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Abstract

In open-ended surveys, participant answers that do not give any legitimate answer
or opinion to the question being asked are called no-opinion responses. We consider
the problem of detection of no-opinion answers in the CLSA dataset using a Machine
Learning approach. The CLSA dataset contains verbatim responses from over 51,000
participants to the question of what promotes healthy aging. Our foremost goal is to
clean the CLSA dataset to help foster the healthy aging study and pave a healthier
way forward for the future generations. This thesis investigates the performance of
existing state-of-the art approaches, using distance measures coupled with embed-
dings and Active Learning to cluster and classify no-opinion responses. Among the
unsupervised techniques we obtained the best performance using the BERT embed-
dings with Euclidean Distance. We also show that the Active Learning approach is
viable approach to identify no-opinion responses in a large survey, and in our experi-
ments the SVM base classifier had the best performance of 0.97 in the AUC score of
PR curve. Using this approach we identified 1157 instances of no-opinion responses
in the CLSA dataset.
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Chapter 1

Introduction

This chapter explains the thesis topic and why this thesis was built around a partic-
ular subject of concern. This chapter acquaints readers with the motivation of this
thesis, survey data and concludes with the research objectives of this study.

Surveys facilitate the collection of a wide variety of information. Researchers,
businesses and governments conduct surveys to understand and improve products
and to collect demographic data. Data collected through surveys are enormous and
often in a raw format, unstructured and unlabeled, making it difficult to process the
data. It is also tedious to manually skim through the data and remove noise.

Text similarity measures play an increasingly significant role in text-related re-
search and facilitate information retrieval, text classification, topic detection, ques-
tion answering, machine translation and text summarization [25]. These techniques
can help decipher various patterns or commonalities among the opinions given in the
survey.

In the age when amounts of data are growing faster, the demand for using Ma-
chine Learning ML techniques for processing and analyzing the data is also increas-
ing. Since not all data is valuable and cannot be easily combined, the demand for
solving this classification problem has become significant [35]. The main categories
of machine learning methods that can be applied are: supervised, semi-supervised,
or unsupervised.

The textual format is one of the most common types of data formats in real-
world industrial settings. Various prediction tasks have been applied to texts, such
as sentiment analysis, summarization and question answering. However, semantic
similarity measure is one of the most practical prediction tasks defined as measuring
and recognizing semantic relations between two texts. Semantic similarity between
sentences in NLP is a complex task as the meaning of words changes significantly with
the change in context. Semantic similarity has a wide range of applications in Natural

1
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Language Processing (NLP). For example, it is used to estimate the relatedness
between search engine queries and generated keywords for web advertising, it is used
in the biomedical field for analyzing gene clustering and gene expansion; and it is
also beneficial in information retrieval, text summarization and categorization.

Various methodologies can be used to calculate semantic similarity across mul-
tiple domains. Since the concept of calculating semantic similarities has a common
underlying conceptual foundation regardless of the domain, a methodology with a
robust algorithm that can accurately estimate semantic similarity while incorporat-
ing a variety of domain-specific predefined standard language measures is desirable.
To improve the existing algorithms that determine the closeness of implications of
the objects under comparison, it is clear that a domain-specific predefined standard
measure that readily describes the relatedness of the meanings in context is neces-
sary. If we use natural language to compare the natural language sentences, it would
be a recursive problem with no stopping condition. Hence, it is essential to have
some predefined measures.

1.1 Survey Data

Survey research is used to answer questions, solve problems posed or observed, assess
needs and set goals, establish baselines for comparisons, analyze trends across time,
describe what exists, in what amount and context. Kraemer [36] talks about three
distinctive characteristics of survey research:

• It is used to explain specific aspects of a given population quantitatively.

• The data required for research is subjective as it is collected from people.

• It uses a portion of the population and later generalizes the findings to the
population.

A survey is a simple data collection tool for carrying out survey research. Pinson-
neault and Kraemer [71] described a survey as a “means for collecting information
about the attributes, actions, or ideas of a large group of people.” Surveys can also
be used to evaluate needs and demands and examine the consequence [81].
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Since surveys can collect information from large samples of the population, they
are well suited for collecting demographic data that can explain the sample’s compo-
sition [56]. However, surveys are not suitable when it comes to an understanding of
the historical context of events. Surveys can also extract information about complex
attitudes using observational techniques. Nevertheless, biases might occur, either
from lack of response or from the nature and accuracy of the received responses.
However, it is essential to note that surveys only provide estimates for the actual
population, not exact measurements [81].

1.1.1 Types of Survey Questions

Open-ended survey questions can help collect many possible responses, and the partic-
ipants can give their thoughts, opinions or concerns about the question. Open-ended
questions make it possible to gather a varied range of informal answers from the
respondents. Open-ended questions also allow the researcher to explore ideas that
would not otherwise be aired and are helpful in seeking additional insights. They
are also helpful when researchers are unfamiliar with the subject area and cannot
provide specific answer options. Open-ended questions require more reflection and
thinking from the interviewee, so more time is needed to answer them. The results
obtained from open-ended questions are also more challenging to analyze. Finally,
it is more difficult to determine a single course of action from the broad responses
received to open-ended questions.

In contrast, closed-ended survey questions require the respondent to examine the
given choices and choose from a given set of responses. The choices form a continuum
of 2–7 responses, for example, Likert scales [49] and numerical ranges. These types
of questions are the easiest to answer and analyze. The other closed-ended questions
are:

• closed-ended question with ordered choices

• closed-ended questions with unordered choices

• partially closed-ended questions.



4

1.1.2 Data Collection and Storage

Traditionally, data was collected using paper-pencil or face-to-face. Advancement
and innovations of technology have opened up new possibilities for improving and
expanding survey capabilities and collection methods [10]. From face-to-face surveys
to telephonic surveys to online and email surveys, the world of survey data collection
has changed with time.

Face-to-face interviews are one of the oldest and widely used methods. It also
achieves the highest response rate (70%) since the participant is more committed
to participating [13]. They allow for in-depth data collection and thorough under-
standing. Along with responses, participant’s body language and facial expressions
are more clearly identified and understood, which is an added advantage. However,
face-to-face interviews can be expensive as they include time and travel. To overcome
this, organizations have started to collect data through telephones.

Since everyone has a telephone or cell/mobile phone, telephone interviews, also
known as CATI or Computer-Assisted Telephonic Interviews, can be used to reach
samples over a wide geographic area. One major disadvantage of this mode is that
the interviewee has the control to answer the call or not. Moreover, unlike a face-
to-face interview, interviewers cannot see body language. Furthermore, given the
relatively widespread aversion to telemarketers, participants may sometimes perceive
legitimate research interviews as sales calls and refuse to participate.

Figure 1.1: Survey data collection methods
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Web-based surveys have several benefits over conventional paper or face-to-face
methods. They are the most popular, accessible and inclusive form of the survey.
They allow a further reach, potentially including a global audience, but there is no
guarantee that the survey will be taken or completed, making it prone to errors and
leading to a low response rate. However, the data is captured in electronic format,
which facilitates faster and cheaper analysis.

There are various reasons for collecting data. A vast collection of data helps
researchers ensure and maintain the integrity of the research question while also
reducing the likelihood of errors in the results. Data collection is essential for re-
searchers to make informed decisions and support new ideas, changes or innovations.

The data collected in surveys fall under two categories: primary data and sec-
ondary data. Primary data is the raw data and is further divided into two segments:
qualitative and quantitative data. Quantitative data is any quantifiable information,
therefore numbers or categories. It is used to answer “How many?” or “How much?”
questions. Moreover, it is usually used for mathematical calculations or statistical
analysis, which helps obtain helpful information represented in graphs or charts. In
contrast, qualitative data is non-quantifiable, descriptive, and regards phenomena
that can be observed but not measured, such as languages, feelings or emotions.

On the other hand, Secondary Data is the second-hand data that already exist;
for example, already published books, journals or portals. The use of primary data
and secondary data depends on nature, scope and area of research.

1.2 No-Opinion Responses

Surveys are used in a wide range of disciplines. In general, they are directed at
collecting participant’s opinions on a given issue. The primary goal of public opinion
research is the description of opinions held by a population. While surveys offer an
efficient and effective means of gathering large amounts of data in a relatively short
period, they come with some disadvantages. Surveys can be characterized by low
response rates, which may have a biasing effect on information gathered. From the
perspective of conversational norms, the mere fact that a person is asked a question
presupposes that they can answer it. Thus, responding that one has no opinion is an
illegitimate answer to an opinion question [22]. The problem of no-opinion response
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arises when participants do not provide an answer for a question in the survey. When
the surveyor asks participants about their opinions, they usually presume that their
answers reflect some information. However, when participants respond that they
have no knowledge or no-opinion or don’t know how they feel about it, we call such
responses as no-opinions or no-responses since we do not have an actually usable
response from the participant.

No-opinion responses lead to missing data which produces less valid data and esti-
mates. While also making it difficult to use standard statistical techniques conceived
to deal with complete data and bias due to systematic differences. For automated
tasks such as clustering and toping modelling, no-opinion responses are a source of
noise. However, it is challenging, time-consuming, error-prone and subjective to re-
move no-opinion responses manually for automated methods. It would be beneficial
to use machine learning methods to overcome these drawbacks and challenges. More-
over, the CLSA dataset consists of over 40,000 responses, making it difficult to clean
the data manually. Furthermore, in the previous analysis, a number of no-opinion
responses were observed in the dataset.

1.3 Research Objectives

Understanding the factors involved in healthy aging is essential to pave a healthier
way forward for our future generations. The CLSA dataset contains potential ways
to age healthier and needs future processing to identify the various themes present.
The dataset is substantial enough to make manual processing to remove no-opinion
responses unfeasible.

Determining the similarity between sentences is one of the crucial tasks in NLP
and has a broad impact in many text-related research fields. A similarity measure
assigns a ranking score between a query and texts in a corpus in information retrieval,
and this is one of a few examples of sentence semantic similarity application [66].

Computing sentence similarity is not a trivial task due to the variability of ex-
pression in natural language. Techniques for detecting similarity between long texts
(documents) focus on analyzing shared words, but word co-occurrence may be rare
or even null in short texts. That is why sentence semantic similarities incorporate
the syntactic and semantic information extracted at the sentence level. However,
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techniques for detecting similarity between long texts must still be considered be-
cause their adaptation can be used to compute sentence similarity as same principles
and techniques, or modified versions can solve the problem with short sentences.

The primary goals for this thesis are outlined below:

• Given the problem of open-ended surveys and sentence similarity, we would
like to find a solution to detect no-opinion responses in the CLSA dataset.

• Various Machine Learning approaches can be used to solve the problem of
no-opinion responses. In this thesis, existing state-of-the-art approaches of
sentence similarity have been evaluated and compared.

The ultimate goal of this research is to provide the CLSA with a clean dataset
that can help foster text study; thus, some of the experiments presented in this thesis
will be applied to the real-life dataset where the genuine issue of no-opinion responses
was tried to be resolved.

1.4 Thesis Overview

All the research exposed in this thesis is just a small set of the literature’s methods,
architectures, and models. All of them offer different features and can be used in
specific ways in the NLP context.

With this amount of techniques for the similarity between texts, an analysis and
a comparison are needed, and a study of the strengths and weaknesses of the different
approaches to extract a set of conclusions to guide the method selected in projects
that work with text similarity.

This thesis is organized in 5 chapters, where this is the first and the remainder
of this thesis is organized as follows:

• Chapter 2 describes the algorithms and models used and the related research
work.

• Chapter 3 provides an overview of CLSA and its dataset. It explains the data
pre-processing step. Further, it discusses the methodology used to conduct the
experiments in our research.
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• Chapter 4 discusses the experimental setup used to compare the performance
of each model. The results are profoundly studied to distinguish which model
yields the best result.

• Chapter 5 concludes by summarizing the thesis and proposing directions for
potential future work.



Chapter 2

Background and Related Work

This chapter discusses the background and related work in the field of Ageing, No-
Opinion Responses, Machine Learning, and Active Learning.

2.1 Previous Work Related to the CLSA Project

Intensive research and studies have been done on baseline data provided by CLSA to
find factors that can improve our understanding of healthy ageing. Similar research
was also conducted in the past on the CSHA dataset, which focused on people having
dementia and how it affects the caregivers. It also included Alzheimer’s disease and
other health topics.

