

Density-functional theory (DFT) is a quantum-mechanical theory that revolves around a

system’s electron density function, ρ(r). Formally, we can express the total density as a

summation of the probability densities of the occupied (spin) orbitals,

ρ(r) =
∑
i,σ

|ϕi,σ(r)|2. (2.1)

The theoretical foundations for DFT arise from early works by Hohenberg, Kohn, and

Sham.10,11 There are several theorems that set the stage for DFT, of which we provide an

overview here. The first theorem, proved by Hohenberg and Kohn, is that the ground-state

energy from Schrödinger’s equation (ĤΨ = EΨ) is a unique functional of the electron

density, E[ρ]. By functional, we mean a function of a function, that is, a function of the

electron-density function. The first Hohenberg-Kohn theorem is useful because it tells us

that the ground-state electron density uniquely determines all the properties of our system,

analogous to the N -electron wavefunction, Ψ.12 Despite the fact that a unique energy

functional of the electron density exists, we are not given any indication of its mathematical

form — a problem which we shall discuss shortly. The second Hohenberg-Kohn theorem

tells us that the electron density that minimizes the energy functional is the electron

density corresponding to the full solution of the Schrödinger equation, allowing us to invoke

the variational principle. Finally, we consider Kohn-Sham (KS) theory, in which a system

of noninteracting electrons is used to make several approximations to address the problem

of the unknown energy functional. Assuming a noninteracting electron reference system,

the DFT energy can be formulated as a functional of the electron density and is expressed
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as

EDFT ≡ E[ρ] = T0[ρ] +

∫
Vextρ(r)dr+ J [ρ] + EXC[ρ]. (2.2)

Here, T0[ρ] is the approximation to the kinetic energy considering a noninteracting reference

system, given by

T0 = −
∑
i

∫
ϕ∗i (r)∇2ϕi(r)dr, (2.3)

where ∇2 is the Laplacian operator. The second term is the electron-nuclear interaction

energy, where Vext is determined from the nuclear positions. J [ρ] is the classical Coulomb

electron repulsion energy

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2, (2.4)

where r12 = |r1 − r2|. Lastly, EXC, the exchange-correlation energy term, can be thought

of as the error made by considering classical electron-electron interactions. Unfortunately,

there is no exact expression for the exchange-correlation energy and, in practice, we resort

to approximations. We can variationally minimize Eq. 2.2 with respect to the orbitals, ϕi,

to obtain the Kohn-Sham equations, solved self-consistently, and expressed as:

−1

2
∇2ϕi + vKSϕi = ϵiϕi, (2.5)

where ϵi is the orbital energy and vKS is the Kohn-Sham potential, given by

vKS = vext + vel +
δEXC

δρ
. (2.6)

The KS potential includes three terms: the external potential (electron-nuclear interactions),

the classical Coulomb potential, vel, given by

vel =

∫
ρ(r2)

r12
dr2, (2.7)

and the functional derivative, δEXC/δρ.
12

All practical calculations under the DFT framework use density-functional approxima-

tions (DFAs), simply called functionals. For each functional, the exchange-correlation

energy can be split into exchange and correlation terms as

EXC = EX + EC. (2.8)
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Throughout this section, we are mainly interested in the choice of exchange functional, as

EX contributes more to EXC than EC. We now address various ways to approximate EX,

beginning with the local spin-density approximation (LSDA). The LSDA approximates the

exchange-energy contribution from each point in space as being equal to the corresponding

result for a uniform electron gas with the same density. Here, EX is

ELSDA
X = −3

2

(
3

4π

)1/3∑
σ

∫
ρ4/3σ (r)dr, (2.9)

where ρσ is the spin-dependent density. Note that ELSDA
X involves only the electron density,

ρ(r), which is the reason for the LSDA being termed local in the density. The LSDA is

reasonable for systems with slowly varying density, such as metals; however, for almost

all chemical systems of interest the density is not slowly varying. Therefore, a more

sophisticated approach is required to capture more information about how the density

is varying in space. The generalized gradient approximation (GGA) was formulated to

expand upon the LSDA by including dependence on the gradient of the density, ∇ρ. We

can write the form of a GGA functional as follows:

EGGA
X = cX

∑
σ

∫
F (χσ)ρ

4/3
σ (r)dr, (2.10)

where cX is a constant and F (χσ) is referred to as the enhancement factor and is dependent

on the reduced density gradient, χσ, given by

χσ =
|∇ρσ(r)|
ρ
4/3
σ (r)

. (2.11)

The enhancement factor varies depending on the choice of functional used and is normally

formulated to obey known limits. The most commonly used exchange functional is that

of Perdew, Burke, and Ernzerhof (PBE),30 while the exchange functional we employ

most often in this work is B86b.31 Both PBE and B86b are often paired with the PBE

correlation functional, with the full names of these exchange-correlation functionals written

as PBEPBE (simply PBE) and B86bPBE. B86bPBE is our functional of choice as it yields

excellent results in molecular crystal applications.32 Both exchange functionals share the

form for a GGA given in Eq. 2.10 with

FPBE(χσ) = 1 +
β

cx

χ2
σ

1 + γχ2
σ

(2.12)
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and

FB86b(χσ) = 1 +
β

cx

χ2
σ

(1 + γχ2
σ)

4/5
, (2.13)

where β and γ are constants, which vary depending on the functional. PBE recovers the

correct behaviour of the enhancement factor, in the zero-gradient limit, which is ideal for

metals, but not in the large-gradient limit. B86bPBE, on the other hand, recovers correct

behaviour in the large-gradient limit, which is ideal for intermolecular interactions. GGAs

represent a massive improvement over the LDA, particularly with regards to thermochem-

istry.33 However, GGAs tend to overbind systems, in contrast with Hartree-Fock (HF),

which tends to underbind.12 With regards to binding, we are referring to the bond energy,

not necessarily the bond length.

We now consider another class of DFAs, known as hybrid functionals, which are based

on a GGA but also include some percentage of exact (HF) exchange. The rationale for the

good performance of hybrids is straightforward; GGAs tend to overbind and HF tends to

underbind, so a combination of the two should therefore offer an improvement. In general,

a hybrid functional can be expressed as

Ehybrid
X = aXE

HF
X + (1− aX)E

GGA
X , (2.14)

where aX is between 0 and 1 (depending on the particular hybrid functional) and EHF
X is

the exact-exchange energy given by

EHF
X = −1

2

∑
σ

∫∫
ϕ∗i (r1)ϕ

∗
j (r2)

1

r12
ϕj(r1)ϕi(r2)dr1dr2. (2.15)

We mainly use two hybrid functionals in this work, PBE034 and B86bPBE-25X,35 which

contain 25% exact exchange (aX = 0.25) and are based on PBE and B86bPBE, respectively.

Due to the inherent nonlocal nature of HF exchange, production calculations involving

hybrid functionals quickly become intractable with plane-wave basis sets. Fortunately,

algorithmic advances have been made to allow hybrid functionals to be used in small

solid-state calculations.36

2.2 Modelling Periodic Solid-State Systems

Given the task of modelling a solid-state system, such as a material or molecular crystal, we

are presented with the challenge of representating an infinite number of electrons. Thanks
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largely to the advances of solid-state physics, we are able to minimize the problem down

to repeating sub units, or unit cells. Unit cells are segments of the overall crystal structure

that can be translated in the three spatial dimensions to construct the entire system.

Usually, we want to work with the primitive unit cell as that is the smallest unit cell that

we can have for a given system with a particular atomic arrangement. Note that when

we are considering unit cells, there is an assumption of high structural order, that is, the

regularly repeating units are all exactly the same, which is not necessarily true for a bulk

material in reality. We can specify any unit cell by three lattice vectors given by

R = n1a1 + n2a2 + n3a3, (2.16)

where ai are the primitive lattice vectors which are scaled by a coefficient ni that can be

any integer value. Eq. 2.16 allows us to build the Bravais lattice, of which there are 14

possible symmetries. Bravais lattices are an indispensable tool in solid-state computations

because of the ability to exploit their symmetry to reduce computational cost.

Consider the potential, V (r), within the full crystal, which will remain unchanged when

considering displacements by a Bravais vector,

V (r) = V (r+R). (2.17)

Due to the periodicity of the potential, Bloch’s theorem37 gives us a prescription for the

one-electron wavefunctions, ϕ, in terms of plane waves, eik·r, expressed as

ϕj,k(r) = uj(r)e
ik·r, (2.18)

where k is a wave vector. Here, u(r) = u(r+R) is a periodic function that can be expanded

in terms of a Fourier series, given by

uj(r) =
∑
G

cj,Ge
iG·r, (2.19)

where G are the reciprocal lattice vectors and cj,G are the Fourier coefficients. Combining

Eqs. 2.18 and 2.19, we can then write the one-electron wavefunctions as

ϕj,k =
∑
G

cj,k+Ge
i(k+G)·r. (2.20)
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This provides a method through which we can model solid-state systems with periodic

potentials in terms of plane waves in reciprocal space. Instead of treating infinitely many

electrons, we can treat a finite number of electrons in the unit cell only, with the caveat

that we must consider an infinite number of k-points. It may appear that we have simply

exchanged one infinity for another, but in practice, we only need to sample a finite number

of k-points.

We are left with the question of how to sample the infinite k-space. Convergence tests

can be undertaken whereby one increases the size of k-point sampling until there is no

change (below a chosen threshold) in a quantity of interest, such as the total energy or the

band gap. A simple and straightforward scheme for sampling k-space is that proposed by

Monkhorst and Pack, in which a uniform grid is used.38 Throughout this work, we use

the notation i× j × k, where i, j and, k are integers, to represent the number of equally

spaced k-points for a given real-space direction, x, y, and z.

2.3 The Pseudopotential Approximation

Calculating the Kohn-Sham orbitals as a linear combination of plane waves (Eq. 2.21)

is commonplace in performing solid-state calculations, because of the periodic nature of

crystal lattices. This approach is used in several solid-state electronic-structure codes,

such as Quantum ESPRESSO39,40 and ABINIT,41,42 for example. For a given KS orbital

wavefunction, ϕa, using plane waves as our basis, we have

ϕa =
∑
j

cje
ik·r, (2.21)

where cj are variational coefficients, which are optimized to minimize the energy. However,

one of the downsides of using plane waves as the basis set is that we require many plane

waves to accurately describe both the oscillatory nature of the wavefunctions near the

nuclei and the flat, near-constant behaviour between atoms. The number of plane waves

that is used to express the KS orbitals and electron density is modulated by a simulation

parameter called the kinetic-energy cutoff, Ecut, where a higher value indicates using

plane waves of higher energy (more oscillations). We want the total energy (or some other

property of interest) to be converged with respect to the kinetic-energy cutoff; therefore,

we must perform convergence tests with respect to varying Ecut. Furthermore, calculations

can become quickly intractable as the number of plane waves employed increases; therefore,
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it is necessary that one uses an Ecut value that is as low as possible for a particular purpose

and avoid using a value that is unnecessarily large.

The most popular computational methodology in solid-state electronic-structure theory

is that of the pseudopotential approximation,43 in which core electrons in an atom are

represented by an effective potential while valence electrons are treated with plane waves.

To justify the pseudopotential approximation from a chemist’s perspective, the valence

electrons are considered to be the descriptors of chemical phenomena, such as bonding.

Moreover, the chemically inert core electrons act as spectators of sorts and are not (usually)

involved in chemical processes. As a result, we see an increase in computational efficiency,

because we no longer have to model all of the core orbitals individually. Another benefit of

the pseudopotential approximation is that we no longer require a large number of plane

waves for an accurate representation of the rapidly-oscillating behaviour of the wavefunction

near the core region of an atom.

We now examine several different ways to construct pseudopotentials,43–48 beginning

with norm-conserving (NC) potentials. Pseudopotentials are commonly referred to as

norm-conserving if they satisty four general conditions.44,49 The first condition is that

valence pseudo-wavefunctions should not contain any nodes, to ensure a smooth potential.

It is important for the potential to be smooth, so that we can use a fewer number of plane

waves to represent it. Secondly, the radial pseudo-wavefunctions must be equal to the

radial all-electron wavefunction beyond a chosen cutoff radius, rc,l,

ϕPSl (r) = ϕAE
l (r) for r > rc,l, (2.22)

where ϕl is the wavefunction with angular momentum, l, for the pseudized case (PS) and

the all-electron case (AE). The second condition for norm-conserving pseudopotentials

suggests that the PS wavefunction must be identical to the AE wavefunction beyond a

certain distance from the nucleus. Thirdly, the norm (charge density) must be conserved

within rc,l for both the pseudo- and the all-electron wavefunctions,∫ rc,l

0

∣∣ϕPSl (r)
∣∣2dr =

∫ rc,l

0

∣∣ϕAE
l (r)

∣∣2dr. (2.23)

Lastly, the pseudo- and all-electron eigenvalues of the Kohn-Sham equations must be equal,
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that is

ϵPSl = ϵAE
l , (2.24)

which ensures that the pseudopontential is able to accurately represent the eigenvalues of

orbitals in the core region.

Alternatively, the projector-augmented wave (PAW) method, developed by Blöchl,45

was designed to combine the versatility of linear-augmented plane wave methods50 with

the simplicity of the pseudopotential approximation. PAW is fundamentally an all-electron

method (operating under the frozen-core approximation),45 which can provide the full

wavefunction, in addition to the full potential, which is determined from the full charge

densities. Note that the normalization condition of Eq. 2.23 is relaxed in the PAW method.

In PAW schemes, a transform operator is defined that ultimately leads to a prescription

for calculating the all-electron wavefunction, Ψn, from the pseudo-wavefunction, Ψ̃n, given

by47

|Ψn⟩ = |Ψ̃n⟩+
∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|Ψ̃n⟩ , (2.25)

where the sum rums over all atomic sites and the p̃i are projector functions. The so-called

AE partial waves, ϕi, are obtained for a reference atom and are equivalent to the PS

partial waves, ϕ̃i, outside a chosen rc,l, just as with NC pseudopotentials. We employ

the PAW approach within this work as it as been shown to be more accurate than NC

pseudopotentials in modelling molecular crystals and van der Waals dimers in the solid-

state.51 However, we do use NC pseudopotentials for hybrid DFT calculations, for which

the PAW method is not yet implemented in Quantum ESPRESSO.

