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ABSTRACT 

Blastocystis are amongst the most prevalent microbial eukaryotes inhabiting the 

gastrointestinal tracts of mammals. A bioinformatic workflow was developed to detect 

Blastocystis in gut metagenomic data and applied to 996 publicly available metagenomic 

sequencing datasets from fecal samples of humans and animals. Blastocystis incidence was 

determined to be 52.7% in human and 62.6% in animal samples. A Blastocystis subtype-

specific distribution was observed both in human and animal carriers and associations 

between microbial community composition and subtypes was confirmed for humans. 

Specifically, the Methanobrevibacter genus, Prevotella copri, and species from the 

Firmicutes phylum were positively associated with the presence of Blastocystis. A tool, 

Eukfinder, was designed to recover protistan genome sequences from metagenomic data 

and successfully retrieved five near-complete nuclear genomes and mitochondrial genomes 

of Blastocystis. Overall, these bioinformatic workflows for analysis of metagenomic data 

performed well to detect difficult-to-cultivate protists, investigate their genomic diversity 

and their impact on prokaryotic microbiota. 
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CHAPTER 1 INTRODUCTION 

1.1 GUT MICROBIOME STUDIES IN THE NEXT-GENERATION SEQUENCING 

ERA 

The microbial community that colonizes the animal gastrointestinal (GI) tract, 

known as the ‘gut microbiota’, is composed of bacteria, archaea, eukaryotes, and viruses. 

This community of approximately 1014 microorganisms 0.5%–30% and 30–76% in 

industrialized(Fujimura et al. 2010) is increasingly recognized for its important roles in 

host health and disease conditions (Clemente et al. 2012). The collection of genomes of 

these microbes, the ‘gut microbiome’, is relevant for the understanding of the structure, 

function and dynamics of the gut microbiota and their interactions with the host.  

Studies investigating the importance of the gut microbiota in host health have 

gradually gained attention since the 1950s with the development of modern molecular and 

microbiological techniques (Savage 2001). Originally, most knowledge about gut microbes 

was gained from culture-based methods, which were laborious and time-consuming. This 

improved after the 1980s with the development of polymerase chain reaction (PCR) 

amplification and sequencing of the small subunit (SSU) ribosomal RNA (rRNA) gene that 

revealed large numbers of novel taxa in fecal samples. A majority of these 16S rRNA 

sequences belonged to uncultivated species and novel prokaryotes (Suau et al. 1999; 

Eckburg et al. 2005). In the last decade, culture-independent DNA sequencing technologies 

have revolutionized this field and next-generation sequencing (NGS) has emerged as a 

powerful approach to characterize microbial community composition with unprecedented 

resolution and throughput. The taxonomic profile of the microbiome composition can be 

obtained either by marker gene-based amplicon analysis or through whole-genome shotgun 

(WGS) metagenomics. Amplicon approaches typically sequence one  or several of the 

marker genes including prokaryotic 16S rRNA, eukaryotic 18S rRNA, and internal 

transcribed spacers (ITS) for fungi. Due to the limitation on depth of sequence, the target 

of prokaryotic amplicon sequencing has shifted from full-length 16S rRNA gene to a 

shorter region of the gene that contains one or several of nine hypervariable regions of 

prokaryotic16S rRNA (V1-V9) (Mizrahi-Man et al. 2013). Differences in choice of primers 

used to amplify different regions can lead to bias with over- or under-representation and 
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relative abundance of specific taxa (Comeau et al. 2017; Laudadio et al. 2018). In contrast, 

the WGS metagenomic approach sequences random DNA fragments isolated from the 

environmental samples and offers higher resolution and more sensitivity for studying the 

compositional and functional profiles of the microbial communities (Ranjan et al. 2016). 

However, it highly relies on the availability of diverse, well-annotated reference genomes 

for assignment of taxonomy to microbes inhabiting environments of interest. 

Thanks to advances in DNA-sequencing and bioinformatics, a more complete 

picture of the importance and the role of the gut microbiota has been gained. The gut 

microbiota contributes to host wellness by supplying the host with nutrients and anti-

pathogen substances, regulating and improving the immune system, and maintaining gut 

integrity and homeostasis (Clemente et al. 2012; Thursby & Juge 2017). Combined results 

from large gut microbiome research consortia such as the NIH Human Microbiome Project 

(HMP) and Metagenomics of the Human Intestinal Tract (MetaHIT), as well as, smaller 

scale studies have provided a more comprehensive view of the diversity and distribution 

of human-associated gut microbial communities (Qin et al. 2010; The Human Microbiome 

Project Consortium 2012). Thousands of new bacterial species have been identified and 

grouped within 12 different phyla, with most falling within the Bacteroidetes, Firmicutes, 

Actinobacteria, and Proteobacteria phyla (Donaldson et al. 2015). Many of the new 

species are of clinical interest due to their potential anti-inflammatory or anti-infectious 

roles (Hugon et al. 2015). Interestingly, the gut microbiota is not as diverse as microbial 

communities from other body sites and a high degree of functional redundancy and inter-

individual variability has been observed across samples from different countries (Costello 

et al. 2009; Schluter & Foster 2012; Moya & Ferrer 2016).  

The acquisition, diversification and maintenance of the gut microbiota is affected 

by multiple factors, as inferred from large-scale population-based metagenomics studies 

(Lozupone et al. 2012; Zhernakova et al. 2016; Falony et al. 2016). For example, newborns 

acquire different founder species depending on the delivery method (Rodríguez et al. 2015). 

Other microbes can rapidly colonize the GI tract under following life events like the 

introduction of solid food or antibiotic treatments (Rodríguez et al. 2015). Studies have 

shown that some taxa are inherited from the mother and that the microbiome’s composition 
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is shaped by the host’s genetic makeup (Goodrich et al. 2014). However, the composition 

and the general activity of the gut microbiome can also be influenced by short- and long-

term dietary habits (e.g., animal-based vs. plant-based diets, the consumption of processed 

food, and dietary fibre) (Wu et al. 2011; David et al. 2013; Xu & Knight 2015), age, 

medical practices (e.g., use of pre-, pro- and antibiotics)(Francino 2016), and the 

environment (e.g., smoke exposure, hygiene practices and climate)(Lozupone et al. 2012; 

Chabé et al. 2017). 

Although it remains unclear what constitutes a “healthy microbiome” (Zhernakova 

et al. 2016; Falony et al. 2016), it has been observed that heathier individuals often harbor 

greater gut microbial diversity and richness, and that the compositional changes in gut 

microbiota can be associated with illnesses that affect the digestive system and metabolism 

(e.g., obesity and type 2 Diabetes), immune system (e.g., irritable bowel syndrome (IBS), 

inflammatory bowel disease (IBD), Crohn's disease (CD), rheumatoid arthritis, etc), 

cancers (e.g., gastric cancer and colorectal cancer), and also neurological conditions (e.g., 

autism, anorexia, anxiety and depression, among others (Clemente et al. 2012; Schmidt et 

al. 2018). Table 1.1 lists a number of examples of changes in the gut microbiota associated 

with diseases). Experimental and clinical evidence has shown that suppression of dysbiosis, 

a state lacking microbial diversity and/or richness, together with the restoration of the 

altered microbiome represents a potential approach to improve host health and a promising 

avenue for the development of new therapies (Marchesi et al. 2016). Dietary intervention 

(Cotillard et al. 2013), probiotics (Table 1.2) (Madsen et al. 2001), and fecal microbiota 

transplantation (FMT) (Seekatz et al. 2014) are potential approaches to restore gut 

microbial health.  

1.2 MICROBIAL EUKARYOTES IN THE GUT 

Most gut microbiome studies have been focused on the prokaryotic component, 

leaving the eukaryotic component (e.g., fungi, helminths, and protists) incompletely 

charted. Historically, eukaryotes inhabiting the gut were generally assumed to be pathogens, 

but recent studies have shown that their relationship with the host varies from mutualistic 

to commensalistic to parasitic (Parfrey et al. 2011; Lukeš et al. 2015). Paleoparasitology   
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Table 1.1 Changes in the intestinal microbiota associated with human diseases. 

Disease categories 
Specific 

diseases 

Changes* in Microbiota 

Presence/Function 
References 

Metabolic 

disorders 

Obesity ↑ Firmicutes, Actinobacter 

↑ Lactobacillus reuteri 

↑ Glycoside hydrolase and 

SCPAs(butyrate and acetate) 

↓ Bacteroidetes, Bifidobacterium 

animalis,  Methanobrevibacter smithii 

Turnbaugh et al. 

2006; Million et 

al. 2012; 

Koliada et al. 

2017 

Type-2 

Diabetes 

↑ Lactobacillus 

↓ Clostridium coccoides, Atopobium 

cluster, Prevotella 

↓ Butyrate biosynthesis 

Qin et al. 2010; 

Sato et al. 2014 

Immune-mediated 

/autoimmune 

diseases 

IBS ↑Escherichia coli 

↓ Clostridium leptum, Bifidobacterium 

↓ Bile acid biotransformation 

Duboc et al. 

2012 

IBD ↑Actinobacteria, Proteobacteria 

↓Bifidobacteria, Clostridium leptum, 

Clostridium coccoides, Lachnospiraceae, 

Faecalibacterium prasnitzii, Roseburia 

hominis 

↓ Firmicutes/Bacteroidetes ratio 

Spor et al. 2011; 

Perry et al. 2006; 

Machiels et al. 

2014 

Crohn’s 

Disease 

↑Bacteroides ovatus, Bacteroides vulgatus 

↓ Bacteroides uniformis 

Dicksved et al. 

2008 

Rheumatoid 

arthritis (RA) 

↑Prevotella copri in new-onset RA 

↑Microbiota diversity of Lactobacillus 

genus in early RA 

↓ Bacteroides sp. in new-onset RA 

Liu et al. 2013; 

Scher et al. 2013 

Cancer Gastric cancer ↑ Helicobacter pylori Lathrop et al. 

2011 

Colorectal 

cancer 

↑ Bacteroides fragilis, Fusobacterium, 

Campylobacter sp. 

↓ butyrate-producer (Faecalibacterium,  

Roseburia) 

Wang et al. 

2012; Ahn et al. 

2013 

Neuropsychiatric Autism ↑ Bacteroidetes, Clostridium sp.,  

Lactobacillus, Desulfovibrio 

↓ Bifidobacteria 

Song et al. 2004; 

Adams et al. 

2011 

Depression ↑ Eggerthella, Holdemania, Gelria, 

Turicibacter, Paraprevotella, 

Anaerofilum 

↓ gut microbiota diversity, Prevotella and 

Dialister 

Kelly et al. 2016 

* Changes relative to healthy individuals in control groups. Increase: ↑. Decrease: ↓. 
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Table 1.2 Examples of next generation probiotics, their function and potential weakness. 

Next generation 

probiotics 

Main functions and 

mechanisms 
Potential weakness references 

Akkermansia 

muciniphila 

Anti-obsogenicity and 

metabolic syndromes 

Positive association with 

Parkinson disease and 

multiple sclerosis 

Chang et 

al. 2019 

Bacteroides 

fragilis 

Anti-inflammations. It also 

may enhance efficacy of 

immune check point 

inhibitors cancer therapy. 

Enterotoxin containing B. 

fragilis is closely related to 

colorectal cancer 

development. 

Bifidobacterium 

spp. 

Some Bifidobacterium species 

strains may enhance the 

efficacy of Immune 

Checkpoint Inhibitors cancer 

therapy 

The anti-cancer effects 

may be strain specific. 

Christensenella 

minuta 

Anti-obsogenicity. 

Highly heritable in a lean host 

phenotype. 

Not applicable. 

Faecalibacterium 

prausnitzii 

Anti-inflammation by 

Butyrate production. May 

ameliorate IBD and CRC. 

Not applicable. 

Parabacteroides 

goldsteinii 

Anti-obsogenicity. 

Ameliorates prediabetes 

syndromes and liver 

inflammations. 

Not applicable. 

Prevotella copri Ameliorate prediabetes 

syndromes 

Production of branch chain 

amino acids (BCAA) that 

may cause 

insulin resistance. 

Bacteroides 

uniformis 

Anti-obsogenicity. 

Anti-inflammation 

Not applicable. Neef & 

Sanz 2013 

Clostridia clusters 

IV, XIVa and 

XVIII 

Anti-inflammation Not applicable. 
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studies have confirmed that helminths and protists were part of the ancestral human gut 

microbiota (reviewed by Frías et al. 2013). Taxonomic surveys from different datasets have 

revealed that the presence of microbial eukaryotes in the human gut is ubiquitous and the 

prevalence can sometimes be very high. For instance, fungal species were detectable in 98% 

of samples from an HMP study consisting of 317 fecal samples from 147 healthy 

volunteers (Nash et al. 2017) and the colonization frequency of certain protists approaches 

100% in some rural communities (El Safadi et al. 2014; Morton et al. 2015). DNA-based 

detection and compositional profiling have revealed that the interplay between gut 

eukaryotes and gut bacteria is important in training the immune system and potentially 

causes variation in the virulence of gut-colonizing eukaryotes (Stensvold & van der Giezen 

2018).  

Among the gut-inhabiting eukaryotic groups, the unicellular protists are the most 

phylogenetically diverse with representation of several major groups of eukaryotes (Figure 

1.1). The colonization of the gut by some protists can be stable and widespread in both 

healthy individuals and groups of patients with infectious bowel diseases (Scanlan & 

Marchesi 2008; Scanlan et al. 2014). Many gut protists show varied pathogenicity in hosts 

that can  range from asymptomatic colonization to causing mild or severe symptoms, or 

even death (Lukeš et al. 2015). Such variability may be linked to the diversity in the gut 

microbial community, differences in host genetic and/or immune system, genotypes of the 

strain, or the interaction between protists and prokaryotes in the gut (Clemente et al. 2012). 

Indeed, several studies have demonstrated that protists/gut microbiota interactions are 

important factors affecting colonization and virulence. Experiments in mice showed that 

the presence of certain probiotic strains of Lactobacillus can inhibit the growth of Giardia 

intestinalis, a flagellated parasitic microorganism that cause diarrhea (giardiasis) in 

humans and other mammals throughout the world (Humen et al. 2005; Shukla et al. 2008). 

An in vitro experiment by Galván-Moroyoqui et al. (2008) showed co-cultivation of 

enteropathogenic bacteria strains with the potentially pathogenic protist Entamoeba 

histolytica can increase the frequency with which the protist invades epithelial cells. These 

results challenge the paradigm of “one microbe, one disease.” Investigating how intestinal 

protists interact with prokaryotic microbiota and the host immune system is clearly 
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important for a comprehensive understanding of the role of the gut microbiome on human 

health and diseases. 

Gut-inhabiting protists possess key adaptions to low oxygen environments, 

including metabolically distinct mitochondria (e.g., mitosomes in Giardia and Entamoeba) 

and anaerobic ATP-generating pathways in the cytoplasm. These features that likely 

evolved in their free-living ancestors (reviewed in Stairs et al. 2015) have allowed them to 

colonize animal GI tracts (Mi-Ichi et al. 2009; Jedelský et al. 2011). Functional and 

comparative genomic studies can be very useful to provide information to understand the 

genetic diversity in protists, shedding important light on the pathogenesis of these 

organisms, as well as help in identifying potential interactions between the protists with 

other gut microbes and the host. Developments in DNA-sequencing technologies in the 

past two decades have enabled the characterization of the genomes of a variety of protists, 

especially those with biomedical relevance. For example, more than 12 draft genomes have 

been published from various Giardia isolates. Comparative genomic analyses have helped 

to identify genome variation between different isolates (Jerlström-Hultqvist et al. 2010) 

and revealed useful information regarding the diversity of metabolic pathways allowing 

pathogenic strains to be distinguished from their not-pathogenic counterparts and offering 

potential targets for drug development.  

1.3 BLASTOCYSTIS 

The various subtypes of Blastocystis sp. (referred to as Blastocystis) are amongst 

the most prevalent microbial eukaryotes colonizing the GI tracts of mammals, birds, 

reptiles, amphibians and cockroaches (Alfellani, Jacob, et al. 2013). Blastocystis are 

unicellular anaerobes belonging to the group Stramenopila, a major eukaryotic clade 

encompassing an extremely large diversity of heterotrophic and/or photosynthetic, 

unicellular and multicellular protists and algae (Derelle et al. 2016). Blastocystis, unlike 

many stramenopiles, lacks a flagellate stage but, in the common vacuolar form has a 

spherical shape ranging from 10-50 microns in diameter with a large central vacuole and 

organelles (e.g. nuclei and mitochondrion-related organelles (MROs)) organized around 

the periphery of the cell. Several less-common morphological forms, including granular,  
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Figure 1.1 A simplified tree of eukaryotes emphasizing the most commonly occurring 

anaerobic protists, emphasizing gut-colonizing genera (provided with the generosity of 

Sergio Muñoz-Goméz and Andrew Roger). Major eukaryote lineages are indicated on the 

schematic with different colours. The cells are not drawn to scale.  

 

 

 

avacuolar, multivacuolar, ameboid and cyst stage, have been reported but there is no 

agreement on the significance of the different forms (Stensvold & Clark 2016).  

Because diverse Blastocystis strains are indistinguishable under microscopic 

examination, it is difficult to assign them distinct species names. To address this problem 

a consensus terminology has been adopted: ‘Blastocystis sp.’ is accompanied by a 

corresponding subtype (ST) number designation; subtypes are defined as Blastocystis 

clades made up of closely related strains that are more than 4% divergent in the 18S SSU 

rRNA gene from other subtypes (Stensvold et al. 2007; Clark et al. 2013). Up to 17 STs 

have been recognized from mammal and bird host using phylogenetic reconstruction with 

full length 18S SSU rRNA sequences. Of these ST1 - 9 and ST12 are found in humans, 

although ST1 - 4 are generally most common (Clark et al. 2013; Ramírez et al. 2016). 

Based on partial SSU rRNA gene sequences, 5 possible novel Blastocystis subtypes (ST18 

to ST22) have been proposed from animals in wildlife parks in China (Zhao et al. 2017) 

plus 4 STs (ST23 to ST26) from dairy heifer calves from the USA (Maloney, Molokin, et 

al. 2019). However, Stensvold and Clark recently urged caution about designation of these 
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isolates as new subtypes until full-length 18S rRNA genes are characterized (Stensvold & 

Clark 2020). 

Blastocystis is transmitted by the fecal-oral route, i.e., by ingestion of cyst-

containing water or food (Leelayoova et al. 2008; Caradonna et al. 2017). Animal handlers, 

pet owners, and people who are exposed to contaminated water are at a higher risk of 

possible infection (Stensvold et al. 2009; Lee et al. 2012; Nagel et al. 2012). It is estimated 

that one billion people are infected worldwide (Clark et al. 2013) but the prevalence of 

Blastocystis in human varies with geography and economic status; it is generally much 

higher in non-industrialized countries (Clark et al. 2013; Stensvold & Clark 2016). 

However, epidemiologic data gathered to date are heavily influenced by the methods used 

for detection; studies comparing different detection methods have shown that traditional 

laboratory technologies like microscopy are more likely to underestimate Blastocystis 

carriage (Roberts et al. 2011; Javanmard et al. 2018). Molecular approaches using PCR 

amplification of full-length or variable regions of 18S rRNA are now considered the most 

reliable detection approach (Stensvold & Clark 2016). 

 Blastocystis’ pathogenicity is controversial. There are many reports of Blastocystis 

infections associated with diarrhea, abdominal pain, nausea, bloating, urticaria and various 

other symptoms (Roberts et al. 2014). Furthermore, experimental studies of ST7 isolates 

from Singapore have indicated that, in vitro, they secrete cysteine proteases that degrade 

secretory IgA, erode tight-junctions, induce NF-kB-mediated secretion of cytokines and 

can cause host-cell apoptosis (Stensvold, Tan, et al. 2020). However, recent population-

wide studies using molecular markers rarely associate Blastocystis carriage with GI disease, 

and instead find associations with positive health indicators and/or high microbial diversity 

(Nieves-Ramírez et al. 2018; Tito et al. 2019). The potential pathogenicity of Blastocystis 

can also be obscured by errors in its diagnosis and the lack of comprehensive information 

on the existing genotypes of subtypes and variation within subtypes. Furthermore, more 

diverse Blastocystis strains are continually being discovered (Stensvold & Clark 2020). 

The detection of high intra- and inter-subtype genetic variability is suspected to be 

responsible for the ambiguity in the pathogenicity results in clinical studies (Wu et al. 2014), 
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and experimental setting (Yason et al. 2019). There is a need for more accurate, sensitive, 

and practical approaches for detecting and genotyping of Blastocystis.  

Even less is known about the genetic diversity of Blastocystis strains on the 

genomic level. Until recently, efforts to gather genomic information have resulted in the 

reconstruction and analyses of three Blastocystis complete genomes and a few draft 

genomes. The first characterized Blastocystis genome was from the ST7 clade (Denoeud 

et al. 2011), followed by published descriptions of the ST4 and ST1 genomes (Wawrzyniak 

et al. 2015; Gentekaki et al. 2017). Rough draft assemblies of ST2, ST3, ST6, ST8, and 

ST9 (Andersen et al. 2015) were obtained through whole genomic sequencing and 

deposited in databases, but gene predictions/annotations were not made or remain 

unpublished. In general, it appears that Blastocystis strains have reduced genomes, ranging 

from ~12 mega base pairs (Mbp) to ~ 18 Mbp displaying a huge range of GC content (39.6% 

- 54.6%) and significant differences in their gene contents, with ST4 having the least 

number of protein-coding genes and ST1 the mostb(Table 1.3). The closest relative of 

Blastocystis is Proteromonas lacertae that has a genome size of 52 Mbp with a 26.9% GC 

content. Genes acquired by Blastocystis via lateral gene transfer from both prokaryote and 

eukaryote donors were identified in the ST1 genome by Eme et al. (2017) and these genes 

seem to be crucial to its adaptation to the gut environment. Blastocystis also has a modified 

mitochondrion (a mitochondrion-related organelle: MRO) capable of anaerobic 

metabolism presumably for energy production (Gentekaki et al. 2017). Although gene 

content and order are conserved across mitochondrial genome sequences of the Blastocystis 

STs (Table 1.4), variation of genomic characteristics like number of overlapping genes and 

gains/losses of start and stop codons on certain genes make them genetically 

distinguishable (Stechmann et al. 2008). Comparative analyses of differences between 

nuclear and mitochondrial genomes of different Blastocystis STs can be useful to guide 

future experimental research to shed light on their potential for pathogenicity and the 

identification of potential targets for anti-protozoan drug development. Therefore, ample 

genomic information is required to better understand Blastocystis’ ecological role and 

clinical significance. 
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1.4 AIMS OF THIS THESIS  

Despite the application of state-of-the-art molecular and immunological methods 

to study Blastocystis, our knowledge of its pathogenicity and roles in the GI tract is still 

very poor. We lack a complete understanding of its geographic distribution, host specificity, 

genetic diversity, as well as its interactions with the prokaryotic gut flora. While WGS 

metagenomic sequencing is a promising means to investigate both compositional and 

functional aspects of the gut microbiome, the large data sizes and numerous tools available 

pose challenges for the computational analysis of WGS sequencing datasets. This is 

especially true for microbial eukaryotes since they usually are a less abundant component 

of gut metagenome (Laforest-Lapointe & Arrieta 2018) and most of the pipelines and 

databases developed thus far focus on the prokaryotic components. In this thesis, I describe 

the metagenomic ‘pipelines’ that have been developed and applied to gut metagenomes to 

profile the common intestinal protists, such as Blastocystis, to shed light on the role of 

microbial eukaryotes in the gut microbiome. 