Definition of “Healthy Aging” keeps changing from person to person. Factors such
as sex, household income, ethnicity and education, affect a person’s understanding
of healthy ageing. Data collected by CLSA is analyzed to find how older Canadian
adults from different ethnic groups define ageing by Shooshtari et al. [88]. After ana-
lyzing the responses of 21,241 Canadians aged between 45–85, it was found that the
most common themes in all ethnocultural groups were related to “lifestyle”, “phys-
ical activity”, and “attitude”. Impact of exercise on the older Canadian population
have also been investigated in a study [29]. The study examines 6,297 community-
dwelling elderly Canadians. Findings from this study suggested that people who
exercised daily were younger and fitter when compared to people who did little or no
exercise. It was also found that a high level of physical activity reduced the risk of
death and improved health status in the elderly population. Finally, it can be con-
cluded that lifestyle is related to themes like smoking habit and alcohol intake [80].

9
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2.2 Previous Work on Detecting No-Opinion Responses

In survey-based research, careless, no-answer, or no-opinion responses are a concern.
Researchers need to go through the data to screen out such responses. Such responses
can reduce internal consistency, reliability and potentially result in erroneous results.
A clean dataset is highly desirable in survey-based researche, and data is commonly
screened to remove inappropriate responses.

In literature, “no-opinion” responses have been studied for a long time [38]. To
include no-option in a response scale has been a debatable issue [70, 48, 5, 72]. A
persistent option to deal with such responses has been to ignore them or omit subjects
from the study, i.e., listwise and pairwise deletion. Implementing a prompt response
to no-opinion responses has also proved to be beneficial in reducing non-meaningful
responses. Methodological strategies to minimize non-meaningful responses (e.g.
probing) are also recommended, and a few have been tested for their impact [39, 12].
Alternatively, algorithms and data augmentation techniques have also been used.
Imputation methods have been used to handle missing data to fill in such responses to
complete the dataset for further analysis so that information from the value elicitation
question is not lost [78, 50].

A probabilistic framework for treating “no-opinion” responses was proposed by
Manisera and Zuccolotto [53]. They considered them as a valid response and defined
a framework to exploit the information contained in those responses. The proposed
model replaces a few no-opinion responses with a substantive response by firstly
deleting all the no-opinion responses and the themes including them and then adjust
the uncertainty parameters’ estimates.

Another approach compares a methodological strategy to three standard analytic
practices to prevent no-opinion responses, proposed by Denman et al. [14]. The
methodological strategy gives participants who respond with no-opinion a prompt.
The analytic practices excluded no-opinion responses from analyses, considered no-
opinion as neutral values on the Likert scale, and replaced no-opinions with computed
item level mean. The results suggested that prompt, reassuring participants that
their opinion is solicited and giving them a second chance to consider their response
is a superior method for managing no-opinion responses than analytical treatments.
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Most of the study has been conducted on detecting no-opinion responses in close-
ended surveys, even though open-ended surveys suffer from a higher rate of no-
opinion response [59]. They also have a high cost in analyzing responses. Regardless,
it would be easier to design automated surveys to mitigate the problem of no-opinion
detection in open-ended surveys. However, in open-ended surveys, brief responses are
typically sparse and respondents produce different responses and generate frequent or
infrequent mentions of topics that can have different importance to the respondents,
thus making automatic detection of no-opinion responses difficult.

As discussed in Section 1.2, no-opinion responses make the data and estimates
less valid. Though substantial work has been done to detect no-opinion responses, it
primarily deals with close-ended surveys. In literature, Machine Learning algorithms
such as Expectation-Maximization have been used to filter out and reduce the num-
ber of no-opinion responses in close-ended surveys. However, the use of Machine
Learning algorithms and techniques in open-ended surveys is limited to analyzing
and identifying the context and themes in the responses collected. To the best of our
knowledge, no prior work utilizing ML algorithms has been done to detect no-opinion
responses in open-ended surveys and this is the first of its kind research.

2.3 Machine Learning Methods for Text Similarity

Machine Learning is a broad subfield of artificial intelligence and has been around
since the 1950s. It involves developing algorithms and techniques which allow com-
puters to learn. In earlier days, symbolic data was used, and algorithm design was
based on logic [94]. Artificial neural network learning came after 1986 when authors
proposed the non-linear back-propagation algorithm [55]. The capacity of ML to
learn from experience, analytical observation, and other means result in a system
continuously improving itself, increasing efficiency.

Machine learning has become one of the backbones of information technology
in the past two decades, thus an essential but hidden part of our lives. However,
individuals and corporations’ increasing amount of data generated (and stored) daily
demands an intelligent analysis. It is here where machine learning comes to the
stage as a necessary ingredient for technological progress [92]. It has a wide range
of applications such as medical diagnosis [46], bio-informatics [19], detecting credit
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card fraud, classifying DNA sequences [23], speech and handwriting recognition [4],
object recognition in computer vision [17], and robot locomotion.

Some data is provided to the learner, which is divided into training and test sets.
The training set consists of a set of input points in multi-dimensional space. The
goal is to map from the input points to the labels corresponding to some interest
categories in some domain. The testing set is a set of examples that are used to
assess the performance of the learner. Learning is about generalization. There are
two types of learning called Inductive Learning and Transductive Learning [105].
In Inductive Learning, the task is to build a good classifier on the training set to
generalize any unseen data. The test set is unknown at the time of training. However,
in Transductive Learning, the learner knows the test set at the time of training and
therefore only needs to build a good classifier that generalizes to this known test set.

Figure 2.1: Inductive and Transductive learning

There are three techniques in machine learning for learning a concept from data.
They are:

• Supervised Learning
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• Unsupervised Learning

• Semi-Supervised Learning

In Supervised Learning, the training set consists of only labeled data. The goal is
to learn a function that can generalize well on unseen data. The approach is called
supervised because desired labels are given to the learner. Whereas in Unsupervised
Learning, examples are presented to the system as observations without any label.
There is no prior output. It uses methods that try to find the patterns of the data.
The learner discovers patterns by itself. All the training data is labeled in supervised
learning, and in unsupervised learning, none is labeled. However, in Semi-Supervised
Learning, both labeled and unlabeled data are used. In contrast to labeled data, often
expensive and time-consuming to gather, unlabeled data is usually easier to collect.
So, it is common in semi-supervised learning to have a small amount of labeled data
with a large amount of unlabeled data. Therefore, semi-supervised learning tries to
find a better classifier from both labeled and unlabeled data.

Traditionally, in ML, it is assumed that the data is available. However, it is
time-consuming and costly to gather the necessary data for training a classifier to a
reasonable level of performance. In actuality, it is often the case that a small amount
of labeled data is available and that more unlabeled data could be labeled on demand
at a cost. If a process obtains the labeled data outside of the learner’s control, then
the learner is passive, which is called passive learning. If the learner picks the data
to be labeled, then this becomes Active Learning (AL). AL has the advantage of
picking data to gain specific information to speed up the learning process.

2.3.1 Embeddings

The order of the characters, size or the word root, is used to measure the similarity
between words. However, when two texts are being compared, a specific representa-
tion of them is required to adequate tasks for a computer and not explode in terms
of complexity.

A numerical-vector representation of texts is a good idea and is justified because:

• Computers work with the binary system at the bottom, but it can be said that
a computer works with numbers by abstraction.
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• The memory of computers can be seen as the primary vector.

An embedding is a low-dimensional continuous vector representation of a discrete
variable, usually at a high-dimensional level. It acts as a mapper that represents
variables in a transformed space. One of the most powerful features of embeddings
is that they can be learned once and reused in other contexts, working similarly to
a language model.

Figure 2.2: List of some Embeddings

With the publication of word2vec [57] in 2013, embeddings, and more concretely
the neural network embeddings, suffered a significant advance due to the state-of-the-
art performance of the vectors introduced. Later, other neural network embeddings
were also introduced, creating a set of architectures, models and techniques that
efficiently represent texts. These representations are fascinating in terms of text
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comparison tasks. Some examples are GloVe, by Pennington et al. [69] in 2014
and fastText by Bojanowski et al. [6] in 2016. In 2014 doc2vec was introduced
by Le and Mikolov [44], a natural extension of word2vec in order to use the same
architecture, but for entire document instead of producing embeddings just for words.
These models produce a vector for each word, representing vector (an embedding),
the semantic and syntactic cached by the model. The efficiency reached by these
embeddings in training time with large datasets, and the obtained quality described
by the authors, motivate the emergence of new similarity measures.

The embeddings available in the literature can be grouped, as general as possi-
ble as follows: Machine Learning (ML) Embeddings, which use ML techniques to
produce vectors; and non-Machine Learning Embeddings, which collect a large set
of approaches. For non-ML Embeddings, the most popular and easy-to-understand
model is Bag of Words (BOW), which provides vectors that count the apparitions of
words in a text.

The ML Embeddings group is divided into non-context sensitive and context-
sensitive techniques, depending on the possibilities that these provide to understand
the context when learning vectors representing texts.

Other machine learning approaches like encoders have been intensively explored,
for example, InferSent [9] that embed sentences using Bi-direction LSTMs, or the
Universal Sentence Encoder [8] that runs on a Deep Averaging Network. Such options
and other possibilities have been discarded because they focus on small-size texts or
exceed this project’s scope.

Embedding word2vec

The embedding word2vec (w2v), introduced by Mikolov et al. [58] from Google, is
the name for two different techniques that create word embeddings. Before introduc-
ing w2v in 2013, the two mainly used approaches to create word embeddings were
the Feedforward Neural Network (FNN) and the Recurrent Neural Network (RNN),
which are hard to train in terms of complexity. The authors analyzed both and
concluded that most of the complexity is caused by the non-linear hidden layer.

The new approaches follow the idea introduced by Mikolov et al., which consists
of training network language models in two steps:
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• Learning word vectors using a simple model.

• Training N-gram Neural Network Language Models (NNLM) on the top of the
representation of words.

As this is the most attractive aspect of neural networks, the authors propose
simpler models that cannot represent data like FNNs and RNNs but can be trained
on much more efficiently. The log-linear model architectures introduced are the
Continuous Bad-Of-Words Model (CBOW) and the Continuous Skip-gram Model
(CSG); both models follow the same idea of predicting words based on other words.

Figure 2.3: CBOW word2vec Model

The CBOW model predicts a current word based on the context (a given window
of words around the one to be predicted). All the input words share a projection
layer W, shown in the Figure 2.3, being projected in the same position, making an
average of their vectors. As all the vectors are averaged, the position of the context
words does not influence them. For the output, a softmax is applied.

For this case, the authors found that the best context window seems to be four
history words and four future words, i.e., four previous and four following words from
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the word to be predicted.
In contrast, the CSG model predicts the context for a current word, i.e., the

architecture tries to predict a window of words around a known word. In Figure 2.4,
it can be seen that the architecture consists of an input layer, one-hot encoder, a
hidden layer that represents the input word vector using the input weights, and the
output context vectors. Each output vector has softmax applied.

Figure 2.4: CSG word2vec Model

The authors found that for the CSG model, the window size increases, the quality
of the resulting vectors increases too, but so does the complexity. Since the relation
of the words inside the window tends to be lesser when the distance from the middle
word increase, the model weights all the words accordingly during the training.

The w2v methods established a new approach in the word vectors creation. On
the original paper, the authors conclude that both models outperform in many cases
the previous stat-of-the-art models, being syntactically more advanced the CBOW
model, and semantically more advanced the CSG model.

The authors found that less-dimension vectors, 300 for example, trained in more
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data, can catch more accuracy than high-dimension vectors trained in fewer data.
They also found that the training on twice the data during one epoch achieves better
results than iterating over the same data during three epochs, making these models
interesting to be trained on large amounts of data.

As an example of the power of w2v models, Mikolov et al. show that w2v vectors
learn recoverable relationships. An example, performing a subtraction of two vectors
and adding the result to another word vector, is:

vec(“New Delhi”) − vec(“India”) + vec(“Canada”) = vec(“Ottawa”)

Embedding doc2vec

The doc2vec(d2v), embeddings were introduced by Le and Mikolov from Google [44].
It is also known as Paragraph Vector, and it extends w2v models to use the same
base algorithm to learn document vectors and make the predictions more accurate
using their information.

As in w2v models, the proposed d2v models map every word to a unique vector,
a column in a matrix W, but they also map every sentence or large text to another
unique vector, a column in a matrix D. In d2v, the hidden layer is computed by
averaging the matrices W and D instead of only the matrix W, as in w2v.

To trace and extend the w2v models, the authors present two d2v models: the Dis-
tributed Memory Model of Paragraph Vectors (PV-DM), which is based on CBOW,
and the Distributed Bag of Words Paragraph Vector (PV-DBOW), which is based
on Continuous Skip-gram Model.

