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Abstract

Reconciling sets of phylogenetic trees has become a problem of particular interest in

both theoretical computer science and bioinformatics. The use of the maximum agree-

ment forest as a tool by which to attain insight into the discrepancies in evolutionary

paths between trees that model the same set of taxa has been well researched. How-

ever, to date there has not been any method by which to sample from the potentially

large space of possible MAFs, and thus crucial information may be missed. To this

end we introduce the notion of core maximum agreement forest, which provides us

with the set of components preserved across the MAFs of a set of phylogenetic trees.

Through the use of the established techniques of cluster partitioning and branching

rules, we prove that this problem is fixed parameter tractable and present an efficient

algorithm for computing this new structure in O(2.27k · n) time.
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Chapter 1

Introduction

Reconciling phylogenetic trees which model the evolutionary paths of a set of taxa

has become an increasingly important area of study for bioinformaticians. Lateral

gene transfer (LGT) is a non-tree like evolutionary process by which species become

composites of genes derived from different ancestors. This process (and similar ones,

collectively known as reticulation events) allow species to more easily acquire useful

traits, such as antibiotic resistance [8]. As well it is an area that offers a host of inter-

esting graph theoretical problems. The use of maximum agreement forests (MAFs) to

compute the rooted subtree prune and regraft (rSPR) distance and better understand

LGT has become a key tool in this respect [4]. An issue with computing MAFs in

general is that there are potentially an exponentially large number to choose from,

and we may not end up with one that is particularly insightful. To date there has

not been work done into finding an efficient method by which to sample from the set

of possible maximum agreement forests.

Motivated by the aforementioned issue in sampling from the set of all MAFs,

we present a new concept, that of the core maximum agreement forest, wherein we

preserve components that are present in a particular percentage of possible MAFs.

To this end, we focus on the strict case of the core MAF, wherein we aim to obtain

an AF which is comprised of components preserved across all possible MAFs for our

input trees. We further narrow our focus to the case of rooted, binary phylogenetic

trees, as a starting point for research into the realm of core MAFs, and the more

general problem of sampling from the space of possible MAFs.

We discuss first and foremost of the technique of cluster partitioning. This has

been shown to not only be safe in the case of MAFs, but indeed that it is an essential

part of efficient algorithms to compute them, both in theory and in practice [5].

Hence we demonstrate that it is safe to make use of this technique to compute the

core MAF. We show that this then implies that we can restrict the exponential part

of our running time to be relative to the size of the largest core MAF among the set of

core MAFs for each cluster, rather than the size of the core MAF of the input trees.

Finally, we present three branching algorithms for computing the core MAF of

1
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two phylogenetic trees. The first algorithm presents a naive approach wherein we

effectively enumerate all MAFs in order to determine the core MAF. While not a

particularly impressive algorithm, it is sufficient to demonstrate that the exponential

part of our running time can be restricted to the size of an MAF, which, in general,

can be much smaller than the size of the core MAF. The second algorithm introduces

improved branching rules to better address the worst case scenario that arises in the

naive approach. Finally, we present a final branching rule, the depth rule used by

our branching process, and the notion of edge protection, to obtain our most efficient

algorithm. Each successive algorithm improves upon the previous to obtain an end

result running time bound of O(2.27k · n), where k is the number of components in

an MAF of our input trees, and n is the size of our input trees.



Chapter 2

Preliminaries and Related Work

2.1 Phylogenetic Trees and Agreement Forests

We begin by providing the basic definition of a phylogenetic tree, particularly as it

is from a graph-theoretic perspective. To this end we first present the definition of

X-trees in general, of which phylogenetic trees are a special case of.

Definition 2.1 (X-tree). An X-tree is a pair T = (T, ϕ) where T = (V,E) is a tree

and ϕ : X → V is a mapping with the properties that |X| < ∞ and for any v ∈ V

such that deg(v) ≤ 2 we have that v ∈ ϕ(X) (ϕ need not be injective nor surjective).

Furthermore, we say X-trees T1 = (T1, ϕ1) and T2 = (T2, ϕ2) are isomorphic if there is

a graph isomorphism Ψ between T1 and T2 such that ϕ2 = Ψ ◦ϕ1 [7]. A rooted X-tree

is a pair T = (T, ϕ), where T = (V,E) has one vertex distinguished as the root, and

ϕ : X → V

Definition 2.2 (Phylogenetic Tree). A phylogenetic tree is an X-tree T = (T, ϕ)

such that ϕ is a bijective map from the label set X to the leaf set of T . A rooted

phylogenetic tree is a rooted X-tree where ϕ is a bijective map from the label set X

to the leaf set of T with the condition that the root has a child vertex which is a leaf

labelled ρ. If we also have that the root has degree 2, and every other interior node

is of degree 3, then we call T a rooted binary phylogenetic tree [7]. In the context of

these trees our label set is a set of species and, in the rooted case, ρ represents the

outgroup.

For the purpose of the current study, we focus on rooted binary phylogenetic trees,

which from here on we refer to as phylogenetic trees for simplicity. We also note that,

in previous work, ρ was used to denote the root. For the purposes of this research,

we have altered this so that ρ is a leaf node that represents the outgroup of our tree

and is a child of the root. This also allows us to maintain that only leaf vertices are

labelled. In the unrooted case, it is possible to assign a rooting of the tree, however

doing this correctly is generally poorly understood and often an arduous task.

3
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Definition 2.3 (Ancestry and Depth). We say that a node v is a descendant of a

node u (and consequently that u is an ancestor of v) if u is on the path from v to the

root of our tree. The depth of node is equal to its number of ancestors.

Definition 2.4 (Forced Contraction). A forced contraction is an operation on a tree

in which we delete a vertex v having a single parent u and child w and replace the

two edges incident to v by a single edge (u,w) [1].

We write L(T ) to refer to the leaf set of a tree T . Given a set U ⊆ L(T ) we

write T (U) to denote the minimal subtree of T that connects all of U . We write T |U
to denote the tree obtained from T (U) by applying forced contractions to remove all

vertices which have exactly one parent and one child.

For much of what follows, we let T1, T2 be phylogenetic trees such that L(T1) =

L(T2) = X.

Definition 2.5 (Edge Cuts). We denote by F//(x, y) the operation of cutting the

edge (x, y) ∈ V (F), whereby we remove (x, y) from F and apply forced contractions

to any degree two vertices that arise afterwards. If E is a set of edges, then we denote

by T − E the result cutting each edge from E in order in T .

Let x be a non-root node in a tree T . We denote by ex the parent edge of x in T .

Definition 2.6 (Cut Edge Set). Let F be a forest obtained from T1. We say E is

the cut edge set of F if T1−E = F . A minimal cut edge set of F is a cut edge set of

minimal cardinality.

Definition 2.7 (Rooted Subtree Prune and Regraft (rSPR)). Let T be an X-tree.

A subtree prune and regraft operation on T cuts an edge (x, y), where y is the parent

of x. We then have two subtrees of T , Tx and Ty. It then introduce a new node y′

in Ty that subdivides an edge of Ty, and adds the edge (x, y′) Finally, y is supressed.

This process is illustrated in Figure 2.1.

This provides us with the distance measure known as the rooted SPR distance.

By drSPR(T1, T2) we denote the minimum number of SPR operations required to

transform T1 into T2 [4, 8].

Definition 2.8 (Agreement Forest). An agreement forest (AF) for T1, T2 is a col-

lection of binary trees F = {t1, t2, ..., tk} such that if Lj := L(tj) for j ∈ {1, ..., k}
then
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a c

b

d

T :

x

y

b

d

Ty :

y

a c

x

Tx :

a c

x

y′

T ′ :

b

d

Figure 2.1: An SPR operation on a phylogenetic tree, T , and the resulting tree T ′.
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1. L1, ...,Lk partitions X,

2. tj = T1|Lj
= T2|Lj

for j ∈ {1, ..., k}, and

3. for both i = 1 and i = 2 we have that {Ti(Lj) : j = 1, ..., k} are edge-disjoint

subtrees of Ti [1].

For the third requirement, we note that, in the case of binary trees, this also

implies vertex-disjointness. A maximum agreement forest (MAF) is an AF such that

|F| is minimum. An example of two rooted binary phylogenetic trees, T1 and T2, and

one potential MAF for (T1, T2) is shown in Figure 2.2. The number of components in

an MAF of (T1, T2) is equal to drSPR(T1, T2)− 1 [2].

T1 :

ρ

T2 :

ρ

a

b c

d

e f

c

a b

f

e d

F :

ρ

a db f

e c

root root

Figure 2.2: A pair of phylogenetic trees, (T1, T2), and an MAF, F , for these trees. F
can be obtained by cutting the parent edges of c and e in both T1 and T2.



7

Definition 2.9 (Cherries and Trivial Cherries). A cherry of a tree T is a pair (a, c)

such that a and c are leaves having the same parent in T . We say (a, c) is a trivial

cherry of a pair of trees (T1, T2), if this cherry is present in both. Figure 2.3 gives

examples of cherries and trivial cherries.

a c

b

d

a c b d

T1 : T2 :

Figure 2.3: (a, c) is a trivial cherry, as it is present in both T1 and T2; (b, d), however,
is only a cherry of T2.

Definition 2.10 (Triplets). A triplet ab|c in a forest F is defined by a set of three

leaves {a, b, c} that are in the same connected component of F and such that the

path from a to b is vertex disjoint from the path from c to the root of the component.

A triplet of a forest F1 is compatible with a forest F2 if it is also a triplet of F2,

otherwise this triplet is incompatible with F2 [8].

For F to be an MAF of (T1, T2), every triplet of F must be compatible with both

T1 and T2.

Finally, we formalize the concept of the core MAF, the problem central to this

thesis. As stated, the goal is that this (or some variant thereof) may be used as a

tool by which we can infer common structure amongst the complete set of MAFs for

two phylogenetic trees.

Definition 2.11 (Core Maximum Agreement Forest). The core maximum agreement

forest (core MAF) for (T1, T2) is an AF S of (T1, T2) such that, for every component
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t ∈ S and every MAF F of (T1, T2), there exists some t′ ∈ F such that L(t) ⊆ L(t′).

Furthermore, |S| is minimal among all AFs which satisfy this property. An example

of the core MAF for a pair of phylogenetic trees is shown in Figure 2.4.

ρ

a

c

d e

b

T1 : T2 :

ρ

a

d

c e

b

S :

ρ

ba

c ed

Figure 2.4: Phylogenetic trees T1 and T2 and their core MAF S.

2.2 Parameterized Complexity

It is well known that it is NP-hard to compute the rooted subtree prune and regraft

(rSPR) distance of two phylogenetic trees T1 and T2 (denoted drSPR(T1, T2)) [2].

Furthermore, it is known that drSPR(T1, T2) = |F| − 1, where F is an MAF for T1, T2

[10]. Hence computing an MAF for two phylogenetic trees is an NP-hard problem.

The decision variant of the AF problem is NP-complete. That is, given as input

(T1, T2, k), we cannot decide in polynomial time whether there is an AF for T1, T2 of

size at most k, unless P = NP .
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Definition 2.12 (Fixed Parameter Tractability). We say that a decision problem P
is fixed parameter tractable (FPT) if, given some instance (x, k) of P , we can decide

in O(f(k) · |x|O(1)) time whether (x, k) is a yes-instance, where k is some parameter

and f is a computable function depending only on k.