In Chapter 2, I describe and apply a metagenomic analysis approach to detect and 

assign Blastocystis STs and establish minimal thresholds to decide whether their presence 

in WGS fecal samples from humans and animals can be considered an infection or not. To 

complement these analyses, I examined the relationship between the presence/absence of 

Blastocystis and the composition of the gut prokaryotic microbial community. Since one 

of the difficulties associated with studying Blastocystis in the microbiome is the lack of 

genomic information for diverse isolates, in Chapter 3, I present Eukfinder, a bioinformatic 

pipeline to reconstruct draft genomes of microbial eukaryotes, and use Blastocystis as a 

study case to recover nuclear and mitochondrial genomes from human gut metagenomic 

datasets. Finally, in Chapter 4, I summarize the results from chapters 2 and 3 and discuss 

outstanding questions that future work should address. The metagenomic approaches 

developed in this thesis should aid future investigations into the prevalence, functions, 

physiologies, and evolutionary histories of eukaryotic microbes in the gut microbiome and 

a variety of other ecosystems. 
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Table 1.3 Genomic features of published Blastocystis reference genomes. 

Blastocystis 

subtype & 

isolate 

GenBank 

Accession 

Number 

Size 

(Mbp) 
Scaffolds 

GC 

content 

(%) 

 protein-

coding 

genes 

single-

coped 

genes 

(BUSCO) 

ST1  

Nand II 
GCA_001651215 16.4683 580 53.00 6544 171 

ST4 WR1 GCA_000743755 12.9194 1301 39.70 5707 138 

ST7 

isolate B 
GCA_000151665 18.8172 54 45.30 6020 138 

ST2 

Flemming 
GCA_000963365 12.6931 969 54.00 N/A* 150 

ST3 ZGR GCA_000963385 11.6514 917 52.00 N/A* 140 

ST4 BT1 GCA_000963395 11.5409 849 39.90 N/A* 124 

ST6 

SSI:754 
GCA_000963415 15.4178 879 43.10 N/A* 135 

ST7 ASY-1 GCA_003575125 10.4299 10257 52.00 N/A* 110 

ST8 Dmp/ 

08-128 
GCA_000963455 12.2390 947 39.70 N/A* 113 

ST9 F5323 GCA_000963465 11.7149 871 43.00 N/A* 111 
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Table 1.4 Genomic features of published Blastocystis mitochondrial genomes. 

Blastocystis 

subtype & 

isolate 

GenBank 

Accession 

Number 

Size  

(bp) 

Coding 

density 

(%) 

protein-

coding 

genes 

Over-

lapped 

genes 

Total 

length of 

overlap 

(bp) 

tRNAs 

GC 

content 

(%) 

ST1  

Nand II 
EF494740 28,385 77.5 27 6 115 16 19.9 

ST2 

Flemming 
KU900235 28,305 78.0 26 8 163 16 19.7 

ST3 DMP/ 

08-326 
HQ909886 28,243 77.5 27 7 113 16 21.6 

ST3 DMP/ 

08-1043 
HQ909887 28,268 77.2 27 7 86 16 21.4 

ST4 DMP/ 

02-328 
EF494739 27,718 77.1 27 8 126 16 21.9 

ST4 DMP/ 

10-212 
KU900236 27,817 76.9 27 8 126 16 21.6 

ST6 

SSI:754 
KU900237 28,806 77.0 26 11 176 16 18.9 

ST7 

isolate B 
CU914152 29,270 77.1 26 7 193 16 20.1 

ST8 DMP/ 

08-128 
KU900238 27,958 77.0 27 9 237 16 22.7 

ST9 F5323 KU900239 28,788 77.3 26 11 204 15 18.8 
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CHAPTER 2 EVALUATING THE ROLE AND IMPACT OF 

BLASTOCYSTIS IN GUT MICROBIAL COMMUNITIES 

2.1 INTRODUCTION 

2.1.1 The diversity and controversial role of Blastocystis in the gut microbiome 

Blastocystis sp. is a genus of unicellular eukaryotes (protists) that frequently 

colonizes the guts of humans and animals. It is estimated that Blastocystis colonizes 

approximately one billion individuals worldwide (Clark et al. 2013). Over the years, 

Blastocystis has been associated with a variety of diseases, prominently GI disorders, 

including diarrhea, abdominal pain, vomiting and irritable bowel syndrome (IBS). 

However, evidence for direct pathology caused by Blastocystis is very sparse and a causal 

relationship between the presence of the organism and disease symptoms has not been 

established conclusively (Roberts et al. 2014).  

Epidemiological surveys of the correlation between Blastocystis and 

gastrointestinal syndromic patients show controversial results. Yakoob et al. (2004) 

detected a high ratio of Blastocystis in IBS patients than in healthy controls from Pakistan. 

A higher prevalence of Blastocystis was observed in the IBS group (56 patients) compared 

to the control group (56 healthy individuals) in France (Nourrisson et al. 2014). A similar 

pattern was found in IBS patients from Turkey (Dogruman-Al et al. 2009) and Mexico 

(Jimenez-Gonzalez et al. 2012). However, many other studies found no correlation 

between Blastocystis infection and IBS or other GI disorders. Scanlan et al. (2014) found 

high Blastocystis prevalence (56%, n=105) in healthy adults in Ireland than previously 

reported from an industrialized country (0.5%–30% in industrialized countries) (Alfellani, 

Stensvold, et al. 2013) and temporal stability of the protist colonization with the same strain 

over a period of 6 to 10 years. An attempt to determine whether Blastocystis is associated 

with Crohn's disease (CD) or ulcerative colitis (UC) in a metagenomic survey by Andersen 

et al. (2015) found a higher positive rate in the healthy group compared to UC patients and 

no presence of the protist in CD patients. Such a negative correlation between the presence 

of Blastocystis and CD or inflammatory bowel disease (IBD) was also observed in two 

other more recent studies (Beghini et al. 2017; Tito et al. 2018). Recently, a study focusing 

on patients with multiple recurrent Clostridium difficile infections (rCDI) showed that 
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Blastocystis can be transmitted from healthy donor to rCDI recipients with fecal microbiota 

transplantation (FMT). This first-to-be-recorded human-to-human Blastocystis 

transmission did not influence the success rate of the FMT to treat rCDI, nor did it to lead 

to any GI symptoms in the recipients (Terveer et al. 2019). As evidence mounts for 

asymptomatic intestinal colonization with Blastocystis, it seems very likely that at least 

some subtypes of this protist may be components of a healthy human gut microbiota (Lukeš 

et al. 2015). 

There are 10 different subtypes of Blastocystis that have been found to colonize 

humans: ST1 to ST9, and ST12. The conflicting reports regarding the pathogenicity of 

Blastocystis may therefore be related to inter-ST and intra-ST variation. In vitro and in vivo 

experiments have extensively studied some putatively pathogenic isolates, including those 

with published genomes like the ST7 isolate B (ST7-B) (from a symptomatic patient in 

Singapore) , the ST4 isolate WR-1 (ST4 WR-1) (from a laboratory rodent in Singapore), 

and a ST1 NandII strain from a symptomatic human (Denoeud et al. 2011; Wawrzyniak et 

al. 2015; Gentekaki et al. 2017). Studies of Blastocystis growing with nontransformed rat 

intestinal epithelial cell line (IEC-6) showed that ST4 WR-1 can induce contact 

independent apoptosis and increase epithelial permeability of the cell monolayers (Puthia 

et al. 2006). When incubated with a human colonic cell line (Caco-2), ST7-B significantly 

increased apoptosis, disrupted epithelial monolayer and increased membrane permeability, 

but not such effects by rodent isolate ST4 WR-1 (Wu et al. 2014). This difference in 

pathogenicity may be an indication of host specificity for different isolates. Hussein et al. 

(2008) observed that isolates from a symptomatic patient with ST3 colonization caused 

tissue damage in infected rats while isolates from asymptomatic carriers of the same ST 

had weakly pathogenic effects on infected rats. The existence of asymptomatic and 

symptomatic individuals with the same subtype could suggest high variation among intra-

ST isolates in pathogenicity. Therefore, accurately identifying genotypes of Blastocystis 

infecting symptomatic patients is potentially important for clinical decisions of whether 

their presence is harmful or not. 
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2.1.2 The prevalence of Blastocystis and methods of detection  

Knowledge of Blastocystis’ pathogenicity and role in the gut microbiome can be 

hindered by variations in the sensitivity of various diagnosis methods. Traditional 

approaches to detect Blastocystis in stool samples employed microscopic observations,  

permanently stained smears, or culturing. These methods are time-consuming, highly 

depend on the type of preparation method and the expertise of the observer, and are unable 

to distinguish different STs and generally lack sensitivity. PCR assays and amplicon 

sequencing of the SSU rRNA marker gene have improved diagnostic properties in terms 

of sensitivity and consistency and allow the subtyping of strains. Consequently PCR-based 

assays are thought to be the state-of-the-art means for Blastocystis detection and subtyping. 

Conventional or real-time PCR amplification of a barcode region of the SSU rRNA 

followed by (Sanger) sequencing had been used as a screening tool in clinical microbiology 

laboratories (Andersen & Stensvold 2016). With the advances in next-generation 

sequencing (NGS), amplicon sequencing of the Blastocystis 18S rRNA gene has shown 

promising results in detecting Blastocystis from fecal or sewage samples with high 

sensitivity (Tito et al. 2018; Stensvold et al. 2020). The drastic improvement offered by the 

amplicon method was exemplified with a meta-analysis of the prevalence of Blastocystis 

that showed that up to 20.89% prevalence was detected with such a method while only 

8.96 % prevalence was detected by microscopical examination (Javanmard et al. 2018). In 

recent studies, amplicon-based SSU rRNA gene sequencing identified more than 10 times 

mixed-subtype infections than PCR based Sanger sequencing (Maloney, Molokin, et al. 

2019) and can detect Blastocystis from untreated wastewater samples (Stensvold et al. 

2020). Despite these improvements, primer bias and chimeras are still unavoidable 

limitations of PCR and amplicon sequencing and may lead to incomplete detection of all 

Blastocystis in one sample when there are two or more distinct subtypes in the DNA sample 

(Stensvold & Clark 2020). Furthermore, amplicon-based NGS of 18S rRNA (and combing 

sequencing of it with 16S rRNA gene sequencing that enables compositional analysis of 

gut microbiota) provides no direct information on presence or absence of potential 

molecular determinants of pathogenicity in Blastocystis strains identified.  

Fortunately, whole genome shotgun (WGS) metagenome sequencing has recently 

been applied to the gut microbiome for detection and profiling of intestinal protozoa. 
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Currently, only a handful of studies have used WGS sequencing to investigate Blastocystis 

in gut metagenome samples. For example, Beghini et al. (2017) and Lokmer et al. (2019) 

detected Blastocystis in human samples by mapping reads from metagenomic sequencing 

of fecal samples to publicly available genomes (STs 1-4 and 6-9) using several measures 

to avoid false positives. While useful, this approach potentially could miss human-infecting 

Blastocystis strains that currently do not have a reference genome (ST5) and also those that 

occur in animals, since there are no animal-specific  STs (e.g., ST10 – ST26) with genome 

data available. With the advantages of WGS for analyses of both compositional and 

functional profiles in the gut microbiome and with the increase of available WGS data from 

gut metagenomic analyses, there is a strong demand to develop more effective 

bioinformatic approaches to explore the prevalence and association patterns of gut protozoa.  

2.1.3 A strong demands for metagenomic methods to detect and characterize 

Blastocystis 

With the advances in high-throughput DNA sequencing, researchers can begin to 

characterize the relationship between Blastocystis’ colonization and the composition of the 

prokaryotic microbiota of the gut. So far, a number of reports have produced contradictory 

conclusions. For example, using an amplicon approach, Nourrisson et al. found an 

association of Blastocystis colonization with a decrease in protective bacteria in the gut 

(Nourrisson et al. 2014). In contrast, amplicon-based analyses by Nagel and colleagues 

suggested that there were no differences in microbiota between Blastocystis-positive and -

negative patients (Nagel et al. 2016). Additional studies have added to the confusion by 

demonstrating that Blastocystis is a common member of the gut microbiota of healthy 

people and could be associated with increased prokaryotic diversity and species richness 

in the gut (Andersen et al. 2015; Audebert et al. 2016; Nieves-Ramírez et al. 2018; Tito et 

al. 2018).  

Most of the studies discussed above were amplicon-based using Blastocystis-

specific primers for the 18S rRNA gene. However, of these, only the study of Tito and 

colleagures (Tito et al. 2019) compared the prevalence of Blastocystis and its subtypes with 

prokaryotic microbiota profiles. For example, Tito and colleagues observed that the 

abundance of Akkermansia, a fecal isolate of clinical interest that has been linked to glucose 
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homeostasis (Dao et al. 2016), correlates negatively with the abundances of Blastocystis 

ST3 and positively with ST4 (Tito et al. 2019). Some other studies have noticed that the 

presence of Blastocystis may positively correlate with certain groups of gut prokaryotic 

microbiota, like the microbes that are prevalent in the ‘Bacteroides enterotype’ (Andersen 

et al. 2015) or the archaeon Methanobrevibacter smithii (Beghini et al. 2017), but they did 

not explain the effects of such correlation. 

To address the need for a robust approach to detect Blastocystis in WGS 

metagenome sequencing data, I have developed a novel bioinformatic approach that I 

applied to 996 gut metagenome datasets from 10 human gut metagenome projects and 13 

animal gut metagenome projects from hosts including primates (baboon), other mammals 

(pigs, cattle) and birds (chickens).  Using this approach, I further investigated correlations 

between the presence/absence of this protist and the abundance of prokaryotic species or 

metabolic pathways on a 200-sample subset of the above-mentioned human gut 

metagenome data. This work establishes a new methodology for using WGS metagenomics 

to detect and analyze gut protists and investigate differences in composition and function 

of gut microbiome associated with the presence of particular protistan strains.  

2.2 METHODS 

2.2.1 Workflow for detecting and genotyping Blastocystis  

A customized bioinformatics workflow for detecting and genotyping Blastocystis 

in gut metagenome sequencing data was developed (Figure 2.1). The raw gut metagenome 

read files were first processed with Trimmomatic v0.36 (Bolger et al. 2014) to trim adapters 

and filter out low-quality bases (Phred Q < 15) and short length reads (< 40 bp). Host DNA 

and Illumina spike-in DNA (Bacteriophage phiX174) were removed using Bowtie2 v2.3.1 

(Langmead & Salzberg 2012) by mapping the reads against the host reference genomes 

downloaded from NCBI (Supplementary Table S1). The resulted metagenomic reads were 

used as input for read classification against specialized database 1 using Centrifuge v1.0.4 

(Kim et al. 2016) and also assembled using MetaSPAdes v3.13.1 (Nurk et al. 2017) or 

MegaHit v1.1.1-2 (Li et al. 2016) in those cases where MetaSPAdes failed with default 

parameters. 
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Read classification was carried out using Centrifuge by mapping the preprocessed 

metagenomic reads to the specialized database 1 (described in detail below). For human 

samples, the minimum length of partial hit length and the number of distinct hits were set 

to 30 and 1, respectively (--min-hitlen 30, -k 1) and for animal samples, “--min-hitlen 25, 

-k 1”.  

The metagenome-assembled genomes (MAGs) were processed with Metaxa2 v2.2 

beta 9 (Bengtsson-Palme, Hartmann, et al. 2015) to identify nuclear genome- and 

mitochondrial genome-encoded LSU/SSU rRNA gene sequences. All contigs detected as 

Blastocystis SSU rRNA gene sequences by Metaxa2 were extracted from the assemblies 

and assigned a Blastocystis subtype based on the best match by BLAST (Basic Local 

Alignment Search Tool (Altschul et al. 1990)) search in the GenBank database with the 

reference 18S ribosomal DNA sequences of Blastocystis STs defined based on Alfellani et 

al. (2013).  

2.2.2 Construction of specialized databases for studying the gut metagenome 

Centrifuge database 

Centrifuge is a metagenomics taxonomy classification software tool that uses an 

optimized indexing scheme and contains built-in tools to download genomes from the 

National Center for Biotechnology Information (NCBI) website and to build custom 

databases. To maximize Centrifuge’s ability to classify gut metagenome data, a custom 

database was built (here referred to as specialized database 1) by compiling newly 

published reference genomes from gut microbiota. Prior to constructing the database, all 

available genome sequences of Blastocystis were downloaded from NCBI (accession 

numbers listed in Table 1.3). Since they may contain contaminant sequences from other 

organisms, a decontamination step was carried out by mapping the Blastocystis genomes 

against the NCBI nucleotide (nt) database (up to Jan 2019) that did not include any known 

Blastocystis sequences. The contigs in the Blastocystis reference genomes that matched 

over 50% of the total of their length to a bacterium, archaeon, or viral sequence in the NT 

database with a nucleotide identity of at least 80% were considered as contaminants and 

were eliminated from the draft genomes (Supplementary Table S2). 
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Archaeal, bacterial, and viral genomes related to the gut microbiome or without any 

specific environment listed in the project names were downloaded from NCBI. Genomes 

with all four assembly levels – complete, chromosome, scaffolds, and contigs – were 

included. An in-house python script was applied to exclude genomes retrieved from 

environments other than the GI tract. In addition, bacterial and archaeal genomes of 4,930 

species-level genome bins from >9000 human metagenomes (Pasolli et al. 2019) and 913 

microbial genomes obtained from rumen metagenomic sequencing (Stewart et al. 2018) 

were downloaded. Redundant bacterial and archaeal genomes were removed with GTDB-

Tk (Chaumeil et al. 2018) and Treemmer (Menardo et al. 2018). For viral genomes, MyCC 

(Lin & Liao 2016) was used to bin genomes into clusters and a proportion of contigs (40% 

of the total contigs with a minimal of 20) from each cluster were randomly chosen to be 

included in the database. Eukaryotic genomes from EupathDB Kraken2 Database (Lu & 

Salzberg 2018) were also included and any NCBI pre-downloaded genomes for the same 

species were excluded. Additional eukaryotic genomes for protists, fungi, and animals with 

complete or chromosome level genome assemblies and mitochondrial genomes were 

downloaded from NCBI Genbank. Several in-house python scripts were used to build the 

index files and the centrifuge-build command from Centrifuge was used to build the 

centrifuge database. The numbers of genomes in each category are listed in Supplementary 

Table S3.  

PLAST database 

PLAST (Parallel Local Alignment Search Tool) (Nguyen & Lavenier 2009) is a 

rapid sequence similarity search tool that is more sensitive than Centrifuge but is not as 

fast as the latter. To mitigate computational burden, a specialized PLAST database (here 

referred to as specialized database 2) was built with a subset of reference genomes from 

archaea, bacteria, eukaryotic, and mitochondrial genomes selected from the complete set 

of all the downloaded genomes.  Specialized database 2 overlaps with specialized database 

1 to some degree to enhance the sensitivity of the classification method (Supplementary 

Table S3). Viral genomes were downloaded from NCBI Refseq database 

(ftp.ncbi.nlm.nih.gov/refseq/release/viral/, Mar 2019). An in-house python script was used 
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to create an index file. All the genome files were combined into a single fasta file, which 

was then formatted using the command makeblastdb from BLAST (Altschul et al. 1990). 

2.2.3 Comparison of reads classification results between Centrifuge and Kraken2 

To verify the read classification results generated by Centrifuge using specialized 

database 1, different minimal hit lengths (22, 25, 30, and 40) were applied to a subset of 

datasets and the numbers of reads that could be classified were compared to the results 

from Centrifuge (parameter “--minhitlen”) using NCBI nt (Mar 2018) release as the 

database. Reads classified as originating from Blastocystis by Centrifuge using 

minhitlen22 were extracted with Recentrifuge (Martí 2019) and mapped against the 

specialized database 2 by PLAST. An in-house perl script was used to count number of 

reads hit Blastocystis genomes with at least 90% identity over at least 90% of the read 

length.  

 To compare the read classification results by Centrifuge and other read 

classification software, the genomes included in specialized database 1 were used to build 

a database for Kraken2 (Wood et al. 2019) and KrakenUniq (Breitwieser et al. 2018). 

KrakenUniq failed due to memory limitations and therefore was not used in the comparison. 

A subset of metagenomic datasets was run on Kraken2 using default parameters or the 

setting “-confidence 0.2”. 

2.2.4 Gut metagenomic datasets 

Human and animal gut metagenome samples were obtained from the NCBI 

Sequence Read Archive (SRA) database using the search terms “(gut metagenome) AND 

WGS[Strategy] AND METAGENOMIC[Source]”. For human gut metagenome samples, 

projects focusing on infants or diseases unrelated to metabolism were excluded. Ten human 

gut metagenomic projects (Table 2.1) and 13 animal gut metagenomic projects (Table 2.2) 

were downloaded from NCBI and analyzed using the workflow described in Section 2.2.1. 