Using the proposed models in Sentiment Analysis and Information Retrieval
tasks, the authors found that both outperformed in error rate, all the baselines
compared. PV-DBOW performs worse than PV-DM due to its inherited complexi-
ties, but the authors suggest combining both, which obtains better results than in a
separated usage. A range from 5 to 12 is proposed for the window size.

The complexity of doc2vec can be expected to be the same as for word2vec as it is
all reduced to vectors, and the work process is the same as for word2vec but with an
extra vector. Moreover, the training might be slightly worse due to the non-fixed-size
text processing.
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2.3.2 Cosine Similarity

Cosine Similarity (CS) measures the similarity between two vectors. It is the cosine of
the angle between two non-zero vectors in a multi-dimensional space and determines
whether two vectors are similar or not. If the cosine angle is small, the cosine
similarity is higher and vice versa. It is used to measure the similarity between
documents or texts, irrespective of their size, for analysis. Cosine similarity can be
beneficial even if the two documents or texts are far apart by Euclidean Distance. A
sentence can be represented in vectors by recording the frequency of words or phrases.
These are referred to as “term-frequency vectors.” Term-frequency vectors are long
and sparse, containing many 0 values. These are used for information retrieval, gene
feature mapping and biological taxonomy.

Cosine measure lies between the ranges of −1 and 1. −1 means that vectors
are exactly opposite, 1 means that the vectors are similar and 0 indicates that the
vectors are orthogonal. Other possible values within this range indicate similarity or
dissimilarity. However, in text comparison, all components of the vectors are usually
positive, i.e., they are in the first quadrant, and the cosine values are between 0 and
1, 0 meaning orthogonal or very dissimilar, and 1 and close to 1 very similar.

CS has a low-complexity of O(n), where n is the vector dimensionality. In sparse
vector space, only non-zero dimensions are considered to speed up the computation.

Given two non-zero vectors, A and B, the cosine between them can be derived
from the Euclidean dot product:

A ·B = ||A|| · ||B|| · cos θ (2.1)

that is,
cos θ = A ·B

||A|| · ||B||
. (2.2)

Therefore,
cos θ =

∑n
i=1 Ai ·Bi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(2.3)

where Ai and Bi are components of vectors A and B. Thus, the similarity between
two non-zero vectors A and B is the cosine of the angle between them:

sim(A,B) = cos θA,B (2.4)
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Cosine similarity measure has been popularly used in text classification, speaker
verification and information retrieval. The performance of the cosine similarity mea-
sure has been investigated for the task of Arabic text classification by Al-Anzi et al. [2].
Further, the experiments showed that the performance of the cosine similarity mea-
sure is comparable to that of SVM and KNN. Cosine Similarity measure along with
tf-idf has also been used to evaluate the similarity in documents by Lahitani et al. [41].
The experiments were performed to determine the similarity level in Indonesian es-
say assessments. Results were sorted based on similarity levels of the documents to
that of an expert’s document, and it was established that the simplicity of the cosine
similarity measure accelerates essay category correction.

Due to the popularity and simplicity of cosine similarity, it is also used along
with Neural Networks [102]. Using Cosine measure with neural network structure
for information retrieval and ranking the documents. Further, the results pointed to
the improved retrieval performance of NN when coupled with cosine similarity.

Cosine similarity is also used for the task of speaker verification. Shum et al. [89]
utilized the speed and convenience of the cosine similarity metric to develop an
unsupervised algorithm. The algorithm takes advantage of the simplicity of cosine
similarity scoring and achieves state-of-the-art results, and tackles the problem of
unsupervised speaker adaptation.

Cosine Similarity has been also extended as Soft Cosine Similarity (SCS). SCS
was introduced by Sidorov et al. [90] in 2014. The objects are represented as vector
values of features in the Vector Space Model (VSM), and each feature corresponds to
a dimension in the VSM. In traditional CS, there is no relation between the features.
SCS is a generalized form of the (Hard) Cosine Similarity.

2.3.3 Word Mover’s Distance

The Word Mover’s Distance (WMD) is a distance measure derived from the Earth
Mover’s Distance, also known as the Wasserstein metric [40]. WMD was introduced
by Kusner et al. in 2015. It is a distance function between text documents and
it works with any feature vectors. Moreover, for the specific use in NLP, WMD
tries to consider the relation or distance between individual words when comparing
text documents. This measure uses the property of word embeddings to preserve
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the semantic relations in vector operations. WMD represents text documents as
weighted point clouds of embedded words. It measures the distance between two
documents as the minimum cumulative distance that words from document A need
to travel to match document B. Specifically, WMD reduces the problem of distance
to the problem of transportation.

Figure 2.5: Illustration of the WMD for the sentences “The President is having
dinner in Jakarta” and “The Prime Minister eats lunch in Sydney”.

To measure the distance between two text documents, it is required:

• A word embedding matrix X ∈ Rd×n for a finite size vocabulary of n words.

• Texts represented as Normalized Bag of Words (nBOW) vectors d ∈ Rn.

The transportation problem for documents d and d′ is formulated as follow:

min
T≥0

n∑
i,j=1

Tijc(i, j) (2.5)

subject to,

∑n
j=1 Tij = di ∀i ∈ {1, . . . , n}

and,

∑n
i=1 Tij = dj ∀j ∈ {1, . . . , n}.

In the above formula, c(i, j) factor is the similarity between the words, i.e, simi-
larity between the word embeddings of the words i and j. That similarity is measured
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with the Euclidean distance and represents the cost associated with traveling from
one word to another:

c(i, j) = ‖xi − xj‖2 (2.6)

The WMD calculates the cost of transporting the words from one document to
another. The flow matrix T ∈ R(n×n) represents the cost of travelling from a word
to the rest to calculate the distance.

The two restrictions in WMD ensure that all the flow is equal to di, i.e., the word
count in the document and that the flow is bidirectional.

Though WMD is powerful, it has a high time complexity. The authors proposed
a relaxed version of the Word Mover’s Distance (RWMD) apart from WMD. The
difference from WMD lies in the elimination of one of the two constraints [40].

WMD has been used for document similarity, topic modelling and knowledge
retrieval. Tashu and Tomas [95] proposed a method for Automatic Essay Evaluation
(AEE) using WMD. The proposed method measures the distance between individual
words from the reference solution and a student’s answer. It uses the skip-gram model
of word2vec to obtain word embedding.

Nasir et al. [63] proposed a model that uses WMD to capture different features of
linguistic coordination in dynamic conversations potentially. The proposed method
is also helpful in capturing interpersonal behavioural information.

Various methods have been proposed that extend WMD. A method that extends
WMD to character 3-gram embedding, proposed by Oguni et al. [65]. This method
enables character 3-gram Mover’s Distance to be utilized. WMD is unsupervised,
and its uses are not limited to any of the tasks.

Deudon [15] proposed an algorithm that incorporated supervision into the WMD
and hence, can be used in tasks such as news article classification based on senti-
ments or topics. The Variational Siamese Network extends WMD for continuous
representation of sentences. The proposed extended model performed strongly on
the Quora question pair dataset and proved effective on question-retrieval in the
knowledge database.

Huang et al. [28] proposed an efficient technique that uses WMD to learn a su-
pervised metric. This metric is called Supervised Word Mover’s Distance (S-WMD).

Wu and Li [103] present an approach called Topic Mover’s Distance (TMD) for
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documents inspired by WMD. TMD considers that the documents are composed of
predefined topics, and a cluster of words denotes these topics. These clusters are
then expanded in vector space. TMD measures how far topics need to travel from
one document to another.

2.3.4 BERT

One year after the introduction of transformer architecture, a significant break-
through in performance was made by the natural language representation model
BERT, Bidirectional Encoder Representations from Transformers. Devlin et al. [16]
extended Transfer Learning and Transformer techniques to create this model to pre-
train word representations bidirectionally to get a better understanding of the impact
how all words have on the context. It is well known that a word’s placement at differ-
ent position in the sentence changes its POS tagging. BERT was trained on general
English corpus and fine-tuned on NLP tasks like next sentence prediction and Masked
Language Modelling (MLM) [47]. BERT can be fine-tuned with an additional output
layer to achieve state-of-the-art results on a wide range of tasks.

BERT is published in two sizes, BERT-Base and BERT-Large. BERT-Base has
110 million parameters, and large has 340 million parameters. Due to the consid-
erable memory requirements and size, these models require specialized hardware for
training. BERT-Large is built up with 16 attention heads and 24 encoder layers. In
contrast, BERT-Base has 12 attention heads and 12 encoder layers. The two models
use different hidden space sizes, where the BERT-Larger model has 1024 dimensions,
and the BERT-Base model has 768 dimensions.

Transformers used by BERT ensure to give attention to words or phrases which
are more important than others. The absence of such words or phrases could increase
the sentence’s ambiguity and is used as a hallmark of the phrase by BERT to de-
termine a word’s importance. Transformers look at the target word and understand
the context of all the other words related to the original word. The target word can
be focused, and the related phrases can be linked using the transformers’ attention
mechanism. It also takes care of the polysemous words by allocating weights to the
words related to the target word. Every related word is given a weight based on
the meaning they add to the target word. A sentence describing the word “bank”
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will be associated with the term “river”, making it straightforward for the model to
understand that it deals with nature and not the financial institution.

BERT uses MLM to ensure that the entire focus is not on the target word and
creates no imbalance. MLM randomly masks a word and tries to predict the hidden
word. Textual entailment or next sentence prediction is a training process that
involves the pairing of sentences. The pairs can be right or wrong. For training,
the model identifies the pairs if they are right or wrong, based on which the model
gets a prediction score. Training the model helps BERT understand the context
at the sentence level and is beneficial for Natural Language Inferencing. BERT
stores information about a sentence in a unique token represented as [CLS], called a
classification token.
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Figure 2.6: Transformer model architecture. [98]

The architecture of BERT is shown in the Figure 2.6. Both the encoder and the
decoder have three Multi-Head Attention layers. The attention is defined as follow:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.7)

where Q is the query matrix; K is the key matrix; V is the value matrix from the
attention input. Dot-product attention may have different normalization scale. The
above equation uses the square root of key dimensions as the scale to normalize
the compatibility/alignment score. This operation consists in the softmax-value of
the normalized dot product of queries and keys. The Multi-Head Attention is the
concatenation of different attention layers.
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Since the release of BERT, several variants and extensions based on BERT have
been proposed. RoBERTa [51] is an extension of BERT which tries to improve
BERT model training. Another modification of BERT is ALBERT [42] which tries
to compress the size of BERT and, at the same time, outperforms BERT. XLNet [104]
is another BERT-like model that adopts a generalized auto-regressive pre-training
method.

A BERT-based technique, BAE (BERT-based Adversarial Examples), for replac-
ing words to fit the English language’s overall context better, was proposed by Garg
and Ramakrishnan [24]. In addition to replacing words, BAE also inserted new
tokens in the sentence to improve its strength.

tBERT, an architecture for semantic similarity detection, which incorporates
Topic Models and BERT and works better prominently on domain-specific cases
was introduced by Peinelt et al. [68].

RecoBERT is a model build upon BERT for self-supervised pre-training of a
catalogue-based language model [52]. In RecoBERT, the BERT model is adapted
for a textual-based recommendation. It achieves self-supervision by utilizing a com-
bination of MLM along with a title-description model.

Another model, Sentence-BERT (SBERT) [75], is a modification of BERT that
uses Siamese and Triplet network structures to derive semantically meaningful sen-
tence embeddings, which can be compared using cosine-similarity.

Mutinda et al. [62] used a BERT-based approach to capture the semantic similar-
ity between texts on Japanese clinical datasets. They compared the clinical BERT
model, pretrained on Japanese clinical text, and general Japanese BERT model, pre-
trained on Japanese Wikipedia texts. Unexpectedly, general Japanese BERT, which
was pretrained on a wide range of texts, outperformed the clinical Japanese BERT
on clinical dataset.

2.3.5 Hierarchical Clustering

Clustering methods partition objects into groups so that the objects in one group
are similar and dissimilar from those in other groups. These objects are usually
represented by multi-dimensional variables, known as features or attributes.

Hierarchical clustering algorithms build a hierarchy of clusters [30]. It starts with
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some initial clusters and gradually converges to one cluster. Hierarchical clustering
has two categories: agglomerative and divisive. The agglomerative approach takes
each data point as an individual cluster and iteratively merges the clusters until a
final cluster containing all data points is formed. It is also called the bottom-up
approach based on how it merges the clusters. Divisive clustering is the opposite of
agglomerative clustering and follows the top-down flow, which starts from a single
cluster having all data points and iteratively splits the cluster into smaller ones until
each cluster contains one data point.

