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ABSTRACT 

 

 Metabolomic technologies have been utilized increasingly in tandem with 

sequencing technologies in microbiome studies. Combined microbiome-metabolome 

approaches have fueled the discovery of many convincing associations between disease-

associated metabolites and the microbial taxa and genes driving their variation, and new 

computational tools to integrate these datasets are just emerging. A subset of these tools 

can mathematically predict the metabolic activity of the microbiome using the genomic 

content encoded in the microbiome. If these tools are accurate, they could allow researchers 

to circumvent the difficult and time-consuming process of performing metabolomics 

experiments by generating metabolite data using microbiome sequencing data alone, 

however few groups have validated their predictions against experimentally measured data. 

I sought to examine the performances of six metabolic modelling tools by calculating the 

correlations between predicted and experimentally measured metabolite profiles using 

paired sequencing and metabolomic data taken from the human gut and vaginal 

microbiomes. Out of all surveyed tools, MelonnPan generated predictions that were 

correlated best to experimentally measured data, although the observed correlations were 

generally poor across all tools and varied depending on sample characteristics such as 

donor disease status and sampling site. I did not observe any metabolites that were robustly 

predicted across all datasets and tools, and in addition all tools generally performed poorly 

in identifying differentially abundant metabolites. In this work, I have demonstrated the 

feasibility of predicting metabolites solely from microbiome sequencing data, while raising 

important limitations relating to the robustness of these predictions.  
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CHAPTER 1 – INTRODUCTION 

 

Microscopic organisms, or microbes, are the oldest and most ubiquitous lifeforms 

on Earth, occupying a diverse array of habitats from the ocean depths up to the near-surface 

atmosphere. Microbes have adapted and thrived within these many different ecological 

niches, carrying out important biogeochemical processes essential towards the cycling of 

nutrients worldwide (Colwell, 1997; Falkowski, Fenchel, & Delong, 2008). Many trillions 

of microbes have also evolved to live in association with human bodies, where in exchange 

for a warm, moist habitat and a steady flow of nutrients they contribute key biological 

processes essential towards the maintenance of bodily equilibrium (Valdes, Walter, Segal, 

& Spector, 2018). Collectively, the entire catalogue of living microorganisms and viruses 

that colonize the human body are known as the microbiota, and together with their genomic 

contents and metabolic activities they make up the human microbiome. 

Owing to the positive metabolic activities it contributes to the human body, the 

microbiome has been alternatively described as the “last” or an “additional” organ within 

the body (Berg et al., 2020). Other efforts to conceptually define the human body as a 

“super” or “meta”-organism further highlight the growing appreciation of the symbiotic 

interdependence between host and microbiota within the scientific community. Though 

estimates of microbial cell counts within the microbiome have been revised downwards 

and remain considerably uncertain, microbial cells are still estimated to outnumber human 

cells by a margin of 1.3:1 (Sender, Fuchs, & Milo, 2016). This figure belies the 

microbiome’s substantial contribution to the human body’s pool of genetic diversity – 

within the gut, the most densely colonized organ within the human body, the microbiome 

is estimated to encode over 100-fold more genes compared to human cells (Qin et al., 

2010). The end products of these encoded genes are low molecular weight compounds, or 

metabolites. These metabolites serve important roles in the body as cell-to-cell signalling 

molecules, growth factors, or exist as fuel for microbial and human cells alike.  

Our microbiome can modulate human health outcomes by synthesizing or 

degrading these metabolites, but how can we determine which microbes or microbial genes 

are responsible for driving their variation in the human body? Rapid advancements in 

microbiome and metabolome profiling technologies may bring us closer to answering this 
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question, although finding ways to interpret these complex data meaningfully is a 

continuing challenge. On the other hand, mathematical modelling strategies now enable us 

to infer the composition of the metabolome – the entire catalogue of metabolites within a 

given setting – from the encoded genetic information of the microbiome. Potentially, these 

tools could allow researchers to circumvent the complicated process of directly measuring 

metabolites within human-microbiome samples and provide tractable tools to assess the 

metabolic effects of altering the microbiota. However, few groups have sought to evaluate 

whether these tools generate results that are comparable to metabolite data obtained 

through traditional analytical techniques. In this thesis, I describe a systematic meta-

analysis performed to gauge the performance of these tools regarding their relatedness to 

experimentally acquired metabolomics data and whether they might be suitable as proxies 

for these data. 

 

 

1.1 Microbial metabolism and disease 

 

The human body plays host to a diverse consortium of microbes of varying 

taxonomic identity and metabolic potential. Dense colonies of microbes are resident to the 

skin, the lungs, the genitals, and the entire length of the gastrointestinal tract. These 

microbes do not colonize the body uniformly – the density, taxonomic composition and 

encoded metabolic processes of the microbiota differ across the many niches of the 

microbiome, even within the same apparent body site. For instance, bacterial densities 

along the large intestine – from which most of our understanding of the microbiome has 

been gleaned – follow an ascending gradient from the proximal to distal colon (Sartor, 

2008). Microbes resident to the large intestine are predominantly anaerobic, a reflection of 

the oxygen-scarce conditions within the gut lumen, and must utilize a variety of 

degradative pathways and cross-feeding strategies to scavenge carbon and energy from 

complex polysaccharides that have escaped host digestion machinery. Past studies however 

have uncovered important differences between luminal and mucosa-associated bacteria, 

notably that accumulated oxygen within the gut mucosa permits the formation of radially 

distributed microenvironments in which communities of aerotolerant, non-saccharolytic 
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bacteria may proliferate near the gut epithelium (Albenberg et al., 2014).  

Beyond the topographical variation of the gut landscape, gene catalogue studies of 

the microbiome have also revealed staggering levels of genetic diversity at the inter-

individual level. Findings gleaned from large cohorts such as the MetaHit and the Human 

Microbiome Project (HMP) cohorts have identified upwards of ten million non-redundant 

genes encoded by our intestinal microbiota (Qin et al., 2010, Li et al., 2014). A more recent 

study has revised this figure upwards to over 22 million genes, of which nearly one-half 

were found in no more than a single participant (Tierney et al., 2019). Other efforts to 

enumerate the microbial gene catalogue in the oral cavity (Tierney et al., 2019), the vagina 

(Ma et al., 2020), and the skin (Li et al., 2021) highlight the substantial cache of microbial 

functional diversity across the human body. 

The genetic variation inherent to the microbiome underscores its tremendous 

capacity to modulate human health by influencing the metabolic landscape of the host (Lee-

Sarwar, Lasky-Su, Kelly, Litonjua, & Weiss, 2020). A key question in many microbiome 

studies relates to the microbiota’s potential to impact the health of their host through its 

metabolic activity. Below, I describe some of the best-characterized examples of microbial 

metabolites that have strong associations with human health outcomes. 

 

 

1.1.1 Trimethylamine/trimethylamine N-oxide 

 

Trimethylamine N-oxide (TMAO) and its precursor trimethylamine (TMA) are 

metabolites formed from the conversion of choline, L-carnitine, and lecithin (Janeiro, 

Ramírez, Milagro, Martínez, & Solas, 2018). Studies in the past decade have uncovered 

convincing links between the microbiota-dependent metabolism of TMA and increased 

risks for cardiovascular diseases, providing one of the most compelling examples of how 

the interplay between host, microbiome, and diet can impact human health through a single 

microbial metabolite.  

Until recently, TMAO/TMA dysregulation had been mostly discussed in relation 

to trimethylaminuria, an otherwise benign disorder characterized by strong body odours 

resulting from the accumulation of TMA in the sweat and urine (Fennema, Phillips, & 
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Shephard, 2016). Dysfunctional TMAO/TMA metabolism begins with the diet, wherein 

foods such as red meats and fish – naturally abundant sources of TMAO, TMA, and its 

precursors – are consumed. Colonic bacteria readily convert these substrates to produce 

TMA which is further oxidized by host enzymes to form TMAO in the liver. Studies in the 

past decade have implicated TMAO accumulation in the blood plasma as a risk factor for 

cardiovascular disease, possibly through the inhibition of reverse cholesterol transport by 

foamy macrophages (Wang et al., 2011; Koeth et al., 2013; Heianza, Ma, Manson, 

Rexrode, & Qi, 2017).  

As conversion of TMA to TMAO is dependent on the microbiota, prevailing 

hypotheses on how to reduce TMAO levels in the blood have centered around microbiome-

targeted or dietary interventions. Several groups have demonstrated that adherence to a 

Mediterranean diet – which is low in red meat consumption – can reduce TMAO levels in 

cohort studies (De Filippis et al., 2016; Pignanelli et al., 2018). Reducing choline-

dependent TMA formation in the gut through targeted inhibition of gut microbial 

metabolism with a choline analogue has been shown to reduce plasma TMAO levels and 

atherosclerotic plaque development in mouse models (Wang et al., 2015). In addition, 

microbial engraftment with methanogenic archaeal species in mice fed a high choline diet 

has also been demonstrated to reduce plasma TMAO levels (Ramezani et al., 2018), 

demonstrating the feasibility of a microbiome-targeted therapy to counteract the effects of 

dysfunctional TMAO metabolism. 

 

 

1.1.2 Short-chain fatty acids 

 

The principal end-products of anaerobic fermentation within the colon are short-

chain fatty acids (SCFAs), which carry out a multiplicity of functions throughout the 

human body (Tan et al., 2014). Structurally complex and otherwise amylase-resistant 

carbohydrates (and to a lesser extent proteins) that reach the large intestine are fermented 

into these simple organic compounds, comprised of a single carboxylic acid group bonded 

to aliphatic carbon tails 1-6 carbons in length. 

The three most abundant SCFAs in the colon – acetate, butyrate, and propionate – 
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play important roles in the local maintenance of gut homeostasis including but not limited 

to the maintenance of tight junctions between gut epithelial cells (Peng, Li, Green, 

Holzman, & Lin, 2009), the promotion of immunotolerance through regulatory T cell 

proliferation (Smith et al., 2013), and the stimulation of mucus production (Finnie, 

Dwarakanath, Taylor, & Rhodes, 1995). Additionally, intermediary SCFAs such as 

formate, succinate, and lactate help promote the maintenance of gut diversity and 

syntrophy by acting as substrates in cross-feeding interactions which ultimately produce 

butyrate and propionate as end-products (Blaak et al., 2020). Though the vast majority of 

SCFAs are consumed locally through cross-feeding with resident microbes or by colonic 

epithelial cells as energy sources, a small fraction of these SCFAs pass into the portal blood 

and are dispersed to peripheral tissues (Cummings, Pomare, Branch, Naylor, & 

Macfarlane, 1987). Butyrate and propionate are rapidly removed from the portal circulation 

by the liver, with the latter acting as a minor substrate in hepatic gluconeogenesis (Perry et 

al., 2016). Acetate readily passes the blood-brain barrier into the brain where it functions 

as an appetite regulator (Frost et al., 2014).  

Reflecting their numerous physiological functions, dysregulation of SCFA levels 

in the gut has been linked to many different human maladies such as neurological disorders 

(Silva, Bernardi, & Frozza, 2020), obesity and other metabolic disorders (Kim, Yao, & Ju, 

2019), and inflammatory bowel disease (IBD; Parada Venegas et al., 2019). Decreased 

abundances of SCFA-producing bacteria and SCFAs – particularly butyrate – in the stool 

and mucosa are a reliably reproducible finding in active cases of IBD (Huda-Faujan et al., 

2010; Machiels et al., 2014). Although SCFA irrigation in clinical trials has seen mixed 

success in inducing disease remission for active IBD (Scheppach et al., 1992; Breuer et al., 

1997), increasing SCFA production through dietary or probiotic interventions has been 

proposed as a potential therapeutic (Parada Venegas et al., 2019). 

 

 

1.2 Omics surveys of the microbiome 

 

TMA/TMAO and SCFA metabolism in the gut are just two of the best-understood 

mechanisms through which the microbiome has been shown to influence human health 
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outcomes. Recent technological developments have greatly empowered the discovery of 

many more associations between microbial metabolism and emergent host phenotypes 

such as human disease. Omics technologies permit the collection of comprehensive, high-

dimensional data which encapsulate different levels of biological information – DNA, 

RNA, proteins, and metabolites (Abram, 2015; Mallick et al., 2017). In particular, an 

increasing number of studies are relying on the simultaneous profiling of both microbiome 

sequencing data and metabolite data to identify disease-associated metabolites and the 

potential microbial determinants – microbial taxa and genes – driving their variation 

(Noecker, Chiu, McNally, & Borenstein, 2019). To highlight one example: Lloyd-Price et 

al., utilized this combined omics approach in a large cohort of IBD patients to link 

depletions in the obligate aerobes Faecalibacterium prausnitzii and Roseburia homini to 

reductions in metabolites such as SCFAs and secondary bile acids (Lloyd-Price et al., 

2019). This strategy has been similarly applied to study host-microbiota dynamics across 

various diseases such as coronary heart disease (Feng et al., 2016), bacterial vaginosis (BV; 

Srinivasan et al., 2015), diabetes (Pedersen et al., 2016), pulmonary disease (Bowerman et 

al., 2020), and colorectal cancer (CRC; Yachida et al., 2019).  