Due to limitations in time and computational resources, only random subsets of datasets in 

four of the animal projects (A3, A5, A7, and A9) were analyzed. All datasets consisted of 

paired-end Illumina sequencing files with an average of 33.4 million (M) reads per sample 

for human datasets and an average of 39.8 million reads per sample for animal datasets. 
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2.2.5 Compositional and functional profiling of metagenomes  

To investigate the potential differences of taxonomic profiles and metabolic 

activities in a microbial community with or without Blastocystis, HMP Unified Metabolic 

Analysis Network 2 (HUMAnN2) (Franzosa et al. 2018) with MetaPhlAn2 (metagenomic 

phylogenetic analysis 2) (Truong et al. 2015) guided species-resolved functional profiling 

was applied to a subset of 200 human metagenomic datasets (Table 2.3). A series of 

alignment steps is implemented in HUMAnN2. In the first alignment, MetaPhlAn2 is 

employed to map reads to a set of ~ 1 million clade-specific marker genes from > 7,500 

species and provides microbial taxonomies in the metagenomic samples. Then HUMAnN2 

constructs a sample-specific database containing functionally annotated pangenomes of the 

identified species and maps reads to the pangenome database at the nucleotide-level. In the 

following step, unaligned reads are translated and undergo Diamond (Buchfink et al. 2015) 

 

Figure 2.1 Bioinformatics workflow for detection and genotyping of Blastocystis in gut 

metagenomics. 
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search against UniRef databases (Suzek et al. 2007) to predict functions from gene families. 

Annotated metabolic enzymes from predicted gene families are reconstructed and 

quantified into complete metabolic pathways based on MetaCyc databases (Caspi et al. 

2006). HUMAnN2 reports the percentage of unaligned reads after both steps. The output 

files were normalized to relative abundance by HUMAnN2 and processed with 

Microbiome Helper (Comeau et al. 2017) to generate stratified tables. 

Westernization and urbanization are known to be important factors affecting the 

composition of the human gut microbiome (Yatsunenko et al. 2012). Therefore, samples 

from Europe and USA were categorized as ‘westernized’, and the rest of the samples from 

Africa, Asia, and South America were treated as the non-westernized cohort. In the 

American immigrant project, the European Americans in the control group were treated as 

‘westernized’, while the newly and longer-term immigrants from Thailand were grouped 

into ‘non-westernized’. Samples from children with ages under 10, carriers of helminths 

and Blastocystis carriers with a percentage of Blastocystis reads < 0.02% were excluded in 

this analysis and a total of 200 datasets were chosen for this analysis (Table 2.3).  

2.2.6 Statistical analyses  

Differences in frequencies for categorical and continuous variables between 

Blastocystis carriers and non-carriers were evaluated using Fisher’s exact test and Student’s 

t-test, respectively. The predicted differences on taxonomic levels and pathways were 

represented graphically using the STAMP v2.1.3 software (Parks et al. 2014) with removal 

of all unclassified reads. Two tailed Welch’s t-tests, with the Welch’s inverted CI method, 

were conducted in STAMP and used to evaluate differences in the relative abundances of 

microbial taxa and pathways with respect to presence or absence of Blastocystis. In 

comparisons exceeding two categories, Kruskal-Wallis tests were performed with Tukey-

Kramer post hoc comparisons. Unless otherwise stated, a final FDR<0.05 based on 

Benjamini–Hochberg FDR multiple-test correction was used as a significance threshold. 

Categories with < 5 samples were excluded in the analysis. Enrichment of prokaryotic 

species associated with Blastocystis presence or absence to the categories of westernized 

versus non-westernized was performed using the Linear discriminant analysis (LDA) effect 

size (LEfSe) tool (Segata et al. 2011). Hierarchical clustering for microbial community 
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difference was performed using script metaphlan_hclust_heatmap.py in HUMAnN2 

whenever applicable, or using the online tool Heatmapper (Babicki et al. 2016). 

 

 

 

 

 

 

 

 

 

 

Table 2.1 List and characteristics of the human gut metagenomic datasets analyzed in this 

study. Datasets from ten projects were downloaded from NCBI SRA databases. 
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Table 2.2 List and characteristics of the animal gut metagenomic datasets analyzed in this 

study. 

Animal project 

& host 
Country 

# Samples 

analyzed (Total 

samples) 

# reads per 

sample (M) 

mean ± std 

Reference 

A1_Baboon Kenya 48 11.6 ± 8.1 Tung et al.,2015 

A2_Cattle China 30 41.5± 1.8 PRJNA392516 

A3_Cattle France 25 (112) * 122.8 ± 60.2 Li et al., 2018 

A4_Cattle Italy 16 23.3± 5.4 
Sandri et al., 

2017 

A5_Cattle USA 29 (72) * 156.9 ±149.8 
Rovira-Sanz 

2017 

A6_chicken, 

pig, cattle** 
China 13 14.0 ± 5.0 PRJNA293646 

A7_ chicken China 20 22.9 ± 3.0 
Huang et al., 

2018 

A8_Pig 
China, Denmark 

& France 
216 (295) * 28.9 ± 7.1 Xiao et al., 2016 

A9_Pig China 8 25.9 ± 2.0 PRJNA400119 

A10_Pig Denmark 35 (220) * 41.0 ± 29.7 PRJEB26961 

A11_Pig Japan, Gabon 6 58.8 ± 17.0 
Ushida K et al., 

2016 

A12_Pig Germany 22 13.5 ± 1.8 PRJNA373834 

A13_Pig Spain 8 15.6 ± 4.7 Lanza et al., 2018 

    Total 476 39.8 ± 54.7  

 

* Only a subset of datasets from the project was analyzed. Numbers in () are the total available samples in 

the project. 

** In this project, there are four chicken samples, five cows and four pigs.  
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Table 2.3 List of metagenomic datasets used for compositional and functional profiling. 

The presence or absence of Blastocystis was based on the results from the detection 

workflow developed in this study. 

Human Project & 

Country 

# samples 

Analyzed 

Positive (n=119) Negative (n=81) 

NonW W NonW W 

H1_Cameroon 46 41 0 5 0 

H2_Ethiopia 28 18 0 10 0 

H4_Madagascar 6 3 0 3 0 

H5_Peru, USA 32 11 5 2 14 

H6_Sweden 31 0 20 0 11 

H7_Sweden 20 0 2 0 18 

H8_Tanzania, Italy 15 11 0 1 3 

H9_USA 9 0 0 0 9 

H10_USA 13 7 1 2 3 

TOTAL 200 91 28 23 58 

 
* NonW: Non-westernized, W: westernized 
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2.3 RESULTS 

2.3.1 Benchmarking on specialized databases for gut metagenomes 

To improve detection of Blastocystis and other gut microbe sequences in gut 

metagenomic datasets, specialized databases containing representative genomes of gut 

microbes were constructed. Over 60,560 genomes were downloaded from various sources 

and selected based on factors including the environment from which the microbe was 

isolated, taxonomic redundancy, and genome diversity. The final specialized database 1 

for Centrifuge contains 32,402 genomes (93.3 GB total) and the PLAST specialized 

database 2 contains 9,345 genomes (17.8 GB total; Supplementary Table S3). The newly 

built specialized database 1 dramatically improved the percentage of reads that can be 

assigned a taxonomy with Centrifuge when compared to the assignments made using the 

NCBI nt database (from 30% - 60% to 80% - 95%, Figure 2.2). 

To minimize false results in taxonomy classification, the impact of the Centrifuge 

parameter, minimal hit length (“--minhitlen”), was examined by using 22 (default), 25, 30 

and 40 bps for human gut metagenomic samples. The number of reads classified as 

Blastocystis was compared with the results using PLAST searches against the specialized 

database 2 (Figure 2.3) (PLAST is similar to but faster than BLAST yet much slower than 

Centrifuge). A read that aligns to contigs in Blastocystis genomes with > 90% identity 

over >90% of the read length was considered a real hit. Centrifuge results with minimal hit 

length of 30 bp generated results most similar to PLAST and therefore this parameter 

setting was chosen for subsequent analyses of human gut metagenome samples. Since most 

of the Blastocystis subtypes in animal hosts have no available genomes (except ST4 from 

rat), a less stringent Centrifuge parameter “--minhitlen 25” was used for detecting potential 

Blastocystis sequences in animal gut metagenome samples. 

A subset of human samples was analyzed using Kraken2 with the same specialized 

database 1 used for Centrifuge to verify the accuracy and sensitivity of Centrifuge. The 

classification results by Centrifuge (with “--minhitlen 30”) were very similar to Kraken2 

(with the parameter “--confidence 0.2”) (Figure 2.4). With similar computing time, 

Kraken2 required slightly more memory than centrifuge. Considering the computational 

resources and time for analysis, Centrifuge was therefore chosen for downstream analyses.  
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Figure 2.2 Comparison of percentage of reads that can be assigned a taxonomy by 

Centrifuge (default parameters) using the default database (NCBI nt) vs. the newly-built 

specialized database 1. The datasets were from the US immigrant gut microbiome project 

(Vangay et al., 2018) 
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Figure 2.3 Number of reads classified as Blastocystis by Centrifuge using different 

parameter minimal hit length (minhitlen) and by PLAST with identity > 90% over >90% 

of the read length. The datasets were from Latin gut microbiome projects (Pehrsson et al., 

2016). 

 

Figure 2.4 Comparison between the results from Centrifuge and Kraken2 on reads 

classified as Blastocystis using specialized database 1. The datasets were from Latin gut 

microbiome projects (Pehrsson et al., 2016). 
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2.3.2 Detection of Blastocystis using metagenomics  

To facilitate large-scale investigation of the prevalence of Blastocystis in human 

and animal gut metagenomes, a bioinformatic workflow (Figure 2.1) was developed and 

applied to 23 published large metagenomic projects (Table 2.1 and 2.2). Overall,  996 

metagenomic datasets from 961 subjects (485 humans and 476 animals) from 18 different 

countries in four continents (Africa, Asia, Europe, and South/North America) were 

analyzed. For human samples, this study focused on subjects from countries with 

potentially high infection rates like Africans or Asians or people from non-westernized 

backgrounds, such as new immigrants in America (Vangay et al. 2018) or native Americans 

(Sankaranarayanan et al. 2016). Most samples corresponded to healthy people, although 

some were from individuals with helminth infections (Rosa et al. 2018), obese patients 

with gastric bypass surgery (Tremaroli et al. 2015), and university student travelers 

(Bengtsson-Palme, Angelin, et al. 2015). Seven of the ten published human studies and 

most of the 12 animal projects were exclusively focused on investigating the prokaryotic 

components of the microbiome. Animal samples were mainly chosen from cattle and pigs 

that had several projects to compare the results. 

To detect Blastocystis, the total number of Blastocystis reads in each sample were 

determined based on taxonomy classification and the LSU/SSU rRNA gene sequences 

were extracted from the MAG. I defined a human dataset as positive for a Blastocystis ST 

if the sample fulfilled one of the following criteria (Table 2.4): 

(1) there were more than 300 pairs of reads that could be classified to the 

corresponding Blastocystis ST by Centrifuge and also had > 200bp of the large subunit 

(LSU) and/or small subunit (SSU) rRNA gene sequences detected in the MAG by Metaxa2. 

To diminish false positives caused by potential cross contamination during DNA extraction 

or errors during/after sequencing due to sample bleeding (or index mis-assignment), the 

minimum number of Blastocystis reads in each project must be larger than 0.015% × the 

maximum number of Blastocystis reads in the same project.  

(2) For samples with >300 reads or >0.015% × max. # Blastocystis reads but no 

Blastocystis LSU/SSU rRNA sequences, all the paired-end Blastocystis reads extracted 

were mapped to Blastocystis genomes using PLAST. If there are more than 300 single 
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reads mapping to a Blastocystis genome (or genomes) with >90% identity over >90% of 

the read length, the sample was also defined as a positive carrier for Blastocystis. To 

diminish the potential cross contamination during DNA extraction or errors during/after 

sequencing due to sample bleeding, to qualify as positive the number of Blastocystis reads 

identified by PLAST had to be larger than 0.001% of the total reads of the metagenome 

sequencing for the sample. 

For animal datasets, only the first criterion applied since there are very few 

reference genomes for animal-infecting Blastocystis subtypes and so the numbers of read 

‘hits’ were consequently lower. Co-infections of Blastocystis were defined based only on 

criterion 1; i.e., if a dataset had >300 reads for both STs and also two different sets of 

LSU/SSU rRNA gene sequences were detected for both STs, this dataset was designated 

as co-infected with both STs. 

The threshold number of 0.015% of Blastocystis reads discussed above was 

determined by considering both the false-assignment rate in sequencing platforms and the 

percentage of eukaryotic reads in metagenomic samples. The sample bleeding rate for 

single-indexing Illumina sequencing is ~0.3% and between 0.14% and 0.17% for double-

indexing (Kircher et al. 2012). Typically, metagenomic samples contain less than 5% of 

eukaryotic reads. If we assume all the assigned eukaryotic reads were falsely assigned, that 

would correspond to 0.3% × 5% = 0.015% (assuming the highest possible bleeding rate of 

0.3% for all the samples).  

The threshold value of 300 reads came from the following observations. The top 3 

largest numbers of Blastocystis reads per sample I detected were 2,633,558 reads, 

1,647,190 reads, and 941,9492 reads, and the average of 0.015% of these numbers was 261, 

which, to be conservative, was rounded up to 300. Also based on observation, the least 

number of Blastocystis reads a sample had when it had at least a 200 bp SSU was around 

300. For these reasons a sample with at least 300 reads assigned to a Blastocystis ST was 

defined as a potential positive sample. 
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Table 2.4 Definition of Blastocystis positive infection in gut metagenomic datasets. 

Criterion 

# Total Blastocystis 

reads based on 

Centrifuge results 

Metaxa2 / PLAST results 

Blastocystis 

presence 

 or not? 

Sample type 

1 

> max (300, 

0.015% × Max # 

Blastocystis reads) 

Nuclear LSU/SSU 

 rRNA sequences by Metaxa2 

(> 200bp) 

Yes 
Human 

Animal 

2 

> max (300, 

0.015% × Max # 

Blastocystis reads) 

# of Blastocystis reads by 

PLAST 

> max (300 single reads, 

0.001%Total reads) 

(> 90% of the length & > 90% 

identity) 

Yes Human 

 

 

2.3.3 Prevalence of Blastocystis in human gut metagenomes 

Using the bioinformatic workflow developed in this study and the threshold defined 

in Table 2.4, at least one Blastocystis sp. ST was detected in 240 out of 484 (52.7%) 

individuals in the 10 studied projects from 10 countries (Figure 2.5 (a) and Supplementary 

Table S4). The prevalence was higher in African subjects (167 of 249 samples, 67%) and 

lower in European and North American ones (37.9% and 17.7%, respectively). There was 

only one project containing individuals for South America (Peru), with the highest 

infection rate (30 of 36 samples, 83.3%) among all the continents. The 20 Indonesian 

individuals with helminth infections were the only Asian population (Rosa et al. 2018). 

Despite the relatively small size of the dataset, a relatively high prevalence (65%) of 

Blastocystis was detected in these helminth-infected subjects. 

To better detect the prevalence of Blastocystis in culturally diverse populations, the 

infection rates of the control groups were separated from the studied groups in projects H5 

(Peru versus the USA) and H8 (Tanzania vs. Italy), which resulted in 12 populations based 

on country and conditions (Figure 2.5 (a)). Blastocystis had the highest prevalence in the 

Tanzania seasonal hunter and gatherer group (23 of the 27 subjects, 85.2%), while it was 
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not detected in the native Americans from tribes in Oklahoma. For the other two USA 

projects, there was a similar overall prevalence rate: 27.3% in the H5 USA control group 

and 25.5% in the USA immigrant group. The results also showed a huge difference in the 

prevalence of the microorganism among European groups, with very low frequency in 

Italians (1 of 11 samples, 9.1%) and a group of Swedish obesity individuals (2 out of 20, 

10.0%), but a relatively high frequency in a group of Swedish university students (22 of 35 

samples, 62.9%). 

2.3.4 Subtype identification and co-infections in human gut metagenomes 

Regarding the distribution of Blastocystis subtypes amongst the positive samples 

(255 samples), the top three most common single STs were ST1 (78 samples, 31% of all 

the positive samples, found in all populations except Italians), ST3 (71 samples, 28%, in 

all groups except the H7 Swedish obesity individuals), and ST2 (43 samples, 17%, found 

in all populations except Italians) (Figure 2.5(b)). There was a very low frequency of ST7 

and ST8 and no ST5, ST6 and ST9 were detected in these human samples. ST4 (9 samples, 

3%) was only detected from American and European groups, which is consistent with the 

higher prevalence of ST4 in European populations (Beghini et al. 2017).  

Blastocystis co-infections (carrying more than one ST) were found in 51 individuals 

(20% of all the positive samples) from African and South American groups (Figure 2.5 (c)), 

with ST1 + ST3 as the most frequent combination (23 samples, 45.1%), followed by ST2 

+ ST3 (25.5%) and ST1 + ST2 (19.6 %). Five co-infection samples (9.8%) had three STs: 

ST1, ST2, and ST3. There was no co-infection found in European, Asian or North 

American samples. 

2.3.5 Relating Blastocystis prevalence to metadata in human gut metagenomes 

Metadata including gender, age, and Body mass index (BMI) were available for up to 252 

samples, and Blastocystis colonization was detected in 148 of these individuals, 51.3% of 

whom (76/148) were women. The numbers of female/male, the mean and standard 

deviation of age and BMI for each group were calculated (Table 2.5 for adults and Table 

2.6 for children with age < 18 yr). The oldest individual detected with Blastocystis was a 

72-year-old, while the youngest child was only 2 years old. The differences in gender or 
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ages between carriers and non-carriers were not statistically significant. There was no 

difference in the mean ages between adult Blastocystis carriers and non-carriers (Student’s 

t-test, p value = 0.609), however, the difference in the mean age of female carriers was 

significantly smaller than the male carriers (38.1 ± 13.6 years [mean ± standard deviation] 

versus 44.0 ± 14.4 years, respectively; Student’s t-test, p value = 0.012). Females with 

Blastocystis ST3 colonization also had a significantly smaller mean age than the male ST3 

carriers (36.9 ± 9.7 years versus 46.1 ± 12.2 years, respectively; Student’s t-test, p value = 

0.010). There was no difference in the mean age or mean BMI detected in the groups of 

children. 

For adults with known BMI values, Blastocystis carriers tended to have a smaller 

mean BMI than non-carriers (Student’s t-test, p value<0.0001; Table 2.5). For three 

projects with BMI values available, the prevalence of Blastocystis was higher in 

underweight and normal groups than in obesity groups in all three projects (Figure 2.5 (d)), 

but no statistical significance was found among different BMI classes. For the two western 

projects containing mainly obese individuals, overweight and obese individuals are less 

frequently colonized by Blastocystis (Figure 2.5 (a)). For the H7 Swedish obese project 

that contained 14 obese individuals after bariatric surgery and 7 obesity controls, the 

prevalence of Blastocystis was only 9.5%, lower than the average prevalence detected in 

this study and much lower than the prevalence in the H6 project with Swedish university 

students. For project H9 that contains 36 native Americans from western Oklahoma with 

22% were overweight and 72% obesity, no Blastocystis was detected from this group.  
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Figure 2.5 Prevalence of Blastocystis and subtypes distribution (a) in the different human 

projects and different continents, (b) in percentage for all samples, (c) in projects with co-

infection, and (d) in BMI classes.  
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Table 2.5 Descriptive statistics of datasets grouped by Blastocystis adult carrier status and 

subtypes. 

Metadata 

Non-

carriers 
Carriers 

n=104 
Total 

n=148 

ST1 

n=45 

ST2 

n=23 

ST3 

n=46 

ST4/ST8 

n=2 

Co-

infection 

n=32 

Gender 

(F/M) 
67/37 76/72 26/19 17/6 18/28 1/1 14/18 

Age 

(mean, SD) 

40.4, 

14.3 

40.9, 

14.2 

40.6, 

15.3 
39.7, 13.5 42.5, 12.1 39.0, 15.6 40.3, 16.6 

BMI 

(mean, SD) 
27.8, 7.2 21.6, 3.1 22.0, 3.4 20.8, 2.6 21.3, 3.4 24.0, 2.6 21.7, 1.8 

Table 2.6 Descriptive statistics of datasets with age younger than 18-year old, grouped by 

Blastocystis carrier status and subtypes. 

Metadata 

Non 
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2.3.6 Comparison of results of Blastocystis prevalence with other studies 

Some of the human gut metagenomic datasets analyzed here have also been used 

in previous studies to detect Blastocystis using different approaches, so I compared the 

results obtained by using the workflow developed in this study with the previous studies. 

Lokmer et al. (2019) applied a metagenomic (MG) approach, which mapped metagenome 

reads to reference genomes and retained only high-confidence alignments to detect 

Blastocystis, to 127 datasets from three projects (H1 Cameroon, H5 Peru/USA, and H8 

Tanzania/Italy). A dataset with reads mapped to > 10% of the contigs in the genome of a 

certain Blastocystis ST and with a breadth of coverage > 0.001 was defined as a positive 

sample. In the H5 Peru/USA and the H8 Tanzania/Italy projects, individuals younger than 

18 years of age were excluded and they only detected Blastocystis in 32.4% (12 out of 37) 

and 57.6% (19 out of 33) of datasets, respectively (Figure 2.6 (a)). For the H5 and H8 

projects, I found the prevalence of Blastocystis was 56.8% (21/37 samples) and 60.6% 

(20/33 samples), respectively. Lomker and colleagues also compared the MG-based 

approach to quantitative PCR (qPCR) results in one of the projects (H1) and concluded that 

qPCR was at least as sensitive as metagenomics for Blastocystis diagnosis, although the 

MG-based method was more likely to detect co-infections that multiple subtypes colonized 

in the gut. For the total of 57 datasets in H1 that had results for both methods, they found 

Blastocystis was present in 49 samples with 4 co-infections using qPCR and 44 positives 

with 11 co-infections using the MG-based method. Using my workflow, I found 

Blastocystis in 48 samples with 10 having co-infections. Each ST and type of co-infections 

detected by Lokmer et al. (2019) were also found by my method. 

Beghini et al. (2017) used a similar metagenomic approach to detect the presence 

of Blastocystis in human gut metagenomes. To minimize the false positive rate, they 

removed the potentially contaminated contigs that had bacterial or archaeal alignments 

from the reference genomes before mapping the metagenome reads to reference genomes. 

They defined a sample as positive for a Blastocystis ST if the breadth of coverage of 

assembled reads to the Blastocystis ST genome was higher than 10%. Using their approach 

and definition of positive samples, they detected a prevalence of 13.8% (8/58) in the H5 

Peru/USA project, with the presence of Blastocystis ST1, ST2, ST3, and ST4 but no co-
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infections (Figure 2.6 (b)). In my analyses, I separated the control groups from the study 

groups and found more positive samples in each group (data not shown). In the H5 project, 

I detected Blastocystis in 30 Peruvian samples and 6 American samples. Besides the STs 

they detected, I also found 1 sample with ST8 and 6 samples co-infected with multiple STs. 