Agglomerative hierarchical clustering on a set of n data points begins with a
symmetric n× n distance matrix consisting of pair-wise distances between the data
points, and the following steps of the clustering algorithm are followed:

1. The algorithm begins by assigning each data point to a separate cluster to
obtain n clusters, each containing one data point.

2. To find the closest pair of clusters, it computes the similarity (distance) between
them.

3. Similar clusters are merged to form a cluster according to the distance function.

4. Steps 2 and 3 are repeated until all data points are merged into one last cluster.

In addition to measuring the distance between individual data points, a method to
compute the distance between clusters in Step 2 is also needed to merge the two most
similar clusters. Such a method is referred to as linkage. Let X1, X2, X3, ..., Xm be
the observations from cluster u and Y1, Y2, Y3, .., Yn be the observations from cluster
v. And d(X, Y ) denotes the distance between vector X and vector Y . Then, the
distance between u and v can be calculated using four linkage methods:

1. Single linkage (min)
du,v = min

i,j
d(Xi, Yj)

Single linkage means the distance between two clusters is the minimum distance
between one point of the first cluster and another point of the second cluster.
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2. Average linkage

du,v = 1
kl

k∑
i=1

l∑
j=1

d(Xi, Yj)

Average linkage calculates the distance of all data points from the first cluster
with all others from the second cluster and takes the average distance as the
distance between the clusters.

3. Complete linkage
du,v = max

i,j
d(Xi, Yj)

Complete linkage takes a maximum distance of two data points value as the
distance between two clusters.

4. Ward (max) linkage

du,v = E(u, v)− [E(u) + E(v)]

where,
E(u) =

u∑
i=1
|ui −

1
u

u∑
j=1

xj|2

Ward is similar to average linkage except that it uses the error sum of squares,
E, to calculate the distance between the points [101].



29

Figure 2.7: An example of dendrogram representing the clustering technique of hi-
erarchical clustering algorithm.

A hierarchical clustering result can be visualized as a dendrogram, where inner
nodes represent nested clusters with varying numbers of objects belonging to each
cluster. In other words, a dendrogram hierarchically organizes clusters to provide a
helpful summary of the data. The hierarchical clustering algorithm provides minimal
guidance towards choosing the optimal number of clusters or the level at which to cut
the dendrogram. Different decisions about dissimilarities and the cluster structure
of interest can often lead to vastly different dendrograms. The Figure 2.7 displays a
dendrogram representing a hierarchy of clusters, and how hierarchical clustering cut
out the k clusters from the final cluster (complete tree).

2.4 Active Learning

The success or failure of supervised learning systems is largely determined by the
training datasets used to train them. It is challenging to build a quality classifier
without a good training dataset. Generating labeled examples for training a classifier
is typically time-consuming and expensive as it involves experts to label the data.
Fortunately, this is not an insurmountable problem. Active learning is a machine
learning technique that can help reduce labelling efforts.

Active learning (AL) is an area of interest in machine learning, also referred to
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as Query Learning or Optimal Experimental Design in statistics. AL is an iterative
learning process that can build high-performance classifiers or label datasets from
a larger unlabeled dataset. It strives to make learning algorithms more reliable
with fewer annotations [85]. The fundamental assumption is that the algorithm can
deliver comparable accuracies or performances with less training data if the training
instances are informative, and hence the learning effort required is short and sweet.
On the other hand, supervised learning requires hundreds and thousands of labeled
instances to train the algorithms. Active learning first garnered serious research
attention in the 1980s [3] and has remained a vibrant research area. Active learning
is widely used in situations with vast amounts of unlabeled data, for example, image
retrieval, natural language processing and text classification or where labeled training
examples are expensive or time-consuming to obtain.

Active learning algorithms try to detect the most informative examples in the
instance space X and ask the user to label only them. The examples that are chosen
for labeling are called queries.

A typical semi-supervised algorithm proceeds as follows: First, it uses the base
learner and a small labeled dataset, L, to learn an initial hypothesis, h. Then h is
applied to the unlabeled examples in U , and some or all of these examples, together
with the labels predicted by h, are added to L. Finally, the entire process is repeated
for a number of iterations.

2.4.1 Existing Active Learning Approaches

There are three primary forms of active learning literature considered in this section:
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Figure 2.8: Illustration of three main active learning approaches

• Membership queries

• Stream-based

• Pool-based

Membership Queries

In AL with membership queries, the learner requests labels of examples in the input
space, including ones the learner generates anew, from the oracle. This approach
was initially involved in learning to identify an unknown concept drawn from a
finite hypothesis space. Information about the unknown concept was gathered using
queries. The main advantage of active learning with membership queries is that it
can work in situations when unlabeled data is unavailable. This approach is almost
impossible for text classification because the algorithm’s documents are implausible
examples with no meaningful contents.

Stream-Based Active Learning

In stream-based AL, queries are based on filtering a stream of unlabeled examples.
The learner is given a stream of unlabeled examples, and it chooses whether or not
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to ask the oracle for the labels of the examples. The advantages of stream-based
active learning are that it can deal with complex and noisy data and can be used in
dynamic and online learning scenarios. Sculley [84] investigated using a stream-based
active learning method for spam filtering where the filter was exposed to a stream of
messages. Stream-based approaches have the disadvantage that the learner cannot
access all unlabeled examples when selecting the most informative examples.

Pool-Based Active Learning

The pool-based approach of AL is the most common for text classification since an
extensive collection of text is available. In the pool-based approach, the learner has
access to a large pool of unlabeled examples. Although it is one of the most common
forms of AL, it cannot efficiently deal in a dynamically changing online environment.

A small set of examples, L labeled by an oracle, is used to initialize a selection
strategy. The selection strategy assigns value to each example in the unlabeled pool,
indicating how informative the example is and giving the most informative examples
to the oracle for labelling. A batch size, b, determines the number of examples to be
selected in each iteration. Although a smaller batch size leads to a sharper increase
in performance, a larger batch size is considered more efficient. Once the examples
are labeled, they are removed from the pool and added to the labeled examples.
Furthermore, the informative values associated with each unlabeled sentence are
updated in the pool. This process is repeated until all the examples are labeled or
until some stopping criteria are met.

A framework of a generic pool-based active learning system is shown in the Fig-
ure 2.9. The resulting manually labeled dataset can train a classifier or infer the
labels for the remaining unlabeled examples. Typically, the manually labeled set is
used to build a classifier.
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Figure 2.9: Pool based Active Learning cycle where L is the set of labeled data and
U is the pool of unlabeled data.

There are three significant issues of concern in active learning:

• A technique is required to choose a small initial training set to seed the active
learning process.

• A selection strategy is required to select the examples that will be labeled
throughout the active learning process. These should be the examples for
which labels will prove most informative as the training process progresses.

• Criteria must be established to determine when the active learning process
should stop.

Active Learning first received research attention in the 1980s and has since re-
mained a lively research area. Active Learning is widely used in situations where
there are vast amounts of unlabeled data available, to name a few, image retrieval,
natural language processing, text classification, bioinformatics and medical applica-
tions.

Active-Outlier, an approach for outlier detection was proposed by Abe et al. [1].
Active-Outlier uses a selective sampling mechanism based on Ensemble-based Mini-
mum Margin Active Learning. Its outlier detection accuracy was reported high and
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well suited in stream-mining setup. Active Learning has also been implemented in
the field of robotics.

The Active Learning techniques have also been used to tune the behaviour and
reliability capabilities of the grasping system for robot [61]. An algorithm, proposed
by Singh et al. [91], uses Active Learning for time-series gene expression analysis. It
uses Active Learning for the development of computable objective functions for mea-
suring uncertainty in the estimated signal. The proposed algorithm can be applied
to any continuous function with one independent variable.

Active Learning is used in the Domain of Natural Language Processing as well.
Tur et al. proposed an algorithm that uses Active Learning for spoken language
understanding [96]. The proposed algorithm used Boosting algorithm for call clas-
sification and achieved the same classification accuracy using less than half of the
labeled data.

The first of its kind work, Active Learning for Named Entity Recognition (NER)
was proposed by Shen et al. [87]. They proposed a multi-criteria-based AL approach
along with SVM and effectively applied it to NER. They incorporated three criteria,
informativeness, representation and diversity, using two selection strategies. The
proposed approach reduced the labeling cost compared to the single criteria-based
method.

2.4.2 Classifiers Used in this Research

This research mainly focus on using three types of classifiers for Active Learning:

• Support Vector Machine, a Margin classifier,

• Naïve Bayes, a Probabilistic classifier, and

• Random Forest

Support Vector Machine

The Support Vector Machine (SVM) is the most prominent approach to maximum
margin classification, which is essentially specified by a separating hyperplane in the
multi-dimensional input space Rk given by the feature representation −→x of exam-
ple x. The best separating hyperplane is the one that represents the most significant
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separation — called margin. The distance from it to the nearest training example
on each side is maximized. The hyperplane is defined in Equation 2.8.

< −→w ,−→x > +b = 0 (2.8)

The basic idea behind SVM is to find those examples (support vectors) that
delimit the widest frontier between positive and negative examples in the feature
space. Support vectors are examples that are closest to the hyperplane. The width
of the classification border is known as the hyperplane margin. Equation 2.9 gives
the SVM classifier.

f−→w ,b(x) = sgn(< −→w ,−→x > +b) (2.9)

SVM classifiers can deal with non-linearly separable data by mapping the feature
representations with a non-linear mapping function into a higher-dimensional feature
space H, where the separability between examples may be more straightforward. This
is done using a kernel function leading to a reformulation of the SVM classifier into
Equation 2.10.

Φ(x) = Σs
i=1 ∝i yiK(x,wi) + b (2.10)

Figure 2.10: Illustration of SVM.

SVMs have been applied in many text classification tasks since most text classi-
fication problems are linearly separable, and SVMs are robust in high dimensional
space and robust with sparse data.
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Naïve Bayes

The Naïve Bayes classifier is a popular technique for text classification and has been
found to perform surprisingly well despite its simplicity [43, 45, 54]. The Naïve Bayes
classifier exists in different versions, such as Bernoulli, Multinomial and Gaussian.

The underlying theorem for Naïve Bayes classifiers is Bayes’ Law as shown in
Equation 2.11, which assumes that all features are conditionally independent. A
probabilistic model that embodies the assumption is posited, and training examples
are used to estimate the parameters of the proposed model. A new example is
classified by selecting the class most likely to have generated the example.

P (x | y) = P (y)P (x | y)
P (x) (2.11)

In a dataset, every document has the same probability, so P (x) is a constant
which can be eliminated from Eq. 2.11. Based on the Naïve Bayes assumption that
all features are conditionally independent, the Naïve Bayes (NB) model is formulated
in Eq. 2.12. This is used in text classification to determine the probability that
document x is of class y just by looking at the frequencies of words in the document.

P (y | −→x ) ∝ P (y,−→x ) = P (y)Πk
j=1P (xi | y) (2.12)

Figure 2.11: Illustration of Naïve Bayes
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In the multi-variate Bernoulli model [33], an example is represented as a binary
vector of term occurrences, and in the multinomial model, an example is represented
as a vector of term counts [60]. Several works show that the multinomial model
usually performs better than the multi-variate Bernoulli model [20, 54].

Random Forest

Breiman firstly introduced the Random Forest algorithm [7]. Decision trees can be
extremely noisy when it comes to predictive performance. A lower correlation be-
tween the estimates can result in lower variability of the final prediction. A method
to compensate for the extreme variability of an individual decision tree is bagging.
The Random Forest Algorithm provides more precise estimates relative to the bag-
ging of decision trees by reducing the correlation between the constructed trees, thus
improving and reducing the variance.

Random Forest forms a family of predictive models that construct an ensemble
of randomized decision trees. The randomness is injected in the training set and
the decision tree learning procedure while maintaining the low bias of the individual
models. It yields one of the most effective general-purpose predictive models.

Figure 2.12: Illustration of Random Forest
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The Random Forest algorithm can be used in solving both classification and
regression problems. It is based on a divide and conquer approach performed on
decision trees generated on random samples of a given data set. Attribute selec-
tion indicators like the Gini index, Information Gain and Gain Ratio are used for
generating individual decision trees.

For a regression task, the average of all tree results is considered as the final
output. The final result is based on the voting from individual decision trees in the
classification task.

Random forests have a wide variety of applications. It can be used in recommen-
dation engines, image classification, feature selection, identifying fraudulent activities
and predicting diseases.

2.4.3 Selection Strategy

The essence of Active Learning is a strategy for selecting the following query to be
presented to the oracle for annotation. Active Learning Selection strategies can be
categorized into three approaches:

• Exploitation based selection strategies

• Exploration based selection strategies

• Strategies that use a combination of both exploitation and exploration.