2.4 The Exchange-Hole Dipole Moment Model

London dispersion interactions are the long-range, weak, attractive forces that arise from

induced dipoles in fluctuating electron densities and are not properly accounted for by

routine DFT methods. In particular, widely used GGA functionals depend only on the

electron density and its gradient. Hence, GGA functionals are termed semi-local, and they

are intrinsically unable to account for non-local dispersion physics.

Of the many ways to account for noncovalent interactions in DFT,52,53 the exchange-hole

dipole moment (XDM) model, developed by Becke and Johnson,54,55 will be the focus of

this section and is used extensively herein. In particular, we use XDM in this work to
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accurately treat chemical systems that are heavily influenced by dispersion interactions,

such as molecular crystals32 and graphite.51 XDM belongs to a class of dispersion models

known as post-SCF dispersion corrections, which supplement the base DFT energy (Ebase)

with the dispersion energy, (Edisp):

E = Ebase + Edisp. (2.26)

XDM has been shown to accurately describe noncovalent interactions for a wide array

of systems, such as gas-phase molecules,56 surface adsorption,57 layered materials,58 and

molecular crystals.32 XDM has been implemented in several electronic-structure codes

such as Quantum ESPRESSO,32,39,40,51 SIESTA,29,59–61 and Gaussian62 (with the postg

program).63

We now take a closer look at the inner workings of the XDM model within a solid-state

DFT framework. Considering a periodic lattice, the XDM dispersion energy takes the

following form:32,51,61

Edisp = −1

2

∑
n=6,8,10

∑
L

∑
ij

Cn,ijfn(Rij,L)

Rn
ij,L

, (2.27)

where the Cn,ij are the n-th order dispersion coefficients for a given atom pair, ij. Each

atom pair is separated by a distance Rij,L, given by

Rij,L = |Ri −Rj + L|, (2.28)

which is the distance between atoms i and j separated by lattice vector L. For the

L = 0 term, i cannot equal j. Moreover, in practice, the sum over the lattice vectors is

truncated at a point such that the remaining interatomic contributions fall below a given

energy threshold. fn(Rij,L) is known as the Becke-Johnson (BJ) damping function that,

by damping to a constant value, prevents the dispersion energy from diverging at small

internuclear separations. We will examine the BJ damping function later in this section.

Returning to Eq. 2.27, the first sum extends infinitely, in theory; however, in the canonical

implementation of XDM it is truncated at the C10 term (n = 10). Additionally, XDM

only considers pairwise interactions, as opposed to, for example, higher-order many-body

terms such as the three-body Axilrod-Teller-Muto (ATM) term.64,65 The combination of

considering dispersion coefficients up to C10 and two-body terms has been shown to be
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sufficient for describing noncovalent interactions in intermolecular complexes,56,66 molecular

crystals,32,66 and layered materials.58

We now discuss the dispersion coefficients, Cn,ij , derived from second-order perturbation

theory.55,67 For n = 6, 8, 10, they are:

C6,ij = αiαj

〈
M2

1

〉
i

〈
M2

1

〉
j

αj

〈
M2

1

〉
i
+ αi

〈
M2

1

〉
j

, (2.29)

C8,ij =
3

2
αiαj

〈
M2

1

〉
i

〈
M2

2

〉
j
+
〈
M2

2

〉
i

〈
M2

1

〉
j

αj

〈
M2

1

〉
i
+ αi

〈
M2

1

〉
j

, (2.30)

and,

C10,ij = αiαj

2
〈
M2

1

〉
i

〈
M2

3

〉
j
+ 2

〈
M2

3

〉
i

〈
M2

1

〉
j
+ 21

5

〈
M2

2

〉
i

〈
M2

2

〉
j

αj

〈
M2

1

〉
i
+ αi

〈
M2

1

〉
j

. (2.31)

Here,
〈
M2

l

〉
(l = 1, 2, 3) are the expectation values of the l-th order exchange-hole multipole

moments and αi are the atom-in-solid polarizabilities given by

〈
M2

l

〉
i
=
∑
σ

∫
ωi(r)ρσ(r)[r

l − (r − dXσ)
l]2dr, (2.32)

and

αi =
Vi

Vi,free
αi,free, (2.33)

respectively. The exchange-hole dipole moment, dXσ, is the distance between the reference

electron and the center of its exchange hole. The value of dXσ at each reference point is

obtained from the Becke-Roussel (BR)68 exchange-hole model, due to its implicit inclusion

of correlation effects, in addition to its computational efficiency.

With regards to Eq. 2.33, the free-atomic polarizability, αi,free (the subscript free denotes

in vacuo), is scaled by a ratio of the atom-in-solid volume to the free-atom volume. The

atom-in-solid volume is given by

Vi =

∫
r3ωi(r)ρ(r)dr (2.34)

and the free-atom volume is

Vi,free =

∫
r3ρi,free(r)dr. (2.35)
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The Hirshfeld weights,69,70 ωi(r), are given by the ratio of the free-atomic electron density

of atom i and the promolecular density (the sum of all free-atomic densities) and are

expressed as

ωi(r) =
ρati (r)∑
j ρ

at
j (r)

, (2.36)

which are 1 near atom i and close to 0 everywhere else. It is necessary to use a partioning

scheme, such as the Hirshfeld weights, because we require the atom-in-solid polarizabilities

and multipole moments.

We continue our discussion on the XDM dispersion model by examining the damping

function first introducted in Eq. 2.27. The main purpose of introducing a damping function

is to prevent the dispersion energy from diverging at small internuclear separations. The

BJ damping function takes the form

fn(Rij,L) =
Rn

ij,L

Rn
ij,L +Rn

vdW,ij

. (2.37)

A measure of the range of interaction of atomic pair ij can be given by the sum of the van

der Waals radii, RvdW,ij , which is approximated as

RvdW,ij = a1Rc,ij + a2, (2.38)

where Rc,ij describes the distance range at which the multipolar expansion breaks down,

causing successive terms in the series expansion to be equal, as opposed to decreasing in

magnitude. Rc,ij is written in terms of the dispersion coefficients and is given by

Rc,ij =
1

3

[(
C8,ij

C6,ij

)1/2

+

(
C10,ij

C8,ij

)1/2

+

(
C10,ij

C6,ij

)1/4
]
. (2.39)

There are two empirical parameters present in the BJ damping function, a1 and a2. These

parameters are fit for use with a given density functional (and basis set), most often by

minimizing binding-energy errors for the KB49 set of molecular dimers.55,56,71

We conclude by looking at the XDM dispersion contributions to both the atomic forces

and stress tensor. The force on atom i, is given by

Fdisp,i =
∑

n=6,8,10

∑
L

∑
j

nCn,ijR
n−2
ij,L

(Rn
ij,L +Rn

vdW,ij)
2
Rij,L, (2.40)
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where the sum runs over all other atoms in the system, j. For the stress tensor, we consider

two cartesian components, η and ξ from x,y, and z, to build the matrix. The XDM

contribution to the stress tensor is

σdisp,ηξ = − 1

2V

∑
n=6,8,10

∑
L

∑
j

nCn,ijR
n−2
ij,L (Rij,L)η(Rij,L)ξ

(Rn
ij,L +Rn

vdW,ij)
2

, (2.41)

where V is the unit-cell volume. The XDM contributions to the atomic forces and stress

tensor assume that the Cn,ij dispersion coefficients remain constant with respect to changes

in the crystal geometry.51

2.5 Lattice Dynamics in Crystals

Lattice vibrations are responsible for a wide range of physical properties, and give rise to

infrared and Raman spectra, for example. In the quantum description of solids, lattice

dynamics are understood as phonons. Phonons represent the normal modes of vibration in

a solid system. In the context of chemical systems studied in this work, there are two types

of vibrations of interest: intramolecular and intermolecular modes. Intramolecular modes

are those vibrations that occur within a molecule in the lattice and intermolecular modes

occur between more than one molecule. Intramolecular vibrations are high-frequency

modes (high energy) and consist of short-wavelength phonons; conversely, intermolecular

modes are with low-frequency modes (low energy) and consist of long-wavelength phonons.

There are two main types of phonons: acoustic and optical. Acoustic phonons are the

coherent movement of atoms in the lattice out of their equilibrium positions and, due to

translational invariance, are 0 at the gamma point. Secondly, there are optical phonons,

which are the out-of-phase movements of atoms in the lattice. An example of an optical

phonon is one atom moving to the left and the neighbouring atom moving to the right.

Phonons have defined states and energies; a proper computational treatment of these

states is paramount to achieving reliable results with regards to properties such as thermal

transport or, in our case, vibrational energies. We can determine the eigenvalues, ε, and

eigenfunctions, Ψ, of the phonons from the Schrödinger equation:72(∑
I

h̄2

2MI

∂2

∂R2
I

+ EGS

)
Ψ = εΨ, (2.42)

where RI and MI is the coordinate and mass, respectively, of the I-th nucleus. EGS
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is the ground-state energy of the system, which, in practice, is calculated from routine

electronic-structure calculations.

In order to calculate phonons, our system must be in an equilibrium configuration. The

condition for the equilibrium geometry of a system requires that the forces acting on

individual atoms are 0, formally expressed as

FI ≡ −∂E(R)

∂RI
= 0, (2.43)

where E(R) is the potential-energy surface as a function of all the nuclear coordinates, R.

The vibrational frequencies, ω, are determined from the Hessian of the potential-energy

surface, given by

det

∣∣∣∣ 1√
MIMJ

∂2E(R)

∂RI∂RJ
− ω2

∣∣∣∣ = 0. (2.44)

Calculating the equilibrium geometry and the vibrational properties of a system requires

us to compute the first and second derivatives of the potential-energy surface.

We can apply the Hellmann-Feynman theorem,73,74 which relates the derivative of the

energy with respect to some parameter, λ, to the expectation value of the derivative of the

Hamiltonian (with respect to that same parameter). It is formally expressed as

∂Eλ

∂λ
=

〈
Ψλ

∣∣∣∣∂Hλ

∂λ

∣∣∣∣Ψλ

〉
, (2.45)

where Ψλ is the eigenfunction of Hλ with corresponding eigenvalue Eλ. Applying the

Hellmann-Feynman theorem to our definition of a system at equilibrium (Eq. 2.43), where

nuclear coordinates are taken to be parameters, we have

FI = −
〈
Ψ(R)

∣∣∣∣ ∂H∂RI

∣∣∣∣Ψ(R)

〉
. (2.46)

Next, we differentiate the Hellmann-Feynman forces with respect to nuclear positions to

obtain the Hessian, usually called the matrix of inter-atomic force constants (IFC), first

introduced in Eq. 2.44. It can be shown that72

∂2E(R)

∂RI∂RJ
≡ − ∂FI

∂RJ
=

∫
∂ρ(r)

∂RJ

∂V (r)

∂RI
dr+

∫
ρ(r)

∂2V (r)

∂RI∂RJ
dr+

∂2EN (R)

∂RI∂RJ
, (2.47)

where V (r) and EN (R) are the electron-nuclear and nuclear-repulsion energies, respectively.
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There are two main computational methods that are used to calculate the IFC: finite

difference and density-functional perturbation theory (DFPT).72 In finite-difference cal-

culations, the condition for equilibrium must first be satisfied (Eq. 2.43), then a series of

small atomic displacements are made and the energy is recalculated for each. The IFC are

then approximated as

∂2E(R)

∂Rα
I ∂R

β
J

≈
Eα

i + Eβ
j − 2E0

∆Rα
i ∆Rβ

j

, (2.48)

where greek superscripts indicate cartesian directions, Ei are the energies calculated for

small atomic displacements, ∆Ri, and E0 is the equilibrium energy. In finite-difference

calculations, a supercell must be constructed from the primitive unit cell to avoid spurious

self-interaction errors with atoms that are too close. Generally, large supercells are required

to yield converged properties and can be upwards of hundreds of atoms, greatly increasing

computational time.

DFPT, starts with the dynamical matrix, and then is Fourier transformed to yield the

IFC. The eigenvalue equation for the dynamical matrix, D, takes the form

D(q)ϵ(p,q) = ω2(p,q)ϵ(p,q), (2.49)

with eigenvectors ϵ(p,q) and eigenvalues ω2(p,q), where p represents the 3N solutions to

this equation for N atoms in the primitive unit cell. The dynamical matrix is calculated

for each q-vector in reciprocal space by treating the displacements of each phonon mode

as a perturbation. We are now left with the task of sampling the reciprocal space, which

uses the same MP uniform grid as with k-points discussed in Section 2.2. The size of

the MP grid is varied until convergence in some parameter, in our case, thermodynamic

quantities, is reached with respect to q-point sampling. Note that in both finite-difference

and DFPT calculations, the IFC is Fourier interpolated (with effectively no additional

computational cost) onto a denser q-grid; we employ a 12×12×12 dense sampling. Phonon

calculations become intractable significantly more quickly than total energy calculations;

therefore, we must use the smallest number of q-points as possible. Figure 2.1 displays

phonon density of states (phDOS) for CO2 computed with DFPT and finite-difference

calculations for increasing q-point grids (supercells). At higher-frequency regimes, the

phDOS peaks broaden out with denser sampling. Additionally, the change is more drastic

at the lower-frequency region and it should be noted that the phDOS computed from both
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Figure 2.1: Phonon density of states for CO2 computed with DFPT (implemented
in QE, left) and finite difference (implemented in Phonopy,75 right) for various
sampling grids. The level of theory used was B86bPBE-XDM, kinetic-energy and
charge-density cutoffs of 80 and 800 Ry, respectively, and a 4 × 4 × 4 k-point grid.
Symmetric sampling was used and is indicated in each plot, either via q-points or
supercells.
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DFPT and finite difference converge to similar results at larger sampling.

In this work, we are interested in computationally modelling phonon frequencies using a

variety of different electronic-structure methods, as well as comparing their performance to

high-level reference calculations.

2.6 Calculating Vibrational Contributions to the

Gibbs Free Energy

We are ultimately interested in predicting polymorph stability under ambient conditions

(300 K, 1 atm), which necessitates computing the Gibbs free energy, G, by applying

finite-temperature and presssure corrections to the total electronic energy from DFT. From

standard thermodynamics, the change in Gibbs free energy for a given process can be

calculated as

∆G = ∆H − T∆S, (2.50)

where T is the temperature, H is the enthalpy, and S is the entropy. Vibrational contri-

butions to G and S can be computed by either integrating the PDOS or directly from

the frequencies; the vibrational correction to H is then calculated via rearrangment of Eq.

2.50.

