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Abstract

In this thesis, we study spike dynamics and stability in different reaction-diffusion

systems. Since localized patterns are ”far-from-equilibrium” structures, the classical

Turing-type stability analysis is not applicable. Instead, we apply the method of

matched asymptotic expansions and nonlocal eigenvalue problems to analyze these

singular perturbed PDEs.

In the first part of the thesis, we investigate an SIRS model with spatial diffusion

and nonlinear incidence rates. We show that for small diffusion rate of the infected

class, the infected population tends to be highly localized. We then study three

distinct destabilization mechanisms, as well as a transition from localized spikes to

plateau solutions. In all cases, the stability thresholds are computed asymptotically

and are verified by numerical experiments.

In the second part we study the effect of noise on spike dynamics for the Gierer-

Meinhardt model. When spatial-temporal noise is introduced in the activator equa-

tion, we derive a stochastic ODE that describes the motion of a single spike. For

small noise level, the spike can deviate from the domain center but remains ”trapped”

within a subinterval. For larger noise levels, the spike undergoes large excursions that

eventually collide with the domain boundary. We then derive the expected time for

the spike to collide with the boundary.

In third part we propose an extension of the Klausmeier model to two plant species

that consume water at different rates. We are interested in how the competition for

water affects stability of plant patches. We find a finite range of precipitation rate for

which two species can co-exist. Outside of that range, the frugal species outcompetes

the thirsty species. There is sequence of stability thresholds such that thirsty plant

patches are the first to die off, while the frugal spots remain resilient for longer.

In the end, an analysis is undertaken of the formation and stability of localized

patterns in the Schnakenberg model with source terms in both the activator and

inhibitor fields. Single-spike patterns are constructed and we then derive the non-

local eigenvalue problem and study a Hopf bifurcation in the amplitudes of the spike.
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Chapter 1

Introduction

Reaction-diffusion systems play an important role as fundamental models in many

areas, such as biology, chemistry, physics and ecology. They can describe a wide class

of spatio-temporal patterns observed in the physical world as well as in living systems.

In recent years, the study of spatial pattern formation and dynamics in reaction-

diffusion systems has gained increasing attention and many new developments have

been made.

In this thesis, we analyze the dynamics and stability of spike patterns in four

different reaction-diffusion systems. The first model, studied in chapter 2, is the

SIRS epidemic model, initially formulated with no diffusion. It was first introduced

by Kermack and McKendrick in 1927 [1] and is widely used to model the spread of

infectious diseases. In the model, the population is divided into three disjoint classes:

susceptible (S), infected (I), and recovered (R), where susceptibles can be infected by

those already infected and subsequently recover, and the recovered class is immune

to the disease but loses immunity over time. With diffusion terms included, it can be

written as 
St = DSSxx − SI2 + γR, x ∈ [−L,L], t > 0,

It = ε2Ixx + SI2 − I, x ∈ [−L,L], t > 0,

Rt = DRRxx + I − γR, x ∈ [−L,L], t > 0,

Sx = Ix = Rx = 0 at± L,

(1.1)

where DS, ε
2, DR are the diffusion coefficients of each class of population, and γ is

the rate of immunity loss.

The second model, studied in chapter 3, is the Gierer-Meinhardt system. It was

introduced in [2] to describe biological morphogenesis. This model is known to have

a rich pattern-formation structure [2, 3, 4]. In this thesis, we study the effect of

noise on spike dynamics for the classical Gierer-Meinhardt model and we consider the

1
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following equations:
ut = ε2uxx − u+ u2

v
+ σuW

√
dt
dt
, x ∈ [−L,L], t > 0,

0 = vxx − v + u2

ε
, x ∈ [−L,L], t > 0,

ux = vx = 0 at x = ±L.

(1.2)

Here u and v represent the activator and the inhibitor concentrations, ε2 is the diffu-

sion rate of activator and we assume 0 < ε� 1. The term σuW
√
dt
dt

is the differential

form of the spatio-temporal Gaussian white noise in the decay of u, in which W (x, t)

is a normally distributed random variable and is defined in (3.3). σ is a constant

which denotes the noise size.

The third model, studied in chapter 4, is the Klausmeier model of vegetation.

First proposed by Klausmeier [5], it is a widely studied reaction-diffusion model of

vegetation pattern formation in semiarid environments [6, 7, 8, 9]. Here we consider

a modified version of the Klausmeier model which has 3 components:
u1t = ε2 u1xx − u1 + u2

1v, x ∈ [−L,L], t > 0,

u2t = ε2 u2xx − u2 + u2
2v, x ∈ [−L,L], t > 0,

τvt = Dvxx + a− u21v

ε
− β u

2
2v

ε
, x ∈ [−L,L], t > 0,

u1x = u2x = vx = 0 at x = ±L.

(1.3)

Here u1, u2 are the concentration of two plants with different water intake rates and v

denotes water density. ε2 and D are diffusion coefficients, a represents rate of rainfall,

and β is the ratio of water intake rate between u2 and u1. τ represents the differing

timescales in changes in water level versus those in plant density.

The last model, studied in chapter 5, is the Schnakenberg system. This is a basic

differential equation model to describe an autocatalytic chemical reaction [10]. With

assumption that the activator source term is O(ε) and the substrate source is O(ε2),

where ε2 is the diffusion ratio, we have the following equations:
ut = ε2 ∂2u

∂x2
+ u2v − u+ εα, x ∈ [−L,L], t > 0,

vt = ∂2v
∂x2
− u2v + ε2β, x ∈ [−L,L], t > 0,

ux = vx = 0 at x = ±L.

(1.4)

A common feature observed in these models is that their solution exhibits spikes-type

patterns: a highly localized structure in space, which is concentrated on a discrete
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number of points of the domain. The goal of this thesis is to study the stability and

dynamics of these spike patterns.

1.1 Background

The modern theory of pattern formation was initiated by Alan Turing in 1952 [11]. In

his seminal paper [11], Turing proposed a simple reaction-diffusion system to account

for pattern formation in chemical systems. He introduced a linear stability analysis

to show that diffusion can cause instability to a homogeneous steady state even if it’s

stable in the absence of diffusion, and different spatio-temporal patterns can arise in

reaction-diffusion systems.

Let us recall the Turing instability analysis of reaction-diffusion systems that forms

a pattern from a uniform state. A typical two-component reaction-diffusion system

has the form 
Ut = DUUxx + f(U, V ), x ∈ [−L,L], t > 0,

Vt = DV Vxx + g(U, V ), x ∈ [−L,L], t > 0,

Ux = Vx = 0 at x = ±L.

(1.5)

This system has a spatially homogeneous equilibrium solution Ue, Ve such that f(Ue, Ve) =

g(Ue, Ve) = 0. Next, we linearize around the equilibrium. Any random perturbation

of the uniform equilibrium can be decomposed in Fourier modes (cos(mx)), and each

of these modes grows or decays exponentially (eλt cos(mx)) depending on the sign of

the real part Re(λm). So we let

U = Ue + φeλt cos(mx), V = Ve + ψeλt cos(mx),

where φ and ψ are assumed small.

To satisfy the Neuwmann boundary condition, we require that mL = jπ, where j

is a non-negative integer. We then obtain λ~η = J~η, where ~η = (φ, ψ)T and

J =

(
−m2DU + fU(Ue, Ve) fV (Ue, Ve)

gU(Ue, Ve) −m2DV + gV (Ue, Ve)

)
(1.6)

is the corresponding Jacobian matrix. By computing the eigenvalues of J , i.e. λm for

modes with any wavenumber m, we can find that the interaction between reactions
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and diffusion can give rise to bands of unstable modes with positive growth rates,

These modes with particular wavelengths are amplified out of a random perturbation,

which gives rise to pattern formation.

Turing’s study was extended by Segal and Jackson [12], and Gierer and Meinhardt

[2], who postulated that ”Turing patterns” are assumed to be driven by ”short range

activation” and ”long rang inhibition” [13]. Later works showed that the long-range

inhibition does not necessarily require an inhibitor, but can also result from the

depletion of the substrate that is consumed during the production of the autocatalytic

activator [14]. Let us illustrate how the activator-inhibitor mechanism and activator-

substrate mechanism work.

For activator-inhibitor mechanism, we consider two chemical components. First,

the (short range) activator catalyzes its own production so that its concentration

can increase exponentially. However, the activator cannot increase indefinitely since

the inhibitor, which is also produced by the activator, can inhibit the behavior of the

activator. Secondly, the (long range) inhibitor has a much larger diffusion rate. Hence,

it does not accumulate locally with the activator but diffuses laterally. Among the

models studied in this thesis, Gierer-Meinhardt model is a typical activator-inhibitor

system.

Different from the activator-inhibitor model, the rapidly diffusing component in

a activator-substrate model changes to a substrate that is depleted by conversion

into the activator. The long range inhibition here is due to depletion of substrate.

Therefore, the concentration of the substrate is lowest in regions of activator peaks,

in contrast to the situation in an activator–inhibitor system, in which the inhibitor

has high values near activator peaks (see Figure 1.1). Among the models studied in

this thesis, Schnackenberg model is a typical activator-substrate system.

Some biological systems are very complex and may contain multiple activators or

substrates. In this thesis, we consider two multi-component systems, one is the SIR

epidemic model (2), which is an activator-substrate-inhibitor system; the other one is

the three-component Klausmeier system (1.3), which models two activators and one

substrate.

In this thesis, we consider the limit where the activator diffusivity is small, in

which case localized spike patterns can arise from Turing instability. Such patterns
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(a) Pattern formation by an activator–inhibitor mechanism

(b) Pattern formation by an activator–substrate mechanism

Figure 1.1: (a) In the activator-inhibitor model, the slowly diffusing activator catal-
yses its own production, which in turn stimulates the production of a fast-diffusing
inhibitor that suppresses autocatalytic activator production. (b) In the activator-
substrate model, the inhibitor is replaced by a substrate, and autocatalytic activator
production is replaced by the autocatalytic conversion of substrate into activator.

are considered ‘far-from-equilibrium’ structures [15], and the conventional Turing-type

stability analysis is not applicable. Starting from the 1990s, many new approaches

have been introduced to study the large-amplitude patterned states.

During the last three decades, there has been great progress in the study of ex-

istence and stability for spike-type solutions. The existence of symmetric N -spike

steady-state solutions in the Gierer-Meinhardt model is first established in [16]; these

solutions are periodic and have the same spike height. Then in [3], the stability of the

general N -spike solution for the 1-D Gierer-Meinhardt model is studied using NLEP

approach. In [17], using matched asymptotic expansions, the existence and stability

of asymmetric multi-spike solutions which contain two types of spikes with different

heights for the one-dimensional Gierer-Meinhardt model is studied. For the case of

symmetric N -spike solutions the instability always arises first from the small eigen-

values [3], while asymmetric multi-spike solutions are always unstable with respect to

small eigenvalues [17].
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While the 1-D problems are rather well-studied, there have been far fewer studies

of the existence, linear stability, and dynamics of localized spot patterns in higher

dimensions. The existence of spikes for the two-dimensional Gierer-Meinhardt sys-

tem has been proved in [18, 19, 20, 21, 22]. The stability of stripes for the Gierer-

Meinhardt system has been studied in [23]. This study has been extended to the

Gierer-Meinhardt system with saturation in [24]. Moreover, the existence of solu-

tions to the Gierer-Meinhardt system in three dimensions is studied in [25, 26].

The existence, linear stability, and dynamics are also studied in many other

reaction-diffusion systems as well as their extensions. For example, spikes for the

Schnakenberg model have been considered in [27, 28] for one dimension and [29] for

two dimensions. In [30] a hybrid asymptotic-numerical method is employed to analyze

the linear stability and slow dynamics of multi-spot patterns of the 3-D Schnaken-

berg model. Another well-known activator-substrate model is the Gray-Scott model

[31, 32], and much theoretical work has been done to analyze the dynamics and in-

stabilities of spike solutions. For example, pattern formation and stability of spike

patterns for D = O(1) have been studied in [33, 34, 35, 36], and slow dynamics of

quasi-equilibrium spike patterns have been studied in [37, 38, 39].

There have been many studies on extensions of dynamical systems. For exam-

ple, reaction-diffusion systems are usually studied for coefficients that are constant in

space; however, it’s more realistic to consider spatially varying coefficients in reaction

kinetics, which is referred to as precursor gradients. It is shown in [17] that the asym-

metric spike patterns in the GM model with constant coefficients are always unstable

with respect to small eigenvalues. While in [40] it turns out that precursor gradi-

ent can lead to the existence of stable, asymmetric, two-spike patterns. Moreover,

large scale spike density distribution for the Gierer-Meinhardt model with precursor

is considered in [41].

1.2 Brief introduction of related models in the thesis

1.2.1 History of SIR epidemic model

Mathematical modeling of infectious diseases began in the early 20th century with

the pioneering work of William Hamer [42] and Ronald Ross [43]. In 1927, Kermack
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and McKendrick proposed the first epidemic model which is known as the SIR model

[44]. This model was successful in predicting the behavior of outbreaks very similar

to that observed in many recorded epidemics [45, 46].

There are many extensions of the SIR model, such as SEIR and SIRS model. In

the SIRS model, the population is divided into three disjoint classes: susceptible (S),

infected (I), and recovered (R), where susceptibles can be infected by those already

infected and subsequently recover, and recovered class are immune to the disease but

lose immunity over time. These assumptions are modelled using the following system

of ODEs: 
St = −βSI + γR,

It = βSI − νI,
Rt = νI − γR,

(1.7)

where β is the infection rate, ν is the recovery rate, and γ is the rate of immunity

loss. Note that the total population N = S + I + R is a constant, this can be

verified by adding together the three equations in (1.7), and integrating in terms of t.

Kermack and McKendrick’s work has motivated the use of mathematics in the study

of epidemiology [47, 48, 49].

While spatially homogeneous dynamics are by now well understood, modelling

spatial interactions is still an active area of research. In recent decades, numerous

methodologies have been used to describe spatial interactions. This includes the use of

cellular automata [50, 51], metapopulations [52, 53, 54], networks [55, 56] and partial

diffusion equations [57, 58]. Generally speaking, incorporating spatial structure leads

to very rich dynamics in epidemic models, such as the formation of disease hot spots.

1.2.2 History of Gierer-Meinhardt model

The Gierer-Meinhardt (GM) model was first proposed in [2] to model head formation

in the hydra. It has the following non-dimensional form:
ut = ε2∆u− u+ up

vq
, x ∈ Ω, t > 0,

τvt = ∆v − v + ur

vs
, x ∈ Ω, t > 0,

∂nu = ∂nv = 0, x ∈ ∂Ω.

(1.8)

Here Ω is a bounded domain, u and v represent the activator and the inhibitor con-

centrations, ε2 is the diffusion rate of the activator u, τ is the reaction-time constant,
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∂n denotes the outward normal derivative, and the exponents (p, q, r, s) are assumed

to satisfy

p > 1, q ≥ 1, r > 0, s ≥ 0,
p− 1

q
<

r

s+ 1
.

The GM model has been widely used to model localization processes in nature, such

as cell differentiation and morphogenesis [59, 60], biological pattern formation [61],

and the formation of sea-shell patterns [62]. Many variants of this model have been

proposed and studied numerically in [61]. These models involve additional chemical

species, saturation effects, etc. The model (1.8) is the simplest model in this hierarchy.

The most interesting phenomenon associated with GM model is the existence of

stable spikes and stripes. There has been a large literature on the stability of localized

1-D spike solutions to the GM model (1.8) [63, 64, 65, 3, 66, 22, 67]. For 2-D spatial

domain, there are only a few analytical results characterizing stability and dynamics

of spot patterns, such as [20, 68, 19, 21, 24].

1.2.3 History of Klausmeier model of vegetation

In the semiarid regions, where water resource is limited, it is hard for the vegetation

cover to maintain homogeneity, which may lead to self-organized vegetation patterns.

This phenomenon is well-known to occur in many parts of the world, such as Africa

[69], Australia [70], and the U.S. [71]. In recent decades, vegetation pattern formation

has aroused widespread interests of ecologists and mathematicians [72, 73, 74].

Many studies suggest that the formation of vegetation patterns in semi-arid regions

results from feedback between biomass and water resource [75, 76, 77, 74, 78]. Based

on this mechanism, a great number of mathematical models have been established.

One of the most widely used models is proposed by Klausmeier [5], and many models

developed later can be considered as modified versions of the Klausmeier model [79,

80, 81]. In dimensionless form, the Klausmeier model contains the following equations:

∂n

∂t︸︷︷︸
rate of plants

= δ
∂2n

∂x2︸ ︷︷ ︸
diffusion

+ n2w︸︷︷︸
water intake

− n︸︷︷︸
plant death

,

b
∂w

∂t︸︷︷︸
rate of water

= c
∂w

∂x︸︷︷︸
flow downhill

+ a︸︷︷︸
precipitation

− w︸︷︷︸
evaporation

− n2w︸︷︷︸
plant intake

+ d
∂2w

∂x2︸ ︷︷ ︸
diffusion

,

(1.9)
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where n(x, t) and w(x, t) denote plant density and soil water concentration respec-

tively. The parameter a represents the precipitation rate. Parameter b represents

the differing timescales in changes in water level (in days, say) versus those in plant

density (in months).

There has been some previous work on the analysis of the Klausmeier model. In

a collection of articles [82, 83, 84, 85, 86], the behavior of stripe solutions to (1.9)

has been studied in various parameter regimes. In [87], system (1.9) was extended by

adding the diffusion term of water component w (typically water is assumed to diffuse

at a faster rate than that of the vegetation component), which is called the generalized

Klausmeier–Gray–Scott model. In [6], a modified Klausmeier–Gray–Scott model was

studied and it was shown that the speed of precipitation changes can induce a delay in

bifurcation from homogeneous equilibrium to non-homogeneous patterns. If the drift

speed is sufficiently small, there is enough time for the spatial perturbations to grow,

and the system is able to transition to the patterned state. This state extends beyond

the tipping point. However, if the drift speed is too large, the perturbations may not

have enough time to grow before the tipping point is reached. If this happens, the

tipping point will be activated before the system can transition to the patterned state.

In this case the plant population crashes to zero, resulting in rapid desertification.

1.2.4 History of Schnackenberg model

The Schnakenberg model was first proposed in [10] and has many applications involv-

ing pattern formations in biology [88, 89]. This system describes an autocatalytic

chemical reaction between two chemical products U, V and two sources A and B as

follows:

U 
 A, B −→ V, 2U + V −→ 3U.

Applying the law of mass action, one can obtain the following system of reaction-

diffusion equations:
ut = a− u+ u2v + d1uxx, −L < x < L, t > 0,

vt = b− u2v + d2vxx, −L < x < L, t > 0,

ux(±L, t) = vx(±L, t) = 0.

(1.10)

Here u and v represent the activator and the inhibitor concentration, respectively,

and the parameters a, b > 0 are the respective constant concentrations of A and B.
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Because of its algebraic simplicity, the Schnakenberg model has been used by

many people as an exemplifying reaction–diffusion system to study spatio-temporal

pattern formation. On a one-dimensional interval, the existence and stability of

multi-interior spike solutions have been established in both symmetric case [28] and

asymmetric case [27]. In a two-dimensional domain, the existence and dynamical

behavior of multi-spot solutions have been shown in [29, 90]. More recently, the

existence, linear stability, and slow dynamics of localized quasi-equilibrium multi-

spot patterns are analyzed in [30] on a finite three-dimensional domain. In [91], the

Schnakenberg model was extended to a three-component activator-substrate-inhibitor

reaction-diffusion system and new oscillatory dynamics are presented and analyzed.

1.3 Main contributions and comparison to previous work

There have been many studies in dynamics and linear stability analysis with localized

patterns, especially on one-dimensional intervals. However, most of them are concen-

trated in deterministic two-component reaction-diffusion systems. By contrast, the

models studied in this thesis are extended to three-component systems or stochastic

models. These models introduce several new phenomena which have not been seen

in previous work. By analyzing the dynamics and stability of the spike patterns in

these models, we link our results to the applications and explain the phenomena in

nature.

While the various ODE systems of SIRS model are well-studied, much less work

has been done on PDE systems. The first novel result presented in this thesis is the

existence of K-spike patterns and several instability mechanisms in the SIRS model

with spatial diffusion and nonlinear incidence rates are considered. The results have

been published in [92].