Example 2.13 (Vertex Cover). Consider the well known vertex cover problem. In

this problem we are given a graph G and we want a set C ⊆ V (G) of vertices such that

for any edge (u, v) ∈ E(G), we have that either u ∈ C, v ∈ C, or both. Our goal is to

find such a vertex cover C such that |C| is minimum. In the decision variant, we are

given a graph G and parameter k and want to decide whether or not G has a vertex

cover of size at most k. It is shown in [3] that there is an algorithm which solves the

vertex cover problem in O(n
√
m + 1.4656kkO(1)) time, via the use of branching and

some reduction rules. Now note that we have only polynomial factors in the input

size, and our exponential running time is restricted to our parameter k, the size of

the vertex cover we are looking for. This shows that vertex cover is FPT.

In simpler terms, if a problem in NP is FPT, then we can restrict the exponen-

tial running time of our algorithm to some (ideally small) hardness parameter and

incur only a polynomially bounded running time in the size of the original input.

It was shown in [2] that finding an MAF for two phylogenetic trees is FPT when

parameterized by the size of an optimal solution.

2.3 Related Work

To date, there has been an extensive amount of research into developing efficient

algorithms (both theoretically and in practice) for computing MAFs for a pair of

phylogenetic trees. As mentioned, Bordewich and Semple first proved that this prob-

lem was FPT when parameterized by the size of an MAF [2].

Several efficient branching algorithms exist for computing MAFs of rooted phylo-

genetic trees. The algorithm described in [10] made use of a simple branching rule to

compute an MAF of (T1, T2) in O(3k ·n) time. While not the most impressive bound

obtained to date, it remains not only an FPT algorithm, but one that can in fact find

any MAF of the input trees. This algorithm was improved upon in [8] to obtain a

bound of O(2.42k ·n) time by breaking the existing rule into three different branching

rules. Further improvements to branching rules as well as the depth rule for selecting

cherries to branch on, and the use of edge protection were introduced [11] to achieve

a running time bound of O(2k · n). Similar strategies have also been used to yield an
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algorithm for multifurcating (non-binary) phylogenetic trees that has a running time

bound of O(2.42k · n).

Linz and Semple proposed the technique of cluster partitioning (or cluster reduc-

tion), whereby we can split our input trees into subtrees with common leaf label sets

in order to partition the problem into smaller subproblems. We can then compute

MAFs for these smaller trees independently and combine the results to obtain a global

MAF [6]. This initial version of cluster reduction required a weight function in order

to guarantee that the end result would indeed be a global MAF. Whidden, Zeh, and

Beiko then proposed a modification to the original cluster partitioning technique,

wherein instead of requiring a weight function, preference is given to MAFs which

cut their root edge [12].

Our aim is to make use of the general ideas and techniques used in the existing

branching algorithms and cluster reduction strategies, and adapt them to work in

the context of the core MAF problem. Intuitively, these techniques should work for

the core MAF problem. However, the improved branching algorithms for computing

MAFs fairly explicitly exploit that they do not need to find every MAF, something

our core MAF algorithm has to do at least implicitly. Similarly, the cluster reduction

technique in its original form may miss some MAFs and thus needs to be adapted if

we want to use it to speed up core MAF algorithms.



Chapter 3

Cluster Reduction and the Core Maximum Agreement Forest

3.1 Clusters and MAFs

We now turn our attention to the technique of cluster partitioning originally proposed

by Linz and Semple [6]. The key idea here is that we can break our input trees into

smaller subtrees and recursively compute MAFs of these smaller instances. Upon

solving these simpler problems, we can then piece together a solution for the input

trees. The definitions and lemmas which follow mainly focus on having two clusters.

However, as we later show, this can easily be extended to work for the potentially

many clusters that the optimal cluster partition of our input trees could have.

Definition 3.1 (Clusters). Given a vertex v ∈ V (T ), we denote by Xv the set of leaves

that have v as an ancestor in T . If we have trees T1 and T2 with nodes v1 ∈ V (T1) and

v2 ∈ V (T2) such that Xv1 = Xv2 ̸= X, then we define the top and bottom clusters

for (T1, T2) as follows. Let Y = Xv1 = Xv2 . The bottom cluster, (T ↓
1 (Y ), T ↓

2 (Y )) is

obtained by taking T1(Y ) and T2(Y ) and adding the outgroup node, ρ, which has one

incident edge that connects it a new root node that is in turn connected to the root

in T1(Y ) and T2(Y ). The top cluster, which we denote as (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) is

obtained by first taking T1(X \ Y ) and T2(X \ Y ). Next, let u1 and u2 be the parent

nodes of v1 and v2 respectively. We append to T1(X \Y ) and T2(X \Y ) a new leaf, α,

whose parent is ui in Ti(X \ Y ), for i ∈ {1, 2}. An example of a cluster partitioning

of two phylogenetic trees, T1 and T2 is given in Figure 3.1.

In the case of the top cluster, α represents the entirety of T ↓
i (Y ) in T ↑

i (X \ Y ),

for i = {1, 2}. We refer to the test to see whether (T ↓
1 (Y ), T ↓

2 (Y )) has an MAF that

isolates ρ as the ρ-test. It can be done by computing MAFs of (T ↓
1 (Y )− ρ, T ↓

2 (Y )−
ρ) and (T ↓

1 (Y ), T ↓
2 (Y )). There exists an MAF of (T ↓

1 (Y ), T ↓
2 (Y )) that isolates ρ if

and only if the MAF of (T ↓
1 (Y ), T ↓

2 (Y )) has one component more than the MAF of

(T ↓
1 (Y )− ρ, T ↓

2 (Y )− ρ).

Thus to compute an MAF for (T1, T2) we must find a minimal cut edge set for T1

such that the forest obtained is also a forest obtainable from T2, and this forest has

the smallest possible number of connected components. Referring back to Figure 2.2,

11
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T1 :

ρ

T2 :

ρ

a

b c

d

e f

c

a b

f

e d

Partition into clusters

T
↑
1 (X \ Y ) :

ρ

a

b cd

e f

α

ρ

T
↓
1 (Y ) : T

↑
2 (X \ Y ) :

ρ

c

a bf

e d

α

ρ

T
↓
2 (Y ) :

v1 v2

Figure 3.1: A set of phylogenetic trees (T1, T2) with leaf set X = {a, b, c, d, e, f} (top)
and a cluster partition of the trees with respect to the subtrees induced by v1 and v2
in T1 and T2, respectively, which have the common leaf set Y = {a, b, c}.
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a cut edge set for F , with respect to both T1 and T2, is {ec, ee}, where ec and ee are

the parent edges of c and e respectively.

We now define the operation of gluing together AFs of the top and bottom clusters,

which is vital to being able to use the MAFs obtained for each of our clusters in order

to compute a global MAF for our input trees.

Definition 3.2 (Gluing Operation). Let F↑ and F↓ be AFs of the clusters (T ↑
1 (X\Y ),

T ↑
2 (X \ Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) of (T1, T2) respectively. Let E↑ and E↓ be their cut

edge sets. If {α} ∈ F↑ or {ρ} ∈ F↓ then let Eα,ρ = {e}, where e is the parent edge

of v1 in T1, with Xv1 = Y . If neither α in the top cluster nor ρ in the bottom cluster

are isolated, then let Eα,ρ = ∅. Then F↑ ⊕ F↓ = T1 − (E↑ ∪ E↓ ∪ Eα,ρ). The gluing

operation is illustrated in Figure 3.2.

Definition 3.3 (Crossing the Boundary). We say that a component C ∈ F crosses

the boundary between the two clusters (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y ))

if (X \ Y ) ∩ L(C) ̸= ∅ and Y ∩ L(C) ̸= ∅. An example of a component that crosses

the boundary of two clusters is given in Figure 3.2.

Recall that Ti(X \ Y ) and Ti(Y ) are subtrees of Ti, for i ∈ {1, 2}. The gluing

operation removes the additional α and ρ leaves, and we are left with components

that are common to (T1, T2). If we were to have an incompatible triplet with Ti,

then this would result in a triplet incompatible with either T ↑
i (X \ Y ) or T ↓

i (Y ), for

i ∈ {1, 2}. No component that does not cross the boundary can overlap, as this would

have resulted in an overlap in its respective cluster. If there is some component C

that does cross the boundary of our clusters, then again there can be no overlap, since

we remove the additional α and ρ leaves when gluing, and Ti(X \ Y ) and Ti(Y ) are

vertex-disjoint subtrees of Ti, for i ∈ {1, 2}.

Lemma 3.4 (Linz and Semple [6]). Let (T1, T2) be a pair of phylogenetic trees, and

let (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) be the clusters thereof. If F↑ and F↓

are AFs of (T ↑
1 (X\Y ), T ↑

2 (X\Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) respectively, then F = F↑⊕F↓

is an AF of (T1, T2).

Definition 3.5 (Restriction of an AF). Given an AF, F , of (T1, T2), we write F|(X\Y )↑

and F|Y ↓ to denote the restriction of the components of F to the top and bottom

clusters defined by Y ⊆ X, respectively. Specifically, if E is the cut edge set of F
and E↑, E↓ are the edge sets of T ↑

1 (X \ Y ) and T ↓(Y ), respectively, then F|(X\Y )↑ =

T ↑
1 (X \Y )− (E↑∩E) and F|Y ↓ = T ↓

1 (Y )− (E↓∩E). If e ∈ E , where e is the edge that
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F↑ :

ρ

a b

c

d

e

f

α

ρ

F↓ :

F↑ ⊕F↓ :

ρ

d

e

fa b

c

Figure 3.2: MAFs F↑ and F↓ of the clusters (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and
(T ↓

1 (Y ), T ↓
2 (Y )) from Figure 3.1 (left). Applying the gluing operation to these cluster

MAFs yields the forest F↑ ⊕ F↓ (right). The non-singleton component in F↑ ⊕ F↓

crosses the boundary of the clusters.
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crosses the boundary of our clusters, then we cut the parent edge of α in F|(X\Y )↑

and the parent edge of ρ in F|Y ↓. Restriction is illustrated in Figure 3.3.

F|(X\Y )↑ :

ρ

a
cb

e

d f

α

ρ

F|Y ↓ :

F :

ρ

a

f

e

b c

b

Figure 3.3: An AF, F , of (T1, T2) from Figure 3.1 (left). Restricting F to (T ↑
1 (X \

Y ), T ↑
2 (X \ Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) results in F|(X\Y )↑ and F|Y ↓ respectively (right).

The lemmas presented in the remainder of this section will be essential in achieving

our goal of showing that it is indeed safe to use cluster reduction in the context of

the core MAF problem.

Lemma 3.6. Let F be an AF of (T1, T2). Then F|(X\Y )↑ and F|Y ↓ are AFs of

(T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )), respectively.