Collectively, these approaches have been described as top-down or systems 

approaches, as they seek to catalogue as many constitutive parts of the microbiome as 

possible to generate and corroborate broad hypotheses on how these different parts interact 

with one another. Such studies can help create hypotheses as to how microbes behave in 

situ across different human phenotypes, which in turn may inform the development of 

novel microbiome-directed therapies to combat human disease (Heinken, Basile, Hertel, 

Thinnes, & Thiele, 2021). However, as I will discuss later, interpreting these data 

meaningfully in tandem remains a significant challenge.  

 

 

1.3 Sequencing approaches for the microbiome 

 

As mentioned, a common motivation of these studies is to identify convincing 

associations between the metabolic potential of the microbiota and specific human 

phenotypes. To this end, studies of the microbiome will often begin by cataloguing the 
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taxonomic composition – the identities and corresponding abundances of the microbes, and 

the functions – the genes and pathways that may potentially be active, within the resident 

microbiota. 

Historically, microbiome samples were characterized by isolating, culturing, and 

biochemically characterizing pure isolates on permissive growth media. This approach was 

constrained by its low throughput, coupled with the fact that only a small fraction of 

microbes observed in situ could be recovered on standard laboratory media (Staley and 

Konopka, 1985). Culture-dependent techniques gradually gave way to culture-independent 

techniques in which microbial communities were profiled through DNA and RNA 

sequencing, rather than through the recovery of pure isolates (Escobar-Zepeda, Vera-Ponce 

de León, & Sanchez-Flores, 2015). 

In the past two decades, rapid advancements in both sequencing platforms and 

bioinformatics pipelines have led to a great deal of interest in microbiome research from 

both the scientific and the public sphere, and a commensurate expansion in publicly 

available microbiome data (Stephens, Lee, Faghri, Campbell, & Zhai, 2015). Sequencing 

data is being deposited into the Sequence Read Archive (SRA), the world’s largest 

depository for high-throughput sequencing data, at rates which necessitate novel strategies 

to cope with the growing storage needs (Kodama, Shumway, & Leinonen, 2012). Next-

generation sequencing technologies – sequencing instruments with high throughput 

capabilities – have fueled much of this expansion by allowing researchers to 

simultaneously sequence multiple samples rapidly in parallel, while removing the need for 

tedious and time-consuming cloning experiments with Escherichia coli that typified earlier 

culture-independent approaches. Below, I provide an overview of the sequencing 

approaches used to probe the microbiome. 

 

 

1.3.1 Amplicon sequencing 

 

The most widely used sequencing approach in microbiome research is amplicon 

sequencing. Herein, a well-conserved segment of the genome, often referred to as a marker 

gene, is targeted for polymerase chain reaction (PCR) amplification. These amplicons are 
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subsequently sequenced to determine the taxonomic makeup of the sequenced microbes 

and their corresponding abundances. Marker genes are selected on the basis of how 

universally conserved they are across the taxonomic grouping you wish to study (e.g. 

across all bacteria), and for their capacity to discriminate between different lineages within 

that taxonomic grouping (e.g. different species of bacteria) by studying accumulated 

mutations within that marker gene. The principal marker genes used in amplicon 

sequencing are the 16S ribosomal RNA (rRNA) gene (which cover archaea and bacteria), 

the 18S rRNA gene (eukaryotes), and the internal ribosomal spacer (fungi).  

16S rRNA gene sequencing is the most common choice for researchers aiming to 

study the bacterial population within the microbiome. The principles behind 16S rRNA-

based phylogeny were pioneered by Carl Woese, who proposed the existence of archaea as 

a phylogenetically distinct kingdom of life based on studies of sequence homology in the 

16S rRNA gene (Woese & Fox, 1977). Since this pivotal paper, 16S rRNA sequencing has 

been used to identify associations between members of the microbiota and a number of 

diseases with poorly-understood causes such as obesity (Turnbaugh et al., 2009), Crohn’s 

disease (CD; Willing et al., 2009), and Parkinson’s disease (Scheperjans et al., 2015). 

The 16S rRNA gene encodes part of the 30S small ribosomal subunit in bacteria 

and archaea and spans roughly 1600 base pairs in length. Nine ‘hypervariable’ regions (V1 

- V9) are interleaved within the otherwise highly-conserved gene sequence. A basic 

workflow for 16S rRNA gene sequencing typically begins with the PCR amplification of 

extracted DNA. Primer pairs designed to match with any two universally conserved regions 

of the 16S rRNA gene are used to amplify one or more hypervariable regions. Researchers 

can then sequence the resultant amplicon products, resolve products into individual 

taxonomic units or amplicon sequence variants (ASVs; Callahan et al., 2017) and assign 

taxonomy to these ASVs by examining their sequence similarities against public databases 

containing known 16S rRNA gene sequences with matching taxonomic identifiers. Various 

dedicated databases have been assembled for this purpose with corresponding trade-offs in 

size and taxonomic resolution (Balvočiūtė & Huson, 2017), such as GreenGenes (DeSantis 

et al., 2006), SILVA (Pruesse et al., 2007), EzTaxon (Chun et al., 2007), and the Ribosomal 

Database Project (Cole et al., 2009). 

At present, several competing next-generation sequencing technologies are 
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available for amplicon sequencing (Buermans & den Dunnen, 2014). Most next-generation 

sequencers build upon the basic “sequencing-by-synthesis” approach laid out by Frederick 

Sanger, whereby the sequence of the DNA template is determined by detecting which 

nucleotides are added by DNA polymerase. In Sanger sequencing, chain-terminating 

dideoxynucleotides (ddNTPs) are selectively incorporated during in vitro DNA replication 

to generate fragments of different intermediary lengths (Sanger, Nicklen, & Coulson, 

1977). Fluorescent tagging of ddNTPs enables researchers to iteratively determine the 

sequence of the DNA template by observing the fluorescent colours of the size-resolved 

fragments. Sanger sequencing is appropriate only for a single DNA template, requiring a 

labour-intensive cloning step to generate libraries from samples with mixed communities 

of microbes, and was gradually supplanted by next-generation technologies for 

microbiome sequencing projects. Next-generation approaches have altogether eliminated 

this cloning step using barcoded primers while massively parallelizing sequencing 

reactions to generate millions of fragments in a single run. The 454 Life Sciences method 

of pyrosequencing, considered the first next-generation technology to be made 

commercially available, utilizes beads to partition and immobilize barcoded DNA strands 

for sequencing in a highly parallel fashion (Margulies et al., 2005). Several initial rounds 

of solid-phase PCR occur, generating clusters of clonal template DNA ligated to beads. 

One of four nucleotides are iteratively incorporated, resulting in the release of 

pyrophosphate and the generation of detectable light in a luciferase-catalyzed reaction. 

Though capable of generating reads of up to 800 bp, pyrosequencing suffered from high 

costs of reagents and high error rate and was recently discontinued after production of the 

instrumentation and its reagents were ceased in 2015 by its parent company Roche (Slatko, 

Gardner, & Ausubel, 2018).  

Today, microbiome sequencing projects are most commonly carried out on 

Illumina sequencers, which can capture short-reads upwards of 300 bp in length. Much like 

in pyrosequencing, Illumina sequencing involves several initial rounds of solid-phase PCR 

(termed “bridge” amplification) to generate local clusters of template DNA, a necessary 

step to enhance the signal-to-noise ratio. During sequencing, one of four nucleotides 

bonded to fluorescently labelled chain-terminating tags are incorporated, allowing cameras 

to iteratively capture the sequences of the growing strands through successive cycles as the 
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chain terminator is enzymatically cleaved off and synthesis resumes. Sequencing runs take 

place on flow cells containing multiple physically segregated lanes, allowing dozens of 

barcoded samples to run in parallel. Other competing technologies include PacBio and 

Nanopore, which can capture reads upwards of 100 Kbp in length (Pollard, Gurdasani, 

Mentzer, Porter, & Sandhu, 2018). Presently, while Illumina delivers higher base calling 

accuracies, greater throughput and lower costs per base compared to both PacBio and 

Nanopore, gradual improvements to error correction algorithms and throughput for both 

PacBio and Nanopore sequencers (Amarasinghe et al., 2020; Pollard et al., 2018; Rang, 

Kloosterman, de Ridder, 2018) make them increasingly attractive options for researchers 

aiming to sequence the entire length of the 16S rRNA gene. 

There are several potential pitfalls that should be considered before embarking on 

an amplicon sequencing project. First and foremost, 16S rRNA sequences alone provide 

no information on the functional content (genes and pathways) of the microbiome. 

Bioinformatic tools such as PICRUSt2 (Douglas et al., 2020), Piphillin (Iwai et al., 2016), 

and Tax4Fun2 (Wemheuer et al., 2020) can map ASVs obtained through 16S rRNA 

sequencing to known reference genomes to infer the genes present within a sample. 

However, the ability of these tools to convincingly detect differentially abundant genes is 

still under debate (Douglas et al., 2020).  

A common complaint of 16S rRNA sequencing relates to the limited taxonomic 

resolution it confers. Because 16S rRNA sequences from species in the same genus may 

share high sequence similarities despite substantial genotypic variation outside of the 16S 

rRNA sequence, obtaining accurate species-level classifications through amplicon 

sequencing is often not possible (Jovel et al., 2016; Konstantinidis et al., 2006). Some 

groups have demonstrated that long-read sequencing technologies can potentially achieve 

strain-level resolution, provided that the entire 16S rRNA gene is appraised (Johnson et al., 

2019; Jeong et al., 2021). This unfortunately precludes short-read technologies (e.g. 

Illumina sequencers), requiring its users to make non-trivial decisions as to which regions 

to target for amplification. Different regions and primer pairs have been shown to 

systematically bias community composition owing to uneven primer specificities across 

different groups of bacteria (Klindworth et al., 2012). Generally, genus-level classifications 

are much more easily achieved compared to species-level classifications (Wang, Garrity, 
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Tiedje, & Cole, 2007). 

Despite these shortcomings, 16S rRNA sequencing remains one of the most 

accessible and versatile means to characterize microbiome samples. Altogether, it is 

important that, for microbiome studies to be compared against one another, researchers 

should endeavour to standardize sample collection protocols, sequencing platforms, and 

processing pipelines to minimize the compounding effects of bias across studies (Nearing, 

Comeau, & Langille, 2021).  

 

1.3.2 Metagenomic shotgun sequencing 

 

While amplicon sequencing can be a powerful tool to study microbial diversity, 

16S rRNA sequences alone do not provide any meaningful insight on the functional 

potential of the microbiome. An alternative approach to amplicon sequencing – 

metagenome sequencing – utilizes untargeted “shotgun” sequencing techniques to capture 

all the DNA present within an environment. Thus, unlike 16S rRNA sequencing, MGS can 

survey the functional potential of the microbiome, without the need for additional 

prediction tools. Correspondingly, metagenomic sequencing projects typically yield 

greater amounts of data at the cost of being more expensive to run and more 

computationally difficult to analyze effectively. 

Modern metagenome sequencing projects for the microbiome employ the basic 

shotgun sequencing approach, whereby environmental DNA is extracted and randomly 

sheared in preparation for sequencing. The very first metagenomic shotgun sequencing 

(MGS) experiment was performed on marine microbes using fosmids – stably-maintained, 

low copy number plasmids that can tolerate exceptionally large inserts – as cloning vectors 

for fragments of environmental DNA in E. coli (Stein, Marsh, Wu, Shizuya, & DeLong, 

1996). Since then, technological developments in sequencing platforms (covered in 1.3.1) 

have allowed us to dispense with the cloning steps during library preparation. Much like 

for amplicon studies, MGS projects most often utilize short-read Illumina sequencers to 

sequence barcoded reads accurately and rapidly (Quince, Walker, Simpson, Loman, & 

Segata, 2017). The Illumina HiSeq and NextSeq platforms are favoured over the mid-range 

MiSeq platform primarily because of the much greater sequencing depths offered – a single 
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HiSeq run will generate nearly two orders of magnitude more data compared to a MiSeq 

run (Caporaso et al., 2012). Because of the high proportions of “contaminating” host DNA 

within some sampling sites in the human body, higher sequencing depths are often 

necessary to obtain adequate coverage of the microbial DNA fraction in a sample (Pereira-

Marques, et al., 2019). Although less common, long-read technologies such as PacBio and 

Nanopore can be used for MGS – long-read capabilities are well-suited for researchers who 

intend to assemble DNA fragments into longer sequences (Xie et al., 2020; Latorre-Pérez, 

Villalba-Bermell, Pascual, & Vilanova, 2020).  

Shotgun sequences are more difficult to process compared to amplicon sequences, 

owing both to their highly fragmentary nature and the much greater volume of data that is 

generated. After sequencing has concluded, processing pipelines must make sense of 

hundreds of millions of short DNA fragments of indeterminate origin within a sample. Host 

DNA, which can comprise upwards of >90% of sequenced reads in certain human sample 

types (Lloyd-Price et al., 2017), must also be excluded depending on the specific research 

question being addressed. After quality-control and filtration, sequences can then be 

taxonomically and functionally characterized.  

There are two basic approaches for profiling metagenome sequences: assembly-

based metagenomics in which short reads are stitched together into contigs and analyzed 

as sets of genomes, or read-based metagenomics which forgo the assembly step entirely 

and characterize sequenced reads independently of one another. Assembly-based 

metagenomics permit the reconstruction of metagenome-assembled genomes (MAGs), 

through which groups have gleaned important insights into the metabolism of previously 

unknown microbes (van Kessel et al., 2015; Daims et al., 2015). However, genome 

assembly demands heavy computational resources and requires sufficient genome 

coverage to produce high-quality MAGs (Quince et al., 2017). Researchers who simply 

wish to catalogue microbial taxa and genes within environments that have already been 

well-studied (such as the gut) may choose to utilize a read-based approach instead, which 

is comparably simpler and typically less computationally intensive to execute. 