We begin by demonstrating the calculation of the vibrational entropy, Svib, from the
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phDOS, which is a straightforward integration over the first Brillouin zone, given by

Svib =

∫ ∞

0

[
−kB ln

(
1− e−ω/kBT

)
+
ω

T

1

eω/kBT − 1

]
g(ω)dω, (2.51)

where g(ω) is the PDOS and kB is Boltzmann’s constant. Note that the integral can

exchanged for a sum over frequencies, which is equally valid. For example, we can write

Svib =
∑
j

[
−kB ln

(
1− e−ωj/kBT

)
+
ωj

T

1

eωj/kBT − 1

]
. (2.52)

Here, ωj are the individual frequencies and the sum runs over all q-points where frequencies

have been calculated.

Next, we can calculate the Helmholtz free energy, F , given by

F = Esta + Fvib, (2.53)

where Esta is the static-electronic energy (static refers to the absence of thermal contribu-

tions) and is obtained from routine ground-state DFT calculations. Fvib is the vibrational

contribution to the Helmholtz free energy. Like the vibrational entropy calculation, it

involves an integration of the PDOS, expressed as

Fvib =

∫ ∞

0

[ω
2
+ kBT ln

(
1− e−ω/kBT

)]
g(ω)dω. (2.54)

The first term is known as the zero-point energy and is independant of temperature, while

the second term is the thermal contribution to the Fvib. G can be expressed as

G = F + pV, (2.55)

where p is the applied pressure (1 atm at ambient conditions) and V is the unit-cell volume.

In this work, we assume the pV term to be neglible compared to F and, therefore, G = F .

The last thermodynamic function we will discuss is the constant-volume heat capacity,

given by

Cv =

∫ ∞

0

[
kB

(
ω

kBT

)2 e−ω/kBT

(e−ω/kBT − 1)2

]
g(ω)dω. (2.56)

In Ch. 3, we use this equation to compare directly to experimental data for the heat

capacity.
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2.7 The Quasi-Harmonic Approximation

Routine DFT geometry optimization calculations are performed at effectively 0 K. Here, we

mean that there is no consideration of finite-temperature or zero-point energy contributions,

which both arise due to phonons. Moreover, the unit-cell volumes of crystals change with

respect to temperature. Most materials undergo thermal expansion, that is, increasing

the temperature expands the crystal; however, there are materials which can undergo

negative thermal expansion (compression). Changes in volume due to thermal expansion

are neglected in standard DFT optimizations and must be accounted for to compare

directly to experimental cell geometries. The simplest way to account for thermal effects

is the harmonic approximation (HA), which can be improved by a more accurate and

sophisticated approach, the quasi-harmonic approximation (QHA).4

We first examine the harmonic approximation, which assumes that the phonon density

of states does not change with respect to volume. Within the HA, phonon frequencies are

calculated only for the equilibrium volume and the equations of Section 2.6 are used to

calculate the free-energy contributions. However, it is strictly false that phonon frequencies

do not change with volume and, for temperatures approaching the melting point, the HA

breaks down significantly.23 While there are successes of the HA, there are also failures

arising from this model, such as predictions of infinite thermal conductivity and zero

thermal expansion.25 The QHA builds upon the HA by assuming that the latter holds for

any given crystal geometry, even if it is not the equilibrium geometry. The QHA provides

a prescription to account for changes in volume due to phonons, which we consider next.

In a typical QHA run, we first must generate an energy versus volume curve, E(V ).

This is usually achieved by an unconstrained optimization of the cell volume and atomic

positions, followed by modifying the unit-cell volume only and performing a series of

fixed-volume relaxations. For example, one could choose to increase and decrease the cell

volume by +/- 10% in increments of 1%. In Quantum ESPRESSO, the cell dofree=‘shape’

keyword is used to allow all atomic coordinates and lattice parameters to relax under the

constraint that the cell volume must remain constant. Phonon calculations are run at all

the geometries and the Fvib (Eq. 2.54) is computed and plotted versus the grid of volumes.

From here, we fit this data using linear regression and the thermal pressure,

pth = −∂Fvib

∂V
, (2.57)
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is extracted as the slope, which in most cases will be a negative value (expansion of the

crystal). We then apply the thermal pressure to the equilibrium structure and perform a

final geometry optimization. Applying pth is how we account for volume changes arising

from temperature, which is necessary to compare DFT results directly to experimental

geometries.

2.8 Low-Cost Computational Methods for

Modelling Solid-State Systems

It quickly becomes prohibitive to calculate phonon frequencies for very large systems,

especially those that may be found in a CSP study. Therefore, it is desirable to have

computationally expedient models to carry out these large calculations. One way to

approach this problem is by using semi-empirical methods. Semi-empirical methods make

approximations and use fitted parameters to replace many of the mathematical terms

with predetermined values that would normally be evaluated by explicit integration over

the orbitals or electron density. As a result, there can be different parameterizations

of semi-empirical methods that are suited for a variety of purposes, such as parameter

sets being optimized for organic molecular crystals or inorganic network solids. Two

semi-empirical methods that we are interested in assessing are densiy-functional tight

binding (DFTB)28 and the HF-3c method, corresponding to minimal-basis Hartree-Fock

with three empirical corrections.27

DFTB is based on a Taylor expansion of the Kohn-Sham DFT energy functional,

assuming a given reference density, ρ0. The ground-state density is represented as the

reference, perturbed by density fluctuations: ρ(r) = ρ0(r) + δρ(r). The Taylor expansion

of the functional (up to third order) is given by

EDFTB3[ρ0 + δρ] = E0[ρ0] + E1[ρ, δρ] + E2[ρ, (δρ)2] + E3[ρ0, (δρ)
3]. (2.58)

Because we use the DFTB3 model in this work, we will center our discussion around this

framework. The DFTB3 total energy is given by

EDFTB3 =
∑
i

∑
AB

∑
µ∈A

∑
ν∈B

nicµicνiH
0
µν+

1

2

∑
AB

V rep
AB+

1

2

∑
AB

∆qA∆qBγ
h
AB+

1

3

∑
AB

∆q2A∆qBΓAB.

(2.59)

In the first term we have the contributions arising from the Hamiltonian matrix elements,
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H0
µν . The Hamiltonian matrix elements only consider two-center terms, which are pre-

computed once as a function of inter-atomic distance for all pairs of atoms, A and B. The

sum runs over all molecular orbitals (MOs) with occupation numbers, ni. Here, cµi and cνi

are the expansion coeffients of the ith MO in terms of a minimal, valence-only basis set of

atomic orbitals (AOs). The index µ is used for the sum over AOs on atom A, and the index

ν is used for the sum over AOs on atom B. The second term gives the repulsion between

each pair of atoms, A and B, which is parameterized by fitting to either DFT calculations76

or empirical data.77 The remaining two terms correspond to the second- and third-order

terms in the Taylor expansion that involve density (or charge) fluctuations. The atomic

charge fluctuations, relative to the free, neutral atoms are ∆qA = qA − ZA, where qA is

the electron population and ZA is the nuclear charge. In practice, ∆qA is evaluated as

the Mulliken charge of atom A. The analytical function γAB approaches 1/RAB at large

separations to reocver the Coloumb interaction between the two charges, while at short

distances it represents the electron-electron interactions within a single atom. Finally,

the ΓAB function in the third-order term is the first derivative of γAB with respect to charge.

In terms of computational efficiency, DFTB methods are several orders of magnitude

faster than plane-wave DFT; however, there are several limitations of the core DFTB

model.28 For example, since DFTB is fundamentally based on DFT, noncovalent interac-

tions are not described and it is therefore necessary to use a dispersion correction, such as

Grimme’s D3 model.78

We now examine the HF-3c method. The general form for HF-3c is given by

EHF−3c = EHF/MINIX + ED3
disp + EgCP

BSSE + ESRB. (2.60)

The first term is the HF energy computed with the MINIX79 basis set, the second term is

the geometrical counterpoise correction (gCP)80 used to correct for basis-set superposition

error, and the last term is the short-ranged basis-set incompleteness correction (SRB).27

In total, there are nine empirically determined parameters in the HF-3c method, three for

the D3 dispersion, four in the gCP scheme, and two for the SRB correction. Since HF-3c

uses a minimal basis set, it will be considerably faster computionally compared to DFT,

although slower in general than DFTB due to the requirement of performing a full HF

calculation. The HF-3c method was specifically tailored and benchmarked for molecular

crystal applications; therefore, it is a desirable option for our study on molecular crystals.
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Chapter 3

The Relative Stability of Graphite
and Diamond

This chapter was adapted from: White, M. A.; Kahwaji, S.; Freitas, V. L.; Siewert, R.;

Weatherby, J. A.; Ribeiro da Silva, M. D.; Verevkin, S. P.; Johnson, E. R.; Zwanziger, J.

W. The Relative Thermodynamic Stability of Diamond and Graphite. Angew. Chem. Int.

Ed. 2021, 60, 1546–1549.

3.1 Introduction

Allotropes are different physical forms in which an element can exist. For example, graphite

and diamond are two common allotropes of carbon. Other notable allotropes of carbon

are graphene, carbon nanotubes, and buckminsterfullerenes (C60). What separates these

allotropes apart from one another is their chemical bonding arrangement, and thus their

physical properties. For example, diamond consists of a σ-bonding arrangement of carbon

atoms, whereas graphite is a layered material of sp2-hybridized carbons. As a result,

diamond is an exceptionally hard material that is not a good conductor of electricity,

whereas graphite is softer and an excellent conductor of electricity.

At standard temperature and pressure, graphite is more stable than diamond and this

is conventionally thought to be true for 0 K as well. However, a recent density-functional

theory (DFT) study by Grochala on the relative stability of graphite and diamond found

that, as temperatures approached 0 K, the two allotropes became degenerate.81 In an effort

to clarify this discrepancy, we undertook a collaborative project with several experimental

groups, led by Prof. M. A. White,82 to determine whether graphite or diamond is the

more stable allotrope of the two.
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Experimental determination of the relative stability of graphite and diamond comes

from thermodynamics measurements. Here, the relative enthalpy values (∆H) are derived

from the heats of combustion of graphite and diamond, while the relative entropy values

are obtained from the integrated heat capacities. However, there are several complications

that arise in the determination of the relative thermodynamics of graphite and diamond,

specifically the absence of heat capacity data for diamond at very low temperatures, as

well as the existence of relatively few combustion measurements for diamond leading to

experimental uncertainty. Moreover, thermodynamic differences consist of small differences

between very large numbers, making exceptional accuracy a must.

From our computational perspective employed in this work, we aim to supplement the

experimental results by performing high-level DFT calculations with various functionals

and dispersion methods, as well as several solid-state software packages. In order to assess

thermodynamic stability, we must compute relative free energies, which are obtained within

the quasi-harmonic approximation (QHA)4 for a more accurate determination of contribu-

tions arising from thermal expansion. The combination of experimental and theoretical

work presented here aims to provide conclusive evidence of the relative thermodynamic

stability of graphite and diamond.

3.2 Computational Methodology

Density-functional theory geometry optimizations were performed starting from exper-

imental structures of graphite (c = 6.696 Å)83,84 and diamond83 (COD ID: 9008564),

using either the PBE30 or the B86bPBE30,31 generalized-gradient approximation (GGA)

functional, paired with the exchange-hole dipole moment (XDM)32 dispersion correction.

Single-point energies at the equilibrium geometries were evaluated using several hybrid func-

tionals: a B86bPBE-based hybrid with 25% exact exchange (B86bPBE-25X),35 PBE0,34

and HSE06,85 all paired with XDM dispersion. The Becke-Johnson damping parameters

used with each functional were the same as in Ref. 35.

All calculations were performed with the Quantum ESPRESSO (QE)39,40 software

package (v 6.4), using periodic-boundary conditions and the planewaves/pseudopotentials

approach. Projector augmented-wave (PAW)45 datasets were used for geometry opti-

mizations and norm-conserving (NC)44 pseudopotentials were used for single-point energy
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calculations with the hybrid functionals. Convergence thresholds of 10−5 Ry and 10−4

Ry/Bohr in the energy and forces, respectively, were used. The kinetic-energy and charge-

density cutoffs were set to 80 and 800 Ry, respctively, for PAW and to 80 and 320 Ry,

respectively, for NC calculations. Uniform k-point meshes (Monkhorst-Pack,38 offset from

the origin) with 8 × 8 × 4 and 5 × 5 × 5 points were used for graphite and diamond,

respectively. These values were chosen by imposing a convergence criterion of less than 1

mRy in the energy with respect to the kinetic-energy cutoff and k-point grid.

Phonon frequencies were calculated from density-functional perturbation theory (DFPT)40,72

using the same methodology as for the geometry optimizations. Uniform q-point grids

of 3 × 3 × 1 and 2 × 2 × 2 were used for graphite and diamond, respectively, to satisfy

a convergence criterion of 0.01 kcal/mol (0.04 kJ/mol) in the vibrational contribution

to the Helmholtz free energy (Fvib). Relaxation and phonon calculations were carried

out for a range of fixed cell volumes, centered about the equilibrium volume (spanning

from -5% to +10% for graphite, and -10% to +10% for diamond, in 5% increments) to

obtain the thermodynamic quantities of interest within the quasi-harmonic approximation.4

At each volume, the vibrational contribution to the Helmholtz energy was determined

from integrating the computed phonon density of states. The thermodynamic properties

(enthalpies, H; Gibbs energies, G; entropies, S; constant-volume heat capacities, Cv) were

then determined as functions of temperature, over the range of 0-400 K. At each considered

temperature, T, the Gibbs energy was computed as a sum of the electronic energy, Eel

obtained from the hybrid functional, and the thermal correction obtained from the GGA,

G(V, T ) = Eel(V ) + Fvib(V, T ), (3.1)

and was minimized with respect to volume. The other thermodynamic properties were then

evaluated at that optimum volume, through interpolation of the corresponding quantities

from the volume grid.

3.3 Results and Discussion

First, we compare the computed unit-cell geometries for both graphite and diamond at

0 K (static conditions) and 298 K (quasi-harmonic approximation) to the experimental

reference, shown in Table 3.1. From these results, we see that both B86bPBE-XDM and

PBE-XDM are able to accurately reproduce the cell parameters for graphite as well as
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diamond at 0 K. With regards to the c lattice parameter for graphite, B86bPBE-XDM

gives a value very close to the experimental reference. However, upon applying the QHA,

we see an overestimation in the lattice parameters, due to the negative thermal pressure.

The largest change due to the QHA is seen in the c parameter for graphite (as opposed to

a or b) since this direction of the unit cell is dominated by weak dispersion interactions

and, therefore, any applied pressure would easily affect it.

