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Abstract 

The purpose of this thesis is to identify asymmetry in stocks’ systematic risk and 

market risk premiums under different financial market regimes. It is assumed that there 

are two unobserved regimes, bull and bear markets, in the U.S. stock market, which 

follow a hidden Markov process. A sample of 597 firms that are traded on multiple U.S. 

stock exchanges from January 1986 to October 2021 is used to test the hypotheses that 

systematic risk and market risk premiums are asymmetric in different market regimes. It 

is found that there is a strong asymmetry in the stocks’ systematic risk under both the 

extended CAPM and the Fama and French three-factor model setting. Beta asymmetry on 

the two control factors (SMB and HML) in the Fama and French three-factor model are 

also tested. To test asymmetric market risk premiums, the cross-sectional regression is 

used and finds evidence that supports asymmetric market risk premium in both the 

extended CAPM and the Fama and French three-factor model. However, there is no 

asymmetric relation in either size or value coefficients in the different regimes for the 

Fama and French three-factor model. The main contribution to the existing literature is 

that a structural hidden Markov model is applied to test asymmetric parameters, 

especially systematic risk as well as market risk premium, in both the extended CAPM 

and the Fama and French three-factor model in the U.S. stock markets. 
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Chapter 1. Introduction 

The volatility of the stock market can increase investment risk. Beta, measuring 

systematic risk of a financial security, is an important indicator for investors. Investors 

usually examine a stock's past performance and adjust investment strategies for better 

allocation by analyzing beta. The market risk premium is the difference between the 

expected return on a market portfolio and the risk-free rate. A high market premium 

attracts the risk lover to invest more into the stock in order to earn higher expected 

returns. Hence, both systematic risk and market risk premium are essential for investors 

to make a better decision on investing in the stock market. Markowitz (1952) developed 

the theory that rational investors would like to choose multiple assets or securities, rather 

than invest in a single asset, because they can diversify the risk. He believed that rational 

investors choose the one with the highest risk-adjusted return from their feasible 

investment decisions. Subsequently, William Sharpe (1964), John Lintner (1965), and 

Fischer Black (1972) independently developed the Capital Asset Price Model (CAPM) 

based on Markowitz’s model. The CAPM proved a linear relationship between systematic 

risk (beta) and expected return. In this model, beta is the only factor to consider and 

assumed to be constant over time.  

There is no doubt that the CAPM plays an important role for managers in making 

an investment decision, and many scholars, such as Fama and MacBeth (1973), support 

the model by testing its validity. However, with more and more research related to the 

CAPM, some critics contend that the model is not realistic because it cannot explain 

anomalies, such as size and momentum effect. Therefore, later research is likely to use 

more control factors to explain anomalies. For example, the Fama and French three-factor 

model is one of the multi-factor models to modify the CAPM by considering the size of 

firms and book-to-market value.  

The Markov regime-switching model is a popular approach used in the 

macroeconomics area, and it can measure data with different patterns, such as asymmetry. 

The traditional time-series model is used to regress a single and linear model to discover 

the data patterns, but it does not take multiple regimes into account. The regime-
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switching model has overcome this limitation. For instance, the unemployment rate is a 

major macroeconomic indicator used to measure the number of unemployed people 

expressed as a percentage of the labor force in the U.S. The unemployment rate is low 

during expansion, but high during contraction. In this case, it is hard to use a linear model 

to explain the behavior of these data. Hence, the regime-switching model is a useful 

approach to deal with the nonlinear time-series model by dividing the various patterns 

into different regimes or states. The regime-switching model is not only used in 

macroeconomic areas but also in financial market areas, such as testing asymmetric beta 

and asymmetric market risk premiums in different economic/financial strengths.  

The National Bureau of Economic Research’s website provides information on the 

business cycle in the U.S. economic market. A business cycle is a graph of the periodic 

growth and decline of a nation’s economic activities. Growth is linked to economic 

expansion and contraction happens after an expansion period. Meanwhile, the terms bull 

and the bear market, used to describe performance of the stock market, can relate to the 

expansion and contraction used for characterizing economic conditions. It is generally 

agreed that the bull market is the time of economic growth (expansion), while the bear 

market is the economic decline (contraction). Beta and market risk premiums fluctuate in 

the bear market but are relatively stable in the bull market. Because of that, it is necessary 

to distinguish different patterns for each beta and market risk premium by using the 

regime-switching model.  

Previous research focused on testing the validity of the CAPM and the Fama and 

French three-factor model by testing the significance of the intercept. Also, many scholars 

have proved beta asymmetry by using the regime-switching model. Nevertheless, no one 

uses the regime-switching model to test asymmetric parameters systemically in the 

extended CAPM and the Fama and French three-factor model. This thesis will test each 

parameter in both models by using the regime-switching model in time-series regression 

and cross-sectional regression. First, the significance of the intercept in both regression 

models will be tested. Secondly, the asymmetry of each coefficient will be tested. 

However, the thesis will focus more on the results related to asymmetric beta in time-

series regression and asymmetric market risk premium in cross-sectional regression.  
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This thesis focuses on testing asymmetric parameters in both the extended CAPM 

and the Fama and French three-factor model by using the Markov switching model. In the 

calibration of the regime-switching model, I divide the stock market into two regimes, 

bull market and bear market. I use a sample of 597 firms that are traded on multiple U.S. 

stock exchanges during the period January 1986 to October 2021 for testing the 

hypotheses. Both time-series and cross-sectional regression are used for parameter 

estimation. The main contributions of this thesis to the current literature are two-fold: i) 

testing asymmetric beta and asymmetric market risk premium in both the extended 

CAPM and the Fama and French three-factor model via a hidden Markov model, and ii) 

providing an additional study to test the time-varying beta and market risk premium of the 

two models in the U.S. stock market to help with further research. 

Section 2 reviews previous studies related to asymmetric beta and market risk 

premium. Section 3 introduces the models’ specifications and hypotheses. Section 4 

presents the source of data and testing results in the extended CAPM and the Fama and 

French three-factor model under different regimes. Section 5 summarizes the findings and 

concludes the thesis.  

 

 

 

 

 

 

 

 



4 
 

Chapter 2. Literature Review 

Sharpe (1964), Lintner (1965), and Black (1972) independently developed the 

Capital Asset Pricing Model (CAPM), while studying the relationship between systematic 

risk and expected return on an asset. The model was based on the portfolio theory in 

Markowitz’s (1952) paper, “Portfolio Selection”. Markowitz used the mathematical 

method to do mean-variance analysis to help investors choose an optimal portfolio 

combination. Rational investors need to know they will have lower risk if they buy 

multiple portfolios rather than just one because portfolio combination can help them 

diversify risk. In other words, investors should not just focus on one stock earning and 

risk but need to consider the risk among the whole investment portfolios.  

The CAPM assumes that beta for the given portfolio and market risk premium are 

both constant over time, and that all investors have the same expectation, including 

expected returns, standard deviations, and covariances. The model became the necessary 

reference to help managers make investment decisions.  

Because of the importance of the CAPM, scholars used it in several ways to 

perform empirical tests to see the validity of the model. For example, Fama and MacBeth 

(1973) used the monthly percentage returns for all common stocks available for investors 

to trade from the New York Stock Exchange (NYSE) between January 1926 and June 

1968 to test the relation between average return and risk of common stock on the NYSE. 

After an empirical test using the CAPM, they concluded there is a linear relationship 

between the risk and expected return after including unsystematic risk and the squared 

market beta, so the null hypothesis cannot be rejected, which proves the validity of this 

two-parameter model. 

However, each model has shortcomings, including the CAPM, because it cannot 

explain all the stock market anomalies, such as size effects. With the empirical testing 

results of the CAPM, more and more scholars found that the model is not perfect. For 

example, Fama and French (1992) reached a different conclusion from Fama and 

Macbeth (1973). Fama and French (1992) used the non-financial stocks in NYSE, 

AMEX, and NASDAQ from 1963 to 1990 to evaluate the market beta, size, 
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earnings/price ratio, leverage, and book-to-market. Their findings do not support the 

conclusion of the Sharpe–Linter–Black model, and their results show there is no relation 

between beta and average expected return, which indicates that beta is not enough to 

explain stock performance. Fama and French (1992) thought they reached a different 

conclusion from Fama and Macbeth (1973) because they choose a different sample 

period. Fama and MacBeth (1973) considered the period 1926–1968, while Fama and 

French (1992) test the model using data from period 1963–1990. They also found that 

beta itself had weak explanatory power between 1941 and 1990. 

Moreover, the choice of a specific period is not the only shortcoming for the 

CAPM. The model is not realistic and cannot apply in the actual stock market because 

systematic risk and risk premiums are not constant over time. For example, the business 

cycle is an essential reason to consider that beta and expected return are related to 

information available at any time (Jagannathan and Wang, 1996). Stock price varies with 

the change of business cycle and so does the risk premium. Therefore, the unconditional 

CAPM cannot explain cross-sectional returns. Also, the average return can be explained 

by other factors, such as market volatility (Black, 1976), leverage (Bhandari, 1988), credit 

spread, and yield spread (Campbell, 1987). 

