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ABSTRACT 

Learning to move skillfully is a fundamental behaviour. Motor skills can be learned even 
in the absence of overt bodily movement through a process known as motor imagery — 
the mental rehearsal of movement — which has promising applications in rehabilitation. 
However, the mechanisms underlying imagery-based motor learning are not well 
understood and learning may be attributed to improvements in perceptual or cognitive 
processes rather than improvement in movement execution itself. The research projects 
presented in this dissertation aimed to investigate whether motor imagery is capable of 
driving improvements in movement execution and if so, what the underlying mechanisms 
of this might be and how they differ from that of overt practice. Using a novel 
experimental task designed to answer this question, the findings presented here suggest 
that motor imagery is indeed capable of driving the learning of skilled movement 
execution, though of a lesser magnitude than overt practice. In the absence of sensory 
feedback, motor imagery appears capable of determining the accuracy of an imagined 
movement. Neuroimaging results demonstrated that imagined movement accuracy was 
associated with similar brain regions as overt movement accuracy but with substantially 
different activation patterns. Together these results suggest that motor imagery appears to 
afford one with a prediction of the motor and sensory consequences of an imagined 
movement such that a comparison can be made with intended consequences, which 
provides a basis for improving subsequent movement attempts, imagined or otherwise. 
These results highlight the importance of minding experimental design when studying 
motor imagery and validating its utility for clinical applications.  
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CHAPTER 1 | INTRODUCTION 

1.0. GENERAL INTRODUCTION 

“… to move things is all mankind can do... whether in whispering a syllable,  

or in felling a forest.”— Sir Charles Scott Sherrington 

 Movement is our only means of affecting the outside world 1. While our brains 

sense the environment through numerous inputs — our senses of sight, touch, smell, 

taste, and hearing — our only output is movement. This includes everything from our 

ability to walk from one point to another, to our ability to speak. It is therefore no 

surprise that scientists are deeply interested in the neuroscience of movement. One of the 

more fascinating features of human movement is our ability to learn and adapt to the 

changing demands of our environment. This process of improving our movement abilities 

is referred to as motor learning in the academic literature 2–4. Motor learning has been 

studied using a variety of techniques and theoretical perspectives, including animal 

studies of cellular mechanisms 5,6, computational modelling 4, and behavioural 

experiments involving humans that are often coupled with neuroimaging technologies 7. 

Interestingly, motor learning may not require movement itself. Decades of research has 

affirmed the notion that one can learn skilled movement not just by physically practicing, 

but by observing others 8, or even simply imagining oneself performing the skill 9. How 

motor learning can occur during imagery is poorly understood compared to our 

understanding of how it occurs with overt movement. This dissertation will explore how 

this is possible, and what it means for our understanding of human movement and the 

mind. 
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 Academics typically refer to the mental performance of movement as motor 

imagery 10–12. The deliberate use of motor imagery to drive motor learning is often 

referred to as “mental practice”, particularly in the sport or musical training contexts. 

Motor imagery has been demonstrated to be an effective means of driving motor learning 

in many contexts, such as sports, music, and vocational training, and shows promise for 

rehabilitation 13–16. Motor imagery has also received considerable academic attention for 

its potential role in brain computer interfaces that allow the control of computers or 

robots without relying on movement for input 17–19. Neuroimaging studies have revealed 

striking similarities between motor imagery and motor execution with respect to which 

brain regions and networks are involved 20–24. These findings suggest that motor imagery 

may drive motor learning via similar mechanisms as that of overt practice. However, 

explaining skill acquisition via motor imagery by citing its similarity with motor 

execution leaves much to be desired. First and foremost, these are fundamentally 

different behaviours: one involves overtly moving the body, and the other does not. 

Second, neuroimaging studies do not support a perfect overlap in brain regions associated 

with motor imagery and execution — there are differences anatomically and functionally 

20,23. And finally, while sensory feedback plays a central role in motor learning via overt 

practice 25, feedback is not present in the absence of movement. How exactly motor 

learning is possible via motor imagery is a difficult question to answer. As with many 

fields of research, neuroscience seeks to understand a “black box”. Typically, 

neuroscience is able to proceed by manipulating the inputs to the brain and observing 

what happens to the outputs. But motor imagery is short on outputs.  
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 This dissertation aims to investigate how motor imagery can drive motor learning 

in the absence of sensory feedback. Key to this series of research projects is first testing 

the assumption that motor imagery does drive motor learning. That is, that performance 

improvements in movement quality over time are not due to other mechanisms like 

perceptual learning 26. To test this assumption, motor learning via imagery was compared 

to overt practice using a new experimental task where participants learned to better 

execute a specific, novel movement pattern while controlling for general task 

improvements and perceptual or observational learning. Next, this work was built upon 

by attempting to investigate whether motor learning in fact does allow for error-based 

learning, perhaps by assessing the accuracy of a simulation 27. Finally, we employed the 

same experimental task but with the addition of neuroimaging using 

electroencephalography (EEG) and modern statistical techniques to identify brain activity 

patterns that may indicate error detection during motor imagery. Theoretically, learning 

how motor imagery might drive learning without sensory feedback is an inherently 

interesting question that may contribute to neuroscience generally. Pragmatically, a better 

understanding of how motor imagery works may provide insight about how to best 

harness its positive effects outside the laboratory.  

1.1. MOTOR CONTROL & LEARNING 

 Our remarkable ability to learn is central to our success as a species. It’s why we 

can get home, know what we can or cannot eat, speak to one another, pursue science, and 

build technology. What knowledge and skills are innate and what is learned give rise to 

debates about “nature versus nurture”, and even figure into discussions about how we 

should judge one another’s actions and determine fundamental human rights. It is not 
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surprising that large portions of the fields of psychology and neuroscience are dedicated 

to understanding learning and memory. Learning refers to the process of acquiring 

knowledge, and memory refers to the retention and reconstruction of that knowledge 28. 

Over the decades, this highly active field of research has classified learning and memory 

into numerous types depending on such characteristics as time scale (e.g., short- or long-

term memory), the type of knowledge (e.g., declarative versus procedural), mechanism of 

learning (e.g., associative versus non-associative), and more 29. Learning can also be 

categorized by domain: cognitive, affective, and psychomotor 30. Motor learning is 

widely studied in psychology and neuroscience given its amenability to sophisticated 

research techniques. Compared to behaviours like understanding language or social 

behaviour, motor output is relatively straightforward to measure objectively. Further, 

motor learning can be modelled more readily in animal models 6 — it’s hard to have a 

conversation with a mouse about how it feels, but you can watch it move — which means 

more cutting-edge research techniques can be applied and at a large scale. Motor learning 

is thus researched at various measurement scales and levels of complexity, providing a 

useful framework upon which psychology and neuroscience may be able to derive 

generalizable principles of learning.  

 Fitts and Posner famously proposed that the learning of motor skills consisted of 

three temporal phases: cognitive, associative, and autonomous 31. The cognitive stage is 

characterized by identifying potential solutions to a movement problem. An important 

aspect of this stage is that it requires explicit knowledge of the movement being learned. 

Once a potential solution is identified and practice ensues, the learner enters the 

associative stage. This involves exploring the solution and making refinements based on 
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task success — that is, actions are associated with successful outcomes. Finally, once 

sufficient practice has occurred the learner enters the autonomous stage where 

performance becomes a matter of executing a well refined skill that requires little 

cognitive effort. While it is true that evidence has generally supported the existence of 

these stages of motor learning 32, it now seems clear that they are not easily parsed, and 

much overlap exists 33. Further, some believe that while a highly skilled action may be 

performed in an “automatic” nature, the useful application of this skill requires 

knowledge of context to determine when to execute a given action or some variation of it 

— which still requires conscious awareness 34 — and deliberative decisions can affect 

motor reflexes 35, demonstrating that the distinction between cognitive and motor skills is 

an oversimplification. While understanding learning in terms of its temporal stages is a 

useful construct given that learning refers to a change over time, a deeper understanding 

is needed. 

  Developing a thorough understanding of how motor learning occurs requires 

analysis at many levels. Marr’s levels of analysis provide a useful framework in this 

regard 36,37. At the computational or behavioural level of analysis, one attempts to 

understand what a system does and why (i.e., what problem is the system trying to solve). 

At the algorithmic or representational level, one is concerned with how a system solves 

problems; that is, how information is represented and manipulated by the system to 

achieve its goals. Finally, at the implementational level one works to understand what 

exists to physically implement the algorithms used to solve problems. As an example, 

most people are aware of what their computer can do for them 

(computational/behavioural level), but likely know far less about how the software code 
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and algorithms work (algorithmic/representational level), or how the hardware 

implements that software (implementational level). In the case of motor learning, the 

implementational level refers to what neural structures and functions are responsible for 

learning to solve movement problems. Research at each level of analysis can inform and 

complement one another. It is possible that realities at the neural level constrain what 

processing is reasonable at the algorithmic level, and therefore what computations can be 

performed. As an example, from the motor control literature, neural processing of 

sensory feedback is too slow to have any meaningful corrective effect on a sufficiently 

fast movement, which is partly what motivates the existence of so-called forward models, 

which will be discussed below 38. As a comprehensive understanding of motor learning 

appears best achieved by familiarizing oneself with each level of analysis, this chapter 

will review the literature broadly using this framework. It should be noted that it is not 

reasonable to discuss each level in complete isolation, and overlap should be expected 

and will in fact be highlighted where possible to facilitate completeness. Throughout the 

chapter, motor control literature will be reviewed as needed to provide context for 

understanding motor learning. 

1.2. WHAT DOES THE MOTOR SYSTEM DO? BEHAVIOURAL / COMPUTATIONAL LEVEL 

OF ANALYSIS 

 A large portion of the field of motor control and learning is dedicated to 

characterizing the motor system solely at the behavioural level 39. Much work at this level 

of analysis involves developing computational models of behaviour and testing their 

predictions. One of the earliest examples of this line of work includes Fitts’s Law 40. Fitts 

proposed a metric of difficulty for a target selection task — that is, the act of pointing. 
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The law predicts that the time required to move to a target area is a function of the ratio 

between the distance to the target and the width of the target. For instance, a longer 

distance requires more time, and a wider target requires less time given that precision 

becomes less important. Constraining certain parameters, such as distance to and width of 

the target, can allow for a measure of skill based on the time a participant achieves. 

Fitts’s law was allegedly a major factor in Xerox’s decision to commercialize the 

computer mouse. Another example of early computational work includes the Bernstein 

degrees of freedom problem 41, which describes the redundancy that exists in the motor 

system for solving a given problem. For instance, pointing to a target can be 

accomplished in many equally effective ways (paths, speeds, etc.) with the same end 

effector (a fingertip) or even with other end effectors — a phenomenon known as “motor 

equivalence” — so why is any particular method chosen by the motor system? Generally 

speaking, this motor redundancy can be viewed as a positive phenomenon that 

contributes to our adaptability. Nevertheless, humans tend — consciously or not — to 

move in straight lines when pointing, with a characteristic bell curve of velocity, 

regardless of the direction, amplitude, or area of space in front of them 42. Further, when 

individuals are presented with an unfamiliar motor task they initially move in distinctive 

ways, but after some practice they move similarly to each other 43. This regularity in 

behaviour is in line with modern computational theories of motor control and learning: 

namely, optimal control.  

1.2.1. Optimal Feedback Control Theory 

 Optimal control, or optimal feedback control, is a computational theory of motor 

control that centers around the idea of a control scheme or policy 44. Control policies are 
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essentially a mapping of the motor systems current understanding of the body and 

environment to motor commands. As discussed above, a near infinite number of control 

policies can be set to achieve a given task. However, optimal control theory states that the 

motor system aims to set a control policy that completes the task or maximizes reward 

while minimizing the cost. The cost to be minimized is thought to be the endpoint 

variance — that is, the motor system sets a control policy that minimizes the potential 

error upon task completion on a trial-by-trial basis, maximizing consistency — rather 

than minimizing energy or force, for example 45. Movement is therefore controlled by a 

feedback controller that sets and uses a control policy to dictate how to handle incoming 

sensory feedback as the movement unfolds. Importantly, the current state of the body is a 

noisy estimate based on delayed sensory feedback. Computation of a control policy thus 

requires an internal forward model that predicts the consequences of a motor command 

on the state of the body based on currently available sensory information 46. When the 

feedback controller sends a motor command to the body, an efference copy is also sent to 

the forward model, allowing it to compare the predicted and actual results and correct 

course as the movement unfolds — if the movement is not already finished, which can be 

the case for quick movements. These aspects of a computational model are presented in 

Figure 1.1 below (a Figure that will be referred to frequently in section 1.2). While the 

theory might sound intuitive, the predictions that follow are sometimes surprising, yet 

well supported in the literature 47. For instance, optimal control predicts that perturbations 

that are not relevant to completing the task are not corrected for. An example would be 

bumping one’s elbow while reaching for a target: if the hand position has not changed 

then one can simply maintain the new elbow position and continue with the movement 
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with equal success — thus exploiting the redundancy of the motor system. This 

prediction has been validated empirically 48. It is worth noting that control policies are 

considered to have superseded the concept of an inverse model 39, which was thought to 

be an internal model that transforms a desired movement trajectory into a motor 

command. Control policies achieve what an inverse model would while also accounting 

for how an ongoing movement handles the relevance of incoming feedback (e.g., the 

elbow bump example above).   

 Optimal feedback control theory offers a useful framework upon which to 

understand motor learning. Motor learning may involve forming or updating one of two 

core components of optimal control theory, or both: a forward model or a control policy. 

Evidence exists that either can be the case depending on the nature of the task to be 

learned. Motor control and learning studies often employ adaptation paradigms to 

investigate motor learning 49. Adaptation studies have participants perform a task while 

external perturbations induce errors which are to be corrected for over time. Common 

experimental paradigms include having participants wear prism goggles that shift the 

visual field, or force field experiments where participants move toward a target while 

holding a robotic arm that can be perturbed 50. Adaptation tends to occur quickly (on the 

order of minutes) with participant error decreasing exponentially. Eventually 

performance returns to baseline; that is, performance error returns to that observed 

without perturbation. Due to a phenomenon known as savings, re-learning a particular 

perturbation for a second time tends to occur faster. This model can be extended to more 

complicated situations like multiple targets 51, or randomly varying perturbations 52. It 

appears that adaptation occurs in response to prediction errors — that is, the forward 
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model is updated based on the discrepancy between the predicted error and the observed 

error 53. In addition to such “model-based” (as in, internal models such as a forward 

model) learning, error reduction also appears to be driven by “model-free” mechanisms 

such as use-dependent learning and operant reinforcement 52. Use-dependent learning 

simply refers to a bias in a particular direction that occurs after repeating the movement 

many times. Operant reinforcement refers to a particular movement being associated with 

successful error-reduction, which may explain the phenomenon of savings. These forms 

of learning appear to be independent from the forward model 52, suggesting that “model-

free” motor learning is supported by other mechanisms such as changes in control 

policies 54. While optimal control theory offers a good explanation for what the motor 

system aims to achieve with movement, how the constructs described (e.g., forward 

models and control policies) are represented is less clear (see discussion of 

representational level of analysis in section 1.3 below). 

1.2.2. Motor Skill Learning 

 Motor learning is not restricted to the correction of perturbations but also includes 

improvements in movement execution beyond baseline performance. Adaptation 

experiments may fail to reveal such mechanisms since they do not require improvements 

beyond a return to normal, pre-perturbation movement 55. Rather, adaptation experiments 

require a new mapping of movements to goals. In the case of a visual perturbation, a 

given movement direction results in the end effector (for instance, a finger) reaching a 

new endpoint in space, and thus correcting this error means changing the movement 

direction to meet the desired endpoint. The movement itself (i.e., pointing one’s finger in 

a particular direction) is not new, nor does it require improvement. Motor learning can 
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also occur during tasks for which no perturbation exists, and where error occurs because 

the task is unfamiliar or difficult. Indeed, this is the case for many real-world examples of 

motor learning such as improving the accuracy of a skill in sports, music, or a trade. 

Performance is not limited by a baseline of near zero error as in adaptation studies; rather, 

performance in motor skill learning can be improved over very long periods of time, if 

not indefinitely 56. While a clear distinction may prove difficult to make, for the sake of 

simplicity we will refer to improvements in movement execution above baseline as 

“motor skill learning”, and the improved movement as a “motor skill”.  

 Motor skill learning can be achieved through increases in speed at a given level of 

accuracy, or improvements in accuracy at a given speed, where the two are related as per 

Fitts law (discussed above). Motor skill is therefore best operationalized by a speed 

accuracy function 55,57. Perfect performance would be consistently accurate task 

completion at a speed only limited by physical constraints of the body — an unlikely 

result no matter how long one practices. Note that here speed refers to the speed of the 

movement itself, and not how long it takes to initiate the movement which may be more 

relevant to decision making research (see section 1.3.4) and which is also studied using 

speed-accuracy trade-offs 58. Motor skill learning is characterized by a slow reduction in 

trial-to-trial movement variability and an increase in the smoothness of the executed 

trajectory, with skill generalizing across speeds 55. Such performance improvements may 

be due to changes to the control policy, or a refinement of some sort of stored movement 

representation. Interestingly, it appears that as one becomes more proficient at executing 

a motor skill — and able to perform accurately at speeds that are faster than sensory 

feedback delays 59 — feedback-based control becomes less of a contributor to 
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performance, and it seems a feedforward controller executes a planned movement 

trajectory 60. This may be what is in fact happening when skills reach Fitts and Posner’s 

autonomous stage of motor learning. Some of these computations may be represented by 

aspects of the so-called “motor program” (see section 1.3.1 below).  

1.2.3. Action Selection, Motivation, Reward & Punishment 

 Researchers now tend to distinguish between motor skill learning due to 

improvements in either action selection, action execution, or both, with adaptation 

comprising both with an emphasis on selection 34,61–64. Action selection refers to the 

selection of appropriate movements and where improvements in performance are 

achieved by learning what to do and when to do it 34. This includes adaptation paradigms 

whereby perturbations are linked to appropriate movement responses (e.g., a strategy like 

“reach slightly to the left rather than straight ahead” to compensate for the perturbation) 

64. Action execution refers to the actual performance of the selected movements and 

where improvements in performance are achieved via motor skill learning (see section 

1.2.2 above)34,55. Importantly, consensus is growing that serial reaction time (SRT) tasks 

are well suited for studying aspects of action selection, particularly learning associations 

between stimuli and appropriate action choices, and understanding the order of events to 

predict and prepare future actions 55,61–65, but not motor skill learning associated with 

improvements in action execution as discussed in the preceding section. As such, SRT 

tasks are likely more appropriately considered cognitive tasks that are simply indexed by 

movement (e.g., button pressing) rather than motor tasks themselves 63. Indeed, given that 

movement is the only output of the brain it is difficult to imagine a behavioural task that 

does not involve movement — whether it is a language task that require the vocal cords 
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to speak, or an attention task tracking eye movement — but that doesn’t mean we would 

consider these tasks “motor tasks” per se or that those experiments interrogate motor 

control or learning. How we define and operationalize phenomenon depend on what we 

are interested in studying. The work presented in this dissertation will focus on a more 

specific conceptualization of action execution (discussed above) and motor skill learning 

(section 1.2.2 above). That said, action selection and cognitive processes play a critical 

role in the control and learning of movement. Therefore, while a thorough treatment of 

these topics is outside the scope of this dissertation, a general review will be necessary 

for providing context. Furthermore, action selection represents an area of overlap 

between computational / behavioural and algorithmic / representational perspectives and 

will be discussed in greater detail below, particularly in sections 1.3.3 (Cognitive 

Processing) and 1.3.4 (Decision Making & Motor Planning). 

 An important aspect of motor control and learning is motivation, reward and 

punishment 61,66,67. Reward and punishment appear to have a complicated effect on action 

selection, depending on the task, context, and experience of the participant. For instance, 

the avoidance of punishment is interpreted as a reward signal even if there is a negative 

value associated with the feedback — that is, it is rewarding if it “wasn’t as bad as last 

time” 68. Explicit motivation is thought to drive reward seeking behaviour and therefore 

likely has its effects primarily on action selection 67,69. Implicit motivation appears to 

influence action execution; when motivated, participants appear to increase motor 

“vigor”: the speed, amplitude or frequency of a given movement 67,70. In fact, recent work 

has shown that motivation by reward can shift the speed-accuracy function independent 

of learning 71, as though a movement is approached with more skill when it is known to 
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be rewarding. The authors suggested that improved performance was possible by a 

reward-mediated reduction in noise; that is, by reduction of distractions allowing for 

more precise movement selection — which comes at a cost to neural resources that may 

be justified by the potential reward. Perhaps the inverse of this phenomenon explains the 

sports idiom: “They didn’t want it enough”. As for motor learning, the role of reward and 

punishment is surprisingly less clear despite decades of sport coaching wisdom 61. This 

appears to be due to most experiments on reward and motor learning having been focused 

on adaptation tasks rather than motor skill learning as conceptualized above, and a 

general lack of laboratory-based tasks that adequately isolate reward, punishment, action 

selection and execution. To speculate, it is possible that motor learning involves a 

combination of associating goals with an expected value, reinforcing specific motor 

commands, or even improving control over the vigor of a movement 67. How motivation, 

reward, and punishment affect motor skill learning is therefore an exciting area of future 

work.  
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Figure 1.1. A computational model of online motor control. Briefly, goals represent a 
desired change in state (e.g., position of the body in environment) which is motivated by 
awareness of the affordances in the environment. The selected goal (i.e., desired state 
change) is processed by a state estimator to determine the kinematics necessary to 
achieve the desired state, resulting in an intended movement. Intended movements are 
transformed into motor commands by a feedback controller that sets an optimal control 
policy that dictates how to react to incoming feedback while the movement proceeds. 
Motor commands (whose parameters are influenced by implicit motivation) are sent to 
the body while an efference copy of these commands are sent to the forward model. 
Movement creates a change in the state of the body and environment which produces 
sensory feedback that is noisy (i.e., uncertain) and delayed. Forward models address this 
by predicting the sensory consequences of this motor command so that corrections can be 
made in advance. The state estimator compares the predicted and actual sensory 
consequences of the movement and informs the feedback controller so that motor 
commands can be adjusted. This process loops until a movement is complete. As will be 
discussed in section 1.3.4, goals can change mid-movement (a “change of mind”). Note 
that several relationships (lines and arrows) may exist that are not included for the sake of 
simplicity. Figure adapted from Shadmehr and Krakauer (2008)72 and Scott (2016) 73. 

 

1.3. HOW DOES THE MOTOR SYSTEM WORK? REPRESENTATIONAL / ALGORITHMIC 

LEVEL OF ANALYSIS 

 Understanding motor control and learning at Marr’s algorithmic level of analysis 

involves studying how the motor system represents and manipulates information to solve 
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problems. The preceding discussion of what happens behaviourally or computationally 

may allude to answers, but the goal of such a theory is to provide an organizing 

framework for various experimental observations, and not necessarily to identify how 

such goals are achieved. For example, how are these purported control policies learned, 

represented, manipulated, and utilized? These questions are difficult to answer — there is 

even debate about whether representations exist 74–76 — perhaps even more so than the 

deeper implementational level of analysis, given that there are tools that measure neural 

structure and function. There are no tools for reading the “code” that may or may not be 

represented in the brain. For the most part, the algorithms of the mind must be reverse 

engineered. As such, many modern motor control and learning experiments manipulate 

behaviour and observe neural effects, or vice versa (for example using pharmacological, 

brain stimulation, and in the case of animal studies, lesion techniques), but still speak 

little to the underlying processes that connect the two. We can see that a specific part of 

the brain “lights up” when a certain behavioural outcome is observed, but what is that 

part of the brain doing to drive that outcome? Historically, work on the algorithmic level 

appears to have been dominated by the field of cognitive psychology. As will be shown 

in this section and the next, computational and neuroscientific evidence does provide 

some support for many of the ideas that follow.  

1.3.1. Schema Theory & Motor Programs 

 One of the most influential theories about how a motor skill may be represented in 

memory was schema theory 77. Proposed in the 1970’s and cited thousands of times 

since, schema theory spurred much experimental work on motor skill learning, including 

what is learned, how it is learned, and how it is applied. Schema theory was an extension 
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of Adams’ closed loop theory of motor learning that recognized the importance of having 

both recall knowledge to perform a learned movement, as well as recognition knowledge 

to correct the movement with feedback 78. Schmidt extended this by asserting that while 

recognition knowledge certainly existed, sensory feedback systems were too slow to alter 

fast movements. Instead, he proposed that one relied on a generalized motor program that 

contained all invariant information that characterised a movement (like one’s hand 

signature), which included such information as the sequence of movements, relative 

timing and relative forces. This generalized motor program could be scaled across other 

dimensions (speed, size, even the muscles involved; like writing one’s signature with 

one’s foot) by assigning parameters from a motor schema — a separate, more specific 

memory system that stores absolute parameters, the sensory consequences of them, and 

their associated motor outcomes. It was via manipulation of these so-called schemas that 

motor learning occurred. Evidence has supported the proposed separation of generalized 

motor programs and parameters to some degree: generalized motor program learning is 

enhanced by keeping relative features constant using a blocked practice schedule 

(keeping to one skill during a practice session; i.e., one generalized motor program at a 

time) and providing variability through changing parameters; while the recall schema is 

strengthened through variable practice scheduling (staggering practice with other skills; 

i.e., multiple generalized motor programs within a single bout of practice), and limiting 

parameter variability to the parameter of interest (e.g., speed, but keeping size constant) 

79. These results suggest that different practice structures affect different aspects of a 

motor skill (the generalized motor program or the schema), which may be taken as 

evidence of their existence. 
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 Schema theory and the notion of a motor program has been challenged for 

numerous reasons 79–82, including by the original author 83. Importantly, some aspects of 

the theory appear to be simply wrong; for example, it appears that while relative timing 

appears to be invariant in a motor program, relative force is not 83. What’s more, the 

theory does not account for some important observations about motor behaviour; for 

instance, the phenomenon of motor equivalence is not well accounted for 83. Schema 

theory was also an incomplete theory of motor learning in that it proposed mechanisms 

by which one learned to scale a generalized motor program, but not how the generalized 

motor program itself was learned in the first place 83. Perhaps the most vehement 

criticism of schema theory has been that of proponents of the dynamical systems theory 

of motor control and learning that will be described in the next paragraph 80. In short, 

dynamical systems theory proponents claim that schema theory does not provide a 

satisfactory account of rhythmic movement patterns (e.g., walking, crawling, etc.), their 

change over time, and posits the existence of vague representations (generalized motor 

programs, schema) that are not necessarily required for observed behaviour 80. Finally, if 

one takes a close look at the literature described above, it appears that most experiments 

utilize SRT tasks and therefore may have less to say about motor execution and motor 

skill learning as conceptualized above (see section 1.2.2 and 1.2.3).  

