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Abstract

Causal inference attempts to attribute a causal mechanism to a treatment in an

observational study. Attributing cause is a major focus of research in bio-statistics

and application to observational biomedical studies. There have been a number of

different proposals as to how causal inference should be carried out. In this thesis, two

methods - propensity score adjustment and graphical causal modeling – are explored

through application to an observational data set.

The data set concerns several hundred pediatric patients with epilepsy collected

over thirty plus years at the IWK hospital. The primary goal of the thesis is to

identify which factors are important in determining whether patients remain on anti-

epileptic medication at the end of follow up. The basic non-causal model – logistic

regression, with or without stepwise selection - identifies a number of significant pre-

dictors in addition to the nominal treatment variable, which is the indicator of normal

neurological status.

In an observational study the primary difficulty in attributing a causal mechanism

to the treatment is that treatment groups are typically unbalanced with respect to

possible confounders. One approach is to rectify the imbalance through the use of

so-called balancing scores. The most generally used balancing score is the propen-

sity score. Matched estimates of the treatment effect are obtained after matching

treatment and control groups with respect to the propensity score.
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More recently, directed acyclic graphical models (DAGs) have been proposed as

a means to carry out causal inference. Among other things, the DAG provides in-

formation on which variables should not be used in the conditioning set. Several

methods have been proposed to estimate the DAG, or an equivalence class of DAGs,

underlying an observational data set. Some basic methods for estimating the DAG

are introduced, and the “backdoor criterion” - a sufficient condition for identifying

confounders which should not be included in the model – is applied. The resulting

model is dramatically simplified as compared to the model selected using backwards

elimination but has some commonality with a model estimated using propensity score

matching.
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Chapter 1

Introduction

1.1 Background

What is causation and why is it important in statistics? The essence of causal

analysis is in identifying causal mechanisms and estimating the magnitude of causal

effects. We would like to answer questions such as “Why are males better at engineer-

ing than females ?” “Is smoking the major cause of lung cancer?” “How effective is a

given treatment in preventing disease?” These types of questions all focus on causal

mechanisms.

One definition of a causal relationship is “a relationship between two events where

one event is affected by another”, in words, causation indicates that an event affects

an outcome. We desire to understand the mechanism leading to the outcome. In this

thesis we will explore several methods to assess causation.

It is often difficult to distinguish between correlation and causation. An associa-

tion or correlation among variables simply indicates that their values shift together.

It does not necessarily suggest that changes in one variable cause changes in the other

variable. The expression often used is “correlation does not imply causation.” On the

other hand a causal relationship will lead to correlation.

1
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Why is estimating a causal effect so important? Is correlation not good enough

to identify relationships? Correlation may describe some of the relationship between

variables. However, there are situations when we want to intentionally affect an

outcome variables by changing a treatment variable. For example if studying does

not cause an increase in test scores, then there’s no point in studying. If a medicine

does not cause an improvement in your health or ward off disease, there is no reason

to take it. Therefore, understanding causal mechanisms is quite important, and

correlations are insufficient to identify causal relationships.

Causal analysis plays a prominent role in a variety of fields, and particularly

important in biostatistics, epidemiology, and medical research.

A concept that needs to be introduced is that of a causal model. It is a visualized

graphical way to illustrate the causal relationship among a set of variables. It uses

arrows and nodes to show how variables affect each other.

In next chapter, we will start with some new terminologies and concepts associated

with causal effects.

1.2 Data set

The data set being used in the thesis concerns epilepsy in pediatric patients. The

goal of the study is to develop causal models whether or not subjects followed and

treated for epilepsy will be in remission at the end of followup, where remission is

defined as not being on anti-epileptic medication. More specifically, we would like

to determine what factors determine the status of taking anti-epileptic drugs, and if
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one can control the outcome by altering related covariates. The unfiltered original

data set contains 463 variables with 554 subjects. The predictor variables cover wide

range of types, including binary, nominal, and ordinal variables.

A subset of the dataset consisting of 16 variables was analysed in Camfield et al.

(2016). We further reduced that dataset by removing 3 more variables containing a

substantial number of missing values, so our final analysis was based on 13 variables

of primary interest.

The data set was collected over a number of years, and is observational in nature,

with no well defined treatment or outcome variable. We have focused attention on

a particular outcome (remission at end of followup), and have identified neurological

status (normal or abnormal) as a treatment variable.

In a randomized controlled experiment the treatment would be randomized to

subjects, after which the outcome is observed. In this case the effect of treatment

could be estimated as the difference in proportion of subjects in remission between

treatment (neurological status=normal) and control (neurological status=abnormal)

groups. The most important distinction between a controlled, randomized trail and

an observational study is that the treatment is not randomized in an observational

study. The advantage of a randomized, controlled study is that the process of ran-

domization balances the treatment and control groups on average with respect to all

other covariates, and in this way leads to an estimated relationship between treatment

and outcome which is causal. In an observational study the treatment is observed,
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not randomized, typically with many other covariates. The association between treat-

ment and outcome may be due to the treatment causing the outcome, or it may be

due to some other covariates which influence both treatment and outcome. For exam-

ple, a particular genetic cause for the epilepsy might lead to an abnromal neurological

status. The epilepsy might be successfully treated with anti-epileptic medicine, but

never cured as it is genetic in origin, so a patient carrying the disease causing gene

will typically never be in remission. In this case the association between treatment

and outcome is not due to direct causation.

Camfield et al. (2016) used logistic regression and ordinal logistic regression to

model a number of epilepsy outcomes, with an emphasis on social outcomes. Without

further adjustment, logistic regression does not estimate a causal model. The goal of

the present study is compare causal and non-causal estimates by suitably adjusting

the logistic regression model.

Table 1.1: Data Set Variable List
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The outcome variable of interest is the binary indicator of whether or not a subject

is in remission at the end of followup, which takes the value 1 if subject was on anti-

epileptics drugs at end of followup, and 0 if the subject was not on anti-epileptic

drugs at the end of followup. Table 1.1 shows the predictor variables involved in

the study. The data consist of the triples (Yi, Zi, Xi), i = 1, ..., n. We assume the

outcome variable Y and the treatment assigned Z are random, while X is fixed

covariate. While Z is also a covariate, it distinguished from X in that Z represents

the treatment variable of interest, while X denotes a vector of covariates which will

be used to adjust the relationship between outcome Y and treatment Z. Let Y1i

and Y0i be the responses of subject i after having received the treatment and control,

respectively. The causal effect of the treatment on subject i is Y1i − Y0i, which will

typically depend on the covariates Xi. Of course, the causal effect on subject i cannot

be estimated, as only one of Y1i or Y0i is observed for subject i, depending on whether

or not Zi = 1 or Zi = 0. The two outcomes are referred to in the causal analysis

literature as counterfactual outcomes. The average causal effect can be estimated

under appropriate assumptions.