Exploitation-based selection strategies build a classifier using those examples la-
beled by the oracle so far in the active learning process and base the selection of
examples for labelling on the output generated by this classifier when used to clas-
sify all of those examples remaining in the unlabeled pool.

Exploration-based selection strategies pick representative examples from dense
regions of the example space instead of focusing on examples closest to the classifica-
tion boundary. Exploration-based selection strategies also favour examples distant
from the current labeled set with the aim of sampling more expansive, potentially
more exciting areas of the feature space. These approaches do not necessarily use a
classifier in active learning selection.

In this research, an exploitation-based selection strategy is used.
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2.4.4 Stopping Criterion

A stopping criterion is used to decide when to stop the active learning process. In
most cases, a simple stopping criterion that allows the oracle to provide a specified
number of labels, a label budget, is used. Other approaches, referred to as hold-out
accuracy approaches, stop when the classifier’s performance is built reaches some
target performance on a hold-out test set. However, stopping criteria such as those
that use the classifier’s characteristics are preferable due to the difficulty of getting
labeled examples because they do not require a hold-out test set. Researchers have
also proposed confidence-based stopping criteria that suggest stopping the active
learning process based on measuring the classifier confidence. In some cases, the
active learning process is stopped when the pool is empty.

2.5 Chapter Summary

This chapter discussed the previous work related to the CLSA project and on de-
tecting no-opinion responses. This chapter also explains the state-of-the-art Machine
Learning approaches used in this thesis. Moreover, the related literature survey is
also discussed in this chapter. The embeddings and existing Active Learning Ap-
proaches are also presented along with the Classifiers used in this research.



Chapter 3

Methodology

This chapter elaborates on the data collection and the dataset used for the experi-
ments in this research. It proceeds to discuss preprocessing of data before feeding it
to the classifiers. Next, the embeddings used in the experiments are discussed. Fur-
thermore, it discusses the clustering algorithm and classifiers used in the experiments
along with the metrics for evaluating the results. It also discusses the methodology
and explains the implementation of the models.

3.1 CLSA

The Canadian Longitudinal Study on Aging (CLSA), an initiative of the Canadian
Institute of Health Research (CIHR), was launched in 2009 in collaboration with
Statistics Canada. The main objective of the CLSA is to understand the variety
of factors that influence aging and study the transitions and trajectories of healthy
aging among Canadians [74].

The CLSA is a nationally stratified sample of 51,338 women and men aged be-
tween 45 and 85 years of age who will be contacted every three years and will be
followed up for at least 20 years. The CLSA cohort comprises two corresponding
cohorts. A “tracking cohort” of 21,241 participants was randomly selected from the
ten provinces and interviewed by telephone. Furthermore, a “comprehensive cohort”
of 30,097 participants was randomly selected from within a 25–50km radius of 11
data collection sites (DCSs) interviewed in person, took part in in-depth physical
assessments at DCSs, and provided blood urine samples.

CLSA is conducting a longitudinal study on aging, i.e., it will observe the same
variables for an extended period to find behavioural patterns to understand the aging
process among older Canadians. Furthermore, the data collected by the CLSA will
also help understand why some people age well and others do not, how to improve
health services and policies for Canadians and how non-medical factors like social

40
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and economic status affect aging [74].

3.2 Dataset and Characteristics

The identity of the participants is kept confidential by assigning a unique identi-
fication number to protect their privacy. The data collected in the Tracking and
Comprehensive cohorts via telephone and in-person interviews are stored in CSV
files made available to the researchers. In CSV files, the questions are converted to
columns, and participant’s responses are recorded, as shown in Table 3.1.

entity_id AGE_ SEX_ SDC_ GEN_HLAG_TRM
NMBR_ ASK_ COB_
TRM TRM TRM

17724724 46 F 1 exercise and proper diet
49119706 61 F 1 social, mental and generally good

health
58884735 57 F 1 positive attitude, eating well and

exercise
68179218 66 F 2 eating good food, exercise, being

social, knowledge of what you’re
eating and drinking

Table 3.1: Sample data from CLSA dataset

Apart from this, there are two other files, Dictionary and Dictionary category.
The Dictionary file contains details like data types, labels that give information on
the answer, comments that might be useful for researchers and questions asked in
the interview, as in Table 3.2. The Dictionary Category file contains the answers
that are converted into numerical data for ease and their explanation as in Table 3.3.
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Name: startlanguage_COM
Label: Language used at start of interview

Comment:
Question:

Name: AGE_NMBR_TRM
Label: Age(years)

Comment: Calculated: Date of interview less reported Date of Birth. The few
cases of ages outside the study population range (45-85) are due
to time lapse issues between the initial recruitment stage and the
actual date the interview was completed.

Question: What is your age?
Name: SEX_ASK_TRM
Label: Sex

Comment:
Question: Are you male or female?

Name: SDC_COB_TRM
Label: Country of birth

Comment: Includes additional categories based on open text responses of other
countries of birth variable.

Question: In what country were you born?
Name: SDC_RELG_TRM
Label: Religion

Comment: Includes additional categories based on open text responses of other
religions variable.

Question: What, if any, is your religion?
Name: GEN_HLAG_COM
Label: Promote healthy aging verbatim

Comment:
Question: I have talked with many adults and learned something from each

of them about what they think promotes healthy aging. What do
you think makes people live long and keep well?

Table 3.2: Sample data from Dictonary
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VARIABLE NAME MISSING LABEL
startlanguaga_TRM EN 0 English

FR 0 French
SEX_ASK_TRM M 0 Male

F 0 Female
SDC_COB_TRM 1 0 Canada

2 0 United Kingdom
777 1 Missing

Table 3.3: Sample data from Dictionary Category

The data collected by the CLSA are generalizable to the comparable Canadian
population on many vital variables. It was designed to help understand the con-
tribution of biological, clinical, lifestyle and behaviour and social measures in aging
adults in Canada. The CLSA interviewed 51,338 women and men aged between 45
and 85 years for this study. Of all the participants, 21,242 participants from Track-
ing Cohort took telephone interviews that lasted 60–90 minutes. Furthermore, the
remaining 30,097 participants were interviewed in person, and the interview lasted
roughly 90 minutes. Of the 30,097 participants, 27,170 (90.3%) and 28,783 (95.6%)
provided blood and urine samples, respectively.

Several critical multidisciplinary issues for understanding the aging process were
considered, focusing on questions that could only be answered with a longitudinal
design. Out of all the participants, 51.5% were female, and most participants were
born in Canada, accounting for 87.2%, and 80.2% spoke English at home. 38.5% had
university degrees, 83.7% of participants lived in detached or semi-detached houses,
and almost 70% were married or living with a common-law partner.

The questionnaire-based measure used to collect the data covers many domains,
including health status, lifestyle and behaviour and health care utilization. However,
the essential question was, “I have talked with many adults and learned something
from each of them about what they think promotes healthy aging. What do you think
makes people live long and keep well?”. The verbatim response of older Canadians
to this question is used for this work.
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Figure 3.1: Number of words in sentences

The number of words used in responses is shown in the Figure 3.1. The 50,587 par-
ticipants responded to the question using a maximum of 319 words and a minimum
of one word, with a mean of 12.68 and median of 9. The responses are unstructured
and have many typographical errors.

The Figure 3.2 shows the vocabulary in a word cloud with the most frequent words
in the CLSA dataset, i.e., participants’ responses. One interesting point, which can
be appreciated, is that some of the most common words are exercise, good, diet,
eating, active, healthy, being, keeping, positive, attitude and life.

Figure 3.2: Most common words in the CLSA dataset.

In addition, the CLSA also provided a “no_answer_instances” dataset which was
manually selected. It consisted of 71 unique no-opinion responses from the CLSA
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dataset. In this thesis, this is refered to as “no-opinion” dataset. A sample of no-
opinion dataset is provided in the Table 3.4 below:

Entity Id Text Language
39197483 98 en
53723716 i have no idea en
37844084 don’t know en
66279744 i’m not sure en

Table 3.4: Sample data from No-Opinion Dataset.

3.3 Preprocessing

Data preprocessing can have a notable influence on the generalization performance
of ML algorithms. Preprocessing data is intended to transform the raw data into a
more accessible and more effective format for future processing steps. Before building
a model, data preprocessing is necessary and consists of three steps: Data Clean-
ing, Data Transformation and Data Reduction. Raw data is often incomplete and
inconsistent due to the human factor, program errors, or other reasons. Incomplete
and inconsistent data will affect the accuracy of the predictions, so before going any
further with the database, we need to do data cleaning.

Before cleaning the data, the telephonic and in-home interview data were con-
catenated to get one dataset. In the first step of data cleaning, missing values and
inconsistencies were removed. We only considered English responses for this project,
which constitutes 82.7% of the CLSA dataset, so French response, 17.3% of the CLSA
dataset, were also removed in the cleaning process. Some responses had their lan-
guage tags misplaced; some English responses were mislabeled as French responses.
These labels were corrected, and the English responses were considered.
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Figure 3.3: Data Preprocessing

Most text and document data sets contain unnecessary words such as stopwords
and misspelling. In many algorithms, primarily statistical and probabilistic learning
algorithms, noise and unnecessary features can adversely affect system performance.
In the next stage, Data Transformation, responses were normalized and tokenized.
Tokenization is a preprocessing method that breaks a stream of text into words,
phrases, symbols, or other meaningful elements called tokens [26, 99]. For example,
consider the sentence:

“I took the dog for a walk.”

In this case, tokenized sentence is :

“I” “took” “the” “dog” “for” “a” “walk”.

After tokenization, punctuations and stopwords were removed. Textual datasets
include many words which are not significant, such as “a”, ”have”, “what”, “do”, . . . ,
and can be removed from the texts [79]. Some words indicated if the response was
a no-opinion response or no, were removed from the set of stopwords; for example,
“not”, “don’t”, and “can’t”. Most text datasets also contain many unnecessary
characters, such as punctuation and special characters. Critical punctuation and
special characters are essential for human understanding, but they can be detrimental
to machine learning algorithms [67].
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Words were then converted to their root form by WordNetLemmatizer. Lemma-
tization is an NLP process that replaces the suffix of a word with a different one or
deletes the suffix of a word to get the basic word form, i.e., lemma [82, 34].

For the final preprocessing step, words were converted to their vectorized forms
and stored as TF-IDF vectors. Jones [31] proposed that Inverse Document Fre-
quency (IDF) be used with term frequency to reduce the effect of common words in
the corpus. The combination of TF and IDF is known as Term Frequency-Inverse
Document Frequency (TF-IDF). It assigns a higher weight to words with high or low
frequencies term in the text data. The mathematical representation of the weight of
a term by TF-IDF is given in equation 3.1.

W (d, t) = TF (d, t)× log
(

N

df(t)

)
(3.1)

Where N is the number of documents and df(t) is the number of documents
containing the term t in the corpus.

After preprocessing, these 41,000 records were used for the experiments.

3.4 Unsupervised Methods

This research aims to analyze and compare different similarity measures, as has been
mentioned several times. Because of this, the implementation of the measures takes
significant relevance.

The objective of this research has been to analyse and compare different text
similarity measures combined with Machine Learning embeddings. Measures such
as CS, WMD and BERT have been analyzed. CS works directly with vectors (or
embeddings); WMD applies information from embeddings to represent text weights
and treating the distances as a Linear Programming Transportation Problem.

The diverse set of measures requires text representations according to their ways
of working. In order to achieve this, measures which work with information from
embeddings have been combined with word embeddings, word2vec, doc2vec and
BERT.

The tasks performed in this project have brought to light some interesting points
about the different measures. From a theoretical point of view, i.e., the properties
required of the measures, it has been seen that the more general the text measure
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(and embedding) is, not necessarily the better it is. This is the case for CS + doc2vec,
which are clearly at a disadvantage whereas, BERT gave better results.

Figure 3.4: Experimental Procedure for Unsupervised Learning.

The Figure 3.4 shows the experimental setup used to generate the results. As
shown in the setup, first, the documents are preprocessed. For Cosine Similarity,
Word Mover’s and BERT, stopwords were not removed during preprocessing. Once
the data is preprocessed, embeddings of the clean data are generated. The pair-
wise distance between the vectors of the no-opinion dataset and the CLSA dataset
is computed to get the distance matrix. The distance matrix is then used to ob-
tain clusters using Agglomerative Clustering. The experiments were conducted with
varying numbers of clusters, different affinity metrics and linkage criteria. Further,
the results were analyzed using dendrograms and scatter plots. These results will be
discussed later in this chapter.