MetaPhlAn2 (Truong et al., 2015) is a popular read-based pipeline which estimates 

taxonomic abundances based on clade-specific markers. MetaPhlAn2 outputs can 

additionally be piped into HUMAnN2 (Franzosa et al., 2018) to quantify gene and pathway 
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abundances and enumerate the genic contributions of specific taxa. 

The comprehensive data produced through this complex process is especially 

valuable for researchers aiming to study the microbiome in greater granularity than can be 

afforded through amplicon sequencing. MGS can reach strain-level resolution with 

dedicated pipelines such as ConStrains (Luo et al., 2015), StrainPhlAn (Truong, Tett, 

Pasolli, Huttenhower, & Segata, 2017), and PanPhlAn (Scholz et al., 2016). Additionally, 

when sequencing depth is sufficiently high, MGS can recover low-abundance taxa more 

effectively than 16S rRNA sequencing (Durazzi et al., 2021). Achieving strain-resolution 

is important considering that strains within the same species may differ greatly in their 

functional gene content and occupy metabolically distinct niches within the microbiome 

(Rasko et al., 2008; Tenaillon, Skurnik, Picard, & Denamur, 2010). 

Functional data retrieved through MGS can provide important insights into how 

ecosystem-level phenotypes, such as human disease, emerge from the sum of its parts. 

Disease-linked functions identified through metagenomics can then be used to guide or 

otherwise corroborate testable hypotheses on microbiota-derived disease mechanisms. To 

highlight an example, multiple studies have observed dysregulation in L-arginine uptake 

and biosynthetic pathways in the gut microbiome of individuals with CD (Coburn et al., 

2016; Vich Vila et al., 2018). These findings have been further tested through in vivo 

models of colitis in mice receiving diets enriched with L-arginine, the results of which have 

demonstrated the protective effects of L-arginine supplementation in active colitis (Singh 

et al., 2019). 

 Amplicon and metagenomic sequencing give only a partial snapshot of the 

microbiome. Sequencing data may yield biologically plausible leads as to which taxonomic 

groups and genes are contributing to an emergent host phenotype. However, because it 

cannot assay biochemical activity directly, sequencing alone provides very little insight on 

the potential metabolic outcomes of broad taxonomic or functional shifts in the microbiome 

(Aguiar-Pulido et al., 2016). In addition, a large fraction of microbial genes identified 

through MGS remain poorly characterized and cannot yet be functionally annotated 

(Prakash & Taylor, 2012). Integration of complementary approaches such as single cell 

genomics or additional biological information through metatranscriptomics, 

metaproteomics, or metabolomics may help close these gaps. 
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1.4. Metabolomics for the microbiome 

 

Metabolomics – defined as the comprehensive surveying of low molecular weight 

compounds within a biological sample – is a particularly valuable approach for 

understanding how potential microbial functions might translate to realized microbial 

activity (Aguilar-Pulido et al., 2016). Because metabolites form the end products of all 

cellular processes, the composition of the metabolome can be considered as an endpoint 

readout of the compositional and functional structure of the microbiome (Bernini, Bertini, 

Luchinat, Nepi, & Saccenti, 2009; Fiehn 2002). For this reason, metabolomics can serve 

as an excellent complement to sequencing approaches in microbiome studies. 

Approaches for studying the metabolome fall into two general categories: targeted 

and untargeted metabolomics. Targeted metabolomics aim to quantify the abundances of a 

pre-determined group of chemicals. These chemicals are selected based on a priori 

knowledge regarding their biological activity within the system under study. In contrast, 

untargeted metabolomics is utilized most often as a hypothesis-generating tool and focuses 

rather on the global detection of all metabolites in a sample. Global metabolite data 

collection can greatly empower the discovery of microbially-derived metabolites that may 

be associated with disease in microbiome studies. However, the volume and complexity of 

these data generated can vastly prolong data processing and complicate downstream 

statistical analyses (Schrimpe-Rutledge, Codreanu, Sherrod, & McLean, 2016). Key 

challenges relate to the identification of chemicals that are underrepresented in chemical 

databases, and the standardization of instrumentation and informatic tools across labs. 

 

 

1.4.1 Metabolomics instrumentation 

 

 Metabolite measurements are most often collected through mass spectrometry 

(MS) or nuclear-magnetic resonance (NMR) spectroscopy. Both techniques possess highly 

complementary advantages and shortcomings that have been extensively reviewed 

elsewhere (Emwas 2015; Marshall & Powers, 2017). In brief, NMR benefits from greater 

reproducibility, scalability, non-destructive analysis and a simpler sample preparation 
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protocol – in many cases samples may be analyzed directly without an extraction step – 

but suffers from limited sensitivity. In contrast, MS is highly sensitive and capable of 

covering a much wider range of analytes, however considerable debate remains regarding 

best practices for chemical annotation as mentioned previously. MS has been more widely 

adopted compared to NMR owing to its lower costs of entry and greater sensitivity to low 

abundance compounds and thus will be the focus of this next section (Emwas et al., 2019).  

 

 

1.4.2 Generating mass spectrometry data 

 

While MS is a highly versatile technology and offers an overwhelming inventory 

of instruments and workflows that are highly complementary, in practice some techniques 

are favoured over others. This following description will focus on the most conventional 

instrumentation and methods – predominantly LC-MS based technologies – that are used 

in metabolomic studies of the microbiome. 

A typical MS run begins with the physiochemical separation of extracted 

metabolites on a chromatography column, most commonly liquid chromatography (LC) or 

gas chromatography (GC). Resolved analytes are fed into a mass spectrometer where they 

are ionized and deflected within the apparatus to calculate their corresponding mass-to-

charge (m/z) ratios and relative intensities.  

Metabolites are structurally heterogeneous – no single method can be expected to 

detect all compounds within a sample. Thus, it is not uncommon for samples to be run 

more than once using different methods to capture the greatest breadth of metabolites 

possible. While GC is generally considered the most reproducible separation technique, 

microbiome studies commonly utilize LC which benefits from a wider chemical coverage 

and greater sensitivity compared to GC-MS without requiring a chemical derivatization 

step (Lamichhane, Sen, Dickens, Orešič, & Bertram, 2018; Xu, Zhang, Zheng, Yuan, & 

Feng, 2019). Complementary LC techniques such as hydrophilic interaction 

chromatography (HILIC) or reverse phase liquid chromatography (RPLC) can enhance the 

recovery of hydrophilic and non-polar compounds respectively and are often used in 

tandem (Lloyd-Price et al., 2019; Poyet et al., 2019). LC separated analytes are most 
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commonly ionized through electrospray ionization (ESI), in which a high voltage is applied 

to the solvated molecules to evaporate the solvent and ionize the molecules through charge 

exchange. ESI can conveniently be operated to detect both positive and negative ions 

within the same run if desired (Pitt, 2009).  

Ionized molecules are redirected into the mass analyzer, through which ions are 

separated by their m/z while passing through an electromagnetic field or a time-of-flight 

tube. A broad range of mass analyzers are available with different performance 

characteristics relating to their mass accuracies, m/z scan ranges, and data acquisition 

speeds. Hybrid mass analyzers may also combine various aspects of these technologies to 

achieve different performance characteristics. (Zhou, Xiao, Tuli, & Ressom, 2012; El-

Aneed, Cohen, & Banoub, 2009) Some instruments support tandem MS (MS/MS) in which 

two or more mass analyzers are arranged in series or in time (through ion traps). Herein, 

precursor ions passing through the first mass analyzer (MS1) are selectively fragmented 

and detected by a second mass analyzer (MS2) to generate mass spectra for product ions 

(Griffiths et al., 2010). The additional mass spectra obtained through MS/MS can help 

resolve chemical species with similar m/z ratios.  

Both targeted and untargeted metabolomics share the same instrumentation, albeit 

high resolution MS (HRMS) techniques such as quadrupole time-of-flight (QTOF) or 

quadrupole orbitrap (Q-Orbitrap) are better suited for detecting chemical unknowns owing 

to their higher mass accuracy and ability to acquire MS1 data over a much wider m/z range. 

In contrast, triple quadrupole MS (QqQ) and quadrupole-ion trap (QIT) MS offer superior 

sensitivity and specificity when utilized for targeted analyses (Zhou et al., 2012). The 

choice of MS instrumentation and the data acquisition modes they were operated in will 

dictate the complexity of the data that is generated from an LC-MS experiment. For 

instance, data collected under multiple reaction monitoring (MRM) – a targeted approach 

in which ions with specific m/z spectra are scanned – are less complex compared to 

untargeted data generated by an HRMS operating on full scan mode.  
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1.4.3 Pre-processing mass spectrometry data 

 

The desired output of an MS experiment is a table of chemical feature abundances 

– a feature being a molecular analyte with a unique m/z ratio and a chromatographic 

retention time – against sample identifiers. To achieve this, pre-processing of raw MS data 

is necessary to remove artifacts and contaminants, pick peaks from the mass spectra, 

correct for drifts in retention time (and to a lesser extent m/z ratios), collapse redundant 

peaks together, and normalize signal intensities such that features can be readily compared 

across samples. (Zhou et al., 2012) 

Complete pre-processing workflows for targeted and/or untargeted data are 

available in commercial software such as Compound Discoverer (ThermoFisher) and 

MassProfiler Professional (Agilent), as well as popular, free alternatives like XCMS Online 

(Forsberg et al., 2018) and MZMine2 (Pluskal, Castillo, Villar-Briones, Orešič, 2010). 

While automation may save valuable person-hours, manual curation is still recommended 

for high-quality datasets. However, as sample sizes increase, the time spent manually 

curating data and optimizing tool parameters can quickly overwhelm teams without the 

requisite expertise (Coble & Fraga, 2014). In addition, comparisons of leading pre-

processing tools for untargeted data have demonstrated variable levels of concordance 

between tools, which may present challenges for standardization and reproducibility across 

the field (Coble & Fraga, 2014; Hao et al., 2018; Hohrenk et al., 2020). 

 

 

1.4.4 Compound identification 

 

Compound identification is a major bottleneck in untargeted LC-MS metabolomics, 

particularly when identifying compounds that lack chemical standards or are not well-

represented in spectral databases (Cui, Lu, & Lee, 2018). This step is extremely important 

to confer biological meaning and map chemical features to broader pathways (Alonso, 

Marsal, & Julià, 2015; Blaženović, Kind, Ji, & Fiehn, 2018). The most common approach 

is to match orthogonal parameters (m/z values, retention times, and fragmentation patterns) 

obtained from experimentally measured chemical features to those obtained from running 
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authenticated chemical standards or through spectral libraries, within the window of 

tolerance defined by the mass accuracy of the mass spectrometer. Searches can be run 

against vendor-specific or publicly available libraries of compounds such as the Human 

Metabolome Database (HMDB) (Wishart et al., 2007), BioCyc (Karp et al., 2019), 

METLIN (Guijas et al., 2018), and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG). Automated database searches are usually followed by extensive and tedious 

manual curation to remove spurious hits (Baran & Northern, 2013). 

Typically, only a small fraction of detected features can be identified through 

library searches, defining what has been conceptually described as dark matter – or features 

with unknown structures – in metabolomics (Blaženović et al., 2018; Silva, Dorrestein, & 

Quinn, 2015; Schrimpe-Rutledge et al., 2016). Difficulties relating to chemical 

identification may arise from the limited coverage of spectral libraries, (Matsuda, 2014; 

Schrimpe-Rutledge et al., 2016), the low reproducibility of LC-MS data (Zhou et al., 2012), 

or the lack of standardization in MS settings and instrumentation which can make database 

entries unsuitable or highly redundant in certain workflows (Cui et al., 2018; Dunn et al., 

2013). 

 

 

1.5 Identifying microbe-metabolite linkages in omics data 

 

The central motivation of paired sequencing-metabolomic microbiome studies is to 

identify potential interactions between the constitutive parts of the microbiome that can 

explain different host phenotypes e.g., disease. To achieve this, integration of sequencing 

and metabolomic data is an indispensable step towards contextualizing how biochemical 

shifts (measured via metabolomics) within the environment can be induced through 

changes in community structure and function across the microbiome (measured via 

sequencing; Mallick et al., 2017). 

The simplest and most popular approach is to treat sequencing and metabolite 

datasets as entirely independent datasets and evaluate for correlations between microbial 

features and metabolites (Chong & Xia, 2017) in a biologically naïve fashion. This data-

driven approach benefits from its straightforwardness and relative ease of use and has 
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consequently been implemented to varying levels of sophistication. Strikingly, univariate 

correlation-based analyses have been shown to produce unacceptably high levels of false 

positive links between metabolites and taxa that are otherwise unrelated to their synthesis 

and degradation (Noecker et al., 2019). Multivariate correlation-based tools which employ 

dimensional reduction to alleviate false discovery, such as Procrustes analysis (Gower, 

1975) or DIABLO (Singh et al., 2019), are viable alternatives to univariate statistics. 