There are several issues involved in causal inference that are not encountered in

non-causal analysis. Most importantly, what distinguishes a causal from a non-causal

effect, and how can the causal effect be estimated. Causal graphs are central to much

of modern causal inference.
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1.3 Thesis Structure

In Chapter 2, we review the use of logistic regression analysis for estimating non-causal

effects. In Chapter 3 we introduce an algorithm called propensity score matching

that has been use for causal inference, and apply the method to the seizure data.

Chapter 4 provides an introduction to graphical methods of causal inference, including

some important terminology, rules and algorithms, and these ideas are applied to the

neurological data. Chapter 5 summarizes and generalizes some results, and makes

suggestions for further work.



Chapter 2

Non-causal modeling using logistic regression

Logistic regression(Wright (1995)) is an appropriate method when people have large

data set by hand, the dependent variable is dichotomous, and there are one or more

nominal or interval level predictor variables. The types of questions that logistic

regression can answer is something like how does the probability of getting lung

cancer (yes vs. no) change for every additional pound a person is overweight and for

every pack of cigarettes smoked per day? Do body weight and age have an influence

on the probability of having a heart attack? Logistic regression seems a reasonable

starting point to examine the effects of predictor variables on a binary dependent

variable.

Logistic regression has two major assumptions: (1) the outcome variable should

be dichotomous in nature and (2) there should ideally be no high correlations among

the predictor variables. The second assumption is quite influential and this restriction

limits the usefulness of the results in assessing causal structure. Table 2.1 gives the

logistic regression output for the epilepsy data set.

The logistic regression model is

log(p/(1− p)) = β0 + β1X1 + β2X2 + ...+ βnXn

7
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Table 2.1: Logistic regression output using remission as the outcome variable

The estimated coefficients are estimates of the βj’s, can be used to estimate log(p/(1−

p)), and by transforming, to estimate the probability of success (remission), p =

P (aedend = 1).

These estimates tell the amount of increase in the predicted log of odds for a unit

increase in the predictors. They are often difficult to interpret, so they are often

converted into odds ratios. In this thesis we are primarily interest in knowing which

covariates should be included in the model, and so we just work on the logit scale.

Table 2.1 lists all predictor variables with their estimated coefficients. We can

observe that intellnormal, neuronormal, neversec and agefirst are all very significant,

but the model also includes a number of non-significant variables. For example, the

effect of neuronormal, measured on the logit scale, is -.8809, and the effect is judged

to be highly significant (p=.000486).

As it is used here the logistic model is not a causal model. The p-values compare
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two models - a full model with all predictors included, and a reduced model with all

but the predictor of interest included. As such, the logistic regression estimates the

importance of each variable when entered last in the regression equation.

We would like to reduce the model by removing predictor variables which are not

important. There are a variety of methods to do this. As will be seen in chapter

4, causal graphical models provide one way to determine which predictors should be

kept. Here I have used backwards stepwise elimination beginning with the full model

in table 2.1 to do model selection. Table 2.2 shows the estimated effects after using

backwards elimination for model reduction.

Comparing table 2.1 and table 2.2, the estimated coefficients in the reduced model

are similar to those from the full model. intellnormal, neuronormal, neversec and

neversec are all still highly significant, as is now focal.

Model reduction shows similar results of which variables we should include when

doing analysis.

Table 2.2: Estimated coefficients after stepwise regression using backwards elimina-
tion

Backwards stepwise regression(Austin (2008)), also known as backwards elimina-

tion regression, is a stepwise regression approach that begins with a full model and at
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each step gradually eliminates variables from the regression model to find a reduced

model that best explains the data. The stepwise procedure in R uses the Akaike In-

formation Criterion (AIC) to assess the fit, removing at each step that variable whose

removal least affects the model fit, until no further variables can be removed. AIC

gives an estimate of the quality of each model relative to other models, with smaller

values of AIC indicating better model fit.

Table 2.3: Importance of variables after backwards elimination

The AIC for the unreduced model was 613.56. After stepwise elimination, the

model indicated in table 2.2 has AIC=607.7. Table 2.3 shows the AIC for the collec-

tion of models found by removing a single predictor from the model in table 2.2 Ac-

cording to the AIC criterion, no additional variable should be removed. Furthermore,

the AIC values show the relative importance of the retained values. Intellnormal is

the most important predictor in the reduced model, as its removal increases AIC the

most. The ordering of importance based on AIC in table 2.3 is similar to the ordering

using p-values in Table 2.2.

Note that reduced model still contains non-significant variables based on z-tests.
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For example, nevergtc (p=.119), surgeryno (p=.070) and poorinc (p=.057).

I will show in chapter 4 how graphical models provide an alternative method to

do model reduction. In chapter 3, I will show how matched logistic regression can

remove the need to include all but the treatment variable in the logistic regression.

The marginal model considers only the treatment (here neuronormal) and outcome

variables. The logistic regression output for this model is included in figure 2.4. The

estimated effect size (-1.39) is larger in absolute value than for the full and reduced

models considered in tables 2.1 and 2.2, which suggests that part of the marginal effect

size is accounted for by correlation with other predictors which have been included

in the larger models. This would not the the case if the design was orthogonal, that

is, when the predictors are uncorrelated.

Table 2.4: Logistic regression estimates for marginal model using only “neuronormal”



Chapter 3

Causal modeling using propensity score matching

The concept of propensity score matching (PSM) was first introduced by Rosen-

baum and Rubin (1983) in a paper entitled “The Central Role of the Propensity Score

in Observational Studies for Casual Effects”, and it has become very popular recent

years. Initially propensity score methods were developed because researchers in many

fields were only able to do observational studies. Random samples of subjects would

be drawn and a number of variables of interest measured. Investigators had no con-

trol of the various independent variables and covariates, and subjects with different

covariate profiles were unlikely to have equal probabilities of receiving the treatment.

It is very likely that there are large differences on corresponding covariates between

control and treatment group that may cause inaccurate and misleading results in

assessing the effect of treatment on outcome.

If we want to correctly estimate treatment effects on a binary outcome in obser-

vational studies, how do we control the assignment to treatment group and control

group? How do we alter other covariates to keep them constant so that we can simply

compare outcomes among units that received the treatment versus those that did not.

Some details and implementations will be addressed in this chapter.

