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Abstract

Glass is an amorphous solid and in a stress-free environment exhibits isotropic optical

properties. When such a material is placed under stress the optical properties become

anisotropic. Glass can be characterized by its stress-optic response which describes

how the optical properties will change when it is subject to stress.

The mechanical properties were measured for three Ohara glass samples as well

as for fused quartz which was used to test the accuracy of the Dixon-Cohen method

used in this thesis for the measurement of the individual photoelastic tensor elements.

The stress-optic response of all glass samples was investigated using the Sénarmont

compensator method and the Dixon-Cohen method. The Dixon-Cohen method is

shown to be an accurate method for the determination of the individual photoelastic

tensor elements of glass samples.
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Chapter 1

Introduction

The scientific interest in the properties of glass goes back over 400 years, however,

the investigation of the photoelastic properties has only been investigated over the

past few decades. The importance of understanding these properties plays a key role

in fiber optic cable design.

Fiber optic cables are widely used in telecommunication and therefore the under-

standing of the limitations of optical fibers is important. Finding an accurate way to

measure the individual photoelastic tensor elements will allow for the understanding

of new ways to design fiber optic cables with longer transmission ranges.

The objective of this thesis is to investigate the accuracy of the Dixon-Cohen

method for the measurement of the photoelastic properties of various glasses. Using

the Sénarmont compensator and the Dixon-Cohen acousto-optic setup the stress-optic

coefficients can be measured and compared.

This thesis is comprised of six chapters. Chapter 2 describes what glass is and

theories that attempt to correlate the mechanical properties of glass to the photoe-

lastic properties of interest. The theory behind the various measurement techniques

used throughout this thesis is also described to provide the reader with a better

understanding of the results obtained.

Chapter 3 goes into detail about the operation of each technique used to measure

various properties of the glass samples. The processing of the glass samples is outlined

in detail as well as each of the optical setups used in this thesis.

Chapter 4 presents the results obtained for the mechanical properties of the

1



2

glasses. The refractive index measurements using the Abbe refractometer as well

as the spectral ellipsometer are also provided. Finally, the data for the Sénarmont

compensator and the acousto-optic data from the Dixon-Cohen setup are presented.

Chapter 5 provides a discussion of the results obtained and possible reasons for

the disagreement of the measured properties compared to previously reported data

on the glass samples.

Finally, Chapter 6 provides concluding remarks on the results obtained in this

thesis and outlines future improvements that could be done to achieve more accurate

results.



Chapter 2

Background

Glass, unlike crystals, have no long-range atomic order. These materials are known

as amorphous solids and have isotropic optical properties under a stress-free envi-

ronment. These materials have many applications being used industrially as glass

windows, and personally for optometry and for glass screens of smartphones. They

are also extremely important in lens design for microscopes and telescopes. One of

the more leading fields of glass science is the usage of optical fibers in communica-

tion networks. Understanding the properties of glass is important to the future of

communication, as well as many other fields.

2.1 Glass Structure

This thesis focuses on a method to measure the photoelastic properties of glass that

will provide the groundwork necessary to correlate the individual photoelastic tensor

elements to the structure of the glass system. In this section, the general structure of

oxide glasses will be introduced and further explained by the random network theory

hypothesis.

2.1.1 The Definition of Glass

The structure of glass is different from the crystalline structure because there is no

long-range order due to the lack of a periodic structure. Glass is formed by heating

certain compounds to liquid form, at which point they are super-cooled, preventing

the atoms from returning to their relaxed crystalline lattice sites.

3
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Figure 2.1: Volume dependence on formation of glass compared with crystal structure
with temperature [1].

Figure 2.1 shows that if a liquid cools slowly a crystal is formed, and at the melting

temperature, Tm, a large volume change occurs (this process is reversible). However,

if the liquid is super-cooled the atoms become frozen in place and cannot return to

the relaxed crystalline lattice locations, and glass is formed. The glass transition

temperature, Tg, describes the temperature range in which glass will form. In an

oxide glass, the structure tends to have a small variation in bond length and a large

variation in bond angles compared to the crystalline equivalent.

2.1.2 Random Network Theory

The definition of glass is disputed amongst the scientific community. A widely ac-

cepted theory for the formation of oxide glasses was presented by Zachariasen in 1932

[4]. First, he stated that an oxide glass of the composition AmOn the oxygen atoms

can be bonded to no more than two A atoms. He also proposed that A atoms are

only surrounded by a small amount of oxygen atoms and the oxygen polyhedra do

not share edges or faces, only corners with each other shown in Figure 2.2 b. Finally,

he suggested that for each polyhedron at least three corners must be shared. This
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theory sufficiently describes the structure of glasses such as SiO2, however fails to

explain the structure of other types of glasses such as metallic glasses. Figure 2.2

Figure 2.2: a. Crystalline structure of SiO2 where black dots are Si atoms and white
dots are O atoms. b. Glass structure of SiO2 [2]. This is a schematic representation
of an ordered crystal (left) and a disordered glass (right). For a disorder glass the
bond lengths are largely preserved, however, the bond angles vary largely.

a. shows the crystalline form of SiO2 where the bond lengths and bond angles are

all equivalents. In Figure 2.2 b. the glass form of SiO2 is shown, where the bond

lengths vary by small amounts and the bond angles vary quite significantly. In this

representation the oxygen bonds between silicon atoms are known as bridging oxygen

bonds. Oxygen bonds that are only bonded to one Si atom with one free end are

known as non-bridging oxygen.

2.1.3 The Glass Network

The Zachariasen network theory is valid for low-order glass systems composed of

simple oxide compounds such as SiO2, B2O2, P2O5, and GeO2 [2]. These compounds

will form a glass by themselves with a similar structure to that shown in Figure 2.2
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b. They are known as glass network formers because they can form a glass network

without the addition of other compounds.

Other compounds can be added to these networks and are known as network mod-

ifiers. Examples of glass network modifiers are Na2O or CaO. When these compounds

are introduced to the glass network some of the oxygen bonds between the anions in

the glass are broken, forming non-bridging oxygen bonds shown in Figure 2.3. The

Figure 2.3: The addition of Na2O to an SiO2 glass creating non-bridging oxygen
bonds [2].

addition of these compounds modifies the properties of the glass, such as the melting
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temperature, mechanical properties, and optical properties. The melting temperature

of SiO2 is 1700
◦C, but with the addition of 33 mol % Na2O the melting temperature

is reduced significantly to less than 800 ◦C [5].

Another classification of compounds are known as intermediates. These com-

pounds can act as the glass modifier or as the glass former. An example of such a

compound is PbO which can change the optical properties of the glass such as the

index of refraction, photoelastic coefficients, density, and more [6].

2.2 Interaction of Light with Glass

2.2.1 Birefringence

When glass is stressed the optical properties are no longer isotropic. A stress-induced

glass exhibits birefringent effects, changing the index of refraction along the extraor-

dinary (stress direction) ne and ordinary axes no. When a stress is introduced the

change in the refractive indices results in birefringence,

b = ne − no. (2.1)

This induced birefringence is shown in Figure 2.4 where the change in the index

of refraction parallel to the stress is called the extraordinary axis and the change

perpendicular is called the ordinary axis. The birefringence is proportional to the

applied stress, provided the stress is within the elastic limit of the glass, by

b = Cσ (2.2)

C is known as the stress-optic coefficient and is used to characterize a glasses bire-

fringent response to an applied stress. The stress-induced birefringence in glass can

also be described using the piezo-optic tensor πijrs, or the elasto-optic tensor, pijkl.
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Figure 2.4: Uniaxial stress-induced birefringence resulting in the change of the indices
of refraction along the extraordinary (ne) and ordinary (no) axes. This results in an
induced birefringence b = ne − no.

These tensors relate the applied stress or strain to the change in the inverse dielectric

constant:

∆Bij = πijrsσrs = pijklskl (2.3)

where Bij = (1/n2)ij = (1/ϵ)ij is the inverse dielectric tensor, σrs is the stress tensor,

and skl is the strain tensor [7, 8]. A force that is exerted on a face of the cube will

cause a stress along the y-axis shown in Figure 2.4, as well as stresses orthogonal

to it. This can be expressed by the stress tensor σrs. The elasto-optic tensor can

be written in terms of the piezo-optic tensor by pijkl = πijrsCrskl, where Crskl is the

compliance tensor. Voigt notation is used due to the symmetry of the tensor where

the following simplification can be made:

11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6

Due to glass being isotropic, only two of the three piezo-optic and elasto-optic tensor

elements are independent, and are related by

2p44 = p11 − p12

2π44 = π11 − π12

(2.4)
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Equation 2.3 can be solved for a uniaxial stress assuming the change in refractive

index is small (ne ≈ no ≈ n). This results in Equation 2.3 becoming

∆Be =
1

n2
e

− 1

n2
=

n2 − n2
e

n2n2
e

=
(ne + n)(n− ne)

n2n2
e

=
(n− ne)(2n)

n4
= π33σ3 = π11σ3,

(2.5)

which can be written as

(n− ne) =
n3

2
π11σ3. (2.6)

Similarly we can show for the ordinary axis that

∆Bo =
1

n2
o

− 1

n2
=

n2 − n2
o

n2
on

2
=

(no + n)(n− no)

n2
on

2
=

(n− no)(2n)

n4
= π13σ3 = π12σ3,

(2.7)

which can be written as

(n− no) =
n3

2
π12σ3. (2.8)

This can be related to birefringence, b, by relating the stress-optic coefficient to the

piezo-optical coefficients. Subtracting Equation 2.6 from Equation 2.8 gives

b = (ne − no) = −n3

2
(π11 − π12)σ3 = Cσ3. (2.9)

C is often used to describe the behaviour of a glass under stress and can be written

in terms of the shear piezo-optic tensor element as

C = −n3π44. (2.10)

As well, this can be written in terms of the shear elasto-optic tensor element as

C = − n3

2G
p44 (2.11)
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where G = C44 is the shear modulus of the glass.

The composition of a glass determines whether it will have a positive, negative, or

zero stress-optic coefficient. Studies have shown that the addition of heavy elements

such as lead, bismuth, tin, and antimony can lower the stress-optic coefficient and

can in some cases introduce a zero or negative stress-optic response [7, 9]. The

fundamental goal of many glass scientists since the 1900’s when Pockel’s first studied

photoelasticity has been to relate the stress-optic response of glass to its structure

[10].