The second new result presented in this thesis is the effect of noise on the dynamics

of a single spike in the GM model. While the behavior of single spike has been well

studied in previous work [3, 34], there are many new phenomena that occur when

the spatio-temporal noise is added to the system. These new phenomena have no

counterpart with previous work on GM model. This work has been published in [93].

In [94] we study the model for two-plant species (1.3), with competition for a

common resource (water). This model is based on the well-known Klausmeier model
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of vegetation patterns. We have shown that in the water-constrained regime where

spike patterns exist, the two species can co-exist. However, as the precipitation rate

decreases, the “frugal” plant is more robust and can out-compete the more “thirsty”

plant, leading to the death of thirsty plants and survival of the more frugal plant.

Finally, the thesis includes work from [95], where we study the modified Schnack-

enberg model. Here, the new result is the existence of single-spike patterns on an

infinite domain with the introduction of non-zero activator feed rate. In this case,

the outer region for u no longer decays to zero, which is the case in the “classical”

Schnakenberg model with a = 0, and this leads to a nonlinear outer problem.

1.4 Objectives and Outline

We now present the main goals of this thesis and an overview of the remainder of

the chapters. The conventional Turing-type stability analysis shown in § 1.1 leads

to the determination of conditions for which spatially uniform steady-state solutions

bifurcate to spatially nonuniform solutions. These instabilities have been shown to

yield spike-type solutions in semi-strong reaction-diffusion systems. However, this

analysis can say nothing about the stability and dynamics of the spike solutions. The

main goal of this thesis is to use the method of matched asymptotic expansions to

study these spike solutions, which are far from homogeneous steady states.

In chapter 2, we study spatially-localized outbreaks for the SIRS model with

spatial diffusion and nonlinear incidence rates. In § 2.1 we show that for a small

diffusion rate for the infected class DI , the infected population tends to be highly

localized at certain points inside the domain, forming K spikes. A linearization

about this solution leads to a non-local eigenvalue problem which is studied in § 2.2.

We then study three distinct destabilization mechanisms, as well as a transition from

localized spikes to plateau solutions. Two of the instabilities studied in § 2.3 are due

to coarsening (spike death) and self-replication (spike birth), and have well-known

analogues in other reaction-diffusion systems such as the Schnakenberg model. The

third transition is when a single spike becomes unstable and moves to the boundary.

This instability is studied in § 2.4.1 and § 2.4.2. In all cases, the stability thresholds

are computed asymptotically and are verified by numerical experiments. In § 2.4.3

we show that the spike solution can transit into a plateau-type solution when the



12

diffusion rates of recovered and susceptible class are sufficiently small. The material

in this chapter is published in [92].

In chapter 3, we study the effect of noise on the dynamics of a single spike for the

classical Gierer-Meinhardt model on a finite interval [−L,L]. When spatio-temporal

noise is introduced in the equation for the activator, we derive in § 3.1 a stochastic

ODE that describes the motion of a single spike on a slow time scale. Then in

§ 3.2, we look for the long-term density distribution for spike positions, which is

obtained by computing the steady state via the corresponding Fokker-Plank PDE.

For sufficiently small noise level, the spike performs random fluctuations near the

center of the domain. For even larger noise levels, the spike starts to undergo large

excursions that eventually collide with the domain boundary and temporarily trap

the spike there. In § 3.3, we reformulate this problem in terms of mean first passage

time (MFPT), and derive the expected time for the spike to collide with the boundary.

The work has been published in [93].

In chapter 4, we analyze the stability and dynamics of multi-spike solutions in the

”two-species vegetation model”. In § 4.1, we construct the non-trivial steady state

which contains two types of spikes, u1 and u2. With different water intake rates, the

two types of spikes have different heights and radius. Then we analyze the stabil-

ity of the N-spike equilibrium with respect to the large eigenvalues by deriving the

corresponding nonlocal eigenvalue problem (NLEP), and with respect to the small

eigenvalues by looking at asymmetric branches in § 4.2. We then show that the insta-

bility due to small eigenvalues is the dominant instability. In § 4.3 we use numerics

to explore what happens in the high-precipitation regime of large a, and we conclude

with some open questions. The work has been published in [94].

In chapter 5, we study the stability of single-spike patterns in modified Schnack-

enberg model in the semi-strong regime on bounded and unbounded domain. First,

we construct the steady state in § 5.1 with finite and infinite L. Then we derive the

corresponding nonlocal eigenvalue problem in § 5.2 to study the Hopf instability of

the single spike under the case τ = 0 and τ 6= 0. These results have been published

in section 3 and section 4 of the paper [95].

Finally, in chapter 6, we summarize the main results and contributions of this

thesis and identify several open problems for future study.



Chapter 2

Localized outbreaks in SIRS model with diffusion

In this chapter we study spatially localized outbreaks for the SIRS (1.7) model with

spatial dispersion. As will be shown below, such outbreaks can occur when the

infection rate β increases with the number of infected individuals. Here, we will

assume that β is proportional to I, and we model spatial dispersion using diffusion.

This results in the following system,


St = DSSxx − χSI2 + γR,

It = DIIxx + χSI2 − νI,
Rt = DRRxx + νI − γR.

(2.1)

Here DS, DI , DR are diffusion coefficients of each class of population and χI is the rate

of infection. We study this epidemic system on a 1-D interval [−L,L] with Neumann

boundary conditions, so that Sx = Ix = Rx = 0 at x = ±L. For simplicity, we also

assumed the timescale of infection and recovery is much shorter than people’s average

life span, so birth and death rates for each class are neglected.

The second key assumption we make is that the infected class I diffuses more

slowly than others. There are two scenarios where this is biologically plausible. The

first scenario, common in many species, is that the disease itself reduces the species

mobility. A second scenario, applicable to humans, is an intentional quarantine policy

to limit the spread of infection. Such a policy is well known to be effective in control-

ling disease outbreaks and is often used a first-line defense against quickly-spreading

infections.

We therefore write DI = ε2 where ε is small. By further rescaling 1, we may

set χ = 1, ν = 1. This leads to the following singularly perturbed reaction diffusion

1Let t = t̂
ν , S =

√
ν
χ Ŝ, I =

√
ν
χ Î , R =

√
ν
χ R̂ and define new parameters by γ = νγ̂,DS =

νD̂S , DI = νε2, DR = νD̂R. Upon dropping the hats, this yields (2.2).

13
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system: 
St = DSSxx − SI2 + γR,

It = ε2Ixx + SI2 − I,
Rt = DRRxx + I − γR.

(2.2)

Under these assumptions, this system has localized disease concentrations cor-

responding to spike-type solutions. Such spike patterns have been studied in great

detail since the 1990’s in simpler reaction-diffusion systems consisting of two compo-

nents, such as Gierer-Meinhardt system, Gray-Scott model, Schnakenberg model and

Keller-Segel model and its variants. We refer the readers to [4, 63, 3, 96, 97, 98, 64,

36, 99, 100] and references therein. The introduction of a third component leads to

interesting new phenomena not present in two-component reaction-diffusion systems

[101].

Simulations and analysis show that the behavior of the system is highly dependent

on the diffusion rate of the recovered class DR, relative to the diffusion rate of infected

class, ε2. We isolate two distinct regimes: either DR � O(ε2) or DR ≤ O(ε2).

Depending on the regime, several different types of instability may occur. In

§ 2.1, § 2.2, § 2.3, we study the regime DR � O(ε2), where the steady-state pop-

ulation consists of K hot-spots of disease, uniformly distributed inside the interval

[−L,L]. Depending on system parameters, the K-spike steady state can undergo two

types of instabilities. The first type, analyzed in Section § 2.3.1 is referred to as spike

competition instability. As a result of such an instability, some of the hot-spots are

“absorbed” by others, resulting in fewer hot-spots. The second type of instability,

studied in Section § 2.3.2 is referred to as self-replication instability, whereby a spike

splits into two, resulting in more spikes. These instabilities are illustrated in Figure

2.1. Figure 2.1(a) shows 8 spikes that gradually coarsen into 2 as DS is gradually

increased. On the other hand, with one-spike equilibrium as initial condition, repli-

cation occurs and more spikes appear as we gradually decrease DS. This is shown

in Figure 2.1(b). We derive explicit thresholds for DS such that the spike compe-

tition occurs when DS > Dcom
SK , K ≥ 2; and self-replication instability occurs when

DS < Drep
SK , K ≥ 1. Formulas for Dcom

SK and Drep
SK are given in Section § 2.3.

In Section § 2.4 we study the other regime where DR is small: DR ≤ O(ε2). In this

case, a single spike can become unstable, and depending on other parameters, two
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phenomena can occur. If DR is sufficiently small, a single spike moves to the bound-

ary (depending on how big DS is), as illustrated in Figure 2.2. This phenomenon

is studied in Section § 2.4.2. On the other hand, when both DR and DS are small,

the spike “fattens up” and becomes a mesa-type pattern, i.e., a contiguous region

of high concentration of disease connected via a sharp interface to a region of low

concentration. Numerically we observe two types of inhomogeneous equilibrium de-

pending on the value of DS and an example of such a steady state pattern is shown

in Figure 2.3. Spike-type solution exists for sufficiently large DS, but transition to

interface-type patterns for small DS. This process is illustrated in Figure 2.3(left).

Interface patterns are studied in Section § 2.4.3.

(a) (b)

Figure 2.1: Instabilities of steady state spike solutions induced by slowly increasing
DS or decreasing DS. Here DR = 1, L = 2.5, ε = 0.05, N = 15 and γ = 1. Left:
Coarsening (competition) instability when DS is increased (Ds = 1 + 10−5t). Color
plot of I is shown in each case. Right: Self-replication instability when DS is slowly
decreased (Ds = 6− 10−5t).

2.1 Symmetric spike equilibrium solutions

We begin by calculating the equilibrium spike solution of system (2.1) using matched

asymptotic methods. In particular, we start by constructing single-spike solutions,

then we can apply the ”gluing” technique to construct K-spike symmetric equilibrium

solutions.

To do this, we first consider a one-spike solution on the interval |x| < L centered
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(a) DR = 1 (b) DR = 0.0036

Figure 2.2: Stable and unstable motion of a single spike. Here, DR is as indicated
while other parameters are fixed at DS = 5, L = 1, ε = 0.06, N = 5 and γ = 1. In
(a), one-spike equilibrium moves to the center, which shows that the center spike is
stable. In (b) the spike moves to boundary instead of moving to center, showing that
a single spike is unstable.

at x0. The extent of the spike is of O(ε), we therefore introduce the inner variable

y =
x− x0

ε
. (2.3)

In the inner region the equilibrium solution of (2.4) satisfies
Syy − ε2

DS
SI2 + ε2

DS
γR = 0,

Iyy + SI2 − I = 0,

Ryy + ε2

DR
I − ε2

DR
γR = 0.

(2.4)

We then expand S, I, R as

S = S0 + εS1 +O(ε2),

I = I0 + εI1 +O(ε2), (2.5)

R = R0 + εR1 +O(ε2).

Upon substituting (2.5) into (2.4) and collecting higher-order terms in ε, we obtain,

to leading order, 
S0yy = 0,

I0yy + S0I
2
0 − I0 = 0,

R0yy = 0.

(2.6)
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Figure 2.3: Transition from spike to mesa when DR = 0, ε = 0.04, N = 10, L = 1, γ =
1 with DS as a control parameter. Left: DS is gradually decreased from 0.5 to 0.05.
Middle, Right: Profile of I(x) for DS as indicated.

This shows that S0 and R0 are constants that are to be determined. We then rescale

I0 =
1

S0

w(y), (2.7)

where so that w satisfies the well-known ground-state,

w′′ − w + w2 = 0, w → 0 as y → ±∞, (2.8)

whose explicit solution is given by

w(y) =
3

2
sech2

(y
2

)
. (2.9)

To determine S0 and R0, we must match the inner and the outer region. Since S

is localized near x = x0, the terms involving S in (2.2) can be represented as delta

functions. Therefore in the outer region we approximate

I ∼
(∫ L

−L
Idx

)
δ(x− x0), SI2 ∼

(∫ L

−L
SI2dx

)
δ(x− x0).

We further estimate
(∫ L
−L Idx

)
∼ 1

S0
ε
∫∞
−∞wdy ∼ 6ε/S0 and similarly,

∫ L
−L SI

2dx ∼
6ε/S0, so that S,R in the outer region satisfy

DSSxx + γR = 6ε/S0δ(x− x0),

DRRxx − γR = −6ε/S0δ(x− x0).
(2.10)
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To solve (2.10), we introduce the modified Green’s function G(x;x0), which satisfies
Gxx − γ

DR
G = −δ(x;x0),

Gx(x
+
0 )−Gx(x

−
0 ) = −1,

Gx(±L) = 0.

(2.11)

A simple calculation gives

G(x;x0) =


cosh

(√
γ
DR

(x+L)

)
cosh

(√
γ
DR

(x0−L)

)
√

γ
DR

sinh(2
√

γ
DR

L)
, −L < x < x0

cosh

(√
γ
DR

(x0+L)

)
cosh

(√
γ
DR

(x−L)

)
√

γ
DR

sinh(2
√

γ
DR

L)
, x0 < x < L.

(2.12)

The solution to (2.10) is then given by

R(x) =
6ε

S0DR

G(x;x0), (2.13)

and

S(x) = −DR

DS

R(x) +
DR

DS

R0 + S0, (2.14)

where R0 = 6ε
S0DR

G(x0;x0) and S0 is to be determined. To find S0, we use the

conservation of mass. Let N be the total population, so that

N ≡
∫ L

−L
(S + I +R)dx. (2.15)

Note that by adding three equations in (2.2) and integrating over the domain, N is

independent of time. We will also take

N = 2N0L, (2.16)

where N0 is an arbitrary constant depending on the initial conditions, so that N

scales with domain size; N0 can be thought of an average density.

We now substitute (2.7), (2.13), and (2.14) into the mass conservation condition

(2.15, 2.16) to obtain that

S2
0 −N0S0 + E = 0, (2.17)

where

E =
3ε

L

1 +
1

γ
− DR

γDS

+ 2

√
DR

γ

L

DS

cosh(
√

γ
DR

(x0 + L)) cosh(
√

γ
DR

(x0 − L))

sinh(2
√

γ
DR
L)

 .

(2.18)
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Solving (2.17) we get two roots when N2
0 − 4E > 0. Asymptotically in ε, they are

S0− ∼
E

N0

, (2.19)

which is of O(ε) and

S0+ ∼ N0, (2.20)

which is of O(1). Plots of these two roots are shown in Fig 2.4. The two roots connect

at a fold point corresponding to a double root of (2.17). We now summarize our first

result:

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
N

0

0.5

1

1.5

2

2.5

3

3.5

S0

S0-

S0
*

S0+

Figure 2.4: Plot of two roots to (2.17) vs. total population N . Here ε = 0.05, L =
1, DR = 1, DS = 1 and γ = 1. The dashed curve denotes S0+ and the solid curve
denotes S0−. S∗0 is the fold point where (2.17) has double root.

Result 2.1.1 With DI = ε2 and 0 < ε� 1, the SIRS system (2.2) has the following

single-spike steady state:

S(x) ∼ − 6ε

S0DS

G(x;x0) +
6ε

S0DS

G(x0;x0) + S0,

I(x) ∼ 1

S0

w

(
x− x0

ε

)
,

R(x) ∼ 6ε

S0DR

G(x;x0),

(2.21)

where G(x;x0) is given by (2.12), w(y) = 3
2

sech2(y
2
) and S0 is a constant determined

by the total population mass as given in (2.19, 2.20).
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2.2 Nonlocal eigenvalue problem

We now study the stability of one-spike solution. We first linearize around the steady

state by taking

S(x, t) = S(x) + eλtϕ(x),

I(x, t) = I(x) + eλtψ(x),

R(x, t) = R(x) + eλtξ(x).

Assuming |ϕ| , |ψ| , |ξ| � O(1) we obtain the linearized problem
λϕ = DSϕxx − I2

0ϕ− 2S0I0ψ + γξ,

λψ = ε2ψxx + I2
0ϕ+ (2S0I0 − 1)ψ,

λξ = DRξxx + ψ − γξ.

(2.22)

In the inner region, we let y = x−x0
ε
, where x0 is the spike position. To leading order,

we then obtain ϕyy ∼ 0 so that ϕ(x) ∼ ϕ0 is a constant to be determined. The

equation for ψ is

λψ = ψyy − ψ + 2w(y)ψ + I2
0ϕ0. (2.23)

In the outer region, we approximate{
DSϕxx − λϕ+ γξ = c1δ(x;x0),

DRξxx − (γ + λ)ξ = c2δ(x;x0),
(2.24)

where

c1 =

(
ϕ0

∫
I2

0dx+ 2S0

∫
I0ψdx

)
, c2 = −

∫
ψdx. (2.25)

We write

ξ(x;x0) = − c2

DR

G

(
x;x0,

√
γ + λ

DR

)
, (2.26)

where G(x;x0, µ) is the Green’s function that satisfies{
Gxx − µ2G = −δ(x;x0),

Gx(±L) = 0,
(2.27)

and is explicitly given by

G =
1

µ sinh(2µL)

{
cosh (µ(x+ L)) cosh (µ(x0 − L)) , −L < x < x0

cosh (µ(x0 + L)) cosh (µ(x− L)) , x0 < x < L.
. (2.28)
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To solve for ϕ, we make a change of variables. Let

ϕ =
DRγ

λ(DR −DS)− γDS

ξ + ϕh. (2.29)

Then ϕh satisfies:

DSϕhxx − λϕh =

(
c1 −

γc2

λ(DR −DS)− γDS

)
δ(x;x0)

so that

ϕh = − 1

DS

(
c1 −

γc2

λ(DR −DS)− γDS

)
G

(
x;x0;

√
λ

Ds

)
.

Therefore we estimate

ϕ0 = ϕ(x0) ∼ −c2
γ

λ(DR −DS)− γDS

G

(
x0;x0,

√
γ + λ

DR

)

− 1

DS

(
c1 −

γc2

λ(DR −DS)− γDS

)
G

(
x0;x0;

√
λ

Ds

)

and

c1 = ε

(
ϕ0

S2
0

∫
w2dy + 2

∫
wψdy

)
; c2 = −ε

∫
ψdy. (2.30)

After some algebra, this leads to the following non-local eigenvalue problem (NLEP),

(L0 − λ)ψ = w2 2∫∞
−∞w

2dy − (λ+ 1)
S2
0

εP

∫ ∞
−∞

wψdy, (2.31)

where L0ψ = ψyy − ψ + 2wψ, (2.32)

and where

P =
γ
√

DR
λ+γ

λ(DR −DS)− γDS

cosh
(√

λ+γ
DR

(x0 + L)
)

cosh
(√

λ+γ
DR

(x0 − L)
)

sinh
(

2
√

λ+γ
DR

L
)

−
λ+ 1 + DSγ

λ(DR−DS)−γDS√
λDS

cosh
(√

γ
DS

(x0 + L)
)

cosh
(√

γ
DS

(x0 − L)
)

sinh
(

2
√

γ
DS
L
) .

(2.33)

For the special case when x0 = 0, this expression simplifies to

P (λ) =
γ
√

DR
λ+γ

λ(DR −DS)− γDS

coth
(√

λ+γ
DR

L
)

2
−
λ+ 1 + DSγ

λ(DR−DS)−γDS√
λDS

coth
(√

γ
DS
L
)

2
.

(2.34)
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In general, the NLEP problem (2.31) is difficult to tackle since P has such a

complicated dependence on λ. However there are two cases for which stability of

(2.31) is well established: namely, large or small
S2
0

ε
. Note that S0 is given by (2.19,

2.20) and has two branches, S0+ and S0−, refer to Figure 2.4. Consider the case of

large N. Then
S2
0+

ε
� 1, whereas

S2
0−
ε
� 1. In the former case, (2.31) reduces to a local

eigenvalue problem (L0 − λ)ψ ∼ 0. This problem is well known to admit a positive

eigenvalue λ = 5/4 so that this branch is unstable. For the latter case (S0 = S0−),

the problem (2.31) reduces to the following well-known NLEP problem:

λψ = L0ψ − 2w2

∫∞
−∞wψdy∫∞
−∞w

2dy
, S0 ∼ O(ε). (2.35)

This is well-known to be stable as was first proven in [63].