12
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3.1 Implementation

In an observational study, with outcome Y and binary treatment variable Z (1 for

treatment, 0 for control), and covariates X, the propensity score, here denoted as

φ(x), is defined as

φ(x) = P (Z = 1|X = x)

This was first defined by Rosenbaum and Rubin (1983) as the conditional probability

that the subject receives the treatment given the covariates. The average treatment

effects (ATE) is the difference between the outcomes of treated and control obser-

vations. Where Y1 is a subject’s response under the treatment (Z = 1), Y0 is the

response under the the control (Z = 0), the treatment effect is ∆ = Y1 − Y2, and the

average treatment effect for subjects with covariate pattern X is

ATE(X) = E(∆) = E[Y1|X,Z = 1]− E[Y0|X,Z = 0]

If the outcome variable Y is binary (which is true for the present example where

Y denotes the indicator that the subject is in remission at the end of followup), then

E(Y ) = 0 × P (Y = 0) + 1 × P (Y = 1) = P (Y = 1), and the the average treatment

effect is the difference of the probabilities of remission (Y = 1) in the treatment

(Z = 1) and control (Z = 0) populations.

In a randomized experiment, the average treatment effect can be estimated be-

cause the covariates of the experimental units in the two populations corresponding

to Z = 1 and Z = 0 are expected to be similar, on average, due to random allocation

of treatment to experimental units. For example say a researcher wants to test the
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effect of a drug on lab rats. He randomly divides the rats in two groups and tests

the effect of the drug in the treatment group and in the control group. As it is an

experiment, everything is controlled by the experimenter. For example, all of the rats

can be genetically the same and grown in the same environment, so she knows that

any differences on the outcome between the groups will be due to the drug that she

has given them. However this cannot be done with observational study where the

experimental units in treatment and control groups are highly likely differ due to the

distributions of covariates in the treatment and control groups.

Dawid (1979) developed the notion of a balancing score b(x), which is a function

of the observed covariates, and for which the conditional distribution of covariates X,

given b(x), is the same for treated and control units. David (1979) used the following

notation for this:

x ⊥ z|b(x)

It is clear that x itself is a balancing score, as given x, the distribution of x is fixed for

both treatment and control units, that is, conditional on b(x) = x, the distribution

of X is independent of z. Rosenbaum and Rubin(1983) prove that the propensity

score φ(x) = P (Z = 1|x) is a balancing score under the assumption that treatment

assignment is strongly ignorable, and furthermore, that any other balancing score

must be a function of the propensity score. In a randomized experiment it is assumed

that X includes all covariates used to assign treatments, and possible related to the

response (Y1, Y0). Formally, in a randomized trial, the treatment assignment and
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responses are assumed to be conditionally independent given X = x, that is

(Y1, Y0) ⊥ Z|x

where

0 < P (Z = 1|X = x) < 1

for all x

When treatment assignment is strongly ignorable given covariates x, we will just

say it is strongly ignorable. In plain words, strong ignorability given x means that

(a) all the possible confounding phenomena (in the sense that they influence both Y

and Z) are measured in X, so that conditioning on X removes the direct dependence

between Y and Z. (b) there is a nonzero probability of a unit with covariates X

receiving either treatment. If a treatment assignment is strongly ignorable given x,

then it is strongly ignorable given any balancing score b(x); thus, in particular, the

treatment assignment is strongly ignorable given φ(x).

Combining these ideas, gives a justification for the idea of propensity score match-

ing. For a given propensity score φ(x), suppose that we randomly sample two units

from the entire population, one of which is a treatment unit and the other which is a

control unit. This is called a matched pair. Strongly ignorable treatment assignment

implies that

E[Y1|φ(x), z = 1]− E[Y0|φ(x), z = 0] = E[Y1|φ(x)]− E[Y0|φ(x)] = E[Y1 − Y0|φ(x)]

Then by the law of iterated expectations,

Eφ(x)E[Y1|φ(x), z = 1]− Eφ(x)[Y0|φ(x), z = 0] = Eφ(x)E[Y1 − Y0|φ(x)] = E[Y1 − Y0]
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Hence, the mean of the differences between the effects in matched pairs is an

unbiased estimator for the treatment effect. This is also one of the properties of a

balancing score derived by Rosenbaum and Rubin (1983). A consequence is that

pair matching on a balancing score or covariate adjustment using a balancing score

will produce unbiased estimates of the treatment effect, and also that using sample

estimates of balancing scores will generally lead to sample balance on x.

Rosenbaum and Ruben(1983) advocated for the use of the propensity score, but

actually there are four different propensity score methods are used for removing the ef-

fects of confounding when estimating the effects of treatment on outcomes: propensity

score matching, stratification (or sub-classification) on the propensity score, inverse

probability of treatment weighting (IPTW) using the propensity score, and covariate

adjustment using the propensity score. Rosenbaum and Ruben(1983) did not specify

one particular way in which it was to be used. This indeterminacy continues to ex-

ist. D’Agostino (1998) provides an excellent review of the use of propensity scores in

bio-statistics, but gives no guidelines for which adjustment to use. The focus here is

to choose well-matched samples of the original treatment and control groups, thereby

reducing bias due to the covariates. I will illustrate the use of the propensity score

using matching only. One issue which arises is that most of the methods will drop

the unmatched observations in the analysis, thereby disregarding the units that can

not get matched, and losing some information on observational data. There is a full

matching method that includes all units after matching. A benefit of full matching is

that no units are discarded, which has the potential to improve precision and prevent
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bias due to incomplete matching, but full matching applies weights to observations,

which can be a disadvantage. Another method , nearest neighbor matching, has the

disadvantage of disregarding unmatched treatment or control observations.

3.2 Propensity score matching using the MatchIt package

We use “MatchIt” package in R to do the match according to the propensity

score. There are few matching method contain within MatchIt package - “exact”,

“genetic”, “nearest”, “full”, “optimal” and “subclass”, with the different methods

designed for dealing with different data sets. For example exact matching is better

off to implement with stratified data, and genetic matching is less specific in specifying

the distance measure use to do the matching. The most commonly used matching

method is nearest neighbor matching, also called “greedy matching”. However, most

of the methods will drop the unmatched observations when carrying out the analysis.

I use both nearest matching and full matching to choose the data for analysis, and

then used logistic regression with single predictor neuronormal to estimate the effect

size on the logit scale.

Nearest matching is also known as “greedy matching”. It runs through the list of

treated units and selects the nearest eligible control unit that can be pair matched

with each treated unit. It uses a distance measure to define which control unit is the

nearest to the treated unit. The most commonly used distance is the absolute value

of the propensity score difference between each treated and control units. Another

popular distance method uses “Mahalanobis distance matching”. It tends to work
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(a) Jitter plot for nearest neighbor matching (b) Histogram of matched observations

Figure 3.1: Logistic regression using nearest neighbor matched data

better with continuous covariates than with categorical covariates. In our case, we

will stay with the absolute propensity score distance.