1.3.2. Dynamical Systems Theory 

 Dynamical systems theory posits that the regularities observed in the motor 

system are not programmed but emerge from the intrinsic dynamics of the system 80,82. 

That is, when one reaches for an object, joint movement does not occur because of a 

multitude of specific muscle contractions that are programmed for this task. Rather, a few 
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simple motor commands initiate a movement that unfolds in a coordinated way that is 

determined by anatomical constraints and reflexive agonist-antagonist contractions that 

arise from sensory feedback. Changes in movement arise from a change in task 

constraints; for example, walking faster eventually necessitates a change in the movement 

pattern to give rise to running, which is even more distinct in quadrupeds such as horses 

where increasing speed leads to multiple phase transitions from a walk to a trot to a 

gallop. Research in dynamical systems theory appears to be chiefly concerned with 

studying these coordinative structures and how they change over time 82. Proponents of 

schema theory however point to the fact that, while the dynamical systems perspective 

offers a fertile theory for understanding movements that are slow enough to benefit from 

closed-loop sensory feedback, it has difficulty explaining fast skilled movements where 

studies seem to indicate that muscle contractions unfold in a pre-programmed pattern 

even when movement is prohibited 83. 

 To date, researchers appear to generally agree with the existence of a motor 

program 82. Such a consensus is based on both neuroscientific and behavioural 

experiments 82,84 — but none of which negate the relevance of dynamical systems per se. 

For instance, it’s clear that pattern generators (see section 1.4.1 below) exist in the 

nervous system and that neural activity unfolds in a way that can be modeled 

mathematically as a dynamical system 85,86. In fact, one recent study suggests that motor 

programs are built from “dynamical building blocks” 87 (see section 1.4.3 below). These 

dynamical building blocks may be similar to the concept of motor primitives and 

synergies, discussed in more detail below (again see section 1.4.3; see also Figure 1.2 

below). In some sense the descriptive features of dynamical systems theory have been 
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integrated into and superseded by optimal feedback control as discussed above 44. Thus, 

the “motor program” might be better described with more specific and experimentally 

tractable concepts such as an internal forward model, a control policy or feedforward 

controller, and these can include patterned movements as per dynamical systems theory. 

Nonetheless, dynamical systems theory has had important contributions to our 

understanding of motor control and the broader mathematical concepts of dynamical 

systems continue to play an important role today (see section 1.4.3 below).  

1.3.3. Cognitive Processing 

 Cognitive psychology continues to contribute an understanding of motor learning, 

particularly regarding sequences of simple movements 88. For instance, Verwey’s 

cognitive framework for sequential motor behaviour posits that sequence execution is 

controlled by three levels of processing: perceptual, central, and motor. This information 

processing approach explicitly frames itself as speaking to Marr’s algorithmic / 

representational level 88 (Figure 1.2 below), and to motor sequences where experiments 

typically utilize SRT tasks. Perceptual processing involves recognizing visual, auditory or 

proprioceptive stimuli. Central processing involves manipulation of representations 

(which may include motor programs) and selecting and loading commands into a motor 

buffer. Motor processing involves executing the movement with or without feedback. 

The processing that occurs at each stage is interrogated using experiments that 

manipulate various aspects of the sequence, such as order, or the effectors used to 

perform them. Within this framework it is thought that perceptual and central processing 

is effector independent, while motor processing is effector dependent. For example, 

altering a sequence at the perceptual level (changing the cue from visual to auditory) may 
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cause errors in both hands proportionally, while altering the sequence at the motor level 

(speed or amplitude of movement) may cause proportionally larger errors in the practiced 

hand. These so-called transfer studies have led to many fascinating insights about which 

brain areas are involved in each level of processing 89,90, and where different stages of 

learning may occur 91.  

 It is my observation that motor learning research in cognitive psychology appears 

to evolve largely in parallel with computational theories stated above, with little cross-

citation other than both groups associating their constructs to findings in neuroscience. 

For example, when cognitive psychologists speak about “motor processing”, they may be 

referring to the same phenomenon as “action execution” as understood in optimal 

feedback control theory — or perhaps they do not, and the concepts only overlap partially 

(it is unclear). While the two literatures may appear to be speaking to similar phenomena 

there are noticeable differences in terminology and methodology. For instance, it appears 

cognitive psychologists focus on understanding how we learn and produce sequences of 

simple movements using SRT tasks where sequences of keyboard presses are 

manipulated in order, frequency, and so on 88. Behavioural studies in computational work 

seem to investigate discrete but more complicated movements such as reaching, which 

allows for more detailed kinematic analysis, and can be modelled mathematically 25. Such 

differences are important as inferences made about important concepts can differ 

significantly by the experimental task used and its complexity 92. For instance, the impact 

of reward and punishment differs depending on whether the participant performs a 

sequencing skill or a motor skill 93. Authors involved with computational work appear to 

be increasingly interested in sequence literature as their attention shifts to processes that 
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are “upstream” to execution 62, which may be a signal that the two bodies of work may 

soon become more integrated. This new line of computational work on sequences likely 

has much to learn from existing literature from cognitive psychology. In any case, 

differences in these two perspectives are not easily justified as a focus on different levels 

of analysis (one group focusing on the computational perspective versus one group 

focusing on the algorithmic perspective), as the subject matter addressed by each group 

appears to be overlapping. Notably, researchers who traditionally concern themselves 

with computational perspectives are making strides in understanding motor planning and 

decision making in sensorimotor control 94,95 — topics that begin to speak to an 

algorithmic / representational level of analysis of motor control and learning. Therefore, 

these two sets of literature appear to be converging from different directions. Given the 

challenge of reconciling disparate bodies of literature regarding the representational level 

of analysis, an original figure was created to organize some of the concepts in this chapter 

and depict their potential overlap (Figure 1.2 below).  

1.3.4. Motor Planning & Decision Making 

 Motor planning is thought to comprise processes that select and specify actions 

once a goal is already selected 95. Given that goals can be selected via non-motor 

processes they are not considered part of motor planning per se. For convenience these 

stages are discussed as though they occur serially, but the following paragraph will reveal 

that this is an oversimplification. Once a motor goal is selected motor planning processes 

determine how the action is to be performed, which means determining what a movement 

should look like, selecting an action that takes this into account, and specifying the motor 

commands to achieve it. For simple movements like point-to-point reaching this might 
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require nothing more than setting the control policy (as outlined in the discussion of 

optimal control theory above; see section 1.2.1) or setting initial conditions (as per 

dynamical systems theory) and initiating the movement. This is thought to occur quickly, 

accounting for very little of the reaction time from target cuing to execution. However, if 

the movement requires a more complicated trajectory — to get around an obstacle, for 

example — additional planning is required to determine the ideal kinematics, and this has 

been shown to be costly with respect to reaction time (nearly 100ms in one experiment) 

96. More recent work contends that different plans create different states in the motor 

areas of the brain, and that plans are in fact what represent separate motor memories 97. 

Perhaps a “motor program” is not simply a learned sequence of discrete motor actions but 

can also be a kinematic trajectory that has been optimized over time, requiring less 

planning and feedback control as skill increases 60. Indeed, the popular notion of a motor 

skill typically does not refer to a well-made decision, but to the grace and precision of a 

well-executed movement.  

 Before a movement can be executed or even planned, it must be chosen. As 

discussed above it appears that the motor system controls movement by minimizing costs 

and maximizing rewards of a given goal (or a target, as is typical of experiments in motor 

behaviour), but often a goal has to be selected from many competing candidates. Not 

surprisingly, when subjects are given a free choice between two targets, they tend to 

select targets that minimize movement-related costs 98 and maximize reward 99 — 

suggesting that decision making in action selection may share with, or receive 

information from, mechanisms of motor control. Surprisingly, however, it appears that 

before an action is selected, the motor system simultaneously prepares competing 
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movement plans for each potential target 100, and that this is true whether a movement is 

executed before (go-before-you-know) or after (go-after-you-know) a target is cued 

101,102. One reason for this seems to be that determining the costs of a potential action 

involves not only assessing the position of a target, but the movement required to reach it 

— thus the motor system appears to transform visual targets into motor representations 

ahead of making a final decision and can do this for multiple targets simultaneously 94. 

What’s more, decisions do not occur at any particular moment but occur continuously 

over time: for instance, sensory feedback gains that favor a particular target scale linearly 

as the target becomes clearer 103. Because of this the motor system appears to be able to 

“change its mind” — that is, to switch to another target during an already unfolding 

movement if accumulating information becomes compelling enough to make the new 

target a superior choice 104. This happens at such a high speed (15 milliseconds) that it 

seems the new movement must have been specified in advance and maintained during the 

action as a contingency plan. Finally, when performing a sequence task, the motor system 

appears to optimize paths based on the effectors used: for example, if selection is 

achieved by gazing at a target, the optimal sequence of target-to-target transitions is not 

the same as when using one’s hand to select a target, likely due to the biomechanical cost 

of distance being higher in the latter case 105. In conclusion, it appears that action 

selection and execution are not serial processes, and multiple motor representations can 

be maintained in the brain simultaneously. This allows the motor system to perform 

efficiently in unpredictable dynamic environments like those found in the real world.  

 The interaction between decision making and motor learning is fascinating. 

Traditionally decision making is thought of as a strictly cognitive process, but 
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improvements to cognitive processing can still drive improvements in motor task 

performance — that is, improved perceptual processing (e.g., faster recognition of a 

relevant stimulus 106), and selection of a more rewarding goal 62 — rather than 

improvements in motor skill execution. However, recent evidence indicates that as motor 

learning proceeds, decision making processes make predictions about how motor learning 

will unfold and therefore select targets that are better suited for the future motor skill 107. 

This may imply that motor representations either store expected future errors (based on 

past errors) or at least can be used by the motor system to generate predictions of future 

errors. That is, these too supposedly separate processes are in fact aware of one another 

and work together to converge to optimally achieve a common goal. 
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Figure 1.2. A representational model of motor control processes. Briefly, simple tasks 
require attending to stimuli, perceiving them accurately, determining value and deciding 
how to respond. More complex tasks may be subject to more context such as rules that 
constrain choices, or obstacles that require a complex trajectory to avoid. Achieving the 
goal requires selecting, ordering, and timing a movement sequence, and the longer the 
sequence, the more complex and challenging the task. For each movement in the 
sequence, a set of motor primitives or synergies (discussed more in section 1.4.3) that 
best achieve the goal are activated nearly simultaneously. More complex movements 
require a greater number of primitives with greater interdependence (more subtle 
weightings and timing). Movement then unfolds as a dynamical system using these 
building blocks. Adapted from several figures from Giszter 2015 108, Verwey et al. 2015 
88, and Wong et al. 2015 95.  
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1.4. WHAT IS THE MOTOR SYSTEM? NEUROSCIENTIFIC / IMPLEMENTATIONAL LEVEL 

OF ANALYSIS  

 The physical substrates comprising the motor system are distributed throughout 

the body. While the nervous system acts upon the musculoskeletal system to produce 

movement, this relationship is not unidirectional. This is evidenced by the critical role of 

sensory feedback in movement. While a thorough discussion of the neuroscience of 

movement extends beyond the nervous system itself, the scope of this dissertation will be 

limited to the nervous system. This review will largely take a bottom-up approach, 

initially discussing the peripheral nervous system and progressing centrally, but diverging 

from this approach where appropriate. When discussing voluntary movement this may 

seem unintuitive as information seems to flow from identifying a goal, through the motor 

system, and then to achieving the goal with the body. However, it is this writer’s opinion 

that when discussing motor control, it is helpful to know “what” is being controlled as it 

is critical to the problem being solved by the controlling systems.  

1.4.1. The Spinal Cord & Peripheral Nervous System 

 A significant portion of cellular motor neuroscience has developed by studying 

reflexes in the peripheral nervous system. Seminal work on reflexes dates back over a 

century and principally applies to spinal reflexes. While volitional movement is a process 

that is initiated with intention, reflexes are generally understood as being capable of 

initiating movement in the absence of input from the brain 109. Instead, reflexes typically 

operate in reaction to an external stimulus. However, reflexive movements are still 

capable of being driven even when sensory input is blocked 110. This demonstrates the 

intrinsic nature of spinal reflexes but does not imply that they act alone in the motor 
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system. On the contrary, spinal reflexes receive a variety of descending (i.e., from the 

brain) inputs 111, making the distinction between conscious and unconscious movement a 

difficult one to make 35. Caveats aside, the spinal cord alone is capable of complex 

computations. For instance, neural networks known as central pattern generators that can 

integrate sensory information to coordinate complicated movements like walking without 

the need for descending input 85. Spinal circuits receive a wide variety of sensory inputs 

from various peripheral receptors in the muscles, joints, and skin 112. The output of the 

spinal cord is ultimately the activation of muscle tissue through motor neurons, of which 

there are now known to be at least seven different types 113. This complexity of spinal 

circuits can be leveraged to drive motor learning itself 5 — for example, animals that 

have had their spinal cord cut are still capable of learning to walk on a treadmill as long 

as they are able to receive sensory input during training 114. This type of learning is likely 

simple: regulating muscle activations in light of sensory inputs (the training) until some 

level of regularity persists. This may be the neural basis of use-dependent learning 

discussed above (see section 1.2.1 above). While simple, the implications are substantial 

for rehabilitation from spinal cord injury. 

1.4.2. Subcortical Structures  

 The spinal cord receives descending inputs from several cortical and subcortical 

structures 111. The path from the cortex (discussed in more detail in the next two sections) 

to the spinal cord consists of several tracts that typically make a stop in the brain stem, 

but some cortical neurons appear to directly innervate motor neurons in the spinal cord 

115. These direct projections appear to be involved in fine motor control such as precise 

finger movements and appears to be especially present in humans compared to other 
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species 116. Interestingly, though limited to control of the whole hand rather than more 

dextrous movements, the brainstem is a candidate site for the storage of planned 

movements 117,118. Animal models have also demonstrated that subcortical structures are 

capable of executing learned motor skills, but that the motor cortex is necessary for 

learning 119. It appears that while control from higher brain structures may be necessary 

to drive motor learning in these regions, they are nonetheless capable of storing motor 

representations. These subcortical structures may be ideal candidates for the storage of 

highly automated motor skills that are driven by a feedforward controller (see section 

1.2.2 above) 60 — but not exclusively so (see section 1.4.3 below) 120.  

 The cerebellum is a subcortical structure highly implicated in motor control and 

learning 2,121,122. It is thought to be responsible for implementing the forward model and 

is associated with motor adaptation 2,72,123,124 (Figure 1.3). The cerebellum appears to 

send predictions of the sensory consequences of movement to the parietal cortex 

(discussed below) where it may be combined with processed sensory feedback to 

compute prediction error 125. However, it is not clear that the cerebellum is a site of 

storage for motor learning, and evidence suggests the motor cortex (discussed below) 

retains the information “learned” by the cerebellum 126.  

 The basal ganglia, which refers to a set of subcortical structures that appear to 

form a related circuit, has been implicated in several aspects of motor control and motor 

skill learning 2,67. For instance, the basal ganglia appear to have a role in motivation, 

action selection and sequencing (see section 1.2.3 above) 67. More recently, it has been 

proposed that many experimental observations may be more succinctly explained by the 

idea that the basal ganglia are involved in both explicit and implicit motivation, which 
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respectively drive reward-seeking behaviour and the “vigor” (e.g., the speed, amplitude, 

or frequency) of a movement 67,69,70. The basal ganglia are therefore an ideal candidate 

site responsible for computing the cost and reward structure of movement (as per Optimal 

Control Theory; section 1.2.1 above; Figure 1.3 below) 72, and may be involved in 

modulating movement parameters (as per schema theory; section 1.3.1 above) by 

applying motivational effects 67. Neuroimaging work has shown that successful reward 

attainment is associated with shifts in brain activity from the anterior insula to the ventral 

striatum 68 — the primary input to the basal ganglia 67.  

1.4.3. The Motor Cortex, Premotor & Supplementary Motor Areas 

 The primary motor cortex has a long and storied history in the neuroscience of 

movement. The seminal work by Penfield and Boldrey introduced the concept of “motor 

maps” whereby the primary motor cortex appeared to encode a map of bodily movements 

as revealed by direct electrical stimulation 127. Decades of both animal and human work 

have contributed to more nuanced understandings of the motor cortex 86,128–131. It appears 

that motor maps are not of individual body parts or muscles, but of species relevant 

“action maps” (e.g., reaching, grasping) 131, and the motor cortex exerts control by both 

eliciting and inhibiting these movement 130. Motor cortex appears to achieve this control 

by activating (and inhibiting) combinations of muscle “synergies” or “motor primitives” 

that can be combined to form novel movements as though selecting letters from a limited 

alphabet to create a seemingly infinite vocabulary 108,128. Indeed, computational models 

of learning based on optimal control theory are aligned with this idea 51. The activity of 

these neural populations demonstrate complex patterns that are readily modelled using a 

dynamical systems perspective 86. Motor cortex neuroscience may therefore resolve some 
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theoretical debates: for instance, motor programs (section 1.3.1) or plans (section 1.3.4) 

may represent an organization of motor primitives that are sequenced — with more 

overlapping co-activation in “discrete” or “continuous sequence” movements compared 

to “discretely sequenced” movements — which once activated unfold as a dynamical 

system (section 1.3.2) while utilizing feedback according to a control policy (section 

1.2.1). Control policies themselves may be encoded in the motor cortex 72 (Figure 1.3). 

Importantly, recent evidence suggests that movement sequences that are less continuous 

and overlapping, and more discrete in their ordering (see section 1.3.3 above), are 

unlikely to be represented in primary motor cortex and appear to be more widely 

distributed 63,65. Importantly, primary motor cortex appears to be the site of storage for 

learned motor skills (as defined in section 1.2.2) in humans 120 — potentially through the 

strengthening of specific patterns of primitives at the cellular level (i.e., formation of 

dendritic spines) 132. While the primary motor cortex clearly plays an important role in 

motor learning, it appears to be limited to controlling movements that are being executed. 

To oversimplify, the primary motor cortex appears to simply do the work that it is told to.  

 Premotor cortices appear to have an important role in translating movement 

instructions into action 133. That is, premotor cortex receives visuospatial information 

from the posterior parietal cortex (PPC) 134, processes a movement sequence to derive 

both spatial and temporal features 135, can use this information to aid in goal selection 136, 

and perform complex movements 65,133,135. Premotor cortex has been implicated in 

learning of motor sequences 65,133, as well as discrete motor skills along with the primary 

motor cortex 120. The planning and control of movement sequences has also been 

associated with the supplementary motor area (SMA) 137, which is strongly connected to 
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parietal, cingulate, and primary motor cortices and even projects directly to the spinal 

cord 111,138. The most anterior region of the SMA, known as the preSMA, appears to be 

active during sequence learning 139 and is more strongly connected with prefrontal cortex 

138. This supports the notion that the SMA is involved more in movement control whereas 

the preSMA is more involved in movement planning. Overall, premotor and 

supplementary motor cortices appear to operate at a higher level of abstraction than the 

primary motor cortex and are critical for complex motor behaviour. 

1.4.4. Parietal & Frontal Cortex 

 Parietal cortex has been implicated in several aspects of motor control and 

learning. The anterior region of the parietal cortex includes the somatosensory cortex 

which processes incoming sensory information. Given the critical role of sensory 

feedback in motor control, it is not surprising that the somatosensory cortex appears to 

play a critical role in updating internal models during adaptation tasks and has even been 

hypothesized to store internal models 140, though this is not entirely clear 64. The PPC is 

known as an area of spatial processing and sensory integration 141,142, is involved in 

attention and selection of motor tasks (see section 1.2.3 above) 143–145, has been 

implicated in the storage of motor representations 146, and appears to be the source of an 

intention to move (Figure 1.3) 147–149. The parietal cortex appears to work together with 

premotor regions to aid in goal selection 136. Furthermore, the PPC has been hypothesized 

to be responsible for planning more complex kinematic movement trajectories (see 

section 1.3.4 above), perhaps by formulating where the end effector must travel to 

achieve the goal 95,96,150. In particular, the superior parietal lobule (SPL) appears to 

integrate visual and somatosensory information and project to the premotor cortex 7. The 
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inferior parietal lobule (IPL) appears to be necessary for attending to and encoding 

implicit aspects of motor sequence learning (see 1.3.3 above) 91,142. Given that the 

parietal cortex also receives input from the cerebellum 125, it appears to be an ideal 

candidate for processing sensory prediction error (as per optimal control theory; section 

1.2.1) 72.  

 Neuroimaging studies frequently show activation in prefrontal cortex during 

motor tasks 7. The role the frontal cortex plays in motor control is principally in decision 

making and planning future actions, rather than in the control of an ongoing action 151,152. 

While prefrontal cortex does not appear directly involved in movement execution, neural 

activity in this region appears to be responsible for changes-of-mind (see section 1.3.4 

above) 153. This demonstrates the considerable influence executive function can have on 

motor control across time scales — from making complicated decisions about what 

actions to perform well in advance of their performance, to exerting conscious control in 

the middle of an ongoing movement. 
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Figure 1.3. A Computational Neuroanatomy of Online Motor Control. An extension of 
Figure 1.1, mapping neuroanatomical regions to computations they likely perform. Note 
that this figure represents online control of an ongoing movement and is not intended to 
describe where changes occur to drive learning and store memory or skill (though this 
figure may provide insights). Adapted from Shadmehr and Krakauer (2008) 72. 

 
1.5. MOTOR IMAGERY 

 The preceding literature review covered the topic of motor learning entirely 

within the context of overt movement performance. But as mentioned in the opening 

paragraph of this dissertation, motor learning appears to be possible in the absence of 

movement and therefore absent any sensory feedback 16, even when that movement has 

never been experienced before — though notably, these previous studies frequently 

utilize SRT tasks 154, and studies that utilize more complex tasks include pre-tests that 

afford participants with an experience of the overt movement prior to imagery 155. Those 

issues aside, given the critical role feedback appears to play in motor learning (in 

particular, see section 1.2.1) 4, motor imagery is theoretically interesting and may have 

important implications for neurological rehabilitation where patients typically have 
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limited movement 13–15. Unfortunately, the motor imagery literature represents a small 

fraction of overall motor control and learning literature and is not as well understood. 

Critical issues that remain a matter of debate include whether motor imagery engages 

aspects of the motor system involved in overt execution or is instead a perceptual or 

cognitive process 27,156, and what types of motor learning (e.g., sequence learning, 

adaptation, or motor skill learning; see sections 1.2.2 and 1.2.3 above) motor imagery is 

capable of driving. Here I will review two opposing viewpoints of motor imagery before 

reviewing evidence of motor learning via motor imagery and the possible mechanisms 

underlying this learning considering these viewpoints. Finally, I will make the case that 

these differing views of motor imagery-based learning may be at least partially resolved 

by carefully considering the experimental task used. This context motivates the three 

experiments presented in this dissertation.  

1.5.1. Motor Simulation & Functional Equivalence 

 Motor simulation theory has been an influential theory of motor imagery for the 

last two decades and remains so to date 27,157. Motor simulation theory proposes that 

motor imagery involves much of the same perceptual, cognitive, and overall planning 

processes as overt movement, but diverges once reaching the action execution stage. The 

performance of motor imagery involves a simulation of the prepared movement such that 

it unfolds covertly but in the same way it would if it were being executed overtly. Here 

simulation refers to a person’s covert performance of the movement, as opposed to 

simply imagining what such a movement might look like if someone else did it or 

forming an abstract representation of the movement without performing it (like having a 

map of a path but not walking through it). The simulation thus gives rise to a mental 
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image of the movement being executed by the imaginer. Motor simulation theory was 

built on behavioural data showing that the timing of imagined movement aligns well with 

the timing of the same overt movement, and neurophysiological data demonstrating 

considerable overlap between imagined and overt movements including, at the time, the 

primary motor cortex 11,12,157. More recent but highly related theories include so-called 

emulation theory which supposes that both visual and somatosensory outcomes of the 

simulated movement are generated and available to the motor system 158,159. Given that 

overt movement also involves simulated movement by way of forward models 46, motor 

simulation theory supposes that motor imagery is functionally equivalent to overt 

movement with the exception that overt movement is inhibited 27,157.  

 While motor simulation theory remains an influential theory of motor imagery, 

many of its particulars have been scrutinized. Critically, since the theory was first 

proposed further neuroimaging studies have shown that the primary motor cortex does 

not appear to be consistently activated during motor imagery 20,23,27,160. Neuroimaging 

studies (see Figure 1.4 below) have also demonstrated numerous subtle but important 

differences, where motor imagery is associated with greater activation in frontal regions 

23, greater activation in preSMA 161, greater activation in PPC 20,161,162, greater activation 

in caudal cerebellum 23,162, and greater activity in the rostral basal ganglia 20,23,161. Given 

the preceding review of the neuroscientific basis of motor learning, these neuroimaging 

results suggest greater cognitive involvement in motor imagery and potentially fewer 

motor processes. Indeed, behavioural evidence suggests that motor imagery is more 

reliant on perceptual learning than motor learning 26 and is disrupted by inhibitory brain 

stimulation to the IPL but not the primary motor cortex  163,164 (though these experiments 



 37 

used an SRT task). What’s more, the time it takes to complete an imagined movement is 

readily disrupted by cognitive interference 156. Together these results question the idea of 

functional equivalence. However, this does not prove that motor simulation does not 

occur, as simulation may be represented and implemented in several ways depending on 

the task. For example, the movement can be simulated, sensory feedback can be 

simulated, movement outcomes can be simulated (e.g., ending position, location of an 

object) rather the movement itself, and so on.  