However, these methods are still correlation-based and difficult to interpret meaningfully 

(Worley & Powers, 2013). Network analyses can readily incorporate a priori biological 

knowledge by representing taxa and metabolites as nodes and known interaction pairs as 

edges (Sung et al., 2017). Altogether, tool development for multi-omics analyses has 

accelerated rapidly over the past decade, and active research into new tools may elucidate 

new ways to incorporate biological knowledge. Comprehensive descriptions of these 

methods have been reviewed extensively in the literature (You et al., 2019, Chong & Xia, 

2017; Hooft et al., 2020; Lee-Sarwar et al., 2020). Notably, many of the most popular 

approaches described in these reviews fail to take full advantage of the biological 

knowledge available on known gene-metabolite interactions in their working principles.  

 

 

1.6 Predictive metabolic modelling of the microbiome 

 

 An alternative set of approaches seek to uncover associations between the 

microbiome and the metabolome by mathematically modelling these relationships from the 

ground up using a priori knowledge. These approaches have been collectively referred to 

as bottom-up approaches and work by computationally reconstructing patterns that are 

observed from the top-down e.g., measured through sequencing or metabolomics (Rolfsson 

& Palsson, 2015). This is done by integrating its constitutive parts e.g., taxa, gene, 

metabolite abundances, into a flexible, mathematically formulated scaffold for organizing 

prior knowledge (Garza & Dutilh, 2015). The requisite input for these tools is sequencing 

data – either taxa or gene abundances – which are then mathematically extrapolated to 

produce metabolite predictions that are representative of the microbiome’s community-

wide metabolic potential. Experimentally measured metabolomics data can be incorporated 
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into these tools either as parameters to improve model performance or as standards to 

quantify the relative contribution of the microbiome to the overall experimentally measured 

metabolome. 

 The metabolite predictions generated by these tools resemble experimentally 

measured metabolomics data in many ways. They are labelled with metabolite identifiers, 

the tables are typically high-dimensional, and they are populated with quantitative or semi-

quantitative values representing the magnitude of activity associated with that specific 

metabolite. Some of these tools have in fact been purposefully designed to mimic and/or 

have been expressly compared against metabolomics data by their authors (Mallick et al., 

2019, Garza, van Verk, Huynen, & Dutilh, 2018; Reiman, Layden, & Dai, 2021; Morton 

et al., 2019). Given the difficulty of obtaining untargeted metabolomics data relative to 

sequencing data, it is possible that they may be suitable alternatives for researchers who 

wish to biochemically characterize their microbiome samples but are not able to invest the 

substantial amount of time necessary to run an entire metabolomics experiment. Below, I  

describe some of the various approaches used by these metabolic modelling tools. 

 

 

1.7 Flux balance analysis 

 

 Flux balance analysis (FBA) is the oldest and most developed of these metabolic 

modelling approaches. FBA aims to mathematically solve the optimal flow, or flux, of 

substrate through a biochemical network within defined modeling constraints (Orth, 

Thiele, & Palsson, 2010). These biochemical networks, or genome-scale metabolic models 

(GEMs) contain comprehensive catalogues of all the metabolic reactions taking place 

within an organism and are typically reconstructed from annotated genomes and other 

biological information gleaned from literature (Thiele and Palsson, 2010).  

FBA calculates the optimal arrangement of metabolite fluxes that maximize a 

cellular objective within the constraints imposed by reaction stoichiometries, while 

operating under the steady-state assumption that metabolite concentrations cannot change 

over time. The cellular objective is typically growth – represented as a biomass equation 

that converts pre-determined ratios of macronutrients into cellular biomass – but can also 
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be re-defined by the user to maximize the production of a specific metabolite. Additional 

constraints can be applied to the system to investigate metabolite flux across different 

conditions, for example users can use experimentally measured metabolomics data to set 

upper and lower bounds for nutrient import/export or model the effects of gene knockouts 

or colonization with probiotic species (O’Brien, Monk, & Palsson, 2015). This makes FBA 

an extraordinarily flexible and tractable mechanism-driven tool with which to investigate 

microbe-metabolite interactions in silico. 

 GEM construction is a highly complex process – creation of a single high-quality 

model prior to the development of automated workflows typically took upwards of a year 

to complete (Thiele & Palsson, 2010). In, brief, this process begins with a complete, 

annotated genome of the target organism. The genes are retrieved and used to populate the 

metabolite space by mapping genes to gene-metabolite databases such as KEGG or 

HMDB. These metabolites are then assembled into broader pathways of metabolic 

reactions. Reactions are subsequently annotated with the appropriate stoichiometry and 

oriented in the correct directions. Models must also include the appropriate exchange 

reactions representing the organism’s ability to shuttle substrates across compartments. A 

biomass equation must then be defined, which typically involves combing literature or 

conducting carefully monitored culturing experiments. Orphan and dead-end metabolites 

arising from unfilled gaps in the metabolic network must be appropriately linked or culled 

entirely from the model. Model testing and refinement occurs throughout this process, and 

it is not uncommon for iterative improvements to be made to GEMs after this process has 

long concluded when newer information is made available (Feist & Palsson, 2008). 

Additionally, inclusion of metabolomics data for pure isolates grown in defined media can 

help guide GEM validation by ensuring that predicted metabolite fluxes are within range 

of experimentally measured values.  

Nowadays, tools such as Model SEED (Henry et al., 2010) or CarveMe (Machado, 

Andrejev, Tramontano, & Patil, 2018) enable the automated reconstruction of GEMs 

without the need for extensive manual curation. A newly released tool, metaGEM (Zorrilla, 

Buric, Patil, & Zelezniak, 2021), can reconstruct GEMs using sample-recovered MAGs, 

allowing researchers to model microbial metabolism within the FBA framework in a highly 

context-specific fashion. Pre-constructed GEMs may be obtained through dedicated 
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repositories such as BiGG Models (King et al., 2016) or the Virtual Metabolic Human 

database (Noronha et al., 2018). The AGORA consortium is a popular collection of over 

eight hundred human microbiota-specific GEMs that have been manually curated and 

validated by its authors (Magnúsdóttir et al., 2017). Flux balance analysis simulations of 

these models are typically carried out on large software suites or platforms such as the 

RAVEN (Wang et al., 2018) and COBRA toolboxes (Heirendt et al., 2019) which are 

available on MATLAB, or COBRA’s python equivalent COBRApy (Ebrahim, Lerman, 

Palsson, & Hyduke, 2013). Notably, some platforms allow the comprehensive integration 

of experimentally measured metabolomics data to improve model performance (Shoaie et 

al., 2015). 

 Up until the past decade, FBA had been restricted to estimating the growth of pure 

cultures or simple communities of two bacteria growing on defined media (Heinken, 

Basile, Hertel, Thinnes, & Thiele, 2021). Modern tools have now extended the application 

of FBA towards multispecies communities. This is typically accomplished by integrating 

multiple GEMs together into a single community model comprised of individually 

compartmentalized organisms all sharing a single extracellular environment where nutrient 

exchange can occur (Heinken et al., 2021). Tools such as OptCom (Zomorrodi & Maranas, 

2012), MICOM (Diener, Gibbons, & Resendis-Antonio, 2020), or the Microbiome 

Modelling Toolbox extension for COBRA (Baldini et al., 2019) utilize this community 

model approach. This approach necessitates strategies to apportion growth fairly across the 

community to avoid biologically implausible predictions in which growth is limited to a 

small subpopulation of fast-growing organisms (Diener et al., 2020). Another sophisticated 

multispecies approach eschews community models by modelling microbes 

spatiotemporally. Microbial metabolism is simulated on a two-dimensional grid that 

attempts to capture the spatial and temporal dynamics driving community structure. Tools 

utilizing this approach include BacArena (Bauer, Zimmerman, Baldini, Thiele, & Kaleta, 

2017) and ACBM (Karimian & Motamedian, 2020). 

MAMBO (Garza et al., 2018) utilizes a reverse-engineering approach to directly 

reconstruct the composition of the metabolome. Given a table of taxonomic abundances 

and associated GEMs for each taxon, MAMBO iteratively attempts to find an optimal set 

of metabolite import/export rates which yield microbial growth rates that best correlate 
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with observed taxonomic abundances. These import/export rates are then taken as proxies 

for metabolite abundances. MAMBO is the only FBA tool at present which purports to 

estimate metabolite abundances, rather than metabolite fluxes, and by extension cannot be 

used to estimate microbial growth or metabolite production. The authors were able to 

validate their metabolite predictions of oral, skin, stool, and vaginal samples using MS and 

NMR data (Garza et al., 2018), and additionally were able to apply MAMBO to predict 

metabolites that were important for the growth of CRC-associated taxa (Garza et al., 2020). 

 FBA-based metabolic modelling offers highly tractable, mechanism-driven tools 

for the study of microbe-metabolite interactions. Key challenges remain in the need for 

well-curated, experimentally validated GEMs and tools, and in the assumption of steady-

state conditions which may not hold true in complex environments such as the gut 

microbiome (Chen, Simons, & Maranas, 2017). Validation of FBA predictions can be 

performed by evaluating the concordance between predicted metabolite fluxes and 

experimentally measured metabolomics data, as many groups have done (Hale et al., 2018; 

Garza et al., 2018; Kumar et al., 2018; Shoaie et al., 2015; Mardinoglu et al., 2015). 

However, incongruencies between measured and predicted metabolite data may not be easy 

to interpret as it is not always clear whether these differences arise from insufficient 

reference information e.g. a GEM with missing pathways, or from unaccounted-for 

mechanisms regulating metabolite variation e.g. metabolite uptake by human cells (Mallick 

et al., 2019). Future developments in the field of FBA may help elucidate answers to these 

challenges. 

  

 

1.8 Gene abundance-based approaches 

 

 Gene abundance-based approaches for metabolic modelling aim to mechanistically 

estimate the metabolic potential of the microbiome by relating the abundance of annotated 

enzyme functions to the relative ability of the microbiome to synthesize or degrade 

metabolites. These tools are broadly based off the predicted relative metabolomic turnover 

(PRMT) methodology laid out by Peter Larsen (Larsen et al., 2011), whereby genes 

identified through metagenome sequencing are used to generate a network of metabolic 
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reactions and populate the metabolite space. This approach is conceptually similar to FBA, 

with the chief differences being that this network is formulated as a bag-of-genes and not 

compartmentalized by organism, and that PRMT assumes that the turnover rate of a 

metabolite is proportional to the number of genes encoding for its synthesis or degradation. 

Notably, PRMT provides only an estimate of the turnover rate of a metabolite relative to a 

reference sample and does not output metabolite fluxes or relative abundances. Using the 

PRMT methodology, Larsen et al., predicted the metabolic turnover within a coastal marine 

microbial community and their estimates correlated with experimentally measured 

metabolite abundances (Larsen et al., 2011) 

To date, three tools within this category have been described: the original PRMT 

method (Larsen et al., 2011), MIMOSA (Noecker et al., 2016), and its successor 

MIMOSA2 (Noecker, Eng, & Borenstein, 2021). MIMOSA is implemented in R and 

utilizes the PRMT approach to identify which microbial taxa or genes are contributing to 

metabolite variation and has been applied to characterize metabolic interactions in the gut 

microbiota of mice (Sharon et al., 2019) and children with autism spectrum disorder (ASD; 

Snijders et al., 2016). Its successor MIMOSA2 functions similarly but greatly expands its 

list of compatible data types and utilizes a different statistical heuristic to evaluate data for 

relationships between sequencing features and metabolites (Noecker et al., 2021). Neither 

MIMOSA nor MIMOSA2 were designed solely to predict metabolite data solely from 

sequencing features. However, they are capable of generating predictions, with MIMOSA 

having previously been benchmarked against other metabolite modeling tools that have 

been expressly designed to do so (Yin et al., 2020). 

The limitations associated with gene abundance-based approaches are largely 

shared with those utilizing FBA. Namely, they rely on complete and well-annotated 

genomes to build comprehensive metabolic networks. These networks are not expected to 

be as comprehensive as those offered in GEMs, as there is no gap-filling step to remedy 

orphan and dead-end metabolites and no ability to incorporate reversible reactions. In 

addition, the outputs generated by MIMOSA and MIMOSA2 have not endorsed by their 

authors as reliable alternatives for experimentally measured metabolite data. Regardless, 

gene abundance-based approaches are intuitive and relatively easy to implement despite its 

narrower field of applicability. 
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1.9 Machine learning approaches  

 

The application of machine learning to predictive metabolic modelling is a 

relatively recent development. These tools aim to capture microbe-metabolite linkages by 

identifying and extrapolating patterns across large quantities of high dimensional data 

(Liebal, Phan, Sudhakar, Raman, & Blank, 2020). Machine learning metabolic modelling 

operates in a predominantly data-driven fashion, thus these tools do not utilize known 

biological information as the above approaches do. In a typical workflow, model training 

is first performed on samples containing paired sequencing-metabolome data, and then the 

trained model is applied to an external set of samples with similar taxonomic features or 

genes to predict metabolite relative abundances. 

Three tools utilizing this general approach have been released: MelonnPan (Mallick 

et al., 2019), MiMeNet (Reiman et al., 2021), and mmvec (Morton et al., 2019). MelonnPan 

is implemented in R and applies an elastic net regularization strategy to train a model that 

can predict metabolic composition based on a small number of predictive features (i.e. taxa 

or genes). Well-predicted metabolites are identified in the training set, and the relative 

capacity of each predictive feature to associate with that metabolite linearly is determined. 