Full matching assigns every treated and control unit in the sample to one subclass

each. It makes use of all individuals in the data set. Each subclass either contains one

treated individual and multiple control individuals, or one control units and multiple

treated individuals. The benefit of full matching is that no units are disregarded,

which gives the potential to improve precision and prevent bias due to incomplete

samples. It also has been shown to be particularly effective at reducing bias due to

observed confounding variables. However, the effective sample size may be different

from the original sample size, as the former is determined by matching weights. One

cannot conclude that full matching offers more precise results than other matching

methods.

Figure 3.1 is the output from using the nearest matching method. The histogram

shows that matched treated and control group do not agree well, even though after

matching. The raw treated is data shift to left a bit after matching, but there are
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still substantial differences from the matched control distribution. The differences

between matched treated and matched control cannot be ignored, and so we then

move to the full matching method.

(a) Jitter plot based on full matching (b) Histogram of matched observations

Figure 3.2: Logistic regression using full matched data

Figure 3.2 shows that the full matching method gives much better matching when

compared with nearest matching. The left tail of the matched treated units in the

full match jitter plot have several large circles. The circles represent the relative

number of control units which a particular treatment unit gets matched to. Note

that in Figure 3.1(a), there are very few treated units less than 0.4, but there are

many control units in this range, so matching of each treatment unit to a control,

generates a one to many matching.

Figures 3.3 and 3.4 show the result of logistic regression of aedend on neuronor-

mal using the two matched data sets. Figures 3.3 and 3.4 shows that both nearest

matching and full matching give different estimated coefficients as compared to the

logistic models fit in chapter 2.

Note that with nearest neighbor matching, the standard error for the coefficient
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Figure 3.3: Nearest Matching test logistic outcome

Figure 3.4: Full Matching test logistic outcome

of neuronormal is larger than for the unmatched analysis in table 2.4, which might

reflect the unmatched treatment units that have been ignored in the matched analysis.

The estimated coefficient using full matching is considerably smaller than for any of

the other models considered so far, and is only marginally significant (p=.0395). This

may reflect the replication arising from many to one matching, or it may suggest that

neuronormal is not a particularly important predictor of aedend.

We need to be cautious as in an observational study one may not be able to

clearly define the treatment variable, and perhaps, in most cases, there is no well

defined treatment, so the experiment may vary depend on subjective choice. Based

on the histograms of the matched distributions, it seems like full matching does a

better job than nearest neighbor matching. However, both methods have their own

pros and cons, and it is not reasonable to conclude which one is better based on

these histograms or the logistic regression outputs. We demonstrated both methods

here in order to illustrate differences. However, in most cases of observational study,

researchers may only subjectively choose one of the methods to do the matching. One
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matching method shows (neuronormal) to be a very significant predictor, while the

other method shows it to be only weakly predictive. In the next chapter we will give

another way to identify causal effect, which somes give results similar to those which

propensity score matching gave us here.

Both nearest matching and full matching use case weights when estimating the

treatment effect. With full macthing, the weights do the entire work of balancing the

covariates across the treatment groups. These weights are computed based on subclass

membership, and the weights function like propensity score weights, which can be used

to estimate a weighted treatment effect. Ignoring weights essentially ignores the entire

purpose of matching. When doing matching with replacement, which is what we did

with full matching above, weights must be included to ensure control units matched

to multiple treated units are weighted accordingly. The only time weights can be

omitted after pair matching is when performing 1:1 matching without replacement.

That is what we did for 1:1 nearest neighbor matching. Excluding weights in this

case will not affect the analysis since all work was done by using the propensity score

matching distance to do pair matching. On the other hand, nearest neighbor matching

often excludes unmatched observations, as seen with the unmatched treatment units

in figure 3.1(a).

So in conclusion, why does propensity score matching work for causal inference?

In a strict sense, propensity score adjustment has no more to do with causal inference

than regression modeling does. The only real difference with propensity scores is

that they make it easier to adjust for more observed potential confounders than that
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sample size may allow regression models to incorporate. Propensity score adjustment

can be thought of as a data reduction technique where the reduction is along an

important axis - confounding. Propensity score matching can exclude many observa-

tions and thus be terribly inefficient. Any method that excludes relevant observations

should be viewed as problematic. The real problem with matching is that it excludes

easily matched observations due to some perceived need for having 1:1 matching, and

most matching algorithms are observation order-dependent. We may how for some

improvement on propensity score matching in the future.



Chapter 4

Graphical Causal Models

“Causal models are mathematical models representing causal relationships within

an individual system or population.”(Zalta et al. (1995)). Causal model facilitate

the causal relationships from data, and it not only can show the causation, but also

express the dependencies among variables. Figure 4.1 shows a very simple graph from

our daily life example.

Figure 4.1: flight causal model

With intuitive common sense, both distance and price have effect on flights, and

also distance has an effect on price as well. The arrows indicate causal relationships.

If one alters the variable that an arrow begins from, that will cause a change in the

23
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variable arrow goes in to. Graphs like this are causal models.

A graph is a collection of vertices X together with a collection of edges E. In

statistical applications, the vertices represent random variables, and an edge between

two vertices implies that two variables are associated. In a directed graph, the edges

are directed, and the direction of the arrow denotes the direction of causation. For

example Xi → Xj indicates that variable Xi causes Xj. A directed acyclic graph

(DAG) is a directed graph without directed cycles, it only contains vertices and

edges, with each edge going from one vertex to another. An acyclic graph has no

closed loops such as X1 → X2 . . . → Xk → X1. A parent of X is a node Pa(X) for

which Pa(X) → X. A child of X is a node Ch(X) for which X → Ch(X). These

notions are generalized to ancestors and descendants, which may include intervening

points.

The causal graph is the most important tool people use when doing causal analysis,

and methods for causal inference on graphs typically assume the data arise from a

DAG. Such graphs not only illustrate the causal relationship but also indicate the

dependencies among variables, and what confounders should be including in fitting

a relationship between treatment and outcome variables. Much of this work has

been developed by Pearl (2009). Pearl, Glymour, and Jewell (2016) provides a more

readable introduction to many of the associated issues. One important point is that

every causal DAG implies a set of independence relationships that can be read off

from the DAG by using a concept called d-separation.
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4.1 d-separation

Figure 4.2 shows a very simple graph which gives some intuitive understanding of

principles which will apply with more complicated models. This example comes from

Pearl et al. (2016). In the figure, UX , UY and UZ are assumed to be independent

random variables.