Table 3.1: B86bPBE-XDM/PAW and PBE-XDM/PAW optimized cell parameters
(Å) and volumes (Å3) for graphite and diamond. DFT relaxations were performed
in the absence (0 K) and presence (298 K) of applied negative thermal pressure.
Experimental data, at a temperature of 298 K, are given for comparison.83,84

Quantity B86bPBE-XDM PBE-XDM Expt.
0 K 298 K 0 K 298 K 298 K

Graphite a, b 2.459 2.460 2.460 2.461 2.456
Graphite c 6.695 6.781 6.838 6.929 6.696
Graphite V 35.07 35.55 35.85 36.35 34.98
Diamond a 2.515 2.525 2.516 2.526 2.522
Diamond V 11.25 11.39 11.27 11.40 11.34

Figure 3.1 shows the potential energy curves for the graphite exfoliation obtained with

several dispersion-corrected DFT methods, as well as those used in a previous study by

Grochala.81 In that work, HSE06 single points were computed on PBEsol geometries

(HSE06//PBEsol), omitting the use of a dispersion correction. We see that the absence

of a dispersion correction yields extremely weak binding between the graphite layers and

therefore overly large c lattice parameters. Adding a dispersion correction reduces the c

lattice parameter, imparts an approximately additional 5 kJ/mol per carbon stabilization

to graphite, and is needed for a reasonable treatment of the relative thermodynamic

stability of diamond and graphite. Since graphite is more stable than diamond with

∆G = −3.17± 0.15 kJ/mol experimentally,82 diamond would be calculated to be the ther-

modynamic ground state, without the dispersion stabilization from interlayer interactions,

provided that an accurate base functional is used. This result is in agreement with a recent

analytical model, which predicted diamond to be more thermodynamically stable than

graphene when accounting for the graphite exfoliation energy.86

We are comparing our computationally determined values to experimental results
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Figure 3.1: Exfoliation curves of graphite computed with selected density functionals
and dispersion corrections comparing methods used in this work with those from
Ref. 81. All calculations used the Quantum ESPRESSO program and the same
parameters as described in Section 3.2, except one of the HSE curves, where the
VASP program was used, as noted in the key.
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calculated recently by White et al.82 using state-of-the-art thermodynamic measurement

techniques. Table 3.2 shows experimental values for ∆H, ∆S, and ∆G at both 0 K and

298.15 K.

Table 3.2: Experimentally determined values for ∆H, ∆S, and ∆G for graphite
relative to diamond, at 0 K and 298.15 K. All values are in J/mol, except S, which
is in J/mol/K.

Temperature (K) ∆H ∆S ∆G
0 -2690±150 0 -2690±150

298.15 -2150±150 3.436±0.030 -3170±150

Table 3.3 contains energy differences for graphite and diamond obtained with various

DFT models, relative to diamond (a negative value indicates graphite is lower in energy, i.e.

more stable). From these results, B86bPBE and PBE functionals paired with the XDM dis-

persion correction yield a large energy difference between graphite and diamond of around

-10 kJ/mol. This overstabilization can be attributed to density-functional delocalization
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error12,87 which is known to preferentially stabilize delocalized electron densities; this is the

case for graphite, which contains a conjugated π-system of sp2-hybridized carbons. While

delocalization error is more commonly seen for charge-transfer complexes, its effects have

also been observed in molecules with extended conjugation, notably manifesting in oversta-

bilization of cumulenes relative to poly-enes,88 overstabilization of the ring isomer of C20

relative to the cage and bowl forms,89 and overstabilization of delocalized carbon-centered

radicals.90,91 Thus, it is expected that delocalization error will preferentially stabilize the

delocalized electrons in the conjugated π-system of graphite relative to the more localized

electrons in the σ-bonding network of diamond. As is characteristic of delocalization error,

improved performance can be obtained with hybrid functionals (B86bPBE-25X, PBE0,

and HSE06). Indeed, using the B86bPBE-25X-XDM and PBE0-XDM dispersion-corrected

hybrid functionals afford a 1 kJ/mol accuracy of the experimental values for ∆G of -2.69

kJ/mol at 0 K and -3.17 kJ/mol at 298 K.82 To our knowledge, this is the first demonstra-

tion of density-functional delocalization error in graphite.

Table 3.3: Electronic (∆Eel) and Gibbs (∆G) energies of graphite, relative to diamond,
obtained with selected functionals and XDM dispersion corrections. Energies are
in kJ/mol per carbon atom. The geometries were obtained from relaxations in the
absence (0 K) or presence (298 K) of applied negative thermal pressure. The zero-
point energy contributions are -0.96 and -0.95 kJ/mol per atom for B86bPBE-XDM
and PBE-XDM, respectively, which correspond to the differences between ∆G(0)
and ∆Eel(0).

Functional Pseudo ∆Eel(0) ∆G(0) ∆Eel(298) ∆G(298)
B86bPBE-XDM Geometries

B86bPBE-XDM PAW -8.72 -9.69 -8.63 -10.07
B86bPBE-XDM NC -8.63 -9.59 -8.43 -9.87

B86bPBE-25X-XDM NC -2.07 -3.03 -2.21 -3.65
PBE0-XDM NC -1.33 -2.29 -1.52 -2.96
HSE-XDM NC -2.47 -3.43 -2.68 -4.12

PBE-XDM Geometries
PBE-XDM PAW -8.84 -9.79 -8.77 -10.23
PBE-XDM NC -8.62 -9.56 -8.47 -9.92

B86bPBE-25X-XDM NC -2.06 -3.00 -2.16 -3.61
PBE0-XDM NC -1.35 -2.29 -1.50 -2.96
HSE-XDM NC -2.52 -3.46 -2.69 -4.14

It has been shown previously by Grochala that HSE06 single-point energies on PBEsol
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geometries for graphite and diamond predicted diamond to have a lower electronic energy

than graphite in contrast to experiment.81 To put this result in context, we performed

additional calculations of the diamond-graphite electronic-energy difference with a range

of common DFT methods using three different solid-state codes: Quantum ESPRESSO,

Abinit,41,42 and VASP.92 The results are shown in Table 3.4. The three codes give compa-

rable results using the PBE functional paired with the D3 dispersion correction (with either

zero or Becke-Johnson damping). While zero-damping imparts slightly greater stability to

graphite, the D3(BJ) results are in close agreement with the PBE-XDM results in Table

3.3. Finally, using the PBE0 hybrid functional improves agreement with experiment by

reducing delocalization error, in agreement with the XDM-corrected hybrids. Interestingly,

it has been found that, using the HSE06//PBEsol approach, diamond is only lower in

energy with the VASP code, as used in Ref. 81. Analogous calculations using both the

Abinit∗ and Quantum ESPRESSO codes have shown graphite to be lower in energy,

which indicates there may be differences in the HSE06 implementation. The latter two

results are in agreement with previous HSE06 results in the literature,93 in addition to all

other functionals considered here.

Table 3.4: Ground state electronic energy of graphite, relative to diamond, based on
different DFT models. For each entry, the model used for structural relaxation is
given first, then the model used for the single-point energy, and finally the code.

Model ∆E(0 K) (kJ/mol)
PBE-D3/PBE-D3/Abinit -11.7
PBE-D3/PBE-D3/VASP -10.8
PBE-D3/PBE-D3/QE -10.8
PBE-D3(BJ)/PBE-D3(BJ)/Abinit -8.6
PBE-D3(BJ)/PBE-D3(BJ)/VASP -8.5
PBE-D3(BJ)/PBE-D3(BJ)/QE -8.4
PBEsol/HSE06/Abinit -7.8
PBEsol/HSE06/VASP 0.6
PBEsol/HSE06/QE -6.4
PBE-D3/PBE0-D3/QE -3.0
PBE-D3(BJ)/PBE0-D3(BJ)/QE -1.1

Figure 3.2 displays the relative thermodynamic functions, ∆H, −T∆S, and ∆G for

∗Abinit and VASP calculations were performed by Prof. Josef W. Zwanziger
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Figure 3.2: Thermodynamic energy differences for graphite and diamond, as a
function of temperature at ambient pressure. Solid lines are experimental results,
shown with associated uncertainties (too small to be visible for −T∆S). Dotted
lines are B86bPBE-25X-XDM//B86bPBE-XDM results and dashed lines are PBE0-
XDM//PBE-XDM calculated data.

graphite and diamond computed with the two XDM-corrected hybrid functionals, B86bPBE-

25X-XDM//B86bPBE-XDM and PBE0-XDM//PBE-XDM, which are expected to be the

most accurate due to minimization of delocalization error. For ∆H and ∆G, we see that

the calculated thermodynamic functions bracket the experimental results and are displaced

by about 2× the experimental uncertainty. Moreover, −T∆S is compares very well to

experiment with both methods due to the heat capacities being computed accurately.

Ultimately, these results show excellent agreement with experiment, providing supporting

and conclusive evidence that graphite is in fact more thermodynamically stable than

diamond, contrary to previously reported results.81
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3.4 Summary

In this chapter, we have provided state-of-the-art high-level computational evidence that,

together with conclusive experimental data, support the claim that graphite is more

thermodynamically stable than diamond for T < 400K. These findings corroborate the

conventional knowledge and also provide up-to-date values for the relative free energies

and enthalpies.

The importance of modelling dispersion interactions in graphite is highlighted and

it is found that omitting the use of a dispersion correction will lead to diamond being

calculated as the lower-energy allotrope with hybrid functionals. We found that inclusion of

a dispersion model afforded an approximately 5 kJ/mol per C atom stabilization resulting

from dispersion, and neglect of this is enough to yield diamond as more stable. Therefore,

it is necessary to account for dispersion interactions when predicting the relative stability

of graphite and diamond.

Interestingly, the previous electronic energy ordering at 0 K reported by Grochala81 was

reproduced in the VASP program (diamond being more stable than graphite); however,

analogous calculations using Quantum ESPRESSO and Abinit were not able to reproduce

those results using the same HSE06//PBEsol methodology. Additionally, none of the other

dispersion-corrected models we used were able to reproduce the ordering from Ref. 81. As

a result, we suggest that there may be a difference in the HSE06 implementation in the

VASP program compared to QE or Abinit.

Delocalization error, the tendency for GGA models to overstabilize delocalized electron

densities, is believed to manifest in graphite, which is rationalized due to the in-plane

sp2-hybridization of the carbon atoms, allowing for a conjugated π-system to exist. Further-

more, calculations performed with hybrid functionals vastly reduce the energy difference

between graphite and diamond at 0 K from -8.72 to -2.07 kJ/mol per carbon atom (using

B86bPBE-XDM and B86bPBE-25X-XDM, respectively), supporting our hypothesis.

Using the B86bPBE-25X-XDM//B86bPBE-XDM and PBE0-XDM//PBE-XDM meth-

ods, the ∆G (298 K, relative to diamond) was computed to be -3.65 and -2.96 kJ/mol per

C atom, respectively, compared to the experimental value of -3.17 kJ/mol per C atom. By

calculating contributions arising from thermal effects, the thermodynamic functions for
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graphite and diamond were computed using the aforementioned methods and we found

that the ∆S function is nearly identical to the experimental findings, indicating that our

methods are able to accurately represent the heat capacity. Similarly, for ∆G and ∆H,

the computational results bracket the experimental data within only 2× the experimental

uncertainty.
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Chapter 4

Crystal-Energy Landscapes and
Polymorphism of Functionalized
[6]Helicene Structures

This chapter was adapted from: Schmidt, J. A.; Weatherby, J. A.; Sugden, I. J.; Santana-

Bonilla, A; Salerno, F; Fuchter, M. J.; Johnson, E. R.; Nelson, J; Jelfs, K. E. Computational

Screening of Chiral Organic Semiconductors: Exploring Side-Group Functionalization and

Assembly to Optimize Charge Transport Cryst. Growth Des. 2021, 21, 5036–5049.

In this chapter, we focus on JW’s contribution to the above manuscript, in addition to the

conclusions that can be drawn in the broader scope of this thesis. All DFT calculations

under the SIESTA framework were performed by JW. The computational screening protocol

and generation of CSP crystal structures, and electron mobility calculations were performed

by JS.

4.1 Introduction

Helicenes are chiral structures which generally consist of fused benzene rings with varying

substitution patterns decorating a given backbone. One minimal example is the chiral

[6]helicene structure which contains 6 benzene rings, adopting a helical structure. The

helical nature of [6]helicene gives rise to two enantiomers: M - and P -[6]helicene, as shown in

Fig. 4.1. Moreover, the crystallized version of [6]helicene can either exist as an enantiopure

structure, containing only one of the two enantiomers, or as a racemic structure, containing

both enantiomers. Helicenes show promise as low-cost organic semiconductors (OSCs)

and have been used in applications such as chiroptical switches,6 circularly polarized (CP)
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Figure 4.1: The two enantiomers of the chiral [6]helicene molecule, shown in a
top-down view (bold lines indicate bonds projecting towards the viewer). Image
obtained from Ref. 94.

organic light-emitting diodes,9 CP light photodetectors,7 and transistor materials.8

The 3-dimensional solid-state crystal packing of helicenes is highly dependant on the

molecular geometry. Noncovalent interactions, such as π − π stacking, are responsible for

the unique arrangement that the molecules can adopt in the solid state. The crystal energy

landscapes of helicenes contain many local minima corresponding to subtle distortions in

the packing motifs that give rise to polymorphism (as is the case with many molecular

crystals). Additionally, properties such as charge-carrier mobility for electronic applications

are heavily dependent on the crystal packing. The relationship between molecular structure,

crystal packing, and charge-carrier mobility is the underlying principle of this work.

We aim to perform an exhaustive survey of the substitution landscape to qualitatively

assess the relative transport properties of substituted M -[6]helicene crystals. The M -

[6]helicene backbone was populated via mono- and di-substitution patterns on all possible

hydrogen positions (di-substitution only occured on symmetry equivalent positions). Func-

tional groups such as halogens, alcohols, esters, ethers, carboxylic acids, phenyl groups, and

aryl groups were selected–resulting in 1344 structures. In order to screen these hypothetical

structures for their suitability as OSC materials, we first assume that a simple translational
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Figure 4.2: Image displaying the translational dimer motif that is commonly observed
in [6]helicene crystal structures. Image obtained from Ref. 95.

dimer model is sufficient to describe the transport properties of the given material.∗ The

translational dimer has been found to be the predominant packing motif in helicene crystals

and is displayed in Fig. 4.2. The four compounds with translational dimers that possessed

the most favourable predictors of high charge mobility were selected for more extensive

study, which allows us to assess the validity of the translational-dimer model in this work.