For H8 the Tanzania/Italy project, they detected ST1, ST2, and ST3 with a total prevalence 

of 55.6% (15 of 27 samples) from Tanzanian subjects and none from Italian subjects, while 

I found a total prevalence of 85.2% (23/27 with 18 co-infections) in the Tanzania samples 

and one positive sample in the Italian group. 

Forsell and colleagues detected the prevalence of Blastocystis in a group of Swedish 

university students (age 23-34 years) before and after traveling to the Indian peninsula or 

Central Africa with a median travel duration of 34 days (range 14 to 150) (Forsell et al. 

2017). They used software called Metaxa2 to detect the partial sequence of SSU rRNA of 

Blastocystis and counted the number of reads that can be assigned to a ST. A prevalence 

of 16/35 (45.7%) before travel and 15/35 (42.8%) after travel was found in their study 

(Figure 2.6(c)). Amongst the positive samples, they found no co-infections and ten 

individuals with a typable ST before and after travel maintained the initial ST (2 positive 

datasets before travel and one after travel cannot be assigned to a specific STs). In contrast, 

I found more positive samples before and after the individuals traveled (19/35, 54.3% and 

22/35, 62.9%, respectively) and 17 subjects maintained their initial STs. No co-infections 

were detected in this group.  

2.3.7 The prevalence of Blastocystis in animal gut metagenomes 

Thirteen animal gut metagenome projects were downloaded from NCBI and 

analyzed using my Blastocystis detection workflow (Table 2.2). These animal samples 

included several different hosts (baboon for non-human primates, chicken, cattle, and pigs 

for livestock) from four continents (Africa, Asia, Europe, and North America). An animal 

dataset was defined as positive with Blastocystis infection if it fulfilled the Criterion 1 

described in Section 2.3.2 (Table 2.4). From the total number of 476 samples that were 

analyzed, 298 (62.6%) were carriers for Blastocystis (Figure 2.7 and Supplementary Table 

S5).  
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Figure 2.6 Comparison of prevalence of Blastocystis detected in this study and other 

studies by (a) Lokmer et al. (2019), (b) Begnini et al. (2017), and (c) Forsell et al. (2017) 

that also used metagenomic (MG) approach to detect Blastocystis. 
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Sample positivity across different animal groups was not evenly distributed. The 

prevalence of Blastocystis in baboons was high with 24/48 (50.0%) positive. By contrast, 

only 3/24 (12.5%) chickens and 16/105 (15.2%) cattle were positive. All three positive 

chicken samples (75%) in project A6 were from China while the other chicken project A5, 

also from China, had no positives. For cattle, the prevalence of Blastocystis did not vary 

much in three projects with positive samples (13.3%, 27.6%, and 20% for projects A2, A5, 

and A6, respectively). Two cattle projects had no positive samples (A3 and A4). However, 

some of these values should not be interpreted as reflective of the overall prevalence of 

Blastocystis in the projects since, for four of the projects (A3, A5, A8, and A10), not all 

the datasets in each project were analyzed. Pigs had the highest prevalence, with an average 

of 85.3% positive rate. However, one pig project, A12 consisting of 22 pigs from Germany 

showed a very low Blastocystis prevalence (2/22, 9.1%). 

2.3.8 Blastocystis subtype dominance and host specificity in animal gut metagenomes 

Among the 298 samples positive for Blastocystis, eight STs were detected in the 

266 samples carrying only one ST (Figure 2.7). Two subtypes (ST1 and ST3) were detected 

in baboons, each having roughly half of the positive samples. In cattle, four STs were 

detected with ST1 as the most common (5/14, 35.7%) followed by ST10 (4/14, 28.6%). 

ST1 and ST3 were only detected in American cattle (project A5), while ST5 and ST10 

were found in cattle from China (projects A2 and A7). ST6 and ST7, the commonly 

identified STs in the bird (Clark et al. 2013), were only found in chickens from project A7.  

Pigs had the most subtypes detected in this study. Among five different STs in pigs, 

ST5 was detected with the highest frequency (70.8%) in pigs from all the projects 

containing pigs (except A7). ST15 was the second most common at 20.8% and detected in 

4 projects. The rest STs found in pig samples were ST1(2.71%), ST3 (3.88%), and ST13 

(0.39%). 

Co-infections were found in five projects containing cattle and pigs (21.4% and 

11.63%, respectively)(Figure 2.8). In cattle, there are two types of combinations (two 

samples for ST1+ST3 and one sample for ST1+ST5). The most common combination of 

co-infections in pigs was ST5+ST15 that was detected in 25 samples. The rest of the 

combinations in pigs were ST1+ST15, ST3+ST5, and ST1+ST3+ST5. 
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Figure 2.7 Prevalence of Blastocystis and subtypes in the different animal projects and 

different animal categories. (*) Only a subset of datasets from the project was analyzed. 

  

 

Figure 2.8 Combinations of Blastocystis co-infections detected in animal projects. 
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2.3.9 Gut microbiome composition associated with the presence of Blastocystis  

To investigate how Blastocystis can affect prokaryote communities in the gut, 

compositional analyses were conducted on a subset of the human datasets including 119 

Blastocystis carriers and 81 Blastocystis non-carriers (Table 2.3). The effects of 

westernization on the gut microbiome were also examined in Blastocystis positive and 

negative samples (see section 2.2.5 for the definition of westernized/non-westernized 

cohorts). 

The abundance of archaea was strongly associated with the presence of Blastocystis 

(Welch’s t-test, FDR=6.47e-3; Figure 2.9(a)), especially the species Methanobrevibacter 

smithii  and an unclassified Methanobrevibacter (Welch’s t-test, FDR=0.041 and 

FDR=3.82e-4, respectively; Figure 2.10). However, when subcategorized with 

westernization, both Methanobrevibacter species had a significantly high relative 

abundance only in non-westernized positive samples (Kruskal-Wallis H-tests, FDR = 

4.39e-11 and  FDR = 1.20e-11, respectively; Figure 2.9(b-e)).  

Ten bacterial species, including Faecalibacterium prausnitzii, Prevotella copri, 

and Treponema succinifaciens, were found to be strongly associated with the presence of 

Blastocystis, while seven bacterial clades had higher abundance in Blastocystis negative 

samples (Welch’s t-test with , FDR <0.05, effect size (difference in mean proportion) > 0.2; 

Figure 2.10). Bacteria in the Firmicutes were found abundant both in positive and negative 

samples, one member of the Bacteroidetes and one member of the Spirochaetes were 

significantly associated with Blastocystis colonization, while bacteria in the Bacteroidetes 

group were strongly associated with the absence of Blastocystis (Supplementary Table S6).  

When expanding the association analysis between microbial composition and the 

presence of Blastocystis to the categories of westernized versus non-westernized based on 

countries of origin for individual samples, a principal components analysis (PCA) of 

microbiota community composition revealed that westernization had a more profound 

effect on bacteria and archaea species-level abundance than Blastocystis carriage; 

westernized samples tend to cluster in a small region while non-westernized samples were 

more spread out (Figure 2.11). A few exceptional species (e.g., Prevotella copri, and 

Faecalibacterium prausnitzii) had relatively high abundance in all categories. Hierarchical 
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clustering performed on the microbiota community species composition differences 

showed that samples from western countries clustered together and as did the ones from 

non-westernized countries (Figure 2.12). LEfSe analysis showed that westernized 

Blastocystis positive samples versus non-westernized positive samples were enriched with 

different bacterial taxa (with effect size > 3.5; Supplementary Figure S1). Pair-wise 

comparison of species composition changes in Blastocystis positive/negative samples 

revealed that westernization has a bigger impact on the community variation than 

Blastocystis presence or absence (Supplementary Figure S2). Bacterial species in the 

Bacteroidales order had a significant association with westernized individuals, and some 

were more abundant in westernized Blastocystis positive samples (e.g., Bacteroides caccae, 

Bacteroides ovatus and Alistipes putredinis. Supplementary Table S7). For the Firmicutes 

phylum, some specific species strongly associated with westernized Blastocystis-negative 

samples (e.g. Ruminococcus torques and Ruminococcus sp 5_1_39BFAA). 
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Figure 2.9 The presence of Blastocystis and certain STs is associated with high abundance 

in (a) Archaea domain and two archaeal species in Methanobrevibacter genus, (b-c) 

Methanobrevibacter smithii and (c-d) unclassified Methanobrevibacter, using the LEfSe 

biomarker discovery tool and STAMP. In (a), yellow bar represents Blastocystis positive 

samples and blue bar represents Blastocystis negative samples. 
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Figure 2.10 Enrichment of microbial species with Blastocystis presence (yellow bar) or 

absence (blue bar). Between-group differences were evaluated with two-tailed Welch’s t-

test with Storey FDR corrections  (FDR<0.05) and only difference in mean proportion > 

0.2% were shown. 
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Figure 2.11  Principal Components Analysis of gut micribal community compostion for 

samples with or without Blastocystis (a) between positive and negative samples and (b) 

positive and negative samples with non-westernized (NonW) or westernized (W) cohorts.  
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Figure 2.12 Heatmap of enrichment or depletion of microbial species with Blastocystis 

presence or absence in non-westernized (NW) or westernized (W) individuals. The rows 

and columns were clustered using complete linkage clustering of similarities in similarity 

microbial species abundance using the correlation distance function and the Bray-Curtis 

distance metric, respectively. Neg: Blastocystis absent, Pos: Blastocystis present. The 

number of samples in each group was labelled in the brackets at the bottom of each column. 

Statistical test used: Kruskal-Wallis test with Benjamini–Hochberg FDR corrections (FDR 

< 0.05). 
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2.3.10 Blastocystis subtypes correlate differentially with intestinal prokaryotic 

microbiota 

Potential interactions among Blastocystis subtypes and gut microbiota constituents 

were assessed in the subset of samples. Examined Blastocystis subtypes included ST1, ST2, 

ST3, ST4, and co-infection which is the combination of detected co-infection types. 

Blastocystis subtypes were also differentiated into westernized or non-westernized cohorts. 

All co-infection samples were from non-westernized countries, ST4 (n=9) was only 

detected in westernized samples, and the remaining STs and negative samples can be 

further divided into western or non-western groups. ST groups with samples <5 were 

excluded from the analyses. 

A total of 22 bacterial species (Figure 2.13; Supplementary Table S8) and two 

archaeal species from the genus Methanobrevibacter were found to have distinct relative 

abundance distributions among Blastocystis subtypes. Gut microbes with a significant 

positive association with Blastocystis infection relative to the ‘negative’ samples tended to 

have high abundance in ST1-, ST2-, ST3-, and co-infection samples but not in ST4 (Figure 

2.14 (a) - (g)). A number of other species appeared to be instead positively associated with 

ST4 infections relative to Blastocystis negative samples and the other subtypes (Figure 2.14 

(h)-(k)), with only one exception, Eubacterium eligens, that had relatively high abundance 

in ST3 and ST4 (Figure 2.14 (l)). One possible explanation of this phenomenon was the 

effect of westernization in different samples. A total of 53 taxa were found to have 

significantly high abundance among some of the Blastocystis subtypes in westernized or 

non-westernized cohorts (Figure 2.15). Hierarchical clustering also revealed that non-

westernized samples tend to have more similar gut microbiome composition to non-

westernized infected samples (for ST1, ST2, ST3, and mixed infections), while westernized 

negative samples tend to cluster with westernized subtypes (Figure 2.15). Different 

subtypes in the westernized cohort had dramatically varied gut microbiota community 

‘signals’ compared to non-westernized STs, although this may, in part, reflect variation 

caused by the small sample size in westernized ST1, ST2, and ST8 cohorts (Supplementary 

Figure S3). Some bacterial species that were significantly associated with Blastocystis-

positive samples had high relative abundance in most Blastocystis STs, with less effect by 

westernization (e.g., Faecalibacterium prausnitzii; Figure 2.16 (a)), while some had high 
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abundance only in non-westernized positive samples (e.g., Phascolarctobacterium 

succinatutens and Prevotella copri; Figure 2.16 (b) – (d)). Surprisingly, some bacteria 

which were previously found to be significantly correlated with Blastocystis-negative 

samples (Supplementary Table S6) had a relatively high abundance in some westernized 

individuals infected with Blastocystis subtypes, mostly ST3 and ST4, (e.g., Alistipes 

putredinis and Bacteroides uniformis; Figure 2.16 (e) – (g)), or only ST4 (Akkermansia 

muciniphila; Figure 2.17). 

Figure  2.13 Heatmap of enrichment or depletion of microbial species associated with 

Blastocystis STs. The rows and columns were clustered using complete linkage clustering 

of similarities in similarity microbial species abundance using the correlation distance 

function and the Bray-Curtis distance metric, respectively. Neg: Blastocystis absent. The 

number of samples in each group was labelled in the brackets at the bottom of each column. 

Statistical test used: Kruskal-Wallis test with Benjamini–Hochberg FDR corrections (FDR 

< 0.05). 
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Figure 2.14 Relative abundance of prokaryotic species in the gut microbiome varied 

significantly in Blastocystis STs. Some species are strongly associated with all or most of 

Blastocystis ST1, ST2, ST3, and co-infections (a-g), while others tend to correlated to ST4 

(h-l). The number of samples in each group was labelled in the brackets. Statistical test 

used: Kruskal-Wallis test with Benjamini–Hochberg FDR corrections (FDR < 0.05). 
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Figure 2.15 Heatmap of enrichment or depletion of microbial species for bacterial or 

archaeal species among groups of Blastocystis STs and Blastocystis-negative samples in 

non-westernized (NW) or westernized (W) individuals. The rows and columns were 

clustered using complete linkage clustering of similarities in similarity microbial species 

abundance using the correlation distance function and the Bray-Curtis distance metric, 

respectively. Neg: Blastocystis absent. The number of samples in each group was labelled 

in the brackets at the bottom of each column. Groups with less than 5 samples were 

excluded in this analysis. Statistical test used: Kruskal-Wallis test with Benjamini–

Hochberg FDR corrections (FDR < 0.05). 
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Figure 2.16 Bar plot for comparison of proportion of sequences in bacterial species that 

had significant association with Blastocystis STs in non-westernized or westernized  

individuals. The number of samples in each group was labelled in the brackets at the bottom 

of each column. Statistical test used: Kruskal-Wallis test with Benjamini–Hochberg FDR 

corrections. NW: non-westernized, W: westernized, Neg: Blastocystis absent. 
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Figure 2.17 Bar plot for significant association between Akkermansia muciniphila and 

Blastocystis in (a) westernized non-carriers, (b) and (c) ST4 infections. Statistical test used: 

Kruskal-Wallis test with Benjamini–Hochberg FDR corrections. NW: non-westernized, W: 

westernized, Neg: Blastocystis negative, Pos: Blastocystis positive. 
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2.3.11 The presence of Blastocystis is highly correlated with certain metabolic 

pathways in the gut microbiome 

The relationship between the relative abundance of metabolic pathways and 

Blastocystis infection was assessed for the subsets of samples listed in Table 2.3. A 

principal components analysis of pathway abundance variation revealed that pathways in 

Blastocystis-positive samples tended to cluster separately with the negative samples 

(Figure 2.18 (a)). Moreover, when considering the western/non-western origin of the 

sample, there was a much clearer clustering of non-westernized Blastocystis-positive 

samples versus westernized positive samples (red dots versus orange dots: Figure 2.18 (b)), 

but no clear separation between non-westernized positive vs. negative samples (red vs. 

purple) or westernized positive vs. negative samples (orange vs. green), which again 

indicates that westernization has a more profound impact on cellular functions of the gut 

microbiome than colonization of Blastocystis. However, the impact of westernized vs. non-

westernized origins appears to be greater for positive Blastocystis samples. 

The relative abundance of genes for 12 cellular pathways was significantly 

associated with the presence of Blastocystis (Figure 2.19 (a)). Three of these were involved 

in tRNA charging, processing, or synthesis, three for phospholipid biosynthesis, two for 

fatty acid biosynthesis, and two involved in gluconeogenesis or glycogen biosynthesis. 

Twenty-six pathways were correlated with the absence of Blastocystis, most of them 

involved in carbohydrate metabolism (six for glycolysis, two for sugar degradation, and 

two for pyruvate fermentation) and amino acid biosynthesis. Pathway coverage calculated 

by HUMAnN2 indicated the presence of eight pathways significantly associated with the 

presence of Blastocystis (Figure 2.19 (b)). 

Hierarchical clustering on pathway abundance performed on Blastocystis positive 

and negative samples, taking into account westernization confirmed that the greatest 

difference occurs between westernized and non-westernized samples. However, 

colonization of Blastocystis does affect the abundance of many pathways between carriers 

and non-carriers (Figure 2.20, Supplementary Figure S4).  For example, two pathways 

related to amino acid synthesis and one for propanediol degradation appear to be 

specifically depleted in both positive sets of samples relative to negative samples (Figure 

2.21 (a)-(c); the opposite pattern is observed for two pathways (lysine biosynthesis and 
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chitin derivative degradation; Figure 2.21 (d)-(e)). On the subtype level, hundreds of 

pathways had significant associations with different STs, but the differences in the 

proportions of sequences among different ST groups were very small (Figure 2.22), 

ranging from 0.0001%  to 0.2%. To gain a more robust picture of the real differences 

occurring between STs, analyses on many more metagenomic samples are required. 

 

 

Figure 2.18 Principal Components Analysis of cellular pathway abundance for samples 

with or without Blastocystis (a) between positive and negative samples and (b) positive 

and negative samples separated based on whether westernized or not.  
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Figure 2.19 Gut microbiome cellular pathways significantly associated with the presence 

or absence of Blastocystis. Cellular pathways with relatively (a) high abundances and (b) 

high coverages in the samples with Blastocystis infection (yellow bar) versus absence (blue 

bar). Between-group differences were evaluated with Welch’s t-test. The corrected p-

values (q-values) were controlled for multiple testing according to Benjamini–Hochberg 

FDR corrections (FDR < 0.01). For pathway abundance, only the top 38 pathways of the 

results with effect size (ratio of proportion) > 1% are shown here. Groups of 

“UNINTEGRATED” and “UNMAPPED” were filtered before running the analysis. 
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Figure 2.20 Heatmap of enrichment or depletion of cellular pathways associated with 

Blastocystis STs. The rows and columns were clustered using complete linkage clustering 

of similarities in similarity microbial species abundance using the correlation distance 

function and the Bray-Curtis distance metric, respectively. Neg: Blastocystis absent. The 

number of samples in each group was labelled in the brackets at the bottom of each column. 

Statistical test used: Kruskal-Wallis test with Benjamini–Hochberg FDR corrections (FDR 

< 0.05). 
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Figure 2.21 Bar plot for comparison of proportion of sequences in bacterial species that 

had significant association with Blastocystis STs in non-westernized or westernized  

individuals. The number of samples in each group was labelled in the brackets at the bottom 

of each column. Statistical test used: Kruskal-Wallis test with Benjamini–Hochberg FDR 

corrections. NW: non-westernized, W: westernized, Pos: Blastocystis present, Neg: 

Blastocystis absent. 
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Figure 2.22 Heatmap of enrichment or depletion of cellular pathways associated with 

Blastocystis STs. The rows and columns were clustered using complete linkage clustering 

of similarities in similarity microbial species abundance using the correlation distance 

function and the Bray-Curtis distance metric, respectively. Neg: Blastocystis absent. The 

number of samples in each group was labelled in the brackets at the bottom of each column. 

Statistical test used: Kruskal-Wallis test with Benjamini–Hochberg FDR corrections (FDR 

< 0.05). Hierarchical clustering solution UPGMA dendrogram was based on Bray-Curtis 

distance metric and complete clustering method 
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2.4 DISCUSSION 

2.4.1 Advantages and limitations of microbial eukaryotic diagnosis using a 

metagenomic approach 

Blastocystis is the most common eukaryotic microbe inhabiting human and animal 

guts yet, until recently, it was not considered in most gut microbiome studies. Various 

diagnostic methods have been used to detect Blastocystis in stool samples, but DNA 

sequencing-based methods are culture-independent, more sensitive and have the advantage 

that the diversity, composition, and putative biological functions of the gut microbiome 

can be investigated. The WGS metagenomic approach can be as accurate and sensitive as 

PCR (Lokmer et al. 2019), and it allows for better taxonomic annotation and abundance 

estimation when compared to PCR or 18S rRNA amplicon gene sequencing (Khachatryan 

et al. 2020). WGS-based metagenomic analyses have been shown to have advantages over 

16S amplicon sequencing analyses including increased accuracy, the capability of 

detecting more genera of eukaryotes and viruses, and enabling prediction of putative 

functional genes (Brumfield et al. 2020).  

In this study, a taxonomy classification-based bioinformatic workflow for detection 

and characterization of Blastocystis was developed and applied to 996 human and animal 

WGS metagenomic datasets. With a focus on the effect of Blastocystis colonization in the 

gut microbiome, a large proportion of the datasets chosen for the study were from healthy 

individuals living in the non-westernized developing countries. This is the reason for the 

high overall prevalence detected in human samples in this study. With the rapid increases 

in the number of WGS metagenomic sequencing datasets for gut microbiomes published 

on NCBI that were not used for microbial eukaryotic studies, my workflow can easily be 

applied to these datasets to investigate the prevalence of Blastocystis in different cohorts. 

Unlike marker gene studies, WGS metagenomic analyses also allow profiling of the 

changes in the composition of the community and metabolic pathways in the gut 

microbiome upon Blastocystis colonization. Several bacterial and archaeal species and 

cellular pathways were significantly associated with the presence of Blastocystis. The 

associations were, in some cases, subtype-dependent. However, despite the richer 

information afforded by these kinds of analyses an important limitation of WGS 
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metagenomic analysis is the heavy requirement of computational resources, like memory 

and disk space, and computation time. This computational burden limited the number of 

samples and kinds of analyses that could be completed in this study. However, with 

computational efficiency of methods and advances in computer software and hardware, 

WGS metagenomic methods and the analysis workflow presented here could become the 

method-of-choice for Blastocystis diagnostics and scientific investigations in future. 

2.4.2 Many factors can affect detection results in metagenomic analyses 

The database that contains genomes from all taxonomy groups and specialized for 

the gut microbiome can significantly improve the sensitivity and accuracy of read 

classification in the taxonomy classification-based detection workflow. Choosing 

taxonomy classifiers that can build a custom database is essential for the performance of 

the workflow and Centrifuge was chosen because of its capacity for using custom databases 

and low memory requirements (Méric et al. 2019; Watts et al. 2019). By replacing the 

fungal genomes with genome sequences of amphibians and reptiles and showing that 

turtles, frogs, and snakes as the most abundant species in the gut microbiome from 

Tanzania hunter-gatherers,  Marcelino et al. (2020) demonstrated the importance of 

reference databases containing genomes from all major taxonomic groups (bacteria, 

archaea, eukaryotes, and viruses) for metagenomic classification. Larger custom databases 

containing as many representative genomes as possible compared to NCBI Refseq nt 

database can dramatically improve taxonomy classification performance and accuracy in a 

metagenomic analysis (Méric et al. 2019; Ye et al. 2019). This was also clearly 

demonstrated in my analyses where the development and use of specialized database 1 

showed clear advantages in detecting microbial taxa over the NCBI nt database (Figure 

2.2). 