2.2.2 Theories of Photoelasticity: Elasto-Optic Coefficients

Several theories have attempted to relate the elasto-optic tensor elements of crystals

and amorphous materials to the material properties and composition. Many of these

theories and models have predicted the relationship of photoelasticity to the dielec-

tric tensor, polarizability density tensor, and chemical bonding in the material. In

order to understand the connection between photoelasticity and the structure two

straightforward models will be described.

2.2.2.1 Clausius-Mossotti Model

To understand the relationship between photoelasticity and these material properties

a simple model will first be considered. The Clausius-Mossotti model is considered

to be the first step to understanding the full relationship between these properties.

This model shows the relationship between the dielectric constant (or the refractive

index) and the polarizability of the material. It works well for homogeneous isotropic

materials and can be applied to less ideal liquids and solids.

Consider an electric field, E, which is related to the total polarization, P , by

P = (ϵ− 1)ϵoE (2.12)
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where ϵ is the dielectric constant of the material, and ϵo (8.85 x 10−12C2N−1m−2) is

the dielectric constant of free space.

If one considers NL dipoles per unit volume then the total polarization can be

written as

P = NLαE
′

(2.13)

where α is defined as the mean polarizability of each dipole and E
′
is the local electric

field applied on the average dipole. For glass and other dense dielectric materials the

local field can be described by the macroscopic field and the Lorentz field which are

dependent on the polarization

E
′
= E − 1

3ϵo
P (2.14)

The Clausius-Mossotti equation can be found by combining Equation 2.12, Equation

2.13, and Equation 2.14 and setting 4πϵo = 1 giving

ϵ− 1

ϵ+ 2
=

4πNLα

3
=

4πNα

3Vm

=
4πNρα

3M
(2.15)

where N is Avogadro’s number, ρ is the density, Vm is the molar volume and M

is the molar mass of the material. The Lorentz-Lorenz equation can be found by

substituting ϵ = n2 giving

4πNLα

3
=

(n2 − 1)

(n2 + 2)
Vm = Rm, (2.16)

where Rm is referred to as the molar refractivity.

If a perfect, isotropic, homogeneous material is considered where α has no density

dependence (dα/dρ = 0), the dielectric response of the material can be related to the
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elasto-optic tensor elements by

3ρ
dϵ

dρ
= ϵ2(p11 + 2p12) = (ϵ− 1)(ϵ+ 2) (2.17)

This model is considered one of the simpler representation of photoelasticity, however,

it is a good starting point for further models to be built on.

2.2.2.2 Mueller’s Model

In 1935 Mueller considered two additional effects to the Lorentz-Lorenz equation.

Firstly, he considered the lattice effect which describes the change in Lorentz-Lorenz

forces in a solid. Secondly, he considered the atomic effect which describes changes in

the mean polarizabilities due to strain deformations in the material. Equation 2.14

describes the local electric field on an average dipole in the material. For multi-atom

systems we can write the Lorentz-Lorenz equation as

n2 − 1

n2 + 2
= ρ

∑︂ 4πNαi

3Mi

, (2.18)

where the summation is over atoms of type i. This equation is valid for an unper-

turbed homogeneous isotropic material. If a strain in the z-direction is introduced the

Lorentz-Lorenz forces will become dependent on the local electric field. In this case

the strain ellipsoid would be 1:1:1+z, and the local electric field components would

be

E
′

x = Ex +
Px

ϵo

(︃
1

3
+

2

15
z

)︃
,

E
′

y = Ey +
Py

ϵo

(︃
1

3
+

2

15
z

)︃
,

E
′

z = Ez +
Pz

ϵo

(︃
1

3
+

4

15
z

)︃
.

(2.19)
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By substituting Equation 2.12 and Equation 2.13 into Equation 2.19 the following

indices of refraction are obtained:

n2
x − 1 =

∑︂ 4πNραi

Mi

[︃
1 +

(︃
1

3
+

2

15
z

)︃
(n2

x − 1)

]︃
,

n2
y − 1 =

∑︂ 4πNραi

Mi

[︃
1 +

(︃
1

3
+

2

15
z

)︃
(n2

y − 1)

]︃
,

n2
z − 1 =

∑︂ 4πNραi

Mi

[︃
1 +

(︃
1

3
− 4

15
z

)︃
(n2

z − 1)

]︃
.

(2.20)

The elasto-optic tensor elements can be found by differentiating the terms in Equation

2.20 about z = 0 and considering αi to be constant with respect to z. This results in

p12 =
1

3

(ϵ− 1)(ϵ− 2)

ϵ2
− 2

15

(ϵ− 1)2

ϵ2

p11 =
1

3

(ϵ− 1)(ϵ− 2)

ϵ2
+

4

15

(ϵ− 1)2

ϵ2

(2.21)

Mueller attributed the first terms in both of the above equations to be a result of the

change in density of a material under a strained state [11]. He states that because this

is typically a large positive number, it explains why p11 and p12 always have positive

values. The second term in the above equation is responsible for the birefringence

observed due to the anisotropy in the Lorentz-Lorenz force. The shear elasto-optic

coefficient is then found to be 2p44 = 6(n2 − 1)2/15n4 and provides the correct order

of magnitude, however, fails to provide the correct sign compared to experimental

data. The failure to predict the correct sign of the stress-optic coefficient led to the

consideration of a change in polarizability.

In order to predict the positive and negative stress-optic response of glass Mueller
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considered the change in the polarizability of the atoms. He assumed that the polar-

izability would behave linearly due to the linearity of the photoelastic effect giving

αz = α(1 + λ1z),

αx.y = α(1 + λ2z).

(2.22)

Taking this into consideration introduces a third term into the elasto-optic tensor

elements making them

p12 =
1

3

(ϵ− 1)(ϵ− 2)

ϵ2
− 2

15

(ϵ− 1)2

ϵ2
− L2

3

(ϵ− 1)(ϵ+ 2)

ϵ2
,

p11 =
1

3

(ϵ− 1)(ϵ− 2)

ϵ2
+

4

15

(ϵ− 1)2

ϵ2
− L1

3

(ϵ− 1)(ϵ+ 2)

ϵ2
,

2p44 = p11 − p12 =
(L2 − L1)

3

(ϵ− 1)(ϵ+ 2)

ϵ2
+

6

15

(ϵ− 1)2

ϵ2
,

(2.23)

where L1 and L2 represent the optical deformabilites of the atoms’ polarizability. It

can be defined as L1,2 =
∑︁

(λ1,2Nα/M)i/
∑︁

(Nα/M)i. The presence of this new

term in the above equation explains how glasses can have positive, negative or zero

birefringence based on the values of L1 and L2.

Mueller states that in heavier glasses the term
(︂

6
15

(ϵ−1)2

ϵ2

)︂
will be larger due to

larger refractive indices. The stress-optic coefficient C is related to the elasto-optic

tensor element p44 and can be used to relate the structure, arrangement of molecules,

and deformations in glass due to stress. However, because L1 and L2 need to be

determined experimentally this theory is limited.

2.2.2.3 Theories of the Dispersion of the Photoelastic Tensor Elements

Most theories for the dispersion of the photoelastic tensor elements pertain to crys-

talline materials, however, an understanding of these theories may provide insight into

properties that could lead to a connection between the dispersive nature in amorphous

solids.
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Wemple and DiDomenico considered how strain on a crystal would change the en-

ergy band structure. This was then used to model the dispersion of the elasto-optic

tensor in crystalline materials. The strain-induced changes to the energy band struc-

ture were determined by approximating the band structure with a simple oscillator

model [12]. The imaginary part of the dielectric response, ϵ2,ij, can be determined

from the one-electron wave function. The real part can be determined using the

Kramers-Kronig (KK) integral in the region of transparency by

ϵ1,ij − 1 =
2

π

∫︂ ∞

ωg

ω′ϵ2,ij(ω
′)

ω′2 − ω2
dω′ (2.24)

where ωg represents the absorption threshold frequency. When a strain is applied the

wave functions and energy bands will change. This results in a change to the real

part of the dielectric function resulting in

∆ϵ1,ij(ω) =
2

π

∫︂ ∞

ω′
g

ω′∆ϵ2,ij(ω
′)

ω′2 − ω2
dω′ (2.25)

where ∆ωg is the shift in the absorption threshold due to the induced-strain, and

ω′
g = ωg +∆ωg. The elasto-optic tensor elements can be related to this when there is

an induced-strain x by

∆ϵ1,ij(ω) = −
∑︂
k,l

ϵ1,ik∆(1/ϵ1)klϵ1,lj = −
∑︂

k,l,m,n

ϵ1,ikϵ1,ljpklmnxmn. (2.26)

In order to determine the imaginary part of the dielectric function, ∆ϵ2,ij, the au-

thors used the simple oscillator approximation. Using the Sellmeier expression the

contribution of the band structure to the dielectric constant can be modeled for ionic

and covalent crystals

ϵ1(λ)− 1 = S0(λ0)
2

[︄
1−

(︃
λ0

λ

)︃2
]︄−1

. (2.27)
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Here S0 is the oscillator strength, λ is the wavelength of light, and λ0 is the oscillator

position parameter. The oscillator strength is related to the interband strength (F =

(hc/e)2S0), and the oscillator position parameter is related to the interband energy

(E0 = hc/eλ0). Equation 2.27 is considered to be a long-wavelength approximation

to the KK integral which leads to

(E0)2 =
(︃
ℏ
e

)︃2 ∫︂ ∞

wg

ϵ2
ω
dω

/︃∫︂ ∞

wg

ϵ2
ω3

dω,

F =
2

π

(︃
ℏ
e

)︃2
(︄∫︂ ∞

wg

ϵ2
ω
dω

)︄2/︃∫︂ ∞

wg

ϵ2
ω3

dω.

(2.28)

When there is an induced strain there will be a change in the oscillator position (∆E0)

and the oscillator strength (∆F). These can be calculated using Equation 2.28. Using

the Sellmeier expression, the change in the real part of the dielectric constant can be

calculated under an induced-strain by

∆ϵ1
(ϵ1 − 1)

= −2

(︃
∆E0
Ed

)︃(︄
1 +Kij

[︄
1−

(︃
λ0

λ

)︃2
]︄)︄

,

Kij = −1

2

(︃
∆F/F
∆E0/E0

)︃
.