1.5.2. Cognitive Theories of Motor Imagery  

 Opposing theories of motor imagery have proposed that, beyond the planning 

stages, motor imagery does not simulate a newly specified movement to estimate sensory 

outcomes, but rather substitutes the lack of sensory feedback by recalling sensory 

outcomes of past movements from memory 165,166. These theories suppose that motor 

imagery is highly cognitive in nature and involve searching procedural memory for past 

movement representations suitable for the task — which is particularly challenging for a 

novel movement where the process will rely on finding past movements or movement 

components that represent a best fit 166. In these theories, aspects of the motor system 

involved in overt movement execution are not utilized by motor imagery. Authors 

typically point to the fact that motor imagery has an imperfect overlap with overt 

movement in neuroimaging studies (see Figure 1.4 below), particularly an inconsistent or 

absent activation of primary motor cortex 23,166. Indeed, studies demonstrating motor 

learning via motor imagery often include overt pre-tests prior to imagery that afford the 

participant with a motor memory to rehearse 155,167. Furthermore, studies of motor 
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imagery frequently employ SRT tasks that can be argued are primarily cognitive tasks 

(see section 1.2.3 above) 16,27.   

 One of the more recent theories of motor imagery is the motor-cognitive model 

156. Much like motor simulation theory, the motor-cognitive model proposes that the 

planning stages of motor imagery are identical to those of overt movement. However, 

once the execution stage is reached the motor-cognitive model proposes that motor 

imagery diverges from overt movement. Where overt movement then relies on largely 

automated and feedback driven processes to guide execution, imagery instead becomes 

an executive process that does not utilize the motor system. Specifically, motor imagery 

involves creating an abstract representation or image of the movement, and rather than 

simulating its execution, involves elaborating on this representation. Thus, motor imagery 

is an executive process that is more difficult when the movement is more complex, 

requires greater cognitive resources and is therefore more easily disrupted by interference 

tasks than overt movement. Glover and Baran cite existing evidence and present their 

own in support of this theory 156.  

 While the motor-cognitive model offers a compelling alternative to motor 

simulation theory, it is important to note important challenges that it faces. First, by the 

original authors’ own admission the motor-cognitive model offers no explanation for the 

potential use of forward models during motor imagery 158. This is critical given that a 

recently published report has demonstrated compelling evidence for the existence of 

forward models in motor imagery 168. What’s more, while neuroimaging studies support 

an increased activation in frontal regions during motor imagery, frontal cortex activation 

is not exclusive to imagery and is also present during overt movement 23. The motor-
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cognitive model also predicts increased visuo-perceptual and ventral stream activation, 

which has not been consistently demonstrated in neuroimaging meta-analyses (see Figure 

1.4 below) 23. Overall, this challenges the motor-cognitive model and cognitive accounts 

of motor imagery generally.  
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Figure 1.4. Results of a recent meta-analysis of neuroimaging studies demonstrating brain 
regions involved in motor execution (overt movement) and motor imagery. From top to 
bottom: activation by body part during overt movement, activation by body part during 
motor imagery, activation unique to each modality, and finally activation similar between 
each modality (∩ refers to “intersection” or “conjunction”). Taken from Hardwick et al. 
2018 23. 
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1.5.3. Evidence of Motor Learning via Motor Imagery 

 The extent to which motor imagery can drive motor learning remains an open 

question. That is, what aspects of motor control (see representational summary Figure 

1.2) are capable of being improved upon via imagery-based practice, and by how much? 

Motor learning via motor imagery is almost certainly not the same as the learning that 

occurs via overt practice. This is clear given a widely replicated difference in the 

magnitude of learning via motor imagery-based practice compared to overt practice 

155,169–171. However, this difference in efficacy has subtleties that may provide insights as 

to how the two methods of practice differ. For instance, Kraeutner et al. (2020) had 

participants train a dart throwing task via either overt or imagery-based practice across 

five days with pre- and post-training tests as well as a 24-hour retention test 170. One of 

the benefits of a dart throwing task is that performance can be operationalized in several 

ways, including accuracy (e.g., the distance of dart from target) and consistency (e.g., 

variability in performance across trials), which are thought to speak to different levels of 

encoding. Specifically, accuracy is thought to be effector dependent (encoded at the level 

of the specific part of the body performing the movement) and consistency is thought to 

be effector independent (encoded at the level of task goals, prior to a transformation of 

kinematics to dynamics) 172. The results demonstrated that imagery-based practice was 

capable of driving improvement in consistency but not accuracy, while overt practice led 

to considerable improvements in both (Figure 1.5). These results suggest that motor 

imagery has a greater effect on effector independent (e.g., action selection) processes that 

are upstream to execution, and potentially little to no effect on execution accuracy 170,172. 

Interestingly, Ruffino et al. (2021) demonstrated slightly different results demonstrating 
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that imagery-based practice led to similar performance improvements as overt practice, 

but only after a consolidation period 6 hours post-training 169. That is, overt practice led 

to immediate performance improvements, but motor imagery required a passage of time 

(see Figure 1.6). Importantly, this study had participants perform a task focused on action 

execution and assessed motor skill via changes in the speed accuracy function. Both 

groups demonstrated a similar gain in performance again at a 24-hour follow up test. 

These results again demonstrate that imagery-based practice and overt practice are likely 

driven by different processes.  
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Figure 1.5. Changes in performance via imagery-based practice (MI) and overt practice 
(here referred to as physical practice, or PP) on a dart throwing task. Two performance 
measures were assessed: radial error (RE), a measure of accuracy, and bivariate variable 
error (BVE), a measure of consistency. Effect sizes shown as Cohen’s d. In both 
measures, PP outperformed MI. MI only demonstrated significant improvement in BVE, 
suggesting that MI drives effector independent learning but not effector dependent. Taken 
from Kraeutner et al. (2020)170. 
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Figure 1.6. Percentage gains in motor skill in a sequence reaching task. Motor skill was 
defined by a speed accuracy function and therefore representing a reduction of error 
controlling for speed. Figure demonstrates motor skill immediately after training 
(Pre_Post0h), 6 hours later (Pre_Post6h), and 24 hours later (Pre_Post24h), for physical 
(overt) training (PT), motor imagery training (MIT) and control training (CT; no 
training). PT led to immediate improvements that were superior to MIT, but gains 
increased in the MIT group while the PT group did not. In this study, imagery-based 
practice was equally effective compared to overt practice after some time had passed. 
Taken from Ruffino et al. (2021) 169. 

 
 That Ruffino et al. demonstrated considerable learning compared to the results 

published by Kraeutner et al. is likely driven by differences in the experimental tasks. 

First, regardless of participant experience with the sport of dart throwing, the task 

involves highly familiar reaching and throwing motions and improvements are likely 

driven by a combination of changes to action selection and much more specific changes 

to action execution. That is, in some respects dart throwing is like an adaptation task 

where there is a focus on error reduction over time which can be achieved by biasing the 

throwing movement toward a different target (e.g., “aim higher and slightly to the left”; a 

form of action selection) while never changing movement kinematics — but kinematics 

do change during dart throw skill learning 172. This change in kinematics may be due to a 
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combination (that is difficult to dissociate) of the kinematic changes that follow from 

altering the selected action — aiming higher obviously alters movement kinematics of the 

throwing motion — in addition to subtle motor skill improvements at the level of action 

execution. I contend that improvements in the execution of dart throwing is slow and 

requires substantial practice, and given that the changes are subtle, relies far more on 

actual sensory feedback that is not afforded by imagery-based practice. More novel motor 

skills like that deployed by Ruffino et al. are likely more amenable to imagery-based 

practice given that action execution can improve materially via processes that do not 

require the precision of sensory feedback, like motor planning and the creation of novel 

primitive combinations and/or control policies (see representational figure 1.2 above). 

However, had Ruffino et al. extended their study from a single day of training to several 

days, it is likely that overt practice would have led to a greater improvement in skill 

compared to imagery-based practice. 

 While less familiar movements may be more amenable to imagery-based practice, 

some have suggested that prior overt experience is required for motor imagery-based 

learning and that imagery-based practice cannot drive learning of truly novel motor skills. 

Mulder et al. (2004) provided evidence in favor of this conjecture by having participants 

practice for two days, mentally or overtly, a movement the authors considered truly novel 

173. Participants were asked to abduct their big toe without moving their other toes, and if 

participants were unable to perform this movement at all (zero degrees of abduction) it 

was considered totally novel. Participants were therefore grouped into four groups at 

baseline: an “absolute zero” group and an “already doing it” group, and each of those 

groups further subdivided into overt and imagery-based practice groups. The absolute 
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zero groups demonstrated improved performance via overt practice but not imagery-

based practice, but the already doing it groups improved performance via both overt and 

imagery-based practice. The authors conclude that this demonstrates that motor imagery 

requires a prior representation of the motor skill, and that learning cannot occur without 

it. However, there are several issues with this study. First, it is not clear whether 

performance in this task is due to a lack of familiarity compared to a lack of general 

flexibility and this was not accounted for. Second, a closer inspection of their results 

raises questions about the statistical power supporting their inferences. Importantly, the 

absolute zero imagery group in fact did improve in performance, while a separate no-

practice control group did not. In fact, both imagery groups demonstrated the same effect 

size in performance improvement (Cohen’s d of 0.45) and differed principally in their 

baseline measurements. The fact that the absolute zero group did not reach statistical 

significance is likely due to a lack of statistical power given the small sample size (14 

participants). This study should be replicated with either more participants, more 

sessions, or both. In a review article by Olsson and Nyberg (2010) the case is made that 

motor imagery requires previous experience to drive motor learning. However, the 

authors principally cite their own and other neuroimaging studies that demonstrate 

differences in motor imagery associated brain activity between expert athletes and 

novices, where the imagery of a sports skill by experienced athletes is associated with 

activity in motor regions such as SMA, PMA, and cerebellum, while imagery in novices 

is associated with activity in parietal, occipital and temporal cortex 174,175. The authors 

use these differences as a basis for the claim that functional equivalence between imagery 

and overt execution isn’t achieved unless there is a stored representation of the 
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movement. However, these studies used neuroimaging techniques that preclude the 

possibility of performing those athletic skills overtly (e.g., fMRI), and therefore these 

results may have less to do with differences between imagined and overt movement and 

more to do with expertise 176. Therefore, these results should not be taken to imply that 

previous experience is necessary to drive motor learning via imagery. Finally, more 

recent evidence from Kraeutner et al. (2015) has demonstrated that indeed motor learning 

appears to be possible via imagery-based practice, even in the absence of prior overt 

experience 154. Motor imagery studies typically involve an overt movement pre-test to 

determine baseline movement prior to a training via either imagery-based or overt 

practice. Such a pre-test was not included in the study by Kraeutner et al. and therefore 

performance improvements in the imagery group could not be attributed to prior overt 

experience. The authors demonstrate that motor learning of a novel motor sequence is 

possible via imagery-based practice. However, given that this study utilized a SRT task 

the results may demonstrate that improvements in performance are principally due to 

changes in action selection processes, rather than improvements in the quality of motor 

execution. Indeed, keyboard pressing tasks have very limited room for improvement in 

action execution. Therefore, it remains unclear whether motor imagery can drive 

improvements in action execution for a novel motor skill.  

 If it were possible for imagery-based practice to drive novel motor skill learning 

(as conceptualized in section 1.2.2), how might this be possible? While it may be true 

that, as the motor-cognitive model supposes, motor imagery requires greater cognitive 

control than overt movement, I believe an extended version of motor simulation theory 

provides the most reasonable explanation 27,158. Motor skill learning is likely driven by 
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refinements in the control policy and forward models utilized by the skill (see section 

1.2.1 for more detail). If motor imagery is indeed capable of utilizing these components 

of the motor system, then skill learning may proceed. Indeed, Kilteni et al. (2018) 

recently demonstrated that motor imagery involves the use of forward models to generate 

predictions of the sensory consequences of a movement 168. Given that the computational 

models of motor control suppose that forward models arise from motor commands that 

are generated by a feedback control policy (see Figure 1.1 above), this implies that motor 

imagery is also capable of creating a control policy. Indeed, an animal study utilizing 

brain-computer interfaces implanted in the pre-motor and primary motor cortex 177, as 

well as a human study using an adaptation task 171, has demonstrated evidence that 

imagery can set similar initial neural states in the motor cortex (see section 1.4.3 above) 

and that this transfers to improvement in overt movement. This latter line of evidence 

suggests a potential role of primary motor cortex in imagery-based motor skill learning 

despite the region appearing inactive. That is, perhaps motor simulation produces an 

input to the motor cortex to train skills, even in the absence of motor cortex activity — to 

use an imperfect analogy, it may be that the engine is running but the brakes are on. Here 

motor simulation can be thought of as an alternative to sending a motor command with an 

efference copy to forward models — that is, the control policy is formed as usual, but the 

motor command is then simulated to produce an efferent copy for forward model 

processing. Alternatively, the motor command is generated as usual but while the 

efference copy is free to proceed to the forward model, the motor command is inhibited 

before descending to the spinal cord. Either way, learning is then driven not by a 

comparison between the predicted effects of the motor command and the observed 
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effects, but instead by a comparison between the predicted effects and the intended 

effects of the motor command (see Figure 1.7) 178.  

 

Figure 1.7. A computational model of motor imagery. Motor imagery involves the 
generation of a motor command with an efference copy used for forward modelling, 
giving rise to predicted movement effects. Given that movement does not occur, there are 
no observed effects to compare to the predicted effects. However, predicted effects can 
be compared to the intended effects of the movement. Taken from Dahm and Rieger 
(2019) 178. 

 

 In conclusion, it has been demonstrated that motor imagery can drive motor 

learning, broadly defined — but to a lesser degree and potentially to different aspects of 

motor control than overt movement. That is, tasks that focus on action selection processes 

are readily learned via motor imagery, which is not surprising given that most theories of 

motor imagery seem to recognize a strong similarity between the planning stages of 
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imagery and overt movement. However, there has not been convincing evidence that 

motor imagery can drive learning of a novel action execution skill. Given that there 

appears to be mechanisms by which this may occur, this appears to be an important gap 

in the literature. Demonstrating novel motor skill learning via motor imagery would 

provide support for action simulation theories (though doesn’t necessarily rule out the 

validity of cognitive processing models) and would increase confidence in its practical 

applications. 

1.5.4. Moving Forward by Considering Experimental Tasks  

 This literature review has highlighted the importance of experimental design in 

motor control and learning research. Different experimental tasks challenge participants 

in different ways depending on the task demands and how performance and learning is 

measured. For instance, sequence tasks likely speak largely to cognitive processing, goal 

selection and action selection (see sections 1.2.3 and 1.3.3), adaptation tasks speak 

primarily to action selection (see section 1.2.3), and action execution is best investigated 

using tasks that focus on the quality of movement (e.g., measure performance using a 

speed-accuracy function; see section 1.2.2 above) 64. This attempt to “carve nature at its 

joints” is not meant to devalue any experimental paradigm or result — all these aspects of 

motor learning are important in the real world, and the selection of experimental task 

should be driven by the purpose of the experiment.   

 However, it appears that the most contentious questions in motor imagery 

research have not been investigated using the most appropriate experimental tasks. Note 

for example that where motor simulation theory and the motor-cognitive model disagree 

is not at the action selection phase but the action execution stage. Yet there have been 
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very few motor imagery experiments that measure performance and learning by focusing 

on the quality of action execution by measuring a change in the speed accuracy function 

169, and to this author’s knowledge none that explicitly investigate whether the execution 

stage of motor imagery involves a simulation or an executive process. This is of critical 

importance for both theoretical and applied research in motor imagery. For instance, 

motor imagery-based practice is known to be less effective than overt practice 26,154,169,172. 

This may imply that motor imagery only affects certain types of motor learning, and 

perhaps does not improve aspects of performance that a practitioner cares about, or in the 

case of neurological rehabilitation, requires depending on the nature of their impairment. 

Indeed, imagery has been accused of representing perceptual learning rather than motor 

learning for decades 166, and continues to be compared with motor planning (but not 

execution) despite recent evidence suggesting that imagery differs from overt movement 

at the motor planning stage as well 171.  

1.6. OVERVIEW OF THESIS CHAPTERS  

 The experiments presented in this dissertation therefore aimed to investigate 

whether motor imagery is capable of driving motor skill learning of action execution, and 

if so, investigate what the underlying mechanisms might be. This involved devising a 

novel experimental task that allowed for investigating the effects of both overt practice 

and motor imagery-based practice on the execution of a complex motor skill. 

Performance was operationalized using a speed accuracy function where learning was 

defined as changes (i.e., a “shift”) in the function. The purpose of the first experiment 

was to determine whether novel motor skill learning is indeed possible via motor 

imagery, and when controlling for the possibility of perceptual learning. Importantly, this 
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experiment was completed across several days as this is critical for demonstrating a 

stable learning effect 179. The second experiment asks a more subtle question related to 

what information is derived from motor imagery — that is, if imagery does involve a 

simulation of a movement, does this simulation produce error signals that can then 

provide the basis for learning? Finally, the third experiment deploys the same task as the 

second experiment, but with the addition of simultaneous neurophysiological 

measurement (electroencephalography; EEG) to allow for the investigation of neural 

correlates to motor imagery accuracy and determine whether imagery involves a 

comparative mechanism (that is, comparing intended or expected performance to actual 

performance — or in the case of imagery, simulated performance) in ways that are 

similar to overt movement.  

 Chapter 1 (this introduction) and chapter 5 (General Discussion) was written by 

Tony Ingram (TI) with suggestion and editorial assistance from Shaun Boe (SB).  

 Chapter 2 is based on work conducted by TI, Jack Solomon (JS), Dr. David 

Westwood (DW) and SB. TI conceived the study with assistance from SB and DW. TI 

was responsible for data collection with supervision from SB. TI and JS were responsible 

for data processing and statistical analysis and interpretation with assistance from SB. TI 

wrote the manuscript with assistance from JS, DW, and SB. All authors contributed to 

revisions prompted by peer review during the publication process.  

 Chapter 3 is based on work conducted by TI, JS, Austin Hurst (AH), Alexandra 

Stratas (AS) and SB. TI conceived of the study with assistance from SB. JS and AH 

refined the experimental task software and pre-processing of error processing. TI and AS 

were responsible for data collection. TI was responsible for final analysis, statistics, and 
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interpretation with supervision from SB. TI wrote the manuscript with assistance from 

SB.  

 Chapter 4 is based on work conducted by TI, AH, AS, Mike Lawrence (ML), and 

SB. TI conceived of the study with assistance from SB. TI and AS were responsible for 

data collection. TI, AH and ML were responsible for data processing, including both 

behavioural and neuroimaging data, figure generation, statistical analysis and 

interpretation with assistance from SB. TI wrote the manuscript with assistance from SB.  
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CHAPTER 2 | MOVEMENT RELATED SENSORY FEEDBACK IS 

NOT NECESSARY FOR LEARNING TO EXECUTE A MOTOR 

SKILL 

A version of this chapter has been published. 
Ingram, T. G. J., Solomon, J. P., Westwood, D. A. & Boe, S. G. (2019). Movement related 
sensory feedback is not necessary for learning to execute a motor skill. Behavioural Brain 
Research, 359, 135–142. https://doi.org/10.1016/j.bbr.2018.10.030 

 

2.0. ABSTRACT 

 Sensory feedback has traditionally been considered critical for motor learning. 

While it has been shown that motor learning can occur in the absence of visual or 

somatosensory feedback, it is thought that at least one must be present. This assumption 

contrasts with literature demonstrating that motor imagery (MI) — the mental rehearsal 

of a movement — is capable of driving motor learning even though the lack of actual 

execution precludes sensory feedback related to movement. However, studies of MI 

typically employ simple tasks that do not require improvements in motor execution per 

se, suggesting that MI might improve task performance primarily through perceptual 

mechanisms. To avoid this limitation, we designed a novel motor task requiring the 

repeated execution of unfamiliar kinematic trajectories where learning was assessed 

through changes in the speed-accuracy function (SAF) across five sessions. General task 

performance was controlled for by assessing performance on randomly generated 

trajectories. Groups included physical practice (PP; with and without added visual 

feedback), MI, and perceptual control (PC), the latter of which only observed the 

trajectories. All groups performed physically on the final session. Upon the final session, 

the MI group performed better than the PC group, and better than initial session PP 
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performance. These results suggest that motor learning occurred in the MI group despite 

the lack of sensory feedback related to the movement, and that this learning was not 

simply the result of perceptual learning. Our results question long-standing assumptions 

about MI based learning and the necessity of feedback in motor learning generally.  

2.1. INTRODUCTION  

 Voluntary movement involves several overlapping and interdependent processes, 

beginning with the perception of relevant information, goal selection, motor planning, 

and finally execution 1. When motor performance improves over time, learning may 

occur through changes in any of these processes: one can become more adept at 

recognizing a relevant cue 2, selecting an appropriate goal 3, creating a more effective 

plan 4, and executing it accurately 5. Recent work suggests that motor planning, and not 

execution, is what fundamentally defines the representation of differing motor memories 

6. This is not to suggest that execution isn’t important during motor learning — execution 

gives rise to the sensory feedback that provides a means of assessing the success of a 

given plan, providing a basis for improving future performance 7–9. In fact, it is 

traditionally assumed that at least one modality of sensory feedback must be present for 

motor learning to occur, namely visual or somatosensory feedback 10,11. However, there 

exists considerable literature demonstrating that motor skill acquisition is possible via 

motor imagery (MI), the mental rehearsal of a motor task 12, even when participants have 

no prior exposure to the task 13. This presents something of a paradox: motor learning 

requires feedback arising from overt execution — yet remains possible during MI, which 

lacks execution and therefore does not provide sensory feedback related to the 

movement. 
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 A possible explanation for these findings is that MI gives rise to improved motor 

performance via changes in perceptual or central mechanisms rather than improvements 

in motor execution per se 14. Here we consider perceptual mechanisms broadly, including 

those involved in recognizing a stimulus and building its representation, and to central 

mechanisms as those that include such steps as goal selection, sequencing, and stimulus-

response mapping 1. Assessing whether MI based skill acquisition is due to perceptual or 

central mechanisms as opposed to improvements in motor execution requires careful 

consideration of the experimental tasks used in MI studies. Like the broader motor 

control and learning literature 15, MI studies have traditionally employed simple 

laboratory tasks such as target-directed reaching or keyboard sequence tasks 12–14,16. In 

such simple tasks, it is possible to realize performance gains via improvements in 

perceptual mechanisms (e.g., improved recognition and localization of the target) or 

central mechanisms (e.g., mapping stimuli to responses) rather than motor mechanisms 

per se (e.g., improved execution of a movement) 5. For example, in the case of a sequence 

keying task, perceiving stimulus “4” cues the goal “press key 4”. How the action is 

subsequently performed — the motor plan — is of little relevance 17, and there is little 

room for improvement for most individuals. Improved performance is driven by learning 

the sequence: anticipating, identifying and reacting to stimuli more quickly with a 

familiar movement, rather than changes in the movement itself 5. Instead, a more 

complex task might impose constraints such that “touch location ‘x’” requires first 

reaching around an obstacle (“touch location ‘x’ like this”). Such a task is inherently 

more difficult and requires learning a more involved motor plan that includes a specific 

kinematic path to optimize 4,18. It may be the case that performance improvements 
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realized through MI are limited to tasks in which perceptual or central mechanisms of 

learning predominate 1. In this case, the fact that performance improvements can occur 

via MI despite the absence of execution and sensory feedback cannot be taken as 

evidence that motor learning per se can proceed without sensory feedback. 

 We therefore sought to determine if MI is capable of driving improvements in the 

ability to execute a novel motor pattern. We designed a task to challenge participants’ 

ability to reproduce a novel movement trajectory using a touchscreen interface. 

Participants performed the task for five sessions to determine whether performance 

improvements were retained between sessions 19. On each trial participants were shown a 

visual trajectory traced with a white cursor on a black screen, which they were asked to 

reproduce as accurately as possible, including the speed at which it was animated during 

presentation (Figure 2.1 A). In addition to pattern trials (i.e., a repeating trajectory 

representing the movement pattern to be learned), participants also reproduced randomly 

generated trajectories of similar kinematic complexity (random trials; see methods) to 

control for general task performance independent of the specific pattern to be learned. 

Performance was thus assessed for trained and un-trained stimuli in order to determine 

whether MI led to specific versus general improvements in motor skill. Two physical 

practice groups were included: one for which only somatosensory and visual feedback of 

their arm movement was available (physical practice; PP), and another group who 

additionally received a visual display of their performance upon task completion 

(physical practice with additional feedback; PPFB). Participants assigned to the MI based 

practice group (MI) were asked to reproduce the trajectories mentally with kinaesthetic 

imagery from the first-person perspective 20,21, rather than physically, for the first four 
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sessions until the fifth and final session where they performed as per the PP group 

without feedback. As participants may improve performance simply through repeated 

observation of the pattern trajectory 22, a perceptual control condition (PC; see methods 

for task details) was included where training required attending to the stimulus without 

responding physically or mentally for the first four days. PC participants observed the 

same stimuli (random and pattern trials) as all other groups. To ensure that participants 

paid attention to the stimuli, on completion of each trial they were prompted to enter (by 

selecting a number from one to five on the touch screen) how many times the cursor 

changed in a particular direction (i.e. participants were asked “how many times did the 

dot bounce [direction]?” where [direction] was randomly either left, right, up or down). 

By including a perceptual observation group, we sought to determine if improvements 

resulting from MI based practice exceeded what could be attributed to perceptual 

learning.  

 We hypothesized that learning would be greatest in the PPFB group, decreased in 

magnitude for the PP group, and lowest in the MI and PC groups. Given the assertion that 

performance improvement via MI may be driven by perceptual or central learning 

mechanisms rather than motor learning, we hypothesized that the MI and PC groups 

would perform equally by the end of the experiment. 

2.2. METHODS 

2.2.1. Participants 

 The Dalhousie University Research Ethics Board granted approval (#2016-3928). 

Sixty-one participants were recruited with one excluded due to excessive muscle activity 

during MI (see Electromyography below). As indicated above, participants performed the 
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task in one of four different conditions, with 15 participants pseudo randomized to each. 