Upon screening for desirable transport properties, first-principles crystal structure pre-

diction (CSP) was conducted on the four best substituted-helicene candidates. Crystal

structures were generated via the CrystalPredictorII program96 followed by ranking of

the energetics using the DMACRYS force-field code.97 A subset of the list of structures is

then passed to density-functional theory (DFT) calculations for accurate energy ranking.

Here, we are operating under the zeroth-order CSP assumption,98 which only considers

electronic (or lattice) energies and omits thermal effects. Problems for zeroth-order CSP

∗For a detailed discussion on the metrics used to assess OSC suitability, please see Ref. 95.
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arise when polymorphs are ranked very close in energy (in the range of 0-3 kJ mol−1) and

thermal effects can reorder these low-lying structures (see Ch. 5).24,99 Additionally, the

DFT energies were evaluated for the optimized force-field geometries, which are assumed

to be a good approximation to the DFT optimized structures. While this assumption could

lead to errors in correctly ordering the structures energetically, it has been shown to yield

reasonable crystal-energy landscapes for pharmeutical compounds.5 We are limited by

computational resources and it would be intractable run full plane-wave DFT optimizations

on all the candidate helicene structures.

For our DFT study, we employed the SIESTA method,29 which has been shown to

yield higher accuracies in generating crystal-energy landscapes compared to distributed-

multipole force fields.5 We assess the validity of the translational dimer model as a common

packing motif for helicene crystals by noting its overwhelming presence in the lowest-energy

structures generated from CSP. Furthermore, for 3 out of the 4 compounds studied, the

crystal-energy landscapes show one or more candidates possessing energies within 1 kJ/mol

of the lowest-energy polymorph, indicating that DFT geometry optimizations and/or

inclusion of thermal effects could easily lead to reordering. Finally, charge mobilities† were

computed for the 10 lowest-energy structures of each of the four helicenes, and two of these

compounds were identified as promising targets for future experimental studies.

4.2 Computational Methodology

SIESTA Calculations

Density-functional theory (DFT)10–12 single-point energy calculations on the lower-energy

hypothetical polymorphs identified in the CSP searches were performed with an in-house

version of the SIESTA29,59 code (4.0b-485) to generate crystal-energy landscapes. The func-

tionalized helicenes were selected on the basis of their suitability as organic semiconducting

materials as discussed in Ref. 95. The B86bPBE generalized-gradient approximation

(GGA) functional was used with the exchange-hole dipole moment (XDM)61 dispersion

model. Parameters for the Becke-Johnson damping function were set to a1 = 0.5000 and

a2 = 2.5556 Å. Troullier-Martins norm-conserving pseudopotentials44,49 were employed,

along with a double-zeta plus polarisation (DZP) basis set of atom-centered numerical

orbitals, with the confinement radius set to 0.001 Ry. Additional calculation parameters

†Electron mobility calculations were performed by Dr. Julia Schmidt.
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Figure 4.3: Four promising OSC molecular materials identified by computational
screening. From left to right: 4,13-difluoro[6]helicene, 13-fluoro[6]helicene, 7,10-
dialdehyde[6]helicene, and 6-triacetylene[6]helicene.

were a 4×4×4 Monkhorst-Pack38 k-point mesh and a real-space integration grid cutoff

value of 400 Ry.

4.3 Results and Discussion

From the OSC suitability screening protocol, four promising substituted helicenes were iden-

tified and carried forward to CSP analysis. The four compounds are 4,13-difluoro[6]helicene,

13-fluoro[6]helicene, 7,10-dialdehyde[6]helicene, and 6-triacetylene[6]helicene. Their molecu-

lar diagrams are shown in Fig. 4.3. The lowest-energy crystal structures within 15 kJ/mol

of the DMACRYS energy minimum from the CSP search were carried forward to DFT

single-point calculations for higher-accuracy ranking of the candidates. We computed

crystal-energy landscapes for each of the four compounds relative to the minimum energy

structure and have noted the structures which contain the translational dimer motif, which

is postulated to be a favorable configuration for high charge-carrier mobility.

We now examine the DFT crystal-energy landscapes of the four substituted helicene

compounds, given in Fig. 4.4, in more detail. Furthermore, the minimum-energy crystal

structures are shown in Fig. 4.5. Lastly, electron mobility calculations were carried out for

the 10 lowest-energy structures from each landscape and are presented in Fig. 4.6.

40



Figure 4.4: Crystal-energy landscapes for 13-fluoro[6]helicene (A), 4,13-
difluoro[6]helicene (B), 6-triacetylene[6]helicene (C), and 7,10-dialdehyde[6]helicene
(D). Energies are plotted relative to the B86bPBE-XDM minimum-energy structure.
Data points are shown in blue (red) if they do (do not) contain the translational
dimer motif. Low-energy crystals are numbered in order of ascending relative energy
from the minimum.
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Figure 4.5: Low-energy crystal packing for 13-fluoro[6]helicene (A), 4,13-
difluoro[6]helicene (B), 6-triacetylene[6]helicene (C), 7,10-dialdehyde[6]helicene (D).
Structures highlighted in blue contain the translational dimer motif while those in
red do not. Numbers correspond to candidate crystal structures in Fig. 4.4. Oxygen
atoms are shown in red and fluorine in light blue.
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Figure 4.6: Minimum, maximum, and average electron mobilities, µ, computed for
each of the 10 lowest-energy polymorphs identified from the CSP searches. Data for
structures with (without) the translational motif are shown in blue (red). The result
for the reference [6]helicene crystal is shown on the far left.

4.3.1 4,13-difluoro[6]helicene

For 4,13-difluoro[6]helicene, the CSP results found that two polymorphs were significantly

lower in energy than the remaining candidates (crystals 1 and 2, as shown in Fig. 4.5B)

and both contain the targeted translational motif. In fact, all 10 lowest-energy crystals

contain the translational motif. 4,13-difluoro[6]helicene is a promising OSC candidate as

both low-energy polymorphs give electron mobilities which are higher than the [6]helicene

reference. Form 2 yields a significantly higher mobility than form 1. The two structures

are nearly degenerate at the presented level of theory. Thus, form 2 could potentially

become the most stable form if the crystal structures underwent full geometry optimizations.

Furthermore, performing phonon calculations, in addition to using a higher level of theory

such as plane-wave DFT, is desirable to determine the likely isolable polymorph.

4.3.2 13-fluoro[6]helicene

In the case of 13-fluoro[6]helicene, we observe more than 10 candidates within 3 kJ/mol

of the minimum-energy structure. Furthermore, the majority of crystals contain the

translational dimer motif. Mobility calculations reveal that those crystals containing this
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favourable dimer arrangement do indeed exhibit desirable OSC properties. The crystal

with the highest mobility is form 6, displaying a 231% increase in charge mobility relative

to the reference [6]helicene structure. While form 6 is not the minimum-energy structure

at this presented level of theory, it is within 2 kJ/mol of the minimum, suggesting it may

be isolable experimentally. The 13-fluoro[6]helicene examined here by our computational

screening approach and first-principles CSP highlights the effectiveness of the dimer model

for predicting desirable OSC candidates; however, the presented level of theory could be

improved upon and reordering of the low-energy structures is possible.

4.3.3 6-triacetylene[6]helicene

Introducing a triacetylene functional group adds a large perturbation to the [6]helicene

backbone. As a result, the translation dimer motif is present at a much lower frequency

from the CSP results, occurring in only 22% of the crystal structures on which DFT

calculations were performed. Furthermore, 7 out of the 10 lowest-energy candidates do not

contain the translational dimer motif (Fig. 4.4). Forms 5 and 2 contain the translational

dimer and exhibit the highest electron mobilities across the lowest-energy polymorphs.

Furthermore, only form 5 yields a maximum mobility higher than that of the reference

[6]helicene structure by 0.39 cm2 V−1 s−1. This is significantly lower than the mobility

results for the mono- and difluoro[6]helicenes. Given the poor mobility results, the fact that

CSP suggests multiple plausible low-energy polymorphs that would need to be considered,

and other reasons beyond the scope of this thesis95 it was determined that it is not a

worthwhile effort to study the 6-triacetylene[6]helicene compound further.

4.3.4 7,10-dialdehyde[6]helicene

For the case of the flexible 7,10-dialdehyde[6]helicene, we observe a back-to-back dimer

arrangement where the helicene backbones overlap to generate a network-type architecture,

as shown in Fig. 4.5D, form 1. In terms of the crystal-energy landscape, we observe

an approximately 2 kJ/mol energy difference between the two lowest-energy structures.

Furthermore, the translational dimer motif is observed in only 18% of the total studied

crystal structures and in 30% of the 10 lowest-energy candidates. Mobility calculations

reveal that the 7,10-dialdehyde[6]helicene does not lead to improved results relative to the

reference [6]helicene crystal and performs even worse than the 6-triacetylene[6]helicene

crystal.
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4.4 Conclusion

In this work, functionalized [6]helicene structures were assessed for their potential as OSC

materials. The initial screening approach was based on the assumption that performing

computations on a common crystal arrangement of [6]helicenes, the translational dimer

motif, is sufficient to obtain a reliable assessment of the OSC properties. Substituting

[6]helicene structures with fluorine was found to be the most promising approach to increase

electron mobility. CSP was then conducted on several promising candidates, with a com-

bination of a low-level force-field method for geometry optimization and higher-accuracy

DFT for single-point energies, to compute the crystal-energy landscapes and energetically

rank putative crystal structures.

For the 10 lowest-energy polymorphs appearing in the CSP landscapes of the four

most promising systems, the translational motif was found in 100% (4,13-difluoro), 70%

(13-fluoro), 30% (6-triacetylene), and 30% (7,10-dialdehyde) of the structures. This is

encouraging for the use of the dimer-based model, in that an experimental polymorph

screening study could lead to the targeted motif. Furthermore, for each of the two

fluorine-substituted [6]helicenes, one low-energy crystal structure predicted with DFT was

found to exhibit electron mobilities more than three times the reference value for the

unsubstituted [6]helicene. While the crystal-energy landscapes could be improved upon by

costly geometry relaxations and phonon calculations, this work presents an advancement

in screening of [6]helicene materials. The symmetric 4,13-difluoro[6]helicene is our most

promising identified OSC compound, with both low-energy polymorphs identified from

CSP possessing high electron mobilities.
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Chapter 5

A Density-Functional Benchmark
of Thermal Free-Energy
Corrections for Polymorphic
Molecular Crystals

This chapter was adapted from Weatherby, J. A.; Rumson, A. F.; Price, A. J. A.; Otero

de la Roza, A.; Johnson, E. R. A Density-Functional Benchmark of Thermal Free-Energy

Corrections for Polymorphic Molecular Crystals. J. Chem. Phys. 2022, 156, 114108.

5.1 Introduction

Polymorphism,21,22,100 the ability of a substance to exist in more than one crystalline phase,

is of great interest in many domains of chemistry and materials science, particularly in

drug development.101,102 Because polymorphs exhibit different chemical and physical prop-

erties, it is often interesting to know a priori whether a polymorph with certain desirable

properties will be obtained. The field of molecular crystal structure prediction (CSP)98,103

aims to use computational methods to predict the thermodynamically stable polymorph,

which is often (but not necessarily) also the experimentally observed structure, beginning

from the molecular diagram alone. CSP is particularly useful for the elucidation of crystal

structures of new molecules, such as a pharmaceutical compound, or when searching for

solid-state structures that exhibit specific properties like charge-carrier mobilities.8,104

There is not one unique way to conduct a CSP study. The challenge is in determining a

suitable balance between cost and accuracy to predict the likely isolable polymorph(s) and

the crystal-energy landscape. Candidate structures are initially generated by sampling the
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conformational and solid-form configuration space (usually with restrictions to the most

common space groups) of a molecule of interest.105,106 While dispersion-corrected density-

functional theory (DFT) has shown promise for the subsequent energy ranking,5,107–114

it still remains unfeasible to apply DFT to all candidates due to the vast number of

structures generated. As a result, CSP studies tend to take the form of a multi-level

refinement approach, where several methods are used sequentially to narrow the list of

potential candidate structures.5,109,115,116 Classical force fields,97 density-functional tight

binding,28,117 or minimal-basis semi-empirical methods79,118 may be employed in the early

stages of energy ranking to minimize the number of DFT calculations that need to be

performed

While there are notable exceptions,110–112 most CSP protocols are zeroth-order CSP,98

in which only the electronic energies are considered while other contributions to the free

energy are neglected. In real molecular crystals, lattice vibrations, known as phonons,

contribute in a small but significant way to the free energy. Using a classical force-field

approach, it has been shown that the vibrational contributions to the free-energy difference

for most organic polymorph pairs are quite small, rarely exceeding 2 kJ/mol.24 Inclusion

of vibrational effects still resulted in the reordering of ca. 10-20% of the studied structure

pairs,23,24 due to the small energy differences between isolable polymorphs. Therefore, an

accurate treatment of these vibrational effects is desirable in order to accurately determine

the free-energy landscape of a given compound and to find the thermodynamically stable

structure. However, due to the expensive nature of phonon frequency calculations, it is

at present very computationally demanding to routinely use DFT methods to calculate

vibrational free-energy corrections, especially for the large-unit-cell molecular crystals

commonly encountered in CSP studies.

As an alternative, approximate methods and models have been proposed to compute

the phonon frequencies and vibrational free-energy contributions at reduced cost. When

using approximate methods, it is important to consider the trade-off between accuracy

and cost. The vibrational free energies calculated using some approximate methods have

been compared to converged DFT free energies for a few small molecular crystals.119–121

However, in CSP studies, we are interested in computing the relative free-energy corrections

for a crystal structure pair, which may or may not benefit from error cancellation. In

this work we propose a new benchmark set, termed the PV17 dataset, for vibrational
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free energies and energy differences of molecular crystals. The purpose of this new data

set is twofold: i) to provide a reasonably sized benchmark set of high quality (harmonic)

vibrational free energy data, and ii) because the dataset contains crystal pairs, it also

allows the assessment of approximate methods regarding the calculation of vibrational

free-energy differences, and consequently their suitability for incorporation into a CSP

protocol.