Proof. We show that F|(X\Y )↑ is an AF of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and the result

follows similarly for F|Y ↓ and (T ↓
1 (Y ), T ↓

2 (Y )). It is sufficient to show that no two

components of F|(X\Y )↑ overlap in T ↑
1 (X \ Y ) nor T ↑

2 (X \ Y ) and that every triplet is

compatible with T ↑
1 (X \ Y ) and T ↑

2 (X \ Y ). Let A and B be two different arbitrary

components of F|(X\Y )↑. Since F|(X\Y )↑ is a restriction of F , it is evident that A and

B are subtrees of A′ and B′, where A′ and B′ are components of F . Assume that

there is some overlap between A and B, that is there is a subtree C common to both.

Then we have that C is also a subtree of both A′ and B′ and thus A′ and B′ overlap

in F which could not have been an AF to begin with. Therefore, no two components

of F↑ overlap.

Now consider an arbitrary triplet, ab|c of F|(X\Y )↑. We then have two cases
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1. α /∈ {a, b, c}

2. α ∈ {a, b, c}.

In case 1 it is clear that ab|c must also be a triplet of F and so if it is not consistent

with T ↑
1 (X \Y ) or T ↑

2 (X \Y ), then it cannot have been consistent with T1 or T2. For

case 2 we know that there is some component C ∈ F that crosses the boundary of

our clusters. Let y ∈ C be an arbitrary leaf such that y ∈ Y . If we now replace α

with y, then we have a triplet t of F . If ab|c is not compatible with T ↑
1 (X \ Y ) or

T ↑
2 (X \ Y ), then t is not compatible with T1 or T2.

If we focus on subtrees and triplets of a single phylogenetic tree then we obtain

from Lemma 3.6 the following corollary.

Corollary 3.7. Let Y ⊆ X be a subset of the leaf label set of T . Let L(A),L(B) ⊆ Y

be the leaf sets associated with subtrees A and B of T . Then A and B overlap in T

if and only if they overlap in T |Y . Similarly, if we consider any triplet ab|c of T such

that a, b, c ∈ Y , then ab|c is also a triplet of T |Y .

We now discuss the cases that arise when comparing the size of cluster AFs to the

global AFs that result from the gluing process. If we isolate ρ in F↓ and we isolate

α in F↑, then |F↓ ⊕ F↑| = |F↓| + |F↑| − 2, as both singletons disappear when we

glue the AFs together. If F↓ does not isolate ρ, but F↑ does isolate α or vice-versa,

then |F↓⊕F↑| = |F↓|+ |F↑| − 1 as the singleton component disappears after gluing.

Finally, if we do not isolate α in F↑ nor ρ in F↓, then |F↓ ⊕ F↑| = |F↓| + |F↑| − 1,

as the component which crosses the boundary is split amongst the two cluster AFs.

Now let F be an MAF of (T1, T2). Then F = F|(X\Y )↑⊕F|Y ↓, and these restrictions

are both AFs of their respective cluster by Lemma 3.6. This yields the following

observation.

Observation 3.8. Let F be an MAF of (T1, T2) and let F↑,F↓ be MAFs of (T ↑
1 (X \

Y ),

T ↑
2 (X \ Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) respectively. Then

|F| < |F↑|+ |F↓| ≤ |F|+ 2.

Building on Lemma 3.6 we now discuss the size of AFs obtained by restricting a

global MAF to our clusters. In particular, we discuss the restriction of global MAFs

resulting in cluster MAFs, or MAFs of the clusters with either eα or eρ precut.
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Lemma 3.9. Let F be an MAF of (T1, T2) and let k↓ be the size of an MAF of

(T ↓
1 (Y ), T ↓

2 (Y )). Then |F|Y ↓| ≤ k↓ + 1. Similarly, let k↑ be the size of an MAF of

(T ↑
1 (X \ Y ), T ↑

2 (X \ Y )). Then |F|(X\Y )↑| ≤ k↑ + 1.

Proof. We give the proof for the case of the restriction to the bottom cluster. The

proof for the case of restricting to the top cluster follows similarly. It is sufficient

to show that either F|Y ↓ is an MAF of (T ↓
1 (Y ), T ↓

2 (Y )) or it is an AF that is one

component larger than an MAF. By Lemma 3.6 we know that F|Y ↓ is an AF of

(T ↓
1 (Y ), T ↓

2 (Y )). Assume, by way of contradiction, that |FY ↓| > k↓ + 1. By Observa-

tion 3.8 we know that |F| < k↑+k↓ ≤ |F|+2. We also know that F = F|(X\Y )↑⊕F|Y ↓

and thus |F| < |F|(X\Y )↑| + |F|Y ↓| ≤ |F| + 2. Now even if |F|(X\Y )↑| = k↑, that

is, it is an MAF of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )), and |FY ↓| = k↓ + 2, then we have

|F| < k↑ + k↓ + 2 ≤ |F|+ 2, which cannot be true. ⇒⇐

In what follows we discuss MAFs of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and

(T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ). We say F↑−α is an MAF of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α)

if |F↑−α| is minimum among all AFs of the top cluster where eα is precut. Similarly,

F↓−ρ is an MAF of (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) if |F↓−ρ| is minimum among all AFs of the

bottom cluster where eρ is precut.

Lemma 3.10. Let (T1, T2) be a pair of phylogenetic trees and let (T ↑
1 (X\Y ), T ↑

2 (X\ Y ))

and (T ↓
1 (Y ), T ↓

2 (Y )) be the top and bottom clusters, respectively. If F is an MAF of

(T1, T2) that has no component that crosses the boundary of the clusters, then F|(X\Y )↑

and F|Y ↓ are MAFs of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ),

respectively.

Proof. We give the proof for the case of FY ↓ being an MAF of (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ).

The proof for F(X\Y )↑ being an MAF of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) follows simi-

larly.

Since F has no component that crosses the boundary, we know that FY ↓ isolates

ρ, hence we have an AF of (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) by Lemma 3.6. Suppose, towards

contradiction, that this is not an MAF with eρ precut. Then there exists some

AF F↓−ρ of (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) such that |F↓−ρ| < |F|Y ↓|. If we take F ′ =

F|(X\Y )↑ ⊕ F↓−ρ, then we claim that F ′ is an AF of (T1, T2), such that |F ′| < |F|.
Indeed, precutting eρ in the bottom cluster does not matter since α being isolated

in the top cluster will result in no components crossing the boundary. Since |F| =

|F|(X\Y )↑| + |F|Y ↓| − 2 and |F ′| = |F|(X\Y )↑| + |F↓−ρ| − 2 and |F↓−ρ| < |F|Y ↓|, we

have that |F ′| < |F|. ⇒⇐
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Lemma 3.11. Let (T1, T2) be a pair of phylogenetic trees and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters, respectively. If F is an

MAF of (T1, T2) that has a component that crosses the boundary of the clusters, then

F|(X\Y )↑ and F|Y ↓ are MAFs of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )), respec-

tively.

Proof. We give the proof for the case of F|Y ↓ being an MAF of (T ↓
1 (Y ), T ↓

2 (Y )). The

proof for F|(X\Y )↑ being an MAF of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) follows similarly.

By Lemma 3.6 we know that F|Y ↓ is indeed an AF of (T ↓
1 (Y ), T ↓

2 (Y )). Suppose,

towards contradiction, that there exists some AF F↓ of (T ↓
1 (Y ), T ↓

2 (Y )) such that

|F↓| < |F|Y ↓|. Then, if we take F ′ = F|(X\Y )↑ ⊕ F↓, we claim that F ′ is an AF

of (T1, T2), such that |F ′| < |F|. Indeed, since |F| = |F|(X\Y )↑| + |F|Y ↓ − 1 and

|F ′| = |F|(X\Y )↑|+ |F↓| − 1 and |F↓| < |F|Y ↓|, we have that |F ′| < |F|. ⇒⇐

Recall that Observation 3.4 states that gluing together any two cluster AFs results

in a global AF. We now discuss the three scenarios wherein we can guarantee that

our gluing operation will result in a global MAF, given particular AFs of our clusters.

Lemma 3.12. Let (T1, T2) be a pair of phylogenetic trees and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters respectively. Assume that

no MAF of (T1, T2) has a component that crosses the boundary of the clusters. Let

F↑−α be an MAF of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and let F↓−ρ be an MAF of

(T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ). Then F = F↑−α ⊕F↓−ρ is an MAF of (T1, T2).

Proof. Since no MAF of (T1, T2) has a component that crosses the boundary of the

clusters, it is clear that restricting any MAF of (T1, T2) to (T ↑
1 (X \ Y ), T ↑

2 (X \ Y ))

will result in α being isolated and restricting to (T ↓
1 (Y ), T ↓

2 (Y )) will result in ρ being

isolated.

Suppose, towards contradiction, that F is not an MAF of (T1, T2). Then there

exists some AF, F ′ such that |F ′| < |F| and where F ′ has no component that crosses

the boundary of the clusters. Now, if we take both F ′|(X\Y )↑ and F ′|Y ↓, both of which

are AFs by Lemma 3.6, and which isolate α and ρ respectively, then these are also

AFs of (T ↑
1 (X \Y )//α, T ↑

2 (X \Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) respectively. Since

|F ′| < |F|, and since F ′|(X\Y )↑⊕F ′|Y ↓ = F ′, we know that either |F ′|(X\Y )↑| < |F↑−α|
or |F ′|Y ↓| < |F↓−ρ|, thus contradicting the minimality of either |F↑−α| or |F↓−ρ|.
⇒⇐

Lemma 3.13. Let (T1, T2) be a pair of phylogenetic trees and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters respectively. Assume that
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every MAF of (T1, T2) has a component that crosses the boundary of the clusters. Let

F↑ be an MAF of (T ↑
1 (X \Y ), T ↑

2 (X \Y )) such that {α} /∈ F↑ and let F↓ be an MAF

of (T ↓
1 (Y ), T ↓

2 (Y )) such that {ρ} /∈ F↓. Then F = F↑ ⊕F↓ is an MAF of (T1, T2).

Proof. Since every MAF of (T1, T2) has a component that crosses the boundary of

our clusters, it is clear that restricting any MAF of (T1, T2) to (T ↑
1 (X \Y ), T ↑

2 (X \Y ))

will result in α not being isolated and restricting to (T ↓
1 (Y ), T ↓

2 (Y )) will result in ρ

not being isolated.

Suppose, towards contradiction, that F is not an MAF of (T1, T2). Then there

exists some AF, F ′ such that |F ′| < |F|, and such that F ′ has some component that

crosses the boundary of the clusters. Now, if we take both F ′|(X\Y )↑ and F ′|Y ↓, then

both of theses are AFs of their respective clusters, by Lemma 3.6. Since |F ′| < |F|,
and since F ′|(X\Y )↑⊕F ′|Y ↓ = F ′, we know that either |F ′|(X\Y )↑| < |F↑| or |F ′|Y ↓| <
|F↓|, thus contradicting the minimality of either |F↑| or |F↓|. ⇒⇐

Lemma 3.14. Let (T1, T2) be a pair of phylogenetic trees and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters respectively. Assume that there

exists at least one MAF of (T1, T2) that has a component that crosses the boundary of

the clusters and at least one MAF of (T1, T2) that has no such component. Let F↑ be

an MAF of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and let F↓ be an MAF of (T ↓
1 (Y ), T ↓

2 (Y )). Then

F = F↑ ⊕F↓ is an MAF of (T1, T2).