Given that this study utilized a novel experimental paradigm for which no published 

effect sizes exist, we determined our sample size via power analysis for an expected 

effect size of learning to be a moderate Cohen’s d = .5 (or f = 0.25) 23. We performed the 

power analysis using G*Power 3.1 to determine the number of participants required to 

detect a moderate effect size with statistical power (1 - beta) of .95, alpha of .05, and 

assuming we performed a classical statistical analysis of a repeated measures analysis of 

variance with a within-between interaction (nonsphericity correction epsilon of 1.0), at 

five measurement times (day one to five, assuming a correlation among repeated 

measures of .5). All participants provided written, informed consent and were oriented to 

the experimental task by the investigator. Participants were aged 23.75 ± 5.34 (mean ± 

SD) years, 42 identified as female, and 3 were left handed and 1 ambidextrous according 

to the Edinburgh Handedness Inventory 24. 

2.2.2. Task Description 

 Participants were asked to perform a novel behavioural task using custom 

software developed in the Python (version 2.7) programming language 

(https://github.com/LBRF/TraceLab). Participants sat at a 24” touchscreen (Planar 

PCT2485; 1920 x 1080 resolution) enclosed within a black box to reduce distractions and 

ensure screen illumination was constant across sessions and participants (Figure 2.1 A). 

Participants completed the task using their dominant hand. Sessions were scheduled such 

that each occurred at least one day apart, but no more than three weeks from first to last, 

for each participant. At the end of the experiment, the average difference (in days) 
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between the first and final sessions was 6.33 (standard deviation = 2.59) and an analysis 

of variance revealed no significant difference between groups (p = .27). 

 

 

 Trials began with the participant tapping the screen to trigger a white dot that 

travelled from a starting location on the midpoint of the lower half of the screen. All 

trajectories made curved paths between four additional points and ended at the starting 

Figure 2.1. A. Example trial illustrating a typical trajectory. Note that the real-time 
tracing shown above is for illustrative purposes only and no such feedback was provided 
to any group. The PPFB group received feedback of their performance after each trial 
ended. B. Representative participant’s SAF from session 1 to 5 illustrated by plotting 
error as a function of speed for the random (left) and pattern (right) trials. A regression 
line with 95% confidence interval shading is plotted to aid interpretation. Note the 
decrease in error at all speeds — denoted by a rightward shift in the SAF — from the first 
to final sessions for the pattern trials. This decrease in error is not evident in the random 
trials. C. The same representative participants first (upper panel) and final (lower panel) 
session tracings (responses), overlaid upon the target pattern (stimulus) as recorded from 
the touchscreen. Note the decrease in kinematic error and variability. 
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point to create a five-segment trajectory that animated clockwise from point to point. 

Trials consisted of either randomly generated trajectories or a pattern trajectory that 

repeated (i.e. the motor skill to be learned) with similar characteristics as those that were 

randomly generated (i.e., path length, complexity and curve characteristics; described 

below).  

 Segment end points were connected with a constrained minimum linear acuteness 

to ensure that vertices were visible to the participant. Points were pseudo randomly 

generated such that at least one was present in each quadrant of the screen, with inner and 

outer margins set to ensure points were not generated too closely to each other, or to the 

outer edge of the screen. Curves were animated by generating Bezier curves with 

randomly generated control points that determined curve peak magnitude, shift and shear. 

Constraints on control points were set to ensure characteristics varied within a reasonable 

window as determined through pilot testing. Trajectory path length was allowed to vary 

so that all other features could vary flexibly between randomly generated trajectories 

while minimizing computational load. Varying trajectory speeds were achieved by 

pseudo randomizing five animation times (500, 1000, 1500, 2000, and 2500 ms) such that 

each had equal exposure. All settings and constraints described here were determined 

reasonable via pilot testing, and exact numbers used during the experiment are set as 

defaults on the version hosted at the link provided above. 

 Within a single session, a participant performed 50 random and 50 pattern 

trajectories, pseudo randomized within five blocks (20 trials per block: 10 random, 10 

pattern) such that exposure to each condition (i.e. pattern or random) was even 
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throughout the experiment. Within each block, participants were exposed to each of the 

five animation times pseudo randomized to occur twice for each condition. 

 Immediately upon completion of a trajectory animation, a red circle appeared at 

the end location. Participants were instructed to touch this circle to begin reproducing the 

trajectory they had just observed. Successful contact with the red circle turned the circle 

green, indicating that their response was being recorded. Importantly, participants were 

asked to match both the shape and speed of the trajectory observed. That is, participant 

response speed was not constrained (i.e., rejected if too slow or too fast) but instead was 

allowed to vary naturally, allowing for a more continuous sampling of movement speeds 

(see Speed Accuracy Function below for analysis details). Finally, the green circle 

disappeared upon the participants return to the end location thereby marking the end of 

the response and thus the trial. Movement time (MT) was operationalized as the time 

between the beginning and end of a trial — that is, how long the green circle was on the 

screen. Participants in the PPFB group received additional visual feedback, immediately 

following the end of each trial, in the form of a tracing of their response (in blue) overlaid 

upon a tracing of the trajectory they were supposed to recreate (in white). Sensory 

feedback can provide either knowledge of performance or knowledge of results, though 

the latter is typically associated with visual feedback rather than somatosensory; one can 

see and feel themselves shooting a basketball but cannot feel the result at the net. As the 

PP and MI groups did not receive knowledge of results in this experiment, we thought it 

would be useful to include the PPFB group with added visual results feedback. 

 MI participants performed the task similarly with the only difference being that 

when placing their index finger on the green circle to initiate their response, their finger 
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remained in place while they performed imagery of the movement. MI participants were 

asked to simply lift their finger from the screen upon completion of each imagined trial. 

This approach allowed for the quantification of imagined MT, which was then used to 

perform mental chronometry, providing evidence that MI participants performed the task 

as instructed. Mental chronometry was performed by assessing whether a relationship 

existed between stimulus MT and imagined MT, and to compare imagined MT to actual 

(physically executed) MT. 

 Given that PC participants performed a considerably different task as described in 

the introduction, MT was collected but not used in analysis. For PC participants, MT 

represented the time between the participant beginning to select their answer, and ending 

when they entered “submit”. 

2.2.3. Electromyography 

 To ensure participants assigned to the MI group were not physically performing 

the task (i.e., engaging in MI with minimal muscular activation), electromyography 

(EMG) was recorded to allow for monitoring (and subsequent quantification) of muscle 

activity during MI sessions. EMG was recorded using self-adhering Ag/AgCl electrodes 

(3 x 3 cm; Kendall-LTP, Chicopee, MA), affixed to the skin overlying the anterior, lateral 

and posterior shoulder muscles (deltoids) of the arm performing the task. The raw EMG 

signal was bandpass filtered (0-333 Hz) and sampled at 1000 Hz (1902 Amplifier and 

Power 1401, Cambridge Electronic Design, Cambridge, UK) and stored for offline 

analysis. If a participant displayed muscle activity greater than two standard deviations of 

their resting baseline for more than 20% of their MI trials, they were excluded from the 

analysis. This occurred for only one participant. 
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2.2.4. Pattern Trial Trajectories  

 Participants were exposed to one of five possible pattern trial trajectories to 

induce a practice (and subsequently learning) effect. These pattern trajectories were 

selected to ensure their characteristics were as similar as possible to random trajectories: 

each consisted of five segments with the same constraints. To account for features that 

vary for random trajectories (i.e. path length and the two measures of complexity 

described below) pattern trajectories were selected to fall narrowly within half a standard 

deviation of their median value. This was achieved by generating 10,000 random 

trajectories with the same constraints as those to be used in the random condition for the 

experiment and subsequently measuring path length and complexity. These 10,000 

trajectories were then narrowed down to those within half a standard deviation of each 

measure. The remaining trajectories were randomly selected and visually inspected to 

avoid problematic features as determined through pilot testing: we avoided 1. trajectories 

that came too close to the end position part way though the animation to avoid 

participants accidentally ending a trial early, 2. trajectories that included difficult to 

identify vertices (despite the minimum linear acuteness constraint) and 3. trajectories 

whose curves were not evenly distributed between quadrants to avoid bias toward a 

particular area of the screen to avoid participants changing their positioning over the 

course of the experiment. 

2.2.5. Complexity Measures 

 Experiments in motor control and learning often manipulate task complexity by 

altering task and environmental constraints (juggling two versus three balls; juggling on a 

stable versus unstable surface). But how does one characterize task complexity when 
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such constraints are fixed? One method would be to characterize kinematic complexity. 

We used two complimentary measures: 1. total absolute curvature, and 2. approximate 

entropy. Total absolute curvature is a measure of the magnitude of curvature over the 

course of a trajectory. Curvature has been used to characterize movement complexity in 

previous work 4, where it is thought that — when controlling for speed — more curved 

movements involve greater and more frequent changes in muscle activity 25,26. As the 

trajectories in the current study involved discontinuities at segment end points (vertices), 

total absolute curvature was approximated by taking the sum of point-by-point turning 

angle. Approximate entropy is a measure of the predictability of a sequence 27. 

Approximate entropy is useful for characterizing biological motion even in short data sets 

when used appropriately 28. Together, these two measures allow for characterization of 

kinematic complexity operationalized as the magnitude (total absolute curvature) and 

irregularity (approximate entropy) of a trajectory’s curvature. Complexity was measured 

for stimulus trajectories — not participant responses — as it was used mainly to ensure 

the chosen pattern trajectories were adequately similar to randomly generated trajectories 

(see ‘Pattern Trial Trajectories’ above). 

2.2.6. Response Error 

 Participant response error was measured as the ordered point-by-point Euclidean 

distance in millimeters (mm) between stimulus and response trajectories. When stimulus 

and response lengths (that is, the number of samples) were different, the longer sequence 

was down sampled to the shorter to allow the point by point error calculation. As each 

sample was collected with a timestamp, calculations of speed were not affected by down 

sampling. Using this method of error measurement, it is possible that two different 
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responses result in a similar error magnitude despite one having a more accurate “shape”. 

To elaborate, if two participants were tasked to trace the same triangle, and one traced a 

similarly sized rectangle, while the other traced a triangle that was too small, it is possible 

that the small triangle would result in error equal to the rectangle despite being the 

“correct” shape. To ensure error represented participant’s ability to reproduce the shape 

of the trajectory — independent of translation, rotation and scale — participant responses 

were subject to Procrustes transformation using the stimulus trajectory as a template 29. 

Procrustes transformation has been used in the analysis of human movement in previous 

literature 30. Further, we ensured participants were not penalized for natural human 

variation in movement speed. That is, it is reasonable that participants would move faster 

on straight or minimally curved paths while slowing down on sharp turns. We wished to 

allow for such variability in movement speed within a trial. Stimuli were animated and 

therefore sampled at a constant speed. Dynamic time warping was used to optimally 

transform participant response trajectories onto stimulus trajectories 31, allowing for error 

measures that are insensitive to local compression or stretches due to variability in 

timing. Procrustes and dynamic time warping transformed participant response 

trajectories were finally compared to the stimulus trajectory by calculating the distance 

between associated points in each time series. Response error for a given trial was 

calculated as the mean of this point by point distance (Figure 2.1 B illustrates mean error 

per trial as a function of speed). Response speed of a trial was calculated as the total path 

length divided by the movement time (as described in ‘Response’ above). 



 83 

2.2.7. Speed Accuracy Function 

 Bayesian multi-level modelling was adopted to perform statistical inference on 

the magnitude (Cohen’s d effect sizes; ES) and corresponding uncertainty (95% Highest 

Posterior Density Interval; 95% HPDI) for each group’s performance by block over the 

course of the experiment, each groups learning from the first to last blocks of the 

experiment, and between group differences in learning 32. Bayesian statistical inference 

was used to analyze the present work for the following reasons: 1. Bayesian modelling 

allows for convenient modelling of how the experimental manipulations affect a 

parameter of interest — in this case, the shift of the SAF function — rather than being 

restricted to interpreting the slope or intercept as per linear regression, 2. once the size 

and uncertainty (posterior density) of parameters of interest are estimated, one can 

perform inference on any comparison of interest without additional statistical tests, since 

Bayesian inference does not fall prey to the problem of multiple comparisons, which is 

desirable given that our design involves numerous groups, conditions and sessions, 3. 

Bayesian modelling easily handles missing data, which is highly beneficial given that the 

MI and control groups do not have any speed or error data for the first four days of the 

experiment. For those less familiar with Bayesian statistics we suggest the technically 

incorrect but useful conceptualization of a 95% HPDI as analogous to a classical 95% 

confidence interval, and highly recommend the recent review by Kruschke and Liddell 

for a well written and intuitive explanation 32.  

 Given that extensive previous research indicates that SAF’s are typically sigmoid 

functions where error increases as a function of movement speed 33,34, we modelled data 

using the generalized logistic equation 35: 
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𝑒𝑟𝑟𝑜𝑟 = 𝐵 +
𝐴 − 𝐵	

1 +	𝑒!"	(%&''(	–	*)
(1) 

 

where A is the upper asymptote of error (in units of mm for the present experiment), B is 

the lower asymptote, C is the maximum slope, and D is the speed (in units of mm/ms for 

the present experiment) at maximum slope. Improved performance is represented as a 

rightward shift in the function over time, modeled by a larger D term. 

 It should be noted that although observed data may give the impression that the 

function changes shape over time (e.g. lowering A), or might take a logarithmic shape 

rather than logistic, this is most likely an artefact of limited sampling across possible 

speeds. That is, if participants were required to perform the skill at ever higher speeds 

one should eventually observe the same upper asymptote of error, and at ever lower 

speeds and therefore without a time constraint, one could theoretically perform the 

movement perfectly. Therefore, the only term in the model allowed to vary by 

experimental manipulation (e.g. time, random versus pattern trajectories, and group) was 

D. 

 Participant speed and error data were scaled from 0 to 1 to allow for intuitive, 

standardized priors. The upper asymptote parameter A was allowed to vary globally (but 

not between experimental manipulations) with a prior centered at 1 (the highest observed 

error). The lower asymptote B was removed from the equation, effectively constraining it 

to zero (theoretically perfect performance given an unlimited movement time). The 

maximum slope parameter C was allowed to vary globally with a prior centered 1 (given 

that the speed and error axes both ranged 0 to 1). Finally, the global intercept parameter 
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D0 had a prior centered at 0.5 given the scaling of the data, and all other effects in the 

linear model of D were modelled as deflections from D0 centering priors at zero. 

Uninformative but regularizing (non-uniform) priors were used throughout. Therefore, 

the final model was: 

 

𝑒𝑟𝑟𝑜𝑟, ~ 𝑁(𝜇, , 𝜎)  

𝜇, = 𝐴-	
1 +	𝑒!"!	(%&''("	–	*")

  

𝐷, = 𝐷- + 𝐷./01&[,] ∗ 𝐷%'%%,04[,] ∗ 𝐷56078[,] ∗ 𝐷704(,9,04[,] + 𝐷&:/9,7,&:49[,]  

𝐴- ~ 𝑁(1, 1)  

𝐶- ~ 𝑁(1, 1) (2) 

𝐷- ~ 𝑁(.5, 1)  

𝐷';;'79% ~ 𝑁(0, 1)  

𝐷&:/9,7,&:49 ~ 𝑁(0, 𝜎&:/9,7,&:49)  

𝜎&:/9,7,&:49 ~ HalfCauchy(0, 2)  

𝜎 ~ HalfCauchy(0, 2)  

 

All available error and speed data, from each trial of each participant, were fit to the 

model using Hamiltonian Monte Carlo sampling as implemented in Rstan. To aid in 

interpretation, posterior probability densities for SAFs were simulated using the 

generative model derived via Bayesian model fitting and plotted in Figure 2.2. The 

posterior was then sampled to obtain the SAF shift (term Di) for each group, session and 

condition to produce plots, effect sizes and their respective HPDI for interpretation. 
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2.2.9. Performance and Learning 

 Performance was operationalized as the SAF shift during pattern trials after 

subtracting the SAF shift during random trials (displayed in Figure 2.3); that is, the 

degree to which participants were better at the repeated pattern trajectory compared to 

unrepeated random trajectories. Learning was operationalized as the difference in 

performance between blocks and most importantly as the difference between the first and 

final blocks of the experiment. Learning is best operationalized as a between session 

difference in performance, as within session performance can differ for many reasons 

(attention, fatigue, etc.) and do not reflect a “relatively permanent” change in 

performance 19. This poses a challenge for researchers studying motor learning of a novel 

skill via MI — by assessing performance at the beginning of the experiment, subsequent 

MI practice is no longer that of a novel skill; and inversely, if one does not assess 

physical performance prior to MI, baseline performance is not available — as is the case 

with the present experiment. Fortunately, in our case the initial session of the PP group 

affords a truly naïve baseline: a performance measurement unaffected by prior exposure 

to the physical task or any other training method such as MI, and for which task 

conditions are identical (no additional feedback) to the final session of the MI and PC 

groups. Therefore, learning was assessed in the MI and PC groups by comparing their 

final block (block 25) performance with the initial block (block 1) performance of the PP 

group. PPFB was compared to its own initial performance as it better reflected the initial 

task conditions (additional feedback). 

 Mental chronometry was also analyzed using Bayesian statistics but with a simple 

linear regression model predicting imagined MT from stimulus MT. The perceptual 
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control task was analyzed by first calculating an effect size for the difference in their 

accuracy from random chance to ensure they were attending to and performing the task as 

instructed, and then using regression models to assess whether performance changed 

across the four training sessions in pattern or random trials. 

 

Figure 2.2. Fitted SAFs from beginning (block 1) to end (block 25) of experiment for 
each group. Lines illustrate the mean error with shaded 95% HPDI) of an average 
participant. No data was available for first 20 blocks of PC and MI. The larger distance 
between random and repeated trials in the final block compared to the first is particularly 
clear in the PPFB group. Note the higher density of trials performed at lower speeds, 
which is indicative of participants tendency to approach a comfortable speed when 
allowed to self-pace their responses, particularly near the end of the experiment. This 
illustrates the importance of assessing motor performance through modeling the SAF. 
Bayesian modeling handles this variability in sampling; as less data is collected at higher 
speeds, estimates are less certain and the HPDI becomes wider. 
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2.3. RESULTS 

 We confirmed MI participants conformed with the instructions to imagine the 

required movements at the correct speeds by comparing their imagined MT to the 

animation MT (i.e., mental chronometry). MI participants modulated their imagined MT 

according to the stimulus MT during imagery sessions (i.e., sessions one to four; 

modeling participant MT as a function of stimulus MT; intercept: 1.10, 95% HPDI: 1.05 

to 1.15; positive slope: 0.82, 95% HPDI: .78 to .85). While MI participants were 

generally slower (longer MT) than PP participants during imagery sessions (MI mean MT 

(seconds): 2.33, SD: 1.13; PP mean MT: 1.92, SD: 0.78), this difference became 

negligible on the fifth session when MI participants performed the task physically (MI 

mean MT: 1.98, SD: 0.75; PP mean MT: 1.84, SD: 0.70).  

 Next, we sought to ensure that the PC group performed the perceptual observation 

task during the initial four sessions as asked, and whether this led to learning of the 

movement patterns they observed. Participants in the control condition demonstrated 

generally low error on the perceptual observation control task relative to chance (mean 

absolute error: 0.78, SD: 0.75; simulated random responses mean: 1.41, SD: 1.04; ES of 

difference in means: 0.68, 95% HPDI: 0.15 to 1.13), suggesting that they were indeed 

paying attention to the perceptual stimuli. Furthermore, PC participants demonstrated 

slightly better performance on pattern compared to random trials over time (a negative 

mean slope of absolute error across blocks was found on pattern trials: -0.011, for which 

the 95% HPDI only slightly overlaps with zero: -0.017 to -0.004; but this was not the 

case with random trials which were centered close to zero: -0.0002, 95% HPDI: -0.005 to 
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0.004), providing a baseline estimate of the degree of perceptual learning that could be 

expected through repeated visual exposure to the pattern trial stimuli.  

 We then interpreted the main experimental findings by assessing the results of the 

model fit. At all trajectory speeds, participants in all groups were more accurate for 

pattern compared to random trials (Figure 2.2). This finding was apparent by the end of 

the first block of the experiment, demonstrating rapid learning of the pattern after only 10 

trials (Figure 2.2, block 1). Throughout the experiment, performance on random trials 

was static while performance on pattern trials improved, leading to a larger rightward 

shift in the SAF as training progressed (Figure 2.2, block 25; the fifth block of the fifth 

session). Given that initial (session one) performance is not available for MI and PC 

groups, we inferred whether each groups baseline performance was similar, by assessing 

mean performance on random trajectories only (as opposed to the difference between 

pattern and random SAF’s) for the first block whereby each group performed physically. 

Random trajectory performance is therefore the position (rather than the shift) of the SAF 

(speed at maximum slope in units of mm/ms), and will be termed “random performance” 

to avoid confusion. Random performance for all groups was similar at baseline with 

highly overlapping HPDIs (mean random performance of PC group: .28, HPDI: .24 to 

.34; MI group: .24, HPDI: .20 to .30; PP group: .29, HPDI: .24 to .33; PPFB group: .23, 

HPDI: .18 to .28). Even after four days of training, PP and PPFB groups improved their 

random performance only slightly (session five block one mean random performance of 

PP group: .34, HPDI: .29 to .39; PPFB group: .29, HPDI: .24 to .35) and were not 

significantly different from the PC and MI groups (highly overlapping HPDIs). This 
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similarity in random performance provides evidence that baseline task performance was 

comparable between all groups. 

 Again, using simulations from the generative model, each group’s performance — 

their SAF shift on pattern trials minus the SAF shift on random trials — was plotted for 

all blocks in Figure 2.3. We found a very large effect of learning from the first to final 

block (block 25; Figure 2.3) in the PPFB group (ES: 3.31, 95% HPDI: 1.75 to 5.17; 

Figure 2.3). The PP (without feedback) group demonstrated a small effect of learning 

from the first to final block of trials, but a large portion of the interval overlapped with 

zero (ES: 0.35, 95% HPDI: -0.56 to 1.30; Figure 2.3). Taken together, the results from 

the two PP groups suggest that learning is greatly enhanced when added visual feedback 

is available. 

 The MI group demonstrated a large effect of learning from the first to final blocks 

(ES: 1.19, 95% HPDI: 0.19 to 2.37; Figure 2.3), and the PC group demonstrated a 

negligible effect of learning whose interval overlapped considerably with zero (ES: 0.13, 

95% HPDI: -0.78 to 1.07; Figure 2.3). These results indicate motor learning did not occur 

in the PC group despite the control task results reported above showing that this group 

learned to recognize the repeated pattern better over the course of the experiment. 
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2.4. DISCUSSION 

 Overall, the finding of a greater effect of learning for the MI group compared to 

the PC group leads us to question long-standing assumptions about MI based learning 

and the necessity of feedback in motor learning generally. Specifically, our results 

indicate that engaging in MI based training improved motor execution of a novel 

Figure 2.3. Learning across experimental blocks for each group as per the fitted model. 
Performance was operationalized as the difference between pattern and random SAF 
shifts, and is presented as mean ± SD. Learning can be observed as increases in 
performance over time. Estimates are not presented for sessions one to four in MI and PC 
groups given that no physical performance data was collected for these blocks. When 
compared to initial block performance in the PP group, MI clearly outperforms the PC 
group on physical testing during the final session. 
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kinematic pattern, rather than improving performance due to perceptual learning. This 

conclusion is underscored by the relative absence of learning in the PC group, which 

suggests that motor learning via MI cannot be attributed to simply improved recognition 

of the stimulus. Our hypothesis is partly supported, in that learning appears to have been 

greatest in the PPFB group, then MI, then PP, and then PC. Overall these results suggest 

that when using an appropriate experimental design, MI appears to be capable of driving 

motor learning of a complex motor pattern, improving one’s ability to execute the plan 

despite lacking prior physical experience. 

 That PP without added visual feedback failed to demonstrate a robust learning 

effect over the course of the experiment might appear surprising. One might expect at 

least some learning to occur due to use-dependent learning, where repetition of a 

movement direction biases it for future movements 36,37. However, use-dependent 

learning is typically demonstrated using simple tasks, and complex trajectories involve a 

variety of directions which may preclude a biasing in any particular direction. Still, 

previous work has shown that participants exhibit motor learning even when both visual 

and somatosensory feedback is disrupted 38. However, the nature of feedback is of critical 

importance: in the study cited above, participants had their arm sensation disrupted via 

vibration and view of their arm occluded (disrupted performance feedback) but were still 

able to view the position of a cursor representing their performance (intact results 

feedback). When a participant can see the results of their actions they are able to improve 

their performance and learning can occur, even if their sensation of that action is 

disrupted. However, when results feedback is restricted — like shooting a basketball and 

closing one’s eyes immediately after the ball leaves the hands — there is no basis to 
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determine what corrective movements will adjust the plan to achieve the goal more 

effectively. That is, there is no error signal related to the goal. We believe our findings 

demonstrate that a lack of results feedback may be disruptive to between-session learning 

when training a complex movement skill via PP. That said, it should be noted that the PP 

group did slightly improve on random trajectory performance as stated above, and that 

this may underrepresent the true effect of learning in the PP group (indeed, this would be 

the case for the PPFB group as well). Though it may be less certain than for other groups, 

the results suggest that it is more likely the PP group learned. Given the lack of 

improvement in the PC group that will be discussed below, the larger learning effect 

observed in the PPFB group is likely driven by the provision of additional error 

information, rather than extra stimulus exposure afforded by the presentation of feedback. 

 Despite a lack of results feedback throughout the experiment we observed a 

significant learning effect in the MI group. Although it might be tempting to assert that 

these improvements are simply the result of perceptual learning of the movement pattern 

over repeated exposure, the results show that learning in the MI group was significantly 

higher than that observed in the PC group (ES for difference between MI and PC: 0.82, 

95% HPDI: 0.28 to 1.51). These results support the notion that motor learning can occur 

in the absence of any sensory feedback. This differs importantly from learning that may 

occur at other stages on the path from perception to action, such as perceptual learning, 

goal selection or stimulus-to-response mapping. Our results do not preclude MI from 

being capable of supporting learning through these earlier stages; indeed, evidence exists 

suggesting that it does 14. The significance of the present result is that MI appears to also 

drive learning at a later stage of processing: developing and improving upon a motor plan 
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— and therefore execution — even in the absence of results feedback. While previous 

work indicates that motor learning can occur without outcome information through use-

dependent learning as discussed above, this is not possible during MI as execution never 

occurs. That the absence of results feedback did not disrupt motor learning via MI 

suggests that perhaps alternative learning mechanisms that do not depend on such 

feedback are at play. Motor learning via MI may result from a simulation mechanism 

whereby a forward modeling process determines the likelihood that a motor plan would 

be successful, thereby providing a basis for improving the plan 39. Indeed, this notion of 

MI recruiting the forward model to predict the sensory consequence of imagined 

movement has recently been demonstrated 40. 