Finally, a lengthy but a straightforward algebraic computation shows that at the

fold point where S0+ = S0−, there is a zero eigenvalue whose corresponding eigenfunc-

tion is given by ψ = w. This suggests that the entire branch S0+ is unstable whereas

the entire branch S0− is stable, although the proof of this fact is not in the cards

due to the complex structure of P (λ). This structure is analogous to the well-known

properties of the Grey-Scott model in the low-feed regime [102].

Another approach is to consider the limit of large DR and/or DS (so-called shadow

limits). We do not observe any additional instabilities of a single spike in this regime

so we will not pursue it further here.

2.3 Instability thresholds of Multi-spike equilibrium

In this section we study stability of K-spike patterns in the regime DR � O(ε2),

where K ≥ 1. We analyze two types of instabilities, one is referred to as spike

competition or coarsening instability, whereby some of the spikes are annihilated if

the initial state contains too many spikes. The other is referred to as self replication,

whereby a new spike may appear by the process of spike splitting. In this section we

derive explicit thresholds for these instabilities.

2.3.1 Coarsening

When there are too many spikes, some of them get absorbed by others. This is known

as coarsening or competition instability. To determine the instability threshold for
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spike competition, we apply the method in [103, 27] and compute the critical value

at which an asymmetric spike pattern bifurcates from symmetric branch. To do this,

we consider a single interior spike on the domain [−l, l]. Duplicating the domain K

times, we obtain K spikes on the domain of size 2L = 2lK. From (2.14) we have:

S(l) = S0 +
3ε

DSS0

√
DR

γ

 1

tanh
(√

γ
DR
l
) − 1

sinh
(√

γ
DR
l
)
 , (2.36)

where S0 = S0− is given in (2.19) with x0 = 0. Plots of S(l) when DS = 1 and DS = 3

are shown in Figure 2.5. The bifurcation point corresponds to the minimum point

of the curve l → S(l). Setting S ′(l) = 0 then yields the critical stability threshold.

Solving for DS as a function of other parameters, and upon substituting l = L/K,

we obtain the critical threshold
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Figure 2.5: Plots of function S(l) versus l for DS = 1 and DS = 3. Other parameters
are fixed and they are: ε = 0.02, DR = 2, γ = 1, N0 = 4.

Dcom
SK ∼

N2
0

(
L
K

)3

3ε
(

1 + 1
γ

)2

1− 1

tanh2
(√

γ
DR

L
K

) +
cosh

(√
γ
DR

L
K

)
sinh2

(√
γ
DR

L
K

)


+
N2

0

(
L
K

)2

3ε
(

1 + 1
γ

)2

√
DR

γ

 1

tanh
(√

γ
DR

L
K

) − 1

sinh
(√

γ
DR

L
K

)
 .

(2.37)

The K-spike solution is unstable and some of the spikes will disappear when DS >

Dcom
SK . The plot of Dcom

SK as a function of DR is shown in Figure 2.6. Note that Dcom
SK
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has the following asymptotics as DR →∞:

Dcom
SK ∼

N2
0

(
L
K

)3

3ε
(

1 + 1
γ

)2 , as DR →∞, (2.38)

which is shown in Figure 2.6. We now summarize the following result:

Result 2.3.1 Consider a K-spike solution for the system (2.2) on an interval of

length 2L with K > 1. Then in the limit of ε→ 0, this solution is stable provided that

DS < Dcom
SK , where Dcom

SK is given by (2.37). When DS > Dcom
SK , the K-spike solution

becomes unstable due to competition (or coarsening) instability and some of the spikes

disappear.

Figure 2.6: Plot of stability threshold Dcom
S2 vs. DR. Here ε = 0.02, L = 1, N0 = 2.5,

and γ = 1. The solid curve denotes analysis value Dcom
S2 obtained by (2.37), and

the dashed line is the asymptote of the curve (2.38). The dots are obtained from
numerical simulations of the system (2.2) by FlexPDE, and they have good agreement
with the analysis. See Appendix A for detailed explanations and the FlexPDE script
for simulating (2.2).

2.3.2 Self-replication

Unlike coarsening instability, self-replication is related to disappearance of the single

spike equilibrium solution. The mechanism has been studied in detail for the Gray-

Scott model [104, 105, 98, 97, 33, 106], and it is similar here. We start by changing

variables

S(x) =
ε√
DS

S̃(x), I(x) =

√
DS

ε
Ĩ(x), x = εy, (2.39)
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so that the system (2.2) transforms to
√
DS
ε
S̃yy −

√
DS
ε
S̃Ĩ2 + γR = 0,

Ĩyy + S̃Ĩ2 − Ĩ = 0,
DR
ε2
Ryy +

√
DS
ε
Ĩ − γR = 0.

(2.40)

Next, assume that DS, DR are O(1). Then to leading order, in the inner region we

obtain the following problem, referred to as the core problem,{
S̃yy − S̃Ĩ2 = 0,

Ĩyy + S̃Ĩ2 − Ĩ = 0.
(2.41)

This core problem is identical to the core problem for both the Grey-Scott model

[104, 98, 97, 106], and the Schnakenberg model [100]. Assuming that the spike is

symmetric, we define

A := S̃y(∞) =

∫ ∞
0

S̃Ĩ2dy. (2.42)

By plotting the numerical bifurcation diagram of (2.28), it was found in [98, 106] that

the steady state disappears when A > Ac ≈ 1.35, and this disappearance leads to

self-replication. To determine A in terms of the other parameters of the problem, we

perform an asymptotic matching to the outer region. We estimate
∫
SI2dx =

∫
Idx

and

DRRxx − γR = −
(∫

Idx

)
δ(x), DSSxx + γR = −

(∫
Idx

)
δ(x).

The solution is then given by

R(x) =

(∫
Idx
)

DR

G(x), (2.43)

S(x) = −DR

DS

R(x) +
DR

DS

R(0), (2.44)

where as before,

G(x) =

√
DR
γ

2 sinh
(√

γ
DR
l
)
 cosh

(√
γ
DR

(x+ l)
)
, −l < x < 0

cosh
(√

γ
DR

(x− l)
)
, x < x < l.

(2.45)

We substitute (2.43, 2.44) into the total mass equation (2.15) to obtain that

N = 2N0l = 2A
√
DS

(
1 +

1

γ
− DR

γDS

)
+

2Al√
DS

√
DR
γ

tanh
(

γ
DR
l
) , (2.46)
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so that self-replication occurs when

A =
N0l
√
DS

DS

(
1 + 1

γ

)
+ l

√
DR
γ

tanh

(√
γ
DR

l

) − DR
γ

> Ac ≈ 1.35. (2.47)

Equivalently, we rewrite (2.47) to obtain the following quadratic equation with respect

to
√
DS (

1 +
1

γ

)
DS −

N0l

Ac

√
DS +

√
DR
γ
l

tanh
(√

γ
DR
l
) − DR

γ
= 0. (2.48)

Therefore replication of one-spike solution occurs when DS < Drep
S , where

√
Drep
S is

the larger root of (2.48). For K spikes on domain [−L,L] with L = Kl, this leads to

the following result:

Result 2.3.2 Consider a K-spike solution of the system (2.2) on an interval of length

2L with K ≥ 1. Then in the limit of ε → 0, this solution is stable provided that

DS > Drep
SK, where DS = Drep

SK is the root of (2.48), in which l = L
K

and Ac ≈ 1.35

corresponds to the fold point of the problem (2.42).

Figure 2.7: Self-replication threshold (Result 2.3.2). Comparison between numerics
and analysis. Solid curve is the analytical result given by (2.48). Dots are obtained
from numerical simulations of the system (2.2) by FlexPDE. Self-replication is ob-
served as DS is decreased past the solid curve in the figure. Here ε = 0.005, N =
5, L = 1, and γ = 1.

Figure 2.7 shows numerical validation of Result 2.3.2. The solid curve denotes the

asymptotic curve as given in Result 2.3.2. Above the curve, a single spike is stable.



27

As DS is decreased and crosses the curve, self-replication takes place resulting in two

spikes. The dots denote numeric simulations in which we look for the self-replication

threshold by gradually decreasing DS until K spikes self-replicate to K+1 spikes. See

Appendix A for the FlexPDE script for simulating (2.2). Good agreement is observed

between numerics and asymptotics.
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DR

0

0.5
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1.5

DS

DS3
com

DS3
rep

DS2
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DS2
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Figure 2.8: Bifurcation diagram of K-spike patterns for K = 2, 3. The region between
solid curves is the stable region for 2-spike patterns, and the region between dashed
curves is the stable region for 3-spike patterns. Above the regions spike competition
instability occurs, below the region, self replication instability occurs. Here ε =
0.03, N0 = 2.5, L = 1, γ = 1.

For a fixed DR and a given number of spikes K, we have derived both upper

and lower thresholds on the DS for which K spikes are stable. Note that multiple

solutions (e.g. two or three spikes) can be stable at the same time. This is illustrated

in Figure 2.8.

2.4 The regime DR ≤ O(ε2)

2.4.1 Spike motion

We now study the motion of the interior spike, which is determined by small eigen-

values. We rewrite the system as following:
St = DSSxx − SI2 + γR,

It = ε2Ixx + SI2 − I,
Rt = DRRxx + I − γR

(2.49)
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with Neumann boundary conditions and DS, DR � O(ε2). To study the motion of the

spike, we expand around the center x0 by writing x = x0 + εy, and let x0 = x0(ε2t),

S(y, t) = S
(
x−x0(ε2t)

ε

)
, I(y, t) = I

(
x−x0(ε2t)

ε

)
, and R(y, t) = R

(
x−x0(ε2t)

ε

)
. Then

system (2.49) becomes
−ε3x′0Sy = DSSyy − ε2SI2 + ε2γR,

−εx′0Iy = Iyy + SI2 − I,
−ε3x′0Ry = DRRyy + ε2I − ε2γR.

(2.50)

Applying the same expansion (2.5) and collecting ε order terms, we obtain that
S1yy = 0,

−x′0I0y = I1yy + χS1I
2
0 + 2χS0I0I1 − I1,

R1yy = 0,

(2.51)

in which S0, I0, R0 are expressed in (2.19), (2.7) and (2.13). We then multipy the

second equation by I0y and integrate to obtain the solvability condition

x′0

∫ ∞
−∞

I2
0ydy =

1

3

∫ ∞
−∞

I3
0S1ydy. (2.52)

From (2.51), we know that S1 is linear so that S1y is a constant. To determine S1y,

we match to the outer region. We expand

S(x;x0) = S(x0 + εy;x0) (2.53)

= S(x0) + εyS ′(x0),

where S(x;x0) in outer region is expressed in (2.14). We then match it with the

expansion (2.5) to get

S1 =

(
− 6ε

S0DS

G′(x0;x0)

)
y, (2.54)

where G(x;x0) is expressed in (2.12). Therefore we have

S1y = − 6ε

S0DS

{
G(x+

0 ;x0), −L < x < x0

G(x−0 ;x0), x0 < x < L.
(2.55)

Substituting (2.55) into the equation (2.52) gives the equation that describes the

motion of the interior spike:

x′0 = − 6ε

DSS2
0

sinh
(

2
√

γ
DR
x0

)
sinh

(
2
√

γ
DR
L
) , (2.56)
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where S0 is expressed in (2.19). Writing

S0 = εŜ, (2.57)

we then have

dx0

dt
= − 6ε

DSŜ2

sinh
(

2
√

γ
DR
x0

)
sinh

(
2
√

γ
DR
L
) . (2.58)

It’s obvious to see that equation (2.58) has one equilibrium x0 = 0, and the corre-

sponding eigenvalue is

λ = − 12ε

DSŜ2

√
γ
DR

sinh
(

2
√

γ
DR
L
) < 0. (2.59)

Therefore the equilibrium centered at x0 = 0 is stable with respect to spike motion.

2.4.2 Boundary effects and spike motion

From formula (2.59), it is clear that the eigenvalue is stable, provided that DR is not

too small. However, usng FlexPDE, numerical experiments to system (2.49) show

that the spike becomes unstable and moves to the boundary when DR is of O(ε2).

To understand this, note that for small DR, (2.19) simplifies to

S0 ∼
6ε(1 + 1

γ
)

N
(2.60)

and Ŝ ∼ 6(1+ 1
γ

)

N
. Therefore (2.59) simplifies to

λ ∼ −2

3

εN2

DS(1 + 1
γ
)2

√
γ

DR

exp

(
−2L

√
γ

DR

)
, DR � 1. (2.61)

As such, the effect of 〈Sx〉 becomes exponentially small. On the other hand, there are

also exponentially weak boundary effects due to the interaction of the pulse with the

boundary that we disregarded in the computation leading to (2.52). These boundary

terms appear when integrating by parts in (2.52). To compute them, we replace

(2.52) by a more precise expression

−x′0
∫
I2

0ydy = (I0yI1y − I0I1)|y=
L−x0
ε

y=
−L−x0

ε

+

∫
I0yI

2
0S1dy. (2.62)
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The computation of the boundary terms is relatively standard and we summarize it

here. Note that

w(y) ∼ 6e−y as y →∞ (2.63)

so that

I0 ∼
6

S0

exp (−y) . (2.64)

For x near L, we change variables:

x = L+ εz

so that y = L−x0
ε

+ z and

I0 ∼
6

S0

exp

(
−L− x0

ε

)
exp(z). (2.65)

Near z = 0, the equation for I1 satisfies I1zz−I1 ∼ 0, so that I1 = A exp z+B exp(−z).

Since I ′(L) = 0, we must therefore have

I1 ∼
6ε

S0

exp

(
−L− x0

ε

)
exp(−z), (2.66)

so that

(I0xI1x − I0I1)|x=L = −72ε

S2
0

exp

(
−2

L− x0

ε

)
. (2.67)

Performing a similar computation at x = −L, and evaluating the remaining terms as

before, we obtain

x′0 ∼ −
6ε

DS

sinh
(

2
√

γ
DR
x0

)
sinh

(
2
√

γ
DR
L
) 1

Ŝ2
+ 60ε

{
exp

(
2
x0 − L
ε

)
− exp

(
2
−L− x0

ε

)}
(2.68)

so that

λ ∼ −12ε

DS

√
γ
DR

sinh
(

2
√

γ
DR
L
) 1

Ŝ2
+ 240 exp

(
−2L

ε

)
. (2.69)

This expression clearly shows that the boundary term can play a destabilizing effect

when the first term on the right hand side of (2.69) is exponentially small. This

happens precisely when DR is small. Setting λ = 0, substituting Ŝ ∼ 6(1+ 1
γ

)

N
and

solving for Ds yields the critical value

D∗S ∼
εN2

1440

√
γ

DR

exp

(
2L

(
1

ε
−
√

γ

DR

))
(2.70)
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with a single spike centered at center being unstable when DS > D∗S, and stable

otherwise. This phenomenon is illustrated in Figure 2.2. Take L = 2, γ = 1, N = 5

and DR = 0.005298. Then (2.70) yields D∗S = 5.00. It follows that a single spike is

unstable at the origin when DR < 0.005298 and is stable otherwise. This is confirmed

in Figure 2.2.

The boundary effect discussed here is similar to the destabilization discussed in

[107]. However the difference here is that this effect is primarily driven by having a

small DR, and is very specific to having three components. Although the asymptotics

of (2.70) are valid as long as DR � O(ε2), a similar destabilization phenomenon also

happens when DR = O(ε2). Although the asymptotics of (2.70) break down in such a

case, numerics show that the destabilization phenomenon persists as DS is increased.

2.4.3 Mesa-like steady states when DR = 0.

As shown in last section, multi-spike configurations lose stability when DR is suffi-

ciently small: even a single spike eventually becomes unstable (due to an exponen-

tially small eigenvalue becoming positive) and moves towards the boundary when

DR = O(ε2). For even smaller values of DR, we observe numerically that the spike

“fattens” as shown in Figure 2.9. In the limit of DR → 0, numerics indicate a phase

separation of infected population. This can be thought of as a “quarantine effect”:

when mobility of recovered population and susceptible population is reduced, the in-

fected population is confined to a certain region of the entire domain with a sharp

interface inbetween.

Here we perform the analysis for the limiting case DR = 0 and DS being small,

although similar results hold even when DR = DS and is nonzero. At the steady

steate, we then have I = γR so that the model (2.2) reduces to{
0 = DSSxx − SI2 + I,

0 = ε2Ixx + SI2 − I.
(2.71)

Adding the two equations we obtain that DSS+ε2I is constant. We then eliminate

S from the second equation to obtain

DSIxx =
DS

ε2
I − CI2 + I3, (2.72)
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Figure 2.9: Steady states of the system (2.2) with L = 1, DR = 0, ε = 0.04, γ = 1,
N0 = 2.79 and with DS as indicated. Solid curves correspond to the full numerical
solutions of (2.2). These numerical solutions correspond to steady states obtained by
running (2.2) in FlexPDE for a long time (t = 105). Dashed lines show the asymptotic
approximation (2.75).

where

C = I +
DS

ε2
S (2.73)

is a constant to be determined.

Equation (2.72) admits a heteroclinic solution connecting the steady state I = 0

to a positive steady state I+ provided that the Maxwell-line condition holds:∫ I+

I0

(
DS

ε2
I − CI2 + I3

)
dI = 0.

This is equivalent to the cubic having equidistant roots, that is,

DS

ε2
I − CI2 + I3 = I

(
I − I+

2

)
(I − I+) (2.74)

so that

I+ =

√
2DS

ε2
, C =

3

2
I+. (2.75)

In this case there is an interface solution on the domain [0, L] given by

γR = I ∼ I+

(
1

2
tanh

(
I+

2
√

2

(l − |x|)√
DS

)
+

1

2

)
; (2.76)

S ∼ ε2

DS

I+

(
1− 1

2
tanh

(
I+

2
√

2

(l − |x|)√
DS

))
. (2.77)

Here, l is the location of the interface. A back-to-back interface solution such as shown

in Figure 2.3 is obtained by extending this solution to [−L,L] using even reflection.
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Finally, the interface location l is determined using the mass conservation condition,

N0L =
∫ L

0
(S + I +R)dx. In the limit ε→ 0, this yields

LN0 = I+

{(
1 +

1

γ

)
l +

(
3

2
L− 1

2
l

)(
ε2

D

)}
,

and solving for l we obtain

l =
N0 − I+

3
2

(
ε2

D

)
I+

(
1 + 1

γ
−
(
ε2

D

))L. (2.78)

This result is valid as long as O(ε) � l < L. In this case, the interface has an

exponentially weak effect on the boundary, and the agreement with the numerical

solutions of the system (2.2) is nearly perfect. This is illustrated in Figure 2.9.

Solution (2.75) is shown super-imposed on the numerical solution; the difference is

imperceptible in the “eye-ball norm”as long as l = O(1). The asymptotics break

down when l becomes small (Figure 2.9, right), and the interface transforms into a

spike solution.

Note that the infected class subdivides the domain into an outbreak portion (x < l)

and a disease-free portion (x > l). The susceptible population is three times smaller

within the outbreak portion of the domain when compared with the disease-free

portion.

For simplicity, we took DR = 0 here. Numerical simulations using FlexPDE

indicate that similar interface solutions persist for sufficiently small DR, although it

changes l as well as the interface shape. We defer their study to future work.

2.5 Discussion

In this chapter we studied the consequence of adding spatial diffusion to the relatively-

standard SIRS model. Under certain reasonable assumptions, the resulting system

(2.2) has a very rich solution space, exhibiting hot-spots as well as interface-type

solutions, depending on whether DR is large or small, respectively.