Furthermore, the CAPM cannot explain some anomalies, such as size effect 

(Banz, 1981), momentum effect (Grundy and Martin, 2001), price-earnings ratio effect 

(Basu, 1977), and value effects (Rosenberg, Reid, and Lanstein, 1985). Banz (1981) came 

up with the “size effect” and indicated that firms’ shares with large market values have 

had smaller returns than small firms generally. Also, Grundy and Martin (2001) pointed 

out that the CAPM and the Fama and French three-factor model cannot explain the 

momentum effect. Also, Basu (1977) believed there is a relation between the investment 

performance of equity security and their price earnings ratio. To be specific, the price 

earnings ratio and return have a negative relation. Moreover, Rosenberg et al. (1985) 

studied the firms’ book value on the NYSE and found there is a positive relation between 

average return and firms’ book value on U.S. stocks. 
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As early researchers found, beta is time varying (Fabozzi and Frances, 1978), so it 

is important to take time-varying beta into account when managers make investment 

decisions. Because of the importance of the time-varying beta, there is much research 

related to it. In 1977, Bawa and Lindenberg (1977) pointed out that the CAPM 

assumption is not realistic because beta cannot be constant over time and there are 

downside and upside betas that should be considered. After that, Ang, Chen, and Xing 

(2006) calculated the upside (downside) beta when the rate of market return is higher 

(lower) than its average. They concluded that the stock with a higher downside beta 

usually has higher average rates of return. However, Levi and Welch (2020) doubted the 

results from Ang et al. (2006) because they did not consider market factor control. Levi 

and Welch stated that they reach a different conclusion if they use ex-ante instead of ex-

post down-betas to do the test. The positive relationship between down-betas and rate of 

returns will disappear based on this change. Therefore, high-down beta does not mean 

investors can get higher average rates of return ex-post. They concluded that prevailing 

plain market beta is better than asymmetric down-beta for better prediction.  

Time-varying beta can be tested by several methods. Bekaert and Wu (2000) used 

GARCH in mean parameterization to make sure conditional means, variances, and 

covariances are time varying. Brooks et al. (1998) used the Kalman Filter method to 

estimate time-varying beta in Australian industry portfolios. The Markov switching 

model is also an essential method to estimate time-varying beta. It is used to model the 

probabilities of different regimes and calculate the rates of transitions among them. 

Abdymomunov and Morley (2011) used the two-state Markov switching model to test 

beta instability in the CAPM between low- and high-volatility regimes and found time-

varying beta is better than the unconditional CAPM, particularly in a market with high 

volatility. Also, Huang (2000) used low-risk and high-risk states to test the beta of the 

CAPM and pointed out that data from the high-risk regime are inconsistent with the 

CAPM, but data from the low-risk regime are consistent with the CAPM. Furthermore, 

Vendrame et al. (2018) estimated bull and bear regimes’ probability by using the Markov 

switching approach to calculate conditional risk premiums and found that evidence for the 

beta from the conditional CAPM has the power to explain both the bull and bear markets.  
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Chapter 3. Model Specification and Testing Hypotheses  

3.1 Macroeconomic model and hidden Markov modelling 

Macroeconomic indicators, such as gross domestic product (GDP) and industrial 

production, are essential to evaluate the overall economic environment. Also, those 

indicators can help investors predict the trend of the future economic market. Generally, 

the economic market divides the business cycle into expansion and contraction periods, 

and the financial market divides it into the bull and bear markets. Although those regimes 

are unobservable, I can calculate the probabilities for each regime by using hidden 

Markov modelling (HMM). HMM was employed by Hamilton (1989) in the paper, “A 

New Approach to the Economic Analysis of Nonstationary Time Series and the Business 

Cycle”, and has been widely used to evaluate probability distributions over sequences of 

observations. In using the model, it is necessary to put all the selected macroeconomic 

indicators into one vector, 𝐹𝐹𝑡𝑡, and assume the regime follows a multivariate normal 

distribution for its economic regime: 

𝐹𝐹𝑡𝑡 =  𝐴𝐴𝑠𝑠𝑡𝑡 + 𝐵𝐵𝑠𝑠𝑡𝑡𝐹𝐹𝑡𝑡−1 + 𝜎𝜎𝑠𝑠𝑡𝑡𝜀𝜀𝑡𝑡              (1) 

In equation (1), , , and , are regime-dependent model parameters.  is a 

standard multivariate normal random variable, and 𝐹𝐹𝑡𝑡−1 is the observed data from last 

period. These quantities are used to predict future economic data, 𝐹𝐹𝑡𝑡. 

 The Bayesian information criterion is a widely used method for model selection or 

for determination of the optimal number of regimes. Instead of going through an 

estimation process, I will use just two regimes—bull market and bear market—in this 

thesis, in comply with the NBER analysis on U.S. economic strength. Because two 

regimes will be used in this thesis, 𝑠𝑠𝑡𝑡 will take two values, 1 and 2, as equation (1) shows.  

Moreover, all the macroeconomic indicators are used as observed data to calculate 

the conditional probabilities of the regimes. Because the switching behavior of the beta is 

used by the transition probability matrix (Mergner and Bulla, 2008), the changing process 

follows the first-order Markov chain: 
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p[𝑠𝑠𝑡𝑡=1 |𝑠𝑠𝑡𝑡−1= 1]=p 

p[𝑠𝑠𝑡𝑡=2 |𝑠𝑠𝑡𝑡−1= 1]=1-p 

p[𝑠𝑠𝑡𝑡=2 |𝑠𝑠𝑡𝑡−1= 2]=q 

p[𝑠𝑠𝑡𝑡=1 |𝑠𝑠𝑡𝑡−1= 2]=1-q,  

where p[𝑠𝑠𝑡𝑡=j |𝑠𝑠𝑡𝑡−1= i] is the probability that regime i changes to regime j in period t. So, 

we assume that the transition probability matrix of the regimes is independent on time and 

can be written as 

� 𝑝𝑝 1 − 𝑝𝑝
1 − 𝑞𝑞 𝑞𝑞 � 

where p and q are the transition probabilities staying in regime 1 and regime 2 in each 

period, respectively. The next step is to estimate unobservable parameters via hidden 

Markov model. The set of parameters is denoted as (X, J, 𝜃𝜃). According to the set, X 

represents the sequence of observations, J represents the unobservable regimes over the 

time period, and 𝜃𝜃 represents the unknown parameters. Therefore, the maximum log-

likelihood can be expressed as  

𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑙𝑙𝑙𝑙∑ 𝑃𝑃𝑃𝑃(𝑋𝑋, 𝐽𝐽;  𝜃𝜃)𝐽𝐽 �                         (2) 

Based on equation (2), 𝑃𝑃𝑃𝑃(𝑋𝑋, 𝐽𝐽;  𝜃𝜃) represents the joint probability distribution function of 

X and J. To guarantee the maximal results for 𝜃𝜃, the expectation-maximization algorithm 

(Dempster, Laird, and Rubin, 1977) is to be used. The expectation-maximization 

algorithm has two steps, called E-step and M-step. E-step determines the expected log-

likelihood and M-step maximizes the expected log-likelihood from E-step. To start with 

E-step, I first set an initial value 𝜃𝜃0 for 𝜃𝜃, and then compute the conditional distribution 

function, Pr(J|X; 𝜃𝜃0), given the observed data, X, and initial value, 𝜃𝜃0. Hence, I can 

determine the expected log-likelihood E[𝑙𝑙𝑙𝑙 ∑ 𝑃𝑃𝑃𝑃(𝑋𝑋, 𝐽𝐽;  𝜃𝜃)𝐽𝐽 ]. The M-step is to find the 𝜃𝜃 

that maximizes the expected log-likelihood. Let 𝜃𝜃1 be the solution, which is used as the 
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initial value for the next iteration. It is known that the value of the objective function is 

monotonically increasing and the estimated 𝜃𝜃 converges to a local optimal maximizer. 

By simplifying the EM algorithm above, the Markov-switching model can be expressed 

as: 

max
𝜃𝜃
�∑ ∑ 𝑃𝑃𝑃𝑃(𝑠𝑠𝑡𝑡 = 𝑗𝑗|𝑋𝑋;  𝜃𝜃0)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑗𝑗;𝜃𝜃)𝑇𝑇

𝑡𝑡=1
𝑠𝑠𝑡𝑡
𝑗𝑗=1 �            (3) 

In equation (3), T represents the number of time periods and 𝑥𝑥𝑡𝑡 is the realization of 𝑋𝑋𝑡𝑡, 

and 𝑠𝑠𝑡𝑡 stands for the unobservable regimes. 

3.2 CAPM specification  

Sharpe (1964), Lintner (1965), and Black (1972) built the unconditional CAPM 

based on Markowitz’s (1952) theory. Some essential assumptions of the CAPM need to 

be reviewed. First, investors are risk-averse and prefer to earn returns with low 

uncertainty. Secondly, all investors are supposed to receive timely, relevant information, 

so there is no information asymmetry. Unlimited capital is available for investors’ 

borrowing and lending at a risk-free rate of interest. Meanwhile, all investors share the 

same estimation of means, variance, and covariance of all assets. Also, the standard 

CAPM assumes there are no taxes and transaction costs. Finally, investors have the same 

time horizon. 