(2.29)

Here Ed = F/E0 = (hc/e)S0λ0 is the dispersion energy. Introducing a deformation

potential parameter Dij that relates the strain component xij to the oscillator shift

∆E0 by the following

∆E0 =
∑︂
i,j

Dijxij (2.30)

Under the assumption that Ed, E0, and ϵ1 are approximately isotropic, the elasto-optic
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coefficients can be described by

pij
(1− 1/n2)2

=
2

Ed
Dij

(︄
1 +Kij

[︄
1−

(︃
λ0

λ

)︃2
]︄)︄

. (2.31)

In the case of Equation 2.31 the values of Dij and Kij can be measured experimentally

and pij can be calculated. The dispersive nature of pij depends on the value of Kij

and will determine if it is positive or negative. The dispersion energy was previously

described by Wemple and DiDomenico empirically [13]:

Ed = βNcZaNe, (2.32)

where β experimentally takes the value of βi = 0.26 eV for ionic compounds and

βc = 0.39 eV for covalent compounds. Nc represents the cation coordination number,

Za is the formal anion valency, and Ne is the effective number of valance electrons

per anion.

Wemple and DiDomenico showed that Equation 2.31 is an effective two-parameter

fit for the elasto-optic dispersion of crystalline materials. Although this fit resulted

in reasonable values it provided no correlation between the crystal composition and

the properties of the crystals.

Cardona et al. considered relating the photoelastic properties of amorphous solids

and crystalline materials to the electronic band structure [14]. Cardona considered

how the electronic contributions would affect the piezo-optic tensor elements. The

dispersion of the piezo-optic tensor elements shows strong dispersion near their ab-

sorption edge. This tends to be stronger at direct edges compared to indirect gaps.

Cardona looked at the band structure of Ge crystal under strain to investigate the

change in the optical properties. The focus was on the contribution of E0 (transparent

region) and E1 (outside the transparent region) transitions to the change in piezo-optic
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tensor πijkl. The piezo-optic tensor can be calculated from the analytical expression

of the dielectric constant which is in terms of these energy gaps.

When the Ge crystal is under a hydrostatic stress (XH) the direct gap energy E0

and the spin-orbit splitting component E0 +∆0 are affected and can be represented

by dE0/dXH resulting in the hydrostatic constant

(π11 + 2π12)E0,E+∆0 =
1

2ω0

dω0

dXH

P−1

(︃
G(3)(x) + 3F (3)(x) +

1

2
G(3)(x′) +

3

2
F (3)(x′)

)︃
,

(2.33)

where

G(3)(x) =
1

x2
[2− (1 + x)−1/2 − (1− x)−1/2],

F (3)(x) =
1

x2
[2− (1 + x)1/2 − (1− x)1/2].

(2.34)

Here x = ω/ω0, x
′ = ω/(ω0 + ∆0), and where P = 2π/a0 is the interband matrix

element of linear momentum and a0 is the lattice constant.

There are two things that affect the shear terms of πijkl arising from E0 in the

Ge crystal. The first effect comes from the splitting δω0 of the top valance band Γ8

caused by the shear stress, and the second arises from the coupling of Γ8 with the

spin-orbit split state Γ7. This leads to the hydrostatic constants

π11 − π12 =
3

4
(S11 − S12)

b

ω0

P−1

(︄
−G(3)(x) +

4ω0

∆0

[︄
F (3)(x)−

(︃
ω0

ω0 −∆0

)︃3/2

F (3)(x′)

]︄)︄
,

π44 =
3

4
S44

d

2
√
3ω0

P−1

(︄
−G(3)(x) +

4ω0

∆0

[︄
F (3)(x)−

(︃
ω0

ω0 −∆0

)︃3/2

F (3)(x′)

]︄)︄
,

(2.35)

where b and d are typically negative values and are known as shear deformation

potentials. G(3) describes the effect of the band splitting, and F (3) represents the band
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coupling. For the crystals considered in this study the values of P−1, Sij, b and d are

approximately equal requiring the addition of a constant term for the experimental

measurements to match the theory. The positive constant term dominates at low

frequencies, however with a changing wavelength, the negative dispersive term will

dominate and result in an isotropic point for particular materials. In the case of ω0

being small the shear effects due to the E0 edge will overcome the constant term and

will result in no isotropic point.

Cardona states that the elasto-optic tensor elements pij can be compared to the

experimentally determined values if the deformation potentials (b and d), ω0, and ∆0

are all known. This possesses a problem for glass materials due to the fact that the

electronic band structure of glass is difficult to obtain.

Kucharczyk took a similar approach as Wemple and DiDomenico and consider a

single oscillator in order to show the wavelength dependence of the elasto-optic tensor

[15]. From a bond polarizability approach the shear component of the elasto-optic

tensor is

p44 =
8

n4a3
(βT − βL), (2.36)

where n is the refractive index, a is the lattice constant, and βT,L is the transverse

and longitudinal part of the bond polarizability tensor. βT and βL were fit for alkali

halides using the single oscillator formula for λ in the UV-vis range with

βT,L =
AT,Lλ2

λ2 − (λT,L
0 )2

(2.37)

A limiting factor to this theory is the need to understand the dependence of β on

the wavelength, particularly how the parameter A changes with wavelength. This is

necessary in order to describe the relationship between p44 and λ.

All of these theories have limitations in describing the dispersive nature of pij,
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however it provides a good understanding of particular properties such as the refrac-

tive index, electronic band structure and bond polarizabilities that could help relate

the chemical composition of a glass to the change in the elasto-optic tensor.

2.2.2.4 The Empirical Model of Photoelasticity

Guignard and Zwanziger developed an empirical model that predicts the sign of the

stress-optic coefficient based on the bond length, d, and the coordination number,

Nc [9]. This model predicts that if a glass has a low d/Nc it will have a positive

stress-optic coefficient, and if it has a high d/Nc it will have a negative stress-optic

coefficient. Glasses that have low coordination numbers allow for the distortion of the

bonds along the bonding direction and orthogonal to it, whereas high coordination

numbers prevent this from happening [9]. Therefore, high coordination number results

in negative stress-optic coefficients and low coordination number results in positive

stress-optic coefficients.

Guignard et al. [9] compiled a list of compounds with their d/Nc values and the

sign of the stress-optic coefficient shown in Table 2.1.

Guingard states that in order to obtain a glass with a zero stress-optic coefficient

the following must be true for a glass blend between one of the metallic components

in Table 2.1 and a glass former

∑︂
i

xi

(︃
d

Nc

)︃
i

≈ 0.5Å. (2.38)

The summation in Equation 2.38 is over the compounds the glass is comprised of,

xi is the molar percentage of the ith compound, and (d/Nc) is the ratio listed in

Table 2.1 for the particular compound. This model is useful in determining the sign

of the stress-optic coefficient based on the compounds the glass is made of, however,

it does not predict the magnitude of the stress-optic coefficient. As well, it does not
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Table 2.1: The compound names are listed along with the anion-cation bond length
d, the coordination number Nc, the ratio of the cation-anion bond with the coordi-
nation number d/Nc, and the sign of the stress-optic coefficient C. Values that were
calculated from first principles are labeled ‘calc’ and those determined experimentally
are labeled ‘expt’.

Compound d (Å) Nc d/Nc (Å) sign of C source
Tl2O 2.517 3 0.84 − expt [16]
Sb2O3 2.022 3 0.67 − expt [9]
PbO 2.326 4 0.58 − calc [9], expt [16]
SnO 2.224 4 0.56 − calc, expt [9]
Bi2O3 2.198 4 0.55 − expt [17]
TeO2 2.0 4 0.50 + calc [9]
ZnO 1.988 4 0.50 + expt [18, 19, 20]
PbS 2.967 6 0.49 + calc [9]
BaO 2.74 6 0.46 + calc [9], expt [20]
B2O3 1.366 3 0.46 + expt [18]
GeO2 1.717 4 0.43 + expt [21]
SiO2 1.609 4 0.40 + expt
P2O5 1.5 4 0.38 + expt [22]
MgO 2.1085 6 0.35 + calc [9], expt [20] [16]
SnO2 2.055 6 0.34 + calc [9]

predict the wavelength dependence of the stress-optic coefficient which is important

when designing a zero-stress optic glass for a particular wavelength.

2.2.2.5 Other Works

Previous studies have been done that look at the elasto-optic tensor elements of

various glass systems or industrially produced glasses. Early measurements of the

individual elasto-optic tensor elements were done by Manenkov and Ritus who in-

vestigated the mechanical and photoelastic properties of laser glasses to determine

their usefulness [23]. This was done by measuring the Brillouin spectra using a Fabry-

Perot interferometer. This was later used by Heiman et al. to investigate the Brillouin

spectra of 16 industrially provided optical glasses.

Benassi et al. furthered this by looking at the Brillouin spectra of several silicate

glasses provided by Schott [24]. They reached the conclusion that for silicate glasses
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that the bond polarizability model coupled with the dipole-induced-dipole model

was useful in predicting the elasto-optic tensor elements, however further work was

required.

Roselló et al. used whispering gallery mode resonances to investigate the disper-

sion of the elasto-optic coefficients in fibre optic cables under axial stress [25]. These

measurements lead to the conclusion that silica shows a relatively flat dispersion

response, however, due to large errors conclusive statements could not be made.

Galbraith et al. looked at several different families of glasses and how changes

in the molar fraction of the composition related to changes in the elasto-optic coef-

ficients [26]. She investigated barium borates, lead borates, barium phosphates, lead

phosphates, and lead silicates using Brillouin spectroscopy. The author showed that

an adapted bond polarizability model could be used to predict the sign and the values

of the elasto-optic elements of unknown oxide glasses.

These models all suggest some form of predictability of the elasto-optic coefficients

by a bond polarization model however more data is required in order to further un-

derstand the correlation between the glass structure and the photoelastic properties.

2.3 Acousto-Optics

Acousto-optics describe the interaction between electromagnetic waves and acoustic

waves propagating through a material. This effect can occur in different mediums such

as liquids, amorphous solids, or crystalline materials. When acoustic waves propagate

through a material density fluctuations occur. These density fluctuations cause a

change in refractive index, resulting in a localized change of the optical properties.

The field of acousto-optics is relatively new, beginning in the early 1900’s when

Brillouin first theorized that electromagnetic waves could interact with acoustic phonons

propagating through a material. Debye and Sears as well as Lucas and Biquard later

proved this experimentally [27].
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The invention of the laser propelled the field of acousto-optics to what it is today

[28]. Before the laser was invented various light sources were used such as mercury

arc lamps. Mercury arc lamps produce light by discharging an electric arc through

vaporized mercury. The light produced by these arc lamps is comprised of several

different wavelengths in the ultra-violet range as well as the optical range. This is not

ideal when trying to determine material properties that are wavelength dependent.