When detecting eukaryotes or pathogens from shotgun metagenomic datasets, the 

majority of studies use reference genome mapping and then calculate the breadth of 

coverage (Beghini et al. 2017; Olm et al. 2019). One big limitation for reference genome 

mapping-based detection is that it highly depends on the availability of the reference 

genomes, which restrict its application to many eukaryotes (e.g., there are no genomes 

available for most non-human-infecting Blastocystis STs). For instance, some pig samples 
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(Table 2.7) would be negative for Blastocystis colonization based on breadth of coverage 

defined by Beghini et al. (2017), but when using taxonomy classification and marker gene 

detection from the MAG assembly, they have a clear signal for carrying Blastocystis ST5 

(Table 2.8). 

The definition of the threshold for positive samples is critical for not only 

Blastocystis profiling in the gut and but also for finding any target species in environmental 

samples. So far, there is no consensus on the threshold to be used to define a positive 

sample in metagenome datasets. For analyses that used reference genome mapping 

methods, the cutoff values for the breadth of coverage for defining a positive samples have 

varied substantially. For example,  Beghini et al. used a threshold of 10% genome coverage 

for Blastocystis (Beghini et al. 2017) whereas Olm and colleagues used 50% for fungi (Olm 

et al. 2019). Another study of Blastocystis by Lokmer et al. (2019) used a cutoff of 10% of 

positive contigs that were detected from the reference genome with a breadth of 

coverage >0.001. Cutoff values from relative abundance estimation by taxonomy 

classifiers like Centrifuge or Kraken can also be used for deciding positive samples (Ye et 

al. 2019). In this study, because almost no reference genomes are available for animal-

specific Blastocystis STs, the relative abundances found by the reference-mapping method 

were extremely precluding their use for defining a threshold for scoring positive samples. 

Instead, I opted to use number of reads aligned to contigs in Blastocystis genomes when 

defining the positive samples. This number excluded all possible artificial Blastocystis 

reads related to contaminations or errors before or after sequencing.  

Due to the difference in methodologies and cutoff values, the prevalence of 

Blastocystis from the same datasets but detected by different studies can vary accordingly 

(Figure 2.6). With my approach, I detected similar numbers of positive and co-infected 

samples to Lokmer et al., (2019) for two out of three projects, markedly more positive 

samples compared to the analyses by Beghini et al. (2017) and Forsell et al. (2017). 

Marcelino et al. (2020) used the kingdom-agnostic CCMetagen metagenomic pipeline with 

the NCBI Refseq nt database as a reference and detected Blastocystis in 15/27 Tanzanian 

samples but none in Italian samples. Although they did not specify the STs, the total 

number of positive samples was the same as that found by Beghini et al. (2017). Both the 

Marcelino et al. and Beghini et al. studies excluded the possibility of co-infection in their 
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study. My approach is designed to be more sophisticated and robust, but further study is 

required to know to what extent false positives and false negatives are occurring. When 

using a metagenomic approach to detect Blastocystis, the choice of tools and databases, as 

well as the thresholds for defining positive samples are essential and studies using pre-

constructed mock communities with known species abundance to test different tools, 

databases, and threshold values may help to come to a consensus.   

2.4.3 Comparison of Blastocystis prevalence and subtype distribution in recent studies 

Blastocystis was detected in human samples from 9 of the 10 projects which is 

consistent with previous results reporting a global distribution of Blastocystis in all 

continents (Alfellani, Stensvold, et al. 2013). Generally, it has a lower prevalence in 

westernized countries, i.e., in Europe and North America with frequencies ranging from 0% 

to 30%, with the exception of some European cohorts where the prevalence was >30% or 

even exceeding 50% (e.g., 35.2% in a study in northern Spain (Paulos et al. 2018) and 62.8% 

for Swedish university students in this study). The prevalence of Blastocystis in non-

westernized countries is moderate to high and may exceed 60% in Africa, Asia, and South 

America, which is consist with current literature (El Safadi et al. 2014; Forsell et al. 2016; 

Jiménez et al. 2019).   

For individual STs, in contrast to previous studies showing ST3 as the most common 

subtype (Alfellani, Stensvold, et al. 2013; Tito et al. 2018), this is the first large-scale study 

to show that, for cases of single subtype colonization, ST1-positive samples exceeded ST3 

samples. One possible reason for this observation is that ST3 is more frequently found in 

co-infections than ST1. A geographically structured distribution of subtypes was also 

confirmed in this study. ST1, ST2, and ST3 had a broad distribution, ST4 and ST8 are more 

common in western countries, and ST5, ST6, ST7, and ST9 are rare human subtypes (I did 

not detect any of these STs in human samples except 1 sample carrying ST7). The low 

infection rate of ST4 detected in this study (3.5%, 9 of 255 positive samples) compared to 

the results of Beghini et al. (2017) that had a 31.1% of ST4 (99 of 318 positive samples) is 

explained by the fact that there were relatively few European samples (37%, 179 of total 

485 individuals)  in this study compared to the samples they analyzed (71%, 1204 of total 

1689 individuals were from Europe or USA). The overall prevalence of co-infections was 
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very similar to the study by Lokmer et al. (2019) who also used metagenomic analysis. In 

agreement with current literature, I found the prevalence of Blastocystis is high in the 

healthy population and low in obese or overweight individuals (Beghini et al., 2017; Tito 

et al, 2018).  

For animal samples, the prevalence of Blastocystis varied in different countries and 

the distribution of subtypes also depended on hosts and geographical region (Alfellani, 

Taner-Mulla, et al. 2013). Here I reported higher colonization of Blastocystis in baboons 

(50%, 24/48)  than previous studies: Legesse and Erko (2004) found a frequency of 3.3% 

in Ethiopian baboons using microscopical examination (Legesse & Erko 2004), whereas 

no baboons were found to be infected in the Bangladesh National Zoo by Li et al. (2019) 

as assayed by PCR amplification (Li et al. 2019). Only ST1 and ST2 were detected from 

baboon samples and the common ST3, ST5, and ST8 existing in non-human primates 

(Alfellani, Jacob, et al. 2013; Betts et al. 2020) was not found in baboons in my study. 

On average, 15% of cattle samples in this study were positive for Blastocystis, a 

relatively low overall infection rate compared to previous findings (Aynur et al. 2019) but 

a higher rate compared to American cattle samples (Maloney, Lombard, et al. 2019). Four 

subtypes (ST1, ST3, ST5, and ST10) and two types of mixed infection (ST1 + ST3 and 

ST1 + ST5) were identified. The most common cattle subtype ST10 was only found in one 

of two projects and other common subtypes like ST4 and ST14 were not found  (Aynur et 

al. 2019; Greige et al. 2019). The mixed subtype of Blastocystis infection in American 

cattle was only found in 25% of the positive samples (2/8) with only one combination of 

co-infection (ST1 + ST3). This is a much lower rate and a less complex situation than that 

described in the recent study by Maloney et al. (2019). These researchers compared NGS 

amplicon sequencing with Sanger sequencing and defined a sample positive for a ST if  >= 

0.1% of merged contigs mapped to the 18S rRNA gene sequence of specific Blastocystis 

ST (the length of merged contigs were between 400 to 600 bps; the average pairs of reads 

in their study was 101,785). Using this threshold, they detected a total of 14 subtypes (ST1 

to ST5, ST10, ST11, ST14, ST17, ST21, and ST23 to ST26) from 75 amplicon sequencing 

datasets from cattle feces and found 65% (49/75) of the positive samples were mixed 

infections, 41% (20/49) of which contained ≥ 3 STs with one sample being infected with 

8 different subtypes. This demonstrates that NGS amplicon sequencing is a powerful tool 
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to detect low abundant subtypes and mixed infections of Blastocystis. However, it also 

suggests that careful interpretation is necessary for using NGS sequencing to detect 

Blastocystis. 

For pig samples in my study, the overall prevalence (85.3%) and individual 

prevalence are very high except for one German project (9.1%, 2/22). A total of five 

subtypes (ST1, ST3, ST5, ST13, and ST15) were identified from pig positive samples. ST5 

was the most common subtype and unexpected ST15 was the second most common ST 

(19.2%, 29/255) in all pig projects. Previously, ST15 was detected in artiodactyls (camels, 

cattle, and sheep) and non-human primates (chimpanzees and gibbons) (Alfellani, Jacob, 

et al. 2013; Betts et al. 2020) but was first reported in pig feces by Wylezich et al. (2019). 

The high prevalence of ST15 in pig samples as individual ST and mixed infections with 

ST5 reveals that it is a previously underappreciated ST colonizing pigs. The origin of ST15 

in mammals is unusual because phylogenies of SSU rRNA show that it is only distantly 

related to other main mammalian Blastocystis STs, branching instead within a clade 

otherwise made up solely of lineages from reptiles or amphibians (Alfellani, Jacob, et al. 

2013). 

2.4.4 Compositional and functional profiling of Blastocystis in the gut microbiome 

Several studies have demonstrated that colonization with Blastocystis is strongly 

associated with broad shifts in gut microbial communities (Beghini et al. 2017; Nieves-

Ramírez et al, 2018; Tito et al., 2018), but many of these studies report different gut 

bacterial taxa in the gut that correlate with Blastocystis in different populations or cohorts 

with diseases like IBS patients. In vitro and in vivo studies showing that different 

Blastocystis subtypes had different effects on gut microbiota suggested that the interactions 

between Blastocystis and gut bacteria are likely subtype-dependent and need to be analyzed 

at the level of subtype (Yason et al. 2019). For this reason, I choose to focus my 

investigations of the association between Blastocystis colonization and the gut microbiome 

on the subtype level while taking into account the differences between westernized and 

non-westernized carriers. 

In this study, I found that the presence of Blastocystis was strongly associated with 

an increase in two Methanobrevibacter species: M. smithii and an unclassified species, a 
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result concordant with the finding of Beghini et al. (2017). Interestingly, when separating 

samples into westernized and non-westernized groups, I found that the high abundance of 

these two Methanobrevibacter species was only associated with non-westernized 

Blastocystis carriers, especially amongst individuals with ST1 and ST2. The biological 

significance of this association is unclear. Methanobrevibacter smithii is a dominant 

species of the methanogenic archaea fund in the human gut and can comprise up to 10% of 

all the anaerobic microorganisms in the colon (Samuel et al. 2007). It is capable of 

converting bacterial fermentation products like H2 and CO2 to methane that makes it 

essential for syntrophic associations within the gut microbial community (Bang et al. 2014). 

One possibility is that Blastocystis ST1 and ST2 produce significant amounts of H2 and 

CO2 and this could be ‘feeding’ the growth of the Methanobrevibacter species. This does 

make sense as Blastocystis is an anaerobic fermenter with a hydrogenosome-like MRO that 

may be producing H2 and CO2 (Gentekaki et al. 2017), although production of hydrogen 

has not been observed at least for ST7 (Lantsman et al. 2008). 

The medical implications for the association between Blastocystis and 

Methanobrevibacter are also unclear. Previous studies have showed an increase of M. 

smithii in IBS patients (Kim et al. 2012; Nagel et al. 2016) and a potential association with 

diet-induced weight gain and obesity (Mathur et al. 2012; Mbakwa et al. 2015). One study 

even suggested it may induce an inflammatory response (Bang et al. 2014). However, 

Blastocystis colonization has not been associated with any of these factors in recent large-

scale population studies (e.g., Tito et al. 2018), with the possible exception of one study 

that found an association with one type of IBS (Nourrisson et al., 2014). On the other hand, 

a recent study showed that M. smithii was significantly decreased in IBD patients compared 

to the healthy control group and this reverse association suggested it might be a biomarker 

for IBD (Ghavami et al. 2018). This fits with the fact that Blastocystis has also been found 

to have a clearly lowered prevalence in IBD cohorts (Andersen et al. 2015; Tito et al. 2018). 

In any case, results in this study indicate that the association of Blastocystis with 

Methanobrevibacter is likely subtype specific and mostly confined to non-westernized 

populations. Further studies of this association and its clinical relevance should take this 

into account. 
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At the bacterial phylum level, a high abundance of bacterial taxa within Firmicutes 

and low abundance of Bacteroidetes were found in Blastocystis-positive samples, in line 

with previous reports (Andersen et al, 2015; Beghini et al. 2017). Two species from the 

Firmicutes phylum, Faecalibacterium prausnitzii and Eubacterium eligens, are both 

commensal bacteria found in the healthy intestine; in fact, F. prausnitzii can be used as a 

biomarker to assist in gut diseases diagnostics (Chung et al. 2016; Lopez-Siles et al. 2017). 

These species are both strongly associated with Blastocystis colonization in general and 

also specifically with ST1-3. In contrast to the finding by Nieves-Ramírez et al (2018) that 

Blastocystis colonization was strongly associated with a decrease in Precotella copri in 

healthy individuals from a semi-industrialized region in rural Mexico, two Precotella 

species, P. copri and P. stercorea, were predicted to be enriched in Blastocystis carriers 

(Figure 2.14 (c)-(d) and Figure 2.16 (c)-(d)), especially in non-westernized carriers. This 

association suggests that  Blastocystis may play a role in the abundance of Prevotella 

species besides a potential richness of plant-rich diets in non-western populations (De 

Filippo et al. 2010; Yatsunenko et al. 2012). The previous finding of an association between 

‘Ruminococcus-enterotype’ individuals and Blastocystis colonization was only observed 

in westernized non-carriers in this study (Andersen et al, 2015). Akkermansia muciniphila, 

a potential probiotic with a positive effect on metabolic syndrome in obese humans, 

showed a positive association with Blastocystis in ST4 samples, but a negative association 

for ST1-3 (Figure 2.17), which extends the finding by Tito et al. (2018).  

It should be noted that the level of unmapped reads could affect the significance of 

relative abundancies between samples since there were wide variations in the percentages 

of unaligned reads across samples, ranging from  20% to 95% with an average of 69% 

(median 72%) for mapping reads to pangenome databases at the species-level (Section 

2.2.5), and from 15% to 55% (mean 33% and median 32%) for mapping after translation 

(Supplementary Figure S4 (a)). When separating these samples into Blastocystis positive 

and negative groups in terms of westernized and non-westernized, the rates of unaligned 

reads in non-western groups were significantly higher than those in western groups, which 

suggests an underrepresentation of gut species in non-westernized populations in the 

current databases (Supplementary Figure S4 (b) and (c)) (Ayeni et al. 2018; Brewster et al. 

2019). 
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Nevertheless, the results observed here are consistent with the hypothesis that 

Blastocystis and the other microbial inhabitants of the gut influence each other. However, 

the extent of the interactions, and the extent to which they vary amongst subtypes, requires 

many more samples of WGS metagenomic sequencing data from many more individuals 

associated with various types of metadata. With the increase of publicly available 

metagenomes in number and size from diverse populations worldwide, the diagnosis of 

Blastocystis together with the compositional and functional profiling in the gut microbiome 

should greatly improve. These data, coupled with experimental in vitro and in vivo studies 

of the physiological relevance of genomic differences between subtypes, will help resolve 

unanswered questions about the pathogenicity and physiological role of Blastocystis. 
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Table 2.7 Detection of Blastocystis in a pig sample (DRR025071) by using the reference 

genome mapping method (Bowtie2 and SAMtools; Beghini et al., 2017) compared to 

taxonomy classification methods (Centrifuge). 

Subtype of reference 

genome 

Reference genome mapping results Centrifuge results 

base covered at X=1 Breadth of coverage num Reads mapped 

ST1 18889 0.11% 2706 

ST2 414 0.00% 1142 

ST3 366 0.00% 1575 

ST4 2567 0.02% 2227 

ST6 757 0.01% 774 

ST7 48793 0.27% 1587 

ST8 1627 0.01% 813 

ST9 470 0.00% 803 

Total - - 11627 

 

Table 2.8 Blastocystis marker genes detected by Metaxa2 from metagenome assembly of 

the pig sample (DRR025071). 

Contigs 

Metaxa2 results 
ST detected by 

BLAST 
rRNA gene 

aligned 

length 
identity 

Contig_8895 

length_5442 

cov_156.468907 

LSU 1121 85.0% ST5 

Contig_8895 

length_5442 

cov_156.468907 

SSU 1410 99.3% ST5 

Contig_931 

length_16912 

cov_34.616836 

Mitochondrial LSU 2365bp 89.26% ST5 
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CHAPTER 3 EUKFINDER: A BIOINFORMATIC WORKFLOW 

TO RETRIEVE MICROBIAL EUKARYOTE GENOMES FROM 

ENVIRONMENTAL METAGENOMIC SEQUENCING DATA 

3.1 INTRODUCTION 

Unicellular protists are ubiquitous and inhabit every global ecosystem including 

freshwater, marine, terrestrial and the GI tracts of humans and animals. The genome 

sequences of these microbial eukaryotes inform us of their physiology capacities, 

evolutionary histories, as well as their interactions with other microbes and/or host and 

their environment. Unfortunately, unlike for prokaryotes, there is still a lack of genome 

information for diverse protistan species (Sibbald & Archibald 2017). Many protists are 

difficult to bring into culture; fewer can be cultivated in pure axenic conditions and, for 

those that can be, scaling up cultures and extracting pure DNA is laborious and time-

consuming. For these reasons, high-throughput analyses of population genomics of protists 

have lagged behind those of prokaryotes. 

Whole genome shotgun (WGS) metagenomic sequencing is a technology that could 

make it possible to characterize protistan genomes in the environment without the need for 

cultivation. WGS metagenomic approaches enable the simultaneous sequencing of 

multiple genomes from microorganisms living in the communities of complex ecosystems. 

In WGS metagenomics, DNA from all the microorganisms in the community within an 

environmental sample is extracted and sequenced to generate millions of short-length reads 

(100 – 300 bp) that are assembled into continuous genome fragments (i.e., contigs) to allow 

the recovery of full-length gene sequences or even longer gene clusters. In addition, sorting 

the assembled contigs into categories (commonly called bins) separates fragments that 

likely originated from different taxa by grouping them into species (or closely related 

strains) based on their genome composition (e.g., k-mers) and/or depth of coverage, leading 

to partial or even complete reconstruction of their genomes. This computational method 

has been standardized and applied to various environmental samples. Since the first near-

complete bacterial genomes were reconstructed by Tyson et al. (2004), using metagenomic 

sequencing from a low-complexity microbial environment, thousands of high-quality 

complete or near-complete genomes for bacteria and archaeal species have been 
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reconstructed, which is the main reason for the dramatic growth of available prokaryotic 

genome data on NCBI (Figure 3.1).  

Although the gut microbiome is one of a few heavily studied microbial 

environments with thousands of novel bacterial genomes sequenced using cultured-based 

and increasingly metagenomic approaches each year, the number of published high-quality 

draft genomes for gut microbial eukaryotes remain very few (Table 3.1). The application 

of WGS metagenomics to eukaryotic microbes is not well-established due to the large size, 

complexity and repetitive nature of eukaryotic genomes. In addition, the fact that 

eukaryotic reads are usually only found in a very small proportion (generally < 5%) in the 

metagenomic sequencing data with low coverage makes the recovery of eukaryotic 

genomes even more challenging. To date, only a handful of investigations have used a 

metagenomic approach to reconstruct eukaryotic genomes. For example, Beghini et al 

(2017) used a bioinformatic approach to map reads to Blastocystis reference genomes from 

gut metagenomic data and extract reads that align to the reference genome to do de novo 

assembly. With this approach, they were able to assemble 43 draft Blastocystis genomes 

from 2154 publicly available gut metagenomic datasets. Among these genomes, 19 had 

sizes > 5 Mb with a completeness of 33% to 85% based on the assembly size estimation. 

West and colleagues developed a k-mer-based tool, EukRep, for separating eukaryotic 

genomes from prokaryotic ones in MAGs (West et al. 2018). EukRep employed a machine-

learning strategy with linear support-vector machine (SVM) classifiers to detect and select 

eukaryotic contigs based on k-mer frequencies. They trained the SVM classifier with 5-

mer frequencies that they extracted from a database of reference genomes they constructed 

from several sources. When EukRep was applied to metagenomic assemblies from infant 

fecal samples, six near-complete genomes of fungi were retrieved. A recent study applied 

EukRep to 1174 infant fecal metagenomes and 24 metagenomes from hospital rooms and 

in total 14 eukaryotic metagenome assembled genomes (MAGs) were recovered (12 fungi, 

one belonging to the clade of Diptera and one Nematoda) with a median estimated 

completeness of 91% (Olm et al. 2019). Analyses of these genomes allowed detailed 

genomic comparisons and detection of population micro-diversity among different fungi. 

The foregoing studies demonstrate that it is possible to reconstruct microbial eukaryotic 

genomes without cultivation and targeted DNA isolation work. However, each of these 
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pipelines has limitations. For example, the reference genome mapping approach cannot 

apply to organisms without available reference genomes and the performance of the 

machine-learning approach EukRep can be affected by the accuracy and consistency of the 

assembly tools and the training reference genome sets. Furthermore, for the latter, there are 

no published instructions on how to build a custom training genome set.  

To circumvent the limitations of the foregoing metagenomic analysis pipelines, I 

developed a bioinformatic tool, Eukfinder, to recover and assemble eukaryotic nuclear and 

mitochondrial genomes from environmental metagenomes. Eukfinder improves upon the 

existing pipelines by adding a pre-selection step classifying reads based on taxonomy and 

two specialized databases that can be built by users to include the reference genomes from 

the representative organisms in the environment. To demonstrate its utility, I have applied 

it to human gut metagenomic datasets to recover nuclear and mitochondrial (MRO) 

genomes, focusing on Blastocystis genomes from human gut metagenomic datasets as a 

test case. 