For Cosine Similarity, doc2vec embeddings are generated using Gensim’s doc2vec.
These embeddings are then utilized to compute the pairwise distance using the cosine
metric. The distance matrix is then used to obtain clusters using Agglomerative
Clustering. The best results for the experiment were obtained when the parameter
were: affinity is cosine, n_clusters is 3, and linkage is complete.

A similar approach was followed for Word Mover’s Distance and word2vec embed-
dings were generated using pretrained word2vec model, ‘word2vec-google-news-300’.
A precomputed cosine matrix is given as input for clustering. For Agglomerative
Clustering, parameters were: affinity set to precomputed, n_clusters is 3, and linkage
set to complete to produced the best results.
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For BERT, sentence BERT embeddings were generated using the pretrained ‘all-
mpnet-base-v2’ model provided by Hugging Face. These embeddings were then used
to compute the pairwise distance matrix using the Euclidean distance. The best
results were obtained for clustering when parameters were: affinity set to Euclidean,
n_clusters is 3, and linkage set to Ward.

3.4.1 Clustering Performance Evaluation

Measuring the performance of clustering algorithms is vital. This is especially true
as clusters are often manually and qualitatively inspected to determine whether the
results are meaningful.

External and Internal validity indices measure the quality of clustering results.
External index measures similarity between two clusters where the first is the known
cluster structure of a dataset and the second results from the clustering procedure.
In contrast, internal indices measure the goodness of a clustering structure using
quantities and features inherent in the dataset when external information is not
available.

The metrics used for evaluating cluster performance require the knowledge of
ground truth class assignment. For this, labels from active learning process are used
as gold standard to evaluate clustering performance.

Mutual Information (MI): Given the ground truth knowledge, it measures
the mutual dependence between the ground truth and cluster obtained after the
clustering algorithm. It quantifies the amount of information obtained about one
cluster by observing the other cluster. It is nonnegative, i.e., values close to zero
indicate two largely independent label assignments, while values close to one indicate
significant agreement. It is also known as information gain [86, 37].

The MI between two label assignments, U and V , can be calculated by the eq. 3.2:

MI(U, V ) =
|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj|
N

log
(
N(Ui ∩ Vj)
|Ui||Vj|

)
(3.2)

Adjusted Mutual Information (AMI): It is a variation of mutual information
used for comparing clusterings. It accounts that the MI is generally higher for two
clusterings with a more significant number of clusters, regardless of whether there
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is more information shared. It is independent of the absolute values of the labels.
Furthermore, it is also symmetric. The value of AMI is between 0 and 1. A value
of 1 means the two clusters are identical or perfectly matched. Random partitions
have an expected AMI around 0 on average. AMI is used when the ground truth
clustering is an unbalanced and small cluster(s) exist [76].

Using the expected value, E, the adjusted mutual information can then be cal-
culated by eq. 3.3:

AMI = MI − E[MI]
mean(H(U), H(V ))− E[MI] (3.3)

where H(U) and H(V ) are entropy or amount of uncertainty for partition sets
U and V, and E[MI] is expected value for MI and can be calculated by eq. 3.4, as
shown below:

E[MI] =
|U |∑
i=1

|V |∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij

N
log

(
N · nij

aibj

)
× (3.4)

ai!bj!(N − ai)!(N − bj)!
N !nij!(ai − nij)!(bj − nij)!(N − ai + nij)!

V-Measure: V-Measure is defined as the harmonic mean of homogeneity and
completeness of the clustering. Both these measures can be expressed in terms of
the information theory’s mutual information and entropy measures. The range of
V-measure is between 0 and 1, where 1 corresponds to a perfect match between
the clusterings. It is equivalent to the normalized mutual information when the
aggregation function is the arithmetic mean [77].

V = (1 + β)× homogeneity × completeness
β × homogeneity + completeness

(3.5)

where homogeneity is
1− H(C|K)

H(C)
completeness is

1− H(K|C)
H(K)
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and

H(C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k

n
log

(
nc,k

nk

)

H(C) =
|C|∑
c=1

nc

n
log

(
nc

n

)
.

Fowlkes-Mallows Index (FMI): It is an external evaluation method used to
determine the similarity between two clusterings and measures the similarity between
two hierarchical clusterings or clustering and a benchmark classification. A higher
value; i.e., 1, for the Fowlkes–Mallows index indicates a greater similarity between
the clusters and the benchmark classifications [21].

The FMI score can be defined as the geometric mean of the pairwise precision
and recall and calculated as

FMI = TP√
(TP + FP )(TP + FN)

(3.6)

where TP is number of True Positives, FP is the number of False Positives and,
FN is the number of False Negatives.
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3.5 Active Learning

Figure 3.5: Active Learning Procedure

The active learning process begins with a small labeled dataset, L. In this research,
the labeled dataset consists of 206 examples; 112 are labeled as “1” as they are
opinion responses, and 94 are labeled as “2” as they are no-opinion responses, can
be seen in the Figure 3.6.
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Figure 3.6: Label Count in the Labeled Dataset, L, where “1” represents Opinion
responses and “2” represents no-opinion responses.

In most cases, L is chosen randomly. A randomly chosen set for initial training
may not be a good idea when dealing with real-world applications as it may not have
the same data distribution as the whole dataset because of its small size. A randomly
selected initial training set works well only when there is no class imbalance in the
dataset. However, the CLSA dataset is highly imbalanced, and the initial training
set instances are manually selected for this research to have the most informative
examples and prevent the model from being skewed towards the majority class and
ensure that the model reflects the true nature of the minority class, in this case,
no opinion responses. Moreover, a balanced dataset potentially eliminates the class
imbalance’s adverse effects on the model’s performance.

A classifier is needed to predict the labels of unlabeled examples in the pool.
Uncertainty sampling, a commonly used exploitation based selection strategy in text
classification, is used to train classifiers using the examples labeled by the oracle,
and then the classifier is used to classify the remaining unlabeled examples and for
examples for which classifications are least certain are selected for labelling by the
oracle. In literature, it has been found that several selection strategies algorithms use
Support Vector Machines, Logistic Regression, Naïve Bayes, Maximum Entropy and
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Random Forest. As discussed in Section 3.5, this research focuses on Naïve Bayes,
SVM and RF based active learners.

Figure 3.7: Classifiers Used in Active Learning Process.

Classfier Accuracy Precision Recall F1
Naïve Bayes 0.867 0.88 0.902 0.892

SVM 0.882 0.905 0.905 0.905
Random Forest 0.882 0.881 0.925 0.902

Table 3.5: Classifiers used for Active Learning and their performance.

The Figure 3.7 and the Table 3.5 shows the performance of the three classifiers
trained on the labeled dataset, L. The dataset was split into test and train, 30% for
testing and 70% for training.

The classifier predicted the labels and class probability of the first 500 examples
from the pool, and then the classifier boundary was defined. After manually going
through the predicted labels, class probability and response, it was observed that
mostly when the predicted label is “2” and class probability close to 0.5, the classi-
fier was uncertain about the prediction. For this experiment, the class probability
between 0.48 to 0.535 was selected as the classifier boundary. After defining the
classifier boundary, five hundred examples were selected from the pool for each iter-
ation, and the classifier predicted the labels and the prediction probability for both
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classes. If the predicted label was “2” and the probability within in the classifier
boundary, the Oracle was asked to label the example. The process was continued
till the stopping criteria was reached, i.e., till there were no more examples in the
unlabeled pool.

The Active Learning algorithm used for this research is as below:
Algorithm 1: Active Learning Algorithm
Input: L: base learner L,
L: dataset of labeled instances,
U : pool of unlabeled data,
k: number of iterations to be performed,
n: number of examples to be added to L after each iteration
for i← 1 to k do

- let h be the classifier obtained by training L on L
- let M be the n examples in U for which h makes least confident
predictions;
foreach n ∈M do

remove n from U and ask user for its label;
add 〈n, h(n)〉 to L;

where k = len(U)/500.

3.5.1 Evaluation Metrics

A number of approaches are used to evaluate Active Learning approaches. Perfor-
mance can be measured in terms of accuracy, F1 score, precision or recall. Learning
curves are also used to monitor the progress of the labelling process in terms of the
classifier performance. From the learning curve a Area Under the Learning Curve
(AULC) score can be calculated. In this research, performance is measured in terms
of accuracy, precision and recall.

Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) curve represents forecasting precision
and offers a visual and statistical tool for decision-making. Each point on the ROC
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curve represents a sensitivity/specificity pair. ROC curves are valuable because
they permit the comparison of variables and summarize accuracy across a range
of tradeoffs between correct and incorrect classification probabilities. In practice,
ROC curve analysis evaluates the classification ability of one independent (predictor)
variable that is continuously measured and one dependent (outcome) variable that
is dichotomously measured.

Figure 3.8: ROC Curve

The area under the ROC curve, also called ROC AUC, is typically a measure
of test usefulness and provides a value to summarize the learning algorithm’s per-
formance. A larger area means a more practical test, and the area under the ROC
curve is also used to compare the test’s usefulness.

Precision-Recall Curve

There are many ways to evaluate the skill of a prediction model. Precision and Recall
measures are helpful in applied machine learning for evaluating binary classification
models. Precision-Recall (PR) curves are often used in information retrieval and
have been cited as an alternative to ROC curves for tasks with a large skew in the
class distribution. An important difference between ROC space and PR space is the
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visual representation of the curves.
Precision is defined as a measure of the proportion of extracted items that the

system got right. It is a ratio of true positives divided by the sum of true positives
and false positives and describes how well a model predicts the positive class.

Precision = TruePositives/(TruePositives+ FalsePositives)

Recall measures the fraction of positive examples that are correctly labeled and
it is the ratio of the number of true positives divided by the sum of the true positives
and the false negatives and is the same as sensitivity.

Recall = TruePositives/(TruePositives+ FalseNegatives)

Figure 3.9: PR Curve

PR curves are helpful in cases where the datasets are highly skewed, i.e., when
there is an imbalance in the observations between the two classes. It compares false
positives to true positives and captures the effect of the large number of negative
examples on the algorithm’s performance.PR curves give a more informative picture
of classifiers performance [11].
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Accuracy, Precision and Recall

Accuracy [73] is the most intuitive performance measure and it is the ratio of correct
predictions to the total number of predictions made by the model. The formula for
calculating accuracy is:

Accuracy = Number of correct predictions
Total number of predictions

For binary classification, the accuracy can be calculated as:

Accuracy = TP + TN
TP + TN + FP + FN

Recall [73], also refered to as True Positive Rate or Sensitivity, is the proportion
of correct positive predictions to the total number of predictions related to the pos-
itive class. High precision score relates to the low false positive rate. The formula
for recall is:

Recall = TP
TP+FN

Precision [73], also refered to as Positive Predictive value or Confidence, is the
ratio of correct positive predictions to the total number of positive predictions made
by the model. The formula for calculating precision is:

Precision = TP
TP+FP

3.6 Chapter Summary

This chapter elaborates on the CLSA dataset, its characteristics, and the prepro-
cessing steps that are taken to clean it. It also discusses the Unsupervised Approach
in which the the embedding from clean CLSA dataset and the no-opinion dataset
are generated. These embeddings are then used to calculate a pairwise distance ma-
trix, using three different methods, cosine distance and doc2vec embeddings, WMD
and word2ved embeddings and Euclidean and BERT embeddings. These pairwise
matrices are used to generate clusters using Agglomerative Hierarchical Clustering.
Further, Active Learning Approach and the metrics used to evaluate the perfor-
mances are discussed. It starts with a a small balance dataset which is manually
labeled and used to train three classifiers, RF, SVM and NB, which are then used to
build AL model.



Chapter 4

Experimental Setup and Results

This section will provide a detailed description of the summary of experiments, results
and the required analysis to interpret them. In order, we will be comparing Cosine
Similarity, Word Mover’s Distance, BERT and Active Learning on the CLSA dataset.

It is common to test new techniques and algorithms on well-established datasets
where benchmark and state-of-the-art results are documented and corroborated.
This provides a precise evaluation method for new techniques and architectures and
allows for consistent results despite differences in technique. However, determining
the results can be challenging when these techniques and algorithms are evaluated
on a new dataset. Since the datasets used to train ML models are enormous, it is
humanly impossible to manually check it for any bias, inconsistency or sparsity that
might be present. Moreover, often the datasets are inaccurate and not suitable for
the task at hand.

We start this chapter with a brief description of our experimental setup followed
by providing a qualitative analysis and its correspondent quantitative results. We
conclude this chapter by providing a performance comparison.