Proof. Unlike with Lemmas 3.12 and 3.13, we cannot guarantee that the restriction

of an MAF of (T1, T2) to the clusters will or will not result in α or ρ being isolated

in (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) respectively. Furthermore, we cannot

guarantee that restricting F back to the clusters will result in the cluster MAFs we

started with, indeed if only one of F↑ or F↓ isolate α or ρ, then the restriction of

F to the clusters will result in both α and ρ being isolated, and thus one of the

restricted AFs will be off from an MAF by one component. This does not pose any

issues though, as gluing these restrictions will still result in F in the end.

Suppose, towards contradiction, that F is not an MAF of (T1, T2). Then there

exists some AF, F ′ such that |F ′| < |F|, F ′ may or may not have a component that

crosses that boundary of the clusters. Now, if we take both F ′|(X\Y )↑ and F ′|Y ↓,

then both of these are AFs of their respective clusters, by Lemma 3.6. Since F ′ =

F ′|(X\Y )↑ ⊕ F ′|Y ↓, we know by Observation 3.8 that |F ′| < |F ′|(X\Y )↑| + |F ′|Y ↓| ≤
|F ′| + 2. We also know by Observation 3.8 that |F| < |F↑| + |F↓| ≤ |F| + 2, and

hence |F ′| + 1 < |F↑| + |F↓| ≤ |F ′| + 3, since |F ′| < |F|. Thus, in order for both
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F↑ and F↓ to be MAFs, it must be that |F↑| + |F↓| = |F ′| + 2. Since (T1, T2) has

at least one MAF that has a component that crosses the boundary, if F ′ is such an

MAF, then the proof follows, as neither α nor ρ would be isolated in F ′|(X\Y ) or F ′|Y ↓

respectively, and thus |F ′|(X\Y )↑|+ |F ′|Y ↓| = F ′ + 1.

Assume then that F ′ is an AF that has no such component. Then |F ′|(X\Y )↑| +
|F ′|Y ↓| = F ′ + 2, since both α and ρ are isolated in F ′|(X\Y )↑ and F ′|Y ↓, respectively.

We claim that one of F ′|(X\Y )↑ and F ′|Y ↓ is in fact an MAF, and the other is an AF

that has one component more than an MAF. Let F ′′ and F ′′′ be MAFs of (T1, T2) such

that F ′′ has a component that crosses the boundary of the clusters, and let F ′′′ be an

MAF that has no such component. As before, we have |F ′′|(X\Y )↑|+ |F ′′|Y ↓| = F ′′+1.

We also have |F ′′′|(X\Y )↑|+ |F ′′′|Y ↓| = F ′′′+2. Now note that F ′′ = F ′′|(X\Y )↑⊕F ′′|Y ↓,

and thus by Lemma 3.9 and Observation 3.8, we know that both F ′′|(X\Y )↑ and F ′′|Y ↓

are MAFs of their respective cluster. We then have

|F ′′| = |F ′′′| (3.1)

|F ′′|(X\Y )↑|+ |F ′′|Y ↓| − 1 = |F ′′′|(X\Y )↑|+ |F ′′′|Y ↓| − 2 (3.2)

|F ′′|(X\Y )↑|+ |F ′′|Y ↓| = |F ′′′|(X\Y )↑|+ |F ′′′|Y ↓| − 1 (3.3)

From (3.3) we see that one of F ′′′|(X\Y ) or F ′′′|Y ↓ is an MAF, and the other has

one additional component. This means that either no MAF of (T ↑
1 (X \Y ), T ↑

2 (X \Y ))

isolates α or no MAF of (T ↓
1 (Y ), T ↓

2 (Y )) isolates ρ. Now let F∗ = F ′′|(X\Y ) ⊕ F ′′′|Y ↓

and F∗∗ = F ′′′|(X\Y ) ⊕ F ′′|Y ↓. Then we have |F∗| = |F ′′|(X\Y )| + |F ′′′|Y ↓| − 1 and

|F∗∗| = |F ′′′|(X\Y )| + |F ′′|Y ↓| − 1. One of F∗ or F∗∗ is then an MAF that does

not have a component that crosses the boundary of our clusters. Returning back

to F ′, we now know one of F ′|(X\Y )↑ or F ′|Y ↓ is an MAF of its respective cluster,

and the other is an AF with one additional component. We can apply the strategy

above to determine which one is the MAF, assume that it is F ′|Y ↓, the argument for

F ′|(X\Y )↑ is analogous. Then let F↑′ be an MAF of (T ↑
1 (X \Y ), T ↑

2 (X \Y )). If we take

F ′′′′ = F↑′ ⊕ F ′|Y ↓, then we have |F ′′′′| ≤ |F ′|, and since |F↑′ | + |F ′|Y ↓| = |F ′′′′ + 1

and |F↑|+ |F↓| = |F ′|+ 2, we have that at least one of F↑ or F↓ could not have been

an MAF of its respective cluster. ⇒⇐

To summarize, we have shown that, for any MAF F of (T1, T2), we can take

the restriction of F to our clusters and glue them together to get back to F . Said
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otherwise, restricting a global MAF and then gluing the resulting cluster AFs is

equivalent to the identity function. Furthermore, we have shown that we can compute

MAFs, with certain restrictions in place, of our clusters and glue them together to

obtain a global MAF. We now introduce the core MAF problem, which the remainder

of this thesis focuses on addressing.

3.2 Clusters and the Core MAF

We now introduce the (α, ρ)-test, which allows us to determine which version of our

cluster partitioning in the context of the core MAF problem.

Definition 3.15 (The (α, ρ)-test). Let (T1, T2) be a pair of phylogenetic trees, and let

(T ↑
1 (X \Y ), T ↑

2 (X \Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) be the top and bottom clusters thereof re-

spectively. The (α, ρ)-test is a test used to determine which of the following situations

we are in:

(i) no MAF of (T1, T2) has a component that crosses the boundary of the clusters,

(ii) every MAF of (T1, T2) has a component that crosses the boundary of the clusters,

or

(iii) at least one MAF of (T1, T2) has a component that crosses the boundary and at

least one MAF has no such component.

This is achieved by doing the following. We compute two MAFs of (T ↑
1 (X \Y ), T ↑

2 (X \
Y )), one where we precut the parent edge of α, and one where we require that α not be

isolated, F↑−α and F↑ respectively. Similarly, we compute MAFs of (T ↓
1 (Y ), T ↓

2 (Y )),

one in which we precut the parent edge of ρ, and one where we require that ρ not

be isolated, F↓−ρ and F↓ respectively. We then take F−α,−ρ = F↑−α ⊕ F↓−ρ and

F = F↑ ⊕ F↓. If |F−α,−ρ| < |F|, then we are in case (i). If |F| < |F−α,−ρ|, then we

are in case (ii). Finally, if |F−α,−ρ| = |F|, then we are in case (iii).

In order to obtain an efficient algorithm for computing the core MAF of two

phylogenetic trees, we wish to make use of the cluster reduction strategies outlined in

Section 3.1. To that end, we make use of the (α, ρ)-test to determine which versions

of our clusters we should use in order to find the global core MAF.

Lemma 3.16. Let (T1, T2) be a pair of phylogenetic trees, and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters thereof respectively. If the
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(α, ρ)-test results in a case (i) scenario, then the core MAF of (T1, T2) is obtained by

taking the union of the cut edge sets for the core MAFs of (T ↑
1 (X \ Y )//α, T ↑

2 (X \
Y )//α) and (T ↓

1 (Y )//ρ, T ↓
2 (Y )//ρ) along with the edge e that crosses the boundary of

our clusters.

Proof. We begin by demonstrating that the (α, ρ)-test does in fact correctly determine

that every MAF of (T1, T2) does not have a component that crosses the boundary of

the clusters. Suppose, towards contradiction, that this is not the case. Then there

exists some MAF of (T1, T2), say F∗, that has some component that crosses the

boundary. If we now take F∗|(X\Y )↑ and F∗|Y ↓, then by Lemma 3.11 these are MAFs

of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) respectively. Now let F and F−α,−ρ

be the AFs of (T1, T2) obtained from the (α, ρ)-test. In order for F∗ to be an MAF, it

must be that |F∗| ≤ |F−α,−ρ|. However, |F−α,−ρ| < |F|, and hence this would imply

that |F∗| < |F| and thus either |F∗|(X\Y )↑| < |F↑| or |F∗|Y ↓| < |F↓|, where F↑ and

F↓ are the MAFs of (T ↑
1 (X \Y ), T ↑

2 (X \Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) computed during the

(α, ρ)-test. However, as α is not isolated in F∗|(X\Y )↑ and ρ is not isolated in F∗|Y ↓,

this contradicts the fact that F↑ and F↓ were MAFs of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and

(T ↓
1 (Y ), T ↓

2 (Y )) that do not isolate α or ρ respectively. Thus no MAF of (T1, T2) has

a component that crosses the boundary of the clusters.

We now show that it is sufficient to take the union of the cut edge sets of the core

MAFs of (T ↑
1 (X \Y )//α, T ↑

2 (X \Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) in order to obtain

the core MAF of (T1, T2). By Lemma 3.12 we know that, if no MAF of (T1, T2) has

a component that crosses the boundary of the clusters, then for any two MAFs F↑−α

and F↓−ρ of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) respectively,

F = F↑−α⊕F↓−ρ is an MAF of (T1, T2). Furthermore, we know by Lemma 3.10 that

every MAF of any pair of phylogenetic trees that has no component that crosses the

boundary of the clusters, can be restricted to obtain MAFs of the top cluster with

eα precut and the bottom cluster with eρ precut. Thus if every MAF of (T1, T2) has

no component that crosses the boundary of the clusters, then the union of the cut

edge sets of all MAFs of (T1, T2) will be the union of the cut edge sets of all MAFs

of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ).

Lemma 3.17. Let (T1, T2) be a pair of phylogenetic trees, and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters thereof respectively. If the

(α, ρ)-test results in a case (ii) scenario, then the core MAF of (T1, T2) is obtained

by taking the union of the cut edge sets for the core MAFs of (T ↑
1 (X \Y ), T ↑

2 (X \Y ))

and (T ↓
1 (Y ), T ↓

2 (Y )).
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Proof. We begin by demonstrating that the (α, ρ)-test correctly determines that every

MAF of (T1, T2) has a component that crosses the boundary of the clusters. Suppose,

towards contradiction, that this is not the case. Then there exists some MAF of

(T1, T2), say F∗, that does not contain a component that crosses the boundary of the

clusters. If we now take F∗|(X\Y )↑ and F∗|Y ↓, then by Lemma 3.10 these are MAFs

of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) respectively. Now let

F and F−α,−ρ be the AFs of (T1, T2) obtained from the (α, ρ)-test. In order for F∗

to be an MAF, it must be that |F∗| ≤ |F|. However, |F| < |F−α,−ρ|, and hence this

would imply that |F∗| < |F−α,−ρ| and thus either |F∗|(X\Y )↑| < |F↑−α| or |F∗|Y ↓| <
|F↓−ρ|, where F↑−α and F↓−ρ are the MAFs of (T ↑

1 (X \ Y )//α, T ↑
2 (X \ Y )//α) and

(T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ) computed during the (α, ρ)-test. However, if we remove α

and ρ from F∗|(X\Y )↑ and F∗|Y ↓ respectively, then we are left with AFs of (T ↑
1 (X \

Y )//α, T ↑
2 (X \ Y )//α) and (T ↓

1 (Y )//ρ, T ↓
2 (Y )//ρ) respectively, at least one of which

is smaller than those computed during the (α, ρ)-test, thus yielding a contradiction.