The hot-spot regime DR � O(ε2) is very similar to previous analysis for two-

component reaction-diffusion systems, such as the Schnakenberg model [27, 100], and

the behaviour is qualitatively similar to the SI model with diffusion introduced in

[58] (which itself is a generalization of the Schnakenberg model). However, from the
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Figure 2.10: Total mass of infected people versus DS. Here ε = 0.005, N = 5, DR =
1, L = 1, DS = 1 − 10−5t, and γ = 1. The solid curve denotes numerical results
obtained by FlexPDE, where the integral of I is computed as DS is gradually de-
creased from 1 to 0. The dashed curve is the asymptotic result corresponding to the
self-replication thresholds of Result 2.3.2.

analysis point of view, the third component introduces a novel non-local eigenvalue

problem (see Section 2.2). On the other hand, the regime DR ≤ O(ε2) requires

completely new analysis. On one hand, the resolution of an exponentially small

boundary layer in Section 2.4.2 is crucial for computing stability thresholds of a

single interior spike in this regime. On the other hand, this regime also leads to

mesa-type solutions of Section 2.4.3. The analysis is similar to the interface solutions

derived in [108, 109] for the Gray-Scott model. However it appears to be more robust:

such interface solutions exist for a wide range of parameters here, rather than a very

narrow range as studied in [108, 109].

In Figure 2.10 we plot the total mass of infected population versus DS. As DS is

decreased, the mobility of susceptible population is reduced and this initially leads to a

decrease of overall disease load. However as DS is decreased further, eventually a self-

replication threshold is triggered. This results in an immediate increase of infection

hot-spots and an overall increase in the infected population. This underscores a highly

nonlinear relationship between mobility and disease outbreaks.



Chapter 3

Spike dynamics of GM model in the presence of noise

The goal of this chapter is to study the effect of noise on spike dynamics in reaction-

diffusion systems. We concentrate on dynamics of a single spike for the Gierer-

Meinhardt (GM) model, which is among the simplest reaction-diffusion systems that

manifests complex patterns. In one dimension, it has the following form in the absence

of noise:

ut = ε2 uxx − u+ u2

v
,

0 = vxx − v + u2

ε
.

(3.1)

This system can be obtained from general form (1.8) by first taking p = 2, q = 1, r =

2, s = 0, then rescaling u = û
ε

and v = v̂
ε
. Moreover, we choose τ = 0 in (1.8) so

that it doesn’t affect spike dynamics. We assume ε � 1 and Neumann boundary

conditions on an interval x ∈ [−L,L] : ux = vx = 0 at x = ±L.
There are many ways to introduce noise. Here we study the effect of introducing

the noise in th equation for the activator. As we will show, this has a direct effect

on the motion of spikes. For concreteness, let us assume that only the decay rate of

the activator u is stochastic, although similar analysis works for other types of noise,

some of which we discuss in section 3.4. By introducing the noise in the decay of u;

equation (3.1) then becomes

ut = ε2 uxx − u+ u2

v
+ σuW

√
dt
dt
,

0 = vxx − v + u2

ε
, ux = vx = 0 at x = ±L.

(3.2)

Here W (x, t) is the spatio-temporal Gaussian white noise. We define W to be

W (x, t) = ψ0(t) +
√

2

(N−1)/2∑
m=1

(
ψm(t) cos

(mπ
L

x
)

+ φm(t) sin
(mπ
L

x
))

, (3.3)

where ψm, φm are independent standard normal distributions of mean zero and vari-

ance one. This definition is motivated in part as follows. When discretizing (3.3)

using finite differences on a uniform mesh xk of size N , one obtains that W (xk; t)

35



36

-1 -0.5 0 0.5 1
x0

0

0.5

1

1.5

2

2.5

-5 0 5
x0

0

0.05

0.1

0.15

0.2

-5 0 5
x0

0

0.05

0.1

0.15

Figure 3.1: Top row and left column: simulation of the full PDE (3.2), parameters
as indicated. Dashed lines correspond to the simulation of the SODE (3.4) for the
reduced dynamics of the center of the spike. Right column, last three rows: histogram
shows probability distribution of spike position over time, as extracted from the cor-
responding figure to its left. Dashed line denotes the analytical prediction (3.6). For
larger σ (bottom right), the spike can hit the boundary and get “stuck” there for
some time as indicated by red bars, and then drift back to the middle.
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are independent normal variables, all with variance N : See Appendix B for detailed

explanations as well as the matlab code for simulating (3.2).

Let us summarize our main findings, which are illustrated in Figure 3.1. As is well

known [3, 96], in the absence of noise, the spike center x0 drifts towards a center of

the domain x = 0 on a slow-time (O (ε2)) scale. The reduced equation for the motion

of a single spike consists of an ODE for the spike position. When the noise is turned

on in the activator equation, it manifests as noise at the level of the reduced equation

for the spike motion. As a result, the reduced equation becomes a stochastic ODE.

In section 3.1 we derive the following SODE which describes the motion for the spike

center x0 :

dx0 ∼ −
2 sinh (2x0)

cosh (2x0) + cosh (2L)
ds+ σ∗ξ

√
ds; s = ε2t, (3.4)

Here, ξ(s) = N (0, 1) is normal random variable and σ∗ is the standard deviation,

independent of space, given by

σ∗ = σ

(
L

ε

)1/2
√

10

7
. (3.5)

The ODE (3.4) is only valid as long as x0 remains away from the boundaries ±L,

more specifically, as long as |x0 ± L| � O(ε). In the absence of noise (σ∗ = 0), the

deterministic part pushes the spike towards its equilibrium at the center, while the

noise can push it away from the center. If σ∗ is relatively small, the deterministic

part dominates, and the spike remains near the center of the domain. In this case,

using the Fokker-Plank equation, and for sufficiently small σ∗, we show in section 3.2

that the stationary distribution of spike positions has a density given explicitly by

ρ(x0) = C exp

{
− 2

(σ∗)2 log

(
cosh (2x0) + cosh (2L)

1 + cosh (2L)

)}
, (3.6)

where C is a constant chosen so that
∫
ρ(x0)dx0 = 1.

Figure 3.1 shows an excellent agreement of the direct simulations of (3.2) and the

spike distribution density given by (3.6), (3.5), as long as σ is not too big. Since the

spike motion is restricted to the domain [−L,L], formula (3.6) is restricted to those

parameter values for which ρ is vanishingly small outside x ∈ [−L,L] 1.

1Here, “vanishing” is used loosely to mean exponentially small; meaning in practical terms that
it is not expected to be observed numerically within a reasonable timeframe (say a week of running
on a standard laptop). For example, for parameters in row 2 of Figure 3.1, one finds ρ(±L)/ρ(0) ≈
1.3× 10−10. The precise measure is clarified in Section 3.3 in terms of Mean First Passage Time.
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On the other hand, when σ becomes too big, the density (3.6) does not “fit”

into the domain [−L,L] and there is a non-vanishing chance that a spike “hits” the

boundary. While the SODE cannot predict what happens when the spike collides

with the boundary, it can predict how long it takes (on average) before such collision

occurs. Numerically, we observe that following the collision, the spike can remain at

the boundary for some time, until the noise eventually kicks it off the boundary. This

is illustrated in the bottom row of figure 3.1; red bars correspond to the spike being

temporarily ”stuck” near the boundary. The expected time for the spike to “hit”

the boundary can be formulated in terms of the Mean First Passage Time (MFPT)

problem. This is done in section 3.3.

We now summarize this chapter. We derive the SODE (3.4) in section 3.1. The

spike position distribution is analyzed in section 3.2; in the case of large L, we also

derive the “trapping region” of size 2l such that the spike remains “trapped” within

a region |x| < l ≤ L. The hitting time to the boundary is studied in section 3.3. We

conclude in section 3.4 where we discuss some generalizations and propose several

open problems.

3.1 Derivation of Reduced SODE for Spike Motion

Figure 3.2: Spike in the presence of noise. Here, ε = 0.05. Left: when p = 1, the noise
affects the inside of the spike only. Right: when p = 0, the whole spike including the
background is affected.

We now derive the equations of motion starting with the PDE system (3.2). In



39

fact, we will generalize this slightly, by replacing

uW → upW (3.7)

in (3.2) and considering both the cases p = 1 as well as p = 0. A typical snapshot

of solutions for the two cases is shown in Figure 3.2. The case p = 0 is discussed in

section 3.4. When p = 1; the noise is mostly occuring inside a spike, but does not

affect the background due to exponential decay of u. On the other hand, when p = 0,

the noise affects the background and can lead to many other phenomena as discussed

in section 3.4.

We use by-now-standard techniques to reduce the full PDE solution to an ODE

system for spike center position x0. The derivation is rather standard, see for example

[110, 3, 96, 111, 100, 112, 4]. In particular the deterministic part in (3.4) is well known,

although we rederive it here in full for convenience. The main novelty here is to derive

the reduced noise level σ∗ (3.5) from the original system.

Let x0(t) denote the position of the spike. In the inner region near x0 we expand

(3.2) as follows:

x = x0(s) + εy, s = ε2t

u(x, t) = U0(y) + εU1(y) + . . . ,

v(x, t) = V0(y) + εV1(y) + . . . .

To leading order in ε we have

0 = U0yy − U0 +
U2

0

V0

, 0 = V0yy (3.8)

and at the next order, after collecting O(ε) terms, we obtain

−x′0(s)U0y = U1yy − U1 + 2
U0U1

V0

− U2
0

V 2
0

V1 + σUp
0W

√
ds

ds
, (3.9)

0 = V1yy + U2
0 . (3.10)

Then V0 is a constant and therefore U0 can be written as

U0(y) = w(y)V0 (3.11)

where w is the well-known ground state satisfying

wyy − w + w2 = 0, w → 0 as |y| → ∞, w′(0) = 0 (3.12)
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with the explicit solution given by

w(y) =
3

2
sech2(y/2). (3.13)

In the outer region, we write

v ∼ SG(x, x0) (3.14)

where G is the Green’s function satisfying

Gxx −G+ δ(x− x0) = 0, Gx (±L) = 0 (3.15)

given by

G(x;x0) =
1

sinh(2L)

{
cosh (x+ L) cosh (x0 − L) , −L < x < x0

cosh (x0 + L) cosh (x− L) , x0 < x < L
, (3.16)

and S is computed as

S =

∫ x+0

x−0

u2(x)

ε
dx ∼

∫ ∞
−∞

(w(y)V0)2 dy = 6V 2
0 .

Matching inner and outer regions we obtain V0 ∼ v(x0) ∼ SG(x0, x0) so that

V0 =
1

6G0

; G0 = G(x0, x0) =
cosh(2x0) + cosh(2L)

2 sinh(2L)
.

Finally we formulate the solvability condition to determine x0. Multiplying (3.9)

by U0y we have:

−x′0(s)

∫ ∞
−∞

U2
0ydy =

∫ ∞
−∞

U0y

(
U1yy − U1 + 2

U0U1

V0

)
dy −

∫ ∞
−∞

U0y
U2

0

V 2
0

V1dy

+ σ

√
ds

ds

∫ ∞
−∞

U0yU
p
0Wdy. (3.17)

We now integrate by parts using the decay of w at infinity to obtain∫ ∞
−∞

U0y

(
U1yy − U1 + 2

U0U1

V0

)
dy =

∫ ∞
−∞

U1

(
U0yyy − U0y + 2

U0yU0y

V0

)
dy.

Note that

U0yyy − U0y + 2
U0yU0y

V0

= (wyyy − wy + 2wwy)V0 = 0,

since wyyy − wy + 2wwy = (wyy − w + w2)y = 0 (see (3.12)). So (3.17) simplifies to

−x′0(s)

∫ ∞
−∞

U2
0ydy = −

∫ ∞
−∞

U0y
U2

0

V 2
0

V1dy + σ

√
ds

ds

∫ ∞
−∞

U0yU
p
0Wdy. (3.18)
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We further evaluate

−
∫ ∞
−∞

U0y
U2

0

V 2
0

V1dy =
V0

3

∫ ∞
−∞

w3V1ydy. (3.19)

From (3.10), we have

V1y(y) = −
∫ y

0

U2
0 (s)ds+

V1y(∞) + V1y(−∞)

2
.

Since
∫ y

0
U2

0 (s)ds is an odd function and using
∫∞
−∞w

3dy = 36
5
, the integral in (3.19)

evaluates to ∫ ∞
−∞

w3V1ydy =
V1y(∞) + V1y(−∞)

2

36

5
.

We match inner and outer solutions to obtain

V1y (±∞) = SGx

(
x±0 , x0

)
= 6V 2

0 Gx

(
x±0 , x0

)
.

Using
∫∞
−∞w

2
ydy = 6/5 we get

x′0(s) = −
Gx

(
x+

0 , x0

)
+Gx

(
x−0 , x0

)
G(x0, x0)

− σ
√
ds

ds
V P−1

0

∫
wyw

pWdy

6/5
. (3.20)

From (3.16) we compute

Gx

(
x+

0 , x0

)
+Gx

(
x−0 , x0

)
G(x0, x0)

=
2 sinh (2x0)

cosh (2x0) + cosh (2L)
. (3.21)

It remains to evaluate the integral in (3.20). Using the addition formulas cos(x) =

cos (x0 + εy) = cos (x0) cos (εy)− sin (x0) sin (εy) and parity, we compute∫ ∞
−∞

wyw
p cos

(
x
mπ

L

)
dy = − sin

(
x0
mπ

L

)∫ ∞
−∞

sin
(
εy
mπ

L

)
wyw

pdy∫ ∞
−∞

wyw
p sin

(
x
mπ

L

)
dy = cos

(
x0
mπ

L

)∫ ∞
−∞

sin
(
εy
mπ

L

)
wyw

pdy.

Define

Fp(x) :=

∫ ∞
−∞

sin (xy)wyw
pdy,

whose value is derived explicitly in Appendix C. In terms of Fp we have

∫
Wwyw

pdy =
√

2

(N−1)/2∑
m=1

Fp

(mπ
L

ε
)(
−ψm(t) sin

(
x0
mπ

L

)
+ φm(t) cos

(
x0
mπ

L

))
.

(3.22)
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Finally, we compute the variance of σV P−1
0

∫
wywpWdy

6/5
. This is done by approximating

the summation by an integral as follows,

(σ∗)2 =

(
σV P−1

0

6/5

)2

2

(N−1)/2∑
m=1

F 2
p

(mπ
L

ε
)

∼
(
σV P−1

0

6/5

)2

2

∫ N/2

0

F 2
p

(mπ
L

ε
)
dm

∼
(
σG1−p

0 5 · 6−p
)2

2
L

πε

∫ ∞
0

F 2
p (z) dz.

The latter integral is computed in Appendix C with the result∫ ∞
−∞

F 2
p (x)dx =

{
6
5
π, p = 0

36
35
π, p = 1

.

To summarize, we obtain

σ∗ = σ

√
L

ε
G1−p

0 Cp (3.23)

where

Cp =

√
(5 · 6−p)2 2

π

∫ ∞
0

F 2
p (z) dz =


√

60, p = 0√
10
7
, p = 1

.

In particular,

p = 0 : σ∗ = σ

√
15L

ε

cosh(2x0) + cosh(2L)

sinh(2L)
, (3.24)

p = 1 : σ∗ = σ

√
L

ε

√
10

7
. (3.25)

This yields equation (3.4) when p = 1. The case p = 0 is discussed in section 3.4.

A similar derivation is possible if we impose periodic boundary conditions on (3.2)

instead of Neumann boundary conditions. Then resulting ODE for spike motion is

simply (3.4) but without the drift: dx0 ∼ σ∗ξ
√
ds, and with x0 ∈ [−L,L] taken

mod 2L (so that the spike that crosses through a left boundary re-emerges on the

right boundary and vice-versa). This corresponds to a simple Brownian motion with

periodic boundary conditions.

3.2 Spike position distribution

For a general SODE

dx = f(x)ds+ σ(x)ξ
√
ds, (3.26)
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subject to initial condition x(0) = a, the probability density ρ(x, t) for x to be at a

given location at time t satisfies the Fokker-Plank PDE

ρt =

(
σ2

2
ρ

)
xx

− (fρ)x

subject to initial conditions ρ(x, 0) = δ (x− a) . See for example [113, 114] for the

derivation, or the appendix of [115] for an alternative derivation using integral master

equation. The long-time equilibrium density distribution ρ(x, t) = ρ(x) then satisfies(
σ2

2
ρ
)
x

+ fρ = K. Assuming the density is finite and decays at x = ±∞, we must

have K = 0 so that the equilibirum density is explicitly given by

ρ =
2

σ2
C exp

(∫
2

σ2
f

)
(3.27)

where C is a constant of integration chosen so that
∫
ρ = 1. Here, we special-

ize to the SODE (3.4). For convenience we relabel x0 = x. We evaluate
∫ x

0
f =

− log
(

cosh(2x)+cosh(2L)
1+cosh(2L)

)
and σ(x) = σ∗ is a constant. This leads to equation (3.6) for

the density. In the context of a bounded domain x ∈ [−L,L], this formula implicitly

assumes that ρ is vanishly small near x = ±L. Figure 3.3 shows the graph of ρ (x) for

several values of L and σ∗. In the limit of small σ∗, the density is nearly Gaussian.

By Taylor-expanding (3.6) for small x we obtain

ρ(x0) ∼ C exp

{
− 1

(σ∗)2

4x2

1 + cosh(2L)

}
(3.28)

where C =
√

1
π

1
(σ∗)2

4
1+cosh(2L)

.

On the other hand, when L� 1, equation (3.6) simplifies to

ρ(x) = C exp

{
− 2

(σ∗)2 e
2(|x|−L)

}
. (3.29)

As shown in Figure 3.3, this is well-approximated by a piecewise-constant density,

ρ ∼ 1
2l
χ[−l,l], where χ is the characteristic function. The length l of the box can be

computed by setting ρ(l) = aρ(0), where 0 < a < 1 is an arbitrarily chosen constant.

Solving for l then yields

l ∼ L− log

(
1

σ∗

√
2

log a−1

)
.
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Figure 3.3: Spike density distribution ρ(x) for several values of σ∗ and L. Left: L = 1
and σ∗ = 0.1, 0.2, 0.3, 0.5 (from highest to lowest). Solid line is the exact formula (3.6)
whereas dashed line is the formula (3.28). Right: L = 5 and σ∗ = 0.1, 0.2, 0.3, 0.5
(from highest to lowest). Solid line is the exact formula (3.6) whereas dashed line is
the formula (3.29).

The choice of a is somewhat subjective. For sufficeintly small σ∗ (with (σ∗)2 �
O(log a−1)), to leading order we get

l ∼ L− log
1

σ∗
. (3.30)

This formula is shown in Figure 3.3 (right); it also corresponds to choosing a = e−2.

When 1 � l � L, ρ(x) exhibits a sharp transition near x ∼ l : for |x| � l, we

find ρ(x) ∼ C so that ρ (x) is nearly constant in this case. For l � |x| ≤ L, ρ(x)

is exponentially small so that ρ (x) is nearly zero in that region. On the other hand,

when l is near L, the density is non-negligible near x = L and the spike is no longer

confined away from the boundaries ±L. In this case it will hit the boundary within a

realistic timeframe (i.e. observable numerically on a computer for runtimes less than,

e.g., a week). In the next section, we use MFPT to quantify this transition more

precisely.

3.3 Boundary hitting time

As seen from the SODE (3.4), the spike motion is driven by a competition between the

deterministic term that pushes the spike towards the center of the domain, and the

noise term which can push the spike away from the center. If the noise is sufficiently

large, it can counteract the attraction towards the center, and the spike will eventually

collide with the boundary, given enough time.
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We can formulate this as the Mean First Passage Problem (MFPT), corresponding

to a stochastic particle first hitting the boundary x = ±L. Consider the general

SODE,

dx = f(x)ds+ σ∗ξ
√
ds, (3.31)

and let m(x) be the average time it takes for a particle x to hit the boundary x = ±L.
Then m(x) satisfies the following MFPT problem [114]:

(σ∗)2

2
mxx + f(x)mx + 1 = 0, m (±L) = 0. (3.32)

An alternative derivation from first principles is given in Appendix D. For our prob-

lem,

f(x) = − 2 sinh (2x)

cosh (2x) + cosh (2L)
(3.33)

and the solution to (3.32) is given by

mx = − 2

(σ∗)2vh

∫ x

0

1

vh(s)
ds, (3.34)

where vh satisfies (σ∗)2

2
v′h + f(x)vh = 0; that is,

vh(x) = exp

(
− 2

(σ∗)2

∫ x

0

f(s)ds

)
. (3.35)

Integrating (3.34) and using the boundary condition m(L) = 0 yields a semi-explicit

expression for mean-first-passage time,

m(x) =
2

(σ∗)2

∫ L

x

{
vh(x)

∫ x

0

1

vh(s)
ds

}
dx. (3.36)

Further analysis is possible for two important cases: either L is large, or σ is small

(or both).