The invention of the laser in 1960 provided a solution to this problem [28]. Lasers

produce monochromatic coherent light, which is ideal when investigating material

properties that are wavelength-dependent [29].

2.3.1 Acousto-Optics

Acousto-optic modulators are devices used to rapidly diffract light and typically op-

erate under the Bragg condition. The Bragg condition usually refers to the atomic

spacing between atoms in a crystal, however, in this circumstance it will be the wave-

length of the acoustic beam which causes the density fluctuations in the material.

The Bragg condition can be written as

sin θB =
λ

2Λ
(2.39)

where θB is the Bragg angle, λ is the wavelength of the incident laser beam, and Λ is

the wavelength of the acoustic wave.

At the Bragg angle, the incident light beam will be scattered at the same angle of

the exiting surface. The intensity of the scattered beam can be expressed using the

acousto-optic figure of merit

M =
I

Pa

=
pijn

6

ρv3
(2.40)

where M is the acousto-optic figure of merit, I is the intensity of the diffracted beam,
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Pa is the acoustic power density, pij is the individual photoelastic tensor element, n

is the refractive index, ρ is the density, and v is the longitudinal speed of sound.

In the study of glass materials, the determination of the individual photoelastic

tensor elements is of great interest. These properties have been studied dating back

to the early 1900’s [2]. The Dixon-Cohen method makes use of the ratio of the figure

of merit for an unknown sample compared to that of a known reference sample such

as fused quartz, which relates the diffracted intensities to the photoelastic coefficients

[30]. The following equation shows the ratio of the figure of merits

Msample

Mfusedquartz

=

√︃
I4I5
I1IR

=
(p2n6/ρv3)sample

(p2n6/ρv3)fusedquartz
(2.41)

where Ii represents the measured intensity peaks labeled in Figure 3.7. I1 is the

scattered intensity through the reference from the initial outgoing acoustic wave in

the reference sample. IR is the scattered intensity through the reference from the

acoustic wave after it has been transmitted into the sample, reflected off of the free

end, and is re-transmitted back into the reference sample. I4 is the scattered intensity

through the sample from the initial acoustic wave that is transmitted into the sample

from the reference sample. I5 is the scattered intensity through the sample from the

acoustic wave that has been transmitted into the sample and has reflected off the free

end.

2.3.2 Stimulated Brillouin Scattering

In 1922 Léon Brillouin showed theoretically that optical photons could be scattered

from thermally excited phonons in a material [31]. The scattering of optical photons

by these thermally excited acoustic waves is a prominent property in materials and

has gained much interest over the past century.
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Stimulated Brillouin Scattering (SBS) limits the optical power that can be trans-

mitted through an optical fiber over long distances and requires relay stations to

amplify the signal [32]. Thus, investigating how to reduce the process of SBS is

important in the field of optical fiber communication which is of major interest to

industrial internet providers.

Brillouin scattering is a spontaneous event in which an incident photon is converted

into a scattered photon and phonon in the material. The scattered photon undergoes

a downshift in frequency and is known as a Stokes wave named after George Stokes

who discovered this phenomenon in the 19th century [33]. This process becomes

stimulated in the backward direction as you increase the pump power of the input

light into the fiber optic cable. This limits the distance in which an optical signal can

be transmitted through an optical fiber, requiring relay stations to amplify the signal

[32, 34].

The largest contribution to the SBS in optical fibers is due to electrostriction which

causes a density change in insulating materials in the presence of a strong electric

field. This causes the refractive-index to depend on the intensity of the incident light

[35, 36]. The backscattered Stokes wave will interfere with the input light causing

the formation of an acoustic wave due to electrostriction effect. The more intense the

input light is the greater the amplitude of the acoustic wave becomes. As the acoustic

wave propagates in the forward direction it acts as a Bragg grating, resulting in more

light to be scattered in the backwards direction [33].

The following mathematical description of SBS closely follows the description

given in reference [33]. As mentioned above, SBS is when an incident photon is

scattered, resulting in the formation of a new photon and an acoustic phonon. From

the perspective of quantum mechanics it can be thought of as the annihilation of the

incident photon and the formation of a new scattered photon and phonon, where both

energy and momentum are conserved. The relationship between the incident wave
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frequency, also known as the pump frequency (wp), the scattered photon, also known

as the Stokes wave (wS), and the acoustic phonon (Ω) is as follows,

wS = wp − Ω (2.42)

Conservation of momentum also requires that

βS = βp −B (2.43)

where βS is the wave vector for the Stokes wave, βp is the wave vector for the

pump photon, and B is the wave vector for the acoustic phonon.

The derivation for the evolution of optical power can begin with Maxwell’s equa-

tions written in the form

∇2E − ϵL
c2

∂2E

∂t2
− µo

∂2PNL

∂t2
= 0 (2.44)

where ϵo is the linear dielectric constant and µo is the linear magnetic permeability.

PNL is known as the nonlinear polarization which is a result of the acousto-optic

interaction and can be written as

PNL =
γe
ρo
ρE = ϵoϵNLE (2.45)

By replacing Eq. 2.45 into Eq. 2.44 and replacing ϵtot = ϵL + ϵNL the following is

obtained

∇2E =
ϵtot
c2

∂2E

∂t2
(2.46)

where ϵtot = n2(r) − inαc/ω + ϵNL, where the loss coefficient of the optical fiber

is α. In order to come to the derivation in Equation 2.46 the following assumptions
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must be made: the optical source is considered to be quasi-monochromatic; small

perturbations are considered in the non-linear polarization PNL.

The spatial evolution of the guided optical power for the input pump Pp and the

back-scatter Stoke’s wave Ps can be represented by two coupled ordinary differential

equations

dPp

dz
= −γmζ(ν)PpPs − αPp,

dPs

dz
= −γmζ(ν)PpPs + αPs,

(2.47)

respectively. Here α is the optical loss coefficient, ζm is the spectral profile of the

Brillouin gain and γm is the peak SBS efficiency for the acoustic mode and is defined

by

γm =
gm
Aao

m

(2.48)

where gm is the peak Brillouin gain and Aao
m is the acousto-optic effective area. The

peak Brillouin gain is given by

gm =
2πn7p212

cλpρovawm

, (2.49)

where n is the refractive index, p12 is the elasto-optic tensor element, c is the speed

of light, λp is the pump wavelength, va is the longitudinal speed of sound and wm is

the full width at half-maximum of the Brillouin gain spectrum for the mth acoustic

mode. It is important to note that the elasto-optic tensor element p12 in Equation

2.49 is the only term that can theoretically have a value of zero.



Chapter 3

Methods and Techniques

The methods and techniques used in the production of this thesis are outlined in

this chapter detailing the production of glass and the methods used to determine the

material properties of these glasses.

3.1 Experimental Procedure

3.1.1 Glass Selection and Preparation

Several commercially available, optical quality glasses were selected for this study, so

that precision tests could be carried out against published data on samples that are

widely obtainable. In particular, glasses S-NPH3, S-TIH10, S-BSL7, made by the

Ohara Corporation, as well as fused quartz, were used. Published mechanical data,

as well as chemical compositions, are summarized in the following tables. Table 3.1

lists the density, ρ, longitudinal speed of sound, vL, transverse speed of sound, vT ,

index of refraction, n, and the stress-optic coefficient, C.

Table 3.1: Ohara Data Sheet Properties. The properties listed are the density (ρ),
the longitudinal speed of sound (vL), the transverse speed of sound (vT ), the index of
refraction (n), and the stress-optic coefficient (C)

Name ρ vL vT n C
(gcm−3) (kms−1) (kms−1) (λ = 589 nm) (B)

S-NPH3 3.59 5.807 3.384 1.95860 3.35
S-TIH10 3.06 6.297 3.669 1.72803 2.88
S-BSL7 2.52 5.959 3.630 1.51626 2.79

The Ohara Corporation provides a general composition of some of the compounds

28
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that the glasses investigated in this thesis are comprised of. Table 3.2 shows some of

the compounds that the S-NPH3 glass is made of along with the range of the weight

percent. This range does not include the main component niobium (Nb) as it does

not need to be reported in the safety data sheet. The percent composition range for

Nb in this glass is unknown.

Table 3.2: S-NPH3 Composition

Chemical Name Chemical Formula Content (Weight %)

Phosphorus pentoxide P2O5 20 - 30
Titanium dioxide TiO2 10 - 20
Tungsten oxide WO3 2 - 10
Barium oxide BaO 0 - 2

Antimony trioxide Sb2O3 0 - 2

The glass composition for S-TIH10 is given in Table 3.3. The percentage of tita-

nium dioxide (TiO2) is of interest in this glass as it is the largest contributor to the

glass properties.

Table 3.3: S-TIH10 Composition

Chemical Name Chemical Formula Content (Weight %)

Silicon dioxide SiO2 40 - 50
Titanium dioxide TiO2 20 - 30
Barium oxide BaO 2 - 10

Zirconium oxide ZrO2 0 - 2
Calcium oxide CaO 0 - 2

Antimony trioxide Sb2O3 0 - 2

The glass composition of S-BSL7 is given in Table 3.4. This glass composition

range gives a general idea of the glass composition of the main components.

These compositions are not exact compositions, however, provide a general idea

of the compounds present in each glass.

The glass samples were cut to the desired dimensions using a Buehler Isomet low-

speed saw with a Lapcraft Dia-LaserTM diamond saw blade. After cutting samples
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Table 3.4: S-BSL7 Composition

Chemical Name Chemical Formula Content (Weight %)

Silicon dioxide SiO2 60 - 70
Boron trioxide B2O3 10 - 20
Barium oxide BaO 0 - 2
Zinc oxide ZnO 0 - 2

Antimony trioxide Sb2O3 0 - 2
Titanium dioxide TiO2 0 - 2

were cleaned thoroughly using acetone to remove any leftover bonding material.

3.1.2 Polishing

The polishing procedure for each glass sample was performed using a Graton Van-

derwilt Mico Polishing Machine, capable of polishing three samples at a time. Each

sample was bonded to a mounting plate using SPI Supplies Crystalbond 509 and was

then secured to the polishing machine. This machine was used to polish the optical

sides of the samples where the laser beam would enter and exit.