Thus every MAF of (T1, T2) has a component that crosses the boundary.

We now show that it is sufficient to take the union of the cut edge sets of the

core MAFs of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) in order to obtain the

core MAF of (T1, T2). By Lemma 3.13 we know that, if every MAF of (T1, T2) has

a component that crosses the boundary of the clusters, then for any two MAFs, F↑

and F↓ of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) respectively, F = F↑ ⊕ F↓

is an MAF of (T1, T2). Furthermore, we know by Lemma 3.11 that every MAF of

any pair of phylogenetic trees that has a component that crosses the boundary of the

clusters, can be restricted to obtain MAFs of the top and bottoms clusters. Thus

if every MAF of (T1, T2) has a component that crosses the boundary of the clusters,

then the union of the cut edge sets of all MAFs of (T1, T2) will be the union of the

cut edge sets of all MAFs of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )).

Lemma 3.18. Let (T1, T2) be a pair of phylogenetic trees, and let (T ↑
1 (X \Y ), T ↑

2 (X \
Y )) and (T ↓

1 (Y ), T ↓
2 (Y )) be the top and bottom clusters thereof respectively. If the

(α, ρ)-test results in a case (iii) scenario, then the core MAF of (T1, T2) is obtained

by taking the union of the cut edge sets for the core MAFs of (T ↑
1 (X \Y ), T ↑

2 (X \Y ))

and (T ↓
1 (Y ), T ↓

2 (Y )).

Proof. We begin by proving that the (α, ρ)-test does effectively determine that there

is at least one MAF of (T1, T2) that does not have a component that crosses the

boundary of the clusters, and that there is at least one MAF that does have such a

component. Unlike with cases (i) and (ii), this follows trivially from the fact that
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the AF obtained from gluing together the MAFs of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and

(T ↓
1 (Y ), T ↓

2 (Y )) does not differ in size from the AF obtained from gluing together the

MAFs of (T ↑
1 (X \ Y )//α, T ↑

2 (X \ Y )//α) and (T ↓
1 (Y )//ρ, T ↓

2 (Y )//ρ).

We now show that it is sufficient to take the union of the cut edge sets of of

the core MAFs of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) in order to obtain

the core MAF of (T1, T2). By Lemma 3.14 we know that, if there is at least one

MAF of (T1, T2) that has a component that crosses the boundary of the clusters,

and at least one MAF of (T1, T2) that has no such component, then for any two

MAFs, F↑ and F↓ of (T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )) respectively, F =

F↑ ⊕ F↓ is an MAF of (T1, T2). As the (α, ρ)-test showed that |F| = |F−α,−ρ|, and

|F−α,−ρ| = |F↑−α| + |F↓−α|, since the α and ρ singletons are not included, we know

that |F↑−α| + |F↓−ρ| = |F↑| + |F↓| + 1. This means that one of either F↑−α ∪ {α}
or F↓−ρ ∪ {ρ} is in fact an MAF of its respective cluster, and hence will be found

by computing MAFs of the top and bottom clusters. Thus if there is at least one

MAF of (T1, T2) that has a component that crosses the boundary of the clusters,

and at least one MAF that has no such component, then the union of the cut edge

sets of all MAFs of (T1, T2) will be the union of the cut edge sets of all MAFs of

(T ↑
1 (X \ Y ), T ↑

2 (X \ Y )) and (T ↓
1 (Y ), T ↓

2 (Y )).

Combining the results of Lemmas 3.16, 3.17, and 3.18 we now prove the following

Theorem.

Theorem 3.19 (Safeness of Cluster Reduction for Core MAF). Let k be the size of

the core MAF for phylogenetic trees (T1, T2) and k′ be the maximum size among all the

core MAFs in a minimal cluster partition of (T1, T2). An algorithm that computes the

core MAF in O(f(k) · poly(n)) time implies that there is an algorithm that computes

the core MAF in O(f(k′) · poly(n)) time.

Proof. Let PC = {(T Y1
1 , T Y1

2 ), ..., (T Ym
1 , T Ym

2 )}, Y1, ..., Ym ⊆ X,
⋂︁m

i=1 Yi = ∅, be a

minimal cluster partition of (T1, T2). Without loss of generality, assume (T Y1
1 , T Y1

2 ) is

the topmost cluster which contains the original ρ.

For any leaf cluster, we compute the core MAF of this cluster if we are in case (ii)

or (iii), and we compute the core MAF of this cluster with eρ precut if we are in a

case (i) scenario. For any non-leaf cluster that is not the topmost cluster, whether we

precut eρ is deteremined based on the (α, ρ)-test for this cluster and its parent cluster,

in the case of the topmost cluster, eρ is never precut. For each non-leaf cluster, we

precut eαi
, where αi corresponds to the ith child cluster of this cluster, in accordance

with the results of the (α, ρ)-test between this cluster and its ith child cluster.
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Once all of the necessary core MAFs, as outlined above, are computed, we take

the union across all cut edge sets to obtain the core MAF of (T1, T2). The correctness

of this process comes from combining Lemmas 3.16, 3.17, and 3.18. We need only

argue the run time implication. For any cluster (T Yi
1 , T Yi

2 ), we can clearly compute the

required core MAF in O(f(ki) · poly(n)) time, where ki is the size of the core MAF.

Thus if k′ = maxi∈[m](ki) then the total running time for computing core MAFs is

dominated by f(k′) · poly(n).



Chapter 4

Branching Algorithms for Core MAF

In this chapter we describe, in three stages, how to develop an efficient branching

algorithm for solving the core MAF problem, along with an analysis of its running

time and proof of correctness. We begin with a naive approach, wherein we effectively

enumerate all MAFs. Following this, we introduce a set of three branching rules that

allow us obtain a better bound on the size of our search tree, and consequently, a

better running time bound for our algorithm. Finally, we address the worst case

that arises using the initial three branching rules by introducing the notion of edge

protection, along with a fourth branching rule and depth rule that allow us to more

easily show that this protection scheme does indeed yield an improvement in our

running time. To this end, we first provide some important definitions and notation.

Definition 4.1 (Expanding and contracting cherries). By contracting a cherry (a, c),

we mean that we remove both a and c and relabel their parent node as (a, c). We refer

to reversing this process as expanding (a, c). These two operations are illustrated in

Figure 4.1.

T : T ′ :

a c

b b(a, c)

Contract (a, c)

Expand (a, c)

Figure 4.1: T ′ is obtained from T by contracting the cherry (a, c). Conversely, T is
obtained from T ′ by expanding the leaf (a, c).

Lemma 4.2. Let (a, c) be a trivial cherry of (T1, T2) and let T ′
i be the tree obtained

from Ti by contracting (a, c), for i ∈ {1, 2}. Then (a, c) is a cherry of every MAF

26
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of (T1, T2), and MAFs of (T1, T2) and (T ′
1, T

′
2) can be converted into each other by

expanding or contracting (a, c).

Proof. Let F be an AF of (T1, T2). Then there are two possibilities: either c is a

singleton in F or it is not (analogously a is either a singleton or it is not). Let F ′ be

the forest obtained by contracting (a, c) in F , if (a, c) is a cherry in F . If {c} ∈ F ,

then we remove c and relabel a as (a, c) to obtain F ′. We claim that F ′ is an AF

of (T ′
1, T

′
2). Since T ′

i is a subtree of Ti, for i ∈ {1, 2}, F ′ is a subforest of F , and F
is an AF of (T1, T2), there can be no triplets in F ′ that are incompatible with T ′

1 or

T ′
2. Thus, it remains only to show that there are no components in F ′ that overlap

in T ′
1 or T ′

2. Since T ′
i is a subtree of Ti and F ′ is a subforest of F , if two components,

tj, tk ∈ F ′ overlap in T ′
i , then the components of F that contain tj and tk would

overlap in Ti. Hence, F ′ is an AF of (T ′
1, T

′
2). Note that, |F ′| ≤ |F|. If a or c is a

singleton in F , then the inequality is strict.

Next, let F ′ be an AF of (T ′
1, T

′
2). We claim that the forest F obtained by ex-

panding (a, c) in F ′ is an AF of (T1, T2). As the only component of F ′ we alter is the

component containing the leaf (a, c), and a and c are not present in F ′, we do not

create any overlap by expanding (a, c). Thus it remains only to show that there are

no triplets incompatible with T1 or T2. As (a, c) is a cherry in both T1 and T2, the

only way it could be part of an incompatible triplet, a|xy or c|xy with Ti would be

if the contracted node (a, c) belonged to some triplet, (a, c)|xy or (a, c)x|y in F ′ that

was incompatible with T ′
i . As F differs from F ′ only by the expansion of the cherry

(a, c), there can be no other triplets in F that are incompatible with Ti, as this same

triplet would be incompatible with T ′
i , since Ti is a supertree of T ′

i , for i ∈ {1, 2}.
Thus F is indeed an AF of (T1, T2), and moreover |F| = |F ′|.

We now prove that (a, c) is a cherry of every MAF of (T1, T2). Suppose that we

do isolate c in an MAF, F of (T1, T2) (the case for isolating a is analogous). Then if

we take the forest F ′ obtained by removing c from F and relabeling a as (a, c), we

know by the above argument that F ′ is an AF of (T ′
1, T

′
2) and that |F ′| < |F|. We

also know by the above that, since F ′ is an AF of (T ′
1, T

′
2), the forest F ′∗ obtained

by expanding (a, c) in F ′ is an AF of (T1, T2). Since |F ′∗| = |F ′| < |F|, F could

not have been an MAF. Moreover, this means that our AF conversion always results

in AFs with the same number of components if we start with an MAF; as we never

delete singletons to convert an MAF of (T1, T2) into an AF of (T ′
1, T

′
2).

Now, let F ′ be an MAF of (T ′
1, T

′
2). By the above argument, we know that we can

expand (a, c) in F ′ to obtain an AF, F , of (T1, T2) such that |F| = |F ′|. We claim
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that F is an MAF of (T1, T2). Suppose, towards contradiction, that this is not the

case. Then there exists some AF, F∗ of (T1, T2) such that |F∗| < |F|. We know that

the AF F∗′ , obtained by contracting (a, c) in F∗, is an AF of (T ′
1, T

′
2). Moreover, we

know that |F∗′ | ≤ |F∗| < |F| and since |F| = |F ′|, this implies that |F∗′| < |F ′|.
⇒⇐

In a similar manner, if we start with an MAF, F of (T1, T2), then we claim that the

forest F ′ obtained by contracting (a, c) in F ′ is an MAF of (T ′
1, T

′
2). Again, assume

towards contradiction that this is not the case. Then there is an AF, F ′∗ of (T ′
1, T

′
2)

such that |F ′∗| < |F ′|. We can then expand (a, c) in F ′∗ to obtain the forest F∗ which

is an AF of (T1, T2). Since we know that |F∗| = |F ′∗|, |F| ≥ |F ′|, and |F ′∗| < |F ′|,
we have that |F∗| < |F|. ⇒⇐

Lemma 4.2 shows that to find the core MAF of two phylogenetic trees, T1 and T2,

we can start by contracting trivial cherries in both trees, find the core MAF of the

trees T ′
1 and T ′

2 that result from the contractions, and finally expand the contracted

cherries in the computed core MAF. Said otherwise, the cut edge sets of the core

MAF of (T1, T2) and that of (T ′
1, T

′
2) are the same. This result will be used in order

to simplify the steps of the algorithms that are presented in this chapter.