Case A: σ∗ is small and L = O(1). We use Laplace’s method to asymptotically

approximate m(x). Note that f(x) is a decreasing function so that
∫ x

0
f has a

maximum at x = 0. Therefore we estimate, using Laplace’s method, for x > 0 :∫ x

0

1

vh(s)
ds ∼

∫ ∞
0

exp

(
2

(σ∗)2

∫ x

0

f(s)ds

)
dx ∼ σ∗

2

√
π

−f ′(0)

so that

m(x) ∼ 1

σ∗

√
π

−f ′(0)

∫ L

x

exp

(
− 2

(σ∗)2

∫ x

0

f(s)ds

)
dx.
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Note that −
∫ x

0
f attains its maximum at |x| = L, so we estimate, for x > 0 :∫ L

x

exp

(
− 2

(σ∗)2F (x)

)
dx ∼ exp

(
− 2

(σ∗)2

∫ L

0

f(s)ds

)
(σ∗)2

2(−f(L))

(
1−exp

(
−2f(L)

(σ∗)2 (x− L)

))
.

(3.37)

For x < 0, we simply replace x by |x| in (3.37) sincem(x) is symmetric. To summarize,

we obtain the following uniformly valid expression when σ∗ � 1,

m(x) ∼
(

1− exp

(
−2f(L)

(σ∗)2 (|x| − L)

))
mmax, where (3.38)

mmax =
σ∗

2(−f(L))

√
π

−f ′(0)
exp

(
− 2

(σ∗)2

∫ L

0

f(s)ds

)
. (3.39)

Specializing to (3.33) we have obtain, after some algebra,

m(x) ∼
(

1− exp

(
2 tanh(2L)

(σ∗)2 (|x| − L)

))
mmax, σ∗ → 0, (3.40)

mmax =
√

2π
cosh (2L)

8 sinh (2L)
σ∗ exp

{
2

σ∗
log
(
1 + tanh2 L

)}
. (3.41)

As can be seen from (3.41), mmax increases exponentially as σ∗ → 0.

Case B: large L. We estimate, for x > 0 :

f(x) ∼ − 2

1 + e2L−2x

and in particular f(x) ∼ 0 for |x| � L. We then estimate∫ x

0

f(x) ∼ − log
(
1 + e2(x−L)

)
∼

{
0, x� L

− log (2) +− (x− L) , x near L
.

This yields the following uniform expansion for vh :

vh = exp

[
2 log

(
1 + e2(x−L)

)
(σ∗)2

]
∼ 1 + exp

(
2 log (2)

(σ∗)2

)
exp

(
2

(σ∗)2 (x− L)

)
.

We then estimate, for x > 0, ∫ x

0

1

vh(s)
ds ∼ x

and∫ L

x

{
vh(x)

∫ x

0

1

vh(s)
ds

}
dx. ∼

∫ L

x

{vh(x)x} dx

∼
∫ L

x

xdx+

∫ L

x

exp

(
2 log(2) + 2(x− L)

(σ∗)2

)
Ldx

∼ L2 − x2

2
+ exp

(
2 log(2)

(σ∗)2

)
(σ∗)2

2
L
{

1− exp(2(x− L)/ (σ∗)2} .
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In conclusion, we obtain

m(x) ∼ L2 − x2

(σ∗)2 + exp

(
2

log(2)

(σ∗)2

)
L
{

1− exp(2(|x| − L)/ (σ∗)2} (3.42)

and in particular

m(0) ∼ L2

(σ∗)2 + 2 exp

(
2 log(2)

(σ∗)2

)
L, L� O(1). (3.43)

Formula (3.43) is shown in Figure 3.4 (top right). Note the parabolic shape on top

of an exponential layer, as predicted by the asymptotics (3.42).

While m(x) gives the mean of the hitting time distribution, the distribution itself

does not concentrate around the mean. Figure 3.4 (bottom) shows the hitting time

probability distribution obtained using Monte-Carlo simulations. We simulated (3.4)

10,000 times starting with x(0) = 0, until x collided with a boundary x = ±L. The

time of collision for each simulation is recorded, and the resulting histogram for 10,000

simulations is shown in Figure 3.4 (bottom). The value of m(0) is approximated by

the average of these simulations. In Figure 3.4 bottom left, we used the forward Euler

method with stepsize ds = 10−3 in the simulations. The average of these simulations

is mMonte−Carlo(0) = 23.1. The exact result (3.36) gives mexact(0) = 21.97 whereas

the asymptotic result (3.40) is masympt(0) = 19.48, a 13% difference. In Figure 3.4

bottom right, we used ds = 10−2; and obtained mMonte−Carlo(0) = 1429. The exact

result (3.36) gives mexact(0) = 1203.7 whereas the asymptotic result (3.43) yields

masympt(0) = 1380, a 15% difference. Overall, good agreement between exact results,

Monte-Carlo results and asymptotics is observed.

The error between mexact and mMonte−Carlo depends on the number N of simu-

lations used. While the error analysis is outside the scope of this thesis, numerics

indicate that it scales like O(1/
√
N), which is typical of Monte-Carlo simulations in

general. The error between mexact and mMonte−Carlo depends on both σ∗ and L in a

complex way depending on the relative scaling of L and σ∗. Numerics indicate that

with σ∗ fixed, formula (3.43) has a relative error of O(1/L) as L → ∞, whereas for-

mula (3.40) has a relative error that decays exponentially in σ∗ for fixed L and with

σ∗ → 0.
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3.4 Discussion

We have investigated the effect of noise on the motion of a single spike in the GM

model. We formulated a SODE describing the reduced spike motion then used it to

describe the spike distribution of a spike inside the domain and the mean first passage

time for the spike to hit the boundary. This only scratches the surface of many novel

phenomena that are possible when noise is present, and many open problems remain.

We conclude with proposing several below.

When a spike hits the boundary, it gets “stuck” there. However it can also get

“unglued” from the boundary as well as illustrated in Figure 3.5. While we used

MFPT theory to predict how long it takes for the spike to “hit” the boundary, we

cannot explain why it gets “unglued” or how long it takes for the spike to unglue.

In this paper, we added noise to the activator equation because it induces ran-

dom spike motion. Numerical experiments indicate that noise in the inhibitor does

not affect spike motion very much; instead, it induces spike oscillations. This is an

interesting problem left for future study.

We studied in detail multiplicative noise (3.2), where the spatiotermoral noise is

premultiplied by u. This type of noise assures that the randomness affects only the

spike itself and has no effect outside the spike, since u decays exponentially away from

spike center. One can also consider additive noise, where the noise is added to the

background independent of spike height, as follows:{
ut = ε2uxx − u+ u2/v + σW

√
dt
dt
, 0 = vxx − v + u2

ε

ux = vx = 0 at x = ±L.
(3.44)

Using the analysis of section 3.1, the spike positition then satisfies the SODE (3.4),

with σ∗ given by (3.25). The resulting density distribution, as derived in (3.27), is

given by

ρ =
C

(cosh(2x0) + cosh(2L))2 exp

(
− ε

15Lσ2

sinh2(2L)

(cosh (2x0) + cosh (2L))2

)
.

It is qualitatively similar to the multiplicative case (3.6). The difference is that

adding background noise affects not just the spike motion but spike stability as well

– something that the reduced SODE or density (3.44) does not capture, especially

in the case of multiple spikes. Figure 3.6 shows simulations for different levels of
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additive noise and domain size. Many new phenomena are observed, including spike

death, spike insertion, and “switching” behaviour. These are very interesting open

problems left for future study.
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Figure 3.4: Top row: mean first passage time m(x) for L = 1 and L = 10 for several σ∗

as shown. Note the parabolic profile on top of an exponential layer when L = 5 and
σ ≥ 0.5. Middle row: graph of m(0) for L = 1 and L = 5 as a function of σ∗. Bottom
row: the full distribution of hitting times obtained by Monte-Carlo simulations of
(3.4). MC-mean refers to the average of these simulations. Exact result is m(0) given
by (3.36). Asymptotic line is given by (3.40) for L = 1 and by (3.42) for L = 5.
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Figure 3.5: Simulation of (3.2) for several different σ as indicated. As σ is increased,
the spike collides with the boundary. It can stay at the boundary for a long time but
eventually becomes “unglued”. The higher the σ value, the shorter time the spike
spends at the boundary. The spike still retains its shape even for larger σ.
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Figure 3.6: Simulation of (3.44) for two different domain sizes and various σ as
indicated. Depending on domain length and noise level, many interesting phenomena
are observed including boundary switching (top row, pane 3), spike death (bottom
row, left), and chaotic dynamics (bottom right)



Chapter 4

Resource-mediated competition between two plant species

with different rates of water intake

Competition for resources has long been regarded as one of the main mechanisms in

structuring plant communities and natural selection [116, 117, 118]. In particular, in

the semiarid regions where water resource is limited, the sparsity of water can lead

to self-organised vegetation patterns such as vegetation patches and stripes [5, 7, 8,

9, 119, 6]. These patterns can be thought of as a transition state from full vegetation

to a desert state [77, 120, 7, 121, 122, 6].

In this paper, we look at competition for water between two plant species with

different water absorption rates in the water-limited regime, where the vegetation

forms in patches. We are interested in how the competition for water affects co-

existence and stability of patches of different plant species. We consider two plant

species: a “thirsty” species and a “frugal” species that only differ by the amount of

water they consume, while being identical in all other aspects.

Our starting point is the following variant of the Klausmeier model (1.9), incor-

porating two plant species and water-mediated competition between them:

∂tu1 = Du∂xxu1 − µu1 + γu2
1v,

∂tu2 = Du∂xxu2 − µu2 + γu2
2v, (4.1)

∂tv = Dv∂xxv + a− c1u
2
1v − c2u

2
2v.

Here, the effect of evaporation is ignored. u1 and u2 represent plant densities of

the two types of plants and v denotes the concentration of the water in the soil. For

simplicity and concreteness, we will consider their dynamics to be identical, except for

the amount of water consumed per unit growth. We take these dynamics as originally

suggested by Klausmeier [5]. In the absence of water, the plants wither with a rate µ.

They grow at the same rate γuiv in the presence of water. Plants “diffuse” through

seed dispersal in proportion to the diffusion constant Du. The water diffuses through

53
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the soil according to the diffusion constant Dv. The constants c1, c2 represent the

amount of water intake needed to grow at a given rate γ. The term a represents

water precipitation. The plant species u1 is more thirsty than u2 if c1 > c2.

By rescaling, we reduce (4.1) to the following non-dimensional form 1

∂tu1 = ε2∂xxu1 − u1 + u2
1v,

∂tu2 = ε2∂xxu2 − u2 + u2
2v, (4.2)

τ∂tv = D∂xxv + a− u2
1v

ε
− βu

2
2v

ε
,

which we will refer to as the “two-species vegetation model”. Here, β = c2/c1 is the

ratio of the water intake rates. In what follows, we will assume that D � O(ε2)

and τ is sufficiently small that the term τ∂tv doesn’t affect the dynamics and can

be discarded to leading order. In terms of the original variables, these assumptions

reflect the fact that the “diffusion” of plants through seed dispersal is on a much

slower scale than the water diffusion through the soil. We will also assume Neumann

boundary conditions on a domain x ∈ (−L,L) :

∂xu1(±L) = ∂xu2(±L) = ∂xv(±L) = 0. (4.3)

The ratio β indicates how thirsty plant species u1 is compared to u2. When β < 1,

the species u2 consumes less water than u1, and the opposite is true when β > 1.

Without loss of the generality, we may also assume that 0 < β ≤ 1, so that u1 is

more thirsty (per unit growth) than u2 : u1 is the “thirsty” species whereas u2 is the

“frugal” species in such a case.

When β = 1, the two species are indistinguishable from each-other, and the model

(4.2) behaves like the “classical” Schnakenberg model [27, 28],

∂tu = ε2∂xxu− u+ u2v, τ∂tv = D∂xxv + a− u2v

ε
(4.4)

where u = u1 + u2 (this model is itself a special case of the Klausmeier model).

In this paper, we will be concerned with the following parameter regime

0 < ε� 1, τ = 0, D, a = O(1). (4.5)

1Take µ = 1 by rescaling the time variable t and relabelling parameters. Next, let ε :=
√
Du

and rescale u1 = û1
1
c1ε
, u2 = û2

1
c1ε
, v = v̂c1ε

γ , a = â
γ . Dropping the hats yields (4.2) with

τ = εc1, D = Dvεc1.
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Figure 4.1: Two steady states of (4.2), consisting of k1 = 4 spikes of type u1 (blue) and
k2 = 2 spikes of type u2 (red). Parameters are ε = 0.025, a = 8, L = 3, D = 1, β = 0.5.
The spike heights and profiles are the same for each type, regardless of the spike
ordering.

The assumption τ = 0 can be replaced with “τ � D” without any change in the

results.

It is well documented that Schnakenberg model (4.4) admits spot solutions having

N concentrations in u [28, 27]. More generally, similar results for spike-stability anal-

ysis are obtained in singularly perturbed two-component reaction diffusion systems

such as Schnakenberg model, Gierer-Meinhardt model [63, 3], and the Gray-Scott

model [33, 98, 97, 36]. However there are important differences both in the analysis

and in the stability results for the 3-component system when β 6= 1.

The two-species model (4.2) inherits spike solutions from (4.4), but has a much

richer structure. Indeed, given any two non-negative integers k1, k2, there exist a

solution with a total N = k1 +k2 spikes corresponding to k1 spikes in u1 and k2 spikes

in u2. We shall refer to this as a (k1, k2) pattern.

At first glance, given N spikes, there is a total of 2N possible ways to choose their

type (each spike can be either u1 or u2-type). One might then think that there is

a total of 2N possible patterns with different spike height and radius. However it

turns out that the spike ordering of spots does not matter: only the total number of

each type matters. As such, there are N + 1 patterns with distinct spike heights for

fixed N . This is illustrated in Figure 4.1 which shows two distinct orderings for same

number of parameters and number of spikes. Both orderings, however, have the same

height and profile for the spikes u1 and u2.

In Figure 4.1, the “thirsty” patches are shown in blue and correspond to u1 whereas

the “frugal” patches are in red, corresponding to u2. Note that the frugal plants have

bigger height; this is because they absorb less water per unit growth and hence there

is more water remaining for them to grow more.
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Figure 4.2: Spike death as a is decreased. Here, a = 10− 10−5t and other parameters
are β = 0.5, L = 3, D = 1, ε = 0.025. Color plot of u1 (“thirsty”, in blue) and
u2 (“frugal”, in red) is shown as a function of a. The subpanels only differ in initial
conditions, and are arranged from most resilient pattern (on the left) to least-resilient
pattern (on the right). Note that a pattern of all-frugal patches is the most resilient,
followed by all-thristy, and then mixed patterns.

As rainfall rate a is decreased, competition for water between the plants triggers

the collapse of one of the spikes in the overall pattern. This process is illustrated

in Figure 4.2, which shows that as a is decreased, the thirsty spikes (in blue, corre-

sponding to u1) die out first, until only “frugal” species (u2, in red) remains. Our

main goal is to study stability of this N -spike equilibria. In particular, we derive the

corresponding eigenvalue problem and consider both the small eigenvalues of order

O(ε2) and large eigenvalues of order O(1).

We now illustrate our main results. There are three thresholds that can affect the

existence and stability of (k1, k2) spike patterns. One is the large eigenvalue threshold

al such that the large eigenvalue becomes unstable as a decreases below al. The other

two thresholds are small eigenvalue thresholds associated with either intraspecific

competition (i.e., competition within u1 or u2 type) or interspecific competition (i.e.,

competition between u1 and u2 type). The intraspecific competition threshold is

denoted by the fold point af and the interspecific competition threshold is denoted

by as. The maximum of these three critical values gives the competition instability

threshold a∗, which triggers the collapse of plant patches. By comparing al, af and as,

we find that as is the dominant instability threshold for almost all (k1, k2) patterns

except the case where only one thirsty spike exists (i.e., (1, N − 1) patterns with
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β < 1 and (N − 1, 1) patterns with β > 1) and the dominant instability threshold

is af . This result is illustrated in Table 4.1, where the three thresholds af , as and

al for different (k1, k2) patterns are computed. The large eigenvalue threshold al is

dependent of spike orderings, while the other two are not. Therefore af , as are unique

for each pattern while al is different for different spike orderings. In Table 4.1, we

compute the maximum of al and compare it with other thresholds in all types of 5-

spike patterns and 6-spike patterns, and it can be seen that the instability threshold a∗

(maximum in each column) is given by either as or af . Note that the large eigenvalue

threshold may not exist under given parameter values such as the (1, 4) pattern in

Table 4.1, which means the (1, 4) pattern is always stable for the large eigenvalues.

For fixed N , we compared the instability threshold a∗ for different (k1, k2) spike

patterns, and found that the plant with smaller water intake rate is more competitive.

If β < 1 (i.e. c2 < c1), then u2 is more competitive and one u1-type spike will

get killed when bifurcation happens unless the pattern only contains u2-type spike

initially. Otherwise u1 is more competitive and one u2-type spike will get killed

when bifurcation occurs. Moreover, among the N + 1 combinations of spike patterns,

homogeneous spike patterns (i.e.,(0, N) pattern or (N, 0) pattern) are always more

stable than mixed-spike patterns. These results are shown in Table 4.2, where the

instability thresholds in terms of a are given for each (k1, k2) pattern. A smaller

threshold a∗ suggests that the corresponding pattern is more stable. As we see in

Table 4.2, the first number in each column is the minimum, which indicates that for

fixed N , (0, N) is the most stable pattern given that β < 1. Moreover, for mixed

N -spike patterns, the more ”frugal” spikes the pattern contains, the more unstable

the pattern is.

A summary of this chapter is as follows. We construct the N spike equilibrium

of system (4.2) in Section 4.1. In Section 4.2 we analyze the stability of the N -

spike equilibrium with respect to the large eigenvalues by deriving the corresponding

nonlocal eigenvalue problem (NLEP), as well as the small eigenvalues by looking at

asymmetric branches. The stability analysis is very similar to [27, 28] but with some

key differences. We then show that the instability due to small eigenvalues is the

dominant instability. In Section 4.3 we use numerics to explore what happens in the

high-precipitaiton regime of large a, and we conclude with some open questions.
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thresholds
5-spike patterns

(4,1) (3,2) (2,3) (1,4)

as 4.3372 4.9778 5.6471 2.3655
max(al) 4.1362 4.7233 5.4138 DNE
af 2.3894 4.1053 5.3282 6.2754

thresholds
6-spike patterns

(5,1) (4,2) (3,3) (2,4) (1,5)

as 5.5649 6.2585 6.9725 7.7247 3.1677
max(al) 5.3832 6.0649 6.7470 7.4579 DNE
af 2.6816 4.7327 6.2608 7.4492 8.4342

Table 4.1: Instability thresholds af , as and max(al) in N -spike patterns with N = 5, 6.
The critical values in red are maximum in each column, which are the competition
instability threshold a∗ that triggers the collapse of one spike in the overall pattern.
The parameters are L = 3, β = 0.5, D = 1.

4.1 Construction of N-spike solutions

In this section, we construct N -spike equilibria of system (4.2), which contains k1

u1-spikes and k2 u2-spikes. Since the patterns with fixed k1, k2 have same height and

profile for u1 and u2, without loss of generality, we consider all u1-type spikes located

on the left side and all u2-type spikes located on the right side. Since the same type

of spikes has a common height and equal spacing, we define the radius of u1-type

spike as l1 and the radius of u2-type spike as l2. So that l1, l2 satisfies

k1l1 + k2l2 = L. (4.6)

To construct an N -spike solution, we first look at the inner region, where we

introduce the inner variable

y =
x− xj
ε

,

in which xj is the location of j-th spike. After collecting leading order terms we have

u1yy − u1 + u2
1v = 0,

u2yy − u2 + u2
2v = 0,

vyy = 0.