Figure 4.2: Simple collider

In the figure we can observe that variables X and Y both cause Z and each of the

three variables have external causations which are independent of one other. Ignoring

the external variables we can summarize the dependence relationships from the graph

as following:

1. X and Z are dependent

2. Y and Z are dependent

3. X and Y independent

4. X and Y are dependent conditional on Z.
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The first two points are obvious and the third point is fairly straightforward as

well since there is no arrow or path connect X and Y . Point four is the key of this

graph, and the question is why X and Y become dependent when conditioning on Z.

If we condition on Z, that means we restrict consideration to cases in which Z takes

the same fixed value. It is easiest to consider the linear case where Z = X+Y . Then

with Z fixed, then an increase (decrease) in X must be accompanied by a decrease

(increase) in Y , so conditioning on Z generates a dependence between X and Y .

We now introduce a term called d-separation, d-separation is a criterion for decid-

ing, from a given causal graph, whether a set X of variables is independent of another

set Y , given a third set Z.

The idea is to associate “dependence” with “connected” (i.e., the existence of

a connecting path) and “independence” with “separation”. The only twist on this

simple idea is to define what we mean by “connecting path”, and on the contrary,

what we mean by “blocked path”, and under what circumstance we can define the

dependence and independence. To account for the orientations of the arrows we use

the terms “d-separated” and “d-connected”.

4.1.1 Unconditional separation

Rule 1: x and y are d-connected if there is an unblocked path between them.

By a “path” we mean a sequence of connected edges, disregarding their direction-

alities. By “unblocked path” we mean a path that can be traced without traversing

a pair of arrows that collide “head-to-head”, that is, a directed path in the graph
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theoretic terminology. If two arrows collide into a variable from difference directions,

for example Xi → Xj ← Xk, the path connecting Xi and Xk is “blocked”. In other

words, arrows that meet head-to-head do not construct a connection for the purpose

of passing, and such a meeting will be called a “collider”.

Example 4.1:

Figure 4.3: Rule 1 example

The graph in example 4.1 contains one collider at t. The path x-r-s-t is unblocked,

hence x and t are d-connected. t and y are also d-connected, as well as the pairs u

and y, t and v, t and u, x and s, etc. It might be confusing since it seems like there is

no directed path from t to y or from y to t due to the structure← v →. However, the

value of v will affect the values of t and y, so that t and y will likely be dependent,

so are d-connected.

Strictly follow the definition of a collider at X as a structure → X ←, there is

no collider blocking the path connecting t and y, and we conclude that this is an

unblocked path.

Moreover, x and y are not d-connected; there is no way of tracing a path from

x to y without traversing the collider at t. Therefore, we conclude that x and y are

d-separated, as well as x and v, s and u, r and u, etc.
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4.1.2 Blocking by Conditioning

Rule 2: x and y are said to be d-connected, conditioned on a set of nodes Z, if there

is a collider-free path between x and y that traverses no member of Z.

If no such path exists, we say that x and y are d-separated by Z, We also say then

that every path between x and y is “blocked” by Z.

In example 4.2, Z = {r, v}.

Example 4.2:

Figure 4.4: Rule 2 example

X and y are d-separated conditioned by Z, because there is no collider-free path

between x and y that can travel without a node that contains in set Z, and so are

also x and s,u and y. Conditioned on Z, the only d-connected paths here are s-t and

u-t. s-t-u is blocked by Rule 1 since t is a collider.

4.1.3 Conditioning on Colliders

Rule 3: If a collider is a member of the conditioning set Z, or has a descendant in

Z, then it no longer blocks any path that traces this collider.

In figure 4.5, let Z = {r, p} be the nodes of the conditioning set. then s and y are

d-connected because based on Rule 3, p is the descendant of collier t and if a collider

itself or has a descendant in conditioning set Z, then this collider no longer blocks the

path. Intuitively, conditioning on p generates information on t, and information on t
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provides information on s and y. To see this, recall the discussion of Figure 4.2.

Example 4.3:

Figure 4.5: Rule 3 example

This means that s and y are likely to be dependent when conditioned on Z. They

are conditionally d-connected. However, x and u are d-separated by Z using rule 2,

as the path from x to u is blocked by r ∈ Z.

4.2 The pc algorithm for estimating the causal graph

While the causal graph implies important conditional independence relationships, in

general, without suitable subject matter knowledge, the casual graph is unknown.

Recently a number of algorithms have been developed which attempt to infer the

structure of the causal graph from observational data. A survey of methods is given

by Glymour, Zhang and Spirtes (2019). A number of these algorithms are available

in the R library pcalg (Kalisch et al., 2012), The first widely used such algorithm

was the pc (parent-child) algorithm (Spirtes et al., 2000). The pc algorithm requires a

test of independence between two variables, conditional on other variables, in order to

remove an edge between the two variables in question. For jointly Gaussian variables

this is a test of zero partial correlation. For categorical variables, the R library pcalg

uses the G2 test of association, which is related to the likelihood ratio test. The G2
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test is used to test conditional or unconditional independence of discrete variables X

and Y given the discrete set S, S can be the null set.

The following indicates the primary steps of the pc algorithm.

1. Form the complete undirected graph, with all nodes connected.

2. Eliminate edges between variables which are unconditionally independent.

3. For each pair of variables, say (Xi, Xj) with a connecting edge, and each other

variable Xk with an edge to one of them, eliminate the edge between Xi and

Xj if Xi ⊥ Xj|Xk. This requires a test of conditional independence.

4. For each pair (Xi, Xj) with a connecting edge, and each other pair of variables

(Xk, Xl) with edges both connected to Xi or both connected to Xj, eliminate

the edge between Xi and Xj if Xi ⊥ Xj|(Xk, Xl).

5. Continue checking independence conditional on subsets of variables of increasing

size, and remove edges where the test for conditional independence does not

reject the null hypothesis.

6. For each triple (Xi, Xj, Xk) of variables with edges joining (Xi, Xj) and (Xj, Xk),

but not (Xi, Xk), orient the undirected triple Xi −Xj −Xk as Xi → Xj ← Xk

provided Xj was not in the conditioning set on which Xi and Xk became inde-

pendent

7. For each triple Xi → Xj −Xk where there is no edge joining Xi and Xk, orient

Xj −Xk as Xj → Xk.
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Figure 4.6: pc() function

Steps 1-5 generate the so-called skeleton, an undirected graph. Steps 6 and 7 are

edge propagation steps. Different versions of the pc algorithm may contain several

other edge propagation steps. One requirement is that edges are not allowed to be

generated if they lead to a cycle in the graph.