 Our results are best explained by acknowledging that MI is not simply motor 

planning without movement, but a fundamentally different process. Evidence for such an 

assertion exists in both basic and applied research. Neuroimaging research consistently 

reveals overlapping but different neural circuits associated with MI compared to motor 

execution 41. For instance, both MI and overt motor performance activate largely similar 

frontal and parietal networks 42,43. However, sensorimotor areas engaged during MI are 

more associated with motor planning than execution, demonstrating more rostral than 

caudal contralateral primary motor cortex 44, more ventrocaudal than dorsorostral 

ipsilateral cerebellar activity 45, more rostral than caudal SMA activity 46, and more 

caudate nucleus rather than posterior putamen activity in the basal ganglia 46. Applied 

studies also appear to demonstrate that MI is different from PP, rather than less effective. 

Although PP is often shown to be superior to MI alone, a combination of MI and PP 

tends to result in greater training related gains in performance compared to PP alone, 
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even when controlling for total practice time 47,48. Theoretically, MI is thought not to 

simply include motor planning without subsequent execution, but a simulation of 

movement as well as the sensory feedback likely to result 39. Some have postulated that 

motor execution also relies on these simulations to assess feedback for online movement 

correction (e.g. forward models as per the computational sensorimotor control literature) 

49. However, while feedback is expected during physical execution, it is not during MI — 

which may further explain our result of negligible learning in the PP group. MI on the 

other hand may rely solely on simulation of the motor plan — while disengaging 

mechanisms depending on feedback — and learning occurs by adjusting the plan to 

correct perceived differences between simulated and desired outcomes.  

 Limitations of our work center around the nature of both the motor and perceptual 

control tasks, as well as those inherent in MI research. Human performance of complex 

tasks can be considerably variable, and in the case of this experiment such variability can 

be observed clearly in Figures 2.1, 2.2 and 2.3. We attempted to take advantage of this 

variability, rather than average it out, by using multi-level modelling in our statistical 

analysis. Another important limitation is the inherent difficulty in mapping behavioral 

tasks to theoretical cognitive processes: namely whether the motor task truly captured late 

stage motor processing, or whether the perceptual control task truly captured perceptual 

learning. It is conceivable that such processes are highly parallel and interdependent, and 

thus impossible to isolate exclusively. Next, the lack of robust learning observed in the 

PP group might have simply been due to frustration or boredom on part of the participant 

given the lack of reward, whereas MI may be more engaging given that it reportedly 

requires more effort. Indeed, it was an attempt to combat boredom that motivated the PC 
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task design to include a touchscreen response after each trial, which itself could have 

altered the PC task in such a way as to reduce its comparability to the motor task. 

However as discussed above, methodological limitations could have also affected the PP 

group result. Finally, the poor performance of the PC group might have been due to 

interference via altering the nature of the task, however we feel this would have been 

reflected in the random performance analysis performed. Overall, given that the nature of 

MI precludes its accurate measurement — we cannot observe or measure exactly what 

others are imagining — operationalizing learning and designing carefully controlled 

experiments will always be a challenge.  

 In conclusion, our results demonstrate that MI based practice can drive motor 

learning of a kinematically complex multi-articular motor skill in the absence of 

feedback. We propose that learning a motor plan during MI may depend on simulation of 

the motor plan. Future work will require a combination of well-designed neuroimaging 

and behavioural studies to disentangle the mechanisms driving simulation-based and 

feedback-based mechanisms involved in motor learning. Our results appear to indicate 

that feedback-based motor learning (as per the PPFB group) is much more effective than 

simulation-based motor learning (as per the MI group) alone — determining why this is 

the case would be a boon to improving applications to neurorehabilitation, vocational and 

sports training. Further, are these mechanisms complimentary, and if so, are they additive 

or do they interact to provide multiplicative results? When PP is not possible — as is 

often the case in neurorehabilitation and injured athletes — how might neurofeedback 

affect MI based training? Answering these questions and more will require investigators 
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to employ experimental tasks that capture more aspects of motor learning than those 

traditionally employed.  
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CHAPTER 3 | IMAGINED MOVEMENT ACCURACY IS 

STRONGLY ASSOCIATED WITH DRIVERS OF OVERT 

MOVEMENT ERROR AND WEAKLY ASSOCIATED WITH 

IMAGERY VIVIDNESS 

3.0. ABSTRACT 

 Theories of motor imagery conflict in their account of what happens during the 

execution of an imagined movement, with some suggesting that movement is simulated 

while others suggest it involves creating and elaborating upon an abstract representation. 

Here we report evidence that imagery involves the execution of an imagined movement 

and that it varies in accuracy. Two groups of participants performed a motor task focused 

on challenging movement execution either overtly or via motor imagery. Overt 

performance was used to model expected performance given required movement 

characteristics (e.g., speed, complexity, familiarity), which was then compared with self-

reported accuracy during imagery. Movement characteristics had a large effect on self-

reported accuracy compared to a small effect of imagery vividness. Self-reported 

accuracy improved across trials with familiar movements compared to novel movements 

in a similar manner for each group. The complexity of the imagined movement did not 

influence movement time during imagery or overt trials, further suggesting that imagined 

movements are executed rather than abstractly represented. Our results therefore support 

models of motor imagery that involve the simulation of a movement and its viability, 

which may be the basis of imagery-based motor learning.  
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3.1. INTRODUCTION 

 Motor imagery and its relationship with overt movement and motor learning 

remains an active area of debate 1–3. Interest in motor imagery is driven to a large degree 

by its potential applications — particularly as a modality to drive motor learning in 

neurological rehabilitation 4–6. It is therefore critical to understand the mechanisms of 

imagery-based motor learning, which is typically investigated by comparing imagery to 

overt movement. Theories of motor imagery posit varying levels of similarity between 

imagery and overt movement. The highly influential motor simulation theory claims 

functional equivalence such that, aside from the absence of movement, motor imagery 

involves the same computational and neurophysiological processes as overt movement 

7,8. Competing theories propose that motor imagery is largely an abstract cognitive 

process that does not recruit the motor system 9. More recently authors propose a middle 

ground whereby motor imagery shares in some processing involved in overt movement, 

such as motor planning, but then diverge into an entirely different process when the 

movement reaches the execution stage 2. It has also been proposed that motor imagery 

involves a simulation of movement execution, recruiting parts of the motor system to 

perform this simulation without executing the movement overtly 1. Depending on 

experimental details, behavioural and neuroimaging studies provide limited support for 

any one of these perspectives. That is, motor imagery and overt movement share 

activation patterns in some brain regions, but also show differences in others 3,10. Thus, it 

remains unclear how imagery may be used to drive motor learning in a way that derives 

similar benefits as practicing via overt movement.  
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 The variety of results reported in the literature may be explained by the wide 

range of tasks used. Several potential processes may be differentially recruited depending 

on the demands of the experimental task. Overt movement is understood as involving 

several interdependent processes, such as perceptual processing, goal selection, decision 

making, motor planning, action selection and finally execution 11,12. Improvements in 

performance — and over time, learning13 — can be attributed to changes in any 

combination of these processes. For instance, one may learn to better recognize patterns 

that shape task demands 14, create or refine a motor plan 15, or improve the quality of 

movement execution 16. Experimental tasks such as serial reaction time (SRT) tasks 

likely bias the participant to rely on perceptual or cognitive rather than motor processes 

16–18. Few motor imagery studies utilize tasks that challenge motor execution and assess 

performance changes via the speed-accuracy function 19,20, which is considered the 

preferred method of assessing the quality of motor execution 16. We propose that at least 

part of imagery’s apparent reliance on perceptual and cognitive functioning is due to the 

use of experimental tasks that challenge those functions and do not adequately challenge 

movement execution.  

 We recently demonstrated that motor imagery is indeed effective for learning to 

execute a novel motor skill 19. This was achieved using an experimental touchscreen task 

that involved complex, multi-articular movements that were either randomly generated or 

repeated, measuring performance via changes in the speed-accuracy function. 

Importantly, the results could not be explained by perceptual learning alone. Given that 

motor imagery lacks sensory feedback, the existence of motor learning via imagery 

appears paradoxical. Sensory feedback is regarded as necessary for motor learning 21, as 
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either visual or somatosensory information provides error signals that can be used to 

make adjustments both during performance and in subsequent attempts 22,23. However, 

given that motor imagery may involve a simulation of the executed movement, it is 

possible that participants have access to the quality of this simulation — consciously or 

unconsciously — and therefore are able to make refinements to a motor plan based only 

on a comparison between the intended outcome and the predicted outcome 24. Indeed, it is 

well established that sensorimotor control involves forward models that predict the 

sensory consequences of an action as it unfolds, which allows for corrections earlier than 

can be explained by sensory feedback alone 25,26. It has been demonstrated recently that 

motor imagery also involves the use of forward models to predict the sensory 

consequences of an imagined movement 27. Thus, during repeated motor imagery-based 

practice performance improvements may be driven by comparisons between predicted 

and intended outcomes of the imagined movement. Alternatively, the motor-cognitive 

model of imagery supposes that while overt action is able to rely on unconscious and 

automatic processes such as forward models, motor imagery is unable to utilize these 

processes 2. Instead, motor imagery utilizes executive processes to consciously elaborate 

upon abstract representations of the movement. More complex tasks require greater 

executive resources to form a representation and therefore give rise to increased 

movement times compared to overt action. One can interpret this as implying that rather 

than imagery involving the processing of predicted error, imagery is instead an exercise 

in creating an abstract image of a movement and refining it. That is, as participants are 

repeatedly exposed to the movement to be imagined, they simply refine their 

representation to make it more vivid, rather than simulate its execution and assess its 
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accuracy. It therefore remains an open question whether imagery-based motor learning is 

the product of processing simulation error or the product of refining the vividness of an 

error-agnostic representation.  

 To answer this question, we utilized a previously established experimental task 19 

that involves participants replicating a kinematically complex movement pattern at 

varying speeds on a touchscreen either overtly (overt group) or through motor imagery 

(imagery group). Varying speeds allowed for the assessment of the speed-accuracy 

function to investigate the quality of movement execution. The task includes both a 

repeated pattern assigned to the participant (repeated condition) as the task to be 

practiced, as well as randomly generated patterns (random condition) that are novel 

throughout the experiment. While it can be argued that no movement is completely novel 

as it may be comprised of familiar movement components (e.g., primitives) 28–30, more 

complex movements can be sufficiently novel combinations of familiar patterns. 

Movement pattern complexity varied in the random condition as well as across 

participants with respect to the pattern they were assigned. Importantly, after every trial 

we asked participants in each group (both overt and imagery) to self-report how accurate 

they believe their performance was. At the end of each block for the imagery group only, 

we asked participants to rate how vivid their imagery had been in the preceding block of 

trials. Given that the overt group will have overtly performed the movement and are 

therefore afforded sensory feedback, their self-reported accuracy should have a strong 

relationship with their performance as measured by the speed-accuracy function. 

However, if motor imagery does not involve error processing and instead involves only 

the elaboration of a representation, participants self-reported accuracy during imagery 



 108 

may be a function of the number of trials for which they have formed the image, and may 

be related to their vividness ratings, but will not have a strong relationship with the error 

you would expect given the speed and complexity of the task. That is, in the imagery 

group compared to the overt group, the movement pattern will not be sensitive to known 

drivers of performance (e.g., speed) and self-reported accuracy will have a weaker 

relationship with performance as measured by the speed-accuracy function, and 

variability will instead be best explained by their vividness ratings. Given previous 

findings that motor imagery involves the use of forward models 27 and that imagery 

participants appear to be able to report their accuracy 24, we hypothesized that imagery 

participants self-reported accuracy will indeed have a strong relationship with their 

expected error. We also tested whether self-reported accuracy changes across trials in the 

repeated condition compared to the random condition to investigate whether error 

processing during imagery evolves similarly to overt practice — that is, we hypothesized 

that imagery is indeed capable of forming novel motor representations in the absence of 

previous overt experience and updating the representation in an experience-dependent 

fashion similar to the overt group. Finally, we analyzed whether movement complexity 

had a differential effect on movement time between groups. Importantly, our 

experimental task involved variation in the kinematic complexity of the movement 

pattern rather than altering goals or sensory features of the task, or adding interference 

tasks which may affect processes upstream to motor execution. If motor imagery depends 

on limited cognitive resources to form and maintain a representation during imagery, 

increased complexity should increase movement time compared to the overt group. 

However, if imagery involves forming a representation of the movement and then 
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performing it via a simulation of the movement and assessing its error, complexity may 

not have a different effect on movement time between groups. Again, we hypothesized 

that imagery involves error-processing and therefore movement time would not differ 

between groups.  

3.2. METHODS 

3.2.1. Participants 

 We recruited 96 participants with normal or corrected-to-normal vision who self-

reported having typical upper body sensorimotor function. Nine participants were 

removed from analysis due to technical issues with the experimental setup, resulting in a 

final data set of 87 participants. Participants were randomized into two groups with 

constraints to ensure roughly equivalent enrollment in each. The imagery group consisted 

of 43 participants, with a mean age of 23.2 years (SD = 4.74), 27 identifying as female; 6 

were left-handed, and 1 was ambidextrous. The overt group consisted of 44 participants, 

with a mean age of 23.8 years (SD = 7.67), 32 identifying as female, and 2 were left-

handed. Note that handedness was determined using the Edinburgh Handedness 

Inventory31, and participants performed the experimental task with their dominant hand, 

with the single ambidextrous person choosing to perform the task with their right hand. 

3.2.2. Experimental task 

 Participants performed a motor task designed to challenge execution of a 

kinematically complex, multi-articular upper extremity movement, the details of which 

have been described previously 19. Briefly, participants sat at a 24” touchscreen monitor 

situated within a black box to reduce environmental distraction and ensure adequate 

contrast of the stimulus on the screen (Figure 2.1 A). Each trial consisted of a stimulus 
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followed by a participant response. The study was performed in a single session with 6 

blocks of 20 trials for a total of 120 trials. Imagery group participants performed 5 blocks 

of imagery trials with a final block of overt trials, and the overt group performed 6 blocks 

of overt trials.  

 Rest between trials was self-paced such that participants began a trial by tapping a 

button on the screen to begin the stimulus presentation. Stimuli depicted the movement 

pattern to be replicated by the participant, represented by a white dot that travelled from 

the starting position to four vertices before returning to the starting position. The starting 

position was always positioned in the bottom vertical (on the y-axis) half of the screen, 

with some variation depending on the pattern, and always centered horizontally (on the x-

axis). The white dot made curved trajectories between each of the vertices, and always 

made a clockwise transition from vertex to vertex. Each stimulus pattern therefore 

consisted of five curved lines (see Figure 2.1 A). Stimulus patterns could therefore vary 

by the location of the vertices as well as the curvature of each trajectory between vertices, 

which gave rise to varying complexity. Complexity for a given trajectory was measured 

as its sinuosity, defined as the total pathlength of the trajectory, divided by the distance 

assuming each of the five lines were perfectly straight. Each participant was assigned one 

of five repeated trajectories (the movement to be practiced) that was presented at an equal 

ratio with randomly generated trajectories of similar complexity, resulting in 60 

“repeated” and 60 “random” trials that were presented randomly but in equal proportions 

in each block. In either the repeated or random condition, the stimulus was animated in 

five different movement times (giving rise to varying speeds) in 500ms increments from 

500ms (fastest) to 2500ms (slowest). Participants were asked to match both the 
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movement trajectory as well as the speed of the movement on each trial. This allowed for 

performance to be assessed with a speed accuracy function. 

 Immediately upon the completion of the stimulus presentation, participants were 

cued to respond when the starting position appeared as a red circle. Once the response 

was initiated by placing a finger on the starting position, the color changed from red to 

green indicating that the trial was “recording”. Note that as this was not a reaction time 

task, participants were not asked to respond as quickly as possible — the emphasis was 

on faithful reproduction of the stimulus pattern and the speed at which it was presented. 

The movement always began at the starting position and the end of a response was 

marked by returning to the starting position. Once a trial was complete, participants were 

not presented with visual feedback other than their own observation of their overt 

movement — that is, at no time was a tracing of their movement displayed, nor was a 

tracing of the movement they had to replicate. This was done to reduce the differences 

between the overt and imagery groups. The imagery group performed the task similarly 

with the only difference being that once they placed their finger on the starting position, 

they did not perform the movement. Instead, imagery participants were instructed to 

engage in imagery of the movement. At the beginning of the experiment, participants 

were briefly familiarized with motor imagery, including instructions to perform 

kinesthetic imagery. The end of the imagery trial was indexed by simply lifting their 

finger from the starting position as per the overt group. Therefore, movement time was 

indexed in the same way for each group.   
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3.2.3. Self-reported accuracy, actual performance, and expected performance 

 For both groups, immediately after each trial participants were asked “How 

accurate do you think your tracing was?” with a 10-point visual analogue scale where 10 

represented perfect accuracy and 1 represented complete inaccuracy. After each block of 

imagery trials, participants were asked “How vivid was your motor imagery over the last 

20 trials?” with another 10-point visual analogue scale where 10 represented perfectly 

vivid imagery and 1 represented not vivid at all. For each scale, participants responded by 

tapping the number representing their choice on the touchscreen. During overt trials, error 

was calculated as the mean of point-by-point Euclidean distance in millimeters (mm) 

between the stimulus and response trajectories. Both the stimulus trajectory animation 

and participant response trajectory were sampled at the touchscreen refresh rate of 60Hz, 

producing a timestamp and x and y coordinate for each sample. However, while the 

stimulus was animated at a constant speed, natural human movement does not unfold at a 

constant speed — that is, it is reasonable to expect participants to move faster along 

straight lines, slower along curves, and slowest around sharp corners. Therefore, dynamic 

time warping was used to optimally match response trajectories to stimulus trajectories to 

produce a time-invariant error measure 32. To take into account the speed accuracy 

function 20, actual performance (that is, measured from physically executed movements 

during overt trials), was determined by dividing the mean speed by the mean error for 

each trial, thereby producing an intuitive positive number for “better” performance.  

 Given overt movement does not occur during imagery it was not possible to 

calculate actual error for imagery trials. However, for every imagery trial the speed and 

complexity of the stimulus pattern is known, as well as when it occurred in the 
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experiment (trial number) and what trial type it was (repeated vs. random). Therefore, we 

used these variables as well as actual performance captured in overt trials to build a 

model that allowed us to predict expected performance in both overt and imagery trials 

(see statistical analysis below). Importantly, this model included the final block of the 

imagery group which involved these participants performing the movement overtly. This 

allowed for the inclusion of participant level variability in predictions of imagery 

participants expected performance.  

3.2.4. Statistical analysis 

 Bayesian hierarchical modelling was adopted to perform statistical inference in all 

analyses described below. For readers less familiar with Bayesian statistics we highly 

recommend the recent review by Kruschke and Liddell 33, and offer a technically 

imprecise but pragmatic interpretation of the 95% credible interval (from here on referred 

to as the 95%CI) as being similar to the frequentist 95% confidence interval, where for a 

given effect an interval that does not include zero can be considered “statistically 

significant”. Similarly, R2 values with their own 95%CI can also be derived through 

Bayesian statistics34. For ease of interpretation, all variables were scaled to the observed 

data such that their mean value was zero and standard deviation was one. Here our 

Bayesian models used weakly informed priors equivalent to assuming the mean would 

fall somewhere within 10 standard deviations of the data observed. Analyses were carried 

out using the statistical software R, and all scripts can be found online 

(https://github.com/LBRF/DEMI_Analysis_Pipeline).  

 To test our first hypothesis that imagery participants will show a relationship 

between their self-reported accuracy and expected performance given the stimulus 
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characteristics, we first built a model to predict expected performance. First, a 

hierarchical regression model was built such that the dependent variable was actual 

performance (which already took speed into account, as defined above), and independent 

variables including complexity, trial number, trial type (that is, whether the trial was for a 

repeated or a random pattern), and with participant included in a hierarchical fashion as a 

random variable. As our previous work using this experimental task demonstrated that 

performance improves on repeated trials relative to random 19, we included an interaction 

term for trial number and trial type. This model was fit using all overt trials, including all 

trials from the overt group and the final block of the imagery group. This model was also 

used as a manipulation check to ensure actual performance improved across trials on the 

repeated relative to the random pattern.  

 This model was then used to predict expected performance on all trials including 

both overt and imagery trials. This allowed for several follow up regression analyses to 

be conducted on self-reported accuracy: a) self-reported accuracy predicted by actual 

performance on overt trials, b) self-reported accuracy predicted by expected performance 

on overt trials, c) self-reported accuracy predicted by expected performance on imagery 

trials, d) self-reported accuracy predicted by expected performance and self-reported 

vividness on imagery trials, and e) self-reported accuracy predicted by expected 

performance on any trial but with condition (overt or imagery) included as independent 

variable as well as the interaction between expected performance and condition. Results 

from regressions a) to c) were interpreted by comparing R2, while results from regression 

e) were interpreted by assessing model estimates of population-level effects, especially 

the interaction term to determine whether conditions differed in their relationship 
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between self-reported accuracy and expected performance. Regression d) was assessed 

using both methods. That is, the difference in R2 between c) and d) was interpreted to 

determine whether vividness explained a significant portion of additional variance in self-

reported accuracy when added to expected performance, and the model estimates from d) 

were interpreted to comment on the size of effects for each variable and whether they 

interacted.  

 To test our second hypothesis that imagery can be used to practice a novel 

movement and update the representation in an experience-dependent fashion, we 

performed a regression analysis. Self-reported accuracy was the dependent variable and 

independent variables included condition (imagery or overt), trial type (repeated or 

random), and trial number. All possible interactions and main effect terms were included, 

and participant was included as a level in the hierarchy. Of primary interest was whether 

there existed conditional effects (imagery versus overt) on the interaction between trial 

number and trial type (that is, the way performance on repeated trials diverges from 

random trials).  

 To test our third hypothesis that imagery would not differ from overt movement 

(the overt condition) with respect to how complexity affects participants ability to match 

the movement time of the stimulus, we performed a final regression analysis. Here actual 

movement time (which was measured in both overt and imagery conditions) was included 

as the dependent variable, and independent variables included the stimulus animation 

time (which prescribed the target movement time for each trial), complexity, and 

condition (imagery or overt). Again, all possible interactions and main effect terms were 

included, and participant was included as a level in the hierarchy.  Here our primary 
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interest was again whether a conditional effect (imagery versus overt) existed for the 

interaction between stimulus animation time and complexity.  

 For all statistical analyses, variables were scaled to a mean of 0 and standard 

deviation of 1, which aids in interpretation of statistical results especially when variables 

are measured on different scales (e.g., comparing performance with self-reported visual 

analogue scores). This allowed for convenient interpretation of estimated means as 

reflecting Cohen’s d effect sizes.  

3.3. RESULTS 

3.3.1. Self-reported accuracy is correlated with expected performance 

 Regression analyses demonstrated that actual performance improved across time 

in repeated relative to random trials (see Figure 3.1), but this interaction effect was small 

and credibly included zero (Cohen’s d = .04, 95%CI -.01 to .09. This finding is in line 

with our previous work with this experimental paradigm that changes within session are 

modest but become material across multiple sessions 19. Complexity had a small negative 

effect on actual performance (Cohen’s d = -.08, 95%CI -.11 to -.06). 
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 The first model was used to predict expected performance on all trials (both overt 

and imagery) to allow for subsequent regression analyses. As a manipulation check, we 

first investigated whether self-ratings of accuracy correlated with actual performance. 

Indeed, self-rated accuracy and actual performance positively correlated with an R2 of 

0.48 (95%CI: 0.46 to 0.49) which validated that self-reported accuracy was a sensible 

measure to use for subsequent analyses. Next, we used regression analyses to investigate 

the correlation between self-reported accuracy and expected performance in each group 

separately. In the overt group, self-reported accuracy was positively correlated with 
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Figure 3.1. Conditional effects of trial number by trial type (repeated versus random) on 
actual performance during overt trials. Lines represent mean and ribbons depict 95% 
credible interval as estimated by the regression model, not including random effects for 
clarity. Actual performance z-scored to aid in interpretation. 