(4.7)
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k1

a∗(k1,k2) N
2 3 4 5 6

0 0.67 1.22 1.89 2.64 3.46
1 1.20 2.63 4.33 6.28 8.43
2 0.94 2.21 3.80 5.65 7.72
3 1.73 3.22 4.98 6.98
4 2.67 4.34 6.26
5 3.73 5.56
6 4.90

Table 4.2: Theoretical predictions for competition instability thresholds a∗ with pa-
rameters L = 3, β = 0.5, D = 1. The critical values in blue indicates the most stable
patterns in each column, while the critical values in red correspond to most unstable
patterns. See also Figure 4.2 for comparison with numerics.

Solving system (4.7) yields

u1 =
1

v1

k1∑
j=1

w

(
x− xj
ε

)
, u2 =

1

v2

N∑
j=k1+1

w

(
x− xj
ε

)
, (4.8)

in which v1 = v(xj) with j = 1...k1 and v2 = v(xj) with j = k1 + 1...N , and w(y) is

the “ground state” profile satisfying

w′′ − w + w2 = 0, w′(0) = 0, w(y) > 0, w (y)→ 0 as y →∞; (4.9)

it has a well-known explicit solution

w(y) =
3

2
sech2

(y
2

)
. (4.10)

In the outer region, the terms that involve u1, u2 can be estimated as delta func-

tions. Therefore, v satisfies

Dvxx + a =
6

v1

k1∑
j=1

δ(x− xj) +
6β

v2

N∑
j=k1+1

δ(x− xj) , vx(±L) = 0. (4.11)

Here we have used the fact that
∫ x+j
x−j

u21v

ε
dx = 6

v1
for j = 1, · · · k1 and

∫ x+j
x−j

u22v

ε
dx = 6

v2

for j = k1 + 1, · · ·N . Integrating equation (4.11) over (−L,L) and imposing that

k1l1 + k2l2 = L, we obtain

v1 =
3

al1
, v2 =

3β

al2
, (4.12)
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in which l1, l2 are to be determined. We then solve equation (4.11) by introducing

the Green’s function G(x;xj) and let

v(x) = v̄ +
6

v1

k1∑
j=1

G(x;xj) +
6β

v2

N∑
j=k1+1

G(x;xj) (4.13)

for some constant v̄ to be determined. Here G(x;xj) satisfies

DGxx(x;xj) +
1

2L
= δ(x− xj), Gx(±L;xj) = 0,

∫ L

−L
G(x;xj) = 0, (4.14)

which has the following solution

G(x;xj) = − 1

4DL
(x2 + x2

j) +
1

2D
|x− xj| −

L

6D
, j = 1, · · ·N. (4.15)

The constant v̄ is then determined by the matching condition v(xj) = v1, j = 1, · · · k1:

v̄ = v1 −
6

v1

k1∑
j=1

G(x1;xj)−
6β

v2

N∑
j=k1+1

G(x1;xj). (4.16)

It remains to find the radius of spikes l1, l2. For the patterns that only contain u1-

type or u2-type spike (i.e., (0, N) or (N, 0) pattern), it is easy to see that l1 = l2 = L
N

.

For mixed-spike cases, we proceed by matching the outer solution (4.13) with the

inner ones v(xj) = v1, j = 1, · · · k1, v(xj) = v2, j = k1 + 1, · · ·N ; then we obtain

v1 = v̄ +
6

v1

k1∑
j=1

G(x1;xj) +
6β

v2

N∑
j=k1+1

G(x1;xj), (4.17)

v2 = v̄ +
6

v1

k1∑
j=1

G(xN ;xj) +
6β

v2

N∑
j=k1+1

G(xN ;xj). (4.18)

Note that the same type of spikes has a common height and equal spacing, so that

xj =

{
−L+ (2j − 1)l1, j = 1, · · · k1,

L− (2(N − j + 1)− 1)l2, j = k1 + 1, · · ·N.
(4.19)

Subtracting equation (4.17) from (4.18) and simplifying using equation (4.12), (4.13),

and (4.15), we get
3β

al2
− 3

al1
=

a

2D
(l21 − l22). (4.20)
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In the end, we eliminate l1 by combining the condition k1l1 + k2l2 = L and equation

(4.20); then we obtain the following polynomial for l2:

f(l2) = el42 + pl32 + ql22 + rl2 + s = 0 (4.21)

where

e = (k2
1 − k2

2), p = 3Lk2 −
k2

1L

k2

, q = −3L2, r =
6Dβk2

1

a2
+

6Dk3
1

a2k2

+
L3

k2

, s = −6DβLk2
1

a2k2

,

(4.22)

and l1 can be found through l1 = L−k2l2
k1

. We summarize our results as following:

Result 4.1.1 In the limit ε→ 0, system (4.2) has N-spike equilibrium solution that

contains k1 u1-spikes and k2 u2-spikes, in which k1 ≥ 0, k2 = N − k1:

u1e(x) =

k1∑
j=1

w
(x−xj

ε

)
v1

, (4.23)

u2e(x) =
N∑

j=k1+1

w
(x−xj

ε

)
v2

, (4.24)

ve(x) = v̄ +
6

v1

k1∑
j=1

G(x;xj) +
6β

v2

N∑
j=k1+1

G(x;xj). (4.25)

Here w(y) = 3
2
sech2

(
y
2

)
, and v1, v2, G(x;xj), v̄ and xj are given in (4.12), (4.15),

(4.16), (4.19), respectively, in which l2 can be evaluated through equation (4.21) and

l1 = L−k2l2
k1

.

4.1.1 Fold point of N-spike equilibrium

The N -spike equilibrium has a fold point af (k1, k2), corresponding to a double root

of the polynomial (4.21) (also referred to as the discriminant of the polynomial). It

can be obtained by solving a polynomial system

f(l2) = 0, f ′(l2) = 0.
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We used Maple’s grobner basis package to derive the following expression for the fold

point:

∆(a) = −256e3s3 + 192e2prs2 + 128e2q2s2 − 144e2qr2s+ 27e2r4 − 144ep2qs2 + 6ep2r2s

+ 80epq2rs− 18epqr3 − 16eq4s+ 4eq3r2 + 27p4s2 − 18p3qrs+ 4p3r3 + 4p2q3s

− p2q2r2,

(4.26)

where e, p, q, r, s satisfy (4.22). Then af (k1, k2) can be obtained by solving ∆(af (k1, k2)) =

0 numerically.

Note that equation (4.21) is a fourth order polynomial when k1 6= k2. When

k1 = k2, it becomes a cubic polynomial and the discriminant (4.26) simplifies to

∆(a) = 27p4s2 − 18p3qrs+ 4p3r3 + 4p2q3s− p2q2r2. (4.27)

An example of a fold point with k1 = k2 = 2 is given in Figure 4.4. There are

three solutions for a > af and only one for a < af . By solving the full system (4.2)

numerically, we observe that the second branch is stable when a > af ; there are no

stable solutions for a < af . As a consequence, the fold point af corresponds to one

instability threshold of the system. Note that in the classical vegetation model where

β = 1, the radius is unique, which is l1 = l2 = L
N

. This matches our result shown in

the right panel of Figure 4.4, where as β = 1, both the radius l2 and l1 are equal to

L
2

= 0.75.

4.2 Stability analysis

In this section, we analyse the stability of N -spike patterns constructed in Section

4.1. Section 4.1.1 shows that there are three or four branches (depending on whether

k1 = k2 or not) corresponding to different equilibria. In this paper we only consider

and compute stability thresholds of the stable branch such as the middle branch in

Figure 4.4. We will first compute the bifurcation point where an asymmetric pattern

bifurcates from the symmetric branch of u1 or u2-spike; this threshold characterizes

the stability threshold of an N spike equilibria with respect to the small eigenvalues

with λ → 0 as ε → 0. We will then derive a Nonlocal Eigenvalue Problem (NLEP)

which determines the stability of the large eigenvalue (O(1)). Note that the large
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eigenvalue threshold can be affected by the order of the spikes, so in section 4.2.2 we

consider spike steady state in general orderings. Numerical simulations are used to

validate our stability results.

4.2.1 Asymmetric branches and competition instability thresholds

The primary mechanism that drives spike instability in one-dimensional reaction dif-

fusion models corresponds to a small-eigenvalue bifurcation [27, 28, 100]. Instead

of computing fully the small eigenvalues, it was shown in [27, 28] that this bifurca-

tion point (at which there is a zero small eigenvalue) is characterized precisely by an

emergence of an asymmetric solution (e.g., two spikes of unequal height) off the sym-

metric branch (i.e., spikes of equal height). As expected, our two-component system

inherits a similar structure, except that it has two such bifurcation points: one for

each type of species which we denote by as1, as2. By taking the maximum of the two,

we will obtain the bifurcation threshold as = max(as1, as2) which is responsible for

destabilization of the (k1, k2) pattern.

The key to computing as1, as2 is to compute the value of v where v′ = 0. These

points occur inbetween any two consecutive spikes. From (4.13) we have

v(xj + l1) ∼ al21
2D

+ 3
al1
, when xj is the center of u1,

v(xj + l2) ∼ al22
2D

+ 3β
al2
, when xj is the center of u2.

(4.28)

Since the steady state v(x) is continuous, we have the following relation

al21
2D

+
3

al1
=
al22
2D

+
3β

al2
. (4.29)

The bifurcation point for the emergence of an asymmetric u1-spike or u2-spike solution

is obtained by calculating the minimum points in (4.28). This is given by setting

∂
∂l1

(
al21
2D

+ 3
al1

)
= 0 or ∂

∂l2

(
al22
2D

+ 3β
al2

)
= 0 for as1 and as2, respectively. This yields

as1 =

√
3D

l31
, (4.30)

as2 =

√
3βD

l32
. (4.31)

Suppose that β < 1, then l1 < l2; it follows that as1 > as2. Thus as = as1, and the

spike annihilation within u1-type spikes happens first. Similarly, we get as = as2 when
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β > 1. For the case β = 1, we have l1 = l2 = L
N

so that as = as1 = as2 =
√

3DN3

L3 . This

recovers the threshold previously obtained in [27, 28] for the classical Schnakenberg

model. The above computations assume that there are at least two spikes of type u1

(or u2) when β < 1 (or β > 1). In summary, we obtain

as =


√

3D
l31
, when β < 1 with k1 ≥ 2,√

3βD
l32
, when β > 1 with k2 ≥ 2.

(4.32)

Note that the threshold (4.32) computes the competition within the same type of

spikes, and it does not cover the competition between u1 and u2 spikes. Therefore,

this result does not work for (1, 1) pattern. However, as we compare as and af , which

is obtained in Section 4.1.1, we found that af < as when β 6= 1, and af = as =
√

3DN3

L3

when β = 1. This is shown in Figure 4.3, where we compared af and as for (2, 2)

and (1, 2) patterns. We conjecture that af is another small eigenvalue threshold that

corresponds to interspecific competition between u1 and u2 spikes.

There exist two special cases: either k1 = 1 (i.e., (1, N − 1) spike patterns) with

β < 1 , or k2 = 1 (i.e., (N−1, 1) spike patterns) with β > 1. For these cases, as < af ,

so the dominant instability is triggered by the fold point af as computed in Section 4.1

instead of as. This is illustrated in Figure 4.3, where in the left panel ((2, 2) pattern)

as = as1 > af , and the dominant threshold is as, while in the right panel ((1, 2)

pattern) af > as = as2, so the dominant threshold is af . This is further illustrated in

Figure 4.2, which shows excellent agreement between numerics and theoretical results.

For example, the last panel in Figure 4.2 shows that the first spike death is caused

by as = 7.7247 in (2, 4) pattern and the second spike death is caused by af = 6.2754

in (1, 4) pattern. The theoretical thresholds as and af can be found in Table 4.1.

4.2.2 Large eigenvalues and nonlocal eigenvalue problem

In this section we compute the large O(1) eigenvalues by deriving the corresponding

eigenvalue problem. We start by linearizing around the steady state given in (4.23).

That is, we let u1 = u1e + eλtφ, u2 = u2e + eλtψ and v = ve + eλtξ. Note that

here the (k1, k2) spike steady states are considered in general spike orderings without

changing the profile of u1 and u2. Upon substituting into (4.2) and assuming that
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Figure 4.3: Plot of three thresholds af (4.26), as1 (4.30) and as2 (4.31) vs β for (2, 2)
spike pattern (left panel) and (1, 2) spike pattern (right panel). In the left figure
((2, 2) pattern), as = as1 is the dominant instability threshold; while on the right
figure ((1, 2) pattern), there is no competition within u1 spike so only as2 exists and
as2 < af , thus af is the dominant instability threshold. Here the parameters are
D = 1, L = 3.

|φ| � 1, |ψ| � 1, |ξ| � 1 we obtain the following eigenvalue problem

λφ = ε2φxx − φ+ 2u1eveφ+ u2
1eξ, φx(±L) = 0, (4.33a)

λψ = ε2ψxx − ψ + 2u2eveφ+ u2
2eξ, ψx(±L) = 0, (4.33b)

τλξ = Dξxx −
1

ε

[
2u1eveφ+ 2βu2eveψ +

(
u2

1e + βu2
2e

)
ξ
]
, ξx(±L) = 0. (4.33c)

Near the j-th spike, we change variables x = xj + εy. To leading order, we obtain

ξ(y) ∼ ξj := ξ(xj), and in the inner variables we have

λφ ∼ φyy − φ+ 2wφ+
w2

v2
1

ξj, (4.34a)

λψ ∼ ψyy − ψ + 2wψ +
w2

v2
2

ξj. (4.34b)

Considering the different order of spikes in a (k1, k2) pattern, we look for an eigen-

function of the form

Φ ∼
N∑
j=1

Φj, ξ ∼
N∑
j=1

ξj

where

Φj =

{
φj = φ

(x−xj
ε

)
, jth spike is u1-type,

ψj = ψ
(x−xj

ε

)
, jth spike is u2-type.
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In the outer region, both φ and ψ are assumed to be localized functions so ξ

satisfies

ξxx − µ2ξ =
N∑
j=1

cjδ(x− xj), ξx(±L) = 0 (4.35)

where µ =
√

τλ
D

and cj is defined as

cj =


1
D

(
2
∫∞
−∞wφjdy + 6

v21
ξj

)
, jth spike is u1-type,

β
D

(
2
∫∞
−∞wψjdy + 6

v22
ξj

)
, jth spike is u2-type.

(4.36)

We first solve (4.35) and write ξ(x) as

ξ =
N∑
j=1

cjG
(µ)(x;xj), (4.37)

where G(µ)(x;xj) satisfies

G(µ)
xx (x;xj)− µ2G(µ)(x;xj) = δ(x− xj), G(µ)

x (±L;xj) = 0. (4.38)

Solving (4.38) yields

G(µ)(x;xj) = − 1

µ sinh(2µL)

{
cosh (µ(x+ L)) cosh (µ(xj − L)) , x < xj

cosh (µ(xj + L)) cosh (µ(x− L)) , x > xj.
(4.39)

Evaluating (4.37) at x = xj, we obtain that

ξ(xi) = ξi =
N∑
j=1

cjG
(µ)
i,j ,

where G
(µ)
i,j = G(µ)(xi;xj) is given in (4.39). In matrix form, it can be written as

~ξ = G(µ)B
(

2

D

∫
w~Φdy +

6

D
V~ξ
)
, (4.40)

where

~ξ ≡


ξ1

...

ξN

 and G(µ) ≡


G

(µ)
1,1 G

(µ)
1,2 · · · G

(µ)
1,N

G
(µ)
2,1

. . . · · · G
(µ)
2,N

...
...

. . .
...

G
(µ)
N,1 G

(µ)
N,2 · · · G

(µ)
N,N

 , (4.41)
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B and V are diagonal matrices with

Bj,j =

{
1, jth spike is u1-type,

β, jth spike is u2-type,
and Vj,j =


1
v21
, jth spike is u1-type,

1
v22
, jth spike is u2-type.

(4.42)

Solving system (4.40) we get

~ξ =
2

D

(
I − 6

D
G(µ)BV

)−1

G(µ)B
∫
w~Φdy. (4.43)

We label ~Φ = ~mφ0 and plug (4.43) into (4.34); then we have

~mλφ0 = ~mL0φ0 +M~m
w2
∫
wφ0∫
w2

, (4.44)

where

M =
2
∫
w2

D
V
(
I − 6

D
G(µ)BV

)−1

G(µ)B. (4.45)

This yields

λφ0 = L0φ0 + ηw2

∫
wφ0∫
w2

, (4.46)

where η is the eigenvalue of M given in (4.45).

Note that when β = 1, u1, u2 are essentially the same so that l1 = l2 = L
N

and

v1 = v2 = 3N
aL

. Then the matrix M in (4.45) becomes

M =
2
∫
w2

Dv2
1

(
I − 6

Dv2
1

G(µ)

)−1

G(µ). (4.47)

This recovers the results for the large eigenvalue in the two-component Schnackenberg

model [28].

For our system with β 6= 1, since it’s hard to compute the general results for

eigenvalues of M given in (4.47), here we consider a special case where there is 1

u1-type spike and 1 u2-type spike. In this case we have

M =
2
∫
w2

D

 1
v21

0

0 1
v22

 1− 6
Dv21

G
(µ)
1,1 − 6β

Dv22
G

(µ)
1,2

− 6
Dv21

G
(µ)
2,1 1− 6β

Dv22
G

(µ)
2,2

−1(
G

(µ)
1,1 βG

(µ)
1,2

G
(µ)
2,1 βG

(µ)
2,2

)

= C

(
Dv2

2G
(µ)
1,1 − 6β det(G) Dv2

2βG
(µ)
1,2

Dv2
1G

(µ)
2,1 Dv2

1βG
(µ)
2,2 − 6β det(G)

)
, (4.48)

where G =

(
G

(µ)
1,1 G

(µ)
1,2

G
(µ)
2,1 G

(µ)
2,2

)
and C =

2
∫
w2

D2v21v
2
2−6βDv21G

(µ)
2,2−6Dv22G

(µ)
1,1+36β det(G)

.



68

In the limit as τ → 0, we have µ → 0 and, after some algebra, matrix M can be

simplified as

M =
−2

βDv2
1 +Dv2

2 + 6βL

(
Dv2

2 + 6βL βDv2
2

Dv2
1 βDv2

1 + 6βL

)
. (4.49)

Computing the eigenvalues of M , we obtain that

η1 = −2, η2 =
−12βL

βDv2
1 +Dv2

2 + 6βL
. (4.50)

Let’s recall the following lemma from [63]:

Lemma 4.2.1 Consider the nonlocal eigenvalue problem

φ′′ − φ+ 2wφ− α
∫
wφ∫
w2

w2 = λφ. (4.51)

1) If α > 1, then there exists a positive eigenvalue to (4.51);

2) If α < 1, Then either λ = 0 with the eigenfunction φ = c0w
′ for some constant

c0 or

Re(λ) < 0.

From Lemma 4.2.1, we see that the critical threshold for the stability of the large

eigenvalue is such that

−1 =
−12βL

βDv2
1 +Dv2

2 + 6βL
. (4.52)

Plugging v1 = 3
al1
, v2 = 3β

al2
, we get the critical threshold for the stability of the large

eigenvalue (denoted as al)

al =

√
3D

2L

(
1

l21
+
β

l22

)
. (4.53)

For more general case N ≥ 3, the large eigenvalue threshold al corresponds to

the value of a for which the largest eigenvalue of M equals −1. Table 4.3 shows the

thresholds al for different orders of spikes in (3, 1) and (3, 2) spike patterns. Note

that for different orders of spikes, al can be different, so in Table 4.3 we denote the

ordering of u1 and u2 as s, l. Although there are
(
N
k2

)
different spike orderings for

fixed k1, k2, the number of instability thresholds is less than
(
N
k2

)
since the threshold
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(k1, k2)

al patterns
(s s s l) (s s l s) (s l s s) (l s s s)

(3,1) 2.9898 2.7709 2.7709 2.9898

(k1, k2)

al patterns
(s s s l l) (s s l s l) (s s l l s) (s l s s l) (s l s l s) (l s s s l)

(3,2) 4.7233 4.4944 4.4941 4.5941 4.1552 4.7656

Table 4.3: larger eigenvalue instability thresholds al in different spike orderings. The
parameters are L = 3, β = 0.5, D = 1. Note that in the 2nd table we only show the
spike orderings that have distinct thresholds.

is the same when the ordering is flipped (for example, see Table 4.3 where the large

eigenvalue threshold is the same for (s s s l) and (l s s s)).