To build the PV17 dataset, we use the Nyman polymorph library (NPL2016),23 which

contains a large set of molecular crystal structures primarily consisting of two polymorphs

for a given organic molecule. A subset of 17 polymorph pairs from this library are identified

involving crystals with small unit cells to ensure that the high-level benchmark calculations

are feasible. The reference vibrational free-energy data in the PV17 dataset uses dispersion-

corrected DFT to evaluate the phonon frequencies and vibrational free-energy corrections

within the harmonic approximation. A fully anharmonic or even quasi-harmonic treatment

would be desirable, but much more costly, and would complicate the application of the PV17

set to gauge the quality of approximate vibrational models. The B86bPBE-XDM30,31,51

functional is used in conjunction with a plane-wave basis set as our high-level method to

calculate the reference vibrational free energies because of its high accuracy and reliability

for molecular crystals.8,32,104,113,114

Several approximate methods and models are examined in this work using the data in

the new PV17 dataset: (i) distributed multipole analysis (DMA) force fields implemented

in the DMACRYS package97 using the Williams122 and FIT123 potentials; (ii) sHF-3c,79,118

which is a minimal-basis Hartree–Fock method with added empirical corrections for dis-

persion and basis-set incompleteness; and (iii) DFTB3-D3(BJ),28 a dispersion-corrected

density-functional tight-binding scheme. In addition, we also examine a recent pairing of

DFTB3-D3(BJ) with a corrective model, termed the mode-matching121 approach, which has

shown excellent results for computing various thermodynamic quantities. Mode matching

serves as an additive correction to the DFTB3-D3(BJ) phonon density of states, although

it is easily applicable to other methods.

Our results confirm24,119,121 that computing vibrational corrections at the Γ-point only

is insufficient to obtain converged values with both high and low levels of theory. The errors

yielded by the approximate methods in the calculation of vibrational free energy differences,
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including the mode matching approach, are found to be comparable in magnitude to the

free-energy differences themselves. This indicates that there are no grounds for preferring

these approximate methods over zeroth-order CSP, and that further efforts are needed

to develop accurate and cheap vibrational models for routine application in CSP studies.

Overall, the converged vibrational corrections to the free-energy differences have values of

2.3 kJ/mol or less, with an average value of 1.0 kJ/mol, confirming the previous force-field

result24 that such corrections need only be applied when two (or more) candidate structures

are nearly degenerate.

5.2 Background Theory

5.2.1 Phonons and Free-Energy Corrections

Phonon frequencies (ω) are obtained at an arbitrary wavevector q within the first Brillioun

zone as solutions of the secular equation

det

∣∣∣∣ 1√
MmMn

C̃ξη
mn(q)− ω2(q)

∣∣∣∣ = 0, (5.1)

where Mm is the mass of atom m, ξ and η are the Cartesian directions, and C̃ is the

Fourier transform of the force-constant matrix, which is given by

Cξη
mn ≡ ∂2E

∂uξm∂u
η
n

, (5.2)

where uξm is the displacement of atom m in Cartesian direction ξ. The force-constant

matrix is constructed as the second derivative of the potential-energy surface with respect

to two nuclear displacements and can be computed via finite-difference methods75 or

density-functional perturbation theory (DFPT).72

Within the harmonic approximation, the Gibbs free energy is

G = Estatic + Fvib + pV, (5.3)

where Estatic is the equilibrium, ground-state DFT energy, Fvib is the vibrational contribu-

tion to the Helmholtz free energy, and pV is the pressure-volume work, which is negligible

at ambient pressure. The accurate calculation of Fvib and its difference between crystal

pairs is the focus of this work. In the harmonic approximation, the vibrational free energy
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per unit cell can be computed from the harmonic phonon frequencies as

Fvib =
1

Nq

3n∑
i=1

Nq∑
q

h̄ωi,q

2
+ kBT ln

[
1− exp

(
− h̄ωi,q

kBT

)]
, (5.4)

where kB is Boltzmann’s constant and T is the temperature. The sums run over the 3n

phonon branches (n is the number of atoms in the unit cell) and the Nq sampled q-points

in the first Brillouin zone. The first term in Eq. 5.4 is the zero-point energy and the second

is the temperature-dependent contribution to the Fvib.

In this work, the finite-difference approach is used to calculate the force-constant

matrix (Eq. 5.2). The convergence of the Fvib with respect to the size of the supercell or,

equivalently, the q-point sampling of the Brillouin zone, was studied by systematically

varying the supercell according to the formula

ni = int

[
max

(
1, Rk|bi|+

1

2

)]
, (5.5)

where ni is the size of the supercell in the i = a, b, and c directions, bi is the corresponding

reciprocal lattice vector of the primitive unit cell, and Rk is a length parameter. For

each individual crystal, the Rk parameter was increased until the Fvib was converged

to within a threshold of 0.5 kJ/mol per molecule. The phonon frequencies were then

Fourier-reinterpolated on a 12×12×12 Monkhorst-Pack38 mesh, and the final value of

Fvib was calculated by integration. An example of the difference between the converged

phonon density of states (phDOS) and one obtained by reinterpolation using only the

Γ-point is shown in Figure 5.1 for the Iβ phase of ethylenediamine. It is clear from this

figure that sampling q points other than Γ is essential to capture the features of the

phDOS, particularly at low frequency. It is important to note that the second, temperature-

dependent, term in the harmonic free energy (Eq. 5.4) diverges when ω → 0. Therefore, the

low-frequency region of the phDOS dominates the thermal contribution to the harmonic

free energy, for which reason it is essential to model the dispersion of the low-frequency

vibrations correctly.

5.2.2 Mode Matching

The mode matching method is a hybrid approximate model recently proposed by Cook

and Beran designed to correct the low-level DFTB3-D3(BJ) phonon density of states to

yield accurate thermodynamic properties in molecular crystals.121 The mode matching
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Figure 5.1: Overlay of the DFT phDOS for the Iβ phase of ethylenediamine (CCDC
code ETDIAM16) computed at Γ and using a converged q-point grid.
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approach calculates the harmonic vibrational frequency for mode i at point q, ωi(q), as

ωi(q) ≈ ωlow
i (q) +

[
ωhigh
i (Γ)− ωlow

i (Γ)

]
. (5.6)

There are three items required for the evaluation of the mode matching frequencies: i)

phonon frequencies at Γ computed with an accurate high-level theoretical method, ii) the

frequencies at Γ calculated with a cheaper, less accurate, low-level method, and iii) the

converged phDOS from the less accurate method. In Cook and Beran’s work, plane-wave

DFT was employed for the high level of theory and DFTB for the low-level method. An

example of mode matching is shown in Figure 5.2 for the Iβ phase of ethylenediamine.

The advantage of this simple model is that it is no longer necessary to adequately sample

the Brillouin zone with DFT, and instead DFTB can be used for this purpose, which

leads to a significant reduction in computational cost. Figure 5.2 shows that the mode

matching method is successful in reproducing the high-frequency, low-dispersion features

of the phDOS. However, the low-frequency acoustic part of the phDOS as well as the

region encompassing the intermolecular lattice vibrations, which dominate the thermal

contribution to the free energy, are not as well reproduced.
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Figure 5.2: Top: Overlay of the phDOS of the Iβ phase of ethylenediamine (ET-
DIAM16) computed with QE and DFTB using a converged supercell. Bottom: the
same phDOS with QE and the shifted DFTB phDOS calculated using the mode
matching method.
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5.2.3 Treatment of The Acoustic Modes

Acoustic phonons correspond to low-frequency long-wavelength vibrations of the solid and,

hence, are the slowest to converge with respect to q-point sampling. Due to their low

frequencies, the acoustic modes (AM) also have high contributions to the temperature-

dependent term of the Fvib (Eqn. 5.4). In addition, due to the fact that the acoustic

frequencies at Gamma are not zero, Cook and Beran’s mode matching method cannot be

applied to correct the DFTB acoustic frequencies using the DFT frequencies at Γ.

One way of evaluating the acoustic contribution to the Fvib is the Debye model, in which

the solid is assumed to behave like a vibrating continuum and the acoustic vibrations are

treated as stationary waves spanning the whole crystal. A slightly different version of

the Debye model was proposed by Nyman et al.119 and subsequently used by Cook and

Beran121 to treat the vibrational acoustic modes (AM). In this AM model, the phonon

dispersion is assumed to be sinusoidal in the wave-vector, as in a one-dimensional atom

chain. The acoustic frequencies are given in terms of a Debye-like frequency, ωD, by

ωac = ωD sin

(
π

2

|q|
|qzb|

)
, (5.7)

where |qzb| is the norm of the vector q at the corresponding Brillioun zone boundary. The

Debye-like frequency

ωD =
2v|qzb|
π

, (5.8)

is therefore the frequency at the zone boundary for the corresponding direction in reciprocal

space (consider q = qzb in Eq. 5.7). In this equation, v is the velocity of sound propagating

through the crystal along direction q obtained by solving the Christoffel equation,

det
∣∣∣Γij − ρv2δij

∣∣∣ = 0, (5.9)

where ρ is the density and δij is the Kronecker delta. The Γij ’s are the 3×3 Christoffel

matrices given by

Γij =
∑
nm

qnCinmjqm, (5.10)

where qn are direction vector Cartesian components in reciprocal space.

In their AM model, Nyman et al. chose 13 symmetry-unique directions, corresponding to

the simplest Lebedev integration quadrature, and used them to compute an average Debye

53



frequency, which is ultimately the only parameter in the model.119,121 The elastic constant

tensor (Cinmj) required to calculate the sound velocities along the different propagation

directions is computed using the stress-strain relations. DFT calculations for a series of

small unit-cell deformations at the equilibrium geometry are used to determine the stress

as a function of strain and linear least-squares fits are used to compute the elastic constant

tensor.121

5.3 Computational Methodology

Geometry optimization and phonon frequency calculations were performed for our bench-

mark set of polymorph pairs in order to calculate the harmonic Fvib. In all geometry

optimizations, both the atomic positions and lattice vectors were allowed to fully relax,

unless otherwise specified. Phonons were always calculated at the same level of theory

as the geometry optimization. All free energies were calculated at 300 K. The specific

parameters used within each method are given below.

Phonon frequency calculations conducted with the Quantum ESPRESSO,39 CRYSTAL17,124

and DFTB+28 packages used the frozen-phonon method as implemented in the phonopy75

code, v. 2.9.3. The mode matching calculations used the Modematch program of Ref. 121.

The force-field calculations used the DMACRYS97 code, v. 2.3.0, together with the autold

and autofree programs of Nyman,23 which construct a series of linear supercells required

to obtain the phonons beyond the Γ-point and subsequently calculate the vibrational free

energy.

Plane-wave DFT12 calculations used periodic boundary conditions and the projector

augmented-wave (PAW)45 approach implemented in the Quantum ESPRESSO39 (QE) soft-

ware package, v. 6.5. We used the B86bPBE30,31 generalized-gradient approximation

functional and the exchange-hole dipole moment (XDM) dispersion model.51,55 The con-

vergence thresholds were set to 1 × 10−5 and 1 × 10−4 Ry for the energy and forces,

respectively. In addition, the convergence in the pressure was set to 1× 10−2 kbar. Kinetic-

energy and charge-density cutoffs of 80 Ry and 800 Ry, respectively, were used along with

a Monkhorst-Pack (MP)38 k-point mesh selected by using an Rk value of 50 bohr in Eq. 5.5.

sHF-3c79,118 calculations were performed using the CRYSTAL17124 code. Full geometry
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optimizations (cell and atomic positions) were carried out starting from the B86bPBE-

XDM equilibrium geometries. The convergence thresholds on the root-mean-square in the

gradient and displacement between subsequent optimization steps were set to 3× 10−5 and

1.2× 10−4 a.u., respectively, which are one order of magnitude smaller than the default

values. The maximum value for the trust radius was set to 0.25 a.u. and a 4×4×4 MP

k-point mesh was used. Phonon frequencies were scaled by 0.86, as recommended by Ref. 79.

SCC-DFTB3-D3(BJ)28,117 calculations with the 3ob-3-1117 parametrization were per-

formed using the DFTB+28 code, v. 20.2.1. Full geometry optimizations were started from

the QE equilibrium geometries. The MaxForceComponent parameter, which sets the thresh-

old for convergence in the forces, was set to 1× 10−5 a.u. Atomic Hubbard derivatives and

the parameters used in the D3(BJ) dispersion model were set to those described in Ref. 117.

Force-field calculations were carried out under the rigid-body approximation as imple-

mented in the DMACRYS97 code, which employs distributed atomic multipoles to represent

electrostatic contributions. Both the FIT123 and the Williams (W99)122 force fields were

used, where W99 was supplemented with parameters for sulfur from Ref. 125. Atom-

centered multipoles were calculated up to rank 4 (hexadecapole) from a distributed

multipole analysis126 of the electronic density computed using B3LYP/6-31G** with the

Gaussian09127 program. Rigid-molecule lattice relaxations were then performed, followed

by computation of the phonon frequencies128 using the autold and autofree programs

of Nyman.119 autold generates a series of linear supercells to sample the Brillioun zone

beyond the Γ-point;119 here we selected a target q-point distance of 0.12 Å−1. autofree

then collects the frequencies from the supercells and computes the Fvib.

5.4 Results

5.4.1 The PV17 Benchmark

The PV17 benchmark was assembled using the Nyman Polymorph Library24 as a starting

point. Structures in the library were sorted by cell volume, as this roughly correlates with

the numbers of atoms and electrons within the unit cell, and with the computational cost

of the eventual phonon frequency calculations. We selected polymorph pairs with both

members having volumes less than 600 Å3 for further consideration. This choice is necessary

to keep the cost of the DFT phonon calculations feasible, although it may introduce a bias

in the benchmark set towards small and rigid molecules. We then proceeded to perform
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Table 5.1: Molecular structures, Cambridge Crystallographic Data Centre (CCDC)130

codes, converged B86bPBE-XDM Fvib values at 300 K (in kJ/mol per molecule),
and the corresponding supercell sizes, for all crystal structures in the PV17 dataset.
∆Fvib values are computed with the lower CCDC number as the reference.