 118 

expected performance (R2 = 0.51; 95% CI: 0.50 to .52). Similarly, in the imagery group, 

self-reported accuracy was also positively correlated with expected performance but with 

a slightly weaker relationship (R2 = 0.45; 95% CI: 0.44 to 0.47). A subsequent regression 

adding self-reported vividness ratings explained an insignificant amount of additional 

variance (R2 = .47; 95% CI: 0.46 to 0.49) and demonstrated that vividness had only a 

small effect on self-reported accuracy (Cohen’s d = .20; 95% CI: .11 to .29) compared to 

the large effect of expected performance (Cohen’s d = .97; 95% CI: .64 to 1.31) and the 

two factors did not interact (Cohen’s d = .08; 95% CI: -.09 to .26). Importantly, while the 

R2 values were different between groups, a subsequent regression that included both 

groups demonstrated that the positive slopes (that is, the beta coefficients for the group 

by expected performance interaction) were not significantly different between groups 

(Cohen’s d = .07, 95%CI = -.13 to .29). However, there was a significant main effect of 

condition indicating that subjects performing imagery rated their accuracy higher 

(Cohen’s d = .51, 95%CI = .36 to .65; Figure 3.2). These results suggest that participants 

performing motor imagery are capable of imaging movements with a level of 

performance aligned with the demands of the task (e.g., the speed and complexity) and 

their experience with the movement (e.g., trial number and type). 
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3.3.2. Self-reported accuracy improves with experience 

 Next, we investigated whether self-reported accuracy changed across time and 

whether this was different between the overt and imagery groups (Figure 3.3). Regression 

analyses demonstrated a significant interaction between trial number and trial type, where 

repeated trials improved (i.e., self-reported accuracy increased) while random trials did 

not (Cohen’s d = .10, 95%CI = .05 to .14). There was a main effect of condition, where 

participants reported greater accuracy during imagery compared to overt trials (Cohen’s d 
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Figure 3.2. Conditional effect of expected performance on self-reported accuracy for each 
group. While imagery participants rate their accuracy higher in general, self-reported 
accuracy is correlated with performance expected given the characteristics of the trial, 
including the movements complexity, speed, and familiarity (whether the trajectory was 
repeated or not, and when in the experiment the trial occurred). Lines represent mean and 
ribbons depict 95% credible interval as estimated by the regression model, not including 
random effects for clarity. Z-scores presented to aid in interpretation. 
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= .58, 95%CI = .45 to .71). Importantly, there were no significant interactions between 

condition and any other factor — including a lack of a three-way interaction between 

condition, trial number and trial type (Cohen’s d = -.04, 95%CI = -.12 to .04). These 

results suggest that imagery is capable of creating a never before experienced movement 

representation and updating it with repeated practice, improving accuracy as one would 

expect during training that occurs through overt practice. 
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Figure 3.3. Conditional effects of trial number by trial type (repeated versus random) on 
self-reported accuracy for each group. The imagery group consistently rated their 
accuracy higher but demonstrated the same relationship with explanatory variables as the 
overt group, demonstrating that repeated movement patterns improved across trials 
compared to novel (random) movement patterns. Lines represent mean and ribbons depict 
95% credible interval as estimated by the regression model, not including random effects 
for clarity. Self-reported accuracy presented as z-score to aid in interpretation. 
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3.3.3. Kinematic complexity did not influence imagery movement time  

 Next, we investigated whether kinematic complexity had a different effect on 

each group with respect to their ability to match their movement time to the animation 

time of the stimulus. Regression analysis demonstrated that generally participants 

matched their movement time to the stimulus movement time well (R2 of whole model: 

0.76; 95% CI: 0.76 to 0.77) and the main effect of stimulus movement time on response 

movement time was large and significant (Cohen’s d = .72, 95%CI = .68 to .76). 

However, this was the only significant effect in the model. Importantly, the interaction 

between complexity and stimulus movement time was not significantly different between 

imagery and overt conditions (Figure 3.4). That is, complexity did not have an effect on 

participants ability to match their movement speed to the task requirements during 

imagery or overt trials. Furthermore, there was no main effect of condition, suggesting 

that imagery trials did not take longer than overt trials. Finally, there was no main effect 

of complexity, suggesting that increasing complexity did not lead to longer movement 

times. Therefore, movement time was strictly a function of the stimulus animation time in 

during both overt and imagery trials. 

  



 122 

 

 

3.4. DISCUSSION 

 Here we demonstrate that participants self-reported accuracy during motor 

imagery of a novel movement task is modulated by known drivers of performance error, 

including movement speed, kinematic complexity, and experience with the movement. 

Importantly, vividness of imagery had only a small effect on self-reported accuracy and 

explained negligible additional variance compared to these drivers of performance error. 

Further, we demonstrate that this self-reported accuracy is updated with experience, 
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similar to what is observed during error-based motor learning. Finally, we demonstrate 

that kinematic complexity does not modulate movement time during imagery compared 

to overt practice, suggesting that participants appear to perform a reasonably faithful 

replication of the movement during imagined movement execution rather than form and 

elaborate on an image of the movement during that time. Taken together, these results 

provide evidence that motor imagery involves the covert performance, or a simulation, of 

a movement that is not simply an idealized representation of the intended movement. 

Participants in this experiment were able to recognize and report when their imagined 

movement was suboptimal, and this report was modulated by known drivers of error: 

namely the requirement to move faster, or a novel movement that was more complex.  

 This experiment adds to the growing literature that motor imagery makes use of 

internal models 24, namely a forward model to predict the sensory consequences of the 

imagined movement 27, despite never experiencing the actual sensory consequences. This 

may explain why motor imagery is capable of driving motor learning of novel motor 

skills in the absence of sensory feedback 19,35. While motor imagery lacks sensory 

feedback necessary to derive an error signal between the observed effects and the 

intended or predicted effects, imagery may involve the creation of forward models that 

allow for a comparison between the intended and predicted effects of the imagined 

movement 24. Repeated imagery may therefore allow for refinement of the forward model 

or movement representations that depend on it to reduce the difference between the 

intended and predicted effects. It is likely that actual sensory effects provide more 

detailed error information, which explains why imagery participants rated their accuracy 

higher in general throughout the experiment. The lack of additional error information also 
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explains why motor imagery is typically less effective than overt practice for driving 

performance improvements 17,19,20,35–38.  

 Our results differ from those predicted by theories of motor imagery that posit a 

lack of involvement by the motor system. Our finding that task complexity did not 

influence imagery movement times is in opposition to the motor-cognitive model 2. We 

suggest that our results are less surprising when considering the nature of the 

experimental task used in the present study. Here we used a task that emphasizes motor 

execution (whether performed overtly or via imagery) and de-emphasizes upstream 

processes such as perceptual processing, goal selection, and motor planning 12. While it is 

likely impossible to completely isolate any one of these processes — they all operate to 

some degree in parallel — we contend that many experimental manipulations in the 

motor imagery literature are biased to have their effects on processes other than motor 

execution. For example, tasks that measure performance using reaction time are likely 

explained by improvements in perceptual processing of stimuli, goal selection and motor 

planning, but not improvements in the quality of the movement itself. Similarly, many 

motor tasks involve experimental manipulations that require online goal selection and 

motor planning during the movement — for instance, a change to the task requirements 

during execution (e.g., changing a cursor position to require a correction mid-movement), 

or the movement requirements are not completely specified until the movement is in 

progress (common in forcefield paradigms), or an interference task is introduced during 

the movement. In each case, parallel perceptual processing, goal-switching, and motor 

plan updates can disrupt the ongoing or subsequent movement. In the present paper 

complexity was operationalized as a feature of the movement itself and was not altered 
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once the participant began imagining the movement. Our results imply that once a motor 

command is ready to be performed, the amount of time needed to imagine it is not 

affected as long as the participant is allowed to bring the movement to completion 

without making any additional decisions. However, while our results do not support the 

motor-cognitive model, they also do not support the alternative motor simulation theory 

and the notion of functional equivalence. Participants rated their accuracy as significantly 

higher during imagery compared to overt trials, and our previous work with this 

experimental task demonstrated that overt training is superior to imagery for driving 

motor learning 19. What’s more, despite our results with respect to complexity, we agree 

that the literature supports the suggestion by the motor-cognitive model that motor 

imagery requires greater executive resources 2, and point to additional literature 

demonstrating that imagery has a greater reliance on perceptual processing in SRT tasks 

17, imagery more readily encodes effector independent information and may not encode 

effector dependent information at all 37, and imagery appears to drive skill learning 

through different acquisition and consolidation processes compared to overt practice 20.  

 It is possible the greater demand imagery imposes on cognitive resources is multi-

factorial, and particularly due to the challenge of performing a simulation along with the 

need to inhibit overt movement. Overt movement involves online feedback control 

whereby the unfolding movement considers both an evolving forward model and sensory 

information in real time 39,40. Movement simulation via imagery may be afforded forward 

models but there is no sensory information. Online control during movement simulation 

therefore may rely more on the generation of sensory consequence predictions rather than 

simply receiving this information from the environment, which may require additional 
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processing. Indeed, neuroimaging studies have demonstrated that imagery more 

consistently involves activation of parietal structures implicated in sensory integration 

and spatial processing 41,42, patients with parietal lobe damage are impaired in their 

ability to perform imagery 43–45, and imagery-based motor learning is disrupted by 

inhibitory brain stimulation to these parietal areas 46. Another challenge in performing 

motor imagery may involve the inhibition of overt movement while utilizing the motor 

system to perform the simulation 47. The motor-cognitive model posits that for many 

tasks motor imagery is more susceptible to disruption (e.g., longer movement times) than 

overt movement because the motor representation is formed and elaborated upon through 

executive resources. While it is true that frontal cortical regions such as the dorsolateral 

prefrontal cortex are more consistently active during imagery than overt movement 3, and 

that these areas have been implicated in executive functioning 48, it is also true that they 

have been implicated in inhibition 49, and it is possible that increasing working memory 

demands (as per interference tasks) disrupts inhibitory function 50,51. 

 That motor imagery is capable of using forward models to perform a comparison 

between predicted and intended movement provides evidence that imagery involves the 

motor system. However, it raises several additional questions. What is the nature of 

“error” in a motor simulation? When an amateur artist attempts to paint a landscape, it is 

unlikely that they consider the deficiencies in their work “errors” — it’s not a slip of their 

brush, but a lack of ability to reproduce the image they intend to. Our work demonstrates 

that imagery is afforded a sense of accuracy, but it does not necessarily prove that 

simulations produce errors that are then detected and processed as per overt movement. 

We propose that motor imagery engages much of the motor system but with important 
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additions and omissions. Obvious differences include the lack of overt movement, which 

may be reflected in the lack of consistent primary motor cortex activation across 

neuroimaging studies 3, given its critical role in executing skilled movement 52. As 

premotor and parietal motor areas are consistently activated during motor imagery — 

sometimes more so than during overt movement 3 — motor imagery may involve much 

the same perceptual processing and motor planning as during overt movement, but with 

additional movement inhibitory processes as well as greater demands on sensory 

feedback predictions. We contend that during imagery sensory predictions are used to 

inform the evolving forward model in the absence of sensory feedback, resulting in 

iterative use of prediction which may compound uncertainty as a given trial of imagery 

unfolds. While this certainly increases cognitive processing demands of imagery 

compared to overt practice, the human motor system is nonetheless capable of 

performing these simulations, as if to test and iterate over a motor plan without ever 

physically experiencing it. As such, a fertile area of future investigation might be 

developing more sophisticated behavioural tasks that interrogate the computations 

underlying successful motor imagery and their neurophysiological correlates — which is 

indeed an active area of investigation in the study of motor control generally 53–56.  
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CHAPTER 4 | NEUROPHYSIOLOGICAL CORRELATES OF 

ACCURACY DURING AND AFTER IMAGINED MOVEMENT 

EXECUTION 

4.0. ABSTRACT 

 Whether imagined movements involve the processing of accuracy in a similar 

manner as overt movement error-detection is a subject of debate with implications for 

imagery-based motor learning and the practical applications thereof. We sought to 

investigate the neurophysiological correlates of imagined movement accuracy and 

familiarity and contrast them with those observed during overt movement. Participants 

assigned to either motor imagery (MI) or overt movement (OM) had 

electroencephalography (EEG) recorded while performing a motor task focused on 

challenging motor execution of either repeated (familiar) or random (unfamiliar) 

movements. Movement accuracy was self-reported by participants of both groups and 

validated to relate to actual error using OM trials. Generalized additive models were used 

to determine which sensors demonstrated accuracy or familiarity related theta, alpha and 

beta frequency changes both during and after imagined or overt movement. As expected, 

our results largely replicated previous OM findings that low accuracy (i.e., error) is 

associated with increased power in theta over frontal regions and decreased power in 

alpha over posterior parietal regions. MI differed markedly in that low accuracy was 

related to decreases in power in theta over frontal regions and decreased power in alpha 

over posterior parietal regions only when movements were familiar, whereas unfamiliar 

movements led to a decrease in power in alpha over sensorimotor and bilateral parietal 

regions. Taken together, our results demonstrate that MI indeed involves processing of 
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imagined movement accuracy, and that this processing recruits similar brain regions as 

OM but with different neurophysiological features. 

4.1. INTRODUCTION 

 Motor imagery — the mental rehearsal of movement — has been shown to drive 

motor learning 1, sparking considerable interest in its potential use in neurological 

rehabilitation 2–4. Despite a growing body of literature, the underlying mechanisms of 

motor imagery are poorly understood. Many of the challenges of studying motor imagery 

are rooted in its covert nature. That is, investigators of motor imagery have few 

behavioural outputs to measure given that overt movement does not occur. Instead, 

studies often rely on studying the effects of their experimental manipulations on the 

duration of imagined movements 5,6, or investigating performance changes in overt 

movement before and after imagery 1. Neuroimaging techniques offer a compelling tool 

for making inferences about the processing involved during imagery 7,8, but the data 

collected with these technologies are still limited by the behaviours they can be correlated 

with. Given the difficulties inherent in studying motor imagery, it is not surprising that 

theories accounting for its underlying mechanisms differ considerably.  

 Theoretical frameworks of motor imagery often involve comparisons with overt 

movement. One prominent theory known as motor simulation theory posits that motor 

imagery involves the same processes as overt movement — including “functionally 

equivalent” neural mechanisms — but without the occurrence of overt movement 5,9,10. 

Modern interpretations of motor simulation theory elaborate on why movement is absent 

during imagery (e.g., inhibitory mechanisms)11, and what happens during that absence 

(e.g., an internal simulation of the movement and its sensory consequences)5,12. Motor 
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simulation theory has recently been directly challenged by the motor-cognitive model 6. 

The motor-cognitive model posits that motor imagery and overt movement share pre-

movement motor planning processes but diverge upon motor execution, where imagery is 

unable to avail to unconscious and automatic motor processes. Instead, motor imagery 

becomes an executive process requiring greater cognitive resources compared to overt 

movement to form and elaborate an image of the movement. In addition to these 

contrasting theories, experiments show that the differences and similarities between 

motor imagery and overt movement appear to be subtle but important. For instance, 

experimental work has demonstrated that compared to overt movement, motor imagery 

appears to rely more on perceptual processing 13, more readily encodes effector 

independent information about a movement 14, utilizes different acquisition and 

consolidation processes when driving motor learning 15, and is generally less effective at 

driving motor learning 16–18. However, an important similarity with overt movement is 

that motor imagery appears to be capable of utilizing forward models that predict the 

sensory consequences of the imagined movement 19. That motor imagery utilizes forward 

models may provide an explanation for why motor imagery is capable of driving motor 

learning in the absence of an error signal provided by movement related sensory feedback 

16. That is, it is possible that an error signal may be derived from a comparison between 

the intended outcome of a movement and the predicted sensory outcome of a movement 

simulated via imagery 20. However, there remains little experimental data about the 

content of imagined movements and whether or not error-related information is produced 

during imagery or if a comparative process exists (i.e., a comparison between predicted 

and intended sensory effects of the movement) 5,20.  
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 Literature exploring the neurophysiological basis of error processing during overt 

movement may provide insight into how error factors in motor imagery. To date, 

extensive neuroimaging work has demonstrated only limited support for either motor 

simulation theory or the motor-cognitive model, showing both similarities and 

differences between motor imagery and overt movement 7,8,21. While both overt 

movement and motor imagery appear to activate premotor areas (PMA; including the 

supplementary motor area (SMA)), imagery more consistently involves pre-SMA while 

overt movement involves SMA proper 8,22. Activation of parietal cortex during overt 

movement is anteriorly shifted toward primary sensory cortex, while motor imagery tends 

to activate posterior parietal cortex (PPC) 7,8,22. While both overt movement and imagery 

recruit frontal cortical areas, imagery appears to more consistently recruit dorsolateral 

prefrontal cortex (DLPFC) 7,8,22,23. Supporting the idea that forward models are involved 

in imagery, the cerebellum is involved in imagery but appears more caudal and less 

somatotopically organized than during overt movement 8,23. However, neuroimaging 

literature tends to focus only on correlating brain activation (e.g., using functional 

magnetic resonance imaging; fMRI) with the performance of either motor imagery or 

overt movement, and rarely on experimental manipulations of either. What’s more, when 

two tasks activate the same brain region, it does not imply that the same processes are 

occurring in that brain region 24,25. While subject to its own limitations (e.g., spatial 

resolution), frequency-based analysis of electroencephalography (EEG) data offers 

additional information beyond whether a particular region is active or not, as it allows for 

measurement of relative changes (increases or decreases) in oscillatory brain activity in 

several different frequency bands at a given location. That is, when a particular brain 
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region is activated during both overt movement and motor imagery, this activation may 

involve increases or decreases of oscillatory activity in different frequency bands, which 

may provide evidence of different neural processes. EEG also offers the temporal 

resolution necessary to study more discrete movements with short movement times, 

which is often the case when experimental tasks are designed for studying movement 

error. As an example, EEG frequency analyses have demonstrated that when motor tasks 

are manipulated to differently challenge motor control and sustained attention, changes in 

oscillatory activity in both frontal and parietal regions are observed but at different 

magnitudes 26. Specifically, motor task errors attributable to failures of motor control 

result in greater increases in theta band (4-8 Hz) power over frontal regions, whereas 

errors attributable to lapses in sustained attention result in greater decreases in alpha band 

(9-12 Hz) power over PPC 26. As some theories claim that frontal activation during motor 

imagery may be related to either attention and working memory demands 6, or inhibition 

of overt movement 5, investigating how these neural signals relate to motor task error 

during imagery is of interest. While motor task error has also been associated with 

suppression of sensorimotor post-movement beta (13-30 Hz) power increase (or 

“synchronization”; PMBS) 27, the PMBS has since been shown to more readily represent 

uncertainty in the motor system — that is, greater PMBS is associated with less 

weighting on sensory prediction errors and greater confidence in the existing forward 

model 28,29, as though the increase in beta power represents a decision to discount sensory 

feedback and maintain the forward model. Finding a similar phenomenon in motor 

imagery would support the notion that imagery involves a comparison between the 

intended movement outcome and predicted outcomes. While literature certainly exists 
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investigating motor imagery using EEG (or magnetoencephalography) 30–32, we are not 

aware of any EEG studies investigating motor imagery error processing and how it may 

differ from the results observed for overt movements.  

 Here we report a study exploring questions about motor imagery accuracy using 

EEG. We used a previously established motor task designed to induce error due to faults 

in motor execution rather than faults in perceptual processing 16. EEG data from 30 

sensors (not including reference, mastoid, or ocular channels) was collected while 

participants performed kinematically complex movement patterns on a touchscreen either 

overtly or via motor imagery. As participants may process error differently based on their 

confidence in a forward model (as per the PMBS literature cited above), movement 

patterns were either repeated and therefore familiar, or randomly generated and therefore 

unfamiliar. Error was manipulated by varying speed to induce a speed accuracy tradeoff 

33,34. As movement error cannot be measured during motor imagery, we asked 

participants in both imagery and overt groups to self-report their accuracy after every 

trial. Importantly, we validated that these self-reports are well correlated with actual 

performance (e.g., error) in all participants, and are largely driven by characteristics of 

the movement (e.g., speed, complexity, and familiarity) rather than vividness of imagery 

(see Chapter 3). This experimental setup allowed us to assess the relationship between the 

neurophysiological data during low accuracy (conceptually similar to high error) or high 

accuracy (low error) trials in both familiar and unfamiliar movements, and during both 

overt movement and motor imagery conditions. Given the existing literature on error 

processing in overt motor control discussed above, we constrained our analyses to power 

in the theta (4-8Hz), alpha (9-12Hz), and beta (13-30Hz) frequency bands. For each 
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frequency band we assessed power changes from baseline during the movement as well 

as immediately after the movement ended. Given the large possibility space — changes 

in EEG in 2 groups, 30 sensors, 3 frequency bands, 2 epochs, 2 task conditions, and 

accuracy as a continuous variable — we took an exploratory approach to our analysis and 

used a conservative approach to inference (see 4.2.5 Statistical Analysis). As such, we 

opted to use Generalized Additive Models as they are highly interpretable yet allow for 

rich modelling of nonlinearities in variables, including random effects, and convenient 

spatial modelling (in this case including the relative three dimensional location of each 

channel), with a wide exploration of the parameter space with regularizing penalty terms 

to avoid overfitting 35. 

While the analysis was exploratory in nature, we hypothesized that our results 

would largely replicate previous findings in the overt movement group. Specifically, we 

hypothesized that the overt group would demonstrate error (low accuracy) related frontal 

theta power increases during movement, and error related posterior parietal alpha power 

decreases after movement. Furthermore, we hypothesized that the overt group would 

demonstrate a familiarity related (during repeated pattern trials compared to random) 

sensorimotor beta power increase (the PMBS) after movement. Given the previously 

described evidence that imagery may involve error processing but without the use of 

sensory feedback, we hypothesized that both accuracy and familiarity related changes in 

EEG power will be represented differently in the imagery group. Specifically, we 

hypothesized that like the overt group, the imagery group would demonstrate error 

related frontal theta power increases during imagined movement, error related posterior 

parietal alpha power decreases after imagined movement. However, unlike the overt 
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group, we hypothesized that the imagery group would not demonstrate a familiarity 

related PMBS after movement given the lack of sensory feedback. Note that we did not 

constrain our interpretation of the results to these specific hypotheses and opted to 

discuss all noteworthy results.  

4.2. METHODS 

4.2.1. Participants 

The participants recruited for this experiment were the same as those recruited for 

the work presented in Chapter 3. We recruited 96 participants but 16 were removed from 

analysis due to technical issues with the experimental setup. Participants were pseudo-

randomized to ensure roughly equivalent enrollment in each group, resulting in the overt 

movement (OM) group consisting of 41 participants and the motor imagery (MI) group 

consisting of 39 participants. The MI group had a mean age of 23.1 (SD = 4.44), 25 self-

identified as female, and 4 were left-handed and one was ambidextrous as measured by 

the Edinburgh Handedness Inventory 36. The OM group had a mean age of 23.8 (SD = 

7.79), 30 self-identified as female, and 2 were left-handed. Participants were asked to 

perform the task described below with their dominant hand, and the ambidextrous 

individual chose to perform the task with their right hand.  

4.2.2. Experimental Task 

 The experimental task was designed to challenge execution of a kinematically 

complex, multi-articular unilateral upper extremity movement, which was described in 

detail in Chapter 2 16. Briefly, after EEG setup was complete (described below), 

participants were seated in front of a 24” touchscreen monitor (Figure 2.1A). For each 

trial the stimulus consisted of a target trajectory that animated to completion before the 
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participant was asked to replicate it with their index finger using the same touchscreen 

upon which the stimulus was presented. The stimulus was animated using a white dot that 

travelled from a starting position that was located at the center and near the bottom of the 

screen. The white dot travelled in curved trajectories, connecting with four vertices 

before returning to the starting position, resulting in a pattern that consisted of five 

curved lines (see Figure 2.1). Variation was present in both the location of each vertex 

(except for the starting position) and the curvature of the path between them, which 

produced trajectories of varying complexity. Trajectory complexity was measured by 

sinuosity; that is, the total pathlength of the curved trajectory divided by what the 

pathlength would have been if each vertex-to-vertex line was straight. Trajectory speed 

varied by animating them at one of five different movement times (500, 1000, 1500, 

2000, and 2500ms). Each participant was assigned one of five trajectories that repeated 

throughout the experiment (the ‘repeated’ condition), which was interspersed with an 

equal proportion of randomly generated trials of similar complexity (the ‘random’ 

condition). Each 20-trial block consisted of 10 repeated and 10 random trajectories, 

presented pseudo-randomly to ensure equal exposure of each condition as well as equal 

exposure of each movement time. Participants performed 6 blocks for a total of 120 trials 

in the experiment.  

 After each stimulus the participant was asked to replicate the trajectory as 

accurately as possible. A speed-accuracy trade-off was induced by asking participants to 

match the speed at which the stimulus was presented. This resulted in a motor task that 

consistently resulted in error regardless of the level of familiarity with the trajectory 16. 

Importantly, this was not a reaction time task — both the initiation of the trial and the 
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beginning of the response was self-paced. Once a stimulus trajectory was complete the 

starting position became highlighted as a red circle, and upon placing a finger at the 

starting position the circle immediately changed color to green indicating that the trial 

had begun, and the response was “recording”. Once the participant returned to the 

starting position the green circle disappeared, marking the end of the trial. Importantly, 

no additional visual feedback was presented to the participant — that is, the stimulus was 

not presented as a tracing during or after the trial, and the participants response was also 

not shown. The MI group performed the same procedure with the exception that upon 

placing their finger on the starting position, they were instructed to simply imagine 

performing the movement and lift their finger off the green circle once they were 

complete, thus indexing MI movement time in the same manner as the OM group. MI 

participants were familiarized with the concept of kinaesthetic imagery (e.g., told to 

imagine what the movement would look like as well as what it would feel like). Note that 

the MI group performed imagery during the first five blocks but performed the task 

overtly in the sixth block, whereas the OM group performed overtly in all six blocks.  

4.2.3. Performance, Accuracy, and Vividness 

 Stimulus and response trajectories were both sampled at the refresh rate of the 

touchscreen monitor (60Hz), resulting in an ordered series of points with a timestamp, 

and x and y coordinates. Error was then calculated as the mean point-by-point distance 

between the two trajectories in millimeters (mm). Importantly, stimulus trajectories were 

animated at a constant speed. This is not a reasonable expectation for human movement 

where participants tend to slow down around corners and speed up on straight lines. 

Therefore, we used dynamic time warping to match response trajectory points to 
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optimally corresponding stimulus trajectory points to produce a timing-invariant error 

measure 37. Given the task involved a speed-accuracy trade-off 34, actual performance 

was finally determined for each overt trial by dividing the mean speed by the mean error 

(rather than dividing error by speed 15) to produce a measure of performance where a 

greater positive number represented greater accuracy.  

Immediately after each trial participants were asked “How accurate do you think 

your tracing was?” and responded using a 10-point visual analogue scale where 1 meant 

not accurate at all and 10 meant perfect accuracy. This question was presented after both 

overt and imagery trials. For imagery trials only, each 20-trial block ended with the 

question: “How vivid was your motor imagery over the last 20 trials?” where participants 

again responded using a 10-point visual analogue scale where 1 meant not vivid at all and 

10 represented perfectly vivid imagery. The relationship between self-reported accuracy 

and actual performance was then assessed using overt trials (including the sixth block of 

the MI group) by performing regression analysis with self-reported accuracy as the 

independent variable and actual performance and vividness rating as the dependent 

variables. Results are reported in detail in Chapter 3. Briefly, actual performance had a 

significant and large effect on self-reported accuracy, whereas vividness rating had only a 

small effect that explained only a negligible amount of additional variance. These results 

validated self-reported accuracy as a sensible proxy for performance accuracy during 

motor imagery.  

We opted to describe our results below in terms of accuracy, rather than error. 