Blastocystis is a good example of a gut-dwelling protist that is extremely common 

in human populations but very difficult to bring into stable culture. As a result, relatively 

little is known about the genetic diversity among and between Blastocystis subtypes and 

how this may affect their potential for pathogenicity. The few publicly available 

Blastocystis nuclear genomes range from 12.9 Mbp to 18.8 Mbp in size and vary markedly 

in their GC content (39.6% - 54.6%) and gene content (Denoeud et al., 2011; Wawrzyniak 

et al., 2015; Gentekaki et al., 2017). They also have a number of notable features including 

genes that require mRNA polyadenylation to create functional termination codons (Klimeš 

et al. 2014; Gentekaki et al. 2017) as well as genes acquired by lateral gene transfer that 

allow them to thrive in the gut environment, evade the immune system and potentially 

modulate the growth of other gut microbes (Eme et al., 2017). Blastocystis also have 

genome-containing mitochondrion-related organelles (MROs) (Jacob et al., 2016) that are 

adapted to function in anaerobic conditions of the animal gut (Tan et al., 2008). Both 

nuclear and MRO genomes potentially offer insights to help us understand differences 

between Blastocystis STs that can guide future experimental investigations into their 

pathogenicity, as well as, to detect possible targets for anti-protozoan drug development. 
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Figure 3.1 Dramatic growth of published genomes in NCBI GenBank that include all 

assembly levels: complete, chromosome, scaffold, contig, based on data from 

ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/.   

 

Table 3.1 List of numbers of published genomes for common gut protists up to September 

2019. 

Protist 
# species 

/subtypes 

Available genomes 

# species/subtypes have 

genomes 
# Total 

Blastocystis 17 8 11 

Cryptosporidium 10 10 37 

Dientamoeba 1   0* 0 

Endolimax 2 0 0 

Entamoeba 7 5 10 

Giardia 9 2 13 

* There is only one transcriptome published for Dientamoeba. 

ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/


83 

 

3.2 IMPLEMENTATION  

3.2.1 Overview of the Eukfinder approach 

Eukfinder is a taxonomy-classification based workflow to recover microbial 

eukaryotic genomes from WGS metagenomic sequencing datasets. It can be applied to 

short or long metagenomic sequencing reads directly, or MAG contigs. First it separates 

these reads or contigs into different taxonomy groups using Centrifuge and then further 

refine the unclassified reads or contigs by conducting PLAST searches. This results in 

candidate eukaryotic reads that can be assembled or eukaryotic contigs that can be 

extracted and subjected to a series of supervised binning steps to retrieve eukaryotic 

genomes. 

The workflow, which is described below, requires at least one of the following files 

as input: 

1. Paired-end short-read “raw” sequences in FASTQ format. These are processed (see 

Section 3.2.2) and subjected to iterative taxonomic classification (Figure 3.2(a) and 

Section 3.2.3). 

2. A de novo metagenome assembly (MAG) in FASTA format. This is subjected to a 

simplified taxonomic classification workflow (Figure 3.2(b) and Section 3.2.3). 

3. Long-read sequence data in FASTA or FASTQ format (Figure 3.2(b) and Section 3.2.3) 

3.2.2 Databases  

Two databases must be built before running the Eukfinder workflow: one 

compatible with the software called Centrifuge (Kim et al., 2016) and the other one with 

PLAST (Nguyen and Lavenier 2009). The Centrifuge database is built using centrifuge-

download and centrifuge-build commands as implemented in Centrifuge. The PLAST 

database is built with the BLAST makeblastdb command and a simplified index file 

containing information that cross-references each sequence accession entry in the database 

to its respective taxonomic group (bacteria, archaea, eukaryote and virus). In order to 

demonstrate the applicability of Eukfinder, I used the gut microbiome-focused specialized  

“database 1” and  “database 2” (described in Chapter 2.2.1). Specialized database 1 was 
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designed for the taxonomy classifier Centrifuge and contained 32,000 genomes 

(Supplementary Table S3) that were selected from the NCBI Genbank database and 

represented common species of gut microbiota. Specialized database 2 was for the more 

sensitive alignment tool PLAST and included 9,000 representative genomes overlapping 

with specialized database 1. To carry out supervised binning, I employed the NCBI-NT 

database. 

3.2.3 Short-read pre-processing 

The pre-processing steps include (1) removal of low-quality reads, sequencing 

adapters (using Trimmomatic v0.36) and host reads (using Bowtie2 v2.3.1) and (2) first 

round of taxonomic classification using Centrifuge v1.0.4 and the specialized “database 1”. 

For centrifuge, the default minimal hit length is set to 40 bp but the user can modify this 

parameter. The pre-processing produces five files that are required for downstream analysis: 

three cleaned FASTQ files (two paired-end and one unpaired-end read files) and two 

Centrifuge results files (a single file for paired-end reads and a second one for unpaired-

end reads). 

3.2.4 Eukfinder workflow for short-read sequence files 

Eukfinder takes in pre-processed short-read sequences (generally up to 150 bp long; 

referred to as Eukfinder_reads in this thesis) with their respective taxonomic pre-

classification files as mentioned above. As not all the reads are classified at this point, a 

second attempt to classify them is carried out by PLAST v2.3.2 searches against 

“specialized database 2”. After that, all reads are separated into five groups: Archaea, 

Bacteria, Eukaryotes, Virus, and Unknown. Reads in Eukaryotes and Unknown groups are 

used in combination for assembly with SPAdes v3.13.1 (Nurk et al. 2017). The resulting 

assembly (with minimum contig length of 1000 bp) goes through a new round of taxonomic 

classification with Centrifuge and PLAST search to separate contigs into the five groups 

described above (at this point the sequences/contigs are at least ~6.6 to 25 times longer 

than the original reads, thereby increasing the resolution of the taxonomic searches). 

Contigs from ‘Eukaryotes’ and ‘Unknown’ groups are combined again into one FASTA 

file for supervised binning as described in Section 3.2.5.   
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Eukfinder can also accept contigs from MAGs or long-read sequences (length >= 

1000bp, referred to as Eukfinder_contigs) and carry out one round of taxonomic 

classification using Centrifuge and PLAST as described above (Figure 3.2(b)). 

 

 

Figure 3.2 Schematic representation of Eukfinder workflows. Eukfinder is a taxonomic 

classification-based bioinformatics approach to retrieve microbial eukaryotic nuclear and 

mitochondrial genomes from WGS metagenomic sequencing data. Eukfinder has two 

different workflows based on the input files, (a) Eukfinder_reads using Illumina short reads, 

or (b) Eukfinder_contigs  using MAG assembled contigs or long-read sequencing data 

generated by Nanopore or Pacbio platforms. 

(a)                                                                             (b) 
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3.2.5 Supervised binning 

The assembly from the previous step containing eukaryotic and unknown contigs 

(i.e., EUnk assembly) is pre-binned with MyCC (Lin & Liao, 2016) using the 4mer, 5mer, 

and 56mer (a combination of 5mer and 6mer) parameters and additional evidence is 

collected to assist with the final binning. First, the read-coverage depth for EUnk assembly 

is calculated by mapping the cleaned short-reads to the contigs with Bowtie2, sorting and 

indexing them with SAMtools v1.9 (Li et al. 2009), and the script 

jgi_summarize_bam_contig_depths from MetaBat2. Second, Metaxa2 is used to identify 

the LSU/SSU rRNA sequences in the EUnk-assembly using its default databases. Third, a 

nucleotide-based PLAST search is conducted using the contigs as queries against the 

NCBI-NT database (Jan 2019) and the taxonomy of the best hits’ is obtained with  acc2tax 

v0.6 (github.com/richardmleggett). All these results are collected and sorted based on their 

corresponding MyCC bins. For a contig to be included or excluded in the final eukaryotic 

bin (or bins), the following rules are applied: 

A contig is excluded from eukaryotic bin(s) if: 

1) Its depth of coverage exceeds that of the mitochondrial contigs or that of the SSU 

rRNA gene. 

2) Its best PLAST ‘hit’ shows that it is a sequence from a prokaryote or virus with > 

80% identity over an aligned length > 1000 bp. 

A contig is kept in the eukaryotic bin(s) if: 

1) It hits mitochondrial sequences by Metaxa2 and the best PLAST hit is 

mitochondrial. These contigs will be marked as mitochondrial genomes. 

2) It hits eukaryotic LSU or SSU rRNA as reported by Metaxa2, centrifuge, and /or 

PLAST. 

3) After binning by MyCC, each contig will be assigned to a cluster based on 

marker genes, the k-mer usage and the depth of coverage. By default, three k-

mers (4mer, 5mer, and 56mer) are used and three cluster maps are generated 

(Supplementary Figure S5). Based on the Centrifuge and PLAST results, some 
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contigs can be classified as eukaryotic. Some clusters can be marked as potential 

eukaryotic clusters based on the percentage of the contigs classified as 

eukaryotes in one cluster. Contigs that appear at least twice in potential 

eukaryotic clusters are included in the eukaryotic genome. 

It is important to mention that, although the supervised binning step is part of the 

classification workflow, it is not currently implemented in the Eukfinder program due to 

software incompatibility with the programs required. 

3.3 BENCHMARKING METHODS 

3.3.1 WGS metagenomic samples 

Gut metagenome samples used for retrieving eukaryotic genomes were preselected 

based on the detection method described in Section 2.2. Human samples with more than 

200,000 reads classified as Blastocystis based on Centrifuge results (minimal hit length 30) 

were deemed likely useful for Blastocystis genome reconstruction. Six human WGS 

datasets (SRA accession numbers: ERR321560, ERR636351, ERR636359, ERR636373, 

ERR636397, and ERR636414) with total sizes ranging from 8.8 giga base pairs (Gbp) to 

23.3 Gbp and number of raw reads from 48.9 million (M) to 119.7 M (Table 3.2) were used 

in this study. The sample ERR321560 was from a Danish individual from a study aiming 

to characterize metabolic markers from the gut microbiome (Le Chatelier et al. 2013). The 

remaining five samples were from the gut microbiome datasets of Swedish university 

students that had traveled to the Indian peninsula or Central Africa (Forsell et al. 2017). 

All of the datasets were pre-processed as described in section 3.2.2 to generate cleaned 

short-read files and assembled using MetaSPAdes v3.13.1 (Nurk et al., 2017) to generate 

MAG assemblies. 

3.3.2 Comparison of Eukfinder with existing methods for eukaryotic genome recovery 

The performance of recovering nuclear genomes using Eukfinder was compared 

with those of the machine-learning based software called EukRep (West et al., 2018) and 

the reference genome mapping method used by Beghini et al., 2017. In the case of 

mitochondrial genomes, Eukfinder was compared with EukRep, NOVOplasty 

(Dierckxsens et al. 2017), and the reference genome mapping method. 
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Since EukRep uses MAG assemblies as input, metaSPAdes assemblies from each 

dataset were used by EukRep to get eukaryotic contigs with parameter “--tie euk” that treats 

a contig as eukaryotic when an equal number of  sequence chunks were predicted to be of 

eukaryotic and prokaryotic origin. The resulting eukaryotic contigs underwent supervised 

binning as described above. 

For the reference genome mapping method, metagenomic short reads are extracted 

from the dataset by mapping them to eukaryotic reference genomes, followed by the 

assembly of these reads to generate draft eukaryotic genomes. Here, the pre-processed 

metagenomic reads were mapped to the cleaned reference genome of Blastocystis with the 

same subtype (described in section 2.2.1) using Bowtie2 in local mode. All the mapped 

reads were assembled using SPAdes (v3.13.1) with default parameters and contigs shorter 

than 1000 bp were discarded. To explore the mitochondrial genomes with NOVOplasty, a 

tool for de novo assembly of organelle genomes from WGS (meta)genome data, the raw 

metagenomic reads (as required by NOVOPlasty) were used as input and the corresponding 

Blastocystis mitochondrial SSU rRNA sequence was used as seed. The resulted MRO 

genomes were BLAST against Blastocystis mitochondrial reference genomes for 

comparison. 

3.3.3 Assessment of genome completeness 

The evaluation of nuclear genomes recovered from each dataset using Eukfinder, 

EukRep, and reference-genome mapping methods was performed using BUSCO v3.0.2 

(Simão et al. 2015) with eukaryota_odb9 lineage data and Quast v5.0.2 (Gurevich et al. 

2013) and compared with cleaned Blastocystis genomes that served as references (see 

section 2.2.1). The shared BUSCO genes among the recovered genomes in each sample 

were visualized using the Upset Shiny App (Conway et al. 2017). The evaluation of 

mitochondrial genomes was performed using Quast v5.0.2. If the mitochondrial genome 

was recovered as one single contig, it was circularized using the overlapping ends and 

annotated by the online tool Mfannot (http://megasun.bch.umontreal.ca/cgi-bin/mfannot/ 

mfannotInterface.pl), converted to GenBank format by NCBI software Sequin,  and 

visualized by OGDRAW v1.3.1 (Greiner et al. 2019). The comparison of genome maps 

between recovered genome fragments and the reference genome was generated using Blast 

http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl
http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl
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Ring Image Generator (BRIG)(Alikhan et al. 2011). The sequence coverage BAM files 

were generated by mapping metagenomic reads to the genome by Bowtie2, sorting and 

indexing by SAMTools (Li et al., 2009), and visualized in Integrative Genomics Viewer 

(IGV) (Thorvaldsdóttir et al. 2013). 

 

Table 3.2 Sequence features of tested metagenome datasets. Blastocystis sequence reads 

estimated with Centrifuge as described in section 2.2. 

Name Dataset 
Size  

(Gbp) 

#Total 

Reads (M) 

MAG size 

(MB) 

Blastocystis 

subtype 

MH0206 ERR321560 8.8  48. 9 263 ST2 

TRV13 ERR636373 15.2 77.8  427 ST2 

TRV02 ERR636351 11.1 56.7 401 ST3 

TRV33 ERR636414 23.3 119.7 401 ST3 

TRV06 ERR636359 16.5 84.2 520 ST4 

TRV25 ERR636397 13.6 75.3 406 ST4 

 

3.4 RESULTS  

3.4.1 Recovered Blastocystis genomes by Eukfinder_reads workflow 

Six human gut metagenomic datasets were processed by Eukfinder to recover 

Blastocystis nuclear genomes following a benchmarking protocol that allowed me to 

compare the two methods available within Eukfinder (Figure 3.2) against EukRep and 

reference-mapping method. This yielded a total of four reconstructed genomes for each 

dataset (Table 3.3). The cleaned reads from each dataset after pre-processing steps were 

input into the Eukfinder_reads workflow and after the first round of classification by 

Centrifuge (Figure 3.2(a)), reads classified as eukaryotic were only a very small proportion, 

ranging from less than 1% to 4%, while reads that could not be classified at this stage (Unk) 

ranged from 6% to 17 % (Figure 3.3(a)). After the second round of classification, assembly 

and binning, the resulting Blastocystis draft nuclear genomes recovered were 8 Mbp to 13 
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Mbp in size corresponding to 60% to 97% complete based on the reference genomes (Table 

3.3 Column “Eukfinder_reads”).  

Dataset MH0206 was the smallest sequencing file in this study with 512,475 

Blastocystis reads identified by Centrifuge; its recovered Blastocystis ST2 genome was 

also the smallest in total contig length (8.92 Mbp). The GC content was much markedly 

lower (51.91%) than the reference genome (54.07%), and the recovered draft genome 

(3650 contigs with N50 = 2817) was more fragmented than that of the reference genome 

(969 contigs with N50 = 20102). 

The number of reads from dataset TRV13, an ST2 positive dataset, was twice the 

number of MH0206 and contained more Blastocystis reads (888,692). Therefore, the 

recovered genome (13.36 Mbp) was even larger than the reference genome (12.66). Due 

to the nature of short metagenomic sequencing, the recovered genome was still more 

fragmented (1816 contigs and N50=12863bp) than the reference genome. The GC content 

(53.97%) was much closer to the reference genome (54.07%) than the genome recovered 

from dataset MH0206. 

For the two datasets with Blastocystis ST3, the recovered nuclear genomes showed 

similar trends. The one with more Blastocystis reads from dataset TRV33 had a length of 

12.27 Mbp, which is 0.68 Mbp larger than the ST3 reference genome and 1.60 Mbp greater 

than the one from TRV02 (10.67 Mbp). The TRV33 draft genome was less fragmented 

(1614contigs and N50=13076 bp) than the one from TRV02 (3597 contigs and N50 = 

3616). The GC content of the genome recovered from TRV33 (51.93% ) was closer to the 

ST3 reference genome (52.1%) than that of TRV02 (51.51%). 

Of the datasets with Blastocystis ST4 sequences, the TRV25 dataset had more than 

2 million reads classified as Blastocystis by Centrifuge. Therefore, the genome recovered 

from this dataset were more complete (12.26 Mbp) and more similar in GC content 

(39.82%) to the ST4 JPUL02 reference genome (12.92 Mbp, GC 39.72%) than the genome 

reconstructed from TRV06 dataset (11.79 Mbp, GC 39.88%). The TRV06 Blastocystis 

genome had 1979 contigs with much shorter contigs (N50 = 9529 bp), while the TRV25 

genome had fewer contigs (1106) but a slightly smaller N50 (27653 bp) than the ST4 

reference genome (1301 contigs, N50 =29931bp).  
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3.4.2 Recovered Blastocystis genomes by Eukfinder_contigs workflow 

The MAGs from six human gut metagenome datasets, size ranging from 260 

metabytes (MB) to 520 MB with an average of 265290 contigs, were input into the 

Eukfinder_contigs workflow (Figure 3.2(b)) and after classification by Centrifuge, about 

2.5% to 4.4% of the nucleotides were designated as eukaryotic (Figure 3.3(b)). The 

proportion of nucleotides without any taxonomy assignment on average was 1.2%. After 

supervised binning, six Blastocystis nuclear genomes were recovered (see Table 3.3 

Column “Eukfinder_contigs”) and possessed similar features to the ones recovered by 

Eukfinder_reads. 

The Blastocystis ST2 nuclear genome recovered from dataset MH0206 MAG using 

Eukfinder_contigs was the only one that had a smaller size (8.79 Mbp) than the genomes 

recovered from the same dataset by Eukfinder_reads (8.92 Mbp) (Table 3.3). All the rest 

of the Blastocystis nuclear genomes generated by Eukfinder_contigs had a slightly larger 

size (0.02 ~0.06 Mbp) and, on average, more contigs than the ones by Eukfinder_reads, 

with the exception of the genome from TRV06, where Eukfinder_contigs generated a 

genome with 53 fewer contigs and a larger N50 than the one from Eunfinder_reads. The 

differences in GC content between the assemblies from Eukfinder_contigs and from 

Eukfinder_reads were no more than 0.052%. The N50 values from three of the genomes 

(TRV06, TRV13, and TRV33) recovered from Eukfinder_contigs were larger than the ones 

from Eukfinder_reads. 

3.4.3 Comparing the performance of Eukfinder with EukRep 

The MAG from each dataset was also used as input for the machine-learning-based 

method, EukRep, to recover Blastocystis genomes. For each assembly, EukRep will 

generate a fasta file containing all the eukaryotic contigs. For the six human gut 

metagenomic datasets used in this study, the total nucleotides in the contigs classified as 

eukaryotes in each dataset by EukRep ranged from 6% to 9 %, which was 1.5% to 3.5% 

more than the percentages obtained by Eukfinder_contigs (Figure 3.3 (b)). However, after 

supervised binning of the output, the resulting Blastocystis nuclear genomes (ranging from 

8.27 Mbp to 13.07 Mbp, see Table 3.3 Column “EukRep”) were smaller in size (0.3 Mbp 
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to 0.9 Mbp) than those obtained from Eukfinder_contigs or Eukfinder_reads. The 

assembled Blastocystis genomes recovered by EukRep had 150 ~ 460 fewer contigs than 

those from the Eukfinder approaches.   

With the exception of dataset MH0206, all the other genomes recovered by EukRep 

had a larger N50 than those recovered from either of the Eukfinder approaches. One 

possible reason for this was that most of the contigs that were missed by EukRep were 

relatively short (between 1,000 bp and 3000 bp; Supplementary Figure S6). The GC 

contents of the genomes reconstructed by EukRep were very close to those recovered by 

Eukfinder. 

3.4.4 Comparing the performance of Eukfinder with the reference-genome mapping 

method 

The pre-processed metagenomic sequencing files from each human gut metagenome 

were mapped against the Blastocystis reference genomes with the same subtypes to 

reconstruct draft genomes (referred to as Ref_mapping; see section 3.3.2) and the resulting 

genomes (see Table 3.3 Column “Ref_mapping”) was compared with those recovered by 

Eukfinder approaches. All six genomes generated this way were smaller than either of 

genomes retrieved by Eukfinder approaches from the same dataset, in particular, the 

Blastocystis genomes from datasets MH0206 and TRV33 were ~ 1 Mbp less than those 

recovered by Eukfinder. As was the case for EukRep, genomes with smaller sizes generated 

by the reference-mapping method also had fewer contigs compared to Eukfinder results, 

except for TRV06; the latter genome was only 0.2 Mbp smaller but had more contigs (2182) 

than those retrieved by Eukfinder_reads and Eukfinder_contigs (1979 and 1926 contigs, 

respectively). The N50 values for Ref_mapping genomes were greater in two datasets, 

TRV02 and TRV33, and lower in the rest of datasets than those recovered using Eukfinder 

workflows. The GC contents inferred from the Ref_mapping genomes were within 0.5% 

of the reference genomes, except for the dataset MH0206 for which the difference was 2%.  

3.4.5 The completeness of the Blastocystis nuclear genomes  

To test the quality and completeness of the recovered Blastocystis nuclear genomes, 

Quast and BUSCO analysis with eukaryotic single-copy genes (SCGs) were applied to the 
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four genomes recovered from each dataset. For dataset MH0206, which had the fewest 

total reads and generated the smallest Blastocystis genome, the genome fractions assessed 

by Quast all hovered around 60%; the genome recovered by Eukfinder_reads had the 

largest (63%) and the one from EukRep smallest (58%) (Figure 3.4 (a)). For the other ST2 

sample, TRV13, for which most of the recovered genomes were larger than the reference 

genome, the genome fractions for each of the four nuclear genomes were 95%, with the 

one from Ref_mapping having the lowest value (94.5%). For Blastocystis ST3 genomes 

from TRV02, although the genome recovered from Ref_mapping did not have the largest 

size, it had the highest genome fraction (87%), followed by two genomes from Eukfinder 

(both 85%), and the lowest was the one from EukRep (78%). For the remaining three 

datasets, the genomes fractions from Eukfinder and Ref_mapping were very similar (> 

90%, 93%, and 97% for genomes from TRV06, TRV25, and TRV33, respectively) whereas 

the ones recovered by EukRep had the lowest completeness (80%, 89%, and 95% for 

genome from TRV06, TRV25, and TRV33, respectively). 