This model can then be used to predict the metabolite composition in samples for which 

there are only sequencing data available. The authors demonstrated the applicability of this 

approach beyond the human gut microbiome by successfully inferring metabolomes for 

vaginal microbiome samples, murine gut samples, and samples of coral-associated 

microbial communities (Mallick et al., 2019). 

MiMeNet is implemented in python and builds on the same machine learning 

principles as MelonnPan. Instead of modelling metabolites linearly, MiMeNet utilizes 

multivariate learning to train a neural network to associate all metabolite and taxonomic 

abundances together rather than selecting specifically for well-predicted metabolites as 

MelonnPan does. Furthermore, the authors directly benchmarked MiMeNet against 

MelonnPan in stool, lung sputum, and soil water samples to demonstrate that their tool 

outperforms MelonnPan across a variety of metrics (Reiman et al., 2021). 

mmvec is implemented in python and runs through the conda environment. 
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Similarly to MiMeNet, it utilizes neural networks to model metabolite abundances through 

taxonomic features. Unlike MiMeNet or MelonnPan however, mmvec does not provide its 

users with an output of metabolite relative abundances and is primarily used to examine 

paired sequencing-metabolomics data for microbe-metabolite associations (Morton et al., 

2019). 

Machine learning methods typically require high-quality training datasets for 

optimal performance, which may not always be available for environments that are not 

well characterized. In addition because these tools are biologically naïve, outputted results 

are not always easy to interpret. For instance, a strong positive association between a 

metabolite and a predictor (whether it be a microbe or a gene) might imply a direct 

mechanistic link between the two, but the conclusion reached will vary depending on 

whether that taxa/gene is known to be involved in the synthesis or degradation of that 

metabolite. Furthermore, the excitement of utilizing these sophisticated tools may lead to 

instances where they are applied uncritically and outside of their intended context. For 

instance, the prepackaged MelonnPan model was initially trained for human gut samples 

and is accompanied with a disclaimer that learned models are environment specific 

(Mallick et al., 2019). However, this same prepackaged model has been applied to predict 

metabolites in agricultural samples (Villarreal-Soto et al., 2020) without targeted validation 

of predicted metabolite abundances. 
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Table 1. Summary of tools surveyed in meta-analysis. 

Approach Tool Description Input Output 

M
ac

h
in

e 

le
ar

n
in

g
 

MelonnPan (Mallick et al., 

2019) 

An R-encoded machine learning 

tool that directly predicts 

metabolite abundances when 
given metagenomic feature 

abundances. 

Metagenomic gene 

abundances 

Model trained on 
paired metagenomic-

metabolite data 

Metabolite relative 

abundances 
G

en
e-

ab
u
n

d
an

ce
 

PRMT (Larsen et al., 2011) 
A general method for estimating 

metabolite turnover using the 
abundances of annotated genes. 

Implemented by authors through 

Perl. 

Metagenomic gene 

abundances 

Scores estimating 

metabolite 
consumption/production 

MIMOSA2 (Noecker et al., 

2021) 

An R-encoded tool that adapts 
PRMT to connect the metabolic 

potential of a microbial 

community to the observed 
composition of the metabolome 

Metagenomic gene 
abundances 

Scores estimating 
metabolite 

consumption/production 

F
B

A
 

MAMBO (Garza et al., 

2018) 

A Python-encoded FBA tool. 

Stochastically predicts 

metabolite abundances that can 
support microbial growth rates 

which best correlate with their 

abundances. 

Microbial 

abundances 

Genome-scale 
metabolic models 

Metabolite relative 

abundances 

Microbiome Modelling 

Toolbox – COBRA 

(Baldini et al., 2019) 

An extension to the popular 
MATLAB toolbox COBRA. 

Performs FBA at the community 

level by scaling reaction 
stoichiometries with microbial 

abundances. 

Microbial 
abundances 

Genome-scale 

metabolic models 

Metabolite fluxes 

MICOM (Diener et al., 

2020) 

A Python-encoded FBA tool for 
modelling metabolism at the 

community level. 

Microbial 
abundances 

Genome-scale 

metabolic models 

Metabolite fluxes 

 

 

1.10 Objectives 

 

 A subset of metabolic modelling tools now give researchers the ability to 

extrapolate the genomic content of the microbiome to produce metabolite data. In some 

cases, the authors have made direct comparisons of tool outputs against experimentally 

measured metabolomics data (Mallick et al., 2019; Reiman et al., 2021; Garza et al., 2018), 

however few groups have sought to compare or benchmark these tools in a systematic 

fashion. A recent study comparing the machine learning tool MelonnPan against MIMOSA 

and an in-house metabolite prediction tool demonstrated that these tools generally correlate 

poorly with metabolomics data (Yin et al., 2020) but made no inclusion of FBA tools in 

their analysis or microbiome data outside of the gut environment. The enthusiasm for 

applying these new bioinformatic tools may drum out important technical considerations 
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affecting their performances.  

 The main objective of this thesis project was to evaluate the performance of these 

different metabolic modelling approaches in their ability to predict metabolite data from 

sequencing data. Specifically, I sought to utilize samples containing paired sequencing-

metabolomics data to test how close predicted metabolite profiles were to experimentally 

measured metabolite profiles in six tools: the COBRA Microbiome Modelling Toolbox 

(hereafter referred to simply as COBRA), MICOM, MAMBO, PRMT, MIMOSA2, and 

MelonnPan (Table 1). The first aim was to evaluate their performances using a simple 

univariate correlation-based approach and to determine whether some characteristics of the 

sample – namely read depth or sampling site – could affect those correlations. The second 

aim was to evaluate them based on their ability to recapture differential abundance patterns 

in metabolites. The third aim was to use multivariate statistical methods to re-examine the 

congruency between predicted and measured metabolomics data, and to examine inter-tool 

relatedness.  
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CHAPTER 2 – MATERIALS AND METHODS 

 

 

2.1 Data acquisition and pre-processing 

 

We obtained six multi-omic datasets by performing a search on NCBI for studies 

relating to gut or human vaginal microbiome samples (Table 2). For inclusion into this 

meta-analysis, studies had to 1) include at least thirty samples, 2) contain sample-linked 

16S rRNA gene or MGS sequencing data and metabolomics data, 3) contain human 

samples, 4) have quantitative measures for at least 50 metabolites. For the purpose of this 

study, I also generated an in-house metabolomics dataset from samples obtained from a 

cohort of study participants undergoing nutritional therapy for CD for which MGS data 

had previously been obtained (Jones et al., 2020). Altogether, six out of eight total datasets 

were sampled from the gut microbiome (N = 919), with the remaining two from the vaginal 

microbiome (N = 99). Sequencing data were obtained from the authors or downloaded 

directly from the NCBI SRA. Metabolomics data were obtained from the authors or 

downloaded directly from tables available in the articles. I harmonized chemical names 

across studies using RefMet’s online “name-to-refmet” conversion tool supplemented with 

NCBI’s online catalogue and our own in-house library of compound identifiers (Fahy and 

Subramaniam, 2020). Chemical feature identification across all studies had been 

accomplished by matching experimentally obtained parameters (m/z ratios, retention 

times, MS2 fragmentation data) to reference standards (level 1 annotation), parameters 

obtained through literature search (level 2 annotation), and through database matches (level 

3 annotation). I removed all chemical features that were measured but had not been 

chemically identified in all metabolomics datasets. 

 

 

2.2 Sequencing data processing 

 

We re-processed all 16S rRNA gene and MGS sequencing data to ensure 

uniformity across all eight datasets. All processing was performed on a dedicated server 
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using the Microbiome Helper web resource (Comeau et al., 2017; 

https://github.com/LangilleLab/microbiome_helper/wiki/Amplicon-SOP-v2, 

https://github.com/LangilleLab/microbiome_helper/wiki/Metagenomics-standard-

operating-procedure-v2). In brief, for MGS sequencing data I stitched together forward and 

reverse reads together and ran kneaddata (v0.7.2) to remove low-quality sequences 

(PHRED <20 within a sliding window of 4 bases) and other sequences of non-microbial 

origin. Filtered reads were taxonomically and functionally profiled using HUMAnN2 

(v0.11.1). MGS-identified taxa, together with KEGG ortholog (KO) or enzyme 

commission (EC) number abundances obtained by remapping outputted UniRef90 gene 

families using the `humann2_regroup_table` script, were subsequently used as inputs for 

all metabolic modeling tools. 

 16S rRNA gene sequencing data were collected either through Illumina sequencing 

or 454 pyrosequencing platforms. I trimmed single-ended pyrosequences using cutadapt 

(v2.10) and subsequently filtered using trimmomatic (v0.39.0; Bolger et al., 2014) to 

remove contaminants, sequencing artifacts, and low-quality sequences (PHRED <20 

within a sliding window of 4 bases). I imported processed pyrosequences into a QIIME2 

environment (v2020.11; Bolyen et al., 2019) and denoised the reads into ASVs using the 

QIIME2 DADA2 plugin (Callahan et al., 2016). Similarly for 16S rRNA Illumina 

sequences, I imported sequences and stitched together paired-end reads using the 

VSEARCH plugin (Rognes et al., 2016). Joined sequences were then quality-filtered using 

the `q2-quality-filter q-score` script using the default settings and subsequently denoised 

into ASVs using the DADA2 plugin. 

All steps following retrieval of ASVs from sequencing data were applied identically 

across both pyrosequenced or Illumina sequenced 16S rRNA gene sequences. I 

downloaded the full-length 16S/18S rRNA SILVA classifier from the QIIME2 website and 

utilized the `qiime feature-classifier classify-sklearn` script to assign taxonomy to ASVs. 

Rare taxa with frequencies of <0.1% mean sample depth or those or non-bacterial origin 

were removed. Lastly, I functionally profiled filtered taxa using PICRUSt2 to retrieve KOs 

and EC numbers. 
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2.3 Metabolite extractions 

 

Stool samples were partially thawed on ice, with approximately 200mg transferred 

to 2mL Eppendorf tubes using a sterile spatula. Tubes were weighed and samples hydrated 

in three-fold 85:15 >90% HPLC-grade ethanol:20mM phosphate buffer in reverse osmosis 

water, then vortexed (3000RPM, 0°C) at for 3min. I reduced the speed to 500RPM and 

allowed the samples to shake for an additional 30min. Samples were then sonicated (Cole 

Parmer Ultrasonic Homogenizer 4710, CP10) at 50W on ice for 7min (1min followed by 

30s rest repeated five times). I centrifuged stool homogenates (800g, 0°C) for 10min to 

remove insoluble debris. Samples with insufficient supernatant volumes of <200uL were 

re-centrifuged for an additional 10min (16900g, 0°C) to compress pellets further. 

Supernatants were transferred to pre-chilled 2mL cryotubes and centrifuged again (16900g, 

0°C) for ten minutes to remove any remaining debris, then stored at -80°C until further 

processing. 

 

 

2.4 LC-MS metabolomics analysis 

 

 Sample analysis was performed at the Dalhousie University Biological Mass 

Spectrometry Core Facility. Sample separation was carried out using an Agilent 1290 

UPLC system equipped with a Waters Cortecs T3 RP column, (2.7 µm, 2.1 x 50 mm). 

10uL of sample was injected and gradient eluted (solvent A: water + 0.1% formic acid, 

solvent B: acetonitrile + 0.1% formic acid, gradient from 1% to 98% solvent B over 6.5 

min) at a flow rate of 400 uL/min. MS analyses were carried out on a Qtrap 5500 (Sciex) 

operating in positive and negative ESI MRM mode, targeting 92 positive and 80 negative 

mode transitions. All samples were run in duplicate with separate runs for positive and 

negative mode ESI. Drifts in peak intensities were monitored and normalized against peak 

intensities measured in pooled samples. Data were acquired using the Analyst (v1.6.2) 

software. Raw data pre-processing and peak area integration were carried out on Skyline 

(v20.2).  
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2.5 COBRA – Microbiome Modelling Toolbox 

 

We generated sample-specific community models using the automated `mgPipe` 

script provided by the Microbiome Modelling Toolbox extension within the MATLAB 

COBRA Toolbox (v3.1; Baldini et al., 2019). Each community model contains abundance 

profiles of all constituent organism-specific models obtained sequencing. Community 

biomass equations are constrained by scaling each individual model’s biomass equation to 

their relative abundance to ensure that represented organisms grow at rates that are 

proportional to their relative abundances. I name-matched taxonomic identities and 

abundance profiles to GEMs sourced from the AGORA consortium (v1.02; Magnúsdóttir 

et al., 2017) to build community models (Appendix Figure 9). To maximize the proportion 

of sequences that were represented by the strain-specific GEMs used to build the 

community models, I constructed pan-species and pan-genus GEMs by collapsing strain-

specific AGORA models with the `createPanModels.m` script. Taxa that were mapped to 

the same species or genus-level model were summed together by their relative abundances, 

and any unmapped taxa were discarded. I constrained all models by the “average European 

diet” made available through the toolbox and took maximal outputted fluxes as final 

predicted metabolite profiles after converting BiGG compound IDs to chemical names. 

Metabolite profiles predicted using species- or genus-level models were annotated with 

“_spe” or “_gen” respectively. FBA calculations were performed on MATLAB 2019a 

(MathWorks.) paired with the IBM CPLEX Optimizer (v12.90; IBM) as a solver for all 

FBA calculations. 