Sharpe (1964), Lintner (1965), and Black (1972) independently studied the 

relation between systematic risk and expected return and proved the existence of a linear 

relation between them. The CAPM focuses on only one factor, which is the market 

portfolio, rather than considering multiple factors. The beta measures the sensitivity of the 

stock’s volatility to the market portfolio, which can be described mathematically as: 

 𝛽𝛽𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖,𝑅𝑅𝑚𝑚)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑚𝑚)

 

where 𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖,𝑅𝑅𝑚𝑚) is the covariance between the return on asset i and the return on the 

market portfolio, and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑚𝑚) denoted the variance of the return on the market portfolio. 
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Moreover, it is worth mentioning that security market line (SML) shows the results from 

the CAPM. In the plot of SML in Figure 1, the x-axis stands for the beta, while the y-axis 

stands for the expected return, so the slope represents the market risk premium, which is 

𝐸𝐸(𝑅𝑅𝑚𝑚) − 𝑅𝑅𝑓𝑓. Therefore, SML (also the CAPM) can be expressed as the following 

equation: 

𝐸𝐸(𝑅𝑅𝑖𝑖) = 𝑅𝑅𝑓𝑓+𝛽𝛽𝑖𝑖 ∗ [𝐸𝐸(𝑅𝑅𝑚𝑚) − 𝑅𝑅𝑓𝑓]             (4) 

- E(𝑅𝑅𝑖𝑖) is the expected return on asset i; 

- 𝑅𝑅𝑓𝑓 is the risk-free rate; 

- 𝛽𝛽𝑖𝑖 measure systematic risk on asset i; 

- 𝐸𝐸(𝑅𝑅𝑚𝑚) − 𝑅𝑅𝑓𝑓 is the market premium, which is the difference between the rate 

of expected market return and the risk-free rate. 

Figure 1. The plot of security market line 

 

Time-series regression is one of the approaches used in the thesis; it was applied 

by Jensen (1968) to evaluate the performance of the mutual fund. Subsequently, time-

series regression was used to test the CAPM by Jensen et al. (1972) who used the 

traditional form of the regression by adding the intercept (α) to test the model. Therefore, 

the new equation with intercept can be rewritten as:  



11 
 

𝑅𝑅𝑖𝑖,𝑡𝑡−𝑅𝑅𝑓𝑓 = 𝛼𝛼𝑖𝑖+𝛽𝛽𝑖𝑖 ∗ (𝑅𝑅𝑚𝑚,𝑡𝑡−𝑅𝑅𝑓𝑓)+𝜀𝜀𝑖𝑖,𝑡𝑡             (5) 

In equation (5), (𝑅𝑅𝑖𝑖,𝑡𝑡−𝑅𝑅𝑓𝑓) and (𝑅𝑅𝑚𝑚,𝑡𝑡−𝑅𝑅𝑓𝑓) denoted the excess returns on asset i and 

market excess returns at time t (monthly), respectively.  

Because Markov regime-switching model is used in our study, I add a new 

notation, 𝑠𝑠𝑡𝑡, to represent the different regimes. “𝑠𝑠𝑡𝑡” can be regimes 1 and 2. Therefore, 

equation (5) can be rewritten as equation (6) under regime-switching model: 

 𝑅𝑅𝑖𝑖,𝑡𝑡−𝑅𝑅𝑓𝑓 = 𝛼𝛼𝑖𝑖,𝑠𝑠𝑡𝑡+𝛽𝛽𝑖𝑖,𝑠𝑠𝑡𝑡 ∗ (𝑅𝑅𝑚𝑚,𝑡𝑡−𝑅𝑅𝑓𝑓)+𝜀𝜀𝑖𝑖,𝑡𝑡            (6) 

where (𝑅𝑅𝑖𝑖,𝑡𝑡 −𝑅𝑅𝑓𝑓) is the monthly individual asset excess returns and (𝑅𝑅𝑚𝑚,𝑡𝑡 −𝑅𝑅𝑓𝑓) is the 

monthly market excess returns. 𝛼𝛼𝑖𝑖,𝑠𝑠𝑠𝑠 is the intercept of the equation, and 𝑠𝑠𝑡𝑡 represents 

regime 1 or regime 2, so: 

𝛼𝛼𝑠𝑠𝑡𝑡 = � 𝛼𝛼1 if 𝑠𝑠𝑡𝑡  =  1
       𝛼𝛼2 if 𝑠𝑠𝑡𝑡  =  2         𝛽𝛽𝑠𝑠𝑡𝑡 =  �   𝛽𝛽1 if 𝑠𝑠𝑡𝑡 =  1

    𝛽𝛽2 if 𝑠𝑠𝑡𝑡 =  2 

𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖, 𝑖𝑖 = 1, 2, are the conditional alphas and conditional betas in each regime. α 

represents the mean of abnormal returns and β stands for the mean of the systematic risk 

of all assets. 

Based on Jensen (1972), intercept (α) was used to test whether the model is valid. 

Accordingly, I develop the hypotheses to test the significance of the intercept: 

𝐻𝐻0：𝛼𝛼1 = 0, 𝐻𝐻𝐴𝐴：𝛼𝛼1 ≠  0                                                                                                (7) 

𝐻𝐻0：𝛼𝛼2 = 0, 𝐻𝐻𝐴𝐴：𝛼𝛼2 ≠  0                                                                                                (8) 

𝛼𝛼𝑠𝑠𝑡𝑡 is the average intercept in regime 𝑠𝑠𝑡𝑡. If the average of the intercept, α, is significantly 

different from zero in regime 1, the null hypothesis should be rejected in hypothesis 

equation (7). Similarly, if the average of the intercept is significantly different from zero 

in regime 2, it indicates that the null hypothesis will be rejected in hypothesis equation 
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(8). Finally, I can test the asymmetry between 𝛼𝛼1 and 𝛼𝛼2, which is the hypothesis 

equation (9). 

𝐻𝐻0：𝛼𝛼1 = 𝛼𝛼2, 𝐻𝐻𝐴𝐴：𝛼𝛼1 ≠ 𝛼𝛼2                                                                                          (9) 

The next parameter is 𝛽𝛽𝑚𝑚,𝑠𝑠𝑡𝑡, which is the average market beta in regime 𝑠𝑠𝑡𝑡. One 

objective of this thesis is to test the asymmetry of beta in different regimes, but one-

sample for mean is used first to test the significance of 𝛽𝛽𝑚𝑚 under two different regimes: 

𝐻𝐻0：𝛽𝛽𝑚𝑚,1 = 0, 𝐻𝐻𝐴𝐴：𝛽𝛽𝑚𝑚,1 ≠  0                                                                                   (10) 

𝐻𝐻0：𝛽𝛽𝑚𝑚,2 = 0, 𝐻𝐻𝐴𝐴：𝛽𝛽𝑚𝑚,2 ≠  0                                                                                    (11) 

And then, two-sample for mean test related to the asymmetric systematic risk can be 

specified as: 

𝐻𝐻0：𝛽𝛽𝑚𝑚,1 = 𝛽𝛽𝑚𝑚,2, 𝐻𝐻𝐴𝐴：𝛽𝛽𝑚𝑚,1 ≠  𝛽𝛽𝑚𝑚,2                                                                              (12) 

In equation (12), 𝛽𝛽𝑚𝑚,𝑠𝑠𝑡𝑡 stands for the mean of all stocks’ beta in regime 𝑠𝑠𝑡𝑡 (𝑠𝑠𝑡𝑡= 1, 2). If 

the null hypothesis in equation (12) is rejected in favor of the alternative, it represents the 

existence of asymmetric beta in the extended CAPM. 

 It is the time turn to the cross-sectional tests, developed by Fama and MacBeth in 

1973, for asymmetric market risk premiums. The advantage of the cross-sectional tests is 

that they can compare the different individual assets at the same time point. A simple 

cross-sectional regression of the extended CAPM at any point in time t can be written as: 

𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 = 𝛾𝛾0,𝑡𝑡,𝑠𝑠𝑡𝑡 + 𝛾𝛾1,𝑡𝑡,𝑠𝑠𝑡𝑡 ∗ 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡 + 𝜀𝜀𝑡𝑡          (13) 

- 𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 is the rate of excess return for asset i; 

- 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡is the estimated from the time-series regressions for asset i; 

- 𝛾𝛾0,𝑡𝑡,𝑠𝑠𝑡𝑡is the intercept in the regime 𝑠𝑠𝑡𝑡 at time t; 

- 𝛾𝛾1,𝑡𝑡,𝑠𝑠𝑡𝑡 is the linear coefficient in the regime 𝑠𝑠𝑡𝑡 at time t.  
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The 𝛽𝛽𝑖𝑖 in the cross-sectional regressions are the estimated 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡  from time-series 

regression. Let 𝛾𝛾0,1 and 𝛾𝛾0,2 be the average of intercepts over time for regimes 1 and 2. 

The test of the hypothesis also considers testing the significance of the average of the 

intercept:  

𝐻𝐻0：𝛾𝛾0,1 = 0, 𝐻𝐻𝐴𝐴：𝛾𝛾0,1 ≠ 0                                             (14） 

𝐻𝐻0：𝛾𝛾0,2 = 0, 𝐻𝐻𝐴𝐴：𝛾𝛾0,2 ≠ 0             (15)  

Hypotheses (14) and (15) test whether the averages of the intercepts are significantly 

different from zero in different regimes. If both null hypotheses related to 𝛾𝛾0,1 and 

𝛾𝛾0,2 can be rejected, it proves the average of 𝛾𝛾0,1 and the average of 𝛾𝛾0,2 are significantly 

different from zero. And then, the next hypothesis related to the equality between the 

average of 𝛾𝛾0,1 and the average of 𝛾𝛾0,2 will be developed. 