4.1 Experimental Setup

The research work was carried out in three steps. First, we used hierarchical cluster-
ing, which is an unsupervised ML technique, to cluster no-opinion responses in the
CLSA dataset. We have experimented with three different distance measures, such
as, cosine similarity, word mover’s distance and Euclidean distance paired with three
different embeddings, doc2vec, word2vec and BERT. Second, after evaluating the
results of Unsupervised methods, the Semi-Supervised ML method was used to solve
the same problem more efficiently. Finally, we assess and compare the results. Clus-
tering helped find which embedding worked the best and cluster no-opinion responses
and other responses. Using AL, we labeled the whole CLSA dataset. Moreover, using
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the SVM classifier for AL, we could correctly label most of the no-opinion responses.
This was manually verified.

The crucial components for running the experiments are a programming language
to write and run the scripts and a platform for result analysis. Python is a cross-
functional interpreted language with high readability that helps save time by typing
fewer code lines to accomplish the tasks and provides extensive data analysis sup-
port. Therefore, the entire project was developed using Python v3.7.3 on Jupyter
Notebook. The essential modules required for the experiments are mentioned in the
Table 4.1 along with their version.

Module Version
Pandas 1.1.3
Numpy 1.19.5

Matplotlib 3.3.2
Wordcloud 1.8.1

Plotly 5.3.1
NLTK 3.5
Gensim 3.8.3
Pyemd 0.5.1
SciPy 1.6.0

Scikit-Learn 0.23.2
Sentence_transformers 0.3.6

Tensorflow 2.6.0
Texthero 1.1.0

Table 4.1: List of modules used for the experiments along with their version.

Pandas is a data manipulation and analysis library. In this research, Pandas was
used for preparing the dataset as it allows importing data from various file formats
and provides various data manipulation operations such as merging, joining, inser-
tion, deletion, reshaping, cleaning, slicing, indexing and subsetting large datasets.

Matplotlib is a cross-functional data visualization and graphical plotting library.
Plotly is another visualization library used to make interactive web-based plots. An-
other library used in this research is WordCloud, a data visualization technique used
for representing text data in which the size of each word indicates its frequency or
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importance. Significant textual data points can be highlighted using a word cloud.
NLTK is one of the most used libraries for natural language processing and

computational linguistics. It allows for text processing for tokenization, parsing,
classification, stemming, tagging and semantic reasoning.

Gensim library is used for unsupervised topic modelling and natural language
processing. It includes LSA, LDA, fastText, word2vec and doc2vec algorithms; the
latter two are used in this research.

SentenceTransformers is a framework for generating state-of-the-art sentence,
text and image embeddings. It provides several pre-trained models for over 100
languages and is helpful for textual similarity tasks. In this research, a pre-trained
model has been used to obtain BERT embeddings for sentences.

Texthero is a Python toolkit to work with text-based datasets rapidly and ef-
ficiently. It offers text preprocessing, mapping texts to vectors, TF-IDF, vector
visualization and custom-word embeddings. In this research, Texthero is used to
obtain t-Distributed Stochastic Neighbor Embedding (t-SNE) [97], a dimensionality
reduction technique, to represent high-dimensional embeddings to two-dimensional
space for visualization purposes.

Scikit-learn package provided support and the necessary modules for Agglom-
erative Clustering and Random Forest, Support Vector Machine and Multinomial
Naïve Bayes, classifiers used for Active Learning. It was also used to create features
(TfidfVectorizer), calculate distance matrix and evaluation (accuracy score, precision
and recall).

SciPy is used for scientific and technical computing, including optimization, in-
terpolation, integration, and other tasks in science and engineering. In this research,
dendrograms of hierarchial clustering are plotted using this library.

NumPy is most commonly used for scientific computing in Python and facilitates
advanced operations on extensive data.

For most parts of this research, JupyterHub hosted on the Timberlea server was
used. The server timberlea.cs.dal.ca is a general Linux server provided by Dalhousie
University. For processing huge amounts of data, JupyterHub hosted on the server
calvert.research.cs.dal.ca:8000 was used. The server calvert.research.cs.dal.ca:8000 is
equipped with a GeForce RTX 2080 card.
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However, use of Timberlea and calvert.research.cs.dal.8000 was mostly restricted
to getting the results for Cosine Similarity, Word Mover’s Distance and BERT.

4.2 Results

The goal of clustering is to identify highly similar groups of elements. The dis-
tance matrix was provided as input to the Agglomerative clustering method, and the
dendrogram of various clusters was generated from the distance matrix of various
embeddings. Dendrograms capture the essence of the groupings, but they may not
be a remarkably accurate representation of the data, as we will see [27]. However,
the structure of dendrograms does not provide much information about the specific
clusters identified by hierarchical clustering.

Scatterplots are a widespread type of visualization designed to emphasize the
distribution of data plotted in two dimensions [83]. They visualize multidimensional
data by mapping data cases to graphical points in a Cartesian space defined by
two or three orthogonal axes. The position of each point representing a data case
depends on the data dimension assigned to each axis. The simplicity and flexibility
of scatterplots make them ideal for visualizing research information [18]. One of
the primary purposes of scatterplots is to visualize the data points of hierarchical
clustering.

Scatterplot has been utilized to understand patterns and analyze clusters in this
research as they are suitable for exploring the clusters and seeing some exciting
findings. For plotting scatterplots, high dimensional embeddings are reduced using
t-SNE embeddings, which is well suited for the visualization, and the data points are
coloured based on the cluster assigned by hierarchical clustering.

To further evaluate the clustering performance, Mutual Information (MI), Ad-
justed Mutual Information (AMI), V-Measure (VM) and Fowlkes-Mallows Index
(FMI) scores are used, which are discussed in the Section 3.4.1. The labels ob-
tained after Active Learning process are taken as the gold standard to evaluate the
clustering performance. Results of Active Learning process are discussed in later in
this section.

A number of approaches are used to evaluate active learning approaches. Perfor-
mance can be measured in terms of accuracy, F1 score, precision or recall. Learning
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curves are also used to monitor the progress of the labelling process in terms of the
classifier performance. From the learning curve an Area Under the Learning Curve
(AULC) score can be calculated. In this research, performance is measured in terms
of accuracy, precision, recall, ROC Curve and PR Curve.

4.2.1 Cosine Similarity

The Cosine distance matrix was provided as the input to the Agglomerative clus-
tering method. The Figure 4.1 shows the dendrogram with three clusters. It can
be seen that the clusters red and blue are more similar to each other as the height
of the link that joins them together is smaller compared to the green cluster. How-
ever, dendrograms are challenging to read when representing such a vast dataset.
Therefore, a better approach is using scatter plots.

Figure 4.1: A dendrogram of complete linkage representing the clusters generated by
cosine distance matrix of doc2vec embeddings. The x-axis shows the index of points
of various clusters (green, red and blue). The y-axis shows the distance between the
cluster at the time they were clustered.

For further analysis of clusters, t-SNE embeddings of Doc2vec embeddings were
obtained and a scatterplot was plotted. On further analysis of the clusters, it was
found that this approach for detecting no-opinion responses is not appropriate. The
reason being that the sentences in the same clusters did not have anything in common
and clustering could not cluster the no-opinion responses together.
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Figure 4.2: Scatter plot of clusters obtained from above dendrogram. The data is
partitioned into three clusters and the linkage is complete. The cluster ‘0’ is coloured
blue, cluter ‘1’ is green and rep represents cluster ‘2’.

The experiment was repeated by changing the linkage, affinity and number of
clusters, but there was no improvement in the results. Although the single and
average linkage results are not shown here as they performed very poorly on the
clustering task.

Figure 4.3: Scatter plot of doc2vec embeddings where affinity is precomputed, linkage
is complete and number of clusters are two. Blue colour represents cluster ‘0’ and
yellow represents cluster ‘1’.
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Figure 4.4: Scatter plot of doc2vec embeddings where affinity is precomputed, linkage
is complete and number of clusters are three. Blue colour represents cluster ‘0’, pink
is cluster ‘1’ and yellow represents cluster ‘2’.

Figure 4.5: Scatter plot of doc2vec embeddings where affinity is cosine, linkage is
complete and number of clusters are six.

n_cluster MI AMI VM FMI
2 0.00611 0.03017 0.03023 0.89570
3 0.00616 0.01242 0.01247 0.65977
4 0.00739 0.01374 0.01381 0.64986
5 0.00746 0.01200 0.01208 0.61059

Table 4.2: Clustering Performance Evaluation Metric Scores with varying number of
clusters on doc2vec embeddings when affinity is cosine and linkage is complete.
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The Table 4.2 shows the clustering evaluation performance. As it can be seen,
the FMI score for two clusters is the highest and then there is a significant decrease
as the number of clusters increases. The FMI score for n_cluster= 2 is closer to
1, indicating a more significant similarity between the clusters. Howerver, FMI has
an undesirable property of having a very high value when the number of clusters is
small, even for independent clusterings [100]. The MI, AMI and VM scores for all the
clusters are very close to 0, indicating disagreement between the clusters. Another
interesting thing to notice is, even though MI scores are low, they tend to increase
with increase in the number of clusters.

4.2.2 Word Mover’s Distance

A precomputed square Word Mover’s Distance matrix was provided as the input to
the Agglomerative clustering method. The Figure 4.6 shows the dendrogram where
the number of clusters is three.

Figure 4.6: A dendrogram representing the clusters generated by WMD distance
matrix of word2vec embeddings. The x-axis shows the index of points of various
clusters (green, blue, yellow and purple). The y-axis shows the distance between the
cluster at the time they were clustered.

For further analysis of clusters, average vectors of each word in sentences of the
CLSA dataset were calculated to obtain the word2vec embeddings of the sentences.
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Though there are other approaches to do so, each approach has advantages and short-
comings. According to Le and Mikolov [44], the average vectors from the word2vec
approach performs poorly as it loses the word order and fails to recognize many so-
phisticated linguistic phenomena. In contrast, according to Kenter et al. averaging
word embeddings of all words in a text has proven to be a strong baseline for tasks
like short text similarity [32].

Another approach uses TF-IDF to obtain word2vec embeddings of a sentence. In
this approach, the word vectors are multiplied with their TF-IDF scores, and then
the average is taken to obtain the embeddings. This approach decreases the influence
of the most common words.

A more advanced approach, proposed by Socher et al., combines word vectors in
an order given by a parse tree of sentences using matrix-vector operations [93]. This
approach works well for sentence sentiment analysis as it depends on parsing.

Figure 4.7: Scatter plot of averaged word2vec embeddings where affinity is precom-
puted, linkage is complete and number of clusters are three.

As can be seen in the Figure 4.5, clustering could not group no-opinion responses
in one cluster. Further analysis of the clusters revealed no commonality in clusters.
Moreover, this clustering is not appropriate, and there is room for improvement.
Although the experiment was repeated by changing the linkage and number of clus-
ters, there was no improvement in the results. Further, single and average linkage
performed poorly on the clustering task.
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n_cluster MI AMI VM FMI
2 0.346053e-05 -2.27755e-05 0.926580e-05 70302.0e-05
3 1.33717e-05 -8.53086e-05 10.0e-05 94829.0e-05
4 1.32119e-05 -3.17461e-05 1.84634e-05 50195.0e-05
5 1.41731e-05 -4.17613e-05 1.75277e-05 46071.0e-05

Table 4.3: Clustering Performance Evaluation Metric Scores with varying number of
clusters on word2vec embeddings.

The Table 4.3 shows the clustering evaluation performance. The MI and VM
scores are very low, the AMI scores are in negative. This indicates that the clusters
are independent and the cluster partition is very random; which is very evident from
the scatterplot in the Figure 4.7.

4.2.3 BERT

The Euclidean distance matrix was provided as the input to the Agglomerative clus-
tering method. The Figure 4.8 shows the dendrogram with three clusters.

Figure 4.8: A dendrogram representing the clusters generated by the Euclidean dis-
tance matrix of BERT embeddings generated by all-mpnet-base-v2 model. The x-axis
shows the index of points of various clusters (red, green and blue). The y-axis shows
the distance between the cluster at the time they were clustered.
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For further analysis of clusters, t-SNE embeddings of BERT embeddings were
obtained and a scatter plot was plotted. As can be seen in the Figure 4.9, clusters
are neatly separated.