Compound CSD code Supercell Fvib ∆Fvib

ETDIAM16 2×1×2 274.77
ETDIAM18 2×2×1 276.21 1.4

ethylenediamine

QQQCIV01 3×1×2 105.55
QQQCIV08 3×3×1 106.45 0.9acetonitrile

TRITAN03 2×2×1 201.79

TRITAN10 2×2×2 201.95 0.2
1,3,5-trithiane

EFUMAU 2×2×1 315.50

EFUMAU03 2×3×1 315.20 −0.3
pyrrolidine

THHYDT 3×2×2 184.47

THHYDT02 3×2×1 183.45 −1.0
2-thiohydantoin

CUMMIG01 2×1×3 286.26
CUMMIG02 2×3×2 285.07 −1.2

bicyclopropylidene

XOCJEE 2×1×4 209.12

XOCJEE01 2×2×2 207.39 −1.7

1-nitro-2-methylisothiourea

GICTIV 2×1×2 242.64

GICTIV01 2×2×1 242.90 0.3

1,1’-dinitro-3,3’-azo-1,2,4-triazole

DAVVUR 1×2×2 1163.31

DAVVUR01 1×2×2 1165.65 2.3

1,7-di-t-butyl-3,9-dimethyl-dibenzonaphthyrone

Continued on next page...
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Compound CSD code Supercell Fvib ∆Fvib

TRDMPP01 2×2×2 400.69

TRDMPP02 1×2×2 402.83 2.1

cyclo-D-alanyl-L-alanyl

MALEHY10 2×2×2 204.85

MALEHY12 3×2×2 205.05 0.2

maleic hydrazide

MALIAC12 2×1×2 190.94
MALIAC13 4×2×1 190.81 −0.1

maleic acid

FUMAAC 2×1×2 191.14
FUMAAC01 3×2×2 193.02 1.9

fumaric acid

OXALAC03 2×1×2 113.07

OXALAC04 2×1×2 111.49 −1.6

oxalic acid

SUCACB02 2×1×2 251.65

SUCACB07 2×2×3 250.32 −1.3

succinic acid

REKBUE 3×2×1 379.18

REKBUE01 3×3×1 378.73 −0.5

N,N’-oxalyldiglycine

EFURIH 2×2×1 489.43

EFURIH04 2×2×2 489.03 −0.4

scyllo-inositol

geometry relaxation and phonon calculations on this subset. Compounds were eliminated

from the benchmark if convergence problems were encountered or if the supercell sizes
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required for the phonon calculations exceeded our available computational resources. Ad-

ditionally, compounds were removed from the benchmark if both “polymorphs” converged

to the same structure upon relaxation. This can occur if the two reference experimental

crystal structures have essentially the same packing, but were determined at different

temperatures.129

Not all pairs of polymorphs considered have x-ray crystal structures that were obtained

at the same temperature. While the two structures forming 12/17 pairs were obtained

at the same (room) temperature, those of CUMMIG, EFUMAU, EFURIH, QQQCIV,

and THHYDT were obtained at different temperatures. Both MALIAC crystal structures

were obtained lower than room temperature (180 K). This poses the issue of whether

structures determined at different temperatures are true polymorphs, or if structural

differences are simply a result of thermal expansion, which is a difficult distinction to

make.129 To ensure all structures in our set were in fact distinct polymorphs, we computed

the powder-pattern difference (POWDIFF) values using the critic2 program.131 Specifically,

we used the volume-corrected POWDIFF proposed by Mayo and Johnson.132 To evaluate

the POWDIFF, the x-ray diffraction pattern is computed for each of a pair of given crystal

structures and their similarity is assessed using de Gelder’s cross-correlation function.133

The powder-pattern difference is one minus the similarity. Further, in situations where

two polymorphs are in fact the same structure, DFT minimization will reveal this as both

will converge to the same geometry since the calculations are conducted at effectively zero

Kelvin and do not account for temperature-dependent volume changes. Our POWDIFF

assessment revealed that two crystal pairs in our initial set (pyrazine and benzoquinone)

were actually the same polymorph. This was then confirmed through DFT minimization,

which yielded equivalent volumes and electronic energies for the resulting structures.

The resulting benchmark set of 17 polymorph pairs is shown in Table 5.1, along with

the converged Fvib values and corresponding supercell sizes for each crystal. The final

results for the ∆Fvib between each polymorph pair are shown in Table 5.2. By convention,

we take ∆Fvib as the Fvib value obtained for the structure with the higher number in its

assigned CCDC code minus that for the structure with the lower numbered CCDC code.

In a previous study using a distributed-multipole force field approach,24 Nyman and Day

found the harmonic |∆Fvib| to be less than 1 kJ/mol for more than 70% of the polymorph
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pairs studied in their work, and greater than 2 kJ/mol in fewer than 6% of cases. Table 5.2

shows a summary of our high-level B86bPBE-XDM results, giving the electronic energy

difference between each polymorph pair, the converged ∆Fvib, and the resulting free-energy

difference. Compared to Nyman and Day’s results, the DFT values are similar, although

somewhat larger than the force-field results. The average |∆Fvib| is 1.0 kJ/mol and values

greater than 2 kJ/mol occur for 2/17 (12%) of the compounds considered, although no

values exceeded 2.5 kJ/mol for our limited dataset. However, we expect greater differences

in the optical region of the phDOS, and therefore greater |∆Fvib|, if the molecules under

study are larger and more flexible than those present in the PV17 set, particularly if

polymorphs present different molecular conformations.

Nyman and Day also determined that vibrational free-energy corrections altered the

stability ordering for roughly 9% of polymorph pairs when employing the harmonic ap-

proximation.24 Our results in Table 5.2 show that the ordering is reversed for 3/17 pairs

(18%). We denote reordering of a pair when there is a change in sign from the electronic

energy difference (∆E) to the Gibbs free-energy difference (∆G). There were a further

two pairs that were predicted to be degenerate based on the electronic energy alone, so the

Fvib entirely determines the stability ranking.

5.4.2 Assessment of Low-Level Methods

With our benchmark values in hand, we proceed to assess the performance of selected

low-cost methods for prediction of Fvib and ∆Fvib for our set of 17 polymorph pairs. The

results are collected in Table 5.3 for Fvib and Table 5.4 for ∆Fvib. Γ indicates results

obtained using only the Γ point, while “Conv” indicates results obtained using a converged

supercell. Specific to the plane-wave DFT data, we also include the free-energy results

calculated using the Γ-point frequencies for the optical contribution and the AM model

for the acoustic contribution, as this is much more computationally expedient than fully

converging the Fvib. These latter results allow us to determine the relative importance of

converging the optical and acoustic modes for computation of ∆Fvib.

Considering the absolute Fvib values in Table 5.3, Γ-point-only calculations give fairly

large errors, following the order of HF-3c>DFTB+>DFT. In contrast, using the AM

model for the acoustic contribution and calculating the optical contribution to the free

energy with the DFT Γ-point frequencies results in quite good performance, with a mean
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Table 5.2: Relative B86bPBE-XDM electronic energies (∆E), converged vibrational
free-energy corrections (∆Fvib), and relative free energies (∆G), for the PV17 bench-
mark. All values are in units of kJ/mol per molecule. The last row shows the average
magnitude of each quantity.

Polymorph Pair ∆E ∆Fvib ∆G
ETDIAM −0.0 1.4 1.4
QQQCIV −0.6 0.9 0.3
TRITAN −0.3 0.2 −0.1
EFUMAU 1.0 −0.3 0.7
THHYDT −1.2 −1.0 −2.2
CUMMIG 4.9 −1.2 3.7
XOCJEE 0.8 −1.7 −0.9
GICTIV −6.7 0.3 −6.5

DAVVUR −4.6 2.3 −2.3
TRDMPP −2.0 2.1 0.1
MALEHY −0.2 0.2 0.0
MALIAC 0.3 −0.1 0.2
FUMAAC −7.4 1.9 −5.5
OXALAC −2.4 −1.6 −4.0
SUCACB −0.0 −1.3 −1.4
REKBUE −3.5 −0.5 −4.0
EFURIH −6.0 −0.4 −6.4
|Avg.| 2.5 1.0 2.3

absolute error (MAE) of only 2.0 kJ/mol. This error can be reduced even further, to

1.7 kJ/mol, by accounting for q-point dependence of the optical modes using a con-

verged DFTB calculation in combination with the mode matching approach. This confirms

the high accuracy of the mode matching method seen for Fvib in Cook and Beran’s study.121

Table 5.4 compares the performance of the various examined methods in the calculation

of vibrational free energy differences for polymorph pairs. In this table, and unlike Table 5.3,

we have also included DMACRYS results with the FIT and W99 force fields. The reason for

this difference is that, because the DMA force fields use rigid molecules, it is not possible to

calculate the intramolecular contribution to Fvib. The DMA force field results in Table 5.4

assume implicitly that the intramolecular contribution to the vibrational free energy is the

same for both polymorphs.

In contrast to the results for the absolute free energies, we no longer see significant

differences in performance between the three QM methods when considering free-energy
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Table 5.3: Absolute Fvib (kJ/mol per molecule) values for all crystals in our PV17
benchmark set. Results are shown for three electronic structure methods (sHF-3c,
DFTB3-D3(BJ), and B86bPBE-XDM) and the mode-matching approach. Free
energies were calculated using either the Γ point only or with a converged (Conv)
supercell. For B86bPBE-XDM, results are also given for the combination of Γ point
frequencies for the optical and the AM model for the acoustic modes (Γ+AM). MAE:
Mean absolute error; MAX: Maximum absolute error.

sHF-3c DFTB3-D3(BJ) Mode B86bPBE-XDM
Polymorph Γ Conv Γ Conv Match Γ Γ+AM Conv

ETDIAM16 285.5 281.5 275.8 272.3 273.6 279.3 274.3 274.8
ETDIAM18 287.1 282.4 275.8 272.6 275.1 280.7 275.7 276.2
QQQCIV01 108.6 106.0 107.4 105.1 104.7 107.9 105.0 105.5
QQQCIV08 109.0 106.3 110.7 107.3 105.7 110.3 105.9 106.4
TRITAN03 208.3 205.4 205.5 203.6 200.9 204.3 200.7 201.8
TRITAN10 210.9 204.9 207.2 203.2 201.0 207.3 200.8 202.0
EFUMAU 327.3 325.4 317.3 316.2 314.7 317.3 313.5 315.5

EFUMAU03 327.4 325.3 318.2 316.6 313.2 316.7 313.1 315.2
THHYDT 185.5 182.3 189.0 186.7 184.4 187.2 184.5 184.5

THHYDT02 185.7 179.7 189.7 185.6 181.9 188.4 182.1 183.4
CUMMIG01 297.0 293.4 289.5 287.8 286.5 289.5 283.8 286.3
CUMMIG02 297.6 293.5 289.1 287.5 283.8 288.5 281.7 285.1
XOCJEE 208.8 204.0 214.9 212.1 205.9 212.4 205.7 209.1
XOCJEE01 208.6 203.2 212.7 208.7 206.1 212.6 206.0 207.4
GICTIV 231.8 227.2 260.1 258.4 240.3 243.3 236.5 242.6
GICTIV01 234.6 227.3 267.7 265.1 238.7 247.8 238.7 242.9
DAVVUR 1198.5 1185.1 1182.5 1171.7 1159.0 1175.5 1160.9 1163.3

DAVVUR01 1202.7 1188.7 1187.4 1176.1 1161.8 1179.0 1163.8 1165.7
TRDMPP01 405.8 399.9 404.4 399.8 399.6 406.2 399.8 400.7
TRDMPP02 409.1 404.0 403.9 399.6 400.4 407.0 400.0 402.8
MALEHY10 208.8 205.0 211.1 207.4 203.5 209.5 203.6 204.8
MALEHY12 205.5 203.2 207.3 207.1 204.0 206.1 202.1 205.1
MALIAC12 189.8 187.8 192.4 192.0 190.0 192.6 189.3 190.9
MALIAC13 193.1 187.6 194.2 189.9 189.4 194.8 189.0 190.8
FUMAAC 187.0 185.7 192.3 191.6 188.3 191.3 187.4 191.1

FUMAAC01 197.3 188.9 198.9 193.3 189.9 200.6 190.0 193.0
OXALAC03 109.8 107.6 113.4 111.5 111.8 114.9 111.8 113.1
OXALAC04 111.0 107.6 113.9 111.7 110.3 114.5 109.4 111.5
SUCACB02 255.6 250.9 254.9 253.0 250.8 255.2 250.0 251.6
SUCACB07 253.5 249.0 253.1 250.2 248.1 253.8 247.5 250.3
REKBUE 376.3 370.1 379.9 375.1 377.9 384.6 378.3 379.2
REKBUE01 381.1 371.3 381.4 375.5 376.9 387.8 375.7 378.7
EFURIH 497.8 494.4 479.9 476.9 488.0 492.9 487.3 489.4
EFURIH04 498.0 493.4 479.5 475.1 486.5 493.6 487.1 489.0

MAE 7.3 6.0 5.6 3.8 1.7 4.2 2.0 –
MAX 37.1 23.0 24.8 22.2 4.4 13.3 6.1 –
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Table 5.4: Relative Fvib (kJ/mol per molecule) values for all polymorph pairs in the PV17 benchmark set. Results are shown
for two DMA force fields (DMACRYS), three electronic structure methods (sHF-3c, DFTB3-D3(BJ), and B86bPBE-XDM),
and the mode-matching approach. Results are reported using either the Γ point or with a converged (Conv) supercell. Only
converged results are shown for the DMA calculations. For B86bPBE-XDM, results are also given using the Γ point with the
AM mode correction (Γ+AM). MAE: Mean absolute error; MAX: Maximum absolute error.