During piloting, the concept of error during motor imagery was difficult to articulate to 

participants — that is, asking for self-ratings of error, such as “how much error occurred 
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during that trial?” was interpreted as confusing and unnatural. Error was understood as 

either being binary (e.g., hit or miss), a count (e.g., number of misses), or having a unit to 

describe magnitude (e.g., distance from target in mm). The latter two might apply to the 

current experimental task but pilot participants had difficulty reporting such measures 

during either OM or MI. Finally, the concept of error during motor imagery is difficult to 

conceptualize. Using the analogy of an amateur painter attempting to recreate a scene, it 

is unlikely the painter would attribute poor quality as “error” but as a lack of their ability 

to recreate the scene accurately. Whether bouts of motor imagery include “error” or are 

simply more or less accurate is beyond the scope of the current investigation.   

4.2.4. Electroencephalography (EEG) 

 EEG data was collected using a 32-channel QuikCap setup (Compumedics 

Neuroscan, Charlotte, NC). In addition to EEG, electrooculography (EOG) data was 

collected to allow for the removal of artefacts resulting from eye movements. EEG data 

was acquired continuously throughout each session at a sampling rate of 1000 Hz and a 

band-pass of DC-500 Hz (SynAmps RT, Compumedics Neuroscan, Charlotte, NC) and 

stored for offline analysis. During data collection the experimental software ‘marked’ the 

continuous EEG data to allow for precise epoching during subsequent analysis, including 

the start and end of each stimulus trajectory, and the start and end of each response 

trajectory. This was achieved through an interface of the (behavioural) experiment 

software on an iMac connected to the touchscreen monitor and the EEG system via a 

USB-based LabJack system.  

 Pre-processing of the EEG data was completed using the open-source software 

MNE-python 38,39, and specifically a standardized early-stage EEG pre-processing 
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pipeline 40. Briefly, the standardized pipeline first removes line-noise, robustly references 

the signal to an estimate of the true average reference, detects bad channels relative to 

this reference, and optionally interpolates these bad channels — importantly, we opted 

not to interpolate bad channels and simply removed them from analysis. High-pass (1Hz) 

and low-pass (50Hz) filters were then applied ahead of the removal of EOG artefacts by 

performing independent components analysis using the Picard method 41. To reduce the 

effects of volume conduction 42, data were then spatially filtered using the current source 

density approach.  

 The remaining processing was completed using the statistical software R 43. EEG 

data was down sampled to 100Hz to facilitate computation while avoiding aliasing given 

that the highest frequency of interest was 30Hz (the upper bound of the beta frequency 

band). Two epochs were taken from each trial such that the first epoch (“during 

movement”) was time-locked to the beginning of the participant response (overt 

movement or imagery) and the second epoch (“after movement”) was time-locked to the 

end of the response and thus represented time immediately post-movement. Both epochs 

were 1 second in length with the addition of 1 second of padding before and after to 

reduce the risk of edge effects after time-frequency decomposition. While one fifth of 

trajectory animation times were 500ms (the fastest trials) we observed that participants 

rarely responded with a movement less than 1 second in length. Therefore, one second 

epochs were used to ensure that the first (“during movement”) epoch always captured 

movement (or imagery) from each trial regardless of the speed of that trial. To aid in 

visual inspection of the processed EEG data, each epoch time series data was then 

decomposed into time-frequency representations at 1 Hz intervals from 1 Hz to 48 Hz 
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using a continuous wavelet transformation with the Morlet wavelet as the mother wavelet 

44. Given that each trial involved participant movement to initiate a new trial and respond 

(e.g., reaching for the starting position), time-frequency power was decibel normalized 

using a baseline period of -500ms to -200ms before the end of the stimulus presentation 

to reduce the risk that the baseline was taken while participants were moving. Pilot 

testing with electromyography demonstrated this to be the most reliable portion of a trial 

in which participants were at rest, but it should be noted that this baseline likely includes 

visual and perceptual processing of the stimulus — but we felt this was acceptable given 

the focus of this experiment on movement (or imagined movement) related EEG. 

Reference electrodes located over the mastoid process bilaterally were removed for 

plotting and statistical analysis. Mean processed EEG data across all trials for a 

representative participant in the overt group is presented in Figure 4.1, and grand mean 

for each group is presented in Appendix A (where left-handed participants have had their 

sensor coordinates mirrored). 
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Figure 4.1. Mean EEG across all trials for a representative participant of the OM group. As 
specified by the label key (bottom left), plot include all frequencies from 1 to 40 Hz 
including the bands of interest: theta, alpha and beta, as well as time ranging from 0.5 
seconds before movement onset (the first t = 0) and 1.5 seconds thereafter (epoch 1; during 
movement), and 0.5 seconds before movement cessation (the second t = 0) and 1.5 seconds 
thereafter (epoch 2; after movement). This participant demonstrates several well-known 
movement and motor error related EEG features described in the literature, including 
sensorimotor (most prominent at C3) beta power decrease during movement, and power 
increase post-movement, and frontal theta power increase during movement. EEG is 
presented as decibel normalized power on the range of the scale key (bottom right). 
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4.2.5. Statistical Analysis 

 Statistical analysis was performed using a hierarchical generalized additive model 

35. First, mean power was computed across both time and frequency for each trial, 

frequency band, epoch, sensor location, trial type (i.e., repeated or random), and 

participant. Sensor location was represented as a location on a sphere using latitude and 

longitude coordinates, and left-handed participant sensor locations were mirrored, (i.e., 

C3 location was converted to C4 location). This yielded the dependent variable that could 

then be predicted by a model including each of these variables as well as a self-reported 

accuracy rating for each trial. The model was specified such that any factor with only two 

or three levels was treated as they would for a linear model, including all possible 

interactions. Specifically, these factors were specified as half sum contrasts and included 

group (OM and MI), band (theta, alpha, and beta), epoch (during movement and after 

movement) and trial type (repeated and random). Inference for main effects and 

interactions involving the continuous variables was achieved through a generalized 

additive model with a "splines on a sphere" representation of electrode location and cubic 

spline representation of self-reported accuracy, with complexity parameters for these 

possibly-non-linear effects set to the maximum (n.b. this parameter sets the maximum 

complexity to be explored by the model, which will then seek out the degree of 

complexity best supported by the data, including the possibility of linear and zero 

effects). Finally, participant was included as a random effect on the intercept.  

Our approach to inference involved deriving from the fitted model a predicted 

mean power change (from baseline) and 95% confidence interval for comparisons of 

interest (e.g., high and low self-reported accuracy in each epoch; see Figure 4.2 as an 
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example) at each sensor location, and where high accuracy referred to the upper quintile 

(top 20%) of accuracy ratings and low accuracy the lower quintile. This binarization of 

the accuracy measure aided in interpretation of our results with previous literature, where 

EEG results are typically reported as being “error-related” (in our case, low accuracy 

compared to high accuracy). Non-overlapping confidence intervals denoted a significant 

effect — that is, either 1. the confidence interval of a given effect not overlapping with 

zero (for example, when indicating a significant sensorimotor beta power decrease from 

baseline during movement) or 2. the confidence bar of two effects not overlapping with 

each other (for example, when indicating that frontal theta power was higher when 

accuracy was low compared to high). As the latter type of non-overlapping confidence 

interval is of greater interest in this study, these effects are depicted in plots as a darker 

grey shading for significant epochs (see Figure 4.2 as an example). For readers seeking to 

derive false-alarm-rate-controlled decisions from our analysis (i.e., via adjustments for 

multiple comparisons), it is noteworthy that the presented schema for highlighting 

consideration-worthy differences is conservative with respect to alpha. That is, at least for 

all differences involving within-subject comparisons, it is well-established that overlap of 

confidence intervals for means is typically larger than more rigorous inspection of the 

confidence interval for the difference between the means would reflect 71.  

 All scripts and details of the experimental software, preprocessing of behavioural 

and EEG data and final statistical analysis and plotting code are available online 

(https://github.com/LBRF/DEMI_Analysis_Pipeline). 
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4.3. RESULTS 

  Plots for all results described below are included in Appendix B, including 

effects of accuracy (high versus low; Appendix B Figure 1), effects for familiarity 

(repeated versus random; Appendix B Figure 2) and their interaction (plotted as low 

accuracy minus high accuracy [to depict error] for repeated versus random; Appendix B 

Figure 3) at each sensor location for each frequency band (theta, alpha, and beta) and 

group (overt and imagery). Selected results are plotted in the main text. Unless noted 

otherwise, only statistically significant results (or notable lack thereof) are discussed 

below. 

4.3.1. Beta Band 

 In line with existing literature 27–29, relative to rest the OM group demonstrated a 

decrease in sensorimotor (e.g., C3 and surrounding sensors) beta power during movement 

followed by a relative increase after movement (the PMBS; Appendix B Figure 1). This 

change was most noticeable in the contralateral (to the hand performing the task) 

sensorimotor area (e.g., C3). Contrary to one of our hypotheses, the magnitude of the 

sensorimotor PMBS was not related to familiarity (Appendix B Figure 2), Notably, nor 

was it related to accuracy (Appendix B Figure 1), and while power returned closer to 

baseline it did not increase beyond this and demonstrate a typical PMBS response. Given 

previous results that suggest that the PMBS indexes confidence in the forward model and 

is suppressed by motor task error 28,29, our results may be due to the challenging nature of 

the task whereby considerable error is present throughout the experiment and in all 

conditions. Interestingly, there was an effect of accuracy in frontal and temporal sensors 

F7, FT7, and T7 both before and after movement (Appendix B Figure 1). There appeared 
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to be no interaction between accuracy and familiarity in either group (Appendix B Figure 

3).  

Interestingly, for the MI group there were no apparent main effects of either 

accuracy or familiarity in the beta band (Appendix B Figure 1 and 2), except for a single 

sensor (Cz) where unfamiliar movements resulted in lower beta power. Thus, our 

hypothesis that imagery would not demonstrate a familiarity-related sensorimotor beta 

power increase (PMBS) was supported. However, we did observe in the MI group a 

significant decrease in beta power relative to rest both during and after movement that 

was most prominent in sensors overlying the contralateral premotor area (Appendix B 

Figure 1). Qualitatively, this beta decrease did not appear as strong as that observed in the 

OM group and was not accompanied by a relative increase after movement — that is, 

unlike the OM group, we did not observe evidence of PMBS in the MI group.  

4.3.2. Alpha Band  

For the OM group we observed significantly lower power in posterior parietal and 

occipital alpha power during low accuracy compared to high accuracy trials (Figure 4.2), 

which is in line with existing literature 26. This effect was present both during and after 

movement, the latter result supporting our hypothesis that this would be observed. A 

single sensor (P7) demonstrated a significant interaction between accuracy and 

familiarity such that during familiar trials lower accuracy trials further decreased alpha 

power (Appendix B Figure 3). A significant main effect of familiarity was present such 

that unfamiliar trials resulted in lower alpha power in the occipital region and one frontal 

sensor (F4) during movement, and lower alpha power in the occipital and contralateral 

temporal regions after movement (Figure 4.3).  
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For the MI group we observed a significant interaction between accuracy and 

familiarity in the alpha band in two sensors (FC4 and C4) overlying the ipsilateral 

sensorimotor cortex (Appendix B Figure 1). Specifically, for unfamiliar (random pattern) 

trials compared to familiar (repeated pattern) trials, low accuracy was associated with 

decreased alpha power during the movement. Given that these effects were observed only 

for unfamiliar pattern low-accuracy trials, we suggest that this finding represents high 

uncertainty during these trials. With respect to main effects, the MI group did not 

demonstrate a decrease in power in the alpha frequency band over parietal and occipital 

regions related to accuracy (Figure 4.4), which is contrary to our hypothesis. Instead, MI 

demonstrated only two sensors sensitive to accuracy (F4 and CP3) during movement with 

differential effects (low accuracy significantly decreased alpha power in F4 while high 

accuracy significantly decreased alpha power in CP3). However, motor imagery 

demonstrated widespread significant unfamiliarity related (random movements) 

decreases in power in the alpha frequency band during movement (but not after) 

throughout central, ipsilateral parietal, and contralateral temporal and parietal regions 

(Figure 4.5). Overall, these observations suggest that during MI alpha power is related to 

familiarity (or movement uncertainty) in bilateral parietal regions, as opposed to during 

OM where alpha power is related to accuracy in posterior parietal and occipital regions.  
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Figure 4.2. Accuracy related alpha power changes from baseline in the OM group, during 
and after movement, for each sensor. Contralateral here refers to the hemisphere opposite 
to the arm that performed the task. Epochs that demonstrated non-overlapping error bars 
between the factor of interest (in this case accuracy) are shaded darker for ease of 
interpretation. Where relevant in subsequent plots, a white line depicts zero on the y-axis. 
See legends for additional details. 
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Figure 4.3. Familiarity (repeated versus random) related alpha power changes from 
baseline in the OM group, during and after movement, for each sensor. 
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Figure 4.4. Accuracy related alpha power changes from baseline in the MI group, during 
and after movement, for each sensor. 
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Figure 4.5. Familiarity related alpha power changes from baseline in the MI group, 
during and after movement, for each sensor. 
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4.3.4. Theta Band 

For the OM group, we observed a significant increase in theta power over frontal 

regions during low accuracy movements compared to baseline, and in some sensors 

compared to high accuracy (Fp1 and F8; Figure 4.6), thus supporting our hypothesis. 

Error related increases in frontal theta power during motor tasks has been demonstrated 

previously 26. The OM group also demonstrated a significant effect of familiarity where 

unfamiliar (random pattern) trials resulted in decreases in theta power during movement 

in the most lateral sensors of the frontal, temporal and parietal regions on the 

contralateral side, and after movement in contralateral central, parietal and temporal 

sensors (Figure 4.7). There was a significant interaction between accuracy and familiarity 

in a single parietal sensor (P7; see Appendix B Figure 3).  

Interestingly, the IM group also demonstrated significant changes in frontal theta 

power during movement, except these changes were a decrease in theta power rather than 

an increase as observed in the OM group, and theta power was significantly lower during 

low accuracy trials than high accuracy trials (Figure 4.8). This does not support our 

hypothesis that MI would demonstrate similar frontal theta changes to OM but suggests a 

different role for frontal theta in imagery. Decreases in frontal theta power are associated 

with increased working memory load from the DLPFC 45, the implications of which will 

be elaborated upon in the discussion below. Unlike the OM group, the MI group did not 

demonstrate familiarity related changes in theta power (Appendix B Figure 2). However, 

the MI group did demonstrate a significant interaction of accuracy, familiarity, and epoch 

in the posterior parietal and occipital region whereby theta power decreased in familiar 

trials with low accuracy during but not after movement (Figure 4.9). The theta band 
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changes related to low accuracy during familiar patterns is unlike the interaction observed 

in the alpha band which was related to low accuracy for unfamiliar trials (i.e., those 

featuring random trajectories). During familiar trials, participants should have a more 

accurate representation of the movement to imagine, and therefore low accuracy may in 

fact be related to the perception of error during motor imagery, a concept that is 

elaborated on in the discussion below. 
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Figure 4.6. Accuracy related theta power changes from baseline in the OM group, during 
and after movement, for each sensor. 
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Figure 4.7. Familiarity related theta power changes from baseline in the OM group, 
during and after movement, for each sensor. 
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Figure 4.8. Accuracy related theta power changes from baseline in the MI group, during 
and after movement, for each sensor. 
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Figure 4.9. MI group interaction between familiarity and accuracy on theta power. Plot 
represents low accuracy minus high accuracy (error-related) theta power changes in 
either familiar (repeated) or unfamiliar (random) trials, during and after movement. 
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4.5. DISCUSSION 

 Our results offer evidence that movement accuracy is processed during motor 

imagery, but in substantially different ways compared to overt movement. Importantly, 

the results of our overt movement group replicate previous findings such as a decrease in 

movement-related sensorimotor beta power, post-movement sensorimotor beta power 

increases (the PMBS), error-related power increase in theta over mid frontal regions, and 

error-related power decrease over posterior parietal regions. We contribute to the existing 

literature by reporting accuracy and uncertainty related EEG power changes in motor 

imagery. Our MI group demonstrated negligible accuracy or uncertainty related effects in 

the beta band but did show uncertainty related changes during imagery in ipsilateral 

sensorimotor and bilateral parietal alpha power, and accuracy related changes in both 

frontal and parietal theta power. These findings, discussed in greater detail below, have 

important theoretical implications that may call for a reconciliation between competing 

theories of motor imagery.  

 Beta band power in the OM group demonstrated the expected movement-related 

power decrease with a relative post-movement power increase (the well-known PMBS) 

27–29,46–48. Interestingly, our results demonstrated that the PMBS was not related to 

familiarity (a proxy of uncertainty) of the movement pattern, or accuracy (a proxy of 

error). However, the post-movement increase never returned to baseline suggesting that 

PMBS may have been suppressed even during higher accuracy trials. Given existing 

evidence that the PMBS indexes a decreased weighting of sensory feedback and an 

increased weighting of confidence in the forward model rather than error 28,29, this may 

suggest that the task contained significant error throughout the experiment and 
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confidence in a forward model was not reached. The MI group also demonstrated a more 

subtle but significant movement-related beta power decrease from baseline. Existing 

literature typically reports faint beta power decrease during motor imagery 32, but this 

may be related to the experimental tasks used. Our experimental task may have recruited 

contralateral sensorimotor beta processes to a greater degree given that the task is 

designed to challenge motor execution rather than upstream motor processes related to 

perception or planning 16,34,49. Indeed, a previous report demonstrated that motor imagery 

of more challenging movements led to greater decrease in beta power in the contralateral 

sensorimotor cortex, and the authors attributed this to the computation of movement 

parameters 30. It is important to note that we did not observe PMBS in the MI group. This 

may not be a surprising result given that the PMBS appears to be related to an assessment 

of sensory feedback as it relates to prediction error 29. As will be discussed below, the 

absence of sensory feedback may force MI to utilize different processes to assess the 

quality of the imagined movement.  

 We found decreased alpha power in posterior parietal and occipital regions both 

during and after low-accuracy trials in the OM group, but not in the MI group. Error 

related decreases in alpha power over the PPC have been demonstrated to be related to 

errors driven by lapses in sustained attention during OM 26. Conversely, the MI group 

demonstrated decreased alpha power during unfamiliar (i.e., random) movements in 

sensors overlying the ipsilateral sensorimotor and bilateral parietal regions, with a 

significant interaction between accuracy and familiarity. That is, unfamiliar trials with 

low accuracy demonstrated decreases in sensorimotor alpha power. This accuracy-related 

finding is interesting given previously reported findings that sensorimotor alpha power 
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typically decreases during motor tasks but increases when task demands require greater 

action selection, potentially driven by inhibition of task-irrelevant cortical regions 30. We 

observed a decrease in sensorimotor alpha power in the most challenging imagery trials 

(unfamiliar trials that resulted in low accuracy ratings), which may be a result of 

uncertainty — that is, the motor system was unable to adequately process the task 

demands. Indeed, a previous finding in infants has demonstrated decreased alpha power 

when observing unusual versus ordinary movements 50, and the parietal cortex is 

implicated in motor task attention 51–54. Anecdotally, participants in the present study 

often remarked that during trials that featured more difficult randomly generated patterns, 

they were not sure how to respond. Curiously, this effect was not observed in the OM 

group, suggesting that during overtly executed trials participants may have decided to 

respond with largely arbitrary movements, while MI participants made no such decision 

and may have continued grappling with the motor plan during imagery, leading to an 

extended search for movement strategies as though action selection was not finalized 

when movement began. Therefore, we interpret our alpha band results in the MI group as 

resulting from the processing of motor task uncertainty.   

 Interestingly, both OM and MI resulted in accuracy related changes in frontal 

theta, but in opposite directions. Specifically, we observed increases in frontal theta 

power during overt movement in low accuracy trials but decreased frontal theta power 

during motor imagery in low accuracy trials. We propose that decreased frontal theta 

power during imagery may arise from DLPFC processing related to the increased 

working memory demands during more challenging bouts of imagery, in line with one of 

the predictions of the motor-cognitive model of motor imagery 6,55. Typically, studies 
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using sensor-level EEG report an increase in frontal theta power that may represent a 

realization for the need for cognitive control, which would occur in the presence of novel 

information, conflicting information, or the detection of error 56–58. Importantly, increased 

frontal theta power has been largely attributed to volume conduction from deeper brain 

areas such as the anterior cingulate cortex and hippocampus 45,56. While increased 

working memory demands have also been demonstrated to be associated with increased 

frontal theta power 59, and motor imagery has been shown to result in greater frontal theta 

power 60, we contend that these results may be due to volume conduction from deeper 

structures. Indeed, more direct measurements of DLPFC appear to reveal a decrease in 

theta power related to increased working memory demands 45, and motor imagery has 

been demonstrated to more consistently activate DLPFC compared to overt movement in 

fMRI studies 8. Given our use of current source density to reduce the effects of volume 

conduction, we suggest that our analysis revealed a dissociation between OM and MI — 

that is, that the low-accuracy related frontal theta power increases observed in the OM 

group represent error processing, while the low-accuracy related frontal theta power 

decreases observed in the MI group represent greater executive demands associated with 

imagining more difficult movements.  

 While our results suggest that theta power changes over frontal regions appear to 

have a different role during imagery compared to overt movement, this should not be 

taken as evidence that motor imagery does not involve error processing. On the contrary, 

the MI group demonstrated a significant interaction between accuracy and familiarity in 

the posterior parietal and occipital region during imagery. That is, theta power over the 

PPC decreased when accuracy was low on familiar trials during motor imagery, but not 
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after. Given that on familiar trials participants likely had developed a representation of 

the movement pattern to be imagined, we propose that low accuracy may be the result of 

a poorly performed motor simulation — an error during motor imagery. Given that PPC 

theta power increases have been associated with feedforward visuomotor prediction error 

processing 61,62, we propose that the increased PPC activation typically observed during 

motor imagery is due to an assessment of the predicted sensorimotor consequences 

compared to the desired consequences. Indeed, the parietal cortex has been implicated in 

anticipating movement dynamics via forward modelling 63–65.  

 Overall, our findings demonstrate neurophysiological evidence that movement 

accuracy is processed during motor imagery, but in considerably different ways than OM. 

In fact, while we replicate the finding that MI and OM utilize similar brain regions, our 

analysis of the processing occurring at each region found no similarities with respect to 

movement accuracy and movement familiarity related processing as evidenced by 

changes in power across multiple frequency bands. As such, our results conflict with the 

notion of functional equivalence. We provide evidence in favor of a key prediction of the 

Motor-Cognitive model: that imagery involves greater cognitive resources and executive 

processing. However, our results do not necessarily align with another prediction of the 

Motor-Cognitive model: that motor imagery doesn’t involve the motor system upon the 

execution stage. Instead, we suggest that while motor imagery is a fundamentally 

different process from overt movement, imagery does recruit established components of 

the motor system but utilizes this system differently. Motor imagery appears to involve 

the forward modelling process and neural regions that implement them such as the 

parietal cortex, and in fact has a greater reliance on them. This reliance is evidenced by 
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literature demonstrating that patients with parietal lobe damage are impaired in their 

ability to perform motor imagery 66–68, and motor learning via motor imagery is disrupted 

with inhibitory brain stimulation to areas of the parietal cortex but not motor cortex 69,70. 

We suggest that this greater reliance on parietal regions support the notion of a motor 

simulation during imagery — that is, motor imagery compensates for a lack of sensory 

information by performing a simulation of the movement to predict its sensory 

consequences, enabling a comparison with the intended sensory consequences. 

Performing this simulation requires considerable cognitive effort which may be 

exhausted by greater task complexity and interference tasks 6,55. Even so, motor imagery-

based simulation recruits key regions throughout the motor system to estimate movement 

parameters and their potential outcomes. In conclusion, motor imagery utilizes the 

existing motor system but asks it to perform a task that it is not primarily designed to do, 

which requires cognitive effort. Importantly, our analysis was largely exploratory and 

correlational in nature and should not be interpreted as confirmatory. We hope our 

findings contribute to future work involving more targeted investigations with 

experimental designs that may speak to causal mechanisms underlying motor imagery.  
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CHAPTER 5 | GENERAL DISCUSSION 

5.0. PURPOSE OF EXPERIMENTS 

 The overall purpose of the experiments reported in this dissertation was to 

investigate whether motor imagery can be used to learn a novel movement skill, and how 

that might be possible. Importantly, these studies were meant to differ from previous 

studies that have employed experimental tasks where improvements may have been due 

to processes other than improvements in movement execution. That is, it is possible that 

motor imagery can improve goal selection (e.g., deciding what to do based on perceptual 

and cognitive processes), action selection (e.g., better mapping of movements or 

sequences of movements to the desired outcomes, or better movement planning), but 

cannot improve the execution of the movement itself. To answer this question a new 

experimental task was developed to challenge the movement execution, and learning was 

operationalized as a change in the speed accuracy function — that is, participants only 

demonstrated learning if they were able to perform with less error at the same speed, the 

same error at faster speeds, or both. The first experiment investigated whether motor 

imagery-based practice could drive learning in this task over and above a perceptual 

control group, and how the magnitude of learning compared to physical practice. Given 

that learning is typically driven by a comparative mechanism — that is, comparing 

intended and expected performance to actual performance as indicated by sensory 

feedback, which then provides a measure of error that provides a basis for refining future 

attempts — the second experiment investigated whether the quality of action execution 

was perceptible during motor imagery. This was done by investigating whether known 

drivers of execution performance similarly modulated participants self-reported accuracy 
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ratings during imagery. Finally, the third experiment investigated whether these self-

reported accuracy ratings are involved in a comparative mechanism by seeking their 

neurophysiological correlates — that is, whether neurophysiological measures correlate 

with accuracy ratings during motor imagery, which would imply that this information is 

being processed — and whether these correlates were similar (e.g., by anatomical 

location) to those observed during overt movement. Here I report the findings of these 

experiments, followed by a discussion of how these findings inform the existing literature 

on motor imagery and motor learning. 