Due to the genome diversity among different Blastocystis subtypes, the presence or 

absence of 303 eukaryotic single-copy genes (SCGs) in the reference genomes of ST2, ST3, 

and ST4 JPUL02 was identified by BUSCO (Figure 3.4 (b)). This was treated as the 

baseline to assess the genome completeness for the recovered Blastocystis genomes from 

each sample. Blastocystis ST2 nuclear genomes recovered from dataset MH0206  were the 

least complete compared to those from other datasets. The genome reconstructed from this 

dataset by Rep_mapping had only 85 SCGs detected compared to the reference genome 

that had 149. The Eukfinder_contigs retrieved genome had the most SCGs (114/149), 

followed by the genome from Eukfinder_reads (113/149), and the one from EukRep 

(110/149). Among the detected single-copy genes, 68 were shared by all four newly 

recovered genomes and reference genome, while 48 were only found in the reference 

genome (Figure 3.5 (a)). The Blastocystis ST2 genomes recovered from dataset TRV13 

were more complete: the genomes generated by Eukfinder_contigs, EukRep and 

Eukfinder_reads  had more SCGs (168, 168, 167 genes respectively) than the reference 

genome (149 SCGs) and the genome reconstructed by Ref_mapping (149 SCGs) had the 

same number as the reference genome. Whereas 109 SCGs were shared by all the genomes 

recovered from TRV13 and the reference genome, less than 34SCGs were shared by all 
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four recovered genomes but not detected in the reference genome while 29 SCGs were only 

detected in the reference genome(Figure 3.5 (b)). 

For Blastocystis ST3, genomes recovered from TRV02 by Eukfinder_reads and 

Eukfinder_contigs and recovered from TRV33 by Eukfinder_reads, Eukfinder_contigs, 

and EukRep were more complete than the ST3 reference genome and had more SCGs 

detected (Figure 3.4 (b)). In both datasets, genomes recovered using the Ref_mapping 

method were the least complete. Of these SCGs, 102 were shared by all these genomes 

recovered from TRV02 and 124 from TRV33; 20 of the genes were shared by at least three 

recovered genomes (two by Eukfinder and one by EukRep) from TRV02 and 18 were 

shared by at least three in TRV33 (Figure 3.5 (c) and (d)).  

The Blastocystis ST4 reference genome was a complete genome with gene 

annotation, so it had more detected SCGs than all the newly-recovered genomes from 

dataset TRV06 and RV25 (Figure 3.5 (e) and (f)). For dataset TRV06, the genome 

recovered by Eukfinder_reads was the most complete (126 SCGs), followed by 

Eukfinder_contigs  and Ref_mapping (both had 120), and the one by EukRep was the least 

complete (114 SCGs). In these detected SCGs, 95 were shared by all four genomes and the 

reference genome. For dataset TRV25, the genome recovered by Eukfinder_contigs was 

the most complete and had 132 SCGs compared to the 138 of the reference genome. The 

genome by Eukfinder_reads had 129 SCGs and the ones by EukRep and Rep_mapping had 

the least (both had 124). About 106 SCGs were shared by all four genomes and the 

reference genome. SCGs detected only in the reference genome but not in any of the 

recovered genomes from TRV06 and TRV25 were 10 and 7 respectively, which is less than 

the corresponding numbers detected for ST2 and ST3 samples. 
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Figure 3.3 Proportion of reads/nucleotides classified to each group (excluding the bacterial 

ones) by (a) Eukfinder_reads and (b) Eukfinder_contigs vs. EukRep (Only contigs with >= 

1000 bp were included in the calculation) for all datasets. Euk: eukaryotic; Arch: archaeal; 

Misc: viral; Unk: unclassified. 

(a) 
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Table 3.3 Summary of genome features for all recovered Blastocystis nuclear genomes 

by four different methods. Features of reference genomes are shaded with light gray, and 

the repeated numbers are in dark gray. The largest genome in each dataset is in bold. 
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Figure 3.4 Genome completeness for recovered Blastocystis nuclear genomes compared 

to the reference genomes by (a) Quast genome fraction and (b) BUSCO single-copy genes 

detected in genome. The x-axis describes the most likely Blastocystis subtype from each 

sample.  

(a) 

 

 

 

 

 

 

 

 

 

 

 

80

90

100

110

120

130

140

150

160

170

0 1 2 3 4 5 6 7

# 
si

n
gl

e-
co

p
y 

ge
n

e
s

Sample

Eukfinder_reads
Eukfinder_contigs
EukRep(1)
Ref_mapping(2)
Complete Reference genome
Draft Reference genome

MH0206
(ST2)

TRV13
(ST2)

TRV02
(ST3)

TRV33
(ST3)

TRV06
(ST4)

TRV25
(ST4)

(b)

50

60

70

80

90

100

0 1 2 3 4 5 6 7

G
en

o
m

e 
fr

ac
ti

o
n

 (
%

)

Sample

Eukfinder_reads

Eukfinder_contigs

EukRep

Ref_mapping

MH0206
(ST2)

TRV13
(ST2)

TRV33
(ST3)

TRV06
(ST4)

TRV25
(ST4)

TRV02
(ST3)



99 

 

Figure 3.5 Number of BUSCO genes shared in the recovered Blastocystis nuclear genomes 

from six human gut metagenomes and the reference genomes. The dark gray vertical bar 

represents the number of shared genes by intersections, the blue horizontal bar shows the 

total number of genes detected in each genome. 
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3.4.6 Blastocystis MRO genomes  

To benchmark the performance of the Eukfinder workflows on recovering 

organelle genomes, Blastocystis MRO genomes reconstructed by using either reads or 

contigs as input for Eukfinder were compared to genomes generated by EukRep, reference 

genome mapping, and NOVOPlasty. The genome length, number of contigs and GC 

content for each recovered MRO genome were listed in Table 3.4. The only dataset with 

incomplete MRO genomes was MH0206, for which Eukfinder, EukRep, and reference-

mapping method yielded genomes with 7 contigs and around 11 Kbp, and NOVOPlasty 

recovered only a short contig with 787 bases. These recovered fragments included regions 

encoding SSU and LSU rRNAs, the proteins nad1, nad4, nad5, nad7, rpl16, and a region 

containing two genes and several tRNAs (Supplementary Figure S7). Blastocystis MRO 

genomes recovered from the remaining five samples by each method tested were complete 

with one contig, except EukRep did not recover the MRO genome for dataset TRV33 and 

NOVOPlasty that generated a genome with two contigs for TRV33. The MRO genome 

from TRV13 had seven nucleotides more than the reference genome, the genomes from 

datasets TRV02 and TRV33 both had a size very close to the ST3 DMP/08-326 MRO 

genome. For ST4 samples, the MRO genome recovered from TRV06 had only two more 

nucleotides than the DMP/02-328 reference genome, while the one from TRV25 had 11 

more nucleotides than the reference genome. 

All the MRO genomes reconstructed by Eukfinder, EukRep, and reference-

mapping methods were manually circularized. NOVOPlasty generated circularized 

organelle genomes for TRV02, TRV06, TRV13, and TRV25. For TRV33, a complete 

genome was manually circularized from the two contigs generated by NOVOPlasty after 

removing a repetitive region. The recovered MRO genomes were aligned to reference 

genomes by BLAST and four circularized complete genomes from each dataset of TRV02, 

TRV13, TRV25, and TRV33 were identical to each other so the results were combined 

into one line for each dataset. For sample TRV06, NOVOPlasty generated an MRO 

genome lacking 11 nucleotides (possibly due to mapping or assembly mistakes; 

Supplementary Figure S8) compared to the ones recovered by other methods. This error-

containing MRO genome was not used for comparison with the reference genomes. 
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Annotation of all of the draft MRO genomes showed conservation in gene content and 

synteny (Supplementary Figure S9). 

When compared to the reference MRO genomes, these retrieved MRO genomes 

shared high identities and few gaps/mismatches to most reference genomes. The recovered 

partial MRO genomes from MH0206 aligned to the ST2 reference genomes with identities 

of 99% (Table 3.5) and 6 gaps, except for NOVOPlasty that recovered a contig with only 

1 gap.  Of these gaps, three were located in the LSU/SSU rRNA coding region, one in 

tRNA and two in protein-coding regions. For the TRV13 MRO genome, it was 99% 

identical to the reference genome with  158 mismatches. It has thirteen gaps relative to the 

reference with three occurring in the LSU/SSU rRNA coding region, six in protein-coding 

regions and four in intergenic regions. Because there are three reference genomes for both 

Blastocystis ST3 and ST4, the resulting genomes from the datasets with the corresponding 

subtype were compared to all the reference genomes. The recovered ST3 MRO genomes 

from TRV02 and TRV33 were 99% identical to DMP/08-326 and DMP/IH478 reference 

genomes but only 96% identical to DMP/08-1043 reference genome (Table 3.6). There 

were fewer than five gaps between these ST3 MRO genomes and the reference genomes 

of DMP/08-326 or DMP/IH478, with at least half of them occurring in intergenic regions.  

Similarly, the ST4 mitochondrial genomes from TRV06 and TRV25 were 99% 

identical to the DMP/02-328 and WR1 reference genomes, respectively, but shared only 

88% identity to the DMP/10-212 reference genome with about 600 gaps (Table 3.7). There 

were only two gaps and four mismatches found between MRO genome recovered from the 

TRV06 dataset and the WR1 reference genome, with two gaps and one mismatch located 

in the LSU rRNA coding region and three mismatches in the protein-coding regions (Table 

3.8). But TRV06 MRO genome had a difference of  two gaps and eight mismatches 

compared to the ST4 reference genome from strain DMP/02-328. Although sharing the 

same percentage of identity, the TRV25 MRO genome had more gaps when aligned with 

the DMP/02-328 and WR1 reference genomes; there were 14 and 16 gaps, respectively, 

with most of them (>10) in intergenic regions. 
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Table 3.4 Summary of genome features for all recovered Blastocystis MRO genomes by 

five different methods. Features of reference genomes are shaded with light gray, and the 

repeated numbers are in dark gray. The genomes with the least bases or no base were 

highlighted in yellow. 
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Table 3.5 Comparison of Blastocystis ST2 MRO genomes recovered by all the methods 

used in this study with the reference genome. Results from TRV13 were the same for all 

methods and are, therefore, only shown in a single line. 
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Table 3.6 Comparison of Blastocystis ST3 MRO genomes recovered in this study with the 

reference genomes. Genomes recovered by different methods had the same sequence for 

ST3 samples, except EukRep did not recover an MRO genome for TRV33. 
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Table 3.7 Comparison of Blastocystis ST4 MRO genomes recovered in this study with the 

reference genomes. MSH: mismatch 
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3.5 DISCUSSION 

Eukfinder is a taxonomy-classification based workflow for microbial eukaryotic 

genome recovery from environmental metagenomes that was developed and applied to six 

human gut metagenomic datasets. For five of these datasets, near-complete (>= 85% 

completeness) Blastocystis nuclear genomes were generated. The smallest nuclear genome 

recovered by Eukfinder was an ST2 genome with 8.8 Mbp (60% completeness) and the 

largest genome was also an ST2 genome with 13.4 Mbp, which is larger than the reference 

Blastocystis ST2 genome. Two ST3 genomes and two ST4 genomes were also recovered 

with 85% to 97% completeness. The recovered genomes with >90% completeness also had 

a small difference (< 0.1%) in GC contents when compared to reference genomes. Due to 

the nature of short-read sequencing and relatively low fold-coverage, the recovered 

genomes tended to be more fragmented than the reference genomes. For the metagenomic 

samples with a higher number of eukaryotic reads (e.g. sample TRV25), the newly 

assembled genomes had numbers of contigs and large N50 values that are comparable to 

the reference genomes. 

Blastocystis nuclear genomes recovered by Eukfinder using WGS reads or MAG 

contigs as input were benchmarked with the genomes reconstructed using EukRep or 

reference genome mapping methods. Genome completeness assessment showed that 

genomes recovered by Eukfinder were more generally complete than those generated by 

EukRep or the reference-mapping method. In some of the datasets (TRV13 and TRV33), 

genomes reconstructed using Eukfinder had larger sizes and more essential single-copy 

genes than the corresponding reference genome. Recovering larger genomes with better 

genome completion than the currently available reference genomes highlights the potential 

benefits of using Eukfinder for robust genome reconstruction, as the Blastocystis ST2 and 

ST3 reference genomes are rough drafts known to be incomplete. Using the specialized 

databases containing as many representative genomes as possible, Eukfinder pre-selects 

the reads from the metagenomic sequencing data or contigs from MAGs based on 

taxonomy classification and retains all the possible eukaryotic-origin reads and contigs 

along with the those that cannot be classified so far to maximize the yields for recovering 

eukaryotic genomes. It does not require a direct reference genome to do the alignment so 

it has the potential to recover genomes from organisms without closely related reference 
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genomes, making it more sensitive than reference mapping methods (Beghini et al, 2017) 

in some situations (e.g., in recovering genomes for Blastocystis ST5). My results also 

showed that the genomes recovered by Eukfinder can generate more complete genomes 

than those recovered by EukRep (West et al., 2018), which uses a machine-learning 

approach to identify contigs from eukaryotes based on k-mer usage. Missing representative 

genomes in their training reference set of genomes for k-mer frequency analysis and/or the 

use of only 5-mers may be potential reasons why EukRep fails to capture some eukaryotic 

contigs found in this analyses.  The taxonomic classification of contigs based on alignment 

of homologous genes in the databases (that are not necessarily identical) likely improve the 

chance of these contigs being included in the eukaryotic group by Eukfinder. 

One surprising difference between the Blastocystis genomes reconstructed in this 

study by reference-mapping and the genome recovered by using reference-mapping 

method of Beghini et al. (2017) comes from analyses of the sample MH0206. They mapped 

the MH0206 metagenomic sequencing file to their cleaned ST2 genome  (11.45 Mbp with 

854 contigs) and obtained a genome with 10.13 Mbp (1671 contigs and N50=8777 bp. 

Table 3.8). Their recovered genome was more complete than the one generated in this study 

(7.70 Mbp, 3343 contigs and N50= 2601 bp) by reference mapping, although the reference 

genome was larger (12.66 Mbp in size). Besides the differences in the pre-processing 

(adapter trimming, quality control trimming, and host reads removal), the Bowtie2 

alignment mode was different between the two studies: Beghini and colleagues used end-

to-end alignment, whereas local alignment was used in this study. This marked difference 

in performance between these two alignment modes in this (and potentially other) cases 

should be carefully investigated in further studies. Meanwhile, this serves as a warning that 

the use of different parameter settings in component software tools of these pipelines can 

lead to very different results, so caution is warranted in interpreting the results obtained in 

this study. 

Blastocystis MRO genomes were also recovered by Eukfinder from six 

metagenomic datasets. Five of these genomes were complete with one circularized contig. 

Although many tools that can reconstruct organelle genomes from metagenomic datasets 

like NOVOPlasty, the benchmark results show that Eukfinder can efficiently recover near-

complete nuclear and complete mitochondrial genomes at the same time for microbial 
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eukaryotes whereas for some datasets NOVOPlasty or EukRep failed to recover partial or 

complete mitochondrial genomes. 

The sizes of the recovered nuclear genomes are related to the number of eukaryotic 

reads that can be detected from the metagenomic dataset. For each subtype that has 

genomes recovered in this study (ST2, ST3, ST4), there were two sets of genomes 

recovered from two datasets. The ones with more Blastocystis reads (TRV13, TRV33, and 

TRV25) always yielded a larger and more complete genome, with GC content more similar 

to the reference genome, relative to samples with fewer reads (e.g., MH0206, TRV02, and 

TRV06). To get near-complete genome recovery, a 90% breadth of coverage with at least 

X=1 (total number of bps mapped to reference genome divided by the genome size of the 

target organism) or at least 400,000 reads that can be classified as originated from the 

organism by Centrifuge is recommended, which is the choosen standard I used for 

recovering genomes from Blastocystis. For other organisms, due to differences in genome 

size, GC content, the minimum numbers of reads or breadth of coverage recommended for 

near-complete genome recovery varies. The total numbers of eukaryotic reads in the 

metagenomic sequencing datasets depend on the sequencing depth, species diversity, and 

the number of eukaryotes in the sample. Observations from the application of Eukfinder to 

animal samples (data not shown) indicate that samples with only a few (<5) eukaryotes and 

one or no unknown eukaryotic species are ideal candidates to recover genomes. With the 

continued decrease in sequencing cost, metagenomic sequencing with deeper sequencing 

depth is possible allowing recovery of more microbial eukaryotic genomes. 

In general, Eukfinder performs well in recovering microbial eukaryotic genomes 

from human gut metagenome datasets. This culture-free genome reconstruction tool can 

be very useful for recovering genomes from difficult-to-culture eukaryotic microbes. This 

method is more time-efficient than culture-based isolation and genome sequencing. It only 

requires DNA extraction from environmental samples and WGS metagenomic sequencing. 

Applying Eukfinder to the large amount of published human/animal gut metagenomes 

currently existing offers potential to rapidly and efficiently reconstruct genomes of 

microbial eukaryotes that colonize the GI tract, even for species or genera whose genomes 

have not been previously characterized.  
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Eukfinder can also be used as a decontamination tool for de novo genome 

assemblies of genomic data obtained from non-axenic cultures of protists. Many microbial 

eukaryotes, like Blastocystis, live in an environment where they closely interact with 

bacteria. It can be very hard to eliminate all the bacterial species before DNA extraction 

and virtually impossible to remove all bacterial DNA afterwards. In these cases, Eukfinder 

can be used to clean the genome assembly from contaminating sequences from bacteria or 

other eukaryotes. Indeed, it has been used for this purpose in genome assemblies produced 

in the Roger Lab and proved to be an efficient tool (data not shown). With the cost decrease 

in metagenomic sequencing using the Nanopore or PacBio platforms, long-read 

sequencing has started to be employed in metagenomic sequencing for environmental 

samples like the human gut or wastewater treatment samples (Suzuki et al. 2019; Che et al. 

2019). These long-read metagenomic datasets can be directly analyzed with the Eukfinder_ 

contigs workflow to facilitate the reconstruction of genomes from microbial eukaryotes. 

However, for this to be maximally effective, the two databases employed by Eukfinder 

should be populated with as many previously characterized genomes from these 

environments as possible.  

Overall, with the increase in number and size in publicly available metagenomes, 

the bioinformatic workflow in Eukfinder can be applied to diverse metagenomic samples 

to retrieve high-quality microbial eukaryotic genomes. This will increase the numbers of 

reference genomes available to aid future metagenomic investigations into the functions, 

physiologies, and evolutionary histories of eukaryotic microbes in the gut microbiome and 

a variety of other ecosystems. 
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Table 3.8 Differences of genome features for Blastocystis ST2 reference genomes and 

genomes recovered from MH0206 dataset between Beghini et al. (2017) and this study. 

Source Genome 
Total size 

(Mbp) 
# contigs N50 GC content 

Beghini et 

al. (2017) 

cleaned ST2 

Reference 

genome 

11.45 854 20,462 53.98 

MH0206 10.13 1671 8,777 54.07 

This study 

cleaned ST2 

Reference 

genome 

12.66 967 20,102 54.2 

MH0206 7.7 3343 2,601 52.04 
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CHAPTER 4 CONCLUSIONS 

WGS metagenome-based bioinformatic workflows were developed to investigate 

the prevalence of the gut protist Blastocystis in human and animal samples and to retrieve 

genomes of microbial eukaryotes from environmental metagenomic sequencing data, e.g., 

Blastocystis from human gut metagenomes. The detection workflow was applied to 996 

human and animal gut metagenome samples. Blastocystis was highly prevalent in non-

industrialized human populations with a specific subtype distribution and a high rate of co-

infections. Amongst animals, Blastocystis had higher colonization frequencies (>50%) in 

baboons and pigs versus chickens and cattle. The compositional and functional changes in 

the human Blastocystis carriers compared to non-carriers were also analyzed. Both 

westernization and subtypes can affect the gut microbiota species composition and 

abundance of their metabolic pathways. Finally, the genome recovery tool, Eukfinder, was 

applied to six human gut metagenomic datasets carrying Blastocystis and retrieved six 

near-complete nuclear genomes and five full-length MRO genomes. From all of these 

analyses a number of interesting novel findings were mad that are discussed in more detail 

below. 

The presence of multiple Blastocystis subtypes (co-infection) in gut samples is 

often underestimated, if not completely neglected (Maloney et al. 2019; Betts et al. 2020). 

The detection workflow developed in this study was able to detect co-infections and found 

an average of 20% and 10% co-infection rates in human and animal positive samples 

respectively, consistent with previous analyses of co-infection rates (Scanlan et al. 2015; 

Betts et al. 2020). Of all cohorts analyzed, the most co-infection occurred in the Tanzanian 

datasets, accounting for ¾ of all positive in these samples. The numbers of each mixed type 

were too few in this study to be permit statistically robust analyses of their impact. The 

workflows described here will be useful for future association analyses of much larger 

metagenome datasets to distinguish the impact of specific mixed Blastocystis subtypes co-

infections on the gut microbiome compared to single-ST infections. 

This was the first study that has investigated Blastocystis in animal gut 

metagenomic samples and the methods developed herein can be applied to other types of 

animals. Besides the epidemiological information on prevalence of Blastocystis subtypes 
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and co-infections, the detection workflow can also obtain full-length SSU rRNA gene 

sequences for phylogenetic analysis. If a sample contains enough Blastocystis reads and 

fewer than three other microbial eukaryotes lacking available reference genomes, the 

Eukfinder workflow can be used to retrieve more genomes of Blastocystis STs even if they 

lack available reference genomes. The detection workflow also has the potential to be used 

for to other microbial eukaryotes, e.g., Giardia and Entamoeba, in gut metagenomic 

samples. 

However, many components of the detection workflow may need to be 

updated/expanded before it can be broadly applied to larger numbers of datasets and 

different organisms. First of all, the quality of the databases still needs to improve since 

some of the eukaryotic reference genomes contain a large number of contaminating 

bacteria reads that can cause taxonomy assignment mistakes for some species (Steinegger 

& Salzberg 2020). Second, the cutoff value for defining a Blastocystis-positive sample in 

human samples needs to be verified using mock community sequencing data with a known 

number of Blastocystis reads to ensure its sensitivity and accuracy. Some of Blastocystis 

positive rates detected by this study differed considerably from the results of Lokmer et al. 

(2019) both in the overall prevalence and in the numbers of different subtypes detected. 

This large difference occurred for one of the three projects analyzed by both studies and 

suggests that applying a universal threshold value for designation of positives may be 

problematic considering  difference in the sequencing depths amongst different projects. 

Lastly, and most importantly, when expanding the workflow to other protists, ‘positive’ 

threshold cutoff values should be investigated and optimized, as each protistan species (or 

genus) having different numbers of available reference genomes and degrees of sequence 

and genome content difference amongst species or strains. 