When applied to the neurology dataset, using level α = .01 for tests of indepen-

dence, the pc algorithm estimates the causal graph as in Figure 4.6.

A number of operations have been developed which allow one to manipulate causal

graphs to determine dependence relationships, assess effect size, and so on. In the

following we discuss the two most important manipulations, the so-called do calculus

and the backdoor criterion.
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4.3 do-calculus

For a causal graph to be of use, it should lead to an estimate of the size of the

causal effects between pairs of variables. With a single DAG, this can be done using

Pearl’s do-calculus, as described in Pearl et al. (2016).

By the notation do(X = x), we can think of do as meaning some manipulation

on X which fixes X = x in the population. Suppose X is the only cause of Y then

if we apply an intervention to change X and record change on Y , then the recorded

change would be the causal effect of X on Y .

Suppose by external intervention, we first set the variable X = x and then to the

value x+ 1. The effect of the change in X on Y can be expressed as

C(Y,X, x) = E(Y |do(X = x+ 1))− E(Y |do(X = x))

or, more generally, as

C(Y,X, x) =
δ

δx
E(Y |do(X))|X=x

.

Pearl’s do-calculus Pearl et al. (2016) gives a numerical means of numerically

evaluating the effect of intervention on X. In evaluating this, it is important that we

condition on an appropriate set of control variables in order to block paths linking X

and Y other than those which would exist in the graph where all paths into X have

been removed. If other variables with unblocked paths to both X and Y exist, then

there will be some confounding of the causal effect of X on Y .
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The goal of causal inference is to estimate the causal effect of X on Y . In previous

chapters we used logistic regression to estimate the effect of independent variables on

a dependent variable. However, the results of regression and result of applying an

intervention can be different, and that also indicates the differences between causal

and non-causal relationship. The following two examples from Maathuis et al. (2009)

illustrate the difference between a causal effect and a non-causal effect. Figure 4.7

gives the graphical models corresponding to the examples.

Example 4.1

Y = −X1 + 2X2 −X3 + εY

where X2 = ε2, X1 = 0.8X2 + ε1, X3 = 0.8X2 + ε3. ε1, ε2, ε3, and εY are mutually

independent normal random variables with mean zero and variances σ2
1= 0.36, σ2

2=

1, σ2
3= 0.36 and σ2

Y = 1. Note that X1, X2 and X3 all have variance 1.

In a regression analysis, X2 is the most important predictor due to its having

largest coeffiecent β=2. Then we move to intervention calculus, and let θ = (θ1, θ2, θ3)

denote the causal effects of X1, X2, X3 on Y . Where φ denotes the emply set, because

Pa(X1) = X2, Pa(X2) = φ, and Pa(X3) = X2, we have θ1 = β1|X2 = −1, θ3 =

β3|X2 = −1, and θ2 = β2|φ = .8(−1) + 2 + .8(−1) = 0.4, so the variable X2 is the least

important variable in terms of causal effect.

Example 4.2 As in example 4.1, but with

Y = X1 +X3 + ε

In the regression context, the least important variable is X2 since it has coefficient
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Figure 4.7: Graphical representation of the models used in Examples 4.1 and 4.2

β2 = 0 in the regression. But in terms of intervention calculus, we have θ1 = β1|X2 = 1,

θ3 = β3|X2 = 1, and θ2 = β2|φ = .8(1) + .8(1) = 1.6. Variable X2 is now the most

important variable. So the intervention calculus and regression analysis may give

different results, even opposite results, since the set of variables that are controlled

for may be different.

4.4 Backdoor Criterion

“Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of

variables Z satisfies the backdoor criterion relative to (X, Y) if no node in Z is a

descendant of X, and Z blocks every path between X and Y that contains an arrow

into X.”Pearl et al. (2016)

That is, when estimating the effect of X on Y, we simply must make sure to keep

all direct paths intact while blocking off any and all spurious paths to X, that is, all

so-called back-door paths. We block the backdoor paths by conditioning.

If the backdoor criterion is satisfied, then Pearl et al. (2016) shows that the causal
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Figure 4.8: X is the cause of Y, but can not simply alter X and test on Y because
both X and Y have a common parent Z and that means (1) X is affected by Z and X
represents information from Z. (2) Z gives information to its child Y as well, we can
not separate the causal effects from the indirect inference.

effect of X on Y is given by:

Pr(Y |do(X = x)) =
∑
z

Pr(Y |X = x, Z = z)Pr(Z = z)

The proof begins with Pearl’s causal effect rule (see Pearl et al. (2016)) which

states that:

Pr(Y |do(X = x)) =
∑
t

Pr(Pa(X) = t)Pr(Y |X = x, Pa(X) = t)

where t ranges over all the combinations of values that the parents Pa(X) can take.

This rule arises because it is the influence of the parents of X that is nullified when

X is fixed by external manipulation.

The idea behind the backdoor criterion is that, in general, we would like to con-

dition on a set of nodes Z such that:

• We block all spurious paths between X and Y .
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• We leave all directed paths from X to Y unaltered.

• We create no new spurious paths from X to Y by conditioning on Z.

When trying to find the causal effect of X on Y , we want the nodes we condition

on to block any “backdoor” path in which one end has an arrow into X, because such

paths may make X and Y dependent, but they do not transmit causal influences from

X. If we do not block them, they will confound the effect that X has on Y .

We condition on backdoor paths so as to fulfill our first requirement of blocking

spurious paths. However, we don’t want to condition on any nodes that are descen-

dants of X. Descendants of X would be affected by an intervention on X and might

themselves affect Y . Conditioning on them would block those pathways. Therefore,

we don’t condition on descendants of X so as to fulfill our second requirement. Fi-

nally, to comply with the third requirement, we should refrain from conditioning on

any collider that would unblock a new path between X and Y .

Suppose that there is another set of conditioning variables Z in addition to Pa(X),

but which satisfies the backdoor criterion. Following from the causal effect rule, for

any such set of variables Z, we have

Pr(Y |do(X = x)) =
∑
t

Pr(Pa(X) = t)
∑
z

Pr(Y, Z = z|X = x, Pa(X) = t)

Then

Pr(Y, Z = z|X = x, Pa(X) = t)

= Pr(Y |X = x, Pa(X) = t, Z = z)Pr(Z = z|X = x, Pa(X) = t)
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so we have

Pr(Y |do(X = x)) =∑
t

Pr(Pa(X) = t)
∑
z

Pr(Y |X = x, Pa(X) = t, Z = z)Pr(Z = z|X = x, Pa(X) = t)

Now we use the fact that if Z satisfies the back-door criterion, then Y ⊥ Pa(X)|X,Z.