The first polish was to 15 µm using Buehler CarbiMetTM S 600 paper. After

each polish, the samples and the mounts were cleaned thoroughly using ethanol. The

proceeding steps used Buehler MicroCloth polishing clothes. MetaDiTM Supreme

polycrystalline diamond suspension was applied to the clothes for 9 µm, 6 µm, 3 µm,

and then 1 µm, cleaning with ethanol between each step. The final polish was done us-

ing Buehler MasterPolishTM 2 which provided a finish polish of 0.06 µm. The samples

were then removed from the mounting plates and cleaned thoroughly with acetone to

remove any residual polishing solution as well as any remaining Crystalbond 509.

The sides of the samples that have the acoustic wave transmitted through were

initially polished using the same procedure, however, the surfaces were not uniformly

flat and resulted in poor bonding to the acousto-optic setup. The samples were in-

stead polished using the Logitech LTD PM5 Precision Lapping and Polishing System
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located in the Dalhousie Microfabraction lab. Using this device the surfaces were

lapped to a surface flatness of 1 um. After this, the samples were hand polished using

1 um diamond paste for an optical finish.

3.1.3 Density Measurements

The density of the glass samples was determined using Archimedes principle. The

glass is first weighed in air which is recorded as the dry weight. The glass is then

suspended in an 99.9 percent ethanol solution and weighted again which is recorded

as its wet weight. The temperature of the ethanol is recorded as the density of ethanol

is temperature-dependent. With this information, the density of the glass sample can

be determined using the following equation

ρsample =
mdry

(mdry −mwet)
ρethanol. (3.1)

3.1.4 Speed of Sound Measurements

Both longitudinal and transverse velocities were determined using an Olympus 45MG

Ultrasonic Thickness Gauge. The purpose of this device is to determine the thickness

of a material with a known speed of sound. However, it can be used in reverse if

the thickness is known to determine the speed of sound. Measuring the thickness,

d, of the glass samples was done using a Vernier caliper. The ultrasonic thickness

gauge measures the time between acoustic echos between reflections from the opposite

surface that the transducer is attached to. The speed of sound is determined by

vL,T =
2d

t
, (3.2)

where t is the time for the acoustic wave to travel through the sample and be back-

reflected from the other end.
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3.1.5 Mechanical Properties

The mechanical properties relevant to this thesis are the Poisson ratio, ν, Young’s

modulus, E, shear modulus, G, and the bulk modulus, K. These values can be calcu-

lated using the density of the material, ρ, longitudinal velocity, vL, and the transverse

velocity, vT . The mechanical properties can be calculated using the following equa-

tions

ν =
1− 2(vT

vL
)2

2− 2(vT
vL
)2

(3.3)

E =
ρv2T (3v

2
L − 4v2T )

v2L − v2T
(3.4)

G = ρv2T (3.5)

K = ρ(v2L − 4

3
v2T ) (3.6)

3.2 Abbe Refractometer

The ATAGO multi-wavelength Abbe refractometer DR-M4/1550 was used to measure

the index of refraction of two of the samples. The refractometer can measure the index

of refraction between 1.52 and 1.92.

A schematic representation of the refractometer is shown in Figure 3.1. The light

enters the sample through a polished surface at several angles. The light is refracted

towards the boundary between the sample and the main prism with a contact liquid

between the two. The light is then refracted into the telescope where the boundary

can be viewed. Aligning the crosshairs between the light and dark boundary allows for

the measurement of the refractive index. The refractometer can be used to measure

the index of refraction at wavelengths of 450 nm, 486 nm, 540 nm, 589 nm, 656 nm,

and 700 nm.

The refractometer is calibrated using a test block that is provided with the device.
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Figure 3.1: Schematic diagram of the Abbe refractometer. The sample is attached to
the main prism using a contact liquid that has a higher index of refraction than the
sample being measured.

The rectangular block is placed on the main prism with a contact liquid between

the two surfaces. The contact liquid must have a larger refractive index compared

to the sample in order to measure the refractive index. The device is calibrated

at a wavelength of 589 nm. After the device is calibrated measurements at other

wavelengths can be done.

The sample must have at least two sides optically polished. The front of the

sample must be polished to transmit the light source into the sample. The bottom of

the sample in contact with the main prism needs to be polished to transmit the light

into the refractometer.

3.3 Optical Reflectance and Transmittance

Fresnel was the first to mathematically show how electromagnetic waves will be re-

flected and transmitted at an interface where the two mediums have a different index

of refraction. If an electromagnetic wave is incident on a surface, part of the wave

will be reflected and the other part will be transmitted.
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Consider an incident beam of light traveling through air that strikes an interface

of a medium with a larger refractive index at angle θi with respect to the normal. Part

of the beam will be reflected at an angle θr and the other will be transmitted into the

medium at an angle θt. We first consider perpendicularly polarized (s-polarized) light

in which the direction of the E-field vector is perpendicular to the plane of incidence.

In this case, the E-fields can be written as

Eoi + Eor = Eot (3.7)

where Eoi is the E-field of the incident beam, Eor is the E-field of the reflected beam

into air and Eot is the E-field of the transmitted beam into the medium. As well, the

B-fields can be written as

−Bi cos θi +Br cos θr = −Bt cos θt. (3.8)

Using the fact that B = En/co and the law of reflection θi = θr and substitute these

into Equation 3.8 gives

ni(Eor − Eoi) cos θi = ntEot cos θt. (3.9)

Substituting Equation 3.7 into the above equation and rearranging results in

Eor(ni cos θi + nt cos θt) = Eoi(ni cos θi − nt cos θt). (3.10)

The reflection coefficient, r⊥, is then simply

r⊥ =
Eor

Eoi

=
ni cos θi − nt cos θt
ni cos θi + nt cos θt

. (3.11)
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Similarly, the transmission coefficient, t⊥, is given by

t⊥ =
Eot

Eoi

=
2ni cos θi

ni cos θi + nt cos θt
. (3.12)

Equation 3.11 and 3.12 are known as Fresnel Equations for a perpendicularly polarized

incident beam.

For parallel polarization (p-polarization) the B-field is

Boi −Bor = Bot (3.13)

and the E-field is given by

Eoi cos θi + Eor cos θr = Eot cos θt. (3.14)

Solving these equations for Eor/Eoi we obtain

r∥ =
Eor

Eoi

=
ni cos θt − nt cos θi
ni cos θt + nt cos θi

. (3.15)

Similarly, solving for Eot/Eoi we get

t∥ =
Eot

Eoi

=
2ni cos θi

ni cos θt + nt cos θi
. (3.16)

Equation 3.15 and 3.16 are the Fresnel equations for parallel polarized light.

A unique case is when θi = 0. In this case r⊥ = r∥ and t⊥ = t∥. In this case the

Fresnel equations reduce to a much simpler form and the reflectance is given by

R = r2 =

(︃
nt − ni

nt + ni

)︃2

(3.17)
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and the transmittance is given by

T = t2 =
4ntni

(nt + ni)2
. (3.18)

For the case of the interface between air (ni = 1) and fused quartz (nt = 1.45) the

reflectance is approximately 3.4% and the transmittance is 96.6%. This starts to

become an issue when multiple interfaces are considered such as camera lenses or

when the medium has a much larger index of refraction compared to air.

3.4 Refractive Index Using Ellipsometry

The index of refraction can be measured by spectroscopic ellipsometry. The ellipsome-

ter measures the polarization state of reflected light from a material. The light that is

reflected from the materials surface is usually elliptically polarized and is represented

in polar coordinates as,

ρ =
E

∥
or

E⊥
or

= tanΨei∆, (3.19)

where tanΨ is the ratio amplitude for the parallel and perpendicular polarized light

measured by the detector, and ∆ is the phase change between the parallel and per-

pendicular components of the beam.

Figure 3.2: Schematic diagram of ellipsometer showing the initial polarization and
the phase change, ∆, acquired by the beam after reflection. Image taken from [3]

Figure 3.2 shows a schematic representation of the incident and reflected beam.
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The ellipsometer used for the measurement of the refractive index is a Woollam M-

2000 variable angle spectroscopic ellipsometer located in the physics department at

Dalhousie University.

The amplitude ratio can be represented by the reflection coefficients as

tanΨ =
r∥
r⊥

. (3.20)

By solving this equation for n the index of refraction can be determined by

n2 =
sin2 θi(1 + tanΨ)2 − 4 sin4 θi tanΨ

cos2 θi(1 + tanΨ)2
(3.21)

The data from the ellipsometer is fitted using CompleteEASE software which uses

a Cauchy model to determine n. The Cauchy model used for transparent materials

such as glass is

n(λ) = A+
B

λ2
+

C

λ4
+ ... (3.22)

The fitting of this model provides the wavelength dependence of the index of refrac-

tion, n(λ).

3.5 Anti-Reflective Coatings on Glass

A way to overcome the reflectance loss due to Fresnel reflection at the air-glass in-

terface is to apply anti-reflective (AR) coatings to the optical surfaces. The most

basic AR coating is applying a single-layer thin film to the optical surfaces. The

issue with single-layer AR coatings is they only significantly reduce the reflectance

at a single-wavelength. This is because the AR coating thickness has to be a quarter

of the wavelength of the incident beam wavelength. As well, in order to eliminate

reflection completely the index of refraction of the AR coating needs to be equal to

the square root of the index of refraction of the substrate. This is often difficult
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because materials with such a low index of refraction do not exist. A commonly used

AR coating material is magnesium fluoride with an index of refraction of 1.38. In

the case of fused quartz as a substrate (n=1.45) this is still greater than the square

root of the index of refraction. For single-layer AR coatings the thickness can be

determined by

λo = 4n1d1 (3.23)

where λo is the mid-range wavelength, n1 is the index of refraction of the AR layer,

and d1 is the layer thickness as shown in Figure 3.3 (A.). A single-layer AR coating

is useful when a broad optical bandwidth is not required.