Polymorph DMACRYS sHF-3c DFTB3-D3(BJ) Mode B86bPBE-XDM
Pair W99 FIT Γ Conv Γ Conv Match Γ Γ+AM Conv

ETDIAM 0.0 0.5 1.6 0.9 0.1 0.2 1.4 1.4 1.4 1.4
QQQCIV 0.3 0.3 0.4 0.3 3.3 2.2 1.0 2.3 0.9 0.9
TRITAN 1.4 −0.1 2.6 −0.5 1.7 −0.5 0.1 3.1 0.1 0.2
EFUMAU 0.6 0.3 0.1 0.0 0.9 0.4 −1.5 −0.6 −0.4 −0.3
THHYDT 0.5 0.7 0.2 −2.6 0.6 −1.1 −2.5 0.8 −2.4 −1.0
CUMMIG 0.3 0.5 0.7 0.1 −0.4 −0.3 −2.7 −1.0 −2.1 −1.2
XOCJEE −0.4 −0.3 −0.3 −0.8 −2.2 −3.4 0.2 0.2 0.3 −1.7
GICTIV 0.3 0.7 2.8 0.1 7.6 6.7 −1.6 4.5 2.2 0.3

DAVVUR 1.1 1.1 4.2 3.6 4.9 4.4 2.8 3.4 2.9 2.3
TRDMPP 1.4 1.3 3.3 4.1 −0.4 −0.1 0.8 0.8 0.2 2.1
MALEHY −1.4 −1.6 −3.3 −1.8 −3.8 −0.2 0.5 −3.3 −1.5 0.2
MALIAC −0.1 −0.2 3.2 −0.2 1.7 −2.0 −0.6 2.3 −0.3 −0.1
FUMAAC 2.0 2.2 10.3 3.2 6.5 1.8 1.6 9.3 2.6 1.9
OXALAC 0.7 −0.2 1.3 0.0 0.5 0.1 −1.5 −0.4 −2.4 −1.6
SUCACB −0.7 −1.6 −2.0 −1.9 −1.8 −2.8 −2.8 −1.5 −2.5 −1.3
REKBUE 0.8 −0.4 4.9 1.2 1.5 0.4 −1.0 3.3 −2.6 −0.5
EFURIH 0.9 −0.7 0.2 −1.1 −0.4 −1.7 −1.5 0.8 −0.2 −0.4

MAE 1.1 0.8 2.2 1.0 2.1 1.5 0.8 2.0 0.9 –
MAX 2.3 1.8 8.4 2.0 7.3 6.4 1.9 7.4 2.2 –
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differences. Γ-point only calculations with sHF-3c, DFTB3-D3(BJ), and B86bPBE-XDM

all yield mean absolute errors (MAEs) of nearly 2 kJ/mol and maximum errors (MAX) of

7.3-8.4 kJ/mol. In some cases, most notably for fumaric acid (FUMAAC), the ∆Fvib com-

puted using only the Γ point can be much higher than the converged values, emphasizing

the importance of properly accounting for the low-frequency phonon dispersion and the

acoustic contributions. Thus, using only the Γ-point frequencies to assess the magnitude of

the free-energy correction in CSP studies may be quite misleading, and is not recommended.

Comparing the force-field, converged low-level QM, and mode matching results with

the converged B86bPBE-XDM reference values, we see that all give fairly equivalent error

statistics, with MAEs of 0.8-1.5 kJ/mol and maximum errors of ca. 2-7 kJ/mol. Of these

approaches, DFTB3-D3(BJ) gives the largest error for 1,1′-dinitro-3,3′-azo-1,2,4-triazole

(GICTIV), indicating that it might not perform well for azo compounds. Indeed, from

Table 5.3, GICTIV shows the largest errors in absolute Fvib for DFTB3-D3(BJ) as well.

Mode matching tends to give lower errors than the converged DFTB results, particularly

for acetonitrile (QQQCIV), 1,1′-dinitro-3,3′-azo-1,2,4-triazole (GICTIV), 1,7-di-t-butyl-3,9-

dimethyl-dibenzonaphthyrone (DAVVUR), and most of the systems with dimeric H-bonds

involving either COOH or CONH groups. However, it is notable that the DMA force fields

give comparable overall errors to the semi-empirical QM methods, and mode matching,

with a much lower computational cost.

Finally, we consider the performance of using the B86bPBE-XDM optical contribution

estimated from the Γ point frequencies coupled with AM model for the acoustic contribu-

tion. The rationale beyond this combination is that the low-frequency, long-wavelength

acoustic modes are the slowest to converge with respect to q-points and are missing from

the Γ-point treatment entirely. We can therefore add the acoustic contribution to Fvib from

the approximate AM model to the Γ-point results as a correction and, because the optical

modes typically have a weaker dependence on q-points, this may be a good approximation

to the converged result. The AM approximation has an additional set of calculations on

top of the Γ-point frequency calculations, since it requires evaluation of the elastic constants.

Inclusion of the AM model correction more than halves the MAE relative to the Γ-point-

only results with B86bPBE-XDM. Notably the Γ+AM approach gives significantly better

agreement with the converged reference values for many of the polymorph pairs, such
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as acetonitrile (QQQCIV), 1,3,5-trithiane (TRITAN), 1,1′-dinitro-3,3′-azo-1,2,4-triazole

(GICTIV), maleic hydrazide (MALEHY), maleic acid (MALIAC), N,N′-oxalyldiglycine

(REKBUE), and most significantly fumaric acid (FUMAAC), which consistently has the

largest error in the Γ-point calculations. Once more, this result highlights the importance

of properly accounting for the acoustic contributions to ∆Fvib.

The cases where Γ+AM still gives errors in excess of 1 kJ/mol are 2-thiohydantoin

(THHYDT), 1,1′-dinitro-3,3′-azo-1,2,4-triazole (GICTIV), maleic hydrazide (MALEHY),

cyclo-D-alanyl-L-alanyl (TRDMPP), succinic acid (SUCACB), and N,N′-oxalyldiglycine

(REKBUE). With one exception, all of these compounds form dimeric H-bonds involving

two COOH or CONH groups. This suggests that optical modes involving strong, co-

operative H-bonding networks require more extensive q-point sampling and that changes in

these H-bonding motifs between polymorphs have significant contributions to ∆Fvib. The

remaining errors in the Γ+Debye results may be due to either neglect of the dependence of

the optical modes on q-points, as seen for the dimeric H-bonds, or to breakdowns of the

AM model approximation.

5.5 Discussion and Conclusions

This work presented the new PV17 benchmark, containing DFT absolute (Fvib) and

relative (∆Fvib) harmonic vibrational free energy data for pairs of crystalline organic

polymorphs. This benchmark was used to assess the performance of several force-field and

semi-empirical QM methods for prediction of relative free-energy corrections in molecular

crystal polymorph pairs. Both planewave DFT frequency calculations at the Γ point,

augmented with treatment of the acoustic modes using a Debye-like model, and the recent

mode-matching approach121 showed good performance for prediction of the absolute Fvib

for the individual molecular crystals.

However, none of the methods studied were able to benefit significantly from error can-

cellation in the evaluation of ∆Fvib for the polymorph pairs. Overall, the MAEs obtained

with all examined methods were comparable to the average magnitude of ∆Fvib itself.

As an illustration, a method that consistently gives a ∆Fvib of zero, which is equivalent

to a zeroth-order CSP protocol, would yield a MAE of 1.0 kJ/mol and MAX error of

2.3 kJ/mol, which are on par with, or better than, the results obtained with all of the

methods considered in this study. Thus, although free energies calculated at a low-level
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of theory may be useful in other contexts, our recommendation at present is to neglect

thermal free-energy effects on CSP ranking entirely, rather than to calculate them with a

low level of theory and introduce an additional uncontrolled error. However, some of the

approaches examined, like Cook and Beran’s mode matching approach and also combining

a DFT Γ-point frequency calculation with a model for the acoustic contribution do show

promise, but more work is required until practical CSP protocols can benefit from these

methods.

While the magnitudes of our predicted thermal corrections were slightly larger than those

obtained previously, we confirm the finding of Nyman and Day24 that ∆Fvib is generally

small in magnitude. This means that thermal effects need only be taken into account at

the conclusion of a CSP protocol if two or more polymorphs are nearly degenerate, with a

relative energy difference of less than ca. 2.5 kJ/mol.

Calculating ∆Fvib for polymorph pairs is very challenging because it is a small difference

between large numbers. The individual Fvib values have typical magnitudes of ca. 100-500

kJ/mol per molecule for the molecular crystals considered here, while the differences

between polymorphs of the same compound have magnitudes under 2.5 kJ/mol. Thus, it

is reasonable that converging the total Fvib to within 0.5 kJ/mol, which requires relatively

dense q-point grids in some cases, may not be entirely satisfactory for the purpose of

CSP candidate ranking based on the free energy. In addition, we have not considered

quasi-harmonic or anharmonic effects, whose inclusion would complicate matters even

further. While the present work represents an advance over the previous assessment of

∆Fvib using DMA potentials, even more precise benchmarks for ∆Fvib are highly desirable,

as well as the development of more accurate vibrational models for organic molecular

crystals.

65



Chapter 6

Conclusions and Future Work

6.1 Summary of Chapters

The work presented in this thesis applied high-accuracy plane-wave density-functional

theory (DFT) to allotropes and polymorphs to determine relative energetic stabilities.

Furthermore, we included temperature-dependant vibrational effects to compute the vi-

brational free-energy corrections, Fvib, in several chapters. The work presented here has

applications in molecular crystal structure prediction (CSP), and specifically polymorphism.

Our work began with investigating the long-standing question of which allotrope of carbon,

diamond or graphite, is more thermodynamically stable at room temperature. Next, with

the help of first-principles CSP, we explored functionalized [6]helicene systems for their

suitability as organic semi-conducting materials. Finally, we proposed a new benchmark of

thermal free-energy corrections for a set of 17 organic molecular polymorph pairs.

Our first study in Ch. 3 was inspired by previous computational work, which proposed

that diamond and graphite become degenerate as the temperature approaches 0 K.81 We

used plane-wave DFT with the B86bPBE-25X//B86bPBE-XDM and PBE0-XDM//PBE-

XDM density functionals to compute the electronic energies of both allotropes. Accounting

for temperature effects by performing phonon calculations allowed for the computation

of the vibrational contribution the free energy, Fvib. The resulting ∆G values at 298 K

relative to diamond were predicted to be -3.65 and -2.96 kJ/mol per C atom with the

B86bPBE- and PBE-based models listed above. The experimental value obtained from

high-accuracy thermochemical measurements was determined to be -3.17 kJ/mol per C

atom.82 Not only are the DFT models presented here highly accurate in reproducing the

experimental value, we see that graphite is more thermodynamically stable than diamond.
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In a collaborative project, functionalized [6]helicene structures were screened for their

suitability as organic semi-conducting materials.95 The functional group landscape was

surveyed using a translational dimer as a simple model of a frequently recurring packing

motif in helicene crystal structures. The dimer model was used to compute several param-

eters to assess OSC suitability. Following this screening procedure, a full CSP study was

undertaken for four promising structures to determine the likely isolable polymorph(s).

The SIESTA program was used to compute the crystal-energy landscapes and several

low-energy structures were identified, as described in Ch. 4. Furthermore, the translational

dimer model was validated as many of the low-energy crystal structures contained this

packing motif. Fluorine substitution was found to significantly increase the charge-carrier

mobility of the system relative to the unsubstituted [6]helicene crystal. We propose that the

symmetrically substituted 4,13-difluoro[6]helicene structure is the most promising material

for future synthesis, with both low-energy polymorphs possessing high electron mobilities.

The final project we undertook for this thesis consisted of generating accurate plane-

wave DFT benchmark data for relative vibrational contributions to the free energy (Fvib),

specifically for polymorphic pairs of organic molecular crystals. In Ch. 5, we assembled

the PV17 benchmark set, which was derived from the Nyman Polymorph Library – a large

library of polymorphic molecular crystals.23 We found that the magnitude of relative Fvib

values were ∼ 0− 2 kJ/mol per molecule, in agreement with previous force field studies.24

Thus, applying thermal corrections will only lead to reordering when polymorphs are

nearly degenerate. Given our benchmark set of small organic molecules, with minimal

structural differences between polymorphs, this result is unsurprising. There would need to

be large differences in the phDOS, specifically in the vibrations corresponding to the low-

frequency and acoustical modes, to cause large enough ∆Fvib values to result in energetic

reordering. It is expected that larger ∆Fvib values will result when there are drastic

bonding or conformational differences. We then assessed the accuracy of several low-cost

computational models, namely sHF-3c,118 DFTB3-D3(BJ),28,117 distributed multipole force

fields within the DMACRYS97 framework, and lastly the mode-matching approach of Cook

and Beran.121 Disappointingly, none of these methods were satisfactory in reproducing

the benchmark data. Furthermore, the MAEs of most models were as large as the relative

thermal corrections themselves, meaning that neglecting the thermal free-energy corrections

entirely may be a better approximation than using low-level results in CSP.
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6.2 Future Work

There are several clear advancements that have been accomplished in this work, specifically

with regards to computing accurate relative (free) energies of molecular crystals and

allotropes of carbon. We now propose some ideas for extending the present work.

In Ch. 4, one main drawback of the computational methodology used is the omission

of full DFT geometry relaxations (to obtain the minimum-energy crystal structures) and

phonon calculations to compute thermal effects. While the SIESTA method could be

used for the geometry optimizations, and has been shown to be accurate in predicting

isolable polymorphs for several organic molecular crystals,5 full plane-wave DFT using

the Quantum ESPRESSO package would be highly desirable. However, plane-wave

DFT is computationally expensive due to the delocalized basis set. Use of numerical

atom-centered orbitals with the FHIaims software package,134 which has been shown to

provide an accuracy comparable to that of plane-wave codes, could be a logical next step

for geometry optimizations and phonon calculations.

We saw in Ch. 5 that none of the low-cost methods considered were capable of reproducing

the benchmark data. Therefore, identifying or developing new, accurate, low-cost models

is highly desirable. The force fields employed in this work use the DMACRYS code, which

operates under the rigid-body approximation. As a result, intermolecular interactions (and

vibrational modes) are well modeled, but we are unable to describe the intramolecular

changes in geometry and contributions from those vibrational modes. Intramolecular

vibrations, such as OH and CO stretches, will be impacted by hydrogen bonding, but these

contributions are not captured by the DMA potentials. Tailor-made flexible-molecule force

fields could be generated for each compound; however, high-quality reference data would

be required, in addition to the force field being non-transferable. Next, with regards to the

treatment of the acoustic modes, we assumed that the lowest three phonon frequencies

at each q-point were the acoustic modes, which is not necessarily the case. For a more

accurate treatment, we would need to track the acoustic phonon dispersion as a function

of q-point. Lastly, the reference data was computed using the plane-wave formalism in

Quantum ESPRESSO, causing the phonon calculations to be very expensive in both

time and memory. Future work could focus on using the FHIaims code, as calculations

using numerical atom-centered orbitals are significantly faster and require less memory.

Therefore, phonons could be computed more efficiently for molecular crystals with large
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unit-cell sizes and many atoms. The first step would be to apply the new implementation

of the B86bPBE-XDM functional in FHIaims to the PV17 benchmark and assess the

quality of the results and the cost of the calculations.
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Martinez, E.; Bultinck, P. Information-theoretic approaches to atoms-in-
molecules: Hirshfeld family of partitioning schemes. J. Phys. Chem. A 2017,
122, 4219–4245.

74



[71] Kannemann, F. O.; Becke, A. D. van der Waals interactions in density-
functional theory: intermolecular complexes. J. Chem. Theory Comput. 2010,
6, 1081–1088.

[72] Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related
crystal properties from density-functional perturbation theory. RMP 2001, 73,
515.
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