𝐻𝐻0：𝛾𝛾0,1 = 𝛾𝛾0,2                                                     (16） 

𝐻𝐻𝐴𝐴：𝛾𝛾0,1 ≠ 𝛾𝛾0,2          

 The last and most important hypothesis tests the existence of asymmetric market 

premium, which needs to consider the relationship between the average of 𝛾𝛾1,1 and the 

average of 𝛾𝛾1,2. Before doing that, it is necessary to check the relationship between the 

average of the estimated market risk premium over all time periods, 𝛾𝛾1, from cross-

sectional regression and market risk premium, E(𝑅𝑅𝑚𝑚)-𝑅𝑅𝑓𝑓, that is estimated from the time-

series regression. The market risk premium that is estimated from regime dependent time-

series regression and then is defined as the difference between the conditional expected 

market return by regime and risk-free rate; E(𝑅𝑅𝑚𝑚)-𝑅𝑅𝑓𝑓. For convenience, 𝛾𝛾𝑚𝑚,1 stands for 

the value of market risk premium, E(𝑅𝑅𝑚𝑚)-𝑅𝑅𝑓𝑓, in the bull market, while 𝛾𝛾𝑚𝑚,2 stands for the 

value of market risk premium, E(𝑅𝑅𝑚𝑚)-𝑅𝑅𝑓𝑓, in the bear market. Also, 𝛾𝛾1,1 and 𝛾𝛾1,2 are the 

averages of market risk premium that are estimated from cross-sectional regression for 
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regimes 1 and 2, respectively. Hence, hypotheses (17) and (18) test whether the mean of 

𝛾𝛾1,𝑖𝑖 equals 𝛾𝛾𝑚𝑚,𝑖𝑖 in different regimes. 

𝐻𝐻0:  𝛾𝛾1,1 = 𝛾𝛾𝑚𝑚,1              (17) 

𝐻𝐻𝐴𝐴:  𝛾𝛾1,1 ≠ 𝛾𝛾𝑚𝑚,1  

𝐻𝐻0：𝛾𝛾1,2 = 𝛾𝛾𝑚𝑚,2              (18) 

𝐻𝐻𝐴𝐴:  𝛾𝛾1,2 ≠ 𝛾𝛾𝑚𝑚,2  

And then, I can test the relation between 𝛾𝛾1,1 and 𝛾𝛾1,2 

𝐻𝐻0：𝛾𝛾1,1 = 𝛾𝛾1,2              (19) 

𝐻𝐻𝐴𝐴:  𝛾𝛾1,1 ≠ 𝛾𝛾1,2  

If an asymmetric market risk premium exists, the null hypothesis should be rejected in 

favor of the alternative hypothesis that market risk premium is asymmetric across market 

regimes. 

3.3 Fama and French three-factor model specification  

The Fama and French three-factor model is one of the famous multi-factors 

models to extend the CAPM. Instead of considering all five factors (market beta, size, 

earnings/price ratio, leverage, and book-to-market), they focus on market, size, and value 

factors and successfully explain the cross-section average returns in U.S. stocks (Fama 

and French, 1992, 1993). SMB (small minus big) is used to measure size factor, and 

HML (high minus low) is used to measure value factor. According to their research, the 

sample of stock is divided by size and book-to-market equity. Based on the size ranking, 

Fama and French got two groups of stocks, big and small, and each group accounts for 

50%. Also, the sample stock is divided based on the breakpoints for the bottom 30%, 

middle 40%, and top 30% of the ranked values of BM. Finally, six portfolios (S/L, S/M, 
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S/H, B/L, B/M, B/H) are used by considering the two sizes and three BE/ME portfolios 

together. Based on the approach above, the formula for calculating SMB and HML is: 

Small-minus-Big (SMB)=1/3(S/L+S/M+S/H-B/L-B/M-B/H)       (20) 

High-minus-Low (HML)=1/2(S/H+B/H-S/L-B/L)         (21) 

Because three factors—market premium, size, and value—are assumed to impact 

expected returns, the time-series Fama and French three-factor model can be expressed 

as: 

𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 = 𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖,𝑚𝑚 ∗ �𝑅𝑅𝑚𝑚,𝑡𝑡 −  𝑅𝑅𝑓𝑓� + 𝛽𝛽𝑖𝑖,𝑠𝑠 ∗  𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽𝑖𝑖,ℎ ∗  𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡+ 𝜀𝜀𝑖𝑖,𝑡𝑡                   (22) 

- 𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 is the rate of excess return on asset i at time t; 

- 𝛼𝛼𝑖𝑖,𝑡𝑡 is the intercept on asset i at time t; 

- 𝑅𝑅𝑚𝑚,𝑡𝑡 − 𝑅𝑅𝑓𝑓 is the market premium, which is the difference between the rate of 

expected marketed return and the risk-free rate; 

- 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 is the rate of the difference between the return on small and big firms’ 

stock at time t; 

- 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡is the rate of the difference between the return on high and low book-to-

market equity ratio (BE/ME) stocks at time t; 

- 𝛽𝛽𝑖𝑖,𝑚𝑚, 𝛽𝛽𝑖𝑖,𝑠𝑠 , 𝛽𝛽𝑖𝑖,ℎ are the systematic risks for each factor (market premium, SMB, 

and HML) at time t, respectively; 

In the Markov regime-switching model, 𝑠𝑠𝑡𝑡 represents different regimes, so equation (22) 

can be rewritten as: 

𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 = 𝛼𝛼𝑖𝑖,𝑠𝑠𝑠𝑠 + 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡 ∗ �𝑅𝑅𝑚𝑚,𝑡𝑡 −  𝑅𝑅𝑓𝑓� + 𝛽𝛽𝑖𝑖,𝑠𝑠,𝑠𝑠𝑡𝑡 ∗  𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 + 𝛽𝛽𝑖𝑖,ℎ,𝑠𝑠𝑡𝑡 ∗  𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡     (23) 

- 𝛼𝛼𝑖𝑖,𝑠𝑠𝑠𝑠 is the intercept for asset i, dependent on regimes (𝑠𝑠𝑡𝑡 =1,2); 

- 𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 is the excess return on asset i; 

- 𝑅𝑅𝑚𝑚,𝑡𝑡 − 𝑅𝑅𝑓𝑓 is the market premium, which is the difference between the rate of 

expected marketed return and the risk-free rate; 
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- 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡 , 𝛽𝛽𝑖𝑖,𝑠𝑠,𝑠𝑠𝑡𝑡 , 𝛽𝛽𝑖𝑖,ℎ,𝑠𝑠𝑡𝑡 are the systematic risks of the three independent variables 

dependent on regimes (𝑠𝑠𝑡𝑡 =1,2); 

- 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 is the rate of the difference between the return on small and big firms’ 

stock at time t; 

- 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 is the rate of the difference between the return on high and low book-to-

market equity ratio (BE/ME) stocks at time t. 

As the hypothesis testing for the CAPM, the Fama and French three-factor model 

will test the intercept and beta as well. First, I test hypotheses to see whether the average 

of the intercept is significantly different from zero for each regime (𝐻𝐻0：𝛼𝛼1 = 0, 𝐻𝐻𝐴𝐴：

𝛼𝛼1 ≠  0 ; 𝐻𝐻0：𝛼𝛼2 = 0, 𝐻𝐻𝐴𝐴：𝛼𝛼2 ≠  0 ). Then, I test the asymmetry between the mean of 

the intercept of two regimes (𝐻𝐻0：𝛼𝛼1 = 𝛼𝛼2, 𝐻𝐻𝐴𝐴：𝛼𝛼1 ≠ 𝛼𝛼2). Also, one-sample for mean 

test is used to test the significance of 𝛽𝛽𝑚𝑚 in each regime. Finally, asymmetric beta, which 

is whether 𝛽𝛽𝑚𝑚,1, the average of stocks’ beta in regime 1 equals 𝛽𝛽𝑚𝑚,2 , the average of 

stocks beta in regime 2. After testing the asymmetry in the intercept and market risk 

premium, I would like to test the asymmetry of the other two control factors (SMB and 

HML). 

𝐻𝐻0：𝛽𝛽𝑠𝑠,1 = 𝛽𝛽𝑠𝑠,2, 𝐻𝐻𝐴𝐴：𝛽𝛽𝑠𝑠,1 ≠ 𝛽𝛽𝑠𝑠,2            (24) 

𝐻𝐻0：𝛽𝛽ℎ,1 = 𝛽𝛽ℎ,2, 𝐻𝐻𝐴𝐴：𝛽𝛽ℎ,1 ≠ 𝛽𝛽ℎ,2            (25) 

Equation (24) is used to test the asymmetric size beta between two regimes, while 

equation (25) tests the asymmetric value beta between two regimes. 

Meanwhile, the cross-sectional test developed by Fama and MacBeth (1973) is 

used here again to test the Fama and French three-factor model, and equation (23) is 

revised as:  

𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 = 𝛾𝛾0,𝑡𝑡,𝑠𝑠𝑡𝑡 +  𝛾𝛾1,𝑡𝑡,𝑠𝑠𝑡𝑡 ∗ 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡 + 𝛾𝛾2,𝑡𝑡,𝑠𝑠𝑡𝑡 ∗ 𝛽𝛽𝑖𝑖,𝑠𝑠,𝑠𝑠𝑡𝑡 + 𝛾𝛾3,𝑡𝑡,𝑠𝑠𝑡𝑡 ∗ 𝛽𝛽𝑖𝑖,ℎ,𝑠𝑠𝑡𝑡 + 𝜀𝜀𝑡𝑡                  (26) 

- 𝑅𝑅𝑖𝑖,𝑡𝑡 −  𝑅𝑅𝑓𝑓 is the rate of excess return for asset i; 
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- 𝛽𝛽𝑖𝑖,𝑚𝑚,𝑠𝑠𝑡𝑡  ,𝛽𝛽𝑖𝑖,𝑠𝑠,𝑠𝑠𝑡𝑡 ,𝛽𝛽𝑖𝑖,ℎ,𝑠𝑠𝑡𝑡 are estimated from the time-series regression; 

- 𝛾𝛾0,𝑡𝑡,𝑠𝑠𝑡𝑡is the intercept in regime 𝑠𝑠𝑡𝑡 at time t; 

- 𝛾𝛾𝑗𝑗,𝑡𝑡,𝑠𝑠𝑡𝑡 is the linear coefficient in regime 𝑠𝑠𝑡𝑡at time t for the three factors, 𝑗𝑗 =

1,2,3.  