 

 

2.6 MICOM 

 

We generated sample-specific community models using the QIIME2 MICOM 

plugin (v0.10). Similarly to COBRA, community models contain a catalogue of individual 

GEMs together with their relative abundances as obtained through 16S rRNA or MGS 

sequencing. As recommended by the authors, I opted to constrain the community growth 

rate to half of its maximal rate in order to redistribute growth more evenly across the 
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constituent organisms represented in the community model. I imported taxonomic 

identifiers and abundance profiles as QIIME2 artifacts to match taxa to pan-species and 

pan-genus level GEMs which were provided by the authors (Appendix Figure 9). Models 

were additionally constrained by an “average European diet” that was also author provided. 

I calculated metabolite fluxes using the `qiime micom grow` function and retrieved net 

metabolite fluxes as final predicted metabolite profiles after converting BiGG compound 

IDs to chemical names. Metabolite profiles predicted using species- or genus-level models 

were annotated with “_spe” or “_gen” respectively. Flux balance calculations were 

performed using the IBM CPLEX Optimizer python API. 

 

 

2.7 MAMBO 

 

We predicted sample-specific metabolomes using MAMBO (vJul4 2019) running 

in tandem with the COBRApy (v0.4.1) platform in a python environment (v2.7.15). Gurobi 

(v9.0.2 ) python API was utilized as the solver for all FBA calculations. Taxa identified 

through 16S rRNA gene or MGS sequencing were name-matched to the strain-specific 

GEMs provided by the authors (Appendix Figure 9). As 16S rRNA sequencing data lacks 

the resolution necessary to classify reads down to the strain level, I mapped quality-filtered 

reads directly to the HMP reference genomes (https://www.hmpdacc.org/HMREFG/) 

which the authors used to build the strain-specific GEMs using Bowtie 2 (v1.1.2) in the `-

-very-sensitive` mode. Reads mapping to the same strain were summed together, and those 

that matched to genomes for which there was no equivalent GEM were discarded. I ran 

MAMBO with 100,000 Markov chain optimization steps, rather than the author-

recommended one-million steps, as I observed frequent crashing the longer the tool was 

allowed to run. After changing SEED compound IDs to chemical names, I filtered the 

100,000 total predictions generated for each sample to retrieve the top 10,000 predicted 

metabolite profiles with the greatest internal Pearson correlation coefficients. Those 10,000 

metabolite profiles were averaged to generate a final predicted metabolite profile for each 

sample.  
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2.8 MelonnPan 

 

We trained MelonnPan (v.0.99.0) models on sample metabolite data paired with 

KOs obtained through sequencing data. As recommended by the authors, I retained only 

the features that were at least 0.01% abundant and 10% prevalent across all samples per 

study and removed low-variance features. To mitigate the effects of overfitting, I 

performed a leave-one-study-out cross validation in which I trained MelonnPan models on 

gene-metabolite data aggregated from seven studies, then utilized the subsequent trained 

model to predict metabolite abundanecs on the left-out study. This process was repeated 

eight times in total. I trained MelonnPan models using the `melonnpan.train` function on 

the RStudio (v3.6.3) platform with 10-fold internal cross validation. I utilized the 

`melonpan.predict` function to predict metabolite abundances on left-out studies as final 

predicted metabolite profiles. 

 

 

2.9 MIMOSA2 

 

We converted metabolite names to their equivalent KEGG compound IDs using the 

metabolite ID conversion tool available through MetaboAnalyst 

(https://www.metaboanalyst.ca/MetaboAnalyst/upload/ConvertView.xhtml) 

supplemented with our own in-house library of compound identifiers. To standardize 

metabolite abundances across studies prior to inputting these data into MIMOSA2, I log- 

and Z-transformed their abundances and discarded metabolites that did not have an 

equivalent KEGG compound ID. Sample KOs and transformed metabolite abundances 

were input into the web application hosted by the authors of MIMOSA2 (http://elbo-

spice.cs.tau.ac.il/shiny/MIMOSA2shiny/) to generate community metabolic potential 

scores which I took as final predicted metabolite profiles. 
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2.10 PRMT 

 

Using the Perl scripts provided by the authors of PRMT (Larsen et al., 2011), I 

calculated PRMT scores using EC number abundances obtained through sequencing data. 

PRMT scores provide estimates for the turnover of metabolites relative to other samples 

being analyzed within the same batch, and I then took these scores as final predicted 

metabolite profiles. Author-provided scripts were run in a Perl environment (v5.22.1). 

 

 

2.11 Spearman’s correlation analysis 

 

We assessed tool performance on a sample-by-sample basis by calculating 

Spearman’s correlations coefficients between predicted metabolite profiles and 

experimentally measured metabolite profiles on a sample-by-sample basis. For  

metabolites occurring within a sample’s metabolite profiles were matched to those 

identified in the sample’s measured metabolite profile. Unmatched metabolites were 

discarded from both predicted and measured metabolite profiles to avoid penalizing 

metabolic modelling tools for omitting metabolites or predicting metabolites that had not 

been experimentally measured. I additionally calculated Spearman’s correlation 

coefficients between the predicted metabolite abundances and measured metabolite 

abundances across all samples in each dataset to retrieve an estimate of tool performance 

on a metabolite-by-metabolite basis. I restricted these calculations to a small subset of 

“core” metabolites within each dataset, which I defined as a metabolite that had been 

measured in all samples within a dataset and had been predicted by at least seven of the 

eight tool configurations tested. Metabolite classes for core metabolites were assigned 

using RefMet’s name conversion feature 

(https://www.metabolomicsworkbench.org/databases/refmet/index.php). Data were 

analyzed on the RStudio platform. 
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2.12 Procrustes correlation analysis 

 

We utilized Procrustes Analysis (PA) to examine relatedness between metabolite 

predictions generated by the surveyed tools. I Hellinger transformed (Legendre and 

Gallagher 2001) metabolite abundances and removed zero variance metabolites from all 

metabolite profiles prior to calculating Euclidean distances between tools. I calculated PA 

correlations between tools using the R package “vegan” (v2.5-7). Procrustes correlations 

were also calculated between predicted metabolite profiles and measured metabolite 

profiles as a metric of tool performance. Significance tests on Procrustes correlations were 

performed using the `protest` function with 9999 permutations. 

 

 

2.13 Differential abundance analysis 

 

We compared overlaps in differentially abundant metabolites between predicted 

and measured metabolite profiles in case-control datasets (Table 2). Within each sample, 

metabolites were subset to only those that were shared between the predicted and the 

measured metabolite profiles. Differentially abundant metabolites were then identified 

between case and control samples by running Student’s t-tests on log-normalized, mean-

centered metabolite data using the R package MetaboAnalystR (v3.0.3). I evaluated 

overlaps in differentially abundant metabolites by appraising tools for true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN) for all eight datasets. 

TPs, TNs, FPs, and FNs were then aggregated across datasets and a single F1, precision, 

and recall score for each tool was calculated. 
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CHAPTER 3 – UNIVARIATE CORRELATION-BASED ANALYSES OF 

METABOLIC MODELLING TOOLS 

 

In this study, I evaluated the performances of six metabolic modelling tools (eight tool 

configurations in total) across eight datasets containing paired sequencing and metabolite 

data. I sought to determine using univariate statistics how closely metabolite predictions 

generated by each tool correlated to experimentally measured metabolomics data within 

two different sites of the human microbiome: the gut (N = 919) and the vagina (99). 
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Table 2. Studies containing paired human sequencing-metabolomics data included in meta-analysis. 

 

Article Sample type MS Platform Detection strategy Sequencing platform Region targeted Study type Disease Sample size Cases/controls Chemicals identified SRA ID/Contact

Jones et al. 2020

(in-house cohort) Stool QTRAP5500 Targeted LC-MS NextSeq 550 Whole genome Longitudinal CD 140 NA 103

j.e.vanlimbergen

@amsterdamumc.nl

Poyet et al. 2019 Stool Q Exactive orbitrap Untargeted LC-MS HiSeq 2000 Whole genome Cross-sectional N/A 146 NA 458 PRJNA544527

Franzosa et al. 2019 Stool

Q Exactive

Exactive Plus orbitrap Untargeted LC-MS HiSeq 2500 Whole genome Longitudinal IBD 220 56/164 336 PRJNA400072

Lloyd-Price et al. 2019 Stool

Q Exactive

Exactive Plus orbitrap Untargeted LC-MS HiSeq 2000/2500 Whole genome Case-control IBD 286 105/181 549 PRJNA398089

Hale et al. 2018 Intestinal biopsy TSQ Quantum Ultra Untargeted LC-MS MiSeq V3-V5 16S Case-control CRC 83 55/28 624 PRJNA284355

Kang et al. 2018 Stool Varian Direct Drive NMR 454 GS FLX-Titanium V2-V3 16S Case-control ASD 44 21/23 59 Dr.Rosy@asu.edu

Srinivasan et al. 2012 Vaginal swab QTRAP5500 Untargeted LC-MS 454 GS FLX-Titanium V3-V4 16S Case-control BV 30 8/19 279 SRA051298

Srinivasan et al. 2015 Vaginal swab QTRAP5500 Targeted LC-MS 454 GS FLX-Titanium V3-V4 16S Case-control BV 69 40/29 101 SRP056030
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3.1 MelonnPan outperforms other tools in predicting the presence of experimentally 

measured metabolites 

 

We ran surveyed tools using the authors’ recommended settings inputted with taxonomic 

or gene abundance data obtained from six gut and two vaginal microbiome studies (Table 

2). Four of the six gut microbiome datasets contained 16S rRNA gene sequencing data with 

the remainder containing MGS sequences. Both vaginal microbiome datasets contained 

16S rRNA gene sequences. Because I had run flux balance tools COBRA and MICOM 

using GSMMs aggregated at either the species (*_spe) and genus (*_gen) levels, I 

evaluated eight tools/tool configurations in total. To study the intersects between 

metabolites predicted to be present across tools, I examined shared and tool-specific 

metabolites across all datasets (Figure 1a, Table 3). MelonnPan predicted the greatest 

number of metabolites that intersected with those that were experimentally measured (336 

out of 336 total) (Figure 1). 191 of these 336 overlapping metabolites predicted by 

MelonnPan were not predicted by any of the other tools surveyed. PRMT predicted the 

second greatest number of experimentally measured metabolites (255 out of 1867 total), of 

which 47 were not predicted by any other tool. In addition, many metabolites predicted by 

PRMT (1522 out of 1867 total) were uniquely predicted by that tool. The majority of 

directly measured metabolites (969 out of 1473) were not successfully predicted by any of 

the tools surveyed. In addition, MelonnPan captured the greatest mean proportion of 

metabolites covered in both the gut (mean: 0.3710 ± 0.0882 SD) and the vaginal 

microbiome (mean: 0.5470 ± 0.1239) (Figure 1b). 

 

Table 3. Intersects between metabolites predicted by tools and metabolites measured 

within dataset 

 

Tool Total identified Uniquely identified Intersects w/ Measured Dataset Intersects Uniquely w/ Measured Dataset

Metabolite 1473 969 NA NA

COBRA 422 20 161 0

MICOM 752 392 149 0

MAMBO 335 42 152 2

MIMOSA2 192 0 192 17

PRMT 1867 1522 255 47

MelonnPan 336 0 336 191
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Figure 1. MelonnPan predicts the greatest number of experimentally measured 

metabolites. Overlap in metabolites were evaluated via an a. UpSet plot visualizing the 

intersections in metabolite occurrence across tools and experimentally measured 

metabolite data aggregated across all studies, and a b. box plot illustrating proportions of 

experimentally measured metabolites predicted by tools across the gut and vaginal 

microbiomes Kruskall-Wallis test followed by Dunn’s post-hoc test with FDR correction. 

*:p < 0.05, **:p < 0.005, ***:p < 0.0005, ****:p < 0.00005 

a. 

b. 
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3.2 Correlations between tool predictions and experimentally measured metabolite 

data vary across body sites and by disease status 

 

We sought to evaluate the performance of each metabolic modelling tool by 

examining how well each tool’s predictions correlated with experimentally measured 

metabolite data on a sample-by-sample basis. To this end, I calculated the Spearman’s 

correlation coefficients between predicted metabolite profiles and measured metabolite 

profiles for all eight studies (ρ: -0.55654 to +0.701539) (Figure 2a). Within both the gut 

and vaginal microbiomes, correlations between predicted measured metabolite profiles for 

MelonnPan, COBRA_spe and COBRA_gen were significantly different compared to 

correlations for metabolite profiles with randomly shuffled chemical and sample 

identifiers. Surprisingly, I observed that correlations for MICOM_spe were negatively 

significant compared to randomly shuffled metabolite profiles. In addition, correlations 

between predicted and measured metabolite profiles differed between the gut and vaginal 

microbiomes.  Compared to all other surveyed tools, MelonnPan predictions correlated 

best with measured metabolite profiles within the gut microbiome. Within the vaginal 

microbiome however, MelonnPan performed equally as well compared to COBRA_spe 

and COBRA_gen.  

Additionally, I sought to determine whether sample disease status could affect 

correlations between predicted and measured metabolite profiles across tools (Figure 2b). 