Definition 4.3 (Pendant Subtrees). If B is a subtree of T with exactly one edge

(x, y) ∈ E(T ) such that x /∈ B, y ∈ B, and x is the parent of y, then B is a pendant

subtree of T . In this case we call (x, y) the parent edge of B, and denote it as eB. If

x is on the path from a to c in T , then we call B a pendant subtree of the path from

a to c. If B is a pendant subtree of the path from a to c and B contains a single leaf,

b, then we call b a pendant leaf of the path from a to c. Figure 4.2 gives an example

of such a subtree.

We denote by Maf(F1,F2, E∗, k) the instance of the standard MAF problem with

forests F1 and F2, cut edge set E∗, and parameter k as inputs. The goal is to decide

whether there exists an AF of (F1,F2) that has size at most k. Our initial invocation

is Maf(T1, T2, ∅, k), for some integer k.

A simple core MAF algorithm can be designed by way of applying the standard

FPT MAF algorithm outlined in [10] exhaustively. In particular, Theorem 8 in [10]

shows that one can compute an MAF for two rooted phylogenetic trees in O(3k · n)

time, where k is the size of an MAF. We argue that this algorithm can in fact be used

to enumerate all MAFs of two phylogenetic trees. By performing this enumeration,

we can compute the core MAF by cutting all edges of T2 that belong to the cut edge



29

T :

B
a

cx

y

(x, y)

Figure 4.2: B is a pendant subtree on the path from a to c in T .

set of at least one MAF of (T1, T2). We outline the algorithm in Algorithm 4.1 and

provide a proof of its correctness in Theorem 4.4.

The cases corresponding to lines 24–31 of Algorithm 4.1 are illustrated in Figure

4.3. Each dashed red line represents one of the cuts we make in F2.

a c

F1 : F2 :

a c

B
a

c

a c

F1 : F2 :

Separate components case. At least one pendant subtree case.

Figure 4.3: The cuts made in the recursive calls on lines 25–26 (left) and lines 29–31
(right) of Algorithm 4.1.

Theorem 4.4. Let (T1, T2) be two phylogenetic trees and let k be the size of an MAF

of (T1, T2). Then, the core MAF of (T1, T2) can be computed in O(3k · n) time.

Proof. By Lemma 4.2, we know that every trivial cherry will appear in the same

connected component of every MAF of (T1, T2). Thus it is always safe to contract
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Algorithm 4.1: Naive Core MAF Algorithm

Data: Phylogenetic Trees (T1, T2)
Result: S, the core MAF for (T1, T2)

1 E ← ∅
2 k ← 0
3 success← 0
4 do
5 Maf(T1, T2, ∅, k)
6 k ← k + 1

7 while success = 0;
8 S ← F2//E
9 return S

10 Function Maf(F1, F2, E∗, k):
11 if k < 0 then
12 return

13 do
14 contract (a, c) in F1 and F2

15 while ∃ a trivial cherry (a, c);
16 for each singleton c of F2 do
17 remove c from both F1 and F2

18 if F1 = F2 then
19 E ← E ∪ E∗
20 success← 1
21 return

22 else
23 if ∃ a non-trivial cherry (a, c) in F1 then
24 if a and c belong to separate components of F2 then
25 Maf(F1,F2//ea, E∗ ∪ {ea}, k − 1)
26 Maf(F1,F2//ec, E∗ ∪ {ec}, k − 1)

27 else
28 let B be a pendant subtree on the path from a to c in F2

29 Maf(F1,F2//ea, E∗ ∪ {ea}, k − 1)
30 Maf(F1,F2//eB, E∗ ∪ {eB}, k − 1)
31 Maf(F1,F2//ec, E∗ ∪ {ec}, k − 1)

32 else
33 Maf(F1,F2, E∗, k)
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trivial cherries whenever one is selected by our algorithm. Furthermore, whenever we

have a singleton component in F2, we can cut the corresponding leaf’s parent edge

in F1 and remove this leaf as we cannot obtain an AF otherwise.

We now consider the case where (a, c) is a cherry in F1, but a and c are neither

singletons, nor do they form a cherry in F2. Theorem 1 in [10] shows that, in order

for this to occur, either a or c must have a sibling subtree B, which may be a pendant

subtree on the path from a to c in F2. Theorem 1 in [10] states that we can always

obtain an MAF by cutting either ea, eB, or ec as Algorithm 4.1 does. In order to

prove that this is the case, Theorem 1 in [8] demonstrates that, for any MAF with

cut edge set E such that E ∩ {ea, eB, ec} = ∅, there exists some edge ex ∈ E such that

we can replace ex with an edge from {ea, eB, ec} and obtain the same forest. Thus,

this proves the stronger claim that every MAF can be obtained by cutting a set of

edges that includes one of these edges.

In the case where a and c are in separate components, and thus there is no path

from a to c in F2, we argue that only the recursive calls that cut ea and ec are

necessary. Indeed, Lemma 3.6 in [8] demonstrates that we can always find an MAF

by performing one of these cuts. In a manner similar to Theorem 1 in [10], this is

demonstrated by showing that, for an MAF with cut edge set E , we can always replace

one of the edges in E with either ea or ec, whenever E ∩ {ea, ec} = ∅, and obtain the

same forest. Thus, once again the stronger claim that every MAF can be obtained

by cutting a set of edges that includes either ea or ec holds.

Since every MAF can be obtained by making the cuts that our algorithm makes,

we can enumerate all MAFs of (T1, T2) by returning the MAFs that result from each

successful leaf in our search tree. Since the core MAF is, by definition, obtained by

making all cuts necessary to obtain every MAF, we can union the cut edges sets found

across all of our successful branches to obtain the core MAF of (T1, T2). As Algorithm

4.1 still has a search tree with depth at most k and each invocation makes at most 3

recursive calls, each of which takes at most n2 time, we obtain a running time bound

of O(3k · n2). Through a more careful implementation, which maintains a queue of

all cherries in F1, one can improve the time used by each recursive call to be linear

in n, thus yielding an algorithm which runs in O(3k · n) time.

Algorithm 4.1 effectively combines the cuts from every success occurring in the

search tree produced by the algorithm presented in [10] to obtain the running time

stated in Theorem 4.4. Theorem 4.4 does not present an especially impressive result,

but it is sufficient to yield the following corollary.
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Corollary 4.5. The core MAF problem is FPT when parameterized by the size of an

MAF of the input trees.

Corollary 4.5 shows not only that the core MAF problem is FPT, but that we

need only parameterize our algorithm by the size of an MAF of our input trees; not

the size of the core MAF. This is significant as the core MAF can have a far greater

size than an MAF in general. By being able to parameterize the core MAF problem

by the size of an MAF, we know at the very least that the exponential part of our

running time is no worse than it is to compute an MAF using the same strategy.

Furthermore, we use Algorithm 4.1 as a building block towards our final, significantly

improved algorithm. To this end, we now present some improved branching rules for

computing MAFs that can further improve our core MAF algorithm.

4.1 Better Branching Rules

It was shown in [8] that an MAF for two phylogenetic trees can be found in O(2.42kn)

time using improved branching rules. We can again make use of the strategy applied

there in order to obtain the same running time bound for core MAF. The key im-

provement here is that we distinguish subcases when (a, c) is a cherry of F1 but the

path from a to c has exactly one pendant subtree in F2 (AB case), at least two

pendant subtrees in F2 (ABC case), or when no such path exists (AC case). These

changes are outlined in Algorithm 4.2, and the cuts made in each of the three cases

on which we branch are depicted in Figure 4.4.

As before we also remove singletons as they arise as well as contract trivial cherries

to a single node. The AC case corresponds directly with the separate components case

in our previous algorithm. The improvement we obtain here is a result of introducing

a special case for when there is exactly one pendant subtree on the path from a to c in

F2, what we refer to as the AB case, as we only make two recursive calls as opposed

to three, one which cuts ea and one which cuts eB. The bottleneck remains the ABC

case, as we still make three recursive calls. However, now we can guarantee that one

of those recursive calls makes at least two cuts, and thus results in a better overall

running time in the worst case scenario. The key difference between our branching

rules and those used in [8] lies in the AB case. Our AB makes the additional call

that cuts ea, unlike the B case of [8], where it was only necessary to find an MAF,

whereas in the context of the core MAF problem, we are required to find a cut edge

set for every possible MAF.
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Algorithm 4.2: Core MAF Algorithm with improved branching rules

Data: Phylogenetic Trees (T1, T2)
Result: S, the core MAF for (T1, T2)

1 E ← ∅
2 k ← 0
3 success← 0
4 do
5 Maf(T1, T2, ∅, k)
6 k ← k + 1

7 while success = 0;
8 S ← T2//E
9 return S

10 Function Maf(F1, F2, E∗, k):
11 if k < 0 then
12 return

13 do
14 contract (a, c) in F1 and F2

15 while ∃ a trivial cherry (a, c);
16 for each singleton c of F2 do
17 remove c from F1 and F2

18 if F1 = F2 then
19 E ← E ∪ E∗
20 success← 1
21 return

22 else
23 if ∃ a non-trivial cherry (a, c) in F1 then
24 case AC do
25 Maf(F1,F2//ea, E∗ ∪ {ea}, k − 1)
26 Maf(F1,F2//ec, E∗ ∪ {ec}, k − 1)

27 case AB do
28 Maf(F1,F2//ea, E∗ ∪ {ea, ec}, k − 1)
29 Maf(F1,F2//eB, E∗ ∪ {eB}, k − 1)

30 case ABC do
31 Maf(F1,F2//ea, E∗ ∪ {ea}, k − 1)
32 Maf(F1,F2//{eB1 , ..., eBm}, E∗ ∪ {eB1 , ..., eBm}, k −m)
33 Maf(F1,F2//ec, E∗ ∪ {ec}, k − 1)

34 else
35 Maf(F1,F2, E∗, k)
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F2 :

a c

F2 :

AC case
B

a

c

AB case

B1a

Bm

c

F2 :

ABC case

Figure 4.4: The branching rules used in Algorithm 4.2; (a, c) is a cherry in F1.
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Lemma 4.6. Let a and c be leaves of (T1, T2) that form a cherry in T1. If there is

exactly one pendant subtree, B, on the path from a to c in F2 then there exists an

MAF of (T1, T2) that cuts ea if and only if there exists an MAF of (T1, T2) that cuts

ec. Moreover, if we let Ea be the cut edge set of an MAF that cuts ea and does not

isolate c, then Ec = Ea \ {ea} ∪ {ec} is the cut edge set of an MAF that cuts ec and

vice versa.