The hypotheses testing starts with the intercept as well in the Fama and French three-

factor model. Let 𝛾𝛾𝑖𝑖,𝑗𝑗 be the average of coefficients over time as defined for the extended 

CAPM. First, I will test whether the average of 𝛾𝛾0,1 and the average of 𝛾𝛾0,2 are 

significantly different from zero (𝐻𝐻0：𝛾𝛾0,1 = 0, 𝐻𝐻𝐴𝐴：𝛾𝛾0,1 ≠ 0; 𝐻𝐻0：𝛾𝛾0,2 = 0, 𝐻𝐻𝐴𝐴：

𝛾𝛾0,2 ≠ 0). Secondly, I will test the hypothesis about the relationship between the mean of 

𝛾𝛾0,1 and the mean of 𝛾𝛾0,2 (𝐻𝐻0：𝛾𝛾0,1 = 𝛾𝛾0,2, 𝐻𝐻𝐴𝐴：𝛾𝛾0,1 ≠ 𝛾𝛾0,2). Because of the other two 

control factors in the Fama and French three-factor model, it is still necessary to test these 

two factors’ asymmetry after confirming the relationship between the mean of 

𝛾𝛾1,1 and the mean of 𝛾𝛾1,2 ( 𝐻𝐻0：𝛾𝛾1,1 = 𝛾𝛾1,2, 𝐻𝐻𝐴𝐴：𝛾𝛾1,1 ≠ 𝛾𝛾1,2). 

𝐻𝐻0：𝛾𝛾2,1 = 𝛾𝛾2,2, 𝐻𝐻𝐴𝐴：𝛾𝛾2,2 ≠ 𝛾𝛾2,2       (27) 

𝐻𝐻0：𝛾𝛾3,1 = 𝛾𝛾3,2, 𝐻𝐻𝐴𝐴：𝛾𝛾3,1 ≠ 𝛾𝛾3,2       (28) 

Hypothesis (27) tests the asymmetry between the coefficient of size beta in two regimes, 

while hypothesis (28) tests the asymmetry between the coefficient of value beta in two 

regimes. If both null hypotheses of (27) and (28) are rejected, then there is an asymmetric 

relationship between stock’s sensitivities to the size and value factors in different 

regimes.   
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Chapter 4. Data Collection and Testing Results 

 

4.1 Economic indicators 

Twelve major economic indicators on the U.S. market are collected from Refinitiv 

Datastream for modeling the macroeconomic model. These indicators are presented in 

Table 1. Except for credit spread, yield spread, and U.S. T-bill second market 3-month 

interest rate, the rest of the indicators are calculated by using their logarithmic changes. 

Because the percentage of credit spread and yield spread can be negative, it is a essential 

to calculate their changes rather than the logarithmic ratio of the data month on month. 

The data of the selected indicators spans January 1986 to October 2021 (total 418 

months) and are used as observed data to estimate transition matrix and posterior 

probabilities. 

 

Table 1. The selected economic indicators 

Code Indicators 

SP5 S&P 500 price index 

LEI Conference Board leading economic indicators index 

CCI Consumer confidence index 

TIP Total industry production 

CPI Consumer price index 

YLD Yield spread by 20 years Treasury bond yield – 2-month T-bill 

CSD U.S. credit spread 

MNY Money supply 

REL The number of housing starts 

PMI U.S. ISM purchasing managers index 

UEM Unemployment rate 

ITR U.S. T-bill second market 3-month interest rate 

 

4.2 Sample Selection 

 Stocks of 630 firms on the U.S. market that traded on multiple exchanges (NYSE, 

NASDAQ, Non-NASDAQ OTC, NYSE MKT, and London) from January 1986 to 
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October 2021 were selected from Refinitiv Datastream. Excluding those with missing 

data, 597 firms are used for hypothesis testing. Individual stock returns were calculated as 

monthly logarithmic ratio and 𝑅𝑅𝑓𝑓 is the one-month Treasury bill rate. All the data [(𝑅𝑅𝑚𝑚 −

 𝑅𝑅𝑓𝑓), SMB, and HML] of the Fama and French three factors are downloaded from 

Kenneth R. French’s website 

(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). 

 I prefer using monthly returns to daily returns because I believe that the trend of 

stock return is more important. It is useful for investors to study the noise of the stocks by 

using daily return for short-term investment, but longer investment horizons focus more 

on the trend instead of noise.  

 

4.3 Estimation of the macroeconomic model 

Table 2 shows the transition matrix that gives the probabilities of different states 

going from one to another. 

Table 2. Transition matrix 

 Regime 1 Regime 2 

Regime 1 0.9682 0.0318 

Regime 2 0.2009 0.7991 

 

According to Table 2, the probability of staying in regime 1 is 0.9682 if it is currently in 

regime 1, and the probability of regime 1 transfer to regime 2 is 0.0318. The probability 

of regime 2 transfer to regime 1 is 0.2009, and regime 2 has 0.7991 probability of staying 

in regime 2 when it is in regime 2. Figure 2 shows the frequency of the inferred regime. 

According to Figure 2, the frequency of regime 1 is 362 months and regime 2 (bear 

market) is 56 months stay from January 1986 to October 2021—a total of 418 months. 

The duration of each regime is not consecutive, and the distribution that describes the 

regime by time is reported in Figure 3.  
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Figure 2. The frequency of inferred regime 

 
Note: Figure 2 shows the frequency of each regime. X-axis represents the 

different regimes (1 and 2) and y-axis represents the frequency of each 

regime during the sample period January 1986 to October 2021—418 

months in total. 

 

 The regimes can be labeled by analyzing the economic activities over time, which 

are reflected in the economic indicators. Table 3 shows the change of conditional mean 

by month for each factor in different regimes. The second and third rows represent the 

economic indicators’ conditional mean in the two regimes, respectively. Generally, the 

bull market is often connected to a strong and optimistic market attitude, while the bear 

market sentiments are relatively fluctuating and pessimistic. According to Table 3, most 

data shown in regime 1 are positive, which indicates a growing economic market. On the 

contrary, negative data indicate a worsening economic environment. For example, the 

unemployment rate is one of the important indicators of economic market condition. 

During the expansion period, the conditional mean of the change related to 

unemployment rate is relatively low (as shown in Table 3; - 0.064 in the bull market). 

However, the change of that rate rises dramatically in the bear market. Meanwhile, the 

yield spread is the difference between the 20 years Treasury bond yield and the 2-month 

T-bill. In general, the conditional mean of the changes related to yield spread in the bull 
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market is lower than that in the bear market. Based on the analysis above, I can label 

regime 1 as bull market and regime 2 as bear market.  

 

Table 3. The conditional mean of economic factors 
 SP5 LEI CCI TIP CPI YLD CSD MNY REL PMI UEM ITR 

Regime 1 0.127 0.037 0.061 0.030 0.024 -0.380 0.017 0.051 0.038 0.020 -0.064 0.149 

Regime 2 -0.230 -0.108 -0.330 -0.051 0.033 2.034 -0.279 0.077 -0.310 -0.124 0.275 -2.161 

 

Furthermore, because the historical data are analyzed, it is necessary to check 

whether the inferred regimes match with existing market categorization. I compared the 

estimation with the business cycle information from NBER. Figure 3 presents the inferred 

regimes by time; regime 1 stands for the bull market and regime 2 stands for the bear 

market.  

 

Figure 3 Inferred regimes by time 

 
Two periods are selected as examples to see whether the market classification 

from the two sources is consistent. First, NBER reported there are 8 months of 

contraction and 120 months of expansion during the period March 1991 to November 

2001 (Table 4). Figure 3 shows there are 11 months in the bear market and 117 months in 

the bull market during this period. Secondly, NBER reported 18 months of contraction 

and 73 months of expansion during the period November 2001 to June 2009. According 

to Figure 3, it is shown that 33 months in the bear market and 58 months in the bull 

market during that period. The two samples show that the inferred regimes in Figure 3 are 
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almost the same as the business cycle reported by NBER. Because of the different 

calculations, the market classification from the two sources is not exactly the same. I 

prefer to estimate the probability of the regimes rather than use the information reported 

in NBER. According to NBER, the recession period is defined as the dramatic decline of 

economic activities and lasts less than six months. Therefore, if the duration of economic 

activity decline is less than six months, NBER will not call it a recession period. Because 

of that, the regime-switching model is a suitable method to estimate the probability of 

different regimes to avoid bias. 