Within the gut, control samples were better correlated to measured metabolite profiles 

compared to case samples for MICOM_spe and MICOM_gen, whereas case samples were 

better correlated for PRMT. Within the vaginal microbiome, control samples were better 

correlated compared to case samples for both COBRA_spe and MelonnPan. This 

demonstrates that tool performance may vary across different sites of the human 

microbiome and can be affected by the disease status of the sample donor. 
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Figure 2. Spearman’s correlation coefficients between predicted and experimentally 

measured sample metabolite profiles across the gut and vaginal microbiomes. 

Predictions were not penalized for having omitted or predicted the occurrence of a 

metabolite that was included or not included respectively within the measured metabolite 

profile. I evaluated Spearman’s correlations a. across all six tools within the gut and vaginal 

datasets collected, and then b. further stratified correlations by cases and controls. Kruskall-

Wallis test followed by Dunn’s post-hoc test with FDR correction. *:p < 0.05, **:p < 0.005, 

***:p < 0.0005, ****:p < 0.00005 

a. 

b. 



43 
 

3.3 Sample read depth affects tool correlations for MGS sequenced gut microbiome 

samples. 

 

 As read depth can affect the accurate taxonomic and functional profiling of a 

sample, I sought to determine whether it could by extension affect tool performances. I 

examined the relationship between sample read count and the Spearman’s correlation 

coefficient between the predicted sample metabolite profile and the experimentally 

measured sample metabolite profile. I determined that read count does correlate positively 

with sample correlations between predictions and measured metabolite profiles in datasets 

containing gut microbiome samples with MGS sequences, albeit weakly (Pearson’s ρ: 

0.06740972, CI: [0.04405083, 0.09069494], P: 1.653e-08) (Figure 3). I did not observe a 

significant correlation for the depth of 16S rRNA gene sequenced samples within either 

the gut or the vaginal microbiomes (Appendix Figure 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Association between Spearman’s correlation coefficients and sample read 

count. Spearman’s correlations between predicted and measured metabolite profiles 

correlates positively with read counts for shotgun metagenome sequenced samples from 

the gut. 

ρ: 0.06740972, P: 1.653e-08 
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3.4 Correlations between predicted and experimentally measured metabolite 

abundances for core metabolites are poor across surveyed tools 

 

Next, I sought to examine the correlations between predicted metabolite 

abundances and experimentally measured metabolite abundances across tools. I calculated 

Spearman’s correlation coefficients for the shared sets of “core” metabolites that were 

commonly predicted by at least seven of eight tool configurations. These core sets were 

comprised primarily of amino acids, nucleotides and short-chain acids involved in 

glycolysis and the TCA cycle. Correlations for these core metabolites were generally poor 

across all tools in the gut microbiome datasets (Figure 4a). Correlations were stronger for 

core metabolites in the vaginal (Figure 4b) compared to the gut microbiome datasets, 

though there were no metabolites that were overtly well-predicted across all tools in both 

datasets. I observed that predictions made by the same tool but using models grouped at 

different taxonomic levels could result in very divergent results, as was the case when I 

used COBRA to predict the vaginal metabolome using models aggregated at the species 

(COBRA_spe) vs. genus level (COBRA_gen) (Figure 4b). 
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Figure 4. Heat maps visualizing Spearman’s correlations between predicted and 

measured core metabolites across two representative datasets. Only metabolites 

present within the measured metabolite profiles and also predicted to occur within at least 

seven of eight tool configurations were included. Core metabolites are arranged from 

highest to lowest mean Spearman’s correlation across all tools. Correlations represented 

for a single dataset containing a. gut microbiome 16S rRNA gene sequences paired with 

targeted LC-MS metabolite data, and b. vaginal microbiome 16S rRNA sequences paired 

with targeted LC-MS metabolite data. Grey boxes indicate metabolites that were not 

predicted by the tool. 

  

a. b. 
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3.5 Summary 

 

We proceeded with a univariate correlation-based approach to assess tool 

performance. I found that the machine learning tool MelonnPan possessed the best 

coverage of metabolites that were experimentally observed across both the gut and the 

vaginal microbiomes. MelonnPan’s metabolite predictions correlated best with the 

experimentally measured data on a sample-by-sample basis within the gut and was tied for 

best against the FBA tool COBRA within the vaginal microbiome, demonstrating that tool 

performances may vary depending on which environment the microbiome was sampled 

from. Additionally, I determined that case-control status and sample read depth could have 

an effect on tool performance. MelonnPan and COBRA’s predictions for control samples 

correlated better to experimentally measured metabolite profiles compared to case samples 

in the vaginal microbiome, but not the gut microbiome. Read count was positively 

correlated with Spearman’s correlations coefficients between predicted and measured 

metabolite profiles for gut microbiome samples sequenced through MGS. However, this 

correlation was weak, which may indicate an unsubstantial relationship between read 

counts and tool performance. Lastly, I found that predicted metabolite abundances for 

metabolites that were shared across surveyed tools were poorly correlated to measured 

metabolite abundances. 
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CHAPTER 4 – DIFFERENTIAL METABOLITE ANALYSES 

 

A common motivation in metabolomics studies is to identify chemical features that 

are differentially abundant between two or more populations e.g. cases versus control. As 

researchers are likely to use these modelling tools to identify discriminating features 

between different experimental groups, I sought to examine whether the predictions 

generated by the surveyed tools could approximate differential abundance patterns 

identified in the experimentally measured metabolite data. 

 

 

4.1 Surveyed tools detect differentially abundant metabolites poorly 

 

We calculated a single F1, precision, and recall score for each tool to summarize 

their performances across all eight datasets (Figure 5). MelonnPan possessed the best F1 

and recall scores (0.3224, 0.3971 respectively) across all eight tool configurations. 

MIMOSA2 possessed the best precision score (0.4615). MAMBO received scores of zero 

across all metrics. Altogether, summary scores were low across all tools (<0.5), 

demonstrating a key limitation in the ability of these tools to capture differential abundance 

patterns in experimentally measured metabolite data. 
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Figure 5. Differential abundance analysis of tool predictions. Tool predictions were 

evaluated for differentially abundant metabolites by Student’s t-test on log-normalized, 

mean centered metabolite data. a. F1, precision, and recall scores were calculated for each 

tool.  

 

 

4.2 Differentially abundant metabolites identified through MelonnPan intersect in the 

greatest number with ground-truth differentially abundant metabolites 

 

We examined the overlaps between differential metabolites identified across all 

tools for all eight datasets (Fig. 6, Table 4). PRMT predicted the greatest number of unique 

differentially abundant metabolites (506 out of 614 total). Differential metabolites 

identified via MelonnPan intersected uniquely in the greatest number with those identified 

in the measured metabolite profiles (72 out of 244 total) (14 out of 614 total). I did not find 

any shared differential metabolites identified across all tools for any of the datasets tested. 
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Figure 6. UpSet plot visualizing the intersections in differential metabolites across 

tools and aggregated experimentally measured metabolite data. 

 

 

Table 4. Intersects between differentially abundant metabolites within tool 

predictions and differentially abundant metabolites identified in measured metabolite 

datasets. 

 

 

 

 

Tool Differential Metabolites Intersects with Measured Dataset Intersects Uniquely with Measured Dataset

Metabolite 411 NA NA

COBRA 210 54 11

MICOM 56 10 0

MAMBO 11 0 0

MIMOSA2 53 29 3

PRMT 614 44 14

MelonnPan 244 115 72
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4.3 Summary 

 

 We observed low F1, precision, and recall scores of below 0.5 across all surveyed 

tools, demonstrating that all tools exhibit limitations in the detection of differentially 

abundant metabolites. MelonnPan possessed the highest F1 score (0.3224) and the greatest 

number of overlapping differential metabolites with the experimentally measured 

metabolomics data. Consistent with my earlier finding in Chapter 3 that PRMT predicts 

the greatest number of metabolites, I found that PRMT identified the greatest number of 

differentially abundant metabolites. Disturbingly, MAMBO failed to reproduce a single 

true positive outcome resulting in zero value scores, indicating that this tool may not be 

suitable for the analysis of case-control studies. 
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CHAPTER 5 – MULTIVARIATE ANALYSES OF TOOL PERFORMANCE 

 

Multivariate statistical methods are popular in the analysis of metabolite data, 

owing to their ability to compare the large matrices of quantitative and semi-quantitative 

data which are generated through metabolomics experiments. I used principal component 

analysis (PCA) and Procrustes analysis (PA) to examine the overall congruency between 

tool predictions and experimentally measured metabolomics data, and to evaluate for inter-

tool relatedness. 

 

 

5.1 PA reveals similarities between experimentally measured and predicted 

metabolomics data from all tools with the exception of MAMBO 

 

PA can be utilized to examine the structural relatedness between two separate 

matrices of data. Having previously examined the correlations between predictive and 

measured metabolite profiles with univariate statistical methods (Chapter 3), I sought to 

re-examine their relatedness using PA (Figure 7). With the exception of MAMBO, each 

tool queried showed significantly similar Procrustes correlations to at least one 

experimentally measured metabolite dataset. Predicted metabolite profiles generated by 

MAMBO did not show significant Procrustes correlations to any of the eight measured 

metabolite datasets tested. I additionally observed that tool predictions showed greater 

Procrustes correlations to vaginal datasets than to gut datasets, which echoes my findings 

in Chapter 3 that tool performance may be affected by the environment under study.  
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Figure 7. Procrustes correlations between predicted and experimentally measured 

metabolomic datasets. Each point represents the Procrustes correlation between an entire 

set of predicted and measured metabolite profiles within a single dataset. Point sizes are 

inversely proportional to p-values. Significantly similar correlations (p-value < 0.05) 

between tool predictions and measured metabolite profiles are represented by triangles.   

 

 

5.2 Multivariate analyses of inter-tool relatedness demonstrate lack of reproducibility 

in MAMBO’s predictions 

 

We performed PCA to visualize the underlying structure of the tool predictions. To 

facilitate this analysis, predicted metabolite profiles were subsetted to a common set of 

metabolites predicted by at least seven of the eight tool configurations tested before plotting 

the principal components of these predictions to better interpret the underlying structure of 

these data (Figure 8a). PCA of the predicted metabolite profiles revealed that, within this 

core subset of metabolites, predicted metabolite profiles tended to cluster by tool. I 

leveraged PA to further evaluate the structural similarities between different pairwise 
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comparisons of tools (Fig. 8b-c). I found significantly similar Procrustes correlations 

between nearly all pairwise comparisons of tools apart from MAMBO, which had the 

fewest number of significant similar correlations to other tools within both the gut (one out 

of seven total pairings) and the vaginal microbiome (two out of seven total pairings). 

 To investigate the robustness of MAMBO’s prediction heuristic, I generated five 

new metabolomes each for five randomly-selected well-predicted samples (having a final 

internal Pearson correlation coefficient of >0.95) and calculated pairwise Spearman’s 

correlation coefficients between the first metabolome and the four other metabolomes for 

all five samples. Concerningly, I calculated a Pearson’s correlation coefficient of 0.0245 ± 

0.0484 SD, indicating that repeated predictions using MAMBO were not in agreement with 

one another even though the tool was provided identical inputs. 

 

 

 

a. 
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Figure 8. Multivariate analysis of inter-tool relatedness. Metabolites within predicted 

sample metabolite profiles were subsetted to a core set of metabolites that were shared by 

at least seven of eight tool configurations to build this a. principal component analysis 

(PCA) plot of predicted sample metabolomes. PA correlations between pairs of tool 

metabolite predictions for samples from b. the gut or c. the vaginal microbiome. *:p < 0.05 

indicating a significant similarity as determined by the Procrustes permutational test from 

the `vegan` R package. 

b. 

c. 
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5.3 Summary 

 

 Here, I sought to explore the similarities between the predicted and experimentally 

measured metabolomic datasets using the multivariate statistical methods. PA 

demonstrated that all tools, with the exception of MAMBO, showed structural similarities 

to measured metabolomics data. Similarly, MAMBO showed the least number of 

significant pairwise Procrustes correlations between its predictions and predictions made 

by other tools, suggesting that MAMBO’s predictions are structurally dissimilar to other 

tools. As MAMBO’s prediction heuristic is partly stochastic, I sought to determine whether 

repeated predictions from the same sets of samples would agree with one another. I 

determined that predicted metabolite profiles generated by MAMBO were not 

reproducible, suggesting that MAMBO may not be a robust proxy for experimentally 

measured metabolomics data. 



56 
 

CHAPTER 6 – DISCUSSION 

 

Rapid improvements in sequencing technologies have facilitated the exponential 

expansion of public repositories dedicated to hosting microbial sequencing data (Kodama 

et al., 2012). There is a great deal of interest in extending the use of these data beyond 

examinations of taxonomic and gene abundances (Dorrestein, Mazmanian, & Knight, 

2014; Mallick et al., 2019). To meet this interest, several predictive metabolic modelling 

tools have been developed that can mathematically extrapolate the encoded biosynthetic 

machinery within these microbial genomes to predict community-level metabolite data. 

These tools offer expedient and cost-effective alternatives to global metabolite profiling 

and may enable the rapid generation of predicted metabolite data for samples in which only 

sequencing data is available. In this thesis, I sought to evaluate the performances of these 

tools across a variety of metrics using more than a thousand samples containing paired 

microbiome sequencing-metabolomics data. Predicted metabolite profiles were evaluated 

for their congruency to experimentally measured metabolite data in order to gauge tool 

performance across the gut and the vaginal microbiomes. 