It is well known that for two-component reaction diffusion systems the competition

instability threshold in N -spike equilibria (N ≥ 2) cross the threshold for small

eigenvalues first [27, 28, 100]. And it appears to still be the case in the two-species

vegetation system (4.2). We compare the instability thresholds al and as for arbitrary

(k1, k2) patterns (except (1, N−1) patterns when β < 1 and (N−1, 1) patterns when

β > 1) numerically; the results are shown in Figure 4.4, where we tried different β for

(2, 2) spike pattern and it is always the case as > al. As we increase β to 1, as overlaps

with af , and al does not exist on the stable branch, which means the whole branch is

stable for large eigenvalues. Similar results can be obtained for other patterns. See

also Table 4.1 for more results of a comparison between al and as. We then conjecture

that for arbitrary (k1, k2) patterns it is still the case that the competition instability

threshold as crosses the threshold for small eigenvalues first.

Therefore we have the result that as > al and N -spike equilibria are stable with

respect to both large and small eigenvalues when a > as; when al < a < as, they are

stable with respect to large eigenvalues but unstable with respect to small eigenvalues;

when a < al, N -spike equilibria become unstable with respect to both large and small

eigenvalues.

We now combine these results with those in Section 4.2.1. We have shown in

Figure 4.3 that as > af for k1 ≥ 2 (β < 1) or k2 ≥ 2 (β > 1) and as < af for either
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Figure 4.4: Radius of u2 spike l2 vs a for (2, 2) spike pattern. The instability thresholds
on the stable branch are shown. Solid lines: linearly stable for both the small eigen-
values and the large eigenvalues; Dash-dotted lines: unstable for the small eigenvalues
but stable for the large eigenvalues; Dotted line: unstable for both small eigenvalues
and large eigenvalue. Here we choose β = 0.5, 0.99, 0.9999 from left to right; the other
parameters are D = 1, L = 3.

(1, N − 1) spike patterns (β < 1) or (N − 1, 1) spike patterns (β > 1). For the former

case, af < al < as, thus as is the dominant instability threshold; for the latter one,

we found that al does not exist in the stable branch, thus af > as is the dominant

instability threshold.

Therefore, there are N + 1 distinct instability thresholds denoted as a∗ for each

N, each corresponding to a different number of u1 spikes (from zero to N). Moreover,

we are curious about stability ordering within these patterns. We compared a∗ for

different (k1, N−k1) patterns with fixed N . Table 4.1 illustrates the results for various

patterns and this is further illustrated in Figure 4.2.

We now summarize the result as follows.

Result 4.2.1 The N-spike steady state for system (4.2) which contains k1 u1-spikes

and k2 u2-spikes becomes unstable when a decreases to a∗ = max(af , as), where af is

the largest real root of equation (4.21) and as is given in equation (4.32). Moreover,

using (k1, k2) to represent different patterns regardless of the order of different spikes,

where k1 = 0...N, k2 = N − k1, the stability of the patterns has following order (from

most stable to most unstable) depending on the ratio of water intake β:

β < 1 : (0, N) > (N, 0) > (N − 1, 1) > (N − 2, 2) > ... > (1, N − 1),

β > 1 : (N, 0) > (0, N) > (1, N − 1) > (2, N − 2) > ... > (N − 1, 1).

Figure 4.5 shows stability regions for all possible combinations of 3-spike patterns.

As a decrease below the critical line, the corresponding pattern becomes unstable.
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Figure 4.5: Instability regions for all possible combinations of 3-spike patterns. Below
each line the corresponding (k1, k2) pattern becomes unstable and one u1-type spike
will get killed when k1 ≥ 1 or one u2-type spike get killed when k1 = 1. The red dots
are numerical thresholds obtained from full simulations of system (4.2) by FlexPDE.
We look for the numerical thresholds by gradually decreasing a until the pattern
becomes unstable and one thirsty patch collapses. Here the parameters are: L =
2, D = 1, ε = 0.03.

The dots in Figure 4.5 are obtained by full simulations using FlexPDE which are in

good agreement with our analytical results.

4.3 Discussion

In this chapter we have proposed a two-species model (corresponding to two different

plants), with competition for a common resource (water). This model is based on the

well-known Klausmeier model of vegetation patterns. For simplicity, we concentrated

on two plant species which are identical in every aspect except for the rate of water

consumption: thirsty and frugal plants. We have shown that in the water-constrained

regime where spike patterns exist, the two species can co-exist. However as the

precipitation rate decreases, the “frugal” plant is more robust and can out-compete

the more “thirsty” plant, leading to the death of thirsty plants and survival of the

more frugal plant.
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Figure 4.6: Space-time plot of u1 (blue) and u2 (red) as a function of time with
a as indicated and with β = 0.6, ε = 0.03, D = 1, L = 3, with a as indicated.
Initial conditions consist of two spots on the opposite sides of the domain. Left:
self-replication of both types of plants, leading to co-existence. Right: self-replication
is followed by a takeover of the entire domain by the red plant. Note that time is
plotted on a log scale

We found two distinct mechanisms which triggered the dominant instability, de-

pending on the number of spikes of each type. When only one spike of the thirsty

plant is present (represented in blue in Figure 4.2), the dominant instability corre-

sponds to a fold point af as derived in Section 4.1.1, and leads to the death of the blue

spike when triggered. When more than one blue spikes exists, the dominant instabil-

ity corresponds to asymmetric spike bifurcation at as as explained in Section 4.2.1.

This leads to a competition instability among the blue spikes, with one of the blue

spikes getting killed. In summary, no matter which mechanism triggers spike death,

the blue spikes always get killed first until only red spikes remain. In either case,

when β = 1 (so that the two species are indistinguishable), the instability thresholds

correspond exactly to those derived for a symmetric N−spike configuration for the

Schnakenberg model in [27, 28]. Note that in Section 4.2.1 the conclusion that the

dominant instability corresponds to asymmetric spike bifurcation at as rather than
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Figure 4.7: Space-time plot of u1 (blue) and u2 (red) as a function of time with
ε = 0.1, β = 0.9, a = 50. Initial conditions consist of two spots on the opposite sides
of the domain. Left: intial space-filling dynamics for t ∈ (0, 15) . Middle: takeover of
the domain by the red plant, t ∈ (0, 500) . Right: snapshot of the propagating waves
at three different times as indicated. The wave propagates with a constant speed.

large eigenvalue instability threshold al is a conjecture. An interesting open problem

is to prove it analytically.

What happens as the precipitation rate is increased? For the Schnakenberg model,

it is well-known that as a is increased, spot replication is observed [122, 6, 100]. A

further increase of a eventually leads to a uniform-vegetation state. In the case

of two species, self-replication is also observed for sufficiently large a; see Figure

4.6 (left). However, depending on the parameter values chosen, this can further

lead to the more frugal plant species taking over the entire domain. This suggests

that the co-existence of two plant species occurs only for precipitation parameter

a ∈ (acoexistence,min, acoexistence,max) . It is an open question to determine the upper

boundary of this interval.

The behaviour of the system is very different for even larger a, as shown in Figure

4.7. In this case, the two plants self-organize into a propagating wave of vegetation.

The red wave (corresponding to a more frugal plant) eventually takes over the entire

domain. Similar phenomenon can be observed in other competition kinetics [123]. An

open question is compute the propagation speed as a function of system parameters.



Chapter 5

Localized structure in the Schnakenberg model

In this chapter, we consider the following modified one-dimensional Schnakenburg

model by taking d1 = ε2, d2 = 1 in (1.10):

ut = a− u+ u2v + ε2∂
2u

∂x2
, x ∈ (−L,L), (5.1a)

vt = b− u2v +
∂2v

∂x2
, x ∈ (−L,L), (5.1b)

subject to Neumman boundary conditions.

5.1 Semi-strong asymptotic construction of spike solutions.

We first construct the single-spike patterns in (5.1). Moreover, we are interested

in the limit that L → ∞, in which case we shall seek a solution of (5.1) that is a

homoclinic orbit in space to the homogeneous equilibrium

u→ a+ b, v → b

(a+ b)2
, as x→ ±∞.

The semi-strong interaction method [124] is a form of matched asymptotic expan-

sion which applies to the current problem when both parameters a and b are small.

In particular, we find a natural distinguished limit by setting

a = ε α, b = ε2 β, where α and β are O(1), (5.2)

to obtain

ut = ε2∂
2u

∂x2
+ u2v − u+ εα, (5.3a)

vt =
∂2v

∂x2
− u2v + ε2β. (5.3b)

We then seek solutions expanded in powers of ε

u(x) = u0 + εu1 +O(ε2), v(x) = v0 + εv1 +O(ε2),

74
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in the inner and outer asymptotic regimes, separately.

To find the steady state of system (5.1), we first look at inner region and introduce

inner variable y = x
ε
; then to leading order, the system becomes:

uyy − u+ u2v = 0,

vyy = 0 .
(5.4)

Solving system (5.4), we have

u =
w(y)

v0

, v = v(0) = v0 , (5.5)

where w(y) satisfies w′′ − w + w2 = 0 and w(y) = 3
2

sech2(y
2
).

We then look at the outer region; to leading order we have

u ∼ εα . (5.6)

By doing change of variable z = εx and plugging (5.6) into the v−equation, we have

that v satisfies 
vzz − α2v + β =

6

v0

δ(z),

vz(0+)− vz(0−) =
6

v0

,

vz(±εL) = 0 ,

(5.7)

where we have used the fact that
∫ 0+

0−
u2vdz = 6

v0
.

To solve system (5.7), we introduce the Green’s function G(z) which satisfiesGzz − µ2G = δ(z),

Gz(±εL) = 0 .
(5.8)

A simple calculation gives

G(z;µ) = − 1

2µ sinh(µεL)
cosh(µ(|z| − εL)). (5.9)

The solution to (5.7) is then given by

v(z) =
6

v0

G(z;α) +
β

α2
,

= − 3

αv0 sinh(αεL)
cosh(α(|z| − εL)) +

β

α2
,

(5.10)
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where v0 is to be determined.

To determine v0 we take z = 0 to obtain the following quadratic equation

v2
0 −

β

α2
v0 +

3

α tanh(αεL)
= 0, (5.11)

so that

v0± =
β

2α2
±

√
β2

4α4
− 3

α tanh(αεL)
. (5.12)

Fold bifurcation occurs when

tanh(εαL)β2 = 12α3 (5.13)

with v∗0 = β
2α2 =

√
3

α tanh(εαL)
.

Note that when L → ∞, tanh(εαL) ∼ 1, which yields the fold point β2 = 12α3.

Moreover, as we take L → ∞, v0, expressed in (5.10), simplifies to the following

exponential function:

v(z) = − 3

αv0

e−α|z| +
β

α2
. (5.14)

We now summarize our result as follows:

Result 5.1.1 With 0 < ε � 1, the modified Schnackenberg system (5.1) has the

following single-spike steady state:

u(x) =
1

v0

w
(x
ε

)
+ εα,

v(x) = − 3

αv0 sinh(αεL)
cosh(αε(|x| − L)) +

β

α2
,

(5.15)

where w(y) = 3
2

sech2(y
2
) and v0 is a constant given in (5.12). There is a fold point

when tanh(εαL)β2 = 12α3, which corresponds to the double roots of (5.11).

Moreover, in the limit L→∞, the equilibrium v(x) simplifies to

v(x) = − 3

αv0

e−αε|x| +
β

α2
, (5.16)

and the fold bifurcation criteria simplifies to β2 = 12α3.
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5.2 Stability Analysis

In this section we consider linear stability of a spike. Our analysis is closely related

to [66, 63] and uses the results on the related Non-local Eigenvalue Problem (NLEP)

therein.

We start by considering a more general case where the timescales of the two fields

are different. Specifically, let us assume that a time scaling parameter τ multiplies

vt, so that system (5.1) becomes

ut = ε2 uxx − u+ u2v + εα, τvt = vxx − u2v + ε2β . (5.17)

It will be convenient to consider τ at first to be small, and then continue up to

the case τ = 1, which leads to (5.1).

5.2.1 A non-local eigenvalue problem

We first linearize around the steady state by taking

u(x, t) = u0(x) + φ(x) exp(λt),

v(x, t) = v0(x) + ψ(x) exp(λt) ,

where we assume |φ|, |ψ| � 1. Then we obtain the linearized problem

λφ = ε2φxx + (2u0v0 − 1)φ+ u2
0ψ,

τλψ = ψxx − 2u0v0φ− u2
0ψ .

In the inner region, we let y = x
ε
; then, to leading order, we obtain ψyy = 0 so

that ψ ∼ ψ0 is a constant which needs to be determined. The equation for φ then

becomes

λφ = φyy + 2wφ− φ+
w2

κ2
ψ0. (5.18)

In the outer region, we approximate

ψxx − τλψ − ε2α2ψ = cδ(x; 0), (5.19)

where

c = 2

∫ 0+

0−
u0v0φdx+

∫ 0+

0−
u2

0ψdx

∼ 2ε

∫ ∞
−∞

φwdy +
6ε

κ2
ψ0 , as ε→ 0
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in which we have used the fact that
∫∞
−∞w

2dy = 6. The solution to (5.19) can be

written as

ψ = cG(x;µ), µ =
√
τλ+ ε2α2

where G(x;µ) is the Green’s function which satisfiesGxx − µ2G = δ(x; 0),

Gx(±l) = 0 ,

and

G(x;µ) = − 1

2µ sinh(µl)
cosh(µ(|x| − l)).

Therefore the solution to (5.19) is

ψ(x) = − c

2
√
τλ+ ε2α2 sinh(

√
τλ+ ε2α2l)

cosh(
√
τλ+ ε2α2(|x| − l)),

and we solve ψ0 by letting

ψ0 = ψ(0) = −
ε
∫
φwdy + 3ε

κ2
ψ0√

τλ+ ε2α2 tanh(
√
τλ+ ε2α2l)

so that

ψ0 = −
ε
∫
φwdy

3ε
κ2

+
√
τλ+ ε2α2 tanh(

√
τλ+ ε2α2l)

. (5.20)

Substituting (5.20) into (5.18) yields the following non-local eigenvalue problem (NLEP)

λφ = L0φ− w2

∫
φwdy

A
, (5.21)

where L0φ = φyy − φ+ 2wφ and

A = 3 +

√
τλ

ε2
+ α2 tanh(

√
τλ+ ε2α2l)κ2. (5.22)

To analyse stability, we consider the following two cases, τ = 0 and τ 6= 0.

5.2.2 The case τ = 0

When taking τ = 0, A in (5.22) simplifies to

A = 3 + α tanh(εαl)v2
0; (5.23)

then equation (5.21) reduces to a well-known NLEP which was first studied in [63];

in particular, we have the following basic result:
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Theorem 5.2.1 (See [63]) Consider the problem (5.21); we have Re(λ) < 0 if A < 6,

Re(λ) > 0 if A > 6, and λ = 0 with φ = w if A = 6.

To determine the stability of the two branches corresponding to the values v0− and

v0+ shown in (5.12), we substitute v0± into (5.23) to obtain

A(v0±) =
β2 tanh(εαl)

2α3
±
β
√

tanh(εαl)

2α
3
2

√
β2tanh(εαl)

α3
− 12. (5.24)

Since the existence of a solution for v0+ requires β2tanh(εαl)
α3 > 12, it is easy to see that

A(v0+) > 6, so by Theorem 5.2.1 the solution corresponding to v0+ is unstable. For

the other branch, corresponding to v0−, we take β2tanh(εαl)
α3 = 12 + δ, where δ > 0,

then we have

A(v0−) = 6−
√

12δ + δ2 − δ
2

< 6.

Therefore, the solution corresponding to v0− is stable. Moreover, at the fold point

where β2tanh(εαl)
α3 = 12, we can easily get from (5.24) that A = 6, which corresponds

to λ = 0. We summarize our result as follows.

Proposition 5.2.1 In the case τ = 0, the one-spike solution u(x), v(x) given in

(5.5), (5.10) with v(0) = v0+ is unstable and the other branch v(0) = v0− is always

stable. The two roots v0± connect at a fold point corresponding to a double root of

(5.11).

5.2.3 The case τ 6= 0

We now study the case where A depends on λ. To study the stability of the lower

branch v0+, we first rewrite equation (5.21) in the following form

(L0 − λ)φ = w2, where

∫
φw dy = A(λ) ,

or ∫
w(L0 − λ)−1w2 dy = A(λ). (5.25)

(Above, we use the fact that φ is only defined up to a multiplicative constant and we

scale φ so that
∫
φw = A).

We denote the left-hand side of equation (5.25) as f(λ). The global behaviour of

precisely this same f(λ) was studied in [66], from which we obtain the following basic

results:
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Theorem 5.2.2 (See [66]) f(λ) has the behavior

f(0) = 6, f ′(λ) > 0, f ′′(λ) > 0, λ ∈ (0,
5

4
).

Moreover, f(λ) has a singularity at λ = 5
4

with f(λ)→ ±∞ as λ→ 5
4±. For λ > 5

4
,

we have f(λ) < 0 and f(λ)→ 0 as λ→∞.

The graph of f(λ) is shown in Figure 5.1(a). From the right-hand side of equation

(5.25), we have that A(λ) is continuous and from the previous subsection, we have

that A(0) > 6. Therefore the two functions f(λ) and A(λ) must intersect in the

domain λ > 0, so that equation (5.25) must have a positive eigenvalue, which shows

that the lower branch with v(0) = v0+ is unstable.

We now study the stability of the upper branch, with v(0) = v0−. Since we are

interested in large domain L → ∞, we let tanh(εαL) ∼ 1; then we rewrite A as

follows by introducing τ̂ = τk4

ε2
, and γ = α2k4, to obtain

A ∼ 3 +
√
τ̂λ+ γ.

When τ̂ is sufficiently large, the system can be destabilized via a Hopf bifurcation.

This was first proved in [66], from which we have the following result:

Theorem 5.2.3 (See [66]) In the case τ̂ > 0, the one-spike solution u(x), v(x) given

in (5.5), (5.10) with v(0) = v0+ is always unstable and v(0) = v0− is stable only

when 0 < τ̂ < τ̂h for some τ̂h > 0. As τ̂ increases past τ̂h, a Hopf bifurcation in the

amplitudes of the spikes is triggered.

Although we know of no explicit formula for the threshold τ̂h at which the Hopf

bifurcation occurs, we can compute τ̂h numerically in matlab. We discretized the

NLEP (5.21) using an implicit finite difference method. This results in a matrix

eigenvalue problem M~φ = λ~φ. Here ~φ is an n by 1 column vector corresponding to

the discretization of the eigenfunction φ(x), where n is the number of mesh points,

and M is an n by n matrix corresponding to the discretization of the linear operator

in (5.21). When τ̂ = 0, this is a straight forward matrix eigenvalue problem whose

eigenvalues we computed using matlab’s eig command. However when τ̂ 6= 0, the

coefficients in M also depend on λ: M = M(λ). In this case, we used an iterative

approach: starting with some λ0, we solve M(λ0)φ = λ1φ for λ1; then M(λ1)φ = λ2φ

for λ2 etc, with λi → λ as i→∞.
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Figure 5.1: Computational results illustrating the stability analysis; see text for de-
tails. (a) The function f(λ) given in left-hand side of (5.25). (b) Hopf bifurcation
points τ̂h against γ.

For a fixed γ, we used the above method to compute τ̂h such that Re(λ) = 0.

The result is shown in Figure 5.1(b), which shows the Hopf bifurcation point τ̂h for

γ ∈ (0, 9).

5.2.4 The case τ = 1

We now mainly consider system (5.17) with τ = 1, which yields

τ̂ =
v4

0

ε2
, (5.26)

In particular, we consider the regime β � 1 (independent of ε) and α ∼ O(1); then,

to leading order, we have from (5.12) that

v0− ∼
3 (α + εβ)

β
+

9 (α + εβ)4

β3
+O

(
1

β5

)
≈ 3α + εβ

β
. (5.27)

Therefore v4
0− � 1 and γ = α2v4

0− ∼ 0, in which case τ̂h ∼ 15.7. From (5.26), we

obtain the critical bifurcation value for α:

αh ∼
ε
1
2 τ̂

1
4
h β

3
=

15.7
1
4 ε

1
2β

3
− εβ ∼ (0.6636ε

1
2 − ε)β. (5.28)

We summarize our results as follows.