 

Table 4. Business cycle information from NBER 

Peak month 
(Peak Quarter) 

Trough month 
(Trough Quarter)  Contraction Expansion 

  

Peak 
month 
number 

Trough 
month 
number 

Duration, 
peak to 
trough 

Duration, 
trough to 

peak  
December 1854 (1854Q4)  660   

June 1857 (1857Q2) December 1858 (1858Q4) 690 708 18 30 
October 1860 
(1860Q3) 

June 1861 (1861Q3) 
730 738 8 22 

January 1980 
(1980Q1) 

July 1980 (1980Q3) 
2161 2167 6 58 

July 1981 (1981Q3) November 1982 (1982Q4) 2179 2195 16 12 
… … 

July 1990 (1990Q3) March 1991 (1991Q1) 2287 2295 8 92 
March 2001 
(2001Q1) November 2001 (2001Q4) 2415 2423 8 120 
December 
2007 (2007Q4) June 2009 (2009Q2) 2496 2514 18 73 
February 
2020 (2019Q4) April 2020 (2020Q2) 2642 2644 2 128 

 

4.4 Parameter estimation in time-series regressions for the CAPM 

 

4.4.1 Statistical significance of the estimated intercepts for the CAPM  

 Figure 4 describes the p-value distribution of α for each individual stock in both 

regimes. Each selected firm is associated with p-value for the estimate of α, so there are 

597 p-values in total in each regime. From Figure 4, it is observed that the trend is not 

smooth in the bull market. No stocks have p-value below 0.05 in the bull market, which 



23 
 

indicates no estimated intercept is statistically significant at the 5% level in the bull 

market. However, if I look at the trend in the bear market, it is clearly smoother than the 

bull market. There are 103 stocks with p-values between 0 and 0.05. Hence, those 103 

stocks’ estimated intercepts are statistically significant at the 5% level in the bear market. 

 

Figure 4. p-value distribution of α in different regimes (CAPM) 

 
 

4.4.2 Statistical significance of the estimated 𝜷𝜷𝒎𝒎 for the CAPM 

 Figure 5 shows the distribution of the p-value of 𝛽𝛽𝑚𝑚 for each individual stock in 

the bear and the bull markets. The data patterns in Figure 5 indicate that there are more 

stocks with beta estimates having p-values smaller than 0.05 not only in the bull market 

but also in the bear market. Only 138 stock beta estimates have a p-value greater than 

0.05, while the rest of (459) stock beta estimates have a p-value smaller than 0.05 in the 

bull market. 558 stocks estimated 𝛽𝛽𝑚𝑚 are statistically significant at the 5% level in the 

bear market.  

 

Figure 5. p-value distribution of 𝜷𝜷𝒎𝒎 in different regimes (CAPM) 
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4.5 Parameter estimation in time-series regressions for the FF3 model 

 

4.5.1 Statistical significance of the estimated intercepts for the FF3 model 

The first parameter to be tested is the intercept for the Fama and French three-

factor model. As seen in Figure 6, there is a flat trend shown in the bull market. In other 

words, there is no specific distribution, and the number of stocks’ p-values at each 

significance level do not show a big difference. There are just 11 stocks with an estimated 

intercept having a p-value below 0.05, which means those stocks’ estimated intercepts are 

statistically significant at the 5% level in the bull market. Nevertheless, there is a smooth 

trend shown in the bear market. There are 203 stocks with an estimated intercept having a 

p-value between 0.001 and 0.05. Hence, about one-third of the estimated intercepts are 

statistically significant at the 5% level in the bear market. 

 

Figure 6. p-value distribution of α in different regimes (FF3) 

 
 

4.5.2 Statistical significance of the estimated 𝜷𝜷𝒎𝒎, 𝜷𝜷𝒔𝒔, and 𝜷𝜷𝒉𝒉 for the FF3 model 

Figures 7–9 show the p-value distribution that relates to 𝛽𝛽𝑚𝑚, 𝛽𝛽𝑠𝑠, and 𝛽𝛽ℎ for each 

individual stock in the extended Fama and French three-factor model. According to 

Figure 7, which reports the distribution of 𝛽𝛽𝑚𝑚’s p-value, more stocks with an estimated 

beta having a p-value between 0 and 0.05, and just a few p-values disperse between 0.05 

and 1 in both regimes. This indicates that 514 stocks estimated 𝛽𝛽𝑚𝑚 are statistically 

significant at the 5% level in the bull market. Similarly, 580 stocks’ estimated beta have a 
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p-value close to zero, which indicates those stocks estimated 𝛽𝛽𝑚𝑚 are statistically 

significant at the 5% level in the bear market as well. 

Meanwhile, the distribution of p-value about 𝛽𝛽𝑠𝑠 and 𝛽𝛽ℎ indicate that majority of 

the stocks have a beta p-value less than 0.05 in both regimes. According to Figure 8, there 

are 140 stocks that have the p-value of 𝛽𝛽𝑠𝑠 below 0.05 in the bull market, while 250 stocks 

have the p-value of 𝛽𝛽𝑠𝑠 below 0.05 in the bear market. Based on Figure 9, the similar 

results can be observed to Figure 8. Figure 9 reports the distribution of p-value about 𝛽𝛽ℎ 

for each individual stock in different regimes. Note that there are 179 stocks with p-value 

smaller than 0.05 in the bull market. Looking at the distribution in the bear market, there 

are 362 stocks’ p-value distributed between 0 and 0.05. Overall, majority of the stock 

have a p-value less than 0.05 the estimated all three βs’ (𝛽𝛽𝑚𝑚, 𝛽𝛽𝑠𝑠, and 𝛽𝛽ℎ) of stocks have p-

values below 0.05 indicating that most of those estimates are statistically significant at the 

5% level in both the bull and bear markets. 

 

Figure 7. p-value distribution of 𝜷𝜷𝒎𝒎 in different regimes (FF3) 

 
 

Figure 8. p-value distribution of 𝜷𝜷𝒔𝒔 in different regimes (FF3) 
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Figure 9. p-value distribution of 𝜷𝜷𝒉𝒉 in different regimes (FF3) 

 
4.6 Beta value distribution and statistic description  

To make an investment decision, managers usually compare an individual stock’s 

beta with the overall market volatility. A firm’s stock with a higher beta has greater risk 

and expected returns than the overall market. If beta is greater than one, it means the 

stock return is in general more volatile than the market return. However, a beta smaller 

than one indicates the stock price is less volatile than the market. According to Table 5, 

the mean 𝛽𝛽𝑚𝑚 is 0.851 in the bull market, which indicates the average value of the 𝛽𝛽𝑚𝑚 

from our 597 stocks is smaller than market volatility in the bull market. It makes sense 

because the financial markets in a bull market are more stable than in a bear market. Also, 

a mean greater than 1 (1.033) in the bear market shows the stock return is more volatile 

than the market. Standard deviation is a measure of how dispersed the data are in relation 

to the mean. The standard deviation of the estimated 𝛽𝛽𝑚𝑚 in the bull market is 0.4, while 

the standard deviation of 𝛽𝛽𝑚𝑚 in the bear market is 0.533. Figure 10 reports the value 

distribution of 𝛽𝛽𝑚𝑚 in different regimes in the CAPM. Similar to the mean of 𝛽𝛽𝑚𝑚 in the 

CAPM, the mean of 𝛽𝛽𝑚𝑚 in the Fama and French three-factor model is also less than 1 in 

the bull market and greater than 1 in the bear market. The standard deviation of 𝛽𝛽𝑚𝑚 

(0.391) in the bull market is smaller than the standard deviation of 𝛽𝛽𝑚𝑚 (0.555) in the bear 

market in the Fama and French three-factor model. Based on Figure 11, the range of 𝛽𝛽𝑚𝑚 

in the bear market is bigger than it is in the bull market.  

Table 5 reports descriptive statistics about the other two control factors (𝛽𝛽𝑠𝑠 and 

𝛽𝛽ℎ) for the Fama and French three-factor model as well. According to the mean of 𝛽𝛽ℎ, the 

mean is smaller and close to zero not only in the bull market (0.237), but also the bear 

market (0.148). Therefore, it is determined that more firms’ stock is weighted toward 

smaller-cap stocks in both bull and bear markets. Also, the standard deviation of 𝛽𝛽𝑠𝑠 is 
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0.323 in the bull market is smaller than 𝛽𝛽𝑠𝑠 is 0.787 in the bear market. Figure 12 reports 

the value distribution of 𝛽𝛽𝑠𝑠 in different regimes for the Fama and French three-factor 

model. 

Moreover, the statistical information related to 𝛽𝛽ℎ are reported in Table 5. 

Although the mean of 𝛽𝛽ℎ in the bear market (0.401) is bigger than in the bull market 

(0.292), both numbers are positive. The standard deviation of 𝛽𝛽ℎ is 0.33 in the bull market 

and 0.663 in the bear market. Figure 13 reports the distribution of the estimated 𝛽𝛽ℎ in 

different regimes for the Fama and French three-factor model. 