Proof. We focus on the case of an MAF that only cuts ea and does not isolate c, as

the claim follows trivially for an MAF that isolates both a and c. Let Ea be the cut

edge set of an MAF, Fa, of (T1, T2) such that ea ∈ Ea and ec /∈ Ea. Moreover, assume

that Fa cannot be obtained by cutting both ea and ec (Fa does not isolate c). We

claim that Ec = (Ea \ ea) ∪ ec is also the cut edge set of an MAF of (T1, T2). As

we do not isolate c in our initial MAF, we know that {c} /∈ Fa and hence c belongs

to some non-singleton component of Fa. It is sufficient to show that relabeling c

in this component as a, and relabeling the singleton a component as c results in an

agreement forest of (T1, T2). Clearly, having c as a singleton does not result in any

incompatibility with either T1 or T2. Thus it remains to show that relabeling c as a

is safe.

As (a, c) is a cherry in F1, this cannot create any incompatibility with T1, as a

and c have identical sets of ancestors in F1, which is a forest that is obtained from T1.

In F2 however, B is a pendant subtree on the path from a to c, and hence we must

consider the possible incompatibility of triplets with T2 if we change some triplet,

c|xy or cx|y, to a|xy or ax|y. One of x or y (or both) must be a leaf belonging to

the subtree B, otherwise we cannot obtain an MAF as we could have just cut eB

and then contracted the cherry (a, c). If either x or y is not a leaf from B, then this

leaf does not result in any incompatibility, as it would be a common ancestor of a, c,

and any leaf from B. Thus we need only consider leaves from B that constitute any

triplets involving the relabeled leaf a. After cutting ea, we supress the degree 2 node

that remains between B and c, and hence c now either forms a cherry with a leaf

from B, or we have a triplet of the form xy|c, where x, y ∈ L(B). Now assume that

we cut ec instead of ea. Again, after supressing degree 2 nodes, we have that either

a forms a cherry with some leaf from B, or we have a triplet of the form a|xy, where

x, y ∈ L(B). This same cherry or triplet is created if we relabel c as a, and hence we

do not create any incompatible triplets. Moreover, we do not create any overlapping

components, as a now appears only in the connected component to which c belonged,

and c now exists solely as a singleton in our forest. The remainder of the components
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are unchanged, and did not have overlap involving a or c to begin with.

Lemma 4.6 implies that the AB case is safe in the context of computing the core

MAF. This is true as Lemma 3.7 in [8] shows that we can always obtain an MAF by

cutting eB, and Lemma 4.6 shows that any MAF of (T1, T2) that cuts ea and does

not isolate c can be converted into an MAF that instead cuts ec and does not isolate

a. Thus, if we are in the AB case and obtain an MAF that cuts ea, then we know

that it is safe to add ec to the cut edge set for our core MAF, as either there exists

an MAF that cuts both ea and ec, or we can obtain an MAF by cutting ec instead

of ea. The safety of the AC and ABC cases follow immediately from Theorem 4.4.

Thus we arrive at the following improvement on our running time bound.

Theorem 4.7. Let (T1, T2) be two phylogenetic trees and let k be the size of an MAF

of (T1, T2). Then, the core MAF of (T1, T2) can be computed in O(2.42k · n) time.

Proof. The correctness of the AC case follows directly from Theorem 4.4, while the

correctness of the AB case follows from a combination of Theorem 4.4 and Lemma

4.6. Thus we need only argue that the ABC case is correct. Theorem 4.4 shows that

cutting ea, ec, and at least one of eB1 , ..., eBm is safe. It remains then to show that

cutting the entire set of edges {eBi
: i ∈ [m]} in the B branch is correct. Indeed, as

(a, c) is a cherry in F1, the only way we can obtain an AF without cutting ea or ec is

to make (a, c) a cherry in F2 as well, and the only way to achieve this is to cut each

edge eBi
, for i ∈ [m].

The achieved running time results from the distinction between having multiple

pendant subtrees versus a single pendant subtree. The recursive calls made are largely

similar to those made in the algorithm on which Theorem 3.1 in [8] is based. Indeed

the only difference is that we are required to make an additional call in the AB

case, as we must find all edge cuts made across every possible MAF, opposed to just

computing an MAF. Lemma 4.6 shows that we do not require an additional call that

cuts ec and thus we maintain a branching vector of (1, 1) as in the AC case. Hence

for both of these cases, we have branching number of 2. Thus it remains only to

look at the ABC case, which has corresponding branching vector (1, 1, 2) and, as

stated in [8], this has a corresponding branching number of 1 +
√

2. As before, a

more careful implementation can attain the linear time bound for each recursive call,

as opposed to the n2 time required by Algorithm 4.2. Since our search tree still has

depth bounded by k, and 1 +
√

2 < 2.42, the correctness of the stated running time

bound follows.
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4.2 Protected Edges

We now introduce the concept of edge protection into our core MAF algorithm. By

using this, in combination with the branching rules of Section 4.1 we are able to

obtain a significant improvement on our running time for computing the core MAF.

This idea was previously used in [9] to obtain a running time bound of O(2.42k ·n) for

the standard MAF problem on multifurcating trees, and in [11] to obtain a O(2k · n)

algorithm for MAF on binary trees.

First, we introduce one additional branching rule that is necessary for our protec-

tion scheme to obtain the desired bound. This rule, which we call the RAB case, is

presented below in Lemma 4.8 and further illustrated in Figure 4.5.

Lemma 4.8 (RAB case). Let (a, c) be the cherry in F1 selected by the depth rule

and let b1, b2, d1, d2 be leaves of T1 and T2 (b2 and d2 may not exist).

(i) If d1 is the uncle of (a, c) in F1 and (c, d1) is a cherry in F2, then:

Maf(F1,F2, E∗,P , k) = Maf(F1,F2//ea, E∗ ∪ {ea},P , k − 1)

∪Maf(F1,F2//ec, E∗ ∪ {ec, ed1},P , k − 1).

(ii) If (b1, b2) is a cherry in F1 and b1 and b2 are the sibling and uncle of a in F2

respectively, then:

Maf(F1,F2, E∗,P , k) = Maf(F1F2//ea, E∗ ∪ {ea},P , k − 1)

∪Maf(F1,F2//eb1 , E∗ ∪ {eb1 , eb2},P , k − 1).

(iii) If b1 is the uncle of (a, c) in F1 and (a, b1) is a cherry in F2, then:

Maf(F1,F2, E∗,P , k) = Maf(F1,F2//ec, E∗ ∪ {ec},P , k − 1)

∪Maf(F1,F2//ea, E∗ ∪ {ea, eb1},P , k − 1).

(iv) If (d1, d2) is a cherry in F1 and d1 and d2 are the sibling and uncle of c in F2

respectively, then:
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Maf(F1,F2, E∗,P , k) = Maf(F1,F2//ec, E∗ ∪ {ec},P , k − 1)

∪Maf(F1,F2//ed1 , E∗ ∪ {ed1 , ed2},P , k − 1).

Proof. We give the proof for (i) and (ii), the proofs of (iii) and (iv) are analogous.

The correctness of (ii) follows immediately from the correctness of Lemma 4.6.

This is because (b1, b2) is a cherry in F1, and a is the only pendant node on the path

from b1 to b2 in F2. Here, eb2 is added to E∗ for the same reason that we add ec to

E∗ in the AB case.

In the case of (i), we are effectively reversing the roles of F1 and F2. That is, we

are treating the cherry (c, d1) in F2 as the cherry we are branching on, under which

circumstance, a becomes the pendant node on the path from c to d1 in F1. Thus

again, by Lemma 4.6, we know that it is sufficient to make two recursive calls, one

which cuts ea, and one which cuts ec. Again, adding ed1 to E∗ is analogous to adding

ec to E∗ in the AB case.

a c

a c

(ii) Cut ea or eb1

F1 : F2 :

a c

F1 :

a

F2 :

(i) Cut ea or ec

d1 b1 d1

b1

b1

b2 b2

a c

a c

(iv) Cut ec or ed1

F1 : F2 :

a c

F1 :

c

F2 :

(iii) Cut ea or ec

b1 b1 d1

d1 d2 d2

d1

Figure 4.5: The scenarios that result in the application of the RB case, and the cuts
made in the corresponding recursive calls.
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The target of our edge protection strategy here is to improve on the 2.42k bound

that results from case ABC. We introduce a new argument of our invocations which

we call P and which is a set that contains all edges which we have protected. For

every edge ex ∈ P , we prohibit cutting ex in F2 and thus do not add ex to E∗ in

any descendant invocation of the recursive call that added ex to P . Thus, our initial

invocation is now Maf(T1, T2, ∅, ∅, k). Whenever we arrive at the ABC case, we set

P = P ∪ {ea} in the branch where we cut ec. Our final algorithm, which utilizes

this strategy, is presented in Algorithm 4.3. We now argue the safety of this edge

protection scheme.

Lemma 4.9. Let E be the cut edge set used in line 8 of Algorithm 4.3 to compute S.
For every MAF F ′ of (T1, T2), if E ′ is the cut edge set of F ′, then E ′ ⊆ E.

Proof. The correctness of the AC and AB cases follow immediately from Theorem 4.4

and a combination of Theorem 4.4 and Lemma 4.6 respectively. Furthermore, we

demonstrated that the new RAB case is correct in Lemma 4.8. Thus it remains to

show that the ABC case remains correct with the introduction of edge protection.

Clearly, both the a and B branches of this case remain unchanged, and hence the

focus is on what changes in the c case. Since we protect the edge ea, it is evident

that we will miss any MAFs that cut both ea and ec in this branch. However, any

MAF that can be obtained by cutting ec and then cutting ea can also be obtained by

first cutting ea and then cutting ec. Such an MAF would be found in the a branch of

the ABC case, and thus we need not be concerned about missing it in the subtree

induced by the c branch.

We also note that, while it is safe to protect ea in the B branch, it is unnecessary,

as (a, c) becomes a trivial cherry after the invocation corresponding to this particular

branch. Finally, we introduce the depth rule, originally proposed in [11]. Just as in

[11] this rule is crucial in the construction of our proof that edge protection does in

fact yield an improvement on the running time bound for our algorithm.

Depth Rule: If P = ∅, then we select our non-trivial cherry (a, c) to branch on

such that the depth of a in T1 is maximum. We break ties based on the leaf which has

greater depth in T2, and if a tie remains then we choose our cherry arbitrarily from

those that remain tied. If P ̸= ∅ then we let z be the parent node of the smallest

subtree of F1 that contains a protected edge in P . The cherry (a, c) is then chosen

as before, but with respect to depth in the subtree induced by z.
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Algorithm 4.3: Core MAF Algorithm with edge protection and branching
rules
Data: Phylogenetic Trees (T1, T2)
Result: S, the core MAF for (T1, T2)

1 E ← ∅
2 k ← 0
3 success← 0
4 do
5 Maf(T1, T2, ∅, ∅, k)
6 k ← k + 1

7 while success = 0;
8 S ← T2//E
9 return S

10 Function Maf(F1, F2, E∗, P, k):
11 if k < 0 then
12 return

13 do
14 contract (a, c) in F1 and F2

15 while ∃ a trivial cherry (a, c);
16 for each singleton c of F2 do
17 remove c from F1 and F2

18 if F1 = F2 then
19 E ← E ∪ E∗
20 success← 1
21 return

22 else
23 if ∃ a non-trivial cherry in F1 then
24 select non-trivial cherry (a, c) according to the depth rule
25 case AC do
26 Maf(F1,F2//ea, E∗ ∪ {ea},P , k − 1)
27 Maf(F1,F2//ec, E∗ ∪ {ec},P , k − 1)

28 case AB do
29 Maf(F1,F2//ea, E∗ ∪ {ea, ec},P , k − 1)
30 Maf(F1,F2//eB, E∗ ∪ {eB},P , k − 1)

31 case ABC do
32 Maf(F1,F2//ea, E∗ ∪ {ea},P , k − 1)
33 Maf(F1,F2//{eB1 , ..., eBm}, E∗ ∪ {eB1 , ..., eBm},P , k −m)
34 Maf(F1,F2//ec, E∗ ∪ {ec},P ∪ {ea}, k − 1)

35 case RAB do
36 case (i) do
37 Maf(F1,F2//ea, E∗ ∪ {ea},P , k − 1)
38 Maf(F1,F2//ec, E∗ ∪ {ec, ed1},P , k − 1)
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39 case (ii) do
40 Maf(F1,F2//ea, E∗ ∪ {ea},P , k − 1)
41 Maf(F1,F2//eb1 , E∗ ∪ {eb1 , eb2},P , k − 1)

42 case (iii) do
43 Maf(F1,F2//ec, E∗ ∪ {ec},P , k − 1)
44 Maf(F1,F2//ea, E∗ ∪ {ea, eb1},P , k − 1)

45 case (iv) do
46 Maf(F1,F2//ec, E∗ ∪ {ec},P , k − 1)
47 Maf(F1,F2//ed1 , E∗ ∪ {ed1 , ed2},P , k − 1)

48 else
49 Maf(F1,F2, E∗,P , k)

Theorem 4.10. Let (T1, T2) be two phylogenetic trees and let k be the size of an MAF

of (T1, T2). Then, the core MAF of (T1, T2) can be computed in O(2.27k · n) time.

Proof. To show that the stated running time bound is true, we examine the cases that

arise in the c branch of the ABC case, as the other cases already yield a branching

number of 2 or better, and thus this is where we look to improve on bounding the

size of our search tree. Here we have two possibilities that can arise in F1 after we

cut c: either we have a new cherry involving a in F1, say (a, a′), or a’s parent in F1

has a descendant sibling pair (a′, c′). These two cases are illustrated in Figure 4.6.

First, we consider the (a, a′) case. Here our algorithm would select (a, a′) as the

next cherry to recurse on, as the parent node of (a, a′) is z in the context of the depth

rule, and thus (a, a′) is the only cherry belonging to the subtree induced by z. There

are two subcases here to consider, either (a, a′) is a trivial cherry, or it is not. If (a, a′)

were a trivial cherry, then subcase (iii) of the RAB case would have applied to the

cherry (a, c) (here a′ would be b1 in Figure 4.5). Thus, we need only consider the later

case. If we now are in either the AC or AB case, then we have branching vector of

(1, 2, 2) as we are either going to cut eB1 (note a′ = B2 in this case) in the AB case

or ea′ in the AC case, since ea is protected. These additional cuts are illustrated in

Figure 4.7. The second 2 in our branching vector is a result of the fact that these cuts

come in addition to having already cut ec. This branching vector has characteristic

polynomial

P (λ) = λ2 − λ− 2. (4.1)

Setting P (λ) = 0 and solving for λ ∈ R we get
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a c a′ c′

a c

a′

F1 :

F1 :

Cut ec and supress degree 2 nodes.

a

c a′ c′

F1 :

a

c

a′

F1 :

z

z

Figure 4.6: The new cherries that arise after cutting ec.
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λ2 = λ + 2

λ = 2

as the unique positive real root of 4.1, and hence a branching number of 2.

F2 :

a a′

F2 :

AC case
B1

a

a′

AB case

c

c

Figure 4.7: The additional cuts that occur if we are in the AC case (left) or AB case
again after cutting ec and branching on the cherry (a, a′). The purple edge represents
that ea is protected. In both cases we cut one additional edge after cutting ec.

If instead we end up in the ABC case again, then we would either cut ea′ or

eB1 , ..., eBm′ , where B1, ..., Bm′ , 2 ≥ m′ ≤ m are our pendant subtrees (note a′ =

Bi, for some integer i ∈ [3,m]). Thus in the original c branch we either make 2

cuts (ec and ea′) or at least 3 cuts (ec and eB1 , ..., eBm′ ). These additional cuts are

illustrated in Figure 4.8. Hence our branching vector becomes (1, 2, 2, 3), which has

as its characteristic polynomial

P (λ) = λ3 − λ2 − 2λ− 1. (4.2)

Setting P (λ) = 0 and solving for λ ∈ R we get
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λ3 = λ2 + 2λ + 1

λ =
1

3

(︄
1 +

3

√︄
47− 3

√
93

2
+

3

√︃
1

2
(47 + 3

√
93)

)︄
< 2.15

as the unique positive real root of 4.2. Thus our branching number for the cherry

(a, a′) subcase is less than 2.15.

B1a

Bm′

a′

F2 :

c

ABC case

Figure 4.8: The additional cuts that occur if we are in the ABC case after cutting ec
and branching on the cherry (a, a′). The purple edge represents that ea is protected.
In this case we either cut an additional m′ edges (where m′ ≥ 2) or we cut a single
additional edge.

In the case where we branch on the cherry (a′, c′), we can again look at each of our

branching rule cases. If (a′, c′) puts us in either the AB or RAB case, then we make

one cut and one recursive call, thus obtaining a branching vector of (1, 2, 2) overall,

which by 4.1 we know has a corresponding branching number of 2. If instead we are

in the AC case, then we either cut ea′ or ec′ in addition to ec. In the case where we

cut ec′ it is beneficial to protect ea′ as we now have (a, a′) as a cherry, which as we

saw before, cannot be trivial. The AC case involving the cherry (a′, c′) is shown in
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Figure 4.9. Since both a and a′ are protected, and we know that (a, a′) is not trivial,

we get at least one additional cut regardless of which case we are in. Thus we have

an effective branching vector of (1, 2, 2, 3), which by 4.2 we know has a corresponding

branching number less than 2.15.

F2 :

a′ c′

F2 :

a′ c′

Cut ea′ → one additional cut. Cut ec′, protect ea′ → two additional cuts.

F1 :

a

c′

a′

F1 :

Cut ec′ → protect ea′

a

a′ c′

Figure 4.9: The additional cuts that occur if we are in the AC case after cutting ec,
protecting ea, and branching on the cherry (a′, c′) (top). In the case where we cut ec′
we protect ea′ , resulting in the non-trivial cherry (a, a′) becoming protected (bottom).

Finally, we consider what happens if we again are in the ABC case when we branch

on the cherry (a′, c′). In addition to cutting ec we also cut either ea′ , eB′
1
, ..., eB′

m′ ,

or ec′ . As before, if we cut ec′ , then we also protect ea′ and we again end up having

(a, a′) as a cherry, where both are protected and the cherry cannot be trivial (see

bottom of Figure 4.9). Thus, as in the AC case, we are guaranteed at least one free

cut. The ABC case involving the cherry (a′, c′) is shown in Figure 4.10.

Hence the branching vector we obtain is (1, 2, 2, 3, 3) which has characteristic

polynomial
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B′
1a′

B′
m′

c′

F2 :

Cut ea′ → one additional cut

Cut eB′
1
, ..., eB′

m′ → at least two additional cuts

Cut ec′, protect ea′ → two additional cuts

Figure 4.10: The additional cuts that occur if we are in the ABC case after cutting
ec and branching on the cherry (a′, c′).

P (λ) = λ3 − λ2 − 2λ− 2. (4.3)

Setting P (λ) = 0 and solving for λ ∈ R we get

λ3 = λ2 + 2λ + 2

λ =
1

3

(︃
1 +

3

√︂
37− 3

√
114 +

3

√︂
37 + 3

√
114

)︃
< 2.27

as the unique positive real root of 4.3. Thus our branching number for the cherry

(a′, c′) subcase is less than 2.27. Since our search tree as depth of at most k and each

recursive call takes time linear in n (under the aforementioned careful implementa-

tion), the proof of the theorem follows.



Chapter 5

Conclusions

In this thesis we have presented a new problem in the realm of phylogenetics, that of

the core MAF. The inspiration came about as an attempt at developing a method by

which to effectively sample from the space of all MAFs for a given set of phylogenetic

trees. To this end, we have formulated a structure which shows us the components

that are preserved across all MAFs of our input trees. As a first step, we focused our

efforts on developing efficient algorithms for solving the problem solely as it pertains

to rooted binary phylogenetic trees.

We have demonstrated that the exceptionally useful technique of cluster partition-

ing is safe in the context of the core MAF algorithm. We have also adapted existing

branching algorithms to obtain a provably efficient algorithm for computing the core

MAF of two rooted binary phylogenetic trees. Coming the results of Chapters 3 and

4 we can conclude that, given an optimal cluster partition of input trees (T1, T2), we

can, in O(2.27k′ · poly(n)) time, compute the core MAF of (T1, T2); where n is the

size of our input trees, and k′ is the size of the largest MAF across all of our cluster

MAFs. As all of the steps involved in computing the cluster partition and merging the

results appear to be implementable in linear time, we believe that a running time of

O(2.27k′ · n) is obtainable. However, as we have not yet implemented the algorithms

presented, we cannot say this with certainty.

While it cannot be immediately inferred that the methods presented here ap-

ply more generally to other classes of phylogenetic trees, we have nonetheless laid

the groundwork from which additional core MAF algorithms may be designed and

implemented.

5.1 Applications and Future Work

The core MAF of a pair of phylogenetic trees tells us what taxa will be conserved

when attempting to reconcile the two trees and identify LGT events. However, what

applications this might have in the realm of bioinformatics remains to be seen. To this

end, an implementation of Algorithm 4.3 along with cluster partitioning is crucial.

The algorithm can then be applied to real world examples, and from these, the core
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MAF may provide additional insight into reconciling the input trees, ideally something

that traditional MAFs do not provide.

It is also important to address more general types of trees, and sets of more than

two input trees. Algorithms that can compute the core MAF for unrooted trees and

for multifurcating trees would be of prime interest. Moreover, algorithms for a less

strict version of the core MAF, that is the set of components preserved across at

least X% of trees, would also likely provide greater insight. This version of the core

MAF problem would provide some measure of confidence in the LGT events that are

observed. It remains to be determined if the current methods remains applicable to

this problem variant.

Another variant of the core MAF problem worth considering is applying this idea

to maximal agreement forests and k + x, x ≥ 1, agreement forests. A final area of

interest would be in determining what edge cuts are made in every MAF. Whether

the techniques used to compute the core MAF are capable at addressing this problem,

would also be a potentially useful area of future work.
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