Multi-layer AR coatings are used to increase the transmittance of light through a

glass over a broader wavelength range, and also over come the need for the coating

material to have a low index of refraction. Only double-layer AR coatings will be

considered for simplicity. For double-layer AR coatings the coating consists of a low-

high refractive index coating. The order of the coatings depends on the index of

refraction of the substrate. The first layer in contact with the air has a lower index

of refraction (n1) compared to the second layer (n2) which is in contact with the

substrate (ns). For zero reflectance to occur the layer thickness of the two layers (d1

and d2) must satisfy the following equations

n1d1
λo

=
1

2π
tan−1

[︂
±
√
Y Z
]︂
, (3.24)

and

n2d2
λo

=
1

2π
tan−1

[︄
±
√︃

Y

Z

]︄
. (3.25)

There is a requirement that

Y Z > 0, (3.26)
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where

Y =
n1n2(no − ns)

non2
2 − n2

1ns

, (3.27)

and

Z =
n1(nons − n2

2)

n2(n2
1 − n0ns)

. (3.28)

Equation 3.26 requires that Y and Z both be positive or both be negative. Substi-

tuting Equations 3.27 and 3.28 into Equations 3.24 and 3.25 results in the following

n1d1
λo

=
1

2π
tan−1

[︄
±

√︄
n2
1(no − ns)(nons − n2

2)

(non2
2 − n2

1ns)(n2
1 − nons)

]︄
, (3.29)

n2d2
λo

=
1

2π
tan−1

[︄
±

√︄
n2
2(no − ns)(n2

1 − nons)

(non2
2 − n2

1ns)(nons − n2
2)

]︄
. (3.30)

These equations can be used to determine the layer thickness of the AR coatings,

however, the following requirements must be true. If Y and Z are positive then both

signs in Equations 3.29 and 3.30 are positive. If Y and Z are negative then these

signs are different. The layer thicknesses are shown in Figure 3.3 (B.).

3.6 Electron-Beam Physical Vapour Deposition

Electron-beam physical vapour deposition (EBPVD) is a method of applying thin film

coatings to surfaces. The fused quartz samples used were coated using this technique

by BMV Optical Technologies to reduce reflection losses at the air-glass interface.

The setup used was a standard (EBPVD) where the material to be deposited

on the surface of the sample is radiated by an electron-beam gun. This results in

the deposited material being vapourized which then deposits onto the surface of the

sample. This method allows the layers to be deposited on the sample in a controlled

way to achieve the desired thickness of the film. By tailoring the deposited film

material and the thickness the optical loss due to reflectance at the air-glass interface
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Figure 3.3: (A.) Single-layer AR coating where no is the index of refraction of air, n1

is the index of refraction of the AR coating, d1 is the coating thickness, and ns is the
index of refraction of the substrate (glass). (B.) Double-layer AR coating where n1

is the index of refraction of the first layer, d1 is the thickness of the first layer, n2 is
the index of refraction of the second layer in contact with the substrate, and d2 is the
layer thickness of the second layer.

can be reduced.

3.7 Sénarmont Compensator

3.7.1 Polarization

Most light sources are unpolarized meaning the electric field oscillates in all directions.

The magnetic field also oscillates in the same way and is perpendicular to the electric

field such that the direction of propagation is in the direction E×B.

Polarized light consists of an optical beam that only has an electric field oscillating

in a single direction. This is only possible if light is a transverse wave and the fact

that it can be polarized proves that it is such [37].

Consider a light ray traveling in the direction out of the page (z-direction) with

the E-field oscillating in the x- and y-directions as shown in Figure 3.4. The E-field
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depicted in Figure 3.4 can be represented as unit vectors i and j

Figure 3.4: Instantaneous E-field oscillating in the x- and y-directions with the light
ray traveling in the +z-direction.

E = iEx + jEy (3.31)

where Ex and Ey are the electric field in the x and y direction. With time and spatial

dependence of the E-field components one obtains,

Ex = Eoxe
i(kz−wt+φx) (3.32)

and

Ey = Eoye
i(kz−wt+φy). (3.33)

For waves traveling in the +z-direction that have amplitude Eox and Eoy, with phases

φx and φy our definition of the E-field in Eq. 3.31 becomes

E = iEoxe
i(kz−wt+φx) + jEoye

i(kz−wt+φy) (3.34)
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or it may also be written as

E = [iEoxe
iφx + jEoye

iφy ]ekz−wt = Ẽoe
i(kz−wt) (3.35)

where the complex amplitude of the polarized wave is denoted by Ẽo = iEoxe
iφx +

jEoye
iφy . Polarized light can be represented by what are known as Jones matrices

which was developed by R. Clark Jones in 1942 [38]. In order to describe the polariza-

tion of light one needs only to focus on the amplitude and phase of these components

which may be written as Jones vectors in the following way

Ẽo =

⎡⎢⎣Ẽox

Ẽoy

⎤⎥⎦ =

⎡⎢⎣Eoxe
iφx

Eoye
iφy

⎤⎥⎦ (3.36)

In this thesis two types of polarization are considered: horizontally polarized light

which is considered to have the electric field oriented parallel to the Earth’s surface,

and vertically polarized light where the electric field is oriented perpendicular to the

Earth’s surface. Table 3.5 shows the appropriate Jones matrices relevant to the optical

systems described in this thesis.

Table 3.5: Jones matrices. The following table lists the Jones matrices relevant to
this thesis.

Optical element Jones matrix

Linear Polarizer at ±45deg “L(±45)” 1
2

[︃
1 ±1
±1 1

]︃

Quarter-Wave Plate with fast axis oriented along x-axis “Q(x)” eiπ/4
[︃
1 0
0 i

]︃

Rotation Matrix “R(θ)”

[︃
cos θ sin θ
− sin θ cos θ

]︃
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3.7.2 Sénarmont Compensator Theory

The Sénarmont compensator is a device used to measure the retardation of light as

it passes through a material. These measurements can be used to measure the stress-

optic coefficient of glass samples and the photoelastic response under strain. The

Sénarmont compensator is comprised of a laser, polarizer, sample mount, quarter-

wave plate, analyzer, and detector. The laser beam is polarized at 45o to the x- and

y-axes. The electric field of the beam is represented as

E(z, t) = Eoe
i(kz−wt)(x̂+ ŷ) (3.37)

When the beam travels through a sample of thickness d that is stressed the electric

field becomes

E(z + d, t) = Eoe
i(kz−wt)(eikodx̂+ eikedŷ) (3.38)

where,

ko =
2πno

λ
, ke =

2πne

λ
(3.39)

Substituting this into Equation 3.38 and rearranging gives

E(z + d, t) = Eoe
(kz−wt)ei2πnod/λ(x̂+ ei2π(ne−no)d/λŷ) (3.40)

The phase change, ∆, between the x and y components can be related to the

stress-optic coefficient by

∆ =
2πd(ne − no)

λ
=

2πd

λ
Cσ (3.41)

In order to determine the stress-optic coefficient the change in the polarization as

the beam passes through a stressed sample needs to be analyzed. It is beneficial to use
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Jones matrices to analyze what happens to the beam as it traverses the Sénarmont

setup. The light exiting the glass can be rewritten as a Jones matrix

E = Eoe
i∆/2

⎡⎢⎣e−i∆/2

ei∆/2

⎤⎥⎦ (3.42)

The Jones matrices used for the calculation are listed in Table 3.5. After the beam

exits the stressed glass it encounters a quarter-wave plate with its fast axis set parallel

to (x̂+ ŷ). The electric field of the beam as it passes through the quarter-wave plate

can be written as

E = R(−45o)Q(x)R(45o)Eoe
i∆/2

⎡⎢⎣e−i∆/2

ei∆/2

⎤⎥⎦ (3.43)

Substituting the appropriate Jones matrices from Table 3.5 and simplifying, the elec-

tric field exiting the quarter-wave plate becomes

E = Eoe
iπ/4ei∆/2

⎡⎢⎣cos(∆/2) + sin(∆/2)

cos(∆/2)− sin(∆/2)

⎤⎥⎦ (3.44)

The beam then encounters the analyzer which is initially aligned perpendicular

to the incident light at ±(x̂− ŷ) axis. The analyzer is then rotated to an angle θ to

find the minimum intensity. The electric field is represented by

E = R(−θ)L(−45o)R(θ)Eoe
iπ/4ei∆/2

⎡⎢⎣cos(∆/2) + sin(∆/2)

cos(∆/2)− sin(∆/2)

⎤⎥⎦ (3.45)

Again, substituting the appropriate Jones matrices from Table 3.5 and simplifying,

the electric field exiting the analyzer is
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E =
1

2
Eoe

iπ/4ei∆/2

⎡⎢⎣cos(∆/2) + sin(∆/2) + sin(2θ +∆/2)− cos(2θ +∆/2)

cos(∆/2)− sin(∆/2)− sin(2θ +∆/2)− cos(2θ +∆/2)

⎤⎥⎦ (3.46)

For a generalized light wave, A =

⎡⎢⎣Ax

Ay

⎤⎥⎦, the intensity can be written as I =

A2
x + A2

y. Thus, the intensity of the light at the detector is

I = 4− 4 cos(2θ +∆) (3.47)

If the intensity is a minimum (I = 0) then the phase change becomes

∆ = −2θ ± π

2
(3.48)

Therefore, using the Sénarmont setup the minimum angles can be found for a given

stress and the phase change can be calculated. Using this along with Equation 3.41

the stress-optic coefficient can be determined.

3.7.3 Sénarmont Compensator Measurements

The stress-optic coefficient was measured using the Sénarmont compensator method

described in Section 3.7. The Sénarmont setup is shown in Figure 3.5.

The Sénarmont setup up is comprised of a 670 nm laser, a Glan-Taylor linear

polarizer, the sample mount that applies a uniaxial stress, a liquid crystal variable

retarder (LCVR), an analyzer, and a power detector. The incident beam is polarized

at 45o with respect to the x and y axis. As the light passes through the stressed sample

the beam acquires a phase change between the x- and y-components and becomes

elliptically polarized. The LCVR can be used as a λ/4-plate which is used to convert
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Figure 3.5: The Sénarmont compensator. The light is initially polarized at 45o to the
x and y axes and undergoes a phase change as it passes through the stressed sample.
The phase change is then measured at the power detector.

the elliptically polarized light back into linearly polarized light. By measuring the

output of the power detector at different angles of the analyzer the angle of minimum

intensity can be obtained. These angles along with the stress at which they occur

can be used to obtain a linear graph of the phase change versus applied stress. Using

the slope of this graph along with Equation 3.41 the stress-optic coefficient can be

determined.

3.8 Photoelastic Measurements

The photoelastic measurements were determined using the Dixon-Cohen method

which was first used to investigate the photoelastic properties of Lithium Niobate

crystals [30].