 

Table 5. Descriptive statistics for the parameters related to beta for the CAPM and  

the Fama and French three-factor model 

 

 

 
CAPM Fama and French three-factor model 

 
β
m,st

 β
m,st

 β
s,st

 β
h,st

 
 

Bull 

Market 

Bear 

Market 

Bull 

Market 

Bear 

Market 

Bull 

Market 

Bear 

Market 

Bull 

Market 

Bear 

Market 

Mean 0.851 1.033 0.826 1.057 0.237 0.148 0.292 0.401 

Standard 

Error 

0.016 0.022 0.016 0.023 0.013 0.032 0.014 0.027 

Median 0.875 0.993 0.843 1.026 0.213 0.119 0.286 0.368 

Standard 

Deviation 

0.400 0.533 0.391 0.555 0.323 0.787 0.330 0.663 

Sample 

Variance 

0.160 0.284 0.153 0.308 0.104 0.620 0.109 0.440 

Kurtosis 0.174 19.639 0.292 27.639 3.275 18.492 5.945 7.378 

Skewness -0.043 1.637 -0.128 2.015 0.143 -1.439 -0.664 -0.969 

Range 2.907 8.569 2.982 9.656 3.094 11.250 3.794 7.069 

Minimum -0.647 -2.068 -0.809 -2.413 -1.537 -7.882 -2.213 -4.419 

Maximum 2.260 6.501 2.173 7.243 1.557 3.368 1.581 2.649 

Count 597 597 597 597 597 597 597 597 
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Figure 10. The value distribution of 𝜷𝜷𝒎𝒎 in different regimes (CAPM) 

 
 

 

Figure 11. The value distribution of 𝜷𝜷𝒎𝒎 in different regimes (FF3) 

 
 

 

 

Figure 12. The value distribution of 𝜷𝜷𝒔𝒔 in different regimes (FF3) 
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Figure 13. The value distribution of 𝜷𝜷𝒉𝒉 in different regimes (FF3) 

 
 

4.7 Hypotheses testing for significance and asymmetry 

To test the hypotheses for asymmetric risk and market risk premiums, I use one-

sample or paired-sample t-tests. The one-sample t-test is a parametric test of the location 

parameter when the population standard deviation is unknown, and paired t-test is the 

difference between two samples that come from a normal distribution with a mean equal 

to zero and unknown variance. Tables 6–9, and 11, report the outcomes from each 

hypothesis and include sample mean and p-value. P-value is the probability of observing 

a test statistic as extreme as, or more extreme than, the observed value under the null 

hypothesis. Small values of p cast doubt on the validity of the null hypothesis. Therefore, 

if the reported p-value is smaller than 0.05, the test rejects the null hypothesis at the 5% 

level, while there is not sufficient evidence to reject the null hypothesis at the 5% level if 

the reported p-value is greater than 0.05. 

 

4.7.1 Testing results for intercept and beta 

Table 6 reports the testing results for hypotheses (7) to (9) in the extended CAPM 

and the Fama and French three-factor model. For the CAPM, the p-value of 0.0345 is 

smaller than 0.05 in the bull market, so the null hypothesis of hypothesis equation (7) 

(𝛼𝛼1 = 0) should be rejected at a 5% level, which indicates that the CAPM does not hold 

in the bull market. The test decision seems to conflict with the graph in Figure 4, which 

reported that none of the 𝛼𝛼1 in the bull market are statistically significant. The reason is 

due to the sample difference. Figure 4 shows the p-value of the estimated intercept for 

each stock, while hypothesis (7) tests the significance of the average intercept, 𝛼𝛼1. 
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Therefore, most stocks have insignificant α does not affect the test result of hypothesis 

(7). 

However, the p-value of 0.9235 is greater than 0.05, so the null hypothesis of 

equation (8) (𝛼𝛼2 =0) should not be rejected at the 5% level in the bear market. 

Meanwhile, the sample mean of 𝛼𝛼1 is positive (0.0494), while the sample mean of 𝛼𝛼2 is 

negative (-0.0082).  

Table 6 also reports the sample’s mean and p-value for the Fama and French 

three-factor model. Both p-values (0.5833 and 0.0818) for the estimated intercepts are 

greater than 0.05, which suggests that the null hypotheses in equations (7) and (8) are not 

rejected at the 5% level for the Fama and French three-factor model.  

The last row in Table 6 reports the results of hypothesis test for equation (9) that is 

related to asymmetric intercept in the extended CAPM and the Fama and French three-

factor model. The p-value is 0.4986 in the extended CAPM, and the p-value is 0.0593 in 

the extended Fama and French three-factor model. Because both p-values are greater than 

0.05, the null hypothesis of equation (9) should not be rejected in both models at the 5% 

level. Therefore, I can conclude that no asymmetric intercept exists in the extended 

CAPM or the Fama and French three-factor model.  

 

Table 6. The results for hypotheses (7) to (9) 

 CAPM FF3 

 Mean 𝑝𝑝 Mean 𝑝𝑝 

Hypothesis (7) 

(𝛼𝛼1 = 0) 

0.0494 0.0345 0.013 0.5833 

Hypothesis (8) 

(𝛼𝛼2 = 0) 

-0.0082 0.9235 -0.0593 0.0818 

hypothesis (9) 

( 𝐻𝐻0：𝛼𝛼1 = 𝛼𝛼2) 

- 0.4986 - 0.0593 

 

Table 7 reports the results related to the significance test [hypotheses (10) to (12)] 

and the asymmetric beta test [(24) and (25)] by the extended CAPM and Fama and 

French three-factor model. According to Table 7, p-value for both hypotheses (10) and 
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(11) are 0 in two models. Therefore, the average of 𝛽𝛽𝑚𝑚,1 and the average of 𝛽𝛽𝑚𝑚,2 are both 

statistically significant at the 5% level for the two models. Also, in the CAPM, the mean 

of 𝛽𝛽𝑚𝑚,1 (0.851) is smaller than 1, which indicates the average of 597 stocks’ risk is lower 

than market volatility in the bull market. The mean of 𝛽𝛽𝑚𝑚,2 (1.033) greater than 1, so it 

can be concluded that the average of 597 stocks’ risk is greater than market volatility in 

the bear market. Meanwhile, the p-value of hypothesis (12) is smaller than 0.05, so the 

null hypothesis of hypothesis equation (12) should be rejected in the extended CAPM. In 

the Fama and French three-factor model, the sample means of 𝛽𝛽𝑚𝑚,1 and 𝛽𝛽𝑚𝑚,2 provide the 

evidence that the sample mean has lower risk than the market volatility in the bull market 

and it is higher than market volatility in the bear market. The p-value of the estimated 

beta is 0 for the Fama and French three-factor model, so the null hypothesis of hypothesis 

equation (12) should be rejected for the Fama and French three-factor model. Therefore, 

there is strong evidence of asymmetric beta for the extended CAPM and Fama and French 

three-factor model. 

Because of the two other control factors in the extended Fama and French three-

factor model, I also test the asymmetry related to the beta of SMB and HML in both 

regimes and the results are reported in Table 7. Because both p-values for hypotheses (24) 

and (25) are smaller than 0.05, their null hypotheses of equations (24) and (25) should be 

rejected. Hence, there is a significant difference between the beta of SMB in bull and bear 

markets, and there is a significant difference between the beta of HML across market 

regimes as well. Also, the positive sample means, 𝛽𝛽𝑠𝑠,1 and 𝛽𝛽𝑠𝑠,2, state small-cap stocks will 

earn higher return in both regimes. Moreover, the positive sample means, 𝛽𝛽ℎ,1 and 𝛽𝛽ℎ,2, 

state that the excess return of firms are due to the high book-to-market stock. 
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Table 7. The results for hypotheses (10) to (12) and (24) to (25) 

 CAPM FF3 

 Mean 𝑝𝑝 Mean 𝑝𝑝 

hypothesis (10) 

(𝐻𝐻0：𝛽𝛽𝑚𝑚,1 = 0) 

0.851 

 

0.0000 0.826 

 

0.0000 

hypothesis (11) 

(𝐻𝐻0：𝛽𝛽𝑚𝑚,2 = 0) 

1.033 

 

0.0000 1.057 

 

0.0000 

hypothesis (12) 

(𝐻𝐻0：𝛽𝛽𝑚𝑚,1 = 𝛽𝛽𝑚𝑚,2) 

- - 0.0000 - - 0.0000 

hypothesis (24) 

（𝐻𝐻0：𝛽𝛽𝑠𝑠,1 = 𝛽𝛽𝑠𝑠,2) 

- - - 0.237 

(𝛽𝛽𝑠𝑠,1) 

0.148 

(𝛽𝛽𝑠𝑠,2) 

0.0025 

hypothesis (25) 

(𝐻𝐻0：𝛽𝛽ℎ,1 = 𝛽𝛽ℎ,2) 

- - - 0.292 

(𝛽𝛽ℎ,1) 

0.401 

(𝛽𝛽ℎ,2) 

0.0000 

 

 

4.7.2 Results for cross-sectional regression analyses 

Table 8 reports the testing results for hypotheses (14) to (16) for the extended 

CAPM and the Fama and French three-factor model. It is shown that both the CAPM and 

the Fama and French three-factor model have a p-value smaller than 0.05 for hypothesis 

(14). Therefore, the average of 𝛾𝛾0 in both models is statistically significant at the 5% 

level, which means the null hypothesis of equation (14) should be rejected. Nevertheless, 

the results for hypothesis (15) for the bear market have different conclusions compared 

with the results for hypothesis (14) for the bull market. P-value is greater than 0.05 for 

both models, implying that rejection of the null hypothesis (15) is failed at the 5% level.  

Table 8 also presents the testing result for hypothesis (16) for both models. Based 

on the results shown in the last row of Table 8, I can conclude that the null hypothesis for 

both the extended CAPM and the Fama and French three-factor model should be rejected 

at the 5% significance level. However, there is a bias by using different sample lengths to 

test the intercept. The quantity of 𝛾𝛾0 that used to test hypotheses (14) and (15) are based 

on the inferred regimes. Each parameter from cross-sectional regression has two estimates 
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because of two regimes, and the selections are based on the inferred regime. For example, 

if the inferred regime indicates that January 1986 is regime 1, it will select the beta from 

the bull market instead of the bear market. Again, 362 months are the bull market and 56 

months are the bear market in terms of Figure 2. Therefore, the quantity of 𝛾𝛾0 is 362 in 

the bull market when test hypothesis (14), while the quantity of 𝛾𝛾0 is 56 in the bear 

market when test hypothesis (15). Both hypotheses (14) and (15) test statistically 

significant due to sample size. 