 

 

6.1 Univariate correlation-based analyses of metabolic modelling tools 

  

 Using a correlation-based approach to appraise tool predictions against 

metabolomics data, I demonstrated that MelonnPan may be the most suitable choice for 

researchers aiming for an accurate and intuitive proxy for metabolomics data. On a sample-

by-sample basis, MelonnPan predicted the greatest proportion of metabolites that were 

directly measured within both the gut and the vaginal microbiome. Sample predictions 

generated by MelonnPan were also better correlated to measured metabolite profiles within 

the gut microbiome, whereas in the vaginal microbiome it was tied for first place with 

COBRA.  

 MelonnPan’s machine learning approach constrains the prediction heuristic from 

calling metabolites that have not been present in the training dataset. Thus, it may not be 

surprising that MelonnPan was able to capture greater proportions of experimentally 
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measured metabolites compared to other pipelines tested. MelonnPan may be sufficient for 

researchers simply looking for an approximation of metabolomics data. However, because 

the quality of MelonnPan’s predictions is dependent on the quality and comprehensiveness 

of the training data it is given, MelonnPan’s metabolite coverage is necessarily limited to 

the maximal coverage afforded by MS and NMR which both possess their own biases and 

technical limitations (Christians, Klawitter, Hornberger, & Klawitter, 2011). Knowledge-

based tools, which require no training data to generate predictions, could potentially be 

used to predict metabolites that are below the detection limit of metabolomics 

instrumentation. Thus, the much greater total number of predicted metabolites I observed 

using PRMT, which does not constrain its outputted predictions to chemical features found 

in training datasets or to features that are explicitly named in exchange reactions (as FBA 

tools do), suggests that PRMT may still hold value as a de novo metabolite predictor. 

We determined through a correlation-based analysis that MelonnPan produced 

sample metabolite profiles that were better correlated to experimentally measured 

metabolite profiles compared to all other tools within the gut. The lower performances 

observed in all other tools could have arisen through several different reasons. The chief 

assumption made by PRMT and MIMOSA2 – namely that gene abundances are directly 

related to the rate of enzymatic activity – may not hold true in the gut and vaginal 

microbiomes. FBA assumptions of a well-mixed system operating under steady-state 

conditions may not be met in the gut where microbial composition can be spatially 

heterogeneous (Lu et al., 2014). Changes in gene regulation arising from environmental 

changes – which cannot be captured through FBA or gene abundance-based approaches – 

could effect changes in metabolite abundances (Shlomi et al., 2008). Lastly, because FBA 

and gene-based abundance tools predominantly aim to reconstruct bacterial metabolism, 

other mechanisms controlling for metabolite variation such as phage predation (Hsu et al., 

2019), eukaryotic metabolism, or human uptake of microbial metabolites (Van Treuren & 

Dodd, 2020) are simply unaccounted for in these tools. Machine learning can detect 

complex associations involving multiple factors, thus MelonnPan may be capturing these 

alternative mechanisms during model training. Nevertheless, my results demonstrated that 

the FBA tool COBRA can generate predictions that correlate well with measured 

metabolite profiles within both the gut and the vaginal microbiome, indicating that a 
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mechanism-driven approach to metabolome prediction is feasible.  

 There are important caveats and limitations to consider for these tools. I observed 

that the choice of microbiome i.e. gut or vaginal, under study as well as the health status 

of the donor could affect tool performance, which may be important caveats when choosing 

an appropriate study design if predictive metabolic modelling is to be a large component 

of the study. I determined that sample-by-sample correlations between predicted and 

measured metabolite profiles were generally low across all tools. Additionally, I observed 

that correlations between predicted and measured metabolite abundances were poor for 

subsets of metabolites that appeared in common across all surveyed tools. I did not identify 

any metabolites that were consistently well predicted across tools and studies, which may 

indicate study-specific effects on microbe-metabolite linkages. A recent study described 

large variations in certain subsets of metabolites as well as their identified microbial 

contributors across studies (Muller, Algavi, & Borenstein, 2021). Ideally, greater numbers 

of paired sequencing-metabolomics studies would be needed to more thoroughly elucidate 

the limitations associated with metabolic modelling across cohorts. Dedicated repositories 

for paired metabolomics and microbiome data are making effective meta-analyses of these 

data more accessible (Schorn et al., 2021), and I hope that my evaluation framework will 

be able to take advantage of these resources as they become more widely adopted. 

 

 

6.2 Differential metabolite analyses 

 

 Often, the principal goal of a metabolomics experiment is to identify a 

discriminating metabolite for a human phenotype. A metabolite that is differentially 

abundant between a healthy and disease population could be a useful biomarker for disease 

onset or activity, or alternatively a potential therapeutic target. I sought to determine 

whether these tools could recover differential abundance patterns identified in measured 

metabolomics datasets by calculating F1, precision, and recall scores for each tool. 

Although I lacked the appropriate number of studies to evaluate for significance, I observed 

that MelonnPan had the highest F1 (0.3224) and recall (0.3971) scores, whereas 

MIMOSA2 possessed the highest precision score (0.4615). Surveyed scores were 
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altogether quite low (<0.5), which is consistent with earlier findings from Yin et al., that 

demonstrated low scores between MelonnPan, MIMOSA, and an unreleased tool of their 

making (Yin et al., 2020).  

 This is a noteworthy caveat for researchers aiming to leverage these predictive tools 

as replacements for experimentally obtained metabolite data. The low F1 scores I observed 

may result from several possibilities. The microbe-metabolite associations that are 

modelled using these metabolic modelling tools may not necessarily be extendible across 

case and control populations. Muller et al., recently characterized datasets containing 

paired data from case-control cohorts and determined that these associations were generally 

robust across healthy and disease populations (Muller et al., 2021). On the other hand, the 

human microbiome is not expected to be the sole determinant of metabolite variation. 

Paired sequencing-metabolomics surveys of the gut have indicated that, although the 

composition of the gut microbiome can explain a large proportion of the variation within 

the fecal metabolome, other factors relating to the host are also expected to play a role 

(Zierer et al., 2018; Visconti et al., 2019). In this context, dysregulation of host metabolite 

uptake, through impaired barrier function for instance, may alter the metabolome 

independently of the microbiome. Greater incorporation of host metabolism in these 

metabolic modelling tools may help improve their ability to capture differential abundance 

patterns if this is the case.  

Alternatively, the low scores may simply indicate that the tools themselves cannot 

fully capture metabolite abundances accurately. This would be consistent with the low 

Spearman’s correlations I observed between predicted and experimentally measured 

metabolite profiles for all tools, and further highlights the need for researchers to use the 

predictions generated by these tools conservatively. 

  

 

6.3 Multivariate metabolite analyses 

 

 Multivariate statistical methods are an appropriate means to compare multiple 

matrices of high-dimensional data. I sought to evaluate tool performances by utilizing PA 

to examine the structural congruency between predicted and experimentally measured 
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metabolite profiles. I observed significant Procrustes correlations for at least one dataset 

each for all tools with the exception of MAMBO. Further investigation through pairwise 

comparisons of tool predictions led us to the observation that MAMBO possessed the 

fewest significant Procrustes correlations to any other tool within both the gut and the 

vaginal microbiome, and that repeated metabolomes generated from the same samples 

correlated poorly with one another. This may indicate that the stochastic prediction 

algorithm utilized by MAMBO was not robust enough to approximate high-dimensional 

metabolomics data. An important caveat is that, owing to issues running the tool, the 

number of optimization steps used to parameterize MAMBO was restricted to one-tenth of 

the authors’ recommended one-million steps. I mitigated this limitation by selecting 

samples that had been identified as well-predicted (internal Pearson’s correlation of >0.95) 

by the tool for repeated analyses, though there may be other negative effects on the 

outputted predictions that are masked by a high internal Pearson’s correlation. 

 In line with my findings in Chapter 3, I found that predictions generated for the 

vaginal metabolome were better correlated to experimentally measured metabolome 

compared to the gut metabolome. This may suggest that the vaginal microbiome is a greater 

determinant of the surrounding metabolic landscape compared to the gut microbiome. The 

vaginal microbiome is dominated by a small number of microbial species – predominantly 

Lactobacillus spp. – that may induce a much greater effect on the vaginal metabolome 

compared to the gut microbiome, which is diffusely represented by over a hundred 

microbial species per person on average (Qin et al., 2010). Other determinants of 

metabolome composition within the gut, including the uptake of microbial metabolites by 

gut epithelial cells and the secretion of both host and microbially-derived metabolites 

through the biliary tree (Van Treuren & Dodd, 2020), may confound tool predictions if 

those tools cannot account for these mechanisms. However, given the limited number of 

vaginal datasets obtained for this study, compounded with the fact that both datasets were 

collected by the same authors and used 16S rRNA sequencing exclusively, future meta-

analyses of metabolite prediction tools will need to revisit this question more thoroughly. 
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6.4 Limitations and future directions 

 

There are several limitations associated with this evaluation framework. To assess 

tool performance, I considered the experimentally measured metabolomics data to be a 

“gold standard” against which metabolite predictions could be validated. This is the 

standard approach through which metabolic modelling tools are typically validated 

(Mallick et al., 2019; Garza et al., 2018; Yin et al., 2020). In practice however, confident 

metabolite identification of untargeted metabolomics data is technically challenging 

(reasons are outlined in section 1.4.4), especially in complex biospecimens such as stool. 

Within this context, the large numbers of metabolites that were uniquely predicted by 

PRMT (Figure 1) may in fact be present in the environment but simply could not be 

captured through metabolomics. Efforts to improve compound identification and enhance 

the global detection of metabolites are ongoing, and I anticipate that this will make fairer 

assessments of metabolite coverage across tools possible.  

Quantification of untargeted peak data is equally difficult because peak intensities 

represent relative approximations of metabolite concentrations (Kapoore & Vaidyanathan, 

2016). Without chemical standards it is difficult to compare concentrations of different 

metabolites against one another within the same sample. Though I included studies 

containing metabolomics data collected through a diverse array of instruments, an 

overwhelming number of samples were metabolically profiled via untargeted approaches 

(880 out of 1089 samples total). Thus, my sample-by-sample evaluation approach may 

favour machine learning modelling tools over FBA or gene abundance-based approaches 

because machine learning tools can learn to mimic the semi-quantative data structure of 

untargeted MS data. In the future, an alternative approach in which predicted metabolites 

are subsequently validated through targeted MS could help answer my research questions 

in a more quantitative fashion. 

 It is important to note that metabolomics is not directly analogous to metabolite 

fluxes, which are outputted by FBA tools. The former provides only a snapshot of 

metabolite concentrations at a single point in time whereas the latter provides additional 

information as to how those concentrations are changing temporally (Srivastava, Kowalski, 

Callahan, Meikle, & Creek, 2016). Thus, a large flux of metabolite directed towards the 
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environment may not necessarily translate to a greater relative abundance of that metabolite 

as measured strictly through metabolomics. Provided that the rate in which that metabolite 

is removed from the environment e.g., by excretion of stool or uptake by epithelial cells, is 

equal or greater than the rate that metabolite is added into the environment, an increased 

abundance of that metabolite may not be apparent. In vivo methods to quantify flux, such 

as through isotope tracing, are difficult to carry out in large cohort studies but may generate 

data that are more readily comparable as a “gold standard” to flux data generated from 

COBRA and MICOM (Berry & Loy, 2018). 

 While MelonnPan was generally superior compared to the mechanism-driven tools 

outlined in my meta-analysis, future tools incorporating human metabolism and more 

granular nutritional information into their working principles may help bridge this observed 

performance gap. To illustrate, FBA simulations incorporating gut microbe models 

together with human epithelial cells have uncovered novel microbe-microbe interactions 

arising through competition over enterocyte-derived glucose (Heinken & Thiele, 2015). 

Whole-body models of metabolism parameterized by dietary and microbiome sequencing 

data are now able to capture metabolic interactions at the organ level (Thiele et al., 2020). 

For the FBA tools COBRA and MICOM, I parameterized all community models using the 

author-provided nutritional constraints. These constraints represented the “average” 

European diet and are not necessarily applicable to all study participants e.g. those 

undergoing nutritional therapy for CD (Jones et al., 2020). Further efforts to evaluate 

human and microbial metabolism in tandem, and more accurately model the nutritional 

constraints of study populations, could improve tool performances and enhance the 

application of these tools beyond predicting metabolites. 

 

 

6.5 Conclusions 

 

Microbiome-level predictive metabolic modelling tools are a promising informatic 

development with the potential to greatly expand the utility of sequencing data and enhance 

the accessibility of metabolomic data collection. In this work, I have demonstrated the 

feasibility of these tools to predict metabolomics data from sequencing data alone, while 
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highlighting important limitations relating to their working principles and their ability to 

identify discriminating metabolites. The evaluation framework presented in this work is an 

important initiative through which future metabolic modelling tools can be appraised. 
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Figure 9. Proportion of reads in samples represented by GEMs across tools. 
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Figure 10. Non-significant associations between Spearman’s correlation coefficients 

and sample read count. No significant correlation was found between these two variables 

for 16S rRNA gene sequenced samples from a. the gut or b. vaginal microbiomes. 

a. 

b. 

ρ: 0. 0.01588261, P: 0.6082 

ρ: -0.02897414, P: 0.3991 