This thesis employs the Dixon-Cohen method for the measurement of the photoe-

lastic constants of glass which was first published by R. W. Dixon and M. G. Cohen

[30]. This method uses the acousto-optic effect described in Section 2.3. A laser beam
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incident on the quartz reference piece at the Bragg angle is diffracted by the injected

acoustic wave as shown in Figure 3.6 where the laser beam is depicted traversing

through the sample. The diffracted beam intensity is measured by a photodiode and

produces a time-dependent intensity as shown in Figure 3.7. The intensity peaks of

interest are labeled I1 and IR which is the initial acoustic wave diffraction and the

acoustic wave diffraction from the acoustic wave that is transmitted into the sample

and reflected from the free end and is re-transmitted back into the reference piece

respectively.

Figure 3.6: The acoustic wave travels through the fused quartz and is transmitted
into the sample where the incident laser beam is diffracted by the acoustic wave.

The same procedure occurs in the glass sample where the acoustic wave is trans-

mitted into the sample from the reference piece. The intensity peaks of interest are

labeled I4 and I5 which is the initially injected acoustic wave into the sample and

the reflected acoustic wave from the free end respectively. These intensities can be

used to calculate p11 and p12 of the sample using Equation 2.41. This requires the
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Figure 3.7: The acoustic wave travels through the fused quartz and is transmitted
into the sample where the incident laser beam is diffracted by the acoustic wave. The
left graph is the data collected when the laser is passing through the reference and
the right graph is when the laser is passing through the sample.

photoelastic coefficients of fused quartz to be known which have been taken from Ref.

[39] at 632 nm wavelength.

The Dixon-Cohen setup is comprised of a 670 nm laser which is polarized vertically

or horizontally polarized. The polarized light passes through a pinhole to reduce the

beam size to < 1 mm. The laser beam hits the acousto-optic device made by AA

Opto-electronic at the Bragg angle defined by

θB = sin−1(
λ

2Λ
) (3.49)

where θB is the Bragg angle, λ is the laser beam wavelength, and Λ is the acoustic
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wavelength. The laser beam is diffracted at the Bragg angle as it leaves the acousto-

optic device. A second pinhole is used to block the undiffracted beam. The diffracted

laser beam is measured using a photodiode detector. The photodiode detector is

connected to a 200 MHz Tetronix oscilloscope. A schematic diagram is shown in

Figure 3.8.

Figure 3.8: Schematic representation of the Dixon Cohen setup used to measure the
photoelastic coefficients of glass samples
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Results

4.1 Mechanical Properties

The mechanical properties of the glass samples were determined by measuring the

speed of sound using the ultrasonic thickness gauge described in Section 3.1.4 and the

density described in Section 3.1.3 along with index of refraction measurements taken

using an Abbe refractometer and an ellipsometer. The values are listed in Table 4.1.

All glasses have similar longitudinal and transverse speeds of sound. The uncertainty

for all values given in Table 4.1 was determined by the standard deviation of ten

individual measurements with the exception of the index of refraction measurements

for Fused Quartz and S-NPH3 which were determined by the fitting of the ellipsometer

data.

Table 4.1: Measured Properties. Here the density (ρ), longitudinal speed of sound
(vL), transverse speed of sound (vT ), and index of refraction (n) are presented.

Name ρ vL vT n
(gcm−3) (kms−1) (kms−1) (λ = 589 nm)

Fused Quartz 2.194 ± 0.008 5.950 ± 0.008 3.770 ± 0.010 1.466 ± 0.005
S-NPH3 3.573 ± 0.009 5.831 ± 0.009 3.405 ± 0.005 1.931 ± 0.005
S-TIH10 3.035 ± 0.009 5.929 ± 0.005 3.438 ± 0.006 1.7299 ± 0.0003
S-BSL7 2.507 ± 0.006 6.013 ± 0.005 3.660 ± 0.010 1.5171 ± 0.0001

By measuring the speed of sound and the density the Young’s modulus (E), shear

modulus (G), bulk modulus (K), and Poisson ratio (ν) can be calculated using Equa-

tion’s 3.3 - 3.6. These values are listed in Table 4.2. The uncertainty of all values

given in Table 4.2 was determined by error propagation.
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Table 4.2: Mechanical Properties. The following table lists Young’s modulus (E),
shear modulus (G), bulk modulus (K), and Poisson ratio (ν).

Name E G K ν
(GPa) (GPa) (GPa)

Fused Quartz 72.6 ± 0.3 31.2 ± 0.2 36.1 ± 0.3 0.165 ± 0.003
S-NPH3 102.8 ± 0.5 41.4 ± 0.2 66.3 ± 0.4 0.241 ± 0.002
S-TIH10 89.4 ± 0.3 35.9 ± 0.2 58.7 ± 0.3 0.246 ± 0.001
S-BSL7 81.0 ± 0.4 33.6 ± 0.2 45.9 ± 0.3 0.206 ± 0.003

4.2 Index of Refraction Results

The wavelength dependence for fused quartz and the three Ohara glasses are shown

in Figures 4.1 - 4.4. The index of refraction for fused quartz and S-NPH3 were

measured using an ellipsometer due to the limitations of the Abbe refractometer used

for the other measurements. The index of refraction for S-TIH10 and S-BSL7 were

measured using the Abbe refractometer at six separate wavelengths and compared to

the measurements provided by Ohara in the glass data sheets.

The wavelength dependence of fused quartz is shown between approximately 200

nm to 1000 nm in Figure 4.1. As expected based on the Cauchy model the index of

refraction decreases with increasing wavelength.

Figure 4.1: The index of refraction for fused quartz decreases as the wavelength
increases

The index of refraction for S-NPH3 is shown between 400 nm to 1000 nm in Figure
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4.2. The index of refraction decreases as the wavelength increases. This is the typical

response of transparent materials.

Figure 4.2: The index of refraction for S-NPH3 decreases as the wavelength increases

The index of refraction for S-TIH10 is shown in Figure 4.3 for six wavelengths:

450 nm, 486 nm, 540 nm, 589 nm, 656 nm, and 700 nm. These are graphed alongside

the provided index of refraction measurements given in the Ohara data sheets. The

measured index of refraction are slightly higher than the reported index of refraction

by Ohara.

Figure 4.3: The index of refraction for S-TIH10 decreases as the wavelength increases.
There is a systematic difference between the measured values and the literature values
due to the contact liquid being used.

The index of refraction is shown for S-BSL7 for six wavelengths; 450 nm, 486
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nm, 540 nm, 589 nm, 656 nm, and 700 nm. Again the index of refraction measured

are slightly higher than the reported index of refraction provided by the Ohara data

sheet.

Figure 4.4: The index of refraction for S-BSL7 decreases as the wavelength increases.
There is a systematic difference between the measured values and the literature values
due to the contact liquid being used.
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4.3 Sénarmont Compensator Results

The data from the Sénarmont compensator is shown in Figures 4.5 - 4.8. The graphs

show the phase change versus the applied stress for each glass sample using a 670

nm laser. The slope of each graph is used to determine the stress-optic coefficient.

The uncertainty for the stress-optic coefficient comes from the slope of the graph. All

graphs show a linear trend with minimal error. The stress-optic coefficient can be

calculated from the slope of the line using Equation 3.41. The error in the stress-optic

coefficient is determined by the uncertainty in the slope of the linear fit and through

error propagation.

Figure 4.5 shows the Sénarmont data for fused quartz. The sample is stressed

between -1.5 MPa and -3.0 MPa. As the applied stress decreases the phase change

decreases towards zero.

Figure 4.5: The phase change ∆ for 670 nm as a function of stress σ for fused quartz.
The slope of ∆ vs σ is used to determine the stress optic coefficient

Figure 4.6 shows the Sénarmont data for S-NPH3. The stress on the sample is

higher compared to fused quartz due to the dimensions of the S-NPH3 being smaller

and therefore the force per unit area being higher. This data shows a clear linear trend

towards zero with decreasing phase change as the stress on the sample decreases.

Figure 4.7 shows the Sénarmont data for S-TIH10 which is stressed between -3.0
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Figure 4.6: The phase change ∆ for 670 nm as a function of stress σ for S-NPH3.
The slope of ∆ vs σ is used to determine the stress optic coefficient

MPa and -5.5 MPa, similar to S-NPH3. Both samples have approximately the same

dimensions.

Figure 4.7: The phase change ∆ for 670 nm as a function of stress σ for S-TIH10.
The slope of ∆ vs σ is used to determine the stress optic coefficient

The Sénarmont data for S-BSL7 is shown in Figure 4.8 where the stress is slightly

less compared to S-NPH3 and S-TIH10. This is due to how the sample was initially

stressed and was not given sufficient time to relax so the data points above -4.5 MPa

were ignored and more data points at lower stress were taken.

The calculated stress-optic coefficients are presented in Table 4.3. All glasses

show a large positive stress-optic coefficient. The Sénarmont data is not considered
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Figure 4.8: The phase change ∆ for 670 nm as a function of stress σ for S-BSL7. The
slope of ∆ vs σ is used to determine the stress optic coefficient

reliable for the accurate determination of the stress-optic coefficient, only whether

it is positive or negative. This is due to the inability to obtain a uniform stress

throughout the sample. In this case the measured stress may vary from the actual

stress at the location of the laser beam.

Table 4.3: Stress-Optic Coefficients Measured Using Sénarmont Compensator Method

Name C
(B)

Fused Quartz 3.15 ± 0.05
S-NPH3 3.36 ± 0.02
S-BSL7 2.31 ± 0.02
S-TIH10 2.46 ± 0.03
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4.4 Acousto-Optic Results

The scattered beam intensities from the acousto-optic setup are shown in Figure 4.9-

4.16 for fused quartz, AR-coated fused quartz, and the three Ohara glass samples at

a wavelength of 670 nm.

A fused quartz sample is bonded to the reference fused quartz to determine the

accuracy of the setup. The scattered beam intensities for the fused quartz sample

and the reference are shown in Figures 4.9 and 4.10 for light polarized parallel and

perpendicular to the acoustic beam, respectively. Figure 4.9 (left) shows the scattered

intensity as the laser beam travels through the reference piece of the acousto-optic

setup. Figure 4.9 (right) shows the scattered beam intensities as the laser beam

travels through the uncoated fused quartz sample.

Figure 4.9: Scattered beam intensity from the uncoated fused quartz sample with laser
beam polarized parallel to the acoustic wave. (Left) shows the laser beam scattering
through the reference. (Right) shows the laser beam scattering through the fused
quartz sample

The scattered beam intensities for the AR-coated fused quartz sample are shown

in Figure 4.11 and 4.12. The transmission of the acoustic wave into the AR-coated
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Figure 4.10: Scattered beam intensity from the uncoated fused quartz sample with
laser polarized perpendicular to the acoustic wave

fused quartz sample is significantly better compared to the uncoated fused quartz

sample.