 

Table 8. The results for hypotheses (14) to (16)  

 CAPM FF3 

 Mean 𝑝𝑝 Mean 𝑝𝑝 

Hypothesis (14) 

(𝐻𝐻0: 𝛾𝛾0,1 = 0) 

2.1258 0.0081 1.8252 0.0027 

Hypothesis (15) 

(𝐻𝐻0: 𝛾𝛾0,2 = 0) 

2.5116 0.1908 2.6498 0.1992 

hypothesis (16) 

(𝐻𝐻0: 𝛾𝛾0,1 = 𝛾𝛾0,2) 

- 0.004 - 0.003 

 

However, the bias is found if the total 𝛾𝛾0 (418) in both regimes is used to do the 

test. Table 9 reports the results for hypotheses (14) and (15) by using all (418) 𝛾𝛾0 in each 

regime to test hypotheses. Comparing Table 9 with Table 8, it is clear that there is a 

change in p-value for both models in hypothesis (14). The results indicate that the average 

of 𝛾𝛾0 in both models is insignificantly different from 0, which means there is not 

sufficient evidence to reject the null hypotheses (14) and (15). With the same samples, I 

re-check hypothesis (16). Both p-values are greater than 0.05 for the extended CAPM and 

the Fama and French three-factor model, which implies the null hypothesis of hypothesis 

(16) should not be rejected. Therefore, it can conclude that there is bias by using a 

different sample quantity to test hypotheses (16). It is clear that there is dramatic increase 

of sample means from Table 8 to Table 9, and the reason is because few samples are used 

for the test results presented in Table 8. 
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Table 9. The results for hypotheses (14) to (16) by using full quantity of 𝜸𝜸𝟎𝟎 

 CAPM FF3 

 Mean 𝑝𝑝 Mean 𝑝𝑝 

Hypothesis (14) 

(𝐻𝐻0: 𝛾𝛾0,1 = 0) 

0.1673 0.2591 0.2015 0.1568 

Hypothesis (15) 

(𝐻𝐻0: 𝛾𝛾0,2 = 0) 

0.3506 0.1293 0.3502 0.1073 

hypothesis (16) 

(𝐻𝐻0: 𝛾𝛾0,1 = 𝛾𝛾0,2) 

- 0.4218 - 0.5071 

 

Moreover, the relation between 𝛾𝛾1 and the market risk premium (𝛾𝛾𝑚𝑚) in different 

regimes will be tested before testing the asymmetric market risk premium between the 

average of 𝛾𝛾1 and the average of 𝛾𝛾2. As it is mentioned in Chapter 3, market risk premium 

(𝛾𝛾𝑚𝑚) that is estimated from time-series regression is defined as [E(𝑅𝑅𝑚𝑚)-𝑅𝑅𝑓𝑓]. The numbers 

in Table 10 are the estimated values of the market risk premium in the bull and bear 

markets and they are estimated from time-series regression. Therefore, the market risk 

premium is 0.8237% per month in the bull market and -2.2635% per month in the bear 

market.  

 

Table 10. Market premium percentage in each regime 

 Bull market (𝛾𝛾𝑚𝑚,1) Bear Market (𝛾𝛾𝑚𝑚,2) 

Market risk premium 0.8237  -2.2635 

 

Hypotheses (17) and (18) test whether the average of 𝛾𝛾1 in the bull market (𝛾𝛾1,1) is 

close to the value of the market risk premium in the bull market (𝛾𝛾𝑚𝑚,1), and whether the 

average of 𝛾𝛾1 in the bear market (𝛾𝛾1,2) is close to the market risk premium in the bear 

market (𝛾𝛾𝑚𝑚,2). Table 11 shows the results for hypotheses (17) and (18). According to the 

p-value of testing hypothesis (17) and (18), the null hypothesis for both models should 

not be rejected for both regimes. Therefore, it can conclude that the average of 𝛾𝛾1,1 is 

close to the 𝛾𝛾𝑚𝑚,1 and the average of 𝛾𝛾1,2 is close to the 𝛾𝛾𝑚𝑚,2. Also, compared with the 
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positive sample means of market risk premium in the bull market (𝛾𝛾1), the negative 

sample mean of the market risk premium indicates investors are willing to invest in a 

Treasury bill in the bear market in the extended CAPM and Fama and French three-factor 

model. 

Meanwhile, Table 11 reports the test results of asymmetric relation of 𝛾𝛾1 for 

different regimes. The results can prove whether an asymmetric market premium exists in 

different regimes on the U.S. stock market. According to the row related to hypothesis 

(19) in Table 11, it is clear to see that both p-values for the extended CAPM and the Fama 

and French three-factor model are smaller than 0.05. In other words, the null hypothesis 

of hypothesis (19) should be rejected, which indicates the existence of asymmetric market 

premiums for both models in the U.S. stock market during the sample period January 

1986 to October 2021.  

Because there are two other control factors in the Fama and French three-factor 

model, the asymmetry for 𝛾𝛾2 and 𝛾𝛾3 is also tested. The results are reported in Table 17. 

The p-value is greater than 0.05 in hypothesis (27), so there is no asymmetry for 𝛾𝛾2 

between the bear and bull market. Also, the result of testing hypothesis (28) related to 𝛾𝛾3 

indicates there is no significant difference between the bull and bear market. Overall, both 

null hypotheses (27) and (28) cannot be rejected, so no asymmetry exists for two other 

control factors in the extended Fama and French three-factor model. 
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Table 11. The results for hypotheses (17) to (19) and hypotheses (27) to (28) 

 CAPM FF3 

 Mean 𝑝𝑝 Mean 𝑝𝑝 

Hypothesis (17) 

(𝐻𝐻0：𝛾𝛾1,1 = 𝛾𝛾𝑚𝑚,1) 

0.3849 

(𝛾𝛾1,1) 

0.9730 0.4785 

             (𝛾𝛾1,1) 

0.9469 

Hypothesis (18) 

(𝐻𝐻0：𝛾𝛾1,2 = 𝛾𝛾𝑚𝑚,2) 

-1.3363 

(  𝛾𝛾1,2) 

0.9159   -1.2513 

(  𝛾𝛾1,2) 

0.9086 

Hypothesis (19) 

(𝐻𝐻0: 𝛾𝛾1,1 = 𝛾𝛾1,2) 

- 0.029 - 0.037 

Hypothesis (27) 

(𝐻𝐻0: 𝛾𝛾2,1 = 𝛾𝛾2,2) 

      -0.1494 

      (𝛾𝛾2,1) 

-0.5438 

 (𝛾𝛾2,2) 

0.6512 

Hypothesis (28) 

(𝐻𝐻0: 𝛾𝛾3,1 = 𝛾𝛾3,2) 

      -0.2131 

      (𝛾𝛾3,1) 

-0.0851 

  (𝛾𝛾3,1) 

0.8567 
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Chapter 5. Conclusion 
 

This thesis focuses on studying asymmetric systematic risk and risk premiums 

under a regime-switching model. I assume there are two essential regimes, bull and bear 

markets, in the U.S. stock market and use a sample of 597 firms that were traded on 

multiple U.S. stock exchanges during the period January 1986 to October 2021. Twelve 

major macroeconomic indicators are selected, and it is assumed that regimes follow a 

hidden Markov chain. Based on the macroeconomic strength estimation, the probability 

of a regime's transit from one to another can be estimated. This thesis aims at estimating 

each parameter, especially systematic risk and market risk premium, via hidden Markov 

model, and testing whether asymmetry exists for parameters between the bull and bear 

market.  

According to the results, the average market beta in a bull market is smaller than 

the average market beta in a bear market for both the CAPM and Fama and French three-

factor model. This phenomenon is consistent with the fact that the risk of the most stocks 

is generally lower than the overall market risk in the bull market. Moreover, there is no 

asymmetry for α in the extended CAPM and the Fama and French three-factor model 

when test asymmetric parameters by using time-series regression. However, there is 

asymmetric beta for both models.  I also check the other two control factors in the Fama 

and French three-factor model and find evidence that the asymmetric beta exists for SMB 

and HML. Furthermore, I check the asymmetric market risk premium by using cross-

sectional regression. The results show the existence of asymmetric market risk premium 

in the extended CAPM and the Fama and French three-factor model. I also check the 

asymmetric relation for the coefficient of SMB and HML in different regimes by using 

cross-sectional regression but do not find any asymmetric relation in either SMB or HML 

in the different regimes for the extended Fama and French three-factor model. 

The potential contributions of this thesis to the current literature are i) using the 

Hidden Markov Model (HMM) to test asymmetric beta and market risk premium for the 

CAPM and the Fama and French three-factor model, ii) providing more evidence to 

support the existence of asymmetric beta and market risk premiums on the U.S stock 

market. Early research on testing for asymmetry used GARCH models (Bekaert and Wu, 

2000; Vendrame et al., 2018), but there are relatively few studies that consider using the 
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HMM. Moreover, the current literature’s estimation of model parameters is more or less 

relying on linear regression, which assumes beta is constant over time (Jensen, 1972; 

Grauer and Janmaat, 2010). Therefore, one of the contributions of this thesis is to 

estimate time-varying beta by using HMM and test asymmetric beta as well as market 

risk premium for both the extended CAPM and Fama and French three-factor model.  

Meanwhile, some research focused more on testing asymmetric beta and market 

risk premium in the Asian stock market. For example, Bekaert and Wu (2000) studied the 

asymmetric volatility and risk in the Nikkei stock market and found conditional betas do 

not show significant asymmetries. Therefore, another contribution of this thesis to current 

literature is to provide evidence for asymmetric beta and market risk premiums on the 

U.S stock market. 
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