Result 5.2.1 In the case τ = 1, the one-spike solution u(x), v(x) given in (5.5),

(5.10) with v(0) = v0− is stable only when 0 < α < αh. As α increases past αh,
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Figure 5.2: Hopf bifurcation threshold (Result 5.2.1). The parameters are ε =
0.05, L = 100. Here the dashed line is obtained through full simulations of sys-
tem (5.3) by FlexPDE; we look for the numerical threshold by gradually increasing α
until Hopf bifurcation is observed; different colored solid line is obtained by plugging
asymptotic value (5.27) or exact value of v0− (5.12) into (5.26) and computing αh
such that τ̂ = τ̂h ∼ 15.7.

a Hopf bifurcation in the amplitude of the spikes is triggered. In particular, in the

regime of large β, we have

αh ∼ (0.6636ε
1
2 − ε)β.

To verify this proposition, we can compare with numerical computation of the

spectrum using a finite difference method. The result is shown in Figure 5.2, which

shows good agreement when we take various different approximations to v0− that are

accurate to O(ε).

5.3 Discussion

In this chapter, we studied the existence and stability of single-spike patterns in a

modified Schnackenberg model, in which the inhibitor source a = O(ε) and substrate

source b = O(ε2). One of the key results presented here, compared with other papers

that use semi-strong asymptotic theory, is the construction of spike patterns on the

unbounded domain. We have shown how the exponentially localized solutions found
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by taking an infinite domain, naturally transition to the solutions that are delocalized

in the v-field.

An additional feature we found is the presence of a Hopf bifurcation in the limit

that the source parameters a and b are sufficiently small. The presence of this instabil-

ity was argued using an extension to a previously-analysed NLEP. For the particular

model studied though, this instability was found numerically to not penetrate into

parameter regions with large a and b. Preliminary calculations suggest that further

asymptotic explanation of this disappearance of the Hopf bifurcation might be pos-

sible, by taking a slightly different distinguished limit.

Let us describe the difference between the ”extended” Schankenberg model (5.3)

and what we shall call the ”classical” Schankenberg model, which is obtained by

setting the feed-rate of the activator u to zero: a = 0 in (5.3) (see [124]). There

are several key differences here: first, the introduction of the non-zero activator feed-

rate allows for a spike solution which exists on an unbounded domain x ∈ R. For

the classical Schankenberg model, that is not the case: a single spike cannot be

constructed on an unbounded domain (note however that a single spike on the entire

domain is possible for the Gray-Scott model which also has a decay term in v).

Moreover the outer region for u no longer decays to zero, and instead leads to a

nonlinear outer problem.

Just like many other reaction-diffusion diffusion models such as the desertification

model [120] or the ”classical” Schankenberg model [124, 28], the extended Schanken-

berg model exhibits spike self-replication when b is increased. In addition, it has

an entirely new mechanism leading to birth of new spikes – as illustrated in Figure

5.4 – that occurs for higher values of a: we call this ”spike insertion” whereby addi-

tional spikes appear from the ”background”, away from other spikes. Contrast this

with spike replication, where a spike splits into two. Numerics suggest that spike

insertion is more prevalent for smaller values of a and when there are fewer spikes

already present, and in general spike replication can follow spike insertion as b is

increased further. Unlike spike replication, spike insertion is specific to the extended

Schnakenberg model and does not appear in the classical Schnakenberg model nor in

the Gray-Scott model.

The analysis in § 5.2 uses linear stability and NLEP theory to characterize the Hopf
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Figure 5.3: Spike oscillations above the Hopf bifurcations. Left: α = 1.2, β = 8, ε =
0.05, L = 30 and τ = 0.255. Supercritical bifurcation is observed leading to stable
periodic oscillations Right: same parameter values as on the left, except that L = 10
and τ = 0.035. the simulation shown in right figure suggests subcritical nature of the
Hopf bifurcation, eventually resulting in spike death.

bifurcation leading to oscillations in spike height. However linear analysis does not

describe what happens to a spike when it becomes unstable due to a Hopf bifurcation.

For this, we use numerical experiments (via FlexPDE) to investigate the fate of the

spike as the Hopf threshold is crossed. Numerics indicate that both subcritical as

well as supercritical bifurcations are possible depending on parameter choice. This is

illustrated in Figure 5.3.
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Figure 5.4: Spike insertion versus spike splitting. Full numerical simulations of (5.3)
with ε = 0.05, L = 10 and with b gradually increased according to the formula
β = 20 + 0.001 ∗ t, for several values of α as indicated in the subpanels, where
a = εα, b = ε2β. α = 2: two insertion events followed by self-replication events.
α = 1: one insertion event. α = 0.5: no insertion events. Generally, for larger values
of α several spike-insertion events can occur when β is relatively small, followed by
self-replication events as β is further increased. For smaller values of α, only self-
replication occurs as β is increased.



Chapter 6

Conclusions and future plans

In this thesis, we have studied four reaction-diffusion models and presented results

on the dynamics and instabilities of one-dimensional spike patterns in these systems.

We have applied asymptotic analysis combined with numerical methods to validate

our results.

In the SIRS epidemic model with spatial diffusion and nonlinear incidence rates

considered, we have shown that for small diffusion rate of the infected class DI , the

infected population tends to be highly localized at certain points inside the domain,

forming K spikes. We then have studied three distinct instabilities, as well as a

transition from localized spikes to plateau solutions under two regimes. When DR �
O(ε2), the K-spike patterns can undergo two types of instabilities, which are due

to coarsening (spike death) and self-replication (spike birth), and have well-known

analogues in other reaction-diffusion systems such as the Schnakenberg model. In the

other regime where DR ≤ O(ε2), we have studied the instability where a single spike

becomes unstable and moves to the boundary. We also show that a spike solution

can transition into a plateau-type solution when the diffusion rates of recovered and

susceptible class are sufficiently small.

An open problem here is to compute plateau-type steady states with nonzero DR.

We have studied plateau-type steady states in § 2.4.3 and this equilibrium solution can

be thought of as “quarantine effect”: when mobility of the recovered population and

the susceptible population is reduced, the infected population is confined to a certain

region of the entire domain with a sharp interface in between. For simplicity, We

took the diffusion rate of the recovered class DR = 0 when analyzing mesa-patterns.

However, numerical simulations indicate that similar interface solutions persist for

0 < DR ≤ ε2. Construction of mesa-patterns and the transition between them and

spike-patterns are to be studied in this regime for nonzero but sufficiently small DR.

In contrast to the well-studied 1D problem, there have been far fewer studies

86
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of the existence, linear stability, and dynamics of localized patterns for reaction-

diffusion systems in 2D spaces. So another interesting open problem is to consider

this SIRS model in a two-dimensional spatial domain, where localized spot patterns

undergo either self-replication or competition or oscillatory instabilities depending

on the parameter regime. The methodology is to use a hybrid asymptotic-numerical

approach based on ideas from strong localized perturbation theory.

For the classical Gierer-Meinhardt model, we have studied in detail in chapter 3

the effect of noise on dynamics of a single spike on a finite interval. When spatio-

temporal noise is introduced in the equation for the activator, we derived a stochastic

ODE that describes the motion of a single spike on a slow time-scale. The steady

state was described by a density distribution for spike positions, obtained via the

corresponding Fokker-Plank PDE. For sufficiently small noise level, the spike performs

random fluctuations near the centre of the domain. As the noise level is increased, the

spike can deviate from the domain center but remains effectively ”trapped” within

a certain subinterval that includes the center. For even larger noise levels, the spike

starts to undergo large excursions that eventually collide with the domain boundary

and temporarily trap the spike there. By reformulating this problem in terms of mean

first passage time (MFPT), we derive the expected time for the spike to collide with

the boundary.

Note that we mainly studied the effect of multiplicative noise on the dynamics

of single spike, where the spatial-temporal noise is multiplied by u. This type of noise

assures that the randomness affects only the spike itself and has no effect outside

the spike, since u decays exponentially away from spike center. An open problem we

would like to study in the future is to study the effect of additive noise, where the

noise is not multiplied by u but rather added to the whole background domain. From

the numerical experiments, we observe that the additive noise can affect not only the

spike motion but also spike stability as well, which leads to many new phenomena

observed, including spike death, spike insertion, and switching behaviour. Simulation

shows that spike insertion occurs when the height of inhibitor v exceeds activator u;

we can reformulate this problem in terms of MFPT and compute the expected time

for a new spike to generate. As for the spike death problem, we think this happens

as the corresponding non-local eigenvalue problem becomes unstable. In this case the
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non-local eigenvalue problem may contain noise term, which is a new problem and

hasn’t been studied much.

One more open problem in the Gierer-Meinhardt model is that when a spike hits

the boundary, it gets ”stuck” there. However, it can also get ”unglued” from the

boundary after a while. While we used MFPT theory to predict how long it takes for

the spike to ”hit” the boundary, we cannot explain why it gets ”unglued” or how long

it takes for the spike to unglue. These are all very interesting and doable problems

for future work.

For the two-species vegetation model we have shown that in the water-constrained

regime where spike patterns exist, the two species can co-exist. However, as the

precipitation rate decreases, the “frugal” plant is more robust and can out-compete

the more “thirsty” plant, leading to the death of thirsty plants and survival of the

more frugal plants. We found two distinct mechanisms which triggered the dominant

instability, depending on the number of spikes of each type. When only one spike of

the thirsty plant is present (represented in blue in Figure 4.2), the dominant instability

corresponds to a fold point af as derived in § 4.1.1, and leads to the death of the blue

spike when triggered. When more than one blue spike exists, the dominant instability

corresponds to asymmetric spike bifurcation at as as explained in § 4.2.1. This leads

to a competition instability among the blue spikes, with one of the blue spikes getting

killed. In summary, no matter which mechanism triggers spike death, the blue spikes

always get killed first until only red spikes remain.

Simulations show that as a increases, self-replication can occur as precipitation

rate is increased. A further increase of a eventually leads to a uniform-vegetation

state. However, depending on parameters, this can further lead to the more frugal

plant species taking over the entire domain. This suggests that the co-existence of two

plant species occurs only for precipitation parameter a ∈ (acoexistence,min, acoexistence,max) .

It is an open question to determine the upper boundary of this interval.

For the modified Schnackenberg model with non-zero activator feed-rate, we have

presented existence and stability of single-spike patterns on a bounded and unbounded

domain. As discussed in § 5.3, an open problem is that this modified Schnackenberg

model has an entirely new mechanism leading to birth of new spikes by ”spike in-

sertion” rather than by ”self-replication” only. This phenomenon happens for larger



89

values of α and when β is relatively small. For smaller values of α, only self-replication

occurs as β is increased.
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Appendix A

FlexPDE script for SIRS system

To find the threshold of competition instability Dcom
SK numerically, we solve system

(2.2) using FlexPDE and gradually increase the value of the diffusion rate DS until

competition (or coarsening) instability is observed. Figure A.1 illustrates the Flex-

PDE script for this, in which the initial conditions are: S and R are constants, I

contains 2 spikes. The initial conditions are scaled so that the total mass of the

population is N = 5. Coarsening can be observed when DS is increased to 3.2.

The numerical threshold of self-replication can be found in the same simulations

using FlexPDE. Taking initial conditions as K-spike solutions, we can find Drep
SK by

gradually decreasing the value of DS until self-replication from K spikes to K + 1

spikes is observed.
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TITLE 'SIRS coarsening' { the problem identification }
COORDINATES cartesian1 { coordinate system, 1D,2D,3D, etc }
VARIABLES { system variables }
S
I
R { choose your own names }

SELECT { method controls }
errlim=1e-3
DEFINITIONS { parameter definitions }
eps=0.02
DS=3.2
DI=epsˆ2
DR=5
gamma=1
L= 1
tmax=1e5
N=5
S0=0.1
R0=1.5
integ=2*L*(S0+R0)+6*eps/S0
INITIAL VALUES
S=S0*N/integ
I=(1.5/(cosh((x-0.5)/eps))ˆ2+1.5/(cosh((x+0.5)/eps))ˆ2)/S0*(N/integ)
R=R0*N/integ
EQUATIONS { PDE's, one for each variable }
S: dt(S)= DS*dxx(S)-S*Iˆ2+gamma*R
I: dt(I) = DI*dxx(I)-I+S*Iˆ2
R: dt(R)= DR*dxx(R)+I-gamma*R
BOUNDARIES { The domain definition }
REGION 1 { For each material region }

START(-L) { Walk the domain boundary }
point natural (S)=0
point natural (I)=0
point natural (R)=0

LINE TO (L)
TIME 0 TO tmax { if time dependent }

MONITORS { show progress }
PLOTS { show progress }

{ save result displays }
for cycle=1
elevation(S,I,R) from (-L) to (L)
history(integral(S+I+R))
END

Figure A.1: FlexPDE script for simulating (2.2).



Appendix B

Numerical method

We use finite differences to solve (3.2) numerically.

We discretize in space using N gridpoints, ∆x = 2L/N, and in time using stepsize

∆t so that u(xk, tj) ≈ ukj , v(x, t) ≈ vkj where xk = −L+ ∆xk with k = 1 . . . N, tj =

∆tj. We use a simple implicit-explicit finite difference scheme, similar to what is

described in [6]. The Laplacian is discretized implicitly, the remaining terms are

discretized explicitly. This results in:

ukj+1 − ukj
∆t

= ε2
uk+1
j+1 + uk−1

j+1 − 2ukj+1

(∆x)2 − ukj +

(
ukj
)2

vkj
+ σ

√
∆t

∆t
W k
j ,

0 =
vk+1
j+1 + vk−1

j+1 − 2vkj+1

(∆x)2 − vkj +

(
ukj
)2

ε
.

Neumann boundary conditions are implemented by assuming uj+1 = uj−1 when j = 1

or N , and similarly for v.

Here, W k
j is the discretization of the noise term. To compute W k

j , note that

W (x, t) is normally distributed with zero mean (since it is a sum of normal variables).

Moreover, we have

E {W (xk, t)W (xl, t)} =

{
0, if k 6= l

N , if k = l
.

This follows from the fact that E {φkφl} = E {ψkψl} = δkl, E {φkψl} = 0, and

identities

(N−1)/2∑
m=1

cos

(
2π

N
ml

)
cos

(
2π

N
mk

)
=

(
N

4
− 1

)
δl,k,

(N−1)/2∑
m=1

sin

(
2π

N
ml

)
sin

(
2π

N
mk

)
=
N

4
δl,k,

(N−1)/2∑
m=1

sin

(
2π

N
mj

)
cos

(
2π

N
mk

)
= 0.

Therefore W k
j , k = 1 . . . N are N independent normally distributed variables with

mean zero and standard deviation
√
N. In matlab, such a random variable is generated

using the command sqrt(N)*randn. Figure B.1 illustrates the code for the above.
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L =1; sigma =0.1; eps =0.1;
N =200; dt =0.1;
x = linspace (-L,L,N)';
dx=x(2) -x(1);
Lap = -2* diag ( ones (1,N))+ diag ( ones (1,N -1) ,1)+ diag ( ones (1,N -1) ,-1);
Lap (1 ,2) =2; Lap (N,N -1) =2; Lap=Lap/dx ˆ2;
Id = eye (N);
M1 = Id -eps ˆ2* Lap *dt;
M2 = Id -Lap ;

v=x*0+1; u= sech ((x-L*0)/eps);
tout =0;
for t=0: dt :4000

noise = randn (N ,1)* sqrt (N)* sigma ;
rhs1 =u+(-u+u .ˆ2./ v)*dt+ noise .*u* sqrt (dt);
rhs2 =u .ˆ2./ eps;
u=M1\ rhs1 ;
v=M2\ rhs2 ;
if t> tout

tout = tout +10;
plot (x,u,x,v);
legend ('u','v'); xlabel ('x');
title ( sprintf ('t=%g eps =%g',t,eps ));
drawnow ;

end;
end ;

Figure B.1: Code for simulating (3.2).



Appendix C

Some integrals

1. Evaluation of Fp(x) =
∫∞
−∞ sin(xy)wpwydy with p = 0. Integrating by parts we

have

F0(x) = −x
∫ ∞
−∞

cos(xy)w(y)dy = −6xRe

(∫ ∞
−∞

eixy

(ey/2 + e−y/2)
2dy

)
.

The integrand has residues at y = iπ(1 + 2n), n ∈ Z. A standard computation of a

second-order residue yields

Resy=iπ
eixy

(ey/2 + e−y/2)
2 = −ixe−πx.

Consider a rectangular contour C traversed counter-clockwise whose base C1 is the

x-axis, whose height C2 is at y = i2π, and whose left and right sides go to ±∞. Then∫
C1

eixy

(ey/2 + e−y/2)
2dy = I;

∫
C2

eixy

(ey/2 + e−y/2)
2dy = −e−2πxI

so that I − e−2πxI = 2πxe−πx or I = πx
sinh(πx)

. This yields

F0(x) =
−6πx2

sinh(πx)
. (C.1)

2. Evaluation of Fp(x) with p = 1. Integrating by parts we have

F1 = −x
2

∫ ∞
−∞

cos(xy)w2dy = −x
2

∫ ∞
−∞

cos(xy) (w − w′′) dy =

= −x
2

∫ ∞
−∞

cos(xy)
(
1 + x2

)
wdy =

(1 + x2)

2
F0(x).

This yields

F1(x) =
−3π (x2 + x4)

sinh(πx)
. (C.2)

3. Evaluation of
∫∞

0
(Fp(x))2 dx. We first evaluate the integrals

IK =

∫ ∞
0

xK

(eπx − e−πx)2 , K = 2, 4, 6, 8.
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We have,
x2K

(eπx − e−πx)2 =
xKe−2πx

(1− e−2πx)2 =
∞∑
n=1

xKe−2πxnn

and recalling that
∫∞

0
xKe−sxdx = Γ(K + 1)s−K−1 we obtain

IK = Γ(K + 1) (2π)−K−1
∞∑
n=1

n−K .

The sum above is the zeta function whose values for even K are well known (see

Wikipedia). In particular this yields,

I2 =
1

24π
, I4 =

1

120π
, I6 =

1

168π
, I8 =

1

120π
.

Finally we get: ∫ ∞
0

(F0(x))2 dx = 144π2I4 =
6

5
π; (C.3)∫ ∞

0

(F1(x))2 dx = 36π2 (I8 + 2I6 + I4) =
36

35
π. (C.4)



Appendix D

Derivation of the MFPT equation

Here, we derive the formula for the MFPT from the first principles. Suppose we are

given a SODE with variable drift and noise:

dx = f(x)dt+ σ(x)
√
dtξ.

The following integral equation gives the MFPT:

u(x) = dt+

∫ ∞
−∞

exp
(
− (x−y)2

2σ2(x)dt

)
√

2πdtσ(x)
u(y + f(x)dt)dy. (D.1)

It states that the MFPT at location x can be computed by looking at the MFPT

at all other locations y, taking a deterministic jump f(x)dt, then taking a stochastic

jump weighted by the probability of getting from y to x.

We next perform a change of variables, y = x+z
√

2σ2(x)dt, so that (D.1) becomes

u(x) = dt+

∫ ∞
−∞

exp (−z2)√
π

u
(
x+ εz + ε2b

)
dz, where ε =

√
2σ2(x)dt, b =

f(x)

2σ2(x)
.

(D.2)

We further expand:

u
(
x+ zε+ ε2b

)
= u(x) + εzux + ε2

(
bux +

z2

2
uxx

)
+ . . .

and use∫ ∞
−∞

exp (−z2)√
π

= 1,

∫ ∞
−∞

z exp (−z2)√
π

= 0,

∫ ∞
−∞

z2 exp (−z2)√
π

=
1

2
,

so that (D.1) becomes

0 = dt+ ε2

(
bux +

1

4
uxx

)
or

1 + f(x)ux +
σ2(x)

2
uxx = 0.

For a similar derivation of the Fokker-Plank equation with variable diffusivity

σ(x), see Appendix in [115].
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