Therefore,

Pr(Y |do(X = x)) =∑
t

Pr(Pa(X) = t)
∑
z

Pr(Y |X = x, Z = z)Pr(Z = z|X = x, Pa(X) = t)

Then as Z contains no descendants of X, X ⊥ Z|Pa(X), so that

Pr(Y |do(X = x)) =∑
t

Pr(Pa(X) = t)
∑
z

Pr(Y |X = x, Z = z)Pr(Z = z, Pa(X) = t)

Since
∑

t Pr(Pa(X) = t)Pr(Z = z|Pa(X) = t) = Pr(Z = z), we finally have

Pr(Y |do(X = x)) =
∑
z

Pr(Y |X = x, Z = z)Pr(Z = z)

This says that we can estimate the causal effect of an intervention by manipulating

conditional probabilities which can be estimated from observational data.

Observing Figure 4.6, the outcome variable aedend has only one arrow which goes

out of the node. This means that there are no back-door paths which need to be

blocked. The non-causal estimate and the causal estimates are the same for these

data, and this choice of treatment (neuronormal) and outcome (aedend) variables.

In fact, with (aedend) as the outcome, there is no possible treatment variable in the

dataset for which adjustment is necessary to estimate a causal effect.
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4.5 Equivalence classes of DAGS

Each DAG implies a set of conditional independence results which can be inferred

from the structure of the graph. However, several DAG’s can describe the same set

of conditional independence results. Such a collection of DAGS forms an equivalence

class. For example, with three variables {X1, X2, X3}, the graphs X1 → X2 → X3,

X1 ← X2 ← X3, and X1 ← X2 → X3 all have exactly one independence result,

namely X1 ⊥ X3|X2. A second equivalence class, with only one member, is X1 →

X2 ← X3, where X2 is a collider. In this case the only conditional independence

relation is the non-conditioned relationship X1 ⊥ X3.

An equivalence class can be described by a completely partially directed acyclic

graph (CPDAG) Colombo et al. (2012) The CPDAG can be learned from conditional

independence information if it can be assumed that the conditional independence

relations are exactly those implied by the DAG via d-separation. For example, if it

is known that the only conditional Independence relation is X1 ⊥ X3|X2, then the

equivalence class consists of X1 → X2 → X3, X1 ← X2 ← X3, and X1 ← X2 → X3.

Under reasonable assumptions, the pc algorithm is able to identify the equivalence

class, and has been shown to have an asymptotic consistency property(Kalisch and

Bühlmann (2008)).

A DAG as estimated by pc() may contain both directed and undirected edges,

with the edges being of 3 types:

1. there is an (directed or undirected) edge between i and j if and only if variables

i and j are conditionally dependent given S for all possible subsets S of the
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remaining nodes

2. a directed edge i → j means that this directed edge is present in all DAGs in

the Markov equivalence class

3. an undirected edge i − j means that there is at least one DAG in the Markov

equivalence class with edge i→ j and there is at least one DAG in the Markov

equivalence class with edge i← j .

For the neurology data set, the graph estimated by pc is shown in figure 4.6.

4.6 Latent variables and the fci algorithm

The following example by Richardson, taken from page 234 of Jordan (1998), de-

scribes a graph with a hidden confounder (a latent variable), and also with a selection

effect.

The example represents a randomized trial of an ineffective drug with unpleasant

side-effects. Patients are randomly assigned to the treatment or control group using

indicator variable Tr. Those in the treatment group suffer unpleasant side-effects

(variable SE), the severity of which is influenced by the patient’s general level of

health (H), with sicker patients having more severe side-effects. Those patients who

suffer sufficiently severe side-effects are likely to drop out of the study. The selection

variable (Sel) is an indicator which records whether or not a patient remains in

the study. Since unhealthy patients who are taking the drug are more likely to

drop out, those patients in the treatment group who remain in the study tend to be
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healthier than those in the control group. Finally, general health status (H), which

is an unobserved confounder, influences how rapidly the patient recovers (R). The

graphical model is:

Tr → SE ← H → R, with additional edge SE → Sel.

The example shows the need to accommodate the possibility of latent confounders

and selection variables. The variables of interest, Tr and R, are observed to be corre-

lated while the causal graph indicates independence between them. The observed cor-

relation between treatment and response is an association induced by design, whereby

only those subjects that eventually stay in the study are considered. The observed

correlation, which is in effect a correlation conditional on the selection variable Sel, is

an example of a selection effect, or selection bias. H is typical of a latent confounder

which contributes to the spurious correlation.

In observational studies there may be several unobserved latent variables which af-

fect the relationship between the variables of interest. Latent variables are marginal-

ized out when only measured variables are analysed. This may cause difficulty in

estimating relationships among the observed variables, or may even lead to non-

identifiability.

For example, consider three observed variables {X1, X2, X3} and two latent vari-

ables {L1, L2}, forming the graph L1 → X1, L1 → X2, L2 → X2, and L2 → X3.

The only independence relationship among the observed variables is X1 ⊥ X3, which

leads to the single member equivalence class X1 → X2 ← X3, suggesting that both

X1 and X3 are causes of X2, which is an incorrect conclusion.
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Another issue is that with latent variables present, the space of DAG’s is not

closed under marginalization and conditioning. For example, consider X1 → X2 ←

L1 → X3 ← X4. As shown in Colombo et al. (2012), this implies a set of Independent

relationships among the Xj’s for which there is no DAG on the four variables that

satisfies the same set of conditional independence via d-separation.

As indicated in Zhang (2008), these difficulties can be dealt with by introducing

a new class of graphs called ancestral graphs, and more particularly, a sub-class of

maximal ancestral graphs (MAG) on the observed variables. A full discussion of the

theory is beyond the scope of this thesis, but it is useful to identify some of the key

ideas. The following summary is taken from Kalisch et al. (2012).

It has been shown that DAG with latent variables can be transformed into a unique

MAG on the observed variables Zhang (2008). Several DAGs give the same MAG, in

fact infinitely many if there is no constraint on the number of latent variables.

As with DAG’s, it is only an equivalence class of MAG’s which can be estimated.

The equivalence class is represented by an object called a partial ancestral graph

(PAG) Zhang (2008). A PAG contains the following types of edges: o − o, o—,

o →, →, ↔ and —. Bidirected edges indicate the presence of hidden variables, and

undirected edges indicate the presence of selection variables. There is an edge between

X and Y if and only if X and Y are conditionally dependent given S for all sets of

variables S consisting of all selection variables and a subset of the observed variables.