The difference I found in gut microbiota composition and functional profiles in 

Blastocystis carrier samples compared to non-carriers revealed potential interactions 

between Blastocystis and gut prokaryotes. Archaeal species like Methanobrevibacter 

smithii were significantly associated with presence of Blastocystis, especially in non-

westernized samples. This association is worth further investigation because of M. smithii’s 

important role in hydrogen consumption and methanogenesis. It remains to be determined 



117 

 

if the associations between specific gut bacteria and presence of Blastocystis in western 

carriers are really significant since most of these groups I investigated contained only about 

10 samples. A larger scale comparative analysis between non-western and western carriers 

is needed to investigate this further. 

Recovering genomes of microbial eukaryotes using a metagenomic approach is 

extremely challenging in comparison to recovery of prokaryotic genomes from these kinds 

of data. Eukfinder is an attempt to combine state-of-the-art software tools to generate draft 

eukaryotic genomes of reasonable quality with culture-independent methods. The full-

length Blastocystis MRO genomes produced in this study can be used to build phylogenetic 

trees with highly conserved genes (e.g., the nad gene, Jacob et al., 2016) and investigate 

the phylogenetic relationships amongst different strains of the same ST. The near-complete 

Blastocystis nuclear genomes can be used for gene prediction (although this will be more 

challenging without (meta-)transcriptome sequencing data). If shared genes can be found 

in genomes from different strains from the same or different STs, there is a potential to 

reveal genomic diversity and pathogenicity determinants using phylogenomic analysis. 

Finally, the accumulation of more genome data from the foregoing analyses can help build 

better databases and aid in better detection of Blastocystis subtypes with no reference 

genomes and further retrieval of more genomes. 

In summary, the WGS metagenomic workflows developed in this thesis may prove 

useful in studying the prevalence and genomic diversity of Blastocystis and other protists 

from environmental metagenome sequencing data. Preliminary results show that the 

workflows are sensitive and effective, but this has to be confirmed by further mock 

community analyses and test on much larger datasets. As we continue to improve these 

workflows, it is possible to develop them into an easy-to-install and easy-to-use software 

tools with capability to automatically handle metagenomic data and generate prevalence 

reports and candidate eukaryotic genome assemblies.  
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APPENDIX A – SUPPLEMENTARY TABLES 

Table S1.The host reference genomes downloaded from NCBI. 

Host Genome accession number 

Human GCF_000001405.37 

Baboon GCF_000264685.3 

Cattle GCF_000003055.6 

Chicken GCF_000002315.4 

Pig GCF_000003025.6 

Bacteriophage 

phiX174 
NC_001422.1 
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Table S2. Contigs removed from Blastocystis reference genomes. MRO genomes were 

labelled with a asterisks. 

ST2 JZRJ01000088 * ST6 JZRM01000240 

ST2 JZRJ01000923 ST6 JZRM01000270 

ST3 JZRK01000047 * ST6 JZRM01000285 

ST3 JZRK010000726 ST6 JZRM01000317 

ST3 JZRK01000382 ST6 JZRM01000353 

ST3 JZRK01000623 ST6 JZRM01000399 

ST3 JZRK01000726 ST6 JZRM01000403 

ST3 JZRK01000754 ST6 JZRM01000411 

ST3 JZRK01000820 ST6 JZRM01000419 

ST3 JZRK01000826 ST6 JZRM01000431 

ST3 JZRK01000839 ST6 JZRM01000456 

ST6 JZRM01000006 ST6 JZRM01000464 

ST6 JZRM01000011 ST6 JZRM01000480 

ST6 JZRM01000013 ST6 JZRM01000507 

ST6 JZRM01000016 ST6 JZRM01000535 

ST6 JZRM01000019 ST6 JZRM01000542 

ST6 JZRM01000022 ST6 JZRM01000570 

ST6 JZRM01000023 ST6 JZRM01000598 

ST6 JZRM01000027 ST6 JZRM01000617 

ST6 JZRM01000029 ST6 JZRM01000659 

ST6 JZRM01000030 ST6 JZRM01000755 

ST6 JZRM01000035 * ST6 JZRM01000790 

ST6 JZRM01000036 ST6 JZRM01000826 

ST6 JZRM01000052 ST6 JZRM01000830 

ST6 JZRM01000058 ST6 JZRM01000879 

ST6 JZRM01000081 ST8 JZRN01000022 * 

ST6 JZRM01000084 ST8 JZRN01000233 

ST6 JZRM01000095 ST8 JZRN01000747 

ST6 JZRM01000101 ST8 JZRN01000879 

ST6 JZRM01000108 ST9 JZRO01000015 * 

ST6 JZRM01000117 ST9 JZRO01000142 

ST6 JZRM01000122 ST9 JZRO01000228 

ST6 JZRM01000123 ST9 JZRO01000234 

ST6 JZRM01000137 ST9 JZRO01000235 

ST6 JZRM01000150 ST9 JZRO01000417 

ST6 JZRM01000163 ST9 JZRO01000444 

ST6 JZRM01000189 ST9 JZRO01000788 

ST6 JZRM01000198 ST9 JZRO01000789 

ST6 JZRM01000214 ST9 JZRO01000859 

ST6 JZRM01000230 ST9 JZRO01000871 
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Table S3. Numbers of genomes in each group in the specialized databases. 

Group 
# genomes in centrifuge DB 

“database 1” 

# genomes in PLAST DB 

“database 2” 

Archaea 3,662 211 

Bacteria 10,488 747 

Eukaryotes 1,036 126 

EukPathDB 244 61 

Mitochondria 10,830 111 

Virus 6,136 8,100 

Total 32,402 9,345 

 

Table S4. Prevalence for each Blastocystis subtype in human samples. 

 # samples with Blastocysits # Total 

samples Projects ST1 ST2 ST3 ST4 ST7 ST8 Mix All 

H1_Cameroon 14 4 20    10 48 57 

H2_Ethiopia 13 5 5    13 36 50 

H3_IDN, Liberia 9 2 6     17 24 

H4_Madagascar 23 10 19    4 56 111 

H5_Peru 8 12 4    6 30 36 

H5_USA 1  2 2  1  6 22 

H6_Sweden 5 2 8 6  1  22 35 

H7 _Sweden  1  1    2 21 

H8_Tanzania 2 3     18 23 27 

H8_Italy   1     1 11 

H9_USA        0 36 

H10_USA 3 4 6  1   14 55 

Continents          

Africa 54 24 44 0   45 167 249 

Asia 7 0 6 0    13 20 

Europe 5 3 9 7  1  25 67 

N America 4 4 8 2 1 1  20 113 

S America 8 12 4    6 30 36 
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Table S5. Prevalence for each Blastocystis subtype in animal samples. 

 # samples with Blastocysits # Total 

samples Projects ST1 ST3 ST5 ST6 ST7 ST10 ST13 ST15 Mix All 

A1_Baboon 

Kenya 
11 13        24 48 

A2_Cattle 

China 
  1   3    4 30 

A3_Cattle 

France 
         0 25 

A4_Cattle 

Italy 
         0 16 

A5_Cattle 

USA 
5 1       2 8 29 

A6_Chicken 

China 
         0 20 

A7_CCP 

China 
  1 1 2 1  2 1 8 13 

A8 _Pig 

CDF 
4 6 135     34 25 204 216 

A9_Pig 

China 
  4     2  6 8 

A10_Pig 

Denmark 
2 4 14     9  29 35 

A11_Pig 

Japan, 

Gabon 

  2    1 1 2 6 6 

A12_Pig 

German 
  1     1  2 22 

A13_Pig 

Spain 
1  4     2  7 8 

Animals            

Baboons 11 13        24 48 

Cattle 5 1 1   4   3 14 104 

Chickens    1 2     3 24 

Pigs 7 10 161    1 49 29 255 300 
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Table S6. Bacterial species abundances which differed in Blastocystis carriers (positive) 

and non-carriers (negative). Between group differences were evaluated with two-tailed 

Wilch's t-tests with Storey's FDR corrections(FDR<0.05). Rows shaded in yellow 

represent species enriched in Blastocystis carrier group, while rows shaded in blue 

represent those enriched  in non-carriers. 

Phylum Species 

Proportion of sequences 

Positive 

Mean ± std. dev (%) 

Negative 

Mean ± std. dev (%) 

Firmicutes Butyrivibrio crossotus 1.37 ± 3.10 0.03 ± 0.24 

Firmicutes Eubacterium eligens 1.87 ± 2.96 0.54 ± 1.14 

Firmicutes 
Faecalibacterium 

prausnitzii 
15.72 ± 11.46 9.57 ± 9.99 

Firmicutes 
Phascolarctobacterium 

succinatutens 
3.60 ± 5.98 0.86 ± 2.09 

Bacteroidetes Prevotella copri 12.76 ± 13.99 7.47 ± 15.03 

Firmicutes 
Ruminococcus 

champanellensis 
0.49 ± 1.74 0.00 ± 0.01 

Spirochaetes Treponema succinifaciens 5.04 ± 11.44 0.06 ± 0.51 

Firmicutes Eubacterium biforme 1.15 ± 2.66 0.32 ± 0.73 

Euryarchaeota Methanobrevibacter smithii 1.60 ± 4.29 0.50 ± 1.17 

Euryarchaeota 
Unclassified 

Methanobrevibacter 
0.33 ± 0.75 0.02 ± 0.07 

Firmicutes Unclassified Oscillibacter 0.08 ± 0.22 0.30 ± 0.56 

Bacteroidetes Alistipes putredinis 0.86 ± 2.14 2.05 ± 3.04 

Bacteroidetes Bacteroides uniformis 0.68 ± 1.65 3.72 ± 6.25 

Firmicutes Dialister invisus 0.21 ± 1.03 1.99 ± 5.32 

Bacteroidetes Parabacteroides distasonis 0.11 ± 0.39 0.40 ± 0.77 

Firmicutes 
Ruminococcus sp. 

5_1_39BFAA 
0.30 ± 0.54 1.44 ± 2.14 

Firmicutes Ruminococcus torques 1.00 ± 1.44 2.48 ± 2.77 
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Table S7. Species abundances which differed in Blastocystis carriers (positive) and non-

carriers (negative) with regarding to non-westernized (NonW) or westernized (W) 

individuals. Between group differences were evaluated with Kruskal-Wallis tests with 

Benjamini-Hochberg FDR corrections (FDR<0.05). Pos: positive, Neg: Negative. 

Phylum Species 

Mean of proportion of sequences  (%) 

NonW 

_Pos 

NonW 

_Neg 
W_Pos 

W 

_Neg 

Actinobacteria Bifidobacterium bifidum 0.034 2.021 0.414 0.32 

Actinobacteria Bifidobacterium breve 0 0.13 0 0.009 

Actinobacteria Bifidobacterium longum 0.17 9.488 0.581 1.227 

Actinobacteria Gordonibacter pamelaeae 0.001 0.001 0.005 0.019 

Actinobacteria Unclassified Olsenella 0.024 0.005 0 0.001 

Ascomycota Saccharomyces cerevisiae 0 0 0.003 0 

Bacteroidetes Alistipes finegoldii 0.010 0.064 0.515 0.302 

Bacteroidetes Alistipes onderdonkii 0.050 0.099 0.699 0.701 

Bacteroidetes Alistipes putredinis 0.068 0.269 3.651 2.740 

Bacteroidetes Alistipes shahii 0.062 0.297 1.034 0.459 

Bacteroidetes Bacteroidales bacterium ph8 0.022 0.008 0.397 0.214 

Bacteroidetes Bacteroides caccae 0.119 0.036 1.510 1.306 

Bacteroidetes Bacteroides cellulosilyticus 0.027 0.002 1.863 0.840 

Bacteroidetes Bacteroides faecis 0.003 0.002 0.290 0.098 

Bacteroidetes Bacteroides massiliensis 0.014 0 0.814 0.639 

Bacteroidetes Bacteroides ovatus 0.066 0.058 1.451 1.341 

Bacteroidetes Bacteroides salyersiae 0.000 0.001 0.228 0.038 

Bacteroidetes Bacteroides stercoris 0.005 0.036 1.671 0.930 

Bacteroidetes Bacteroides uniformis 0.097 0.111 2.735 5.123 

Bacteroidetes Bacteroides vulgatus 0.181 0.138 2.536 1.859 

Bacteroidetes Bacteroides xylanisolvens 0.010 0.042 0.395 0.147 

Bacteroidetes Barnesiella intestinihominis 0.032 0.391 1.935 0.750 

Bacteroidetes Coprobacter fastidiosus 0 0 0.043 0.021 

Bacteroidetes Odoribacter splanchnicus 0.161 0.031 1.537 0.462 

Bacteroidetes Parabacteroides distasonis 0.036 0.088 0.357 0.518 

Bacteroidetes Parabacteroides merdae 0.138 0.153 1.611 0.786 

Bacteroidetes Prevotella copri 14.982 19.386 4.883 2.830 

Bacteroidetes Prevotella stercorea 3.293 4.332 0.000 0.159 

Bacteroidetes Unclassified Paraprevotella 0.015 0.037 0.367 0.084 

Euryarchaeota Methanobrevibacter smithii 2.023 0.268 0.114 0.590 

Euryarchaeota Unclassified 

Methanobrevibacter 
0.427 0.014 0.002 0.023 

Firmicutes Clostridium leptum 0.003 0.020 0.080 0.202 

Firmicutes Coprococcus catus 0.416 0.085 0.165 0.267 

Firmicutes Eubacterium ventriosum 0.036 0.016 0.424 0.256 

Firmicutes Faecalibacterium prausnitzii 17.893 12.781 8.018 8.321 
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Phylum Species 

Mean of proportion of sequences  (%) 
NonW 

_Pos 
NonW 

_Neg 
W_Pos 

W 

_Neg 
Firmicutes Flavonifractor plautii 0 0.005 0.010 0.061 

Firmicutes Holdemania filiformis 0 0 0.012 0.020 

Firmicutes Lachnospiraceae bacterium 

7_1_58FAA 
0.014 0 0.053 0.082 

Firmicutes Phascolarctobacterium 

succinatutens 
4.569 1.348 0.173 0.668 

Firmicutes Pseudoflavonifractor capillosus 0 0 0.002 0.008 

Firmicutes Ruminococcus albus 0 0 0.002 0.002 

Firmicutes Ruminococcus sp 5_1_39BFAA 0.226 0.082 0.547 1.973 

Firmicutes Ruminococcus torques 1.163 1.411 0.425 2.891 

Firmicutes Unclassified Oscillibacter 0.041 0.037 0.234 0.406 

Proteobacteria Parasutterella 

excrementihominis 
0.004 0.006 0.065 0.012 

Spirochaetes Treponema succinifaciens 6.458 0.231 0 0 
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Table S8. Species abundances which differed in Blastocystis ST infections and non-

carriers (Neg: Negative). Between group differences were evaluated with Kruskal-Wallis 

tests with Benjamini-Hochberg FDR corrections (FDR<0.05). Species names are shaded 

based on the phylum groups: Bacteroidetes (green), Firmicutes (yellow), Proteobacteria 

(orange), Spirochaetes (blue), Actinobacteria (gray). 

Species 
Mean of proportion of sequences  (%) 

Neg ST1 ST2 ST3 ST4 Mixed 

Barnesiella 

intestinihominis 0.650 0.237 0.122 0.402 3.186 6.72E-03 

Alistipes putredinis 2.047 0.398 0.296 0.825 4.813 2.42E-03 

Alistipes shahii 0.414 0.124 0.171 0.283 1.312 0.036 

Bacteroides uniformis 3.717 0.213 0.196 1.056 2.770 0.056 

Bacteroides stercoris 0.679 0.012 0.042 0.552 2.475 9.54E-05 

Prevotella intermedia 0 0 0 0 4.39E-04 0 

Parabacteroides 

distasonis 0.398 0.130 0.026 0.032 0.678 0.048 

Odoribacter splanchnicus 0.341 0.485 0.251 0.500 1.491 0.054 

Clostridium leptum 0.151 1.79E-03 3.70E-03 0.024 0.026 2.19E-03 

Ruminococcus sp 

5_1_39BFAA 1.443 0.189 0.267 0.266 0.656 0.215 

Eubacterium eligens 0.536 2.115 0.641 2.329 3.630 1.414 

Phascolarctobacterium 

succinatutens 0.859 3.259 4.809 2.763 6.39E-04 5.587 

Ruminococcus torques 2.476 1.296 1.375 0.950 0.330 0.768 

Butyrivibrio crossotus 0.030 1.954 2.187 0.632 0.732 1.601 

Ruminococcus 

flavefaciens 1.28E-03 2.01E-02 1.69E-03 1.99E-03 1.80E-04 3.38E-03 

Ruminococcus 

champanellensis 2.29E-03 0.193 0.292 0.322 5.26E-03 1.357 

Parasutterella 

excrementihominis 0.010 3.40E-03 5.65E-03 0.022 0.113 2.43E-04 

Burkholderiales 

bacterium 1_1_47 7.31E-03 4.54E-03 0.017 7.83E-03 0.200 0 

Desulfovibrio piger 0.026 0.328 0.084 0.215 0.026 0.098 

Treponema 

succinifaciens 0.065 8.312 4.455 3.545 0 6.560 

Unclassified Brachyspira 1.57E-03 0.032 0.036 7.41E-03 4.62E-03 0.026 

Unclassified Olsenella 2.09E-03 0.024 0.023 0.015 0 0.022 

Unclassified 

Methanobrevibacter 0.020 0.220 0.730 0.223 0 0.450 
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APPENDIX B – SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

Figure S1. Enrichment of microbial species when Blastocystis presence or absence  in 

westernized or non-westernized groups. Analyzed using LEfSe tool at effect size of 3.5. 

Purple colour for westernized carriers (W_Positive), blue for westernized non-carriers 

(W_Negative), green for non-westernized carriers  (NonW_Positive), and red for non-

westernized non-carriers (NonW_Negative). 
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Figure S2. Pairwise comparison of enrichment or depletion of microbial species when 

Blastocystis presence or absence between (a) non-westernized (NonW) positive and 

westernized positive individuals, (b) non-westernized positive and non-westernized 

negative, and (c) westernized positive and westernized negative. Statistic test used: 

Welch’s t-test with Storey FDR (FDR < 0.05).  

  (a) (b) 

(c) 
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Figure S3 Heatmap of enrichment or depletion of microbial species for bacterial or 

archaeal species among groups of Blastocystis STs and Blastocystis-negative samples in 

non-westernized (NW) or westernized (W) individuals. The rows and columns were 

clustered using complete linkage clustering of similarities in similarity microbial species 

abundance using the correlation distance function and the Bray-Curtis distance metric, 

respectively.Groups with less than five samples were included. Among group differences 

were evaluated with ANVOA test without corrections (p-value<0.05). The number of 

samples in each group was labelled in the brackets. Neg: Blastocystis absent.  
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Figure S4. Pairwise comparison of enrichment or depletion of gut microbiome pathways 

associated with Blastocystis presence or absence between (a) non-westernized (NonW) 

positive and westernized (W) positive individuals, (b) westernized positive and 

westernized negative, and (c) non-westernized positive and non-westernized negative. 

Statistic test used: Welch’s t-test with Benjamini-Hochberg FDR correction (FDR < 0.05).  

(a) 
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(b) 
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(c) 
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Figure S5. Percentage of unaligned reads in the MetaPhlan2 and HUMAnN2 analyses, 

(a) comparison of two steps, nucleotide-level mapping and translation-level mapping and 

comparison between Blastocystis carriers (Positive) and non-carriers in westernized and 

non-westernized samples in (b) nucleotide-level mapping step and (c) translation-level 

mapping step. Statistical test:Student’s t-test 
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Figure S6. The schematic explanation of how eukaryotic contigs are selected based on 

MyCC binning, Centrifuge, and PLAST results. (a) – (c) represent the plots of cluster maps 

generated by MyCC based on marker genes, k-mer usage and depth of coverage for each 

k-mer (marked under the box). The geometric shapes (triangles, squares, and circles) 

represent contigs in different clusters. Contigs with a hit to eukaryotes by Centrifuge or 

PLAST are shaded in gray. Digital numbers in each plot represent the cluster number. The 

numbers of potential eukaryotic clusters are highlighted yellow. Alphabet letters A – E 

represent the contigs that appeared at least once in the potential eukaryotic clusters. To be 

included in a eukaryotic genome, a contig has to appear in at least twice in the potential 

eukaryotic clusters across different values of k-mers (Contigs A-C). Note that 56mer 

represents a combination of 5mer and 6mer. 

(a)                                             (b)                                          (c) 

 

 

Contig 
Centrifuge 

results 

PLAST 

results 

Cluster Number of 

the contig in MyCC 
Times hit 

potential Euk 

bin 

Included/Excluded 

from final Euk 

genome 4mer 5mer 56mer 

A Euk - 1 2 2 3 Included 

B - - 1 2 2 3 Included 

C - - 1 1 2 2 Included 

D - - 3 3 2 1 Excluded 

E - Euk 2 1 3 0 Excluded 
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Figure S7. The size distribution of the contigs from the draft genomes generated by 

Eukfinder approaches and EukRep for (a) TRV13 and (b) TRV25samples. 
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Figure S8. BRIG BLAST analysis of the MRO genomes recovered by difference 

methods from dataset MH0206 against ST2 reference genome. The inner-most ring 

represents the ST2 Fleming reference genome with length, followed by the GC content. 

Outer rings with colours show the recovered genome fragments. Black labels and arcs 

indicate the rRNA and protein-coding regions. Gray labels and arcs indicate tRNA 

regions.  
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Figure S9. The sequence reads mapping against the TRV06 MRO genome recovered by 

NOVOPlasty with five regions of insertion to the genomes indicating the potential errors 

in the recovered genome. (a) IGV view of read mapping against the NOVOPlasty generated 

MRO genome. “I” indicates an insertion. (b) Alignment of four recovered TRV06 MRO 

genomes with two reference genomes shows the gaps with missing 7 bps on the genome 

generated by NOVOPlasty. A zoom-in view for mapped reads to MRO genome recovered 

by (c) NOVOPlasty and (d) Eukfinder_reads. 

(a) 

 

(b) 
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(c) 

 

(d) 
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Figure S10. Genome maps of Blastocystis ST3 MRO genomes recovered from (a) TRV02 

and (b) TRV33 datasets. OGDraw v1.2 was used to draw the annotated MRO genome. The 

inner gray circular graph shows GC content with 0% on the outside and 100% on the inside 

and the central line represents 50% GC. Genes on the outer circle are transcribed in an 

anticlockwise direction. 

(a) 

 

 

 

0% GC 

100% GC 
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