Figure 4.9: Scatter plot of BERT embeddings generated by ‘all-mpnet-base-v2’ model
and number of instances in each cluster. Affinity is Euclidean, linkage is ward and
number of clusters are three. The green colour represents cluster ‘0’, red colour
represents cluster ‘1’ and blue colour represents cluster’2’. Cluster 0 consists of no-
opinion responses along with the opinion responses from the CLSA dataset.

n_cluster MI AMI VM FMI
2 0.00275 0.00728 0.00731 0.69998
3 0.01429 0.03012 0.03017 0.66686
4 0.01833 0.03825 0.03833 0.66700
5 0.01834 0.03098 0.03106 0.61199

Table 4.4: Clustering Performance Evaluation Metric Scores with varying number of
clusters on BERT embeddings.

Though the scatterplot in Figure 4.9 shows that the clustering is done efficiently,
the Table 4.4 gives more insights into the Clustering Performance. As shown in the
Table 4.4, the FMI score is less when compared to the Clustering Performance of
doc2vec and word2vec embeddings. The MI, AMI and VM scores are better than
the two clusterings discussed previously but close to zero.
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4.2.4 Comparing Results of Unsupervised Techniques

In this experiment, Various metrics were used to evaluate the clustering perfor-
mances, namely, MI, AMI, VM and FMI. Even though the FMI scores seemed promis-
ing, they also have an undesirable property of having a very high value when the
number of clusters is small, even for independent clustering. Silke and Dorothea state
that the measures based on information-theoretical considerations are promising be-
cause they do not suffer from the drawbacks of counting pairs or set overlaps [100].
Therefore, in Table 4.5 below, we use the MI score to evaluate and compare the
Clustering approaches. It can be seen that Word Mover’s Distance with word2vec
embeddings performed very poorly as the scores are almost 0. In contrast, BERT
embeddings with Euclidean Distance performed the better than the two discussed
before only when the number of clusters were three or more. Moreover, it was also
able to cluster no-opinion responses in a cluster.

Number of Cosine Word Mover’s BERT
Clusters Similarity Distance

2 0.00611 0.0000034 0.00275
3 0.00616 0.0000133 0.01429
4 0.00739 0.0000132 0.01833

Table 4.5: Comparison of Clustering approaches using MI scores as Evaluation Met-
ric.

4.2.5 Active Learning

This subsection discusses the results obtained from Active Learning experiments
conducted with three different classifiers.
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Active Learning with Random Forest Classifier

Figure 4.10: Performance of Random Forest Classifier on Test Dataset.

Figure 4.10 shows the performance of the RF model over eighty-five iterations in
one epoch. Initially, the model gives an accuracy of 83.82%, precision of 78.57%
and recall of 84.28% for the first iteration. As the number of iterations increases,
the model better predicts the labels. Accuracy, precision, and recall values drop
significantly in the first few iterations, as the model is unsure about the labels and
the annotator is asked to label the instances. The RF labeled 163 instances as “no-
opinion” responses, accounting for less than 0.4% of the total responses in the CLSA
dataset.

Furthermore, the model was uncertain about 127 instances, from a total of 41,641
instances in the pool, and the annotator was asked to label these instances. Moreover,
a significant increase can be seen in the accuracy and precision in the last iteration,
where the accuracy, precision, and recall on the test data are 88.06%, 94.71%, and
86.29%, respectively.

Figure 4.11 summarizes the ROC Curve of Random Forest Classifier with an
AUC score of 0.89. At the same time, in the figure 4.11, AUC-PR summarizes the
PR Curve and has a score of 0.81.
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Figure 4.11: ROC Curve for Random Forest Classifier.

For a perfect classifier, ROC and PR Curves should have a score of 1. Further,
according to the results obtained, Random Forest performed well at classifying the
responses into two classes.

Figure 4.12: PR Curve for Random Forest Classifier.

However, on manually going through the instances labeled as “no-opinion” by the
Random Forest classifier, it was found that the classifier mislabeled a lot of opinion
responses and no-opinion and vice-versa. Hence, so few instances of the minority
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class.

Active Learning with SVM Classifier

Figure 4.13: Performance of SVM Classifier on Test Dataset.

Figure 4.13 shows the performance of the SVM model over eighty-five iterations in
one epoch. Initially, the model gives an accuracy of 86.76%, precision of 88.09%
and recall of 90.24% for the first iteration. With the number of iterations, the model
better predicted the labels. Accuracy, precision and recall values drop significantly in
the first few iterations. The SVM Classifier labeled 1157 instances as “no-opinion”
responses, roughly 3% of the total responses collected by the CLSA in English.
Further, the model was uncertain about 47 instances, and the annotator provided
the labels.

Moreover, there was not much change in the recall, but a steady increase in
accuracy and precision can be seen. The last iteration’s accuracy, precision, and
recall on the test data were 90.29%, 91.18%, and 90%, respectively.
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Figure 4.14: ROC Curve for SVM Classifier.

Figure 4.15: PR Curve for SVM Classifier.

In the case of the SVM classifier, both ROC and PR Curves had an AUC score
of 0.97, indicating that SVM performed much better than the Random Forest clas-
sifier. Moreover, manually going through the instances labeled as no-opinion, it was
discovered that the SVM classifier was able to classify more responses and classify
them correctly.
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Active Learning with Naïve Bayes Classifier

Figure 4.16: Performance of Naïve Bayes Classifier on Test Dataset.

The figure 4.16 shows the performance of the Naïve Bayes model over eighty-five
iterations in one epoch. Initially, the model gives an accuracy of 85.29%, precision
of 83.33% and recall of 92.1% for the first iteration. Initially, the model’s perfor-
mance fluctuated, dropping significantly in the first few iterations, as the model
was uncertain about the labels of the instances. As the number of iterations in-
creased, the uncertainty reduced. The Naïve Bayes Classifier labeled 450 instances
as “no-opinion” responses, roughly 1% of the total responses. Further, the model was
uncertain about 78 instances, and the annotator provided the labels. However, the
last iteration’s accuracy, precision, and recall on the test data were 82.97%, 86.56%
and 89.23%, respectively.

The Figures 4.17 and 4.18 show the ROC and PR curves of the Naïve Bayes
classifier. For the ROC curve, the AUC score is 0.9, and for the PR curve, the AUC
score is 0.83, signifying that the Naïve Bayes classifier performed well.
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Figure 4.17: ROC Curve for Naïve Bayes Classifier.

Figure 4.18: PR Curve for Naïve Bayes Classifier.

4.2.6 Comparing Results of Active Learning

Metric RF SVM NB
ROC 0.89 0.97 0.9
PR 0.81 0.97 0.83

Table 4.6: Comparison of Active Learning approach with different Classifiers.
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We discussed in the section 3.5.1 that the PR Curve is a better metric when the
dataset is highly imbalanced. Based on that, the Naïve Bayes classifier’s performance
was better than that of Random Forest but it did not outperform the SVM classifier,
which performed the best among the three classifiers. As can be seen in the Table 4.6,
AUC score of PR curve is high for SVM classifier, i.e., 0.97, and labeled 1157 instances
as “no-opinion” responses. Whereas AUC of PR curve for RF was the lowest, at 0.81,
and labeled 127 instances as “no-opinion” responses.

4.3 Chapter Summary

In this chapter, all the results were detailed. Key points include:

• Three distance measures paired with embeddings, cosine measure with doc2vec,
Word Mover’s Distance with word2vec and Euclidean with BERT were clus-
tered, their results are presented and discussed.

• The labels obtained from the Active Learning approach were used as the gold
standard to evaluate the performance of unsupervised methods.

• The MI score was used to evaluate and compare the results, and it was found
that the Euclidean distance with BERT embedding performed better with an
MI score of 0.01429 for three clusters.

• The Active Learning approach experimented with three classifiers, RF, SVM
and NB. Their results are presented and discussed.

• The PR curve was used to evaluate and compare AL results. The AL model
with SVM classifier outperformed the models with RF and NB classifiers.

• The AUC score for the model with SVM classifier was 0.97, whereas for RF
and NB it was0.81 and 0.83 respectively. Moreover, SVM classifier labeled
1157 instances as no-opinion responses in the CLSA dataset, compared to 127
instances by RF classifier and 450 instances by NB classifier. Furthermore, the
results were manually validated.



Chapter 5

Conclusion and Future Work

This chapter concludes this research work by providing the summary, limitations,
and future work.

The first section reviews the research and provides a summary of the problem,
solutions, and results. The second section discusses the shortcomings of the research
and possible solutions to it. The last section discusses how the research can be
improved by looking into the solutions for some limitations and analyzing the results
using alternate techniques.

5.1 Conclusion

This thesis tries to solve the problem of automated detection of no-opinion responses
in the open-ended survey data collected by the Canadian Longitudinal Study on
Aging (CLSA). To our knowledge, this research is the first of its kind. To achieve
the objective of detecting the no-opinion responses, various ML techniques, including
similarity measures coupled with embeddings and the Active Learning approach, have
been explored in this thesis.

Initially, distance measures and embedding were used to detect no-opinion re-
sponses in the CLSA data. Cosine distance between the doc2vec embeddings of
sentences was used to get the clusters. Further, the Word Mover’s Distance between
the sentences was calculated and used to get the clusters. These two methods re-
sulted in poor results, whereas using BERT embeddings, the agglomerative clustering
provided better clustering with no-opinion responses largely being grouped in one
cluster.

To further evaluate the clustering performance, labels from the Active Learn-
ing process were used as the gold standard and metrics like Mutual Information,
Adjusted Mutual Information, V Score and Fowlkes-Mallows Index were used. Al-
though clustering on BERT embeddings worked better, the clustering performance
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was not impressive enough.

The Active Learning approach was used in this thesis to label the dataset and
achieve the goal of this thesis. The active learning process starts with a small labeled
dataset, which is used to train a classifier. The labeled dataset, L, was balanced to
prevent the model from being skewed. In this experiment, three classifiers, RF,
SVM and NB, are trained and used to classify the instances in the pool of unlabeled
datasets, U . Various metrics like accuracy, precision, recall, ROC curve and PR curve
were used to evaluate the Active Learning models. Since the CLSA dataset is highly
imbalanced, the PR curve is a better metric for evaluating model performance. SVM
clearly outperformed Random Forest and Naïve Bayes which was verified by manual
checking of the instances labeled as no-opinion responses. Additionally, the AUC
score of the PR curve classifier was 0.97 for the SVM classifier, better than that of
Random Forest and Naïve Bayes, which scored 0.81 and 0.83, respectively.

5.2 Limitations

The Active Learning approach requires human assistance, and hence, it relies on the
human expert’s knowledge. Occasionally, the expert can be biased, affecting the re-
sults obtained. Further, a severely imbalanced dataset makes it challenging to collect
and label a subset of the dataset for training, and it also affects the results obtained
from the Unsupervised approach. However, the most challenging task is evaluating
the clustering performance. Since the labels obtained from Active Learning are used
as the gold standard, the clustering performance metrics cannot be wholly accurate.

5.3 Generalizing our Approach

The Active Learning approach mentioned in this thesis can also be applied to surveys
other than CLSA as well as the datasets containing unlabeled textual data.

5.4 Future Work

As discussed in the earlier sections, a significant contribution was detecting no-
opinion responses in the CLSA dataset. However, every solution naturally generates
more questions. We hope that the work presented in this thesis will motivate further
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work to explore the uses of Active Learning within Machine Learning and Statistics.
Therefore, this section introduces some of the research directions which are closely
related to the work in this thesis and appear promising:

• It will be interesting to extend this research and analyze the results with dif-
ferent similarity measures coupled with different embeddings.

• Combine exploitation-based methods with exploration-based methods. Explo-
ration-based selection strategies are preferable in the initial learning stage, and
with more labeled examples, exploitation-based selection strategies are more
powerful. A better choice would be a combined method of exploration with
exploitation.

• Considerable work has already been done researching stopping criteria for ac-
tive learning. The stopping criterion establishes the balance between the num-
ber of labels provided by the user and the accuracy of the labels applied by the
system. The gradient of the performance estimate can be a good stopping cri-
terion; though the studies have been conducted only on NER, it can be applied
to any active learning setting based on uncertainty sampling.

• Different initialization data can be tested to improve the initial model stability
and representativeness of the whole data pool. The seed data initialization
influence on the active learning performance must also be researched.

• Since the training dataset is small, Deep Learning cannot be used. But, Siamese
Recurrent Neural Network [64] can be used for text similarity to find the most
distinct sentences within the data pool and label those instances. This ap-
proach would be interesting to look at. Another approach, a combination of
Active Learning and Generative Adversarial Neural Networks, could be tried
on textual data since it already shows promising results on the MNIST image
dataset [106].

• The Active Learning approach mentioned in this thesis can also be applied
to surveys other than the CLSA. In order to do so, the labeled dataset, L,
should be selected and labeled. The classifier selection depends on the problem
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being solved. Further, adjustments to the classifier boundary should be made
accordingly.
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