Figure 4.11: Scattered beam intensity from AR-coated fused quartz sample with laser
beam polarized parallel to the acoustic wave

The scattered beam intensities for the S-NPH3 sample are shown in Figure 4.13
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Figure 4.12: Scattered beam intensity from AR-coated fused quartz sample with laser
polarized perpendicular to the acoustic wave

and 4.14. Figure 4.13 shows the scattered beam intensities through the reference and

the sample for light polarized parallel to the acoustic wave. Figure 4.14 shows the

scattered beam intensities through the reference and the sample for light polarized

perpendicular to the acoustic wave.

The scattered beam intensities for S-BSL7 are shown in Figure 4.15 and 4.16. The

transmission of the acoustic wave into the S-BSL7 sample was less compared to that

of the AR-coated fused quartz and the S-NPH3 sample.

The individual photoelastic tensor elements and the stress-optic coefficient are

presented in Table 4.4. The photoelastic tensor elements could only be measured

for uncoated fused quartz, AR-coated fused quartz, S-BSL7 and S-NPH3 samples.

S-TIH10 could not be measured due to surface flatness problems.



60

Figure 4.13: Scattered beam intensity from fused quartz reference with S-NPH3 sam-
ple attached with laser beam polarized parallel to the acoustic wave

Figure 4.14: Scattered beam intensity from S-NPH3 sample with laser beam polarized
perpendicular to the acoustic wave
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Figure 4.15: Scattered beam intensity from S-BSL7 sample with laser beam polarized
parallel to the acoustic wave

Figure 4.16: Scattered beam intensity from S-BSL7 sample with laser beam polarized
perpendicular to the acoustic wave
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Table 4.4: Photoelastic Properties. p11 and p12 are the individual photoelastic tensor
elements, and C is the stress-optic coefficient.

Name p11 p12 C
(B)

Fused Quartz 0.100 ± 0.002 0.219 ± 0.003 3.0 ± 0.1
AR-Coated Fused Quartz 0.123 ± 0.004 0.264 ± 0.008 3.5 ± 0.2

S-NPH3 0.064 ± 0.001 0.152 ± 0.004 3.7 ± 0.2
S-BSL7 0.136 ± 0.001 0.254 ± 0.003 3.0 ± 0.1
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Discussion

5.1 Discussion of Results

The speed of sound measurements for the glass samples were all within 1% of the

expected values with the exception of S-TIH10. Table 3.1 shows the reported values

from the Ohara Corporation data sheets. The expected speed of sound for S-TIH10

was 3669 m/s for the transverse and 6296 m/s for the longitudinal. Comparing these

values to the values measured in Table 4.1 there is a greater than 5% disagreement.

Comparing the density measured for S-TIH10 to the expected value is close to the

uncertainty of the measurement so it can be assumed that the sample is the correct

composition provided by Ohara. After contacting the company this discrepancy has

yet to be resolved. The assumption made in this thesis is that the speed of sound

measurements for S-TIH10 are incorrectly reported in the data sheet from Ohara.

The index of refraction for all four glasses decreased with wavelength which is to

be expected based on the Cauchy model described in Equation 3.22. The index of

refraction for fused quartz and S-NPH3 were measured using the ellipsometer because

the index of refraction was too low or too high for the Abbe refractometer to measure.

S-BSL7 and S-TIH10 were within the limits of the Abbe refractometer. Comparing

the index of refraction to the reported index of refraction in Table 3.1 both S-BSL7

and S-TIH10 all measured index of refraction values are above the reported values as

shown in Figure 4.4 and Figure 4.3. This indicates that there is a systematic error

in the measurement. It is possible that the contact liquid slightly shifts the index of

refraction. The contact liquid used was old, purchasing a new contact liquid may help

63
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Figure 5.1: Comparison of reported values of the longitudinal speed of sounds com-
pared to the measured values.

Figure 5.2: Comparison of reported values of the transverse speed of sounds compared
to the measured values.

resolve this issue. Looking at the fused quartz data measured using the ellipsometer

it is also higher than the accepted values at the selected wavelengths. The S-NPH3
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data is the opposite, where the index of refraction is approximately 0.4 lower at the

selected wavelengths compared to Table 3.1. The measured values of the longitudinal

and transverse speed of sound are compared to the reported values in Figure 5.1 and

Figure 5.2, respectively.

The reason for the refractive indices for S-BSL7 and S-TIH10 being higher than

the reported values could be due to the boundary line between the light and dark area

shown in Figure 3.1 was often not perfectly clear. This may be due to the contact

fluid between the main prism and the sample which is fairly old or the use of too

much contact fluid. Therefore some amount of judgment was taken to decide when

the cross hairs were on the boundary line and would have resulted in the systematic

error.

The disagreement between the fused quartz and the S-NPH3 refractive index data

may be due to only having done one run using the ellipsometer. Unfortunately, our

group did not have access to the machine and measurements were performed by a

third party. A solution to this would be to do multiple runs at different locations

on the sample and average the data. The comparison between the measured values

reported in this work with literature values is presented in Figure 5.3.

The Sénarmont compensator results show the stress-optic coefficient for all four

samples to be positive. The accuracy of the setup is poor due to the inability to obtain

uniform stress throughout the sample. This causes the measured stress to be different

compared to the actual stress in the sample where the laser beam is traveling. This

results in the stress-optic coefficient being larger or smaller than the expected values

given in Table 3.1. However, this setup allows for the determination of the sign of

the stress-optic coefficient which is not provided by the acousto-optic setup. Figure

5.4 shows the comparison of the stress-optic coefficient measured by the Sénarmont

compensator and the Dixon-Cohen methods to the reported literature values.

Comparing the stress-optic coefficients obtained using the Sénarmont compensator
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Figure 5.3: Comparison of reported values of the index of refraction to the measured
values using the ellipsometer and the Abbe refractometer.

Figure 5.4: Comparison of reported values of stress-optic coefficients to the measured
values by the Sénarmont compensator and the Dixon-Cohen method.

to that of the Dixon-Cohen method it can be seen for fused quartz that the AR coated

fused quartz measured using the acousto-optic setup obtain a value equal within the

uncertainty of that reported by Filon and Harris whereas the Sénarmont data is off
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by more than 10% [40]. For this reason, the data obtained from the Sénarmont

compensator can reliable indicate the sign of the stress-optic coefficient however fails

to accurately determine the value.

The acousto-optic results for uncoated fused quartz were lower than the expected

values measured by Dixon [39]. Part of this can be attributed to the lack of an AR

coating resulting in a transmission loss of around 7%. However, the difference between

the expected value and the measured value is approximately 18%. This additional

discrepancy may be due to the size of the sample. The sample was slightly larger than

the width of the acoustic beam so it is likely that the positioning of the sample on

the reference piece did not sit directly over the acoustic wave and therefore resulted

in some of the acoustic beam not being absorbed into the sample. This would result

in a lower intensity of scattered light through the sample and also lead to a smaller

back-reflected peak.

The AR-coated fused quartz results agree very well with the predicted value with

a discrepancy of 1-2% for p11 and p12. This is the same agreement obtained by Dixon

and Cohen [30]. Comparing the peaks in the sample shown in Figure 4.11 for the AR-

coated fused quartz to the uncoated fused quartz shown in Figure 4.9 it can be seen

that more of the acoustic wave was transmitted into the sample resulting in higher

beam intensities. As well, the back-reflected beam is much larger for the AR-coated

fused quartz when compared to the uncoated fused quartz. This can be attributed

to the fact that the AR-coated fused quartz was larger than the uncoated sample

resulting in the full absorption of the acoustic wave.

Figure 4.13 and 4.14 show the acousto-optic results for S-NPH3 where a significant

amount of the initial acoustic wave is transmitted into the sample. The back-reflected

beam is quite small which may be due to acoustic losses at the boundary between the

reference and the sample. This would result in the calculated values of p11 and p12 to

be larger than the expected values based on Equation 2.41 where the back-reflected
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intensity is in the denominator. When comparing the stress-optic coefficient found

using the acousto-optic setup to that found in Table 3.1 this is the case. As well, the

sample does not have an AR-coating which would result in the intensities measured

in the sample to be lower than expected.

Figure 4.15 and 4.16 show the acousto-optic results for S-BSL7. In this case, the

intial acoustic wave was not absorbed as well when compared to S-NPH3. This could

be due to a poor bond formed between the sample and the reference causing the

acoustic beam to reflect back into the reference rather than transmit into the sample.

When comparing the calculated stress-optic coefficient to the data sheet it is again

seen that the measured value is higher than the expected value.

The S-TIH10 sample could not be measured using the acousto-optic device due

to issues with the sample breaking when being lapped. For this reason, the surface

was not flat enough to form a good bond between the sample and the reference which

resulted in no back-reflected peak being observed.

A solution to the poor bonding between the sample and the reference could be

solved by lapping the surfaces to a smaller surface flatness than 1 um. This may result

in better transmission of the acoustic beam into the sample making the results more

accurate. As well, applying AR-coatings to all samples would decrease the reflectance

loss and provide more accurate intensity measurements. In the case of S-NPH3 the

reflectance loss is approximately 20% due to its high refractive index.
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Conclusion

The individual photoelastic tensor elements were able to be measured using the Dixon-

Cohen method. The data presented for the AR-coated fused quartz sample shows that

the acousto-optic setup can accurately measure the individual photoelastic tensor

elements to within 1-2%. Issues with surface flatness and not having AR-coatings on

the samples resulted in measured values being larger than the expected values based

on the data sheets provided by Ohara.

Resolving the surface flatness issue would allow for a better bond between the

sample and the reference resulting in more accurate results. This may be solved by

lapping the surfaces to a smaller surface flatness than 1 um.

Applying AR-coatings to all samples would also increase the accuracy of the in-

tensity measurements for all samples, especially those with a high refractive index.

As well, determining a way to uniformly stress the samples using the Sénarmont

compensator would result in a second method to accurately determine the stress-optic

coefficient and to validate the results obtained from the Dixon-Cohen method.

In conclusion, the Dixon-Cohen method has been shown to accurately determine

the individual photoelastic tensor elements of AR-coated fused quartz, and in many

cases provides reasonable values for the other glasses investigated. Future work needs

to be done on surface flatness between the sample and the reference to provide better

acoustic transmission into the sample. AR-coatings also need to be applied to all

samples to be able to accurately calculate the photoelastic tensor elements.
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