A tail on an edge means that this tail is present in all MAG’s in the equivalence class.

An arrow on an edge means that this arrow is present in all MAG’s in the equivalence
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Figure 4.9: fci() function

class. An o edge mark means that there is a at least one MAG in the equivalence class

where the edgemark is a tail, and at least one where the edgemark is an arrowhead.

A number of algorithms to estimate partial ancestral graphs were developed by

Spirtes et al. (2000), Zhang (2008), and Colombo et al. (2012). Glymour et al. (2019)

is a readable introduction to these and other algorithms for causal graph estimation,

including the underlying assumptions.

Among other differences, the different algorithms typically have different orienta-

tion rules. Two popular algorithms in pcalg library which accommodate latent and

selection variables are fci (fast conditional inference) and rfci (really fast conditional

inference).

The graph in figure 4.9 was obtained by applying the fci function to the seizure

data set.
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Figure 4.10: adjacency matrix

There is a known bug arising when the plot method is applied to the graph pro-

duced by fci. Specifically, the plot symbols can be misplaced, or the symbols inverted.

The adjacency matrix shown in figure 4.10 corresponds to the plotted graph, and is

necessary to clarify the structure of the graph. A 0 at coordinate (i, j) of the adja-

cency matrix means there is no edge between nodes i and j. A 1 at position (i, j)

indicates the edge from i to j terminates in a “o”, and a 2 at position (i, j) means

that the edge from i to j terminates with an arrowhead.

Recall that for the PAG, an o edge mark means that there is a at least one MAG

in the equivalence class where the edgemark is a tail, and at least one where the

edgemark is an arrowhead. In comparing figures 4.6 and 4.9, it is clear that the

graph in figure 4.6, estimated using pc, is one member of the equivalence class of
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MAG’s represented in figure 4.8, estimated using fci.

Based on what d-separation told us, neuronormal and aedend are dependent con-

dition on intellnormal, because if we condition on intellnormal, that means we narrow

down the interval of cases in which intellnormal can take value on. But what the value

of intellnormal can take is dependent on neuronormal and aedend, so in order to fix

the value of intellnormal, when we do some changes to neuronormal, we will have to

adjust aedend as well to keep intellnormal stable, and that makes neuronormal and

aedend has some connection in between. If intellnormal is fixed, then neuronormal

and aedend will be correlated. In the same way, if we condition on symptomatic, that

would make neuronormal and intellnormal are dependent.

Regardless of using aedend as dependent variable here, there are some other con-

clusions that can be drawn. Variables like surgery, agefirst and sex are not associated

with any other variables. The variables determining the type of seizure, nevergtc, gen-

eralized, neversec, focal, and symptomatic are associated, but the only seizure variable

related to the potential outcomes intellnormal, neuronormal, and aedend is symp-

tomatic which is an indicator variable for brain injury. One interesting association

has to do with income. Adequate income and low income are clearly related, being

indicators associated with a broader income classification. There is a link between

low income and intelligence level which may be due to families with low income not

having access to educational opportunities, and thereby having an effect on measured

intelligence level.

There is information which one causal graph can provide. What is different here
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from the usual causal analysis is that there are no predefined treatment and control

variables.

In seizure data example, due to the similarity of pc() graph and fci() graph, it is

okay to conclude pc() graph is one member of the equivalence class estimated by fci().

They encode the same conditional independence information. In both pc() and fci()

function, pcalg have preprogrammed versions of indepTest() for Gaussian data (gauss-

CItest()), discrete data (disCItest()), and binary data (binCItest()). Each of these

independence test functions needs different arguments as input. We use disCItest()

here and it is unnecessary move to the independence test for binary variables since

both disCItest() and binCItest() is based on the G2 statistic and takes as input a list

containing the data matrix.

It is worth noting that there is a much simpler class of graphical model called

a conditional independence graph (Lauritzen, 1996), in which two variables are not

joined by an edge if and only if a test declares them to be conditionally independent

given all other variables in the graph. In the case of jointly Gaussian variables, the

conditional independence graph gives a so-called partial correlation graph, and the

graphical structure gives the joint covariance matrix.

There is a function backdoor() in the pcalg package which can be used to identify

backdoor paths. This function first checks if the total causal effect of one variable (x)

onto another variable (y) is identifiable via the back-door criterion, and if this is the

case, it explicitly gives a set of variables that satisfies the back-door criterion with

respect to x and y in the given graph. We used the function to verify that there is
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no backdoor path to outcome variable aedend.

Figure 4.11: backdoor() output

Figure 4.11 shows result of backdoor() function to test the cause of neuronormal

onto aedend in fci() graph. No back-door path is found, and therefore no adjustment

is needed. Figure 4.9 indicates that in some members of the estimated equivalence

class, including the model in figure 4.6, there are no variables in the data set which

should be used to model aedend, while in other members of the equivalence class

intellnormal is a useful predictor.

In terms of the models fit previously, the analysis after full matching with propen-

sity scores comes closes to what the graphical models are telling us. Recall that in that

case, the p-value for the significance of neuronormal was only marginally significant

(p=.0395).



Chapter 5

Conclusion and Future Work

An important, but generally neglected issue when applying causal inference meth-

ods to observational data is in a truly observational study, there is often, and perhaps

most often, not a well defined treatment variable. Thus there may be several of the

measured covariates that may need to be considered as the treatment, with causal

inference methods applied to each. Also, whether matching methods or causal graph

are used, subjective choices may need to be made, for example, the choice of matching

method, the algorithm for graph estimation and so on.

We chose neuronormal as treatment variable of interest, and aedend as the out-

come, from among a number of possible choices.

Tthe propensity score matching method is also subjective. In this thesis, we both

both nearest neighbor matching and full matching. Researchers might try different

methods and make subject decisions as to which is better. Each method will have

relative advantages and disadvantages.

When using propensity scores, one might use a causal model to develop the propen-

sity score rather than a simple logistic regression, which is likely itself to be biased

or to have excess variation due to the inclusion of inappropriate predictors.

47
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In our observational seizure data we began with investigating the effect of neu-

rological status on outcome. However, the estimated causal graph helps to identify

useful relationships among many variables. For example in our estimated graph, the

variables determining type of epilepsy form a sub-graph, and are associated with

other variables only through symptomatic epilepsy. This dramatically simplifies the

possible associations between epilepsy type and a number of possible outcomes.

In carrying out a causal analysis, it is clearly advantageous to have a causal graph

based on subject matter knowledge at the beginning of the study. As is usual, there is

no substitute for a properly designed experiment, and the controlled randomized trial

is still the gold standard for assessing the causal effect of a treatment on an outcome.
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