5.1. SUMMARY OF FINDINGS BY CHAPTER 

 Chapter 2 – Movement Related Sensory Feedback is Not Necessary for Learning 

to Execute a Motor Skill.1 After five days of motor imagery-based practice, participants 

were able to learn to better execute a novel motor skill. That is, the speed accuracy 

function shifted in the direction of better performance on the specific movement pattern 

they were tasked with learning compared to randomly generated movement patterns of 

similar complexity. Importantly, motor learning was not observed in a perceptual control 

task that involved attending to the movement patterns without replicating the movement 

via motor imagery or physical practice. Interestingly, unless additional visual feedback of 

results were available, the physical practice group also did not demonstrate learning — 

indicating that physical practice may include an expectation of sensory feedback and 

ultimately depend on it. This might suggest that during the execution phase motor 

imagery relies entirely on predicted sensory feedback and is therefore not disrupted by a 

lack of actual sensory feedback. However, when feedback of results is available during 

physical practice, the learning effect is large, exceeding that of motor imagery after 
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several days of practice. Overall, these results suggest that while physical practice with 

sensory feedback is more effective, motor imagery is capable of driving motor skill 

learning. Specifically, this study demonstrates for the first time that motor imagery can 

improve action execution of a complex motor skill. These results and those of others — 

notably Kilteni et al. (2018) demonstrating the involvement of forward models in motor 

imagery 2 — prompted questions about whether this finding implied that motor imagery-

based learning involved a comparative mechanism; that is, that motor imagery may 

involve comparing predicted outcomes to intended outcomes rather than predicted 

outcomes to actual outcomes, deriving an error signal upon which to base learning.  

 Chapter 3 – Imagined Movement Accuracy is Strongly Associated with Drivers of 

Overt Movement Error and Weakly Associated with Imagery Vividness. Given that it is 

impossible to assess task error during motor imagery given that performance is entirely 

covert, this experiment aimed to investigate whether a proxy measure — that is, self-

reported accuracy of imagined movements — was modulated by known drivers of error, 

such as speed, complexity, and familiarity (practice time). A physical practice group who 

also self-reported their performance accuracy was used to develop a model relating these 

drivers of performance with actual error. This allowed for a model that predicted an 

expected error from a trial given its speed, complexity, familiarity (the repeated vs. 

random movements) and experience (trial number). This model was then used to compute 

expected error during imagery trials so that it could be correlated with self-rated 

accuracy. The results demonstrated that self-ratings of accuracy were indeed well 

correlated with expected error, and that this was true in both imagery and physical 

conditions.  Furthermore, these self-reported accuracy ratings improved with experience 
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in a similar way as seen during physical practice. Finally, kinematic complexity of the 

movement did not differently affect motor imagery participants ability to match 

movement times compared to overt movement participants. This latter result differs from 

previous studies that demonstrate that increasing task complexity disrupts motor imagery 

movement times 3 — however we contend in the discussion of Chapter 3 that this is due 

to the nature of the experimental tasks used, and that this effect is a function of cognitive 

interference in previous experiments. Taken together, the results of this study 

demonstrate that motor imagery appears to involve task performance — not simply task 

planning — as evidenced by self-reported sensitivity to drivers of error like speed, 

complexity, and experience. Overall, these results provide evidence that motor imagery 

involves the processing of imagined movement accuracy, which may serve as a basis for 

a comparative mechanism that drives motor learning.  

 Chapter 4 – Neurophysiological Correlates of Accuracy During and After 

Imagined Movement Execution. The final experiment added to the previous findings by 

investigating the neurophysiological correlates of self-reported accuracy as well as 

familiarity (e.g., repeated versus random movements) using electroencephalography 

(EEG) in both overt and imagined movement. As expected, given the existing literature, 

overt movement demonstrated a movement-related sensorimotor beta power decrease, a 

post movement sensorimotor beta power increase (the PMBS), error (in this case, low 

accuracy) related frontal theta power increase, and error-related posterior parietal power 

decrease. However, these neurophysiological patterns differed markedly in the motor 

imagery condition. For motor imagery there were negligible accuracy or familiarity 

related differences in the beta frequency range, but there was an unfamiliarity (or 
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uncertainty) related alpha power decrease during imagery in the ipsilateral sensorimotor 

and bilateral parietal regions, error (low accuracy) related theta power decrease during 

imagery in the frontal region, and an interaction whereby familiar movements led to error 

(low accuracy) related theta power decrease during imagery in the posterior parietal and 

occipital cortex. Taken together these results provide evidence that the accuracy of 

imagined movements is indeed processed during imagery, implying that comparative 

mechanisms may exist during motor imagery. These results also provide support for 

certain aspects or interpretations of both motor simulation theory and the motor-cognitive 

model, which will be discussed below.   

5.2. THEORIES OF MOTOR IMAGERY 

 Prominent theories of motor imagery appear to differ from one another primarily 

in their emphasis of the importance of cognitive processing or the involvement of the 

motor system. For instance, the motor-cognitive model suggests that the motor system is 

not engaged and that while motor imagery involves the same planning stages as overt 

movement, the execution of an imagined movement is handled by executive functions 

that rely on cognitive resources 3. Cognitive models also tend to emphasize the need for 

an existing (i.e., previously experienced) movement representation to aid or even enable 

motor imagery 3,4. Motor simulation 5 (or emulation 6) theories suppose that motor 

imagery does involve the motor system — so much so that they hypothesize that neural 

activation during imagery is functionally equivalent to that of overt movement, and that 

cognitive processing (e.g., via frontal cortical regions) are mostly involved in the 

inhibition of overt movement 7. While authors who espouse either of these theories can 

point to empirical support, there also exists conflicting evidence for each perspective as 
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reviewed in detail in Chapter 1 (particularly sections 1.5.1 and 1.5.2). For instance, there 

is compelling evidence for forward modelling during motor imagery 2, a process that is 

considered fundamental to the control of overt movement 8–13, which therefore implies 

involvement of the motor system during motor imagery. But while motor imagery 

appears to involve the motor system, it is also more sensitive to cognitive interference 

than overt movement 3, and the outcomes of imagery-based practice differ from physical 

practice with respect to the content, timing, and magnitude of learning 14–17. Indeed, a 

recent neuroimaging meta-analysis demonstrated that motor imagery does more 

consistently involve activation in brain regions associated with cognitive processing (e.g., 

pre-frontal cortex) but also demonstrates consistent activation in regions associated with 

movement (e.g., premotor cortex, parietal cortex, and cerebellum) 18. Overall, it appears 

that these theories are neither completely correct nor incorrect and will be superseded by 

a theory of motor imagery that integrates aspects of each.  

 The experimental findings presented in this dissertation may aid in the 

development of an updated model of motor imagery, and example of which will be 

described here and is depicted in Figure 5.1 below. I hypothesize that motor imagery 

involves a simulation of the intended movement and that the processing involved in 

coming to this movement intention is largely the same as it would be for overt movement, 

except for the important difference that there is awareness that the movement will not be 

overtly performed. The results from Chapter 2 support this notion given that a lack of 

sensory feedback appeared to disrupt learning via overt practice but not imagery-based 

practice, which implies that feedback is expected and perhaps necessary for motor 

learning during overt practice but not imagery-based practice, where sensory feedback is 
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not expected. In this model, the intended movement represents the desired outcomes 

(e.g., the desired state change, such as moving the body closer to a reward given the 

environmental context; involving parietal regions 19,20), and simulation refers to the 

covert unfolding of the movement using the existing computational resources of the 

motor system: that is, a feedback control policy (e.g., involving premotor and potentially 

primary motor regions — but with descending motor commands suppressed), an 

efference copy, the forward model (e.g., involving the cerebellum), sensory consequence 

prediction, and state estimation with a comparative mechanism (e.g., involving parietal 

regions again) which feed into the feedback controller. This process loops until the 

movement is complete and given that the movement does not result in an effector 

reaching a new position in the environment, the evolving state estimation process 

operates as a simulation that may contrast with reality — ignoring reality and allowing 

simulation likely requires cognitive effort. This is supported by Chapter 4 demonstrating 

that processing in parietal regions during imagery differ from that observed during overt 

execution but are still associated with the quality of the imagined movement. Critically, 

motor imagery involves a greater emphasis of the intended movement consequences to 

the state estimator (e.g., parietal cortex) given the lack of sensory feedback, allowing a 

comparison between predicted movement outcomes with intended movement outcomes. 

This is supported by both Chapter 3 and 4, where the former supports the existence of an 

assessment of imagined movement accuracy and the latter demonstrates that it is 

associated with frontal and parietal cortical processing that differs from overt movement. 

It is the state estimation resulting from this comparison that is fed to the feedback 

controller, which is less detailed than that provided by actual sensory feedback. This is 
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supported by Chapters 2 and 3, where the former demonstrates that the magnitude of 

learning via imagery-based practice is less than overt practice, and the latter demonstrates 

that self-reported accuracy is generally higher during imagery than for overt movement 

when actual sensory feedback is available. As such, while motor imagery involves the 

use of the motor system, the underlying computations are likely different in important 

ways that should be explored in future research. Furthermore, given that upstream 

cognitive processing is required to engage the motor system in simulation — including an 

instruction to imagine and possible motor inhibition — motor imagery is readily 

disrupted by cognitive interference as suggested by the motor-cognitive model 3. A key 

feature of the novel model presented here is that it aligns well with existing motor control 

theories that recognize the problem of motor redundancy (or motor equivalence) where 

the motor system can achieve a given goal in a near-infinite number of ways 21,22, which 

implies that the storage of specific movement representations is not reasonable. Instead, 

the motor system establishes a goal and flexibly achieves it via optimal control 13,23,24. 

Given that motor imagery utilizes these computational resources, it should be capable of 

forming novel movement representations — such as changes in a control policy or 

forward model — and imagery-based practice should be capable of novel motor skill 

learning (as described in section 1.2.2). This is supported in Chapter 2 where imagery-

based practice led to novel motor skill learning. The role of motor imagery in motor 

learning will be further explored below (section 5.3).   
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 This novel model of motor imagery has desirable strengths but is limited by its 

focus on how motor imagery handles action execution. Indeed, the purpose of this 

dissertation (stated in section 1.6) was to investigate whether motor imagery is capable of 

driving motor skill learning (section 1.2.2), with an explicit focus on action execution 

rather than action selection (section 1.2.3), and how this might occur. This involved 

designing an experimental task specific to this purpose and as such the results of the 

experiments presented within must be interpreted within the broader literature. The model 

of motor imagery presented above speaks specifically to the online processing that occurs 

during an imagined movement but speaks very little to upstream processes — such as 

perception, motivation, decision-making, movement planning, and more — that are 

critical for a complete understanding of motor imagery 14,17,25–27. Indeed, even the most 

prominent and prolific proponents of computational perspectives of motor control and 

learning have begun turning their attention to decision-making and cognitive processing 

28,29, which is further attestation for the importance of understanding upstream processes. 

Figure 5.1. Proposed Computational Model of Motor Imagery. 
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Furthermore, the model described above speaks little to processes that occur at different 

timescales, such as hours or days after an imagined movement — where for example 

mental practice has been shown to reveal differences in the content and magnitude of 

motor skill consolidation compared to physical practice 16,17. Despite these limitations, 

the experiments presented above represent novel and important contributions to the motor 

imagery literature and may inform the development of new models of motor imagery 

including the model proposed above. Specifically, the proposed model provides a basis 

upon which motor skill learning — specifically improvements in action execution — may 

be capable via motor imagery.  

5.3. MOTOR LEARNING VIA MOTOR IMAGERY 

 The results of the experiments presented in this dissertation and existing literature 

suggest that it is indeed possible to improve the quality of a movement without overtly 

executing it. The emphasis on action execution rather than upstream processes like goal 

selection or action selection is important given that motor imagery has long been thought 

to share the same motor planning processes as overt movement but diverge at the 

execution stage. This implies that motor imagery can drive motor learning via 

improvements to these upstream processes but does not imply that imagery can drive 

improvements in action execution. For instance, it has been demonstrated that motor 

imagery is capable of driving performance improvement in both adaptation and motor 

sequence learning tasks 15,16,30,31. What’s more, in the case of a keyboard sequence task, it 

appears that learning via motor imagery is readily disrupted by the alteration of a sensory 

cue as opposed to a switch of the hand performing the task, and the inverse is true for 

physical practice-based learning 25. This suggests that motor imagery-based learning is 
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more reliant on perceptual processing and is not dependent on the effector performing the 

task. However, sequence tasks are implicated in challenging action selection processes 

32,33, rather than action execution. Similarly, during adaptation tasks that involve a 

predictable perturbation in a simple reaching movement, participants can reduce error by 

simply aiming in a different direction to compensate for the perturbation which can be 

seen as primarily an action selection challenge rather than an action execution challenge 

per se 34–36. If one adopts the view that motor imagery is primarily a perceptual, 

cognitive, or motor planning process, then it may not be surprising that motor imagery is 

capable of driving improvement in these tasks given their demands. Whether imagery can 

be utilized to drive improvement in the quality of an executed action remains 

questionable in this view. However, the results presented in this dissertation — 

particularly chapter 2 — suggest that motor imagery is indeed capable of driving 

improvements in action execution.  

 The mechanisms of imagery-based motor skill learning can be hypothesized in the 

context of the motor imagery model presented in Figure 5.1. During motor imagery the 

intended movement is simulated using the computational resources of the feedback 

controller, forward model, and state estimator, the latter of which relies on a comparison 

between the intended movement consequences and the predicted movement 

consequences. As such, both the feedback controller and forward models are afforded 

with information necessary to drive updates. This is supported by recent evidence 

demonstrating that motor imagery involves the use of a forward model to predict sensory 

consequences of an imagined movement 2. As discussed in section 1.5.3, further support 

can be found in recent studies of covert movement in animals (using brain-computer 
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interfaces implanted in pre-motor and primary motor cortices) and motor imagery in 

humans (using an adaptation task) that together suggest that imagery can set the initial 

state of a movement 31,37 — a key concept in modern theories of motor cortex function 

(described in section 1.4.3) 38,39. Therefore, motor imagery may drive input to the 

premotor and primary motor cortex that contribute to the development of novel 

combinations of motor primitives (see section 1.4.3) to construct complex but discrete 

motor plans (see section 1.3.4) or motor programs (see section 1.3.1) and then simulate 

whether they may be successful to drive further refinement. These refinements may occur 

in motor and parietal cortical regions, as well as cerebellum given that forward models 

may be subject to refinement as well. Critical to this updating process is a comparative 

mechanism that relies on parietal cortex, which may extend broadly to motor learning via 

mental practice in a wide variety of tasks. Indeed, damage to the parietal cortex impairs 

motor imagery ability 40 and inhibitory brain stimulation to the parietal cortex can disrupt 

sequence learning 26. Note that inhibitory brain stimulation to the primary motor cortex 

does not disrupt sequence learning via imagery 41 — but primary motor cortex (along 

with premotor cortex and cerebellum) has been demonstrated to be critical for motor skill 

learning of action execution in physical practice 42. Therefore, inhibitory brain 

stimulation to the premotor and primary motor cortices during tasks that emphasize 

action execution rather than action selection, and observing the effects on motor skill 

learning, would therefore represent a critical test of the motor imagery model presented 

here.  

 What is learned via motor imagery is likely a function of three factors: training 

time, task demands, and the nature of motor imagery. The model above suggests that 
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motor imagery has inherent limitations — particularly the reliance on motor simulation 

and the lack of precision feedback afforded by the sensory system. While Chapter 2 

demonstrates that with enough time substantial motor skill learning can occur via mental 

practice, physical practice drives a greater magnitude of learning. It is possible that the 

difference between the two training methods would only widen as expertise increases, as 

refinements in action execution are likely subtle and will rely more on fine detail. 

However, it is also possible that when combined with physical practice, motor imagery is 

capable of more detailed simulation. Indeed, it has been shown that experience does 

modulate motor imagery in a similar manner as physical practice 43. It has already been 

discussed how task demands will modulate the content of imagery-based motor learning, 

but it is worth highlighting that the motor imagery model described above does not speak 

to differences between so-called effector dependent or effector independent information. 

Broadly, effector dependent information refers to details of a movement that are specific 

to the part of the body performing the movement (e.g., left hand muscle activation) while 

effector independent information refers to movement related details that are independent 

of the body part performing the movement (e.g., features of the goal, including the shape 

of the movement — for instance, writing your signature with your foot). The motor 

imagery model above implies that both types of information are likely involved in action 

execution, and therefore it may be difficult to dissociate the two when performing 

imagery experiments on tasks that emphasize action execution over action selection. 

However, this would represent an interesting research program detailing how imagery is 

capable of driving motor skill learning of action execution.  
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5.4. LIMITATIONS, OPEN QUESTIONS AND FUTURE DIRECTIONS 

 Conclusions drawn from the findings presented here should be interpreted 

considering the limitations of the experiments. All three experiments utilized a novel 

experimental task with no previously published results upon which to base experimental 

design considerations, such as a power analysis — a common issue in neuroscience 44,45. 

This was mitigated to some degree by doubling sample sizes typically reported in 

neuroimaging and cognitive neuroscience literature (typical being N=30 45, but Chapter 2 

had N=60, Chapter 3 and 4 N=80). Furthermore, in all three experiments hierarchical 

models were utilized to characterize and account for more sources of variability than 

simply averaging trials to produce a single performance variable per participant, which 

has been shown to improve generalizability of results 46. Indeed, performance variability 

was high in the experimental task used (see the first figure of Chapter 1 for a depiction of 

this variability), which is not surprising given its complexity. The findings of each study 

are limited in scope by the experimental task used — a point repeated throughout this 

dissertation but no less a limitation of the experiments presented within. Also common 

between each experiment is the conceptual challenge of mapping objective measures to 

cognitive processes theorized to exist and designing experiments to isolate them. While 

these processes are described in serial (e.g., representational model, Figure 1.2) and with 

limited relationships between them (e.g., computational models, Figure 1.1 and Figure 

5.1) to facilitate interpretability of the literature and results, these processes likely occur 

largely in parallel and with more interdependence than described. Another conceptual 

challenge present in any study of motor imagery is a lack of measurable behaviours due 

to its covert nature, which is a particular challenge for Chapters 3 and 4. That is, the self-
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reported accuracy rating is clearly an imperfect representation of the accuracy of an 

imagined movement. This is clear given the result reported in Chapter 2 that actual error 

(measured in the overt movement group) only accounted for about half the variance 

observe in self-reported accuracy.  

 It remains to be seen whether the motor imagery model presented in this general 

discussion is accepted by other motor imagery researchers and tested or elaborated upon 

with new experiments. In any case, there are several interesting questions raised by the 

model that can be investigated with well designed experiments. For example, the model 

poses a more specific role for the primary motor cortex in driving motor skill learning for 

tasks that emphasize and measure the quality of action execution. This possibility is 

readily testable with inhibitory brain stimulation to the primary motor cortex. If null 

results are found, the experiment should be replicated with premotor cortex before the 

model is completely jettisoned. This is because it’s possible the primary motor cortex is 

not involved during imagery and the concept of setting an initial state for a movement 

can be achieved in the premotor cortex. The model also proposes more detailed roles for 

the frontal and parietal cortices during motor imagery. That is, the frontal cortex may be 

involved in both inhibition of a descending motor command — which again may be 

tested with inhibitory brain stimulation — and potentially a role in instructing the parietal 

cortex in performing a comparison between the intended movement and the results of a 

simulated movement. How the frontal cortex influences this comparative process remains 

an open question. Literature suggests that an intended movement originates from the 

posterior parietal cortex, specifically the inferior parietal lobule 47 — suggesting that the 

parietal cortex is involved in estimating the sensory consequences of an imagined 
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movement (with input from a cerebellar forward model), producing an intended 

movement from the desired consequences, and comparing the intended consequences 

from the simulated consequences. This suggests a high degree of processing in the 

parietal cortex during motor imagery, potentially in several different subregions that 

interact as a complex network. A thorough understanding of how the parietal cortex is 

involved in motor imagery appears critical and likely requires multiple research programs 

using a variety of experimental approaches. Finally, it is necessary to understand how the 

model described here fits within a more comprehensive understanding of motor imagery, 

including different tasks, processes (e.g., including goal and action selection) and 

timescales of learning. 

 Finally, the results and discussion here highlight the importance of considering 

experimental design in applied motor imagery research. For instance, studies 

investigating the utility of motor imagery in sports should consider carefully the skill 

being investigated, whether a motor or cognitive skill critical to success. The findings 

reported here suggest that the execution of complex movements are capable of being 

learned and subsequently improved upon via motor imagery. The author once 

interviewed a pole vault athlete that reported that their training frequently involved motor 

imagery, as physical practice of the task placed high demands on the body and there was 

concern of potential injury. Given that pole vaulting involves a complex movement that 

must be executed with a high degree of precision, Chapter 2 suggests that motor imagery 

is indeed a valid form of training. The same can be said for several sports or artistic 

endeavors such as dance. However, a less detailed review of the literature that paid little 

attention to the experimental tasks used might suggest to a reader that motor imagery is 
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not a viable training method. It is therefore important that motor imagery researchers 

contextualize their results according to the task used. Importantly, motor imagery is of 

interest in stroke rehabilitation, and recent Cochrane reviews appear favorable but call for 

more research 48,49. It is critical that future research in motor imagery for use in 

rehabilitation after stroke take seriously what outcome measures they are using. Stroke 

rehabilitation outcomes are assessed using a wide variety of different measurement tools 

which may emphasize different aspects of motor behaviour and therefore recovery. For 

instance, two popular measures of upper extremity movement in stroke recovery research 

are the Fugl-Meyer Assessment and the Action Research Arm Test. The Fugl-Meyer 

Assessment is generally considered a measure of impairment (that is, a measure of 

movement deficits caused by stroke) while the Action Research Arm Test is generally 

considered a measure of function (that is, the ability of the patient to achieve a movement 

goal regardless of how the impairment might have affected the movement) 50. It is 

possible that motor imagery has differential effects on impairment and function — for 

example, motor imagery may drive novel motor skill development in a stroke patient to 

allow them to achieve tasks that are important to them but may have little effect on their 

impairment. If a clinical trial of motor imagery in stroke measures the Fugl-Meyer 

Assessment and not the Action Research Arm Test, they may not discover this benefit, 

resulting in rehabilitation guidelines that do not recommend motor imagery despite its 

effectiveness — which would be a disservice to the patients recovering from such a 

devastating event.   
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5.5. CONCLUSION  

 Motor imagery has long been a topic of considerable interest in psychology and 

neuroscience. Its covert nature adds an air of mystique, and the potential applications 

provide compelling motivation to take the topic seriously. This dissertation focused on 

investigating whether motor imagery can drive improvements in the execution of 

movement — as opposed to planning and preparation of movement — as the question has 

important theoretical and practical implications. The experiments presented here suggest 

that motor imagery is indeed capable of driving this type of motor skill learning and does 

so by utilizing existing resources of the motor system but with an emphasis on different 

computations compared to overt movement. This difference in computational emphasis 

will give rise to measurable differences in neuroimaging results, behavioural outcomes, 

and learning. These findings therefore make a valuable contribution to the motor imagery 

literature as they resolve conflicting interpretations of previous work. As such, these 

findings also contribute to the broader motor learning literature, particularly with respect 

to how it may be achieved via motor imagery.  

 While movement has its effects on the outside, a full appreciation requires that we 

look inside. Motor imagery research may represent a unique window to understanding the 

motor system and the brain generally. Carefully designed experiments can leverage the 

relationship between overt and imagined movements to gain insight on each, particularly 

how the brain handles covert processes that are challenging to measure. These insights 

may also inform our understanding of visual imagery, and ultimately, even the nature of 

thinking. This dissertation limited its scope to understanding whether motor imagery is 

capable of driving learning of a particular type of movement skill. The findings presented 
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here provided evidence that it is indeed possible, which combined with the existing 

literature reviewed above demonstrate the breadth of motor imagery’s utility. These are 

questions I’ve been interested in since I started practicing dance as an undergraduate 

student majoring in behavioural neuroscience and began a career as a physiotherapist in 

neurological rehabilitation. I am grateful that this dissertation has allowed me to indulge 

in this interest for several years. But while I’ve achieved a greater understanding of this 

and related topics, I am left with no fewer questions than before. However, I am hopeful 

that the work presented here will contribute to future research that I will continue to 

follow, and if granted the opportunity, continue to pursue myself. It is important that this 

work continues given the potential to inform applications such as rehabilitation, 

ultimately helping individuals live healthier and happier lives. 
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APPENDIX A 

Appendix A. Figure 1. Overt group grand average electroencephalography. 
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Appendix A. Figure 2. Imagery group grand average electroencephalography. 
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APPENDIX B 

Appendix B. Figure 1. Accuracy related power change by group and frequency band. 
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Appendix B. Figure 2. Familiarity related power change by group and frequency band. 

 

−3.71  

−2.18  

−0.66  

During After

R
el

at
ive

 p
ow

er
(lo

g−
dB

)

Epoch

Anterior

Posterior

Ipsilateral

C
on

tra
la

te
ra

l

Trial type
random

repeated −3.48  

−2.23  

−0.98  

During After

R
el

at
ive

 p
ow

er
(lo

g−
dB

)

Epoch

Anterior

Posterior

Ipsilateral

C
on

tra
la

te
ra

l

Trial type
random

repeated

−3.536  

−1.792  

−0.048  

During After

R
el

at
ive

 p
ow

er
(lo

g−
dB

)

Epoch

Anterior

Posterior

Ipsilateral

C
on

tra
la

te
ra

l

Trial type
random

repeated −3.6  

−2.0  

−0.3  

During After

R
el

at
ive

 p
ow

er
(lo

g−
dB

)

Epoch

Anterior

Posterior

Ipsilateral

C
on

tra
la

te
ra

l

Trial type
random

repeated

−1.13  

−0.03  

 1.07  

During After

R
el

at
ive

 p
ow

er
(lo

g−
dB

)

Epoch

Anterior

Posterior

Ipsilateral

C
on

tra
la

te
ra

l

Trial type
random

repeated −1.63  

−0.77  

 0.09  

During After

R
el

at
ive

 p
ow

er
(lo

g−
dB

)

Epoch

Anterior

Posterior

Ipsilateral

C
on

tra
la

te
ra

l

Trial type
random

repeated

Overt Imagery

Beta

Alpha

Theta



 205 

Appendix B. Figure 3. Low accuracy (bottom 20%) minus high accuracy (top 20%) 

related power change by group and